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Abstract: Photoconvertible fluorescent proteins (pcFPs) constitute a large group of fluorescent
proteins related to green fluorescent protein (GFP) that, when exposed to blue light, bear the capability
of irreversibly switching their emission color from green to red. Not surprisingly, this fascinating class
of FPs has found numerous applications, in particular for the visualization of biological processes.
A detailed understanding of the photoconversion mechanism appears indispensable in the design
of improved variants for applications such as super-resolution imaging. In this article, recent work
is reviewed that involves using pcFPs as a model system for studying protein dynamics. Evidence
has been provided that the evolution of pcFPs from a green ancestor involved the natural selection
for altered dynamical features of the beta-barrel fold. It appears that photoconversion may be the
outcome of a long-range positional shift of a fold-anchoring region. A relatively stiff, rigid element
appears to have migrated away from the chromophore-bearing section to the opposite edge of
the barrel, thereby endowing pcFPs with increased active site flexibility while keeping the fold
intact. In this way, the stage was set for the coupling of light absorption with subsequent chemical
transformations. The emerging mechanistic model suggests that highly specific dynamic motions are
linked to key chemical steps, preparing the system for a concerted deprotonation and β-elimination
reaction that enlarges the chromophore’s π-conjugation to generate red color.
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1. Introduction

In green fluorescent protein (GFP)-like proteins, chromophore dynamics has been linked to
fluorescence quantum yield [1], excited-state proton transfer [2], reversible dark state formation [3,4],
and addition/elimination reactions [5]. Maybe not surprisingly, evidence has been accumulating
that the green-to-red photoconversion process in photoconvertible fluorescent proteins (pcFPs) is
linked to chromophore dynamics as well [6,7]. pcFPs are a class of GFP-like proteins able to undergo
a light-dependent irreversible chemical conversion that generates a three-ring chromophore from the
two-ring GFP-like chromophore [8]. The exposure to UV or violet radiation changes the emission
from about 518 to about 582 nm (Figure 1), a feature that was first described for the pcFPs Kaede [9]
and EosFP [10]. Although many extant variants with this characteristic have since been isolated from
reef-building corals, and numerous others have been generated by genetic engineering methods [11],
deciphering the catalytic mechanism of light-triggered color conversion has posed substantial
challenges. In large part, this appears to be due to the difficulty of generating sufficient populations of
relevant intermediate forms [8,12,13]. A particular challenge originates from experimental limitations
in capturing relevant structural motions on intrinsic molecular timescales [14,15].
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Figure 1. Timecourse of photoconversion of the pcFP least evolved ancestor (LEA). Experiments were 
carried out at pH 5.7 with 405 nm LED illumination [13]. The exposure times (0 to 180 min) are listed 
in the box. After 180 min exposure, the sample was dark-adapted overnight (180D), providing 
evidence for a slow conformational relaxation step that favors the anionic chromophore. The 
respective maxima for green and red chromophores in their neutral and anionic states are indicated, 
and the chemical structures of these chromophores are shown in green and red. 

2. General Characterization of Photoconvertible Fluorescent Proteins (pcFPs) 

In all reported cases, green-to-red pcFPs contain the sequence His-Tyr-Gly buried in the interior 
of the eleven-stranded β-barrel. Frequently, the residue numbers of this tripeptide are 62–64, a 
numbering system that will be used here. However, loop insertions and N-terminal extensions may 
modify the corresponding residue numbers somewhat, as in avGFP (Aequorea victoria green 
fluorescent protein), where the equivalent residues are 65–67. The first step in pcFP maturation is the 
spontaneous formation of a green chromophore identical to that found in avGFP. This process 
requires properly folded protein and involves an internal main-chain cyclization reaction, followed 
first by a two-electron oxidation where molecular oxygen serves as electron acceptor, and 
subsequently by the elimination of water [16,17]. Once this process is complete, the absorption of UV 
or blue light by the protonated neutral form of the green chromophore (state A, Scheme 1), which is 
in equilibrium with its anionic state (state B, Scheme 1) [10], triggers the incorporation of the His62 
side chain into the chromophore’s π-overlap system [18]. In this way, a three-ring chromophore is 
generated that entails a desaturated His62 Cα–Cβ bond, with concomitant red-shifting of absorbance 
and fluorescence spectra. This process requires main-chain bond scission that involves a β-
elimination reaction, in which the His62 amide nitrogen is ejected from the His62 α-carbon (Scheme 
2). In general, pcFPs remain natively folded upon photoconversion, in spite of the interior backbone 
cleavage that provides an N-terminal 10 kDa and C-terminal 18 kDa peptide fragment upon protein 
denaturation. Several studies have indicated that pcFP red chromophore formation is not likely to 
involve excited-state proton transfer reactions (ESPT) or one-electron transfer reactions, as 
intermediates consistent with such processes were not detected [19,20]. 

Figure 1. Timecourse of photoconversion of the pcFP least evolved ancestor (LEA). Experiments were
carried out at pH 5.7 with 405 nm LED illumination [13]. The exposure times (0 to 180 min) are listed in
the box. After 180 min exposure, the sample was dark-adapted overnight (180D), providing evidence
for a slow conformational relaxation step that favors the anionic chromophore. The respective maxima
for green and red chromophores in their neutral and anionic states are indicated, and the chemical
structures of these chromophores are shown in green and red.

2. General Characterization of Photoconvertible Fluorescent Proteins (pcFPs)

In all reported cases, green-to-red pcFPs contain the sequence His-Tyr-Gly buried in the interior of
the eleven-stranded β-barrel. Frequently, the residue numbers of this tripeptide are 62–64, a numbering
system that will be used here. However, loop insertions and N-terminal extensions may modify
the corresponding residue numbers somewhat, as in avGFP (Aequorea victoria green fluorescent
protein), where the equivalent residues are 65–67. The first step in pcFP maturation is the spontaneous
formation of a green chromophore identical to that found in avGFP. This process requires properly
folded protein and involves an internal main-chain cyclization reaction, followed first by a two-electron
oxidation where molecular oxygen serves as electron acceptor, and subsequently by the elimination
of water [16,17]. Once this process is complete, the absorption of UV or blue light by the protonated
neutral form of the green chromophore (state A, Scheme 1), which is in equilibrium with its anionic
state (state B, Scheme 1) [10], triggers the incorporation of the His62 side chain into the chromophore’s
π-overlap system [18]. In this way, a three-ring chromophore is generated that entails a desaturated
His62 Cα–Cβ bond, with concomitant red-shifting of absorbance and fluorescence spectra. This process
requires main-chain bond scission that involves a β-elimination reaction, in which the His62 amide
nitrogen is ejected from the His62 α-carbon (Scheme 2). In general, pcFPs remain natively folded
upon photoconversion, in spite of the interior backbone cleavage that provides an N-terminal 10 kDa
and C-terminal 18 kDa peptide fragment upon protein denaturation. Several studies have indicated
that pcFP red chromophore formation is not likely to involve excited-state proton transfer reactions
(ESPT) or one-electron transfer reactions, as intermediates consistent with such processes were not
detected [19,20].
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Scheme 1. Bond rotations proposed to be critical in light-activated photoconversion of 
photoconvertible fluorescent proteins (pcFPs) [13]. The rotation angles τ (chromophoric β-methylene 
bridge) and υ (His62 side chain) are highlighted. 

 

Scheme 2. Proposed photoconversion mechanism in pcFPs according to Kim et al., 2015 [13]. The 
yellow arrow indicates light exposure. Reverse protonation is thought to promote activation of 
Glu211 and His62 by allowing chromophore distortions. 

3. Least Evolved Ancestor (LEA) Series of pcFPs Developed by Ancestral Gene  
Reconstruction Technology 

Some years ago, gene reconstruction technology was utilized, in part to gain a better 
understanding of the catalytic mechanism operational in pcFPs [21,22]. A key advantage of the 
ancestral reconstruction approach is the ability to study photoconversion in the absence of any ballast 
mutations that may be due to genetic drift or natural selection for unrelated adaptations. A series of 

Scheme 1. Bond rotations proposed to be critical in light-activated photoconversion of photoconvertible
fluorescent proteins (pcFPs) [13]. The rotation angles τ (chromophoric β-methylene bridge) and
υ (His62 side chain) are highlighted.
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3. Least Evolved Ancestor (LEA) Series of pcFPs Developed by Ancestral Gene
Reconstruction Technology

Some years ago, gene reconstruction technology was utilized, in part to gain a better
understanding of the catalytic mechanism operational in pcFPs [21,22]. A key advantage of the
ancestral reconstruction approach is the ability to study photoconversion in the absence of any ballast
mutations that may be due to genetic drift or natural selection for unrelated adaptations. A series of
sequences were predicted that were judged to be consistent with the common ancestor of all color
classes expressed in the extant great star coral Monastrea cavernosa (cyan, green and red). These posterior
predictions formed the basis for the experimental construction of a large set of ancestral proteins via
combinatorial methods [22]. As these sequences encoded green-fluorescent proteins only, the ancestral
node delineated by these sequences was termed ALL-GFP. The pair of ancestral green and extant
photoconvertible proteins most similar to each other entailed a total of 37 amino acid substitutions,
allowing for the experimental testing of each of these sites for its involvement in the generation of
red color. Statistical data analysis provided a direct link to pcFP evolution for only 13 out of the
37 sites. The subsequent production of several possible evolutionary intermediates along this lineage
nicely illuminated phenotypic change along clade D of the stony corals (order Scleractinia, suborder
Faviina) [21,23,24].

Proteins generated in this way included the common green ancestor ALL-GFP and its
single-substitution variant ALL-Q62H, which bears the functionally important His residue in
position 62. Neither of these ancestral proteins are able to undergo the photoconversion process,
and are therefore non-pcFPs. Subsequently, ALL-Q62H was chosen as background for the step-wise
introduction of additional functionally relevant substitutions. The partially evolved intermediate
variants derived from ALL-Q62H were termed LEAX6, LEAX72 and LEAX121, with each exhibiting
only weak pcFP activity. Finally, a protein termed the Least Evolved Ancestor (LEA) was produced,
a variant that bears a total of 13 mutations compared to ALL-GFP (Table 1 and Figure 2). This set
of mutations was judged to be the minimum number of mutations both necessary and sufficient to
generate a red-fluorescent chromophore upon light excitation, as LEA displayed high photoconversion
efficiency [22].
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Figure 2. Tetrameric X-ray structure of the common green ancestor bearing the Q62H substitution,
ALL-Q62H [13]. Residues that were mutated to generate the pcFP LEA are shown as spheres (see
Table 1). Residues with large changes in percent differential flexibility index (∆dfi) values (top 15%)
are shown in red (large increase in flexibility, residues 67–71, 142, 187–193, 213–215) and blue (large
decrease in flexibility, residues 19–22, 50, 97–98, 125, 127–129, 165, 167). The chromophore is shown in
green. (a) Top view; (b) Side view.
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In subsequent work, we demonstrated that the LEA quantum yield of photoconversion is
1.5 × 10−3 [25], a value that is similar to other well-characterized pcFPs. Other experiments
demonstrated that among the 13 sites, the substitutions T69A and Y116N and the deletion of
Tyr217 were particularly important in promoting red color [22]. With the exception of Q62H,
which introduces the indispensable imidazole building block, all single-site reversions retained
their ability to photoconvert, albeit with reduced efficiency. Although within the series of ancestral
reconstructed proteins, the tetrameric assembly of the common green ancestor ALL-GFP was shown
to remain intact [13], it is clear that the maintenance of quaternary structure is not a prerequisite for
photoconversion [26,27].

4. The pcFP LEA Is More Dynamic than Its Non-pcFP Precursor Protein

A few years ago, we carried out a detailed biophysical characterization of the ancestral series of
variants described above [13,25]. Information derived from atomic resolution X-ray crystal structures
of the green (pre-photoconversion) state of several variants was combined with computational
approaches to elucidate the evolutionary role of local and global protein dynamics in the natural
selection for photoconversion. Equilibrium molecular dynamics (MD) simulations of the ALL-Q62H
and LEA tetrameric β-barrel assemblies provided evidence for increased chromophore dynamics in
LEA compared to its precursor protein. In these computations, the α-carbon fluctuations of LEA were
significantly higher than those of ALL-Q62H over a trajectory of 220 ns [13]. In addition, a significant
reduction in thermostability was observed for the evolved, photoconversion-competent variants [13].
Although the α-carbons of the crystallographic models of LEA and ALL-Q62H were superimposable
within error, and the positions of all catalytic groups were well-conserved, the MD and thermostability
data suggested that the backbone of LEA undergoes an increased range of thermal motion compared
to ALL-Q62H, and that its chromophore is more flexible.

5. pcFPs Harbor a Softer, More Dynamic Active Site and a Remote Knob-Like Region That Is
Highly Rigidified

To aid in identifying specific regions of LEA that have incurred substantial changes in flexibility
during the course of evolution from a green ancestor, we employed a computational method termed
perturbation response scanning (PRS) [28,29]. Using this method, we calculated a residue-by-residue
dynamic flexibility index (dfi) [13]. According to the canonical PRS model, the protein is typically
viewed as an elastic network (Elastic Network Model or ENM), in which each node represents one
residue and harmonic interactions occur between pairs of nodes. However, to apply PRS to LEA
and ALL-Q62H, proteins with different residue identities at some positions, we used all-atom MD
simulations rather than a coarse-grained network model in the PRS calculations. The incorporation of
equilibrated MD trajectories allows for this approach to take non-covalent interactions into account.

In PRS, a random unit force or perturbation is applied sequentially to individual residues.
The Brownian kick then travels through the residue interaction network, and induces various degrees
of positional displacement in each of the remaining residues. The displacement of each residue i in the
protein chain is recorded upon perturbation of residue j, and the process is repeated until all residues
have received a Brownian kick one-by-one. To compute the residue-specific dfi value, the average
displacement of a particular residue from its equilibrium position is calculated and normalized with
respect to the average displacement of all sites. In this way, one can determine whether the average
displacement of residue i is above or below the average displacements of all other residues, thereby
allowing for the identification of particularly dynamical and particularly rigid sites in a protein chain.

Using this method, we made the surprising observation that ALL-Q62H and LEA exhibited
large differences in flexibility for two diagonally opposite sections of the beta barrel, where elevated
and depressed %dfi values (normalized dfi values) seemed to have switched place during the course
of evolution (Figure 2). It is particularly noteworthy that residues with large differences in %dfi
values (i.e., large ∆dfi values, such as the top 15% colored blue and red in Figure 2) do not involve
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mutational sites, with the sole exception of residue 69 (Table 1). This observation suggests that most
of the substituted positions transmit perturbations through the protein matrix to other, more remote
residues, rather than undergoing large changes in flexibility themselves. As an aside, the calculated
differences ∆dfi between ALL-Q62H and LEA did not follow the same trend as the observed differences
in (normalized) crystallographic B-factors [13]. This is not surprising, given that crystallographic
B-factors reflect a variety of physical mechanisms related to disorder in the crystal.

Table 1. Differences in amino acid residues between the common green ancestor ALL-GFP and least
evolved ancestor (LEA) [21,22]. The changes in percent dfi values (∆dfi, range −0.5 to +0.5) and
corresponding aequorea victoria green fluorescent protein (avGFP) residue numbers are also provided [13].

Residue No. ALL-GFP LEA ∆dfi avGFP Residue No.

60 A V −0.03 63
62 Q H +0.23 65
69 T A +0.46 72
74 D H −0.04 77

104 T R −0.17 109
105 S N +0.09 110
116 Y N +0.05 121
154 M T −0.04 162
157 V I −0.06 165
194 R C +0.23 204
216 R H +0.15 227
217 S (deleted) n/a 228 *

219 (218 for LEA) L G n/a 229 *

n/a: not applicable; * The alignment of the avGFP residues 228 to 232 with the C-termini of the synthetic constructs
is not reliable.

Based on the ∆dfi analysis, it appears that LEA carries a substantially softer, more malleable
active-site that is somehow linked by the protein matrix to the opposite corner of the β-barrel, which has
acquired enhanced rigidity. This knob-like region could be considered a hinge or anchoring region
for global protein breathing motions that ensures that the protein remains folded. As backbone shifts
were essentially absent in the X-ray structures [13], the computational results nicely illustrate the
impact of protein dynamics on phenotypic change. The emerging model suggests that during the
course of evolution, the hinge region controlling vital low-frequency normal modes has migrated
across the barrel, thereby setting the stage for phenotypic change. This model supports the notion that
pcFPs require a more dynamic active site that allows for more substantial light-induced chromophore
movements, as well as a histidine-mediated proton shuttling mechanism, as described in more detail
below (Figure 2).

6. The Charge States of Buried Functional Groups Appear to Control the Rate of Color Change

Several years ago, we carried out extensive photoconversion kinetics on the pcFP LEA [25].
The results demonstrated that the photoconversion rate decreases both with increasing acidity and
with increasing basicity. The bell-shaped pH-rate profile was fit to appropriate kinetic models to
estimate the apparent apparent acid dissociation constant (pKa

app) values that control the observed
rates [25]. In the vicinity of the chromophore, a set of four titratable side chains, Glu211, His193,
Glu144 and Arg66, form a quadrupolar arrangement of tightly coupled alternating charges. Therefore,
the observed pKa

app values were attributed to Glu211 in combination with Glu144 for the up-slope
(pKa

app = 4.5), and to His193 (pKa
app = 7.5) for the down-slope. According to this interpretation, the

carboxylates of the two glutamic acids are primarily negatively charged, and His193 and Arg66
are primarily positively charged between pH 4.5 and 7.5, which is the pH region with highest
photoconversion rates. Interestingly, the pKa value of 6.3 of the LEA chromophore itself lies in this
region as well, consistent with the notion that photoexcitation of the neutral form may be responsible
for the ensuing photochemistry.
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7. Transient Reverse Protonation of His193-Glu211 May Facilitate Deformation of the
Chromophore in the Electronically Excited State

Over the years, numerous comparisons of X-ray structures of green and red pcFPs have
demonstrated that photoconversion does not lead to structural alterations, with the sole exception of
main-chain bond scission [8]. The Glu211 side chain is thought to provide the catalytic base for proton
abstraction from His62-Cβ (Scheme 2). The resulting desaturation of the His62 side chain provides a
connection of the imidazole π-system to the π-system of the green chromophore, and therefore leads
to a red-shifted spectrum [19,30]. For Glu211 to function as a strong base, the salt bridge to His193
must be temporarily disrupted, a process that may be set in motion by twisting of the chromophore
around its β-methylene bridge. An increase in the spatial separation of His193 and Glu211 would be
substantially facilitated in the reverse-protonated state, likely the catalytically competent charge state
(Scheme 2, steps 1 and 2) [25]. The pH-rate profile suggests that at its apex, about 0.1% (calculated using
the expression 10−∆pKa) of all protein chains would bear neutral His193 and Glu211 side chains [31]
(Scheme 2, step 1). It is worth noting that the photoconversion quantum yield, i.e., the fraction of
absorbed photons that yields a red chromophore, is of similar order of magnitude to those reported for
a variety of different pcFPs with values ranging from 10−3 to 10−4 [9,13,32].

Chromophore twisting in fluorescent proteins has been studied extensively by several research
groups, and has been shown to bear the potential to substantially remodel the active site. For example,
photoswitchable FPs such as monomeric teal-fluorescent protein mTFP and Dronpa exemplify proteins
that are not able to convert their chromophores from green to red, yet do undergo light-dependent
cis-trans isomerization reactions [3,4,33,34]. Recently, Dronpa chromophore isomerization was shown
to occur on a time scale of 9 ps, and the quantum yield for photoswitching was shown to be only
0.00032 [35]. This value is not much different from the photoconversion quantum yield observed in
pcFPs. In photoswitchable FPs, the dark state bears a distorted chromophore in the trans conformation
that is accommodated by structural rearrangements of nearby residues [3]. These can only occur if
the His193-Glu211 salt bridge is temporarily broken, a critical observation that provides additional
support for the reverse protonation model (Scheme 2). Interestingly, photoswitching FPs appear to
have evolved along the same evolutionary branch as photoconversion, and several pcFPs have been
demonstrated to undergo significant photoswitching events as well [6].

8. Functional Group Activation and Active Site Geometry Support a Concerted, One-Step Proton
Abstraction and β-Elimination Reaction

Recently, we have proposed that upon photoexcitation, the restructuring of the active site
facilitates a side-chain rotamer adjustment of His62 (Schemes 1 and 2 and step 3) [13]. Bond rotation
would place the imidazole Nδ1 near the carboxylic acid of Glu211 in a geometry conducive to proton
transfer to yield the imidazolium cation. In the ground state at equilibrium, His62 is judged to be
neutral over a broad pH range, as it is positioned in a relatively hydrophobic environment without
obvious hydrogen bonding interactions [8]. However, His62 imidazole protonation by Glu211 would
activate its β-carbon for subsequent proton removal by Glu211, which now carries a negative charge
that lacks stabilizing interactions (Scheme 2, step 4). Proton transfer from the His62 imidazolium Nδ2

to the amide leaving group may occur as part of the same step, thereby preventing the formation of a
carbanion at His62 Cβ (Scheme 2, step 4). Therefore, we have proposed that the backbone cleavage
step may be of concerted nature [25], reminiscent of another concerted mechanism proposed more
than a decade ago [19]. Interestingly, crystal structures of a highly engineered pcFP termed KikGRX,
a crystallizable variant of KikGR, have demonstrated that, in some cases, illumination can generate
His62 side-chain conformers that would facilitate proton abstraction from Glu211 [36]. Although these
X-ray structures represent equilibrium states rather than transient processes, they nicely demonstrate
that the active site is flexible enough to allow for His62 rotamer adjustments. Therefore, a short-lived
state entailing a highly basic Glu211 carboxylate and an acidified His62 β-carbon seems reasonable,
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and would prime the system for β-elimination (Scheme 2, step 4), directly yielding a three-ring
chromophore with red-shifted optical properties (Scheme 2, step 5).

9. LEA Is Photoconversion-Competent Because of Functional, Epistatic and
Compensatory Substitutions

In combination, the set of mutations introduced into ALL-GFP to generate LEA (Table 1) provides
the necessary structural and dynamical framework for light-induced catalysis by the protein fold.
These substitutions may primarily be functional in nature, such as Q62H, which becomes incorporated
into the red chromophore. Other substitutions may primarily serve an epistatic role, such as the
strategic replacement of some larger residues with smaller ones to provide room for chromophore
twisting and His62 side-chain rotations (Scheme 1), as well as to ensure a productive directionality for
such movements. Other epistatic mutations may serve to anchor the chromophore’s imidazolinone
ring, or to dislodge the C-terminus to loosen up the chromophore-bearing pocket. A third group may
be called compensatory by nature, as these substitutions are further removed from the chromophore,
yet are absolutely critical for thermal stabilization. In this way, compensatory mutations allow for
increased plasticity of the active site by allosterically mediating the formation of a rigid knob remote
from the chromophore.

10. Concluding Remarks

10.1. Protein Dynamics and Protein Evolution

Protein motions occur on multiple timescales, ranging from fast local dynamics, such as
atomic fluctuations and side-chain rotations within an enzyme’s active site, to slower collective
movements that are allosterically propagated through networks of residues. Main-chain and side-chain
dynamics have been shown to play significant roles in a broad variety of enzymatic transformations.
Conformational fluctuations are thought to be tightly linked to a protein’s biological function, and may
directly impact specific microscopic steps in enzyme catalysis [37,38]. Notably, dynamics has been
shown to play a critical role in the evolution of proteins towards new functionalities [39–43]. In light
of this notion, the significance of the ancestral pcFP reconstruction work discussed here [13] lies in the
demonstration that phenotypic change along a branch of the protein family tree may come about solely
by changes in local and collective motions, without any structural changes of equilibrium positions.
Therefore, modifications in tertiary or quaternary structure, or positional shifts of catalytic groups, do
not appear to be required for the evolution of new function.

10.2. Design of Improved pcFPs for Super-Resolution Microscopy

pcFPs are of strategic importance in the advancement of super-resolution imaging by localization
microscopy and provide the basis for a myriad of applications in cell biology [44–47]. We hope that a
more complete understanding of the mechanism of photoconversion in relation to structural dynamics
will help extract rational design principles that can be exploited to address some of the shortcomings
of currently available pcFPs. As a cell biological tool, the development of pcFPs with highly efficient
conversion rates upon excitation at longer wavelengths would be highly desirable.

Conflicts of Interest: The author declares no conflict of interest. The founding sponsors had no role in the design
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Abbreviations

ALL-GFP Common green ancestor
LEA Least evolved ancestor
avGFP Aequorea victoria green fluorescent protein
dfi Differential flexibility index
ESPT Excited-state proton transfer
PRS Perturbation response scanning
ENM Elastic network model
pKa

app Apparent acid dissociation constant

References

1. Lelimousin, M.; Noirclerc-Savoye, M.; Lazareno-Saez, C.; Paetzold, B.; le Vot, S.; Chazal, R.; Macheboeuf, P.;
Field, M.J.; Bourgeois, D.; Royant, A. Intrinsic dynamics in ECFP and cerulean control fluorescence quantum
yield. Biochemistry 2009, 48, 10038–10046. [CrossRef] [PubMed]

2. Fang, C.; Frontiera, R.R.; Tran, R.; Mathies, R.A. Mapping GFP structure evolution during proton transfer
with femtosecond Raman spectroscopy. Nature 2009, 462, 200. [CrossRef] [PubMed]

3. Henderson, J.N.; Ai, H.W.; Campbell, R.E.; Remington, S.J. Structural basis for reversible photobleaching of a
green fluorescent protein homologue. Proc. Natl. Acad. Sci. USA 2007, 104, 6672–6677. [CrossRef] [PubMed]

4. Andresen, M.; Stiel, A.C.; Trowitzsch, S.; Weber, G.; Eggeling, C.; Wahl, M.C.; Hell, S.W.; Jakobs, S. Structural
basis for reversible photoswitching in Dronpa. Proc. Natl. Acad. Sci. USA 2007, 104, 13005–13009. [CrossRef]
[PubMed]

5. Dong, J.; Abulwerdi, F.; Baldridge, A.; Kowalik, J.; Solntsev, K.M.; Tolbert, L.M. Isomerization in Fluorescent
Protein Chromophores Involves Addition/Elimination. J. Am. Chem. Soc. 2008, 130, 14096–14098. [CrossRef]
[PubMed]

6. Adam, V.; Lelimousin, M.; Boehme, S.; Desfonds, G.; Nienhaus, K.; Field, M.J.; Wiedenmann, J.;
McSweeney, S.; Nienhaus, G.U.; Bourgeois, D. Structural characterization of IrisFP, an optical highlighter
undergoing multiple photo-induced transformations. Proc. Natl. Acad. Sci. USA 2008, 105, 18343–18348.
[CrossRef] [PubMed]

7. Berardozzi, R.; Adam, V.; Martins, A.; Bourgeois, D. Arginine 66 Controls Dark-State Formation in
Green-to-Red Photoconvertible Fluorescent Proteins. J. Am. Chem. Soc. 2016, 138, 558–565. [CrossRef]
[PubMed]

8. Wachter, R.M.; Watkins, J.L.; Kim, H. Mechanistic diversity of red fluorescence acquisition by GFP-like
proteins. Biochemistry 2010, 49, 7417–7427. [CrossRef] [PubMed]

9. Ando, R.; Hama, H.; Yamamoto-Hino, M.; Mizuno, H.; Miyawaki, A. An optical marker based on the
UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci. USA 2002, 99,
12651–12656. [CrossRef] [PubMed]

10. Wiedenmann, J.; Ivanchenko, S.; Oswald, F.; Schmitt, F.; Roecker, C.; Salih, A.; Spindler, K.D.; Nienhaus, G.U.
EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc. Natl.
Acad. Sci. USA 2004, 101, 15905–15910. [CrossRef] [PubMed]

11. McEvoy, A.L.; Hoi, H.; Bates, M.; Platonova, E.; Cranfill, P.J.; Baird, M.A.; Davidson, M.W.; Ewers, H.;
Liphardt, J.; Campbell, R.E. mMaple: A Photoconvertible Fluorescent Protein for Use in Multiple Imaging
Modalities. PLoS ONE 2012, 7, e51314. [CrossRef] [PubMed]

12. Wiedenmann, J.; Gayda, S.; Adam, V.; Oswald, F.; Nienhaus, K.; Bourgeois, D.; Nienhaus, G.U. From EosFP
to mIrisFP: Structure-based development of advanced photoactivatable marker proteins of the GFP-family.
J. Biophotonics 2011, 4, 377–390. [CrossRef] [PubMed]

13. Kim, H.; Zou, T.; Modi, C.; Doerner, K.; Grunkemeyer, T.J.; Chen, L.; Fromme, R.; Matz, M.V.; Ozkan, S.B.;
Wachter, R.M. A hinge migration mechanism unlocks the evolution of green-to-red photoconversion in
GFP-like proteins. Structure 2015, 23, 34–43. [CrossRef] [PubMed]

14. Zewail, A.H. Femtochemistry: Ultrafast Dynamics of the Chemical Bond; World Scientific: Singapore, 1994.
15. Frontiera, R.R.; Fang, C.; Dasgupta, J.; Mathies, R.A. Probing structural evolution along multidimensional

reaction coordinates with femtosecond stimulated Raman spectroscopy. Phys. Chem. Chem. Phys. 2012, 14,
405–414. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/bi901093w
http://www.ncbi.nlm.nih.gov/pubmed/19754158
http://dx.doi.org/10.1038/nature08527
http://www.ncbi.nlm.nih.gov/pubmed/19907490
http://dx.doi.org/10.1073/pnas.0700059104
http://www.ncbi.nlm.nih.gov/pubmed/17420458
http://dx.doi.org/10.1073/pnas.0700629104
http://www.ncbi.nlm.nih.gov/pubmed/17646653
http://dx.doi.org/10.1021/ja803416h
http://www.ncbi.nlm.nih.gov/pubmed/18826308
http://dx.doi.org/10.1073/pnas.0805949105
http://www.ncbi.nlm.nih.gov/pubmed/19017808
http://dx.doi.org/10.1021/jacs.5b09923
http://www.ncbi.nlm.nih.gov/pubmed/26675944
http://dx.doi.org/10.1021/bi100901h
http://www.ncbi.nlm.nih.gov/pubmed/20666493
http://dx.doi.org/10.1073/pnas.202320599
http://www.ncbi.nlm.nih.gov/pubmed/12271129
http://dx.doi.org/10.1073/pnas.0403668101
http://www.ncbi.nlm.nih.gov/pubmed/15505211
http://dx.doi.org/10.1371/journal.pone.0051314
http://www.ncbi.nlm.nih.gov/pubmed/23240015
http://dx.doi.org/10.1002/jbio.201000122
http://www.ncbi.nlm.nih.gov/pubmed/21319305
http://dx.doi.org/10.1016/j.str.2014.11.011
http://www.ncbi.nlm.nih.gov/pubmed/25565105
http://dx.doi.org/10.1039/C1CP22767J
http://www.ncbi.nlm.nih.gov/pubmed/22120433


Int. J. Mol. Sci. 2017, 18, 1792 10 of 11

16. Zhang, L.; Patel, H.N.; Lappe, J.W.; Wachter, R.M. Reaction progress of chromophore biogenesis in green
fluorescent protein. J. Am. Chem. Soc. 2006, 128, 4766–4772. [CrossRef] [PubMed]

17. Pouwels, L.J.; Zhang, L.; Chan, N.; Dorrestein, P.; Wachter, R.M. Kinetic isotope effect studies on the de novo
rate of chromophore formation in fast- and slow-maturing GFP variants. Biochemistry 2008, 47, 10111–10122.
[CrossRef] [PubMed]

18. Mizuno, H.; Mal, T.K.; Tong, K.I.; Ando, R.; Furuta, T.; Ikura, M.; Miyawaki, A. Photo-induced peptide
cleavage in the green-to-red conversion of a fluorescent protein. Mol. Cell 2003, 12, 1051–1058. [CrossRef]

19. Nienhaus, K.; Nienhaus, G.U.; Wiedenmann, J.; Nar, H. Structural basis for photo-induced protein cleavage
and green-to-red conversion of fluorescent protein EosFP. Proc. Natl. Acad. Sci. USA 2005, 102, 9156–9159.
[CrossRef] [PubMed]

20. Fron, E.; Sliwa, M.; Adam, V.; Michiels, J.; Rocha, S.; Dedecker, P.; Hofkens, J.; Mizuno, H. Excited
state dynamics of the photoconvertible fluorescent protein Kaede revealed by ultrafast spectroscopy.
Photochem. Photobiol. Sci. 2014, 13, 867–874. [CrossRef] [PubMed]

21. Ugalde, J.A.; Chang, B.S.W.; Matz, M.V. Evolution of coral pigments recreated. Science 2004, 305, 1433.
[CrossRef] [PubMed]

22. Field, S.F.; Matz, M.V. Retracing evolution of red fluorescence in GFP-like proteins from Faviina corals.
Mol. Biol. Evol. 2010, 27, 225–233. [CrossRef] [PubMed]

23. Field, S.F.; Bulina, M.Y.; Kelmanson, I.V.; Bielawski, J.P.; Matz, M.V. Adaptive evolution of multicolored
fluorescent proteins in reef-building corals. J. Mol. Evol. 2006, 62, 332–339. [CrossRef] [PubMed]

24. Alieva, N.O.; Konzen, K.A.; Field, S.F.; Meleshkevitch, E.A.; Hunt, M.E.; Beltran-Ramirez, V.; Miller, D.J.;
Wiedenmann, J.; Salih, A.; Matz, M.V. Diversity and evolution of coral fluorescent proteins. PLoS ONE 2008,
3, e2680. [CrossRef] [PubMed]

25. Kim, H.; Grunkemeyer, T.J.; Modi, C.; Chen, L.; Fromme, R.; Matz, M.V.; Wachter, R.M. Acid-base catalysis
and crystal structures of a least-evolved ancestral GFP-like protein undergoing green-to-red photoconversion.
Biochemistry 2013, 52, 8048–8059. [CrossRef] [PubMed]

26. Habuchi, S.; Tsutsui, H.; Kochaniak, A.B.; Miyawaki, A.; van Oijen, A.M. mKikGR, a monomeric
photoswitchable fluorescent protein. PLoS ONE 2008, 3, e3944. [CrossRef] [PubMed]

27. Hoi, H.; Shaner, N.C.; Davidson, M.W.; Cairo, C.W.; Wang, J.; Campbell, R.E. A monomeric photoconvertible
fluorescent protein for imaging of dynamic protein localization. J. Mol. Biol. 2010, 401, 776–791. [CrossRef]
[PubMed]

28. Atilgan, C.; Atilgan, A.R. Perturbation-response scanning reveals ligand entry-exit mechanisms of ferric
binding protein. PLoS Comput. Biol. 2009, 5, e1000544. [CrossRef] [PubMed]

29. Atilgan, C.; Gerek, Z.N.; Ozkan, S.B.; Atilgan, A.R. Manipulation of conformational change in proteins by
single-residue perturbations. Biophys. J. 2010, 99, 933–943. [CrossRef] [PubMed]

30. Hayashi, I.; Mizuno, H.; Tong, K.I.; Furuta, T.; Tanaka, F.; Yoshimura, M.; Miyawaki, A.; Ikura, M.
Crystallographic evidence for water-assisted photo-induced peptide cleavage in the stony coral fluorescent
protein Kaede. J. Mol. Biol. 2007, 2007, 918–926. [CrossRef] [PubMed]

31. Karplus, P.A.; Pearson, M.A.; Hausinger, R.P. 70 Years of crystalline urease: What have we learned?
Acc. Chem. Res. 1997, 30, 330–337. [CrossRef]

32. Tsutsui, H.; Karasawa, S.; Shimizu, H.; Nukina, N.; Miyawaki, A. Semi-rational engineering of a coral
fluorescent protein into an efficient highlighter. EMBO Rep. 2005, 6, 233–238. [CrossRef] [PubMed]

33. Stiel, A.C.; Trowitzsch, S.; Weber, G.; Andresen, M.; Eggeling, C.; Hell, S.W.; Jakobs, S.; Wahl, M.C. 1.8 A
bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast
switching variants. Biochem. J. 2007, 402, 35–42. [CrossRef] [PubMed]

34. Mizuno, H.; Mal, T.K.; Walchli, M.; Kikuchi, A.; Fukano, T.; Ando, R.; Jeyakanthan, J.; Taka, J.; Shiro, Y.;
Ikura, M.; et al. Light-dependent regulation of structural flexibility in a photochromic fluorescent protein.
Proc. Natl. Acad. Sci. USA 2008, 105, 9227–9232. [CrossRef] [PubMed]

35. Warren, M.M.; Kaucikas, M.; Fitzpatrick, A.; Champion, P.; Timothy Sage, J.; van Thor, J.J. Ground-state
proton transfer in the photoswitching reactions of the fluorescent protein Dronpa. Nat. Commun. 2013,
4, 1461. [CrossRef] [PubMed]

36. Tsutsui, H.; Shimizu, H.; Mizuno, H.; Nukina, N.; Furuta, T.; Miyawaki, A. The E1 mechanism in
photo-induced β-elimination reactions for green-to-red conversion of fluorescent proteins. Chem. Biol.
2009, 16, 1140–1147. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/ja0580439
http://www.ncbi.nlm.nih.gov/pubmed/16594713
http://dx.doi.org/10.1021/bi8007164
http://www.ncbi.nlm.nih.gov/pubmed/18759496
http://dx.doi.org/10.1016/S1097-2765(03)00393-9
http://dx.doi.org/10.1073/pnas.0501874102
http://www.ncbi.nlm.nih.gov/pubmed/15964985
http://dx.doi.org/10.1039/C3PP50335F
http://www.ncbi.nlm.nih.gov/pubmed/24365976
http://dx.doi.org/10.1126/science.1099597
http://www.ncbi.nlm.nih.gov/pubmed/15353795
http://dx.doi.org/10.1093/molbev/msp230
http://www.ncbi.nlm.nih.gov/pubmed/19793832
http://dx.doi.org/10.1007/s00239-005-0129-9
http://www.ncbi.nlm.nih.gov/pubmed/16474984
http://dx.doi.org/10.1371/journal.pone.0002680
http://www.ncbi.nlm.nih.gov/pubmed/18648549
http://dx.doi.org/10.1021/bi401000e
http://www.ncbi.nlm.nih.gov/pubmed/24134825
http://dx.doi.org/10.1371/journal.pone.0003944
http://www.ncbi.nlm.nih.gov/pubmed/19079591
http://dx.doi.org/10.1016/j.jmb.2010.06.056
http://www.ncbi.nlm.nih.gov/pubmed/20603133
http://dx.doi.org/10.1371/journal.pcbi.1000544
http://www.ncbi.nlm.nih.gov/pubmed/19851447
http://dx.doi.org/10.1016/j.bpj.2010.05.020
http://www.ncbi.nlm.nih.gov/pubmed/20682272
http://dx.doi.org/10.1016/j.jmb.2007.06.037
http://www.ncbi.nlm.nih.gov/pubmed/17692334
http://dx.doi.org/10.1021/ar960022j
http://dx.doi.org/10.1038/sj.embor.7400361
http://www.ncbi.nlm.nih.gov/pubmed/15731765
http://dx.doi.org/10.1042/BJ20061401
http://www.ncbi.nlm.nih.gov/pubmed/17117927
http://dx.doi.org/10.1073/pnas.0709599105
http://www.ncbi.nlm.nih.gov/pubmed/18574155
http://dx.doi.org/10.1038/ncomms2460
http://www.ncbi.nlm.nih.gov/pubmed/23403562
http://dx.doi.org/10.1016/j.chembiol.2009.10.010
http://www.ncbi.nlm.nih.gov/pubmed/19942137


Int. J. Mol. Sci. 2017, 18, 1792 11 of 11

37. Bahar, I.; Lezon, T.R.; Yang, L.W.; Eyal, E. Global dynamics of proteins: Bridging between structure and
function. Annu. Rev. Biophys. 2010, 39, 23–42. [CrossRef] [PubMed]

38. Bhabha, G.; Lee, J.; Ekiert, D.C.; Gam, J.; Wilson, I.A.; Dyson, H.J.; Benkovic, S.J.; Wright, P.E. A dynamic
knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science
2011, 332, 234–238. [CrossRef] [PubMed]

39. Tokuriki, N.; Tawfik, D.S. Protein dynamism and evolvability. Science 2009, 324, 203–207. [CrossRef]
[PubMed]

40. Glembo, T.J.; Thorpe, M.F.; Farrell, D.W.; Gerek, Z.N.; Ozkan, S.B. Collective dynamics differentiates
functional divergence in protein evolution. PLoS Comput. Biol. 2012, 8, e1002428. [CrossRef] [PubMed]

41. Bhabha, G.; Ekiert, D.C.; Jennewein, M.; Zmasek, C.M.; Tuttle, L.M.; Kroon, G.; Dyson, H.J.; Godzik, A.;
Wilson, I.A.; Wright, P.E. Divergent evolution of protein conformational dynamics in dihydrofolate reductase.
Nat. Struct. Mol. Biol. 2013, 20, 1243–1249. [CrossRef] [PubMed]

42. Gerek, Z.N.; Kumar, S.; Ozkan, S.B. Structural dynamics flexibility informs function and evolution at a
proteome scale. Evol. Appl. 2013, 6, 423–433. [CrossRef] [PubMed]

43. Ortlund, E.A.; Bridgham, J.T.; Redinbo, M.R.; Thornton, J.W. Crystal structure of an ancient protein: Evolution
by conformational epistasis. Science 2007, 317, 1544–1548. [CrossRef] [PubMed]

44. Patterson, G.H.; Davidson, M.W.; Manley, S.; Lippincott-Schwartz, J. Supperresolution imaging using
single-molecule localization. Annu. Rev. Phys. Chem. 2010, 61, 345–367. [CrossRef] [PubMed]

45. Moeyaert, B.; Bich, N.N.; de Zitter, E.; Rocha, S.; Clays, K.; Mizuno, H.; van Meervelt, L.; Hofkens, J.;
Dedecker, P. Green-to-red photoconvertible Dronpa mutant for multimodal super-resolution fluorescence
microscopy. ACS Nano 2014, 8, 1664–1673. [CrossRef] [PubMed]

46. Sengupta, P.; van Engelenburg, S.B.; Lippincott-Schwartz, J. Superresolution imaging of biological systems
using photoactivated localization microscopy. Chem. Rev. 2014, 114, 3189–3202. [CrossRef] [PubMed]

47. Nienhaus, K.; Nienhaus, G.U. Where do we stand with super-resolution optical microscopy? J. Mol. Biol.
2016, 428, 308–322. [CrossRef] [PubMed]

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1146/annurev.biophys.093008.131258
http://www.ncbi.nlm.nih.gov/pubmed/20192781
http://dx.doi.org/10.1126/science.1198542
http://www.ncbi.nlm.nih.gov/pubmed/21474759
http://dx.doi.org/10.1126/science.1169375
http://www.ncbi.nlm.nih.gov/pubmed/19359577
http://dx.doi.org/10.1371/journal.pcbi.1002428
http://www.ncbi.nlm.nih.gov/pubmed/22479170
http://dx.doi.org/10.1038/nsmb.2676
http://www.ncbi.nlm.nih.gov/pubmed/24077226
http://dx.doi.org/10.1111/eva.12052
http://www.ncbi.nlm.nih.gov/pubmed/23745135
http://dx.doi.org/10.1126/science.1142819
http://www.ncbi.nlm.nih.gov/pubmed/17702911
http://dx.doi.org/10.1146/annurev.physchem.012809.103444
http://www.ncbi.nlm.nih.gov/pubmed/20055680
http://dx.doi.org/10.1021/nn4060144
http://www.ncbi.nlm.nih.gov/pubmed/24410188
http://dx.doi.org/10.1021/cr400614m
http://www.ncbi.nlm.nih.gov/pubmed/24417572
http://dx.doi.org/10.1016/j.jmb.2015.12.020
http://www.ncbi.nlm.nih.gov/pubmed/26743847
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	General Characterization of Photoconvertible Fluorescent Proteins (pcFPs) 
	Least Evolved Ancestor (LEA) Series of pcFPs Developed by Ancestral Gene Reconstruction Technology 
	The pcFP LEA Is More Dynamic than Its Non-pcFP Precursor Protein 
	pcFPs Harbor a Softer, More Dynamic Active Site and a Remote Knob-Like Region That Is Highly Rigidified 
	The Charge States of Buried Functional Groups Appear to Control the Rate of Color Change 
	Transient Reverse Protonation of His193-Glu211 May Facilitate Deformation of the Chromophore in the Electronically Excited State 
	Functional Group Activation and Active Site Geometry Support a Concerted, One-Step Proton Abstraction and -Elimination Reaction 
	LEA Is Photoconversion-Competent Because of Functional, Epistatic and Compensatory Substitutions 
	Concluding Remarks 
	Protein Dynamics and Protein Evolution 
	Design of Improved pcFPs for Super-Resolution Microscopy 


