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ABSTRACT  

   

Within the primate lineage, skeletal traits that contribute to inter-specific 

anatomical variation and enable varied niche occupations and forms of locomotion are 

often described as the result of environmental adaptations. However, skeletal phenotypes 

are more accurately defined as complex traits, and environmental, genetic, and epigenetic 

mechanisms, such as DNA methylation which regulates gene expression, all contribute to 

these phenotypes. Nevertheless, skeletal complexity in relation to epigenetic variation has 

not been assessed across the primate order. In order to gain a complete understanding of 

the evolution of skeletal phenotypes across primates, it is necessary to study skeletal 

epigenetics in primates. This study attempts to fill this gap by identifying intra- and inter-

specific variation in primate skeletal tissue methylation in order to test whether specific 

features of skeletal form are related to specific variations in methylation. Specifically, 

methylation arrays and gene-specific methylation sequencing are used to identify DNA 

methylation patterns in femoral trabecular bone and cartilage of several nonhuman 

primate species. Samples include baboons (Papio spp.), macaques (Macaca mulatta), 

vervets (Chlorocebus aethiops), chimpanzees (Pan troglodytes), and marmosets 

(Callithrix jacchus), and the efficiencies of these methods are validated in each taxon. 

Within one nonhuman primate species (baboons), intra-specific variations in methylation 

patterns are identified across a range of comparative levels, including skeletal tissue 

differences (bone vs. cartilage), age cohort differences (adults vs. juveniles), and skeletal 

disease state differences (osteoarthritic vs. healthy), and some of the identified patterns 

are evolutionarily conserved with those known in humans. Additionally, in all nonhuman 

primate species, intra-specific methylation variation in association with nonpathological 
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femur morphologies is assessed. Lastly, inter-specific changes in methylation are 

evaluated among all nonhuman primate taxa and used to provide a phylogenetic 

framework for methylation changes previously identified in the hominin lineage. Overall, 

findings from this work reveal how skeletal DNA methylation patterns vary within and 

among primate species and relate to skeletal phenotypes, and together they inform our 

understanding of epigenetic regulation and complex skeletal trait evolution in primates.  
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CHAPTER 1 

INTRODUCTION 

Across the primate order, different species are characterized by divergent skeletal 

traits that contribute to inter-specific anatomical variation and enable varied niche 

occupations and forms of locomotion. These phenotypic distinctions are often described 

as the result of environmental adaptations. However, skeletal phenotypes are more 

accurately defined as complex traits, and environmental, genetic, and epigenetic 

mechanisms all contribute to these phenotypes. Nevertheless, skeletal complexity in 

relation to epigenetic variation has not been assessed across the primate order. In order to 

gain a complete understanding of the evolution of skeletal phenotypes across primates, it 

is necessary to study skeletal epigenetics in primates. 

The importance of gene regulation for primate phenotypic diversity was originally 

noted by King and Wilson in 1975 and has gained credibility as the extent of genetic 

similarity among phenotypically distinct primate taxa has been clarified. The epigenome 

comprises a level of gene regulation that can change in response to environmental factors, 

and within the epigenome, DNA methylation serves as one form of gene regulation. 

Although general changes to mammalian epigenomes have been examined (Sharif et al. 

2010), work on nonhuman primates has been limited to whole-genome methylation 

patterns of a small number of tissue-specific cells from a small number of species. Very 

few studies have tried to relate DNA methylation to variation in specific phenotypes. The 

research presented here begins to remedy this by examining the association between 

variation in DNA methylation and skeletal phenotypes among several nonhuman primate 

species. 
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Focusing on skeletal phenotypes is valuable for several reasons. First, skeletal 

anatomy varies across primates, and these underlying skeletal differences impact the 

overall anatomy of an animal, which in turn influences the range of niches it can occupy 

and forms of locomotion and movement it can perform. Secondly, skeletal morphology is 

readily used to reconstruct extinct species within the primate lineage. Inferences made 

from preserved skeletal remains within the fossil record inform our understanding of 

primate evolution. Therefore, understanding how extant primate skeletal traits vary and 

how underlying genetic and epigenetic components contribute to this morphological 

variation is crucial for proper evaluation of both ancient and modern primate skeletal 

systems. Third, while skeletal phenotypes are influenced by genetic (Goldring and Marcu 

2012) and environmental (Henriksen et al. 2014; Macrini et al. 2013) forces, epigenetic 

factors also play an important role in bone development and maintenance (Delgado-Calle 

et al. 2013; García-Ibarbia et al. 2013; Iliopoulos et al. 2008; Loughlin and Reynard 

2015; Ramos et al. 2014; Reynard et al. 2014). Thus, it is logical to hypothesize that these 

epigenetic mechanisms may also be involved in the evolution of diverse skeletal 

phenotypes across the primate order. Lastly, the emerging field of ancient epigenetics, 

which assesses DNA methylation patterns in ancient hominin skeletal remains (Smith et 

al. 2015; Gokhman et al. 2014), is lacking information on DNA methylation patterns in 

skeletal tissues from nonhuman primates. As such, these ancient hominin skeletal 

epigenetic patterns cannot currently be put into a broader phylogenetic or evolutionary 

context. 

Researchers are currently exploring primate DNA methylation variation in 

relation to several behavioral, soft tissue, and disease-related phenotypes (Farcas et al. 
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2009; Hernando-Herraez et al. 2013; Martin et al. 2011; Molaro et al. 2011; Pai et al. 

2011; Zeng et al. 2012). Additionally, medical fields are examining the relationship 

between DNA methylation variation and the manifestation of several bone pathologies in 

humans and model organisms (Bovée et al. 2010; Dimitriou et al. 2011; Goldring and 

Marcu 2012; Iliopoulos et al. 2008; Kasaai et al. 2013; Y. Liu et al. 2013; Ralston and 

Uitterlinden 2010; Rivadeneira et al. 2009). However, scientists have not yet studied the 

impact of this mechanism on nonhuman primate hard tissues or skeletal phenotypes. This 

study attempts to fill this knowledge gap by assessing how epigenetic patterns vary 

within and among primate taxa and in relation to skeletal phenotypes. Specifically, the 

overarching goals of this research are to identify genome-wide and gene-specific DNA 

methylation patterns in nonhuman primate skeletal tissues and assess variation both intra-

specifically by determining how patterns differ between tissue types, between age ranges, 

between skeletal disease states, and between nonpathological skeletal morphologies and 

inter-specifically across several nonhuman primate species with a wide phylogenetic 

distribution. 

Samples include baboons (Papio spp., n=74), macaques (Macaca mulatta, n=10), 

vervets (Chlorocebus aethiops, n=10), chimpanzees (Pan troglodytes, n=4), and 

marmosets (Callithrix jacchus, n=6). Within baboons, samples include skeletally healthy 

adults (n=28), osteoarthritic adults (n=28), and skeletally healthy juveniles (n=18). 

Skeletal tissues collected from nonhuman primates include trabecular bone and cartilage 

from the medial condyles of right distal femora. Methylation arrays and gene-specific 

methylation sequencing were then used to assess how DNA methylation patterns in these 

tissues varied intra- and inter-specifically. 
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Specifically, in Chapter 2, I use the Illumina Infinium Human Methylation450 

BeadChip (450K array) to identify DNA methylation patterns in bone and cartilage of 

age-matched, adult female baboons, five with and five without knee osteoarthritis (OA), 

in order to validate that this methylation array can be used for nonhuman primate skeletal 

tissue DNA extracts and to assess whether DNA methylation variation is associated with 

OA in baboons and in a manner similar to that observed in humans. Similarly, in Chapter 

3, I use the Illumina Infinium MethylationEPIC BeadChip (EPIC array) to explore the 

evolution of OA epigenetics further by identifying DNA methylation patterns in bone and 

cartilage of 56 pedigreed, adult baboons, 28 with and 28 without knee OA, and by 

assessing whether DNA methylation variation is associated with OA in baboons and in a 

manner similar to that observed in humans. In Chapter 4, I use the EPIC array to examine 

the evolution of aging epigenetics by identifying DNA methylation patterns in bone from 

46 pedigreed baboons, 28 that were adults and 18 that were juveniles, and assessing 

whether DNA methylation variation is associated with aging in baboons and in a manner 

similar to that observed in humans. Lastly, in Chapter 5, I validate that the EPIC array 

can be used for skeletal tissue DNA extracts from several nonhuman primate species and 

assess how genome-wide and gene-specific DNA methylation in bone varies intra-

specifically in relation to nonpathological femur bone morphologies and inter-specifically 

for 28 baboons, 10 macaques, 10 vervets, 4 chimpanzees, and 6 marmosets. Overall, the 

findings from this research reveal how skeletal DNA methylation patterns vary within 

and among primate species and relate to skeletal phenotypes, and together they inform 

our understanding of epigenetic regulation and complex skeletal trait evolution in 

primates. 
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CHAPTER 2 

ASSESSMENT OF DNA METHYLATION PATTERNS IN THE BONE AND 

CARTILAGE OF A NONHUMAN PRIMATE MODEL OF OSTEOARTHRITIS 

 

Abstract 

The degenerative joint disease of osteoarthritis (OA) impacts humans and several 

other animals. Thus, the mechanisms underlying this disorder may be evolutionary 

conserved. In particular, variation in skeletal tissue DNA methylation patterns are 

thought to be a critical mechanism in the development of OA. However, the associations 

between DNA methylation and OA development have not been optimized or readily 

studied in nonhuman primates. The Illumina Infinium Human Methylation450 BeadChip 

(450K array) is a cost-efficient application for assessing genome-wide DNA methylation 

patterns. Although it was designed for human DNA, the 450K array has also been 

successfully used for nonhuman primates because of the relative conservation between 

these organisms’ genomes. Baboons (Papio spp.) serve as important models of disease 

and develop OA at rates similar to those observed in humans, so further investigation of 

the associations between DNA methylation patterns and OA development in this 

organism will advance the evolutionary understanding of this disease. Here, I used the 

450K array to identify DNA methylation patterns in femur bone and cartilage of adult 

female baboons, five with and five without knee OA. I validated that the hybridization 

efficiency of 450K array probes is related to the degree of sequence similarity between 

the probes and the baboon genome. Additionally, approximately 44% of the 450K array 

probes reliably align to the baboon genome, contain a CpG site of interest, and maintain a 
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wide distribution throughout the genome. I also found that filtering probes using 

alignment similarity criteria retains more efficiently hybridized probes than filtering 

probes using gene symbol similarity criteria. Both filtering methods identified 

significantly differentially methylated positions (DMPs) between healthy and OA 

individuals in cartilage tissues, and some of these patterns overlap with those previously 

identified in humans. Conversely, in bone tissues, no DMPs were found between disease 

states, and no DMPs were found between tissue types. Overall, I conclude that the 450K 

array can be used to measure genome-wide DNA methylation in baboon tissues and 

identify significant associations with complex traits. The results of this study indicate that 

some DNA methylation patterns associated with OA are evolutionarily conserved while 

others are not, and this warrants further investigation in a larger and more 

phylogenetically diverse sample set. 

 

Key Words 

DNA methylation, baboon, osteoarthritis, bone, cartilage, nonhuman primate 

 

Introduction 

Osteoarthritis (OA) is a complex degenerative joint disease, and OA of the knee is 

one of the leading causes of disability across the globe (Cross et al. 2014). Thus, research 

endeavors to describe the molecular mechanisms that contribute to this disorder are 

underway. Both genetic and environmental factors have some effect (Blagojevic et al. 

2010; Cooper et al. 2000; D. T. Felson and Zhang 1998; David T. Felson 2004; 

Henriksen et al. 2014; Jordan et al. 2007; Macrini et al. 2013; Rossignol et al. 2005). 
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However, epigenetic factors, such as DNA methylation which regulates gene expression, 

are now thought to play a more influential role in the development of degenerative 

skeletal disorders like OA (Delgado-Calle et al. 2013; den Hollander et al. 2014; 

Fernández-Tajes et al. 2014; García-Ibarbia et al. 2013; Goldring and Marcu 2012; 

Iliopoulos et al. 2008; Jeffries et al. 2016; Y. Liu et al. 2013; Loughlin and Reynard 

2015; Moazedi-Fuerst et al. 2014; Ramos et al. 2014; Reynard et al. 2014; Rushton et al. 

2014a). 

Animal models, such as mice, rats, rabbits, guinea pigs, dogs, sheep, goats, and 

horses, have been essential in discerning some of the processes inherent to OA 

development (Bendele 2001; Kuyinu et al. 2016; Cucchiarini et al. 2016). Nevertheless, 

all of these animals are limited in their ability to fully inform our understanding of human 

OA, so the search to find a gold standard animal model for OA is still ongoing (Ameye 

and Young 2006; Lampropoulou-Adamidou et al. 2014). Additionally, while the 

conservation of this disorder in several species implies that the mechanisms contributing 

to OA may be evolutionarily conserved, few studies of OA have taken an evolutionary 

perspective (Ostrer et al. 2006; Rugg-Gunn et al. 2005). Lastly, although variation in 

skeletal tissue DNA methylation patterns are thought to be involved in the development 

and progression of OA, this epigenetic mechanism has not been readily studied in animal 

models because assays to assess variation in this regulatory level have not been 

optimized. 

Nonhuman primates can serve as important models of disease for humans because 

they are phylogenetically close to humans. Baboons (Papio spp.) are a particularly good 

model of disease, especially OA (Cox et al. 2013), as they naturally develop OA at rates 
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similar to those observed in humans (Macrini et al. 2013; Cox et al. 2013; O’Connor 

2006). Additionally, because of their evolutionary proximity to humans, further 

investigation of the molecular processes innate to OA development and progression in 

baboons as compared to these mechanisms in humans will advance the evolutionary 

understanding of this disease. Finally, the relative genetic conservation between baboons 

and humans makes the optimization and use of standardized DNA methylation assays 

possible. Specifically, the Infinium Human Methylation450 BeadChip (450K array), 

which is a cost-efficient application for assessing genome-wide DNA methylation 

patterns in humans, has been successfully used for some nonhuman primate species. 

These and other nonhuman primate DNA methylation studies have primarily used DNA 

extracted from blood or other soft tissues (Enard et al. 2004; Farcas et al. 2009; Fukuda et 

al. 2013; Hernando-Herraez et al. 2013; Kothapalli et al. 2007; Lindskog et al. 2014; 

Martin et al. 2011; Molaro et al. 2011; Ong et al. 2014; Pai et al. 2011; Provencal et al. 

2012; Zeng et al. 2012). However, this technique has not yet been used to study DNA 

methylation variation in baboon skeletal tissues or how it relates to the development of 

OA in a nonhuman primate species. 

For this study, I used the 450K array to identify DNA methylation patterns in 

femur bone and cartilage of age-matched female baboons, five with and five without knee 

OA, in order to validate that this technique can be used for nonhuman primate skeletal 

tissue DNA extracts and to assess whether DNA methylation variation is associated with 

OA in baboons and in a manner similar to that observed in humans. 
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Methods 

Ethics Statement 

Nonhuman primate tissue samples included were opportunistically collected at 

routine necropsy of these animals. No animals were sacrificed for this study, and no 

living animals were used in this study. 

 

Samples 

Baboon (Papio spp.) samples come from captive colonies at the Southwest 

National Primate Research Center in the Texas Biomedical Research Institute. These 

samples are ideal because many environmental factors that influence skeletal 

development and maintenance (e.g., diet and exposure to sunlight, which influences 

vitamin D production) are controlled and consistent across individuals. 

Femora were opportunistically collected at routine necropsy of these animals and 

stored in -20°C freezers at the Texas Biomedical Research Institute after dissection. 

These preparation and storage conditions ensured the preservation of skeletal DNA 

methylation patterns. 

Samples include skeletally healthy adult baboons (n=5) and adult baboons with 

severe osteoarthritis (OA, n=5). Age ranges are comparable between each group (Table 

1), and only females were included in this study. 

 

Assessment of Osteoarthritis 

Classification of adult baboons as having healthy or OA knees was determined 

through visual examination of the distal femora and macroscopic inspection of the distal 
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articular surface cartilage. Each specimen was assigned an OA severity score. Briefly, 

Grade 1 is unaffected, Grade 2 is mild OA as indicated by cartilage fibrillation, Grade 3 

is moderate OA as indicated by cartilage lesions, and Grade 4 is advanced OA as 

indicated by eburnation (Macrini et al. 2013). From this, binary classifications were made 

such that all healthy adult baboons have 100% Grade 1 on one or both distal femora, and 

all OA adult baboons have a variable percentage of Grades 3 or 4 on one or both distal 

femora (Figure 1). 

 

Table 1. Baboon Samples for 450K Array Osteoarthritis Study. 

Comparative Group No. Age 

Healthy bone 5 19.30±1.70 

OA bone 5 19.24±1.73 

Healthy Cartilage 5 19.30±1.70 

OA Cartilage 5 19.24±1.73 

Table outlines the number (No.) and the average age in years plus or minus one standard 

deviation (Age) of individuals in each comparative group. 

 

DNA Extraction 

From the distal femoral condyles, cartilage scrapings were collected using 

scalpels and processed with a homogenizer, and trabecular bone samples were obtained 

using a Dremel and pulverized into bone dust using a BioPulverizer. Both tissues are 

included in this project because human skeletal epigenetic studies are based on trabecular 

bone and cartilage, and it is important to standardize tissue type for comparative 

purposes. Additionally, these tissues are both clinically relevant in terms of disease 

progression. DNA was extracted from these processed tissues using a phenol-chloroform 
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protocol optimized for skeletal tissues (Barnett and Larson 2012) and quantified using 

both Nanodrop and Qubit machines (APPENDIX C). 

 

 

Figure 1. Examples of Healthy and Osteoarthritic Baboon Knee Joints. 

Representative examples of baboon knees (distal femora) that are healthy or have OA. 

 

Genome-Wide DNA Methylation Profiling 

Genome-wide DNA methylation was assessed using the Infinium 

HumanMethylation450 BeadChips (450K array). These arrays analyze the methylation 

status of over 485,000 sites throughout the genome, covering 99% of RefSeq genes and 

96% of the UCSC-defined CpG islands and their flanking regions. For each sample, 

approximately 500ng of genomic DNA (APPENDIX C) was bisulfite converted using the 
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EZ DNA MethylationTM Gold Kit according to the manufacturer’s instructions (Zymo 

Research), with modifications described in the Infinium Methylation Assay Protocol. 

Following manufacturer guidelines (Illumina), this processed DNA was then whole-

genome amplified, enzymatically fragmented, hybridized to the arrays, and imaged using 

the Illumina iScan system. The array data discussed here are available in APPENDIX B.  

 

Methylation Data Processing 

Raw fluorescent data were normalized to account for the noise inherent within 

and between the arrays themselves. Specifically, I performed a normal-exponential out-

of-band (Noob) background correction method with dye-bias normalization (Triche et al. 

2013) to adjust for background fluorescence and dye-based biases and followed this with 

a between-array normalization method (functional normalization) (Fortin et al. 2014) 

which removes unwanted variation by regressing out variability explained by the control 

probes present on the array as implemented in the minfi package in R (Aryee et al. 2014; 

Fortin et al. 2016), which is part of the Bioconductor project (Huber et al. 2015). This 

method has been found to outperform other existing approaches for studies that compare 

conditions with known large-scale differences (Fortin et al. 2014), such as those assessed 

in this study. 

After normalization, methylation values (β values) for each site were calculated as 

the ratio of methylated probe signal intensity to the sum of both methylated and 

unmethylated probe signal intensities (Equation 1). These β values range from 0 to 1 and 

represent the average methylation levels at each site across the entire population of cells 
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from which DNA was extracted (0 = completely unmethylated sites, 1 = fully methylated 

sites). 

 

Equation 1: β Value= 
Methylated Signal

(Methylated Signal+Unmethylated Signal)
 

 

Every β value in the Infinium platform is accompanied by a detection p-value, and 

those with failed detection levels (p-value > 0.05) in greater than 10% of samples were 

removed from downstream analyses. 

The probes on the arrays were designed to specifically hybridize with human 

DNA, so my use of nonhuman primate DNA required that probes non-specific to the 

baboon genome, which could produce biased methylation measurements, be 

computationally filtered out and excluded from downstream analyses. This was 

accomplished using two different methods modified from (Hernando-Herraez et al. 2013; 

Ong et al. 2014). 

For both methods, I used blastn (Altschul et al. 1997) to map the 485,512 50bp 

probes onto the Papio anubis genome (Assembly: Panu_2.0, Accession: 

GCF_000264685.2) using an e-value threshold of e-10. I retained probes that successfully 

mapped to the baboon genome, had only 1 unique BLAST hit, and targeted CpG sites 

(APPENDIX A). Then, for the first method, which used criteria based on sequence 

alignment, I only retained probes that had 0 mismatches in 5bp closest to and including 

the CpG site, and had 0-2 mismatches in 45bp not including the CpG site. For the second 

method, which used criteria based on gene symbol similarities, I identified the closest 

baboon gene to each probe site and checked for corresponding gene name matches 
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between humans and baboons. For baboons, this information was obtained from GFF and 

Ensembl BioMart data. Only those probes with partial or complete gene matches were 

retained. Additionally, β values associated with cross-reactive probes (Y. Chen et al. 

2013), probes containing SNPs at the CpG site, probes detecting SNP information, probes 

detecting methylation at non-CpG sites, and probes targeting sites within the sex 

chromosomes were removed using the minfi package in R (Aryee et al. 2014; Fortin et al. 

2016) (Figure 2). 

 

 

Figure 2. Normalized and Filtered Methylation Data for 450K Array Baboon 

Osteoarthritis Study. 
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Density plots of β values after normalization and probe filtering using the alignment filter 

criteria (A) or the gene symbol filter criteria (B). Multidimensional scaling plots showing 

the first two principle components that describe genome-wide methylation variation after 

normalization and filtering using the alignment filter criteria (C) or the gene symbol filter 

criteria (D). Each point represents one sample that is either from healthy bone, healthy 

cartilage, OA bone, or OA cartilage. In the multidimensional scaling plots, these 

categories do not form distinct clusters. 

 

Differential Methylation Analyses 

Because β values have high heteroscedasticity, they are not statistically valid for 

use in differential methylation analyses (Du et al. 2010). Thus, M values were calculated 

and used in these analyses instead (Equation 2). 

 

Equation 2: M Value= log (
Methylated Signal

Unmethylated Signal
) 

 

In order to identify sites that were significantly differentially methylated across 

comparative groups, I designed and tested generalized linear mixed models (GLMMs) 

which related the variables of interest to the DNA methylation patterns for each site, 

while accounting for latent variables (Maksimovic et al. 2016). Sites found to have 

significant associations were classified as significantly differentially methylated positions 

(DMPs). 
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Specifically, a GLMM was used to estimate differences in methylation levels for 

each of the following contrasts: 

1. between bone and cartilage in OA baboons 

2. between bone and cartilage in healthy baboons 

3. between OA and healthy baboon bone 

4. between OA and healthy baboon cartilage 

5. among all 4 combinations of tissue type and disease state (healthy bone vs. 

healthy cartilage vs. OA bone vs. OA cartilage) 

Additional variables included in this GLMM were unknown latent variables calculated 

using the iteratively re-weighted least squares approach in the sva package in R (Jaffe and 

Irizarry 2014; Jeffrey T. Leek et al. 2012; J. T. Leek and Storey 2008; Jeffrey T. Leek 

and Storey 2007). The 4 latent variables estimated were included to help mitigate any 

unknown batch and cell heterogeneity effects on methylation variation at each site. No 

predefined batch effects for the arrays were included because these did not appear to have 

large effects on the data (Figure 3). 

Alternative methods to account for cell heterogeneity exist, but they are specific 

to whole blood (Jaffe and Irizarry 2014; Morris and Beck 2015), require reference 

epigenetic data, or are reference free methods (Houseman et al. 2014) that are 

comparable to the sva method (Kaushal et al. 2015). Out of the known cell types in 

skeletal tissues (Horvath, Mah, et al. 2015), only chondrocytes and osteoblasts have 

reference epigenomes available on the International Human Epigenomics Consortium, 

and these are only for humans, not nonhuman primates. Thus, because no standard 
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method is available to correct for the heterogeneous cell structure in nonhuman primate 

skeletal tissue, I chose the described sva method. 

 

 

Figure 3. Batch Effects on Normalized and Filtered Methylation Data for 450K Array 

Baboon Osteoarthritis Study. 

Multidimensional scaling plots showing the first two principle components that describe 

genome-wide methylation variation after normalization and filtering using the alignment 

filter criteria (A) or the gene symbol filter criteria (B). Each point represents one sample 

that is either from healthy bone, healthy cartilage, OA bone, or OA cartilage. The colors 

indicate which array (9989540028 or 9989540030) the samples were run on. These batch 

effects do not appear to cluster samples into distinct groups. Furthermore, they do not 

cluster samples based on their healthy bone, healthy cartilage, OA bone, or OA cartilage 

groupings (see Figure 2). 

 

This GLMM design matrix (Equation 3) was fit to the M value array data by 

generalized least squares using the limma package in R (Ritchie et al. 2015; Phipson et al. 
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2016; Huber et al. 2015), and the estimated coefficients and standard errors for the 

defined tissue type and disease status contrasts were computed. Lastly, for each 

coefficient, an empirical Bayes approach (McCarthy and Smyth 2009; Lönnstedt and 

Speed 2002; Phipson et al. 2016; Smyth 2004) was used to compute moderated t-

statistics, log-odds ratios of differential methylation, and associated p-values adjusted for 

multiple testing (Benjamini and Hochberg 1995). Significant DMPs for the effect of 

tissue type and disease status contrasts were defined as those having log fold changes in 

M values corresponding to an adjusted p-value of less than 0.05. 

 

Equation 3: methylation ~ tissue type and disease status contrasts + latent variables 

 

Results 

The aim of this study was to use the 450K array to identify DNA methylation 

patterns in femur bone and cartilage of age-matched female baboons, five with and five 

without knee OA. In order to do this, I first assessed the effectiveness of the 450K array 

in identifying DNA methylation patterns in baboon DNA and of different probe filtering 

methods. 

 

Alignment of 450K Array Probes with the Baboon Genome 

Probes from the 450K array were aligned to the baboon genome using methods 

modified from (Hernando-Herraez et al. 2013; Ong et al. 2014) (APPENDIX A). Out of 

the 485,512 50bp probes on the array, 213,858 probes (44%) map to the baboon genome 

with e-values less than e-10, have only unique BLAST hits, and target a CpG site (Figure 
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4). Out of these reliably mapped probes, 133,264 probes (62%) were retained after the 

alignment filter criteria, while 130,307 probes (61%) were retained after the gene symbol 

filter criteria (Figure 4). 83,142 probes overlapped between both filtering methods (62% 

for the alignment filter criteria and 64% for the gene symbol filter criteria, Figure 5). 

 

 

Figure 4. Filtering Effects on 450K Array Probes for Baboons. 

(A) Pie chart showing the percent of 450K array probes that map to the baboon (Papio 

anubis) genome with e-values less than e-10, have only unique BLAST hits, and target a 

CpG site. Out of 485,512 probes total, 213,858 probes (44%) meet these criteria. (B) Pie 

chart showing the percent of probes, out of those that successfully mapped to the baboon 

genome, that contain 0 mismatches in 5bp of the probe by and including the targeted CpG 

site and 0-2 mismatches in 45bp of the probe not including the CpG site. Out of the 

213,858 mapped probes, 133,264 probes (62%) meet these criteria. (C) Pie chart showing 

the percent of probes, out of those that successfully mapped to the baboon genome, with 
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gene symbol matches to humans. Out of the 213,858 mapped probes, 130,307 probes 

(61%) meet these criteria. 

 

 

Figure 5. Overlap of 450K Array Probes for Baboons Using Different Filtering Methods. 

Venn diagram showing the number of probes that overlap between the alignment filter 

criteria and the gene symbol filter criteria. Out of the 133,264 probes that meet the 

alignment filter criteria and the 130,307 probes that meet the gene symbol criteria, 83,142 

probes (62% and 64% respectively) overlap in both filters. 

 

Probes that reliably mapped to the baboon genome, that met the alignment filter 

criteria, or that met the gene symbol criteria covered approximately 18,800 genes with an 

average coverage of 9, 6, or 8 probes per gene, respectively (APPENDIX D). 

Additionally, the retained probes covered a range of locations with respect to genes and 

CpG islands (APPENDIX D), indicating that these filtered probes maintain a wide 

distribution throughout the genome. 
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After filtering out cross-reactive probes (Y. Chen et al. 2013), probes containing 

SNPs at the CpG site, probes detecting SNP information, probes detecting methylation at 

non-CpG sites, and probes targeting sites within the sex chromosomes, a final set of 

120,305 probes were retained for the alignment filter criteria, and a final set of 112,760 

probes were retained for the gene symbol criteria (Figure 2). 

 

Effectiveness of 450K Array Probes using Baboon DNA 

To determine how effectively the 450K array probes measured DNA methylation 

in baboon DNA, I performed Spearman correlation tests between the hybridization 

efficiency of each probe and parameters defining the alignment quality of each probe to 

the baboon genome. Specifically, both probe alignment bitscores and percent identity 

were significantly negatively correlated with probe hybridization efficiency, and probe 

alignment e-values were significantly positively correlated with probe hybridization 

efficiency, regardless of filtering criteria (APPENDIX E). However, filtering probes 

using the alignment filter criteria retained proportionally more successfully hybridized 

probes than filtering probes using the gene symbol filter criteria (Figure 6). Thus, 

filtering probes using the alignment filter criteria likely produces more reliable results. 

 

Differential Methylation and Osteoarthritis 

Significant DMPs were only identified between healthy and OA individuals in 

cartilage tissues (Table 2). All of these DMPs displayed decreased methylation in OA 

cartilage samples as compared to healthy cartilage samples, and some of these patterns 
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overlapped with those previously identified in humans. Conversely, no DMPs were found 

between tissue types or between disease states in bone tissues. 

 

 

Figure 6. Hybridization Efficiencies of 450K Array Probes Retained for Baboon 

Osteoarthritis Study. 

Histogram of alignment bitscores for 450K array probes with detection p-values > 0.05 

(red) and < 0.05 (blue). These p-values were averaged across all samples, and probes 

included meet the alignment filter criteria (A) or the gene symbol filter criteria (B). For 

probes meeting the alignment filter criteria (A), 3,123 had detection p-values > 0.05, and 

130,141 had detection p-values < 0.05. For probes meeting the gene symbol filter criteria 

(B), 8,695 had detection p-values > 0.05, and 121,612 had detection p-values < 0.05. For 

all probes that successfully mapped to the baboon genome with e-values less than e-10, 

had only unique BLAST hits, and targeted a CpG site, 16,715 had detection p-values > 

0.05, and 197,143 had detection p-values < 0.05. 
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Table 2. Number of Significant DMPs Identified in the 450K Array Baboon 

Osteoarthritis Study. 

 Differential 
Methylation 

OA Bone 

vs. 

OA Cartilage 

Healthy Bone 

vs. 

Healthy Cartilage 

OA Bone 

vs. 

Healthy Bone 

OA Cartilage 

vs. 

Healthy Cartilage 

OA Bone vs. 

Healthy Bone vs. 
Healthy Cartilage 

vs. OA Cartilage 

Alignment 

Filter Probes 

Significant (negative) 0 0 0 6 0 

Not Significant 120,305 120,305 120,305 120,299 120,305 

Significant (positive) 0 0 0 0 0 

Gene 

Symbol 

Filter Probes 

Significant (negative) 0 0 0 2 0 

Not Significant 112,760 112,760 112,760 112,758 112,760 

Significant (positive) 0 0 0 0 0 

Table showing the number of significant DMPs between comparative groups. Results are 

shown for probes filtered using the alignment filter criteria and probes filtered using the 

gene symbol filter criteria, and for both sets, significant DMPs were only identified 

between OA cartilage and healthy cartilage. For all of these DMPs, OA cartilage samples 

have decreased methylation as compared to healthy cartilage samples. 

 

When filtering probes using the alignment filer criteria, 6 significant DMPs were 

identified between OA cartilage samples and healthy cartilage samples, while only 2 

DMPs were identified when filtering probes using the gene symbol criteria (Table 3). 

One locus matched between these filtering methods. RUNX1 has previously been found 

to be differentially methylated in OA and healthy cartilage in humans, with OA cartilage 

having lower methylation as compared to healthy cartilage (Fernández-Tajes et al. 2014). 

The other genes associated with these probes have not previously been associated with 

OA in humans (Alvarez-Garcia et al. 2016; Aref-Eshghi et al. 2015; Delgado-Calle et al. 

2013; Fernández-Tajes et al. 2014; García-Ibarbia et al. 2013; Goldring and Marcu 2012; 
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Iliopoulos et al. 2008; Jeffries et al. 2016; Moazedi-Fuerst et al. 2014; Ramos et al. 2014; 

Reynard et al. 2014; Rushton et al. 2014a; Saito et al. 2010). 

 

Table 3. Gene Details of Significant DMPs Identified in the 450K Array Baboon 

Osteoarthritis Study. 

  
450K Array 

Probe ID 

Log Fold 
Change in 

M Values 

Adjusted 

P-Value 
Human Gene Symbol Baboon Gene Symbol 

Baboon 

Chromosome 

Baboon CpG 

Position 

Alignment 

Filter Probes 

cg05295841 -3.61359 0.024654 KLHL26 CRTC1 19 17216922 

cg17890983 -1.96830 0.024654 RFXAP RFXAP 17 15599705 

cg02329670 -1.49812 0.041104 MIR497; MIR195 LOC103878622 16 6672282 

cg18456803 -2.04780 0.041104 ELF1 WBP4; LOC103879193 17 19630529 

cg13030790 -3.54370 0.041104 RUNX1 RUNX1 3 11500594 

cg24721647 -2.18375 0.041104 ACSL1 ACSL1 5 173909497 

Gene 

Symbol 

Filter Probes 

cg17890983 -1.96789 0.037417 RFXAP RFXAP 17 15599705 

cg04759112 -1.63196 0.038075 CMIP CMIP 20 63369656 

Table showing the details on the significant DMPs between OA cartilage and healthy 

cartilage. Results are shown for probes filtered using the alignment criteria and probes 

filtered using the gene symbol criteria. For all of these DMPs, OA cartilage samples are 

hypomethylated as compared to healthy cartilage samples. 

 

Discussion 

Here, I used the 450K array to identify DNA methylation variation in bone and 

cartilage tissues from a baboon model of OA. This was done both to determine the 

effectiveness of this application for baboon DNA and to assess the evolutionary 

conservation of epigenetic-OA associations in the primate lineage. 

I show that using the 450K array is feasible in baboon tissues. In silico probe 

filtering methods (Hernando-Herraez et al. 2013; Ong et al. 2014) indicated that 44% of 
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all human probes could be reliably mapped to the baboon genome and contained a CpG 

locus. This number was lower than expected since previous researchers were able to use 

these same methods to reliably map 61% of the human probes to the Cynomologus 

macaque genome (Ong et al. 2014), another Old World monkey that is a close 

phylogenetic relative to baboons. This discrepancy in number may be due to the quality 

of each nonhuman primates’ genome assembly. While both are well annotated, the 

average scaffold length (88,649,475) and contig length (86,040) of the macaque genome 

(Assembly: Macaca_fascicularis_5.0, Accession: GCF_000264685.2) are higher than 

those (528,927 and 40,262) of the baboon genome. 

Subsequent in silico analyses based on sequence alignment criteria (Hernando-

Herraez et al. 2013) and based on gene symbol criteria (Ong et al. 2014) retained similar 

numbers of probes (Figure 4) that maintained wide and comparable distributions 

throughout the genome (APPENDIX D). However, only a little more than half of the 

resulting probes for each filtering technique overlapped with one another (Figure 5). This 

discrepancy is likely due to the incomplete nature of the baboon genome annotation. 

More than half of the probes that fit the alignment filter criteria but not the gene symbol 

criteria (28,699 out of 50,117) are associated with generic gene symbol identifiers (LOC) 

to indicate the as of yet unknown functions of these regions. Conversely, all of the probes 

that fit the gene symbol criteria but not the alignment filter criteria have over 3 

mismatches with the baboon genome on average and have a maximum of 9 mismatches 

with the baboon genome. These high mismatch numbers are a potential concern for 

proper and accurate probe and baboon DNA hybridization. 
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Fittingly, after applying the 450K array to measure DNA methylation patterns of 

genomic material extracted from baboon skeletal tissues, I found that the hybridization 

efficiency of probes was significantly correlated with the alignment quality of each probe 

to the baboon genome, and thus, the degree of sequence conservation. The majority of 

filtered probes for both in silico methods passed quality controls and produced robust 

signals on the array, indicating that either filtering technique may be appropriate for 

future research. However, because the filtering method based on the alignment filter 

criteria retained a larger proportion of successfully hybridized probes than the method 

based on the gene symbol criteria (Figure 6) and because this method is less influenced 

by the degree of genome assembly annotation, I recommend that this alignment filter 

criteria method be preferentially used in subsequent nonhuman primate studies. 

This work is an extension of previous work and uses the 450K array to study 

DNA methylation in baboons. The 450K array is advantageous because it is cost efficient 

per sample and simultaneously measures a large number of CpG loci with a broad 

genomic representation (Michels et al. 2013). Similar to this study, previous researchers 

have used the 450K array to measure DNA methylation patterns in great apes (Hernando-

Herraez et al. 2013), which are closer to humans evolutionarily than baboons, and in 

macaques (Ong et al. 2014), which are comparable in proximity to humans evolutionarily 

as compared to baboons. All together these studies open new areas of research that 

incorporate animal models of disease or an evolutionary perspective of diseases across 

phylogenies, and the work presented here begins to advance such areas of research. 

Specifically, I used a baboon model of OA to assess the evolutionary conservation 

of epigenetic-OA associations in the primate lineage. To do this, I identified significant 
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DMPs between healthy and OA individuals in cartilage and bone tissues. I also looked 

for DMPs between tissue types and between all four combinations of disease state and 

tissue type (healthy cartilage vs. OA cartilage vs. healthy bone vs. OA bone). However, 

DMPs were only found between healthy and OA individuals in cartilage tissues (Table 

2), and all of these loci showed hypomethylation in OA cartilage samples as compared to 

healthy cartilage samples. This corresponds to the general global hypomethylation that is 

also observed in OA cartilage as compared to healthy cartilage. Six DMPs were identified 

when using the alignment filter criteria, and two DMPs were identified when using the 

gene symbol filter criteria (Table 3). All together these loci are associated with 8 genes – 

KLHL26, RFXAP, MIR497, MIR195, ELF1, RUNX1, ACSL1, and CMIP – that have a 

variety of functions. 

Some of these genes have functions directly related to skeletal development and 

maintenance. For instance, RUNX1 (Gene ID: 861), also known as runt related 

transcription factor 1, is involved in the regulation of bone and cartilage cell development 

and differentiation (Stein et al. 2004). Additionally, MIR497 (Gene ID: 574456) and 

MIR195 (Gene ID: 406971) are non-coding microRNAs that are involved in post-

transcriptional regulation (Wei et al. 2015). While both of these microRNAs have roles in 

the development of cancer (Li et al. 2011; L. Liu et al. 2010), they also play important 

regulatory roles in the differentiation of mesenchymal stromal/stem cells into bone 

related cells (Almeida et al. 2016). 

Other genes have functions associated with the immune system, which may have 

proximal roles in the development of OA. In particular, RFXAP (Gene ID: 5994), also 

known as regulatory factor X associated protein, codes for a protein that assists in the 
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transcriptional activation of major histocompatibility class II genes which are critical for 

the development and control of the immune system (Garvie and Boss 2008). 

Additionally, CMIP (Gene ID: 80790), also known as c-Maf inducing protein, codes for a 

protein that is involved in the T-cell signaling pathway, and SNPs within this gene have 

been associated with chronic diseases like diabetes (Dastani et al. 2012). 

The remaining genes do not have functions related to skeletal phenotypes, which 

makes their involvement in OA less clear. For example, KLHL26 (Gene ID: 55295), also 

known as kelch like family member 26, is part of a family of proteins that may be 

involved in protein ubiquitination (Dhanoa et al. 2013). Additionally, ACSL1 (Gene ID: 

2180), also known as acyl-CoA synthetase long-chain family member 1, codes for a 

protein that assists in the biosynthesis of lipids and degradation of fatty acids, and SNPs 

within this gene have been associated with chronic diseases like diabetes (Manichaikul et 

al. 2016). Lastly, ELF1 (Gene ID: 1997), also known as E74 like E26 transformation-

specific related transcription factor 1, is an important positive regulator of the Hox 

cofactor Myeloid ectropic viral integration site 1 (MEIS1) which is involved in 

developmental processes (Xiang et al. 2010). 

Out of all of these DMPs and their associated genes, RUNX1 is the only gene that 

has previously been associated with OA in humans. Specifically, RUNX1 was found to be 

differentially methylated in OA and healthy cartilage in humans, with OA cartilage 

displaying hypomethylation as compared to healthy cartilage (Fernández-Tajes et al. 

2014). As of yet, none of the remaining DMPs and their associated genes have been 

identified as candidate loci in human OA studies (Alvarez-Garcia et al. 2016; Aref-

Eshghi et al. 2015; Delgado-Calle et al. 2013; Fernández-Tajes et al. 2014; García-
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Ibarbia et al. 2013; Goldring and Marcu 2012; Iliopoulos et al. 2008; Jeffries et al. 2016; 

Moazedi-Fuerst et al. 2014; Ramos et al. 2014; Reynard et al. 2014; Rushton et al. 2014a; 

Saito et al. 2010). 

Overall, these findings indicate that some DNA methylation patterns associated 

with OA are evolutionarily conserved between humans and baboons while others are not. 

Differences may exist between these two species simply because human studies have not 

identified all OA related changes in methylation. Alternatively, they may be due to 

general speciation events that took place during the evolution of these taxonomic groups, 

to slight differences in the development or manifestation of OA in these species, or 

artifacts of the experimental design itself. For instance, the sample size of this study 

(n=10) is rather small, and all individuals included were female. The small number of 

individuals likely reduced my power to detect potentially important OA related variants, 

and the inclusion of only one sex may have biased my results such that identified OA 

variants are actually female specific variants. Thus, in order to better identify candidate 

epigenetic alterations that underlie variation in knee OA, a larger sample set that includes 

both sexes should be considered. Nevertheless, using baboons as a model of OA in this 

study has begun to clarify the evolutionary conservation of this disorder, and future 

research in this animal model will help provide insight into the development and 

progression of OA in order to begin designing preventative and therapeutic agents (Cox 

et al. 2013). 

In conclusion, I determined that the 450K array can be used to measure genome-

wide DNA methylation in baboon tissues and identify significant associations with 

complex traits. This is the first study to specifically assess DNA methylation in skeletal 
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tissues from a nonhuman primate using this method. From an evolutionary perspective, 

the results of this study reveal DNA methylation variation in one species and in two 

skeletal tissues, as well as the degree to which the common skeletal condition of OA 

affects that variation. Some methylation variation is associated with genes that impact 

skeletal development and maintenance, and this may have direct downstream regulatory 

and phenotypic effects. Additionally, while some DNA methylation patterns associated 

with OA in baboons appear to be evolutionarily conserved with humans, others do not. 

These findings warrant further investigation in a larger and more phylogenetically diverse 

sample set. 
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CHAPTER 3 

AN EVOLUTIONARY PERSPECTIVE OF DNA METHYLATION PATTERNS IN 

SKELETAL TISSUES USING A NONHUMAN PRIMATE MODEL OF 

OSTEOARTHRITIS 

 

Abstract 

Epigenetic factors, such as DNA methylation, play an influential role in the 

development of the degenerative join disease osteoarthritis (OA). These molecular 

mechanisms have been heavily studied in humans, and although OA impacts several 

other animals in addition to humans, few efforts have taken an evolutionary perspective. 

Here, I explore the evolution of OA epigenetics by assessing how DNA methylation 

variation relates to knee OA development in a baboon primate model (Papio spp.) and by 

comparing these findings to what is known in humans. Genome-wide DNA methylation 

patterns were identified in trabecular bone and cartilage of the right distal femora from 56 

pedigreed, adult baboons (28 with and 28 without knee OA) using the Illumina Infinium 

MethylationEPIC BeadChip (EPIC array). Several significantly differentially methylated 

positions (DMPs) were found between tissue types. Within cartilage tissue, many DMPs 

were also identified between healthy and OA individuals. Conversely, very few DMPs 

were identified between disease states in bone tissue. Overall, these finding provide some 

insight into the etiology of OA. Furthermore, some genes containing DMPs overlap with 

and display methylation patterns similar to those previously identified in human OA 

studies, while others genes do not. These results provide insight into the evolutionary 

conservation of epigenetic mechanisms associated with OA. From an evolutionary 
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perspective, these results provide evidence for DNA methylation variation in skeletal 

tissue from one primate species and two skeletal tissues. They also reveal the degree to 

which the common skeletal condition OA affects this variation. 

 

Key Words 

Osteoarthritis, DNA methylation, evolution, epigenome, bone, cartilage, baboon 

 

Introduction 

Osteoarthritis (OA) is a chronic and degenerative joint disease. It is characterized 

by a progressive degradation of cartilage and underlying subchondral bone within a joint 

(Glyn-Jones et al. 2015) which leads to significant pain and functional limitations of the 

affected joint. According to the WHO, OA is present in 9.6% of men and 18.0% of 

women ages 60 or older world-wide. Of those affected, 80% have movement limitations 

and 25% are unable to perform major daily activities of life (WHO | Chronic Rheumatic 

Conditions 2016). The CDC further notes that OA of the knee joint is especially 

prevalent in the USA (Osteoarthritis (OA) | Arthritis | CDC 2016), and it is also one of 

the leading causes of disability across the globe (Cross et al. 2014). The burden of OA on 

society demands that researchers identify the factors contributing to and aiding in the 

development and progression of this disease. 

Although significant work has been done in this area, the complete etiology of 

OA is still unclear. This is because OA pathogenesis appears to be multifactorial, with 

both genetic and environmental influences (Blagojevic et al. 2010; Cooper et al. 2000; D. 

T. Felson and Zhang 1998; David T. Felson 2004; Henriksen et al. 2014; Johnson and 
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Hunter 2014; Jordan et al. 2007; Macrini et al. 2013; Rossignol et al. 2005). Additionally, 

epigenetic factors, such as DNA methylation which regulates gene expression, are now 

thought to play a more influential role in the development of degenerative skeletal 

disorders like OA (Delgado-Calle et al. 2013; den Hollander et al. 2014; Fernández-Tajes 

et al. 2014; García-Ibarbia et al. 2013; Goldring and Marcu 2012; Iliopoulos et al. 2008; 

Jeffries et al. 2016; Y. Liu et al. 2013; Loughlin and Reynard 2015; Moazedi-Fuerst et al. 

2014; Ramos et al. 2014; Reynard et al. 2014; Rushton et al. 2014a). The investigation of 

human OA epigenetics in both bone and cartilage tissues has revealed thousands of 

differentially methylated candidate genes, but whether this epigenetic variation truly 

contributes to the development of OA and by which pathways remains unknown. 

Accomplishing such research in humans is limited due to experimentation ethics. Thus, 

finding a suitable model organism in which tissue collection and direct OA progression 

assessment are possible is necessary for discovering the mechanisms involved in OA 

pathogenesis. 

Current animal models of OA include mice, rats, rabbits, guinea pigs, dogs, sheep, 

goats, and horses (Bendele 2001; Kuyinu et al. 2016; Cucchiarini et al. 2016). Because 

the majority of these animal models do not naturally develop OA, they are limited in their 

ability to fully inform our understanding of human OA. Most animal models require 

transgenics, surgical procedures, drug injections, or non-invasive damage to a joint to 

induce OA, and even then, the physical manifestation of OA in these models only 

replicates certain stages of human OA (Bendele 2001; Kuyinu et al. 2016). Additionally, 

in those models that do naturally develop OA, such as guinea pigs, the occurrence of this 

disease across individuals differs from that in humans. Specifically in guinea pigs, males 
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have more consistent pathological alterations than females (Bendele 2001), while in 

humans, females have a higher occurrence of OA than males (Cross et al. 2014). 

Conversely, among nonhuman primates, baboons develop knee OA naturally and 

at rates similar to those observed in humans. Like humans, the prevalence of severe OA 

in baboons is higher in females than in males (Macrini et al. 2013). Additionally, in both 

baboons and humans, the occurrence of OA is not an inevitable consequence of aging. 

For instance, at the Southwest National Primate Research Center (SNPRC), 

approximately 66% of older baboons develop OA, and the remaining show no distal 

femur articular cartilage degradation (Cox et al. 2013). This is comparable to the almost 

two-thirds of Americans (≥65 years old) that develop OA (O’Connor 2006) and the 

almost one-third of human tissue donors (70-90 years old) that show no manifestations of 

knee OA (Loeser and Shakoor 2003). 

In general, nonhuman primates can serve as important models of disease for 

humans because they are phylogenetically close to humans. Because baboons also 

develop and present OA in a manner similar to that observed in humans, baboons may be 

a more suitable model of OA than those currently used. Furthermore, in captive colonies 

of baboons, environmental factors can be regulated and controlled, thus enabling more 

detailed investigations of the molecular mechanisms contributing to OA pathogenesis 

than can be achieved in humans (Macrini et al. 2013; Cox et al. 2013). 

Lastly, because of their evolutionary proximity to humans, using baboons as an 

animal model of OA will advance the evolutionary understanding of this disease, a 

perspective that has not been readily explored (Ostrer et al. 2006; Rugg-Gunn et al. 

2005). The comparable manifestations of OA between humans and phylogenetically 
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close primate relatives (baboons) as compared to less similar manifestations of OA 

between humans and more distantly related animals (Bendele 2001), implies that the 

potential to develop this disease is somewhat evolutionary conserved across species while 

also susceptible to change over evolutionary time. Thus, the molecular processes innate 

to OA development and progression may also be influenced by evolutionary forces. 

Overall, investigating the molecular processes associated with OA in baboons and 

comparing how these findings relate to those known in humans, particularly given the 

fact that the pathogenesis of this disease is similar between both species, will both 

provide greater insight into the etiology of OA and the evolution of this disease. 

For this study, I explored the evolution of OA epigenetics by identifying DNA 

methylation patterns in femur trabecular bone and cartilage of 56 pedigreed, adult 

baboons, 28 with and 28 without knee OA, and assessing whether DNA methylation 

variation is associated with OA in baboons and in a manner similar to that observed in 

humans. 

 

Methods 

Ethics Statement 

Nonhuman primate tissue samples included were opportunistically collected at 

routine necropsy of these animals. No animals were sacrificed for this study, and no 

living animals were used in this study. 
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Samples 

Baboon (Papio spp.) samples come from captive colonies at the SNPRC in the 

Texas Biomedical Research Institute. These samples are ideal because many 

environmental factors that influence skeletal development and maintenance (e.g., diet and 

exposure to sunlight, which influences vitamin D production) are controlled and 

consistent across individuals. Additionally, these animals have a tracked pedigree, which 

denotes the genetic relationships among all individuals. 

Femora were opportunistically collected at routine necropsy of these animals and 

stored in -20°C freezers at the Texas Biomedical Research Institute after dissection. 

These preparation and storage conditions ensured the preservation of skeletal DNA 

methylation patterns. 

Samples include skeletally healthy adult baboons (n=28) and adult baboons with 

severe osteoarthritis (OA, n=28). Age ranges are comparable between each group, and 

both sexes are represented (Figure 7, APPENDIX G). This is important as many skeletal 

features, such as overall bone shape and susceptibility to diseases of skeletal maintenance 

are sex and age dependent (O’Connor 2006). 

 

Assessment of Osteoarthritis 

Classification of adult baboons as having healthy or OA knees was determined 

through visual examination of the distal femora and macroscopic inspection of the distal 

articular surface cartilage. Each specimen was assigned an OA severity score. Briefly, 

Grade 1 is unaffected, Grade 2 is mild OA as indicated by cartilage fibrillation, Grade 3 

is moderate OA as indicated by cartilage lesions, and Grade 4 is advanced OA as 
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indicated by eburnation (Macrini et al. 2013). From this, binary classifications were made 

such that all healthy adult baboons have 100% Grade 1 on one or both distal femora, and 

all OA adult baboons have a variable percentage of Grades 3 or 4 on one or both distal 

femora (Figure 1). 

 

 

Figure 7. Baboon Sample Set Ages for EPIC Array Osteoarthritis Study. 

Box plots depict average ages plus or minus one standard deviation (box), as well as full 

range of ages (whiskers), for male (M) and female (F) baboons that are skeletally healthy 

or have OA. For males and females combined, healthy adult baboons (n=28) are 

16.90±5.02 years, and OA adult baboons (n=28) are 19.73±3.41 years. 

 

DNA Extraction 

DNA was extracted from femoral trabecular bone and cartilage using a phenol-

chloroform protocol optimized for skeletal tissues (Barnett and Larson 2012). From the 

distal femoral condyles, cartilage scrapings were collected using scalpels and processed 

with a homogenizer, and trabecular bone was collected using coring devices and 

pulverized into bone dust using a SPEX SamplePrep Freezer/Mill. This region of the joint 
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was selected because this location is the common site of OA development in baboons and 

humans. Specifically, cartilage was obtained from the inferior aspect of the medial 

condyle on the right distal femur. Additionally, bone cores were obtained from a 

transverse plane through the center of the medial condyle on the right distal femur, such 

that the articular surface remained preserved. Cortical bone was removed from these 

cores using a Dremel. 

Both tissues are included in this project because they are clinically relevant with 

respect to disease progression. As such, human skeletal epigenetic studies are based on 

both trabecular bone and cartilage, so for comparative purposes, it is also important to 

standardize tissue type. These tissues have distinct functions and occupy distinct portions 

of the femur. Trabecular bone comprises the internal spongy osseous tissue that 

contributes to femoral shape morphology, while cartilage comprises the external joint-

associated tissue at the proximal and distal ends of femora. Trabecular bone and cortical 

bone remodeling, which begin before birth and continue throughout life, contribute the 

development and maintenance of femoral shape (Clarke 2008). However, trabecular bone 

in growing individuals influences both trabecular and cortical morphology in adulthood 

(Q. Wang et al. 2011), and this suggests that the epigenetics of trabecular bone may be of 

more interest initially than that of cortical bone. Lastly, although trabecular bone is not 

ideal for epigenetic analyses because it contains several cell types (Horvath, Mah, et al. 

2015), statistical methods can correct for this heterogeneity. 

Cartilage methylation patterns are known to vary between joints and between 

different sites within a joint (den Hollander et al. 2014; Jeffries et al. 2016; Loughlin and 

Reynard 2015; Moazedi-Fuerst et al. 2014; Rushton et al. 2014b). Although similar 
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studies of bone methylation patterns have not been conducted yet, the number and types 

of cells, and therefore epigenetic signatures, are expected to vary across different portions 

of the femur. Thus, tissues were collected from the same portion of the femur in order to 

minimize this variation between samples and comparative groups. 

 

Genome-Wide DNA Methylation Profiling 

Genome-wide DNA methylation was assessed using Illumina Infinium 

MethylationEPIC microarrays (EPIC array). These arrays analyze the methylation status 

of over 850,000 sites throughout the genome, covering over 90% of the sites on the 

Infinium HumanMethylation450 BeadChip as well as an additional 350,000 sites within 

enhancer regions. For each sample, 400ng of genomic DNA was bisulfite converted using 

the EZ DNA MethylationTM Gold Kit according to the manufacturer’s instructions (Zymo 

Research), with modifications described in the Infinium Methylation Assay Protocol. 

Following manufacturer guidelines (Illumina), this processed DNA was then whole-

genome amplified, enzymatically fragmented, hybridized to the arrays, and imaged using 

the Illumina iScan system. The array data discussed here are available in APPENDIX F. 

 

Methylation Data Processing 

Raw fluorescent data were normalized to account for the noise inherent within 

and between the arrays themselves. Specifically, I performed a normal-exponential out-

of-band (Noob) background correction method with dye-bias normalization (Triche et al. 

2013) to adjust for background fluorescence and dye-based biases. This was followed 

with a between-array normalization method (functional normalization) (Fortin et al. 
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2014), which removes unwanted variation by regressing out variability explained by the 

control probes present on the array as implemented in the minfi package in R (Aryee et 

al. 2014; Fortin et al. 2016) which is part of the Bioconductor project (Huber et al. 2015). 

This method has been found to outperform other existing approaches for studies that 

compare conditions with known large-scale differences (Fortin et al. 2014), such as those 

assessed in this study. 

After normalization, methylation values (β values) for each site were calculated as 

the ratio of methylated probe signal intensity to the sum of both methylated and 

unmethylated probe signal intensities (Equation 1). These β values range from 0 to 1 and 

represent the average methylation levels at each site across the entire population of cells 

from which DNA was extracted (0 =completely unmethylated sites, 1 = fully methylated 

sites). 

Every β value in the Infinium platform is accompanied by a detection p-value, and 

those with failed detection levels (p-value > 0.05) in greater than 10% of samples were 

removed from downstream analyses. Additionally, samples in which more than 30% of 

the β value had a detection p-value > 0.05 were removed from downstream analyses. 

The probes on the arrays were designed to hybridize specifically with human 

DNA, so my use of nonhuman primate DNA required that probes non-specific to the 

baboon genome, which could produce biased methylation measurements, be 

computationally filtered out and excluded from downstream analyses. This was 

accomplished using methods modified from (Hernando-Herraez et al. 2013; Ong et al. 

2014). 
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Briefly, I used blastn (Altschul et al. 1997) to map the 866,837 50bp probes onto 

the Papio anubis genome (Assembly: Panu_2.0, Accession: GCF_000264685.2) using an 

e-value threshold of e-10. I only retained probes that successfully mapped to the baboon 

genome, had only 1 unique BLAST hit, targeted CpG sites, had 0 mismatches in 5bp 

closest to and including the CpG site, and had 0-2 mismatches in 45bp not including the 

CpG site (APPENDIX A). This filtering retained 209,802 probes. 

Additionally, β values associated with cross-reactive probes (McCartney et al. 

2016), probes containing SNPs at the CpG site, probes detecting SNP information, probes 

detecting methylation at non-CpG sites, and probes targeting sites within the sex 

chromosomes were removed using the minfi package in R (Aryee et al. 2014; Fortin et al. 

2016) (Figure 8). This filtering retained a final set of 191,954 probes. 

 

 

Figure 8. Normalized and Filtered Methylation Data for EPIC Array Baboon 

Osteoarthritis Study. 

(A) Density plots of β values after normalization and probe filtering. (B) 

Multidimensional scaling plot showing the first two principle components that describe 
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genome-wide methylation variation after normalization and probe filtering. Each point 

represents one sample that is either from healthy bone, healthy cartilage, OA bone, or OA 

cartilage. 

 

Differential Methylation Analyses 

Because β values have high heteroscedasticity, they are not statistically valid for 

use in differential methylation analyses (Du et al. 2010). Thus, M values were calculated 

and used in these analyses instead (Equation 2). 

In order to identify sites that were significantly differentially methylated across 

comparative groups, I designed and tested generalized linear mixed models (GLMMs) 

which related the variables of interest to the DNA methylation patterns for each site, 

while accounting for the effects of additional variables, batch effects, and latent variables 

(Maksimovic et al. 2016). Sites found to have significant associations were classified as 

significantly differentially methylated positions (DMPs). 

Specifically, a GLMM was used to estimate differences in methylation levels for each 

of the following contrasts: 

1. between bone and cartilage in OA baboons 

2. between bone and cartilage in healthy baboons 

3. between OA and healthy baboon bone 

4. between OA and healthy baboon cartilage 

5. among all 4 combinations of tissue type and disease state (healthy bone vs. 

healthy cartilage vs. OA bone vs. OA cartilage) 
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Additional variables included in this GLMM were sex, age (years), steady state weight 

(kg), known batch effects (e.g., array number and position), and unknown latent variables 

calculated using the iteratively re-weighted least squares approach in the sva package in 

R (Jaffe and Irizarry 2014; Jeffrey T. Leek et al. 2012; J. T. Leek and Storey 2008; 

Jeffrey T. Leek and Storey 2007). The 14 latent variables estimated were included to help 

mitigate any unknown batch and cell heterogeneity effects on methylation variation at 

each site. 

Alternative methods to account for cell heterogeneity exist, but they are specific 

to whole blood (Jaffe and Irizarry 2014; Morris and Beck 2015), require reference 

epigenetic data, or are reference free methods (Houseman et al. 2014) that are 

comparable to the sva method (Kaushal et al. 2015). Out of the known cell types in 

skeletal tissues (Horvath, Mah, et al. 2015), only chondrocytes and osteoblasts have 

reference epigenomes available on the International Human Epigenomics Consortium, 

and these are only for humans, not nonhuman primates. Thus, because no standard 

method is available to correct for the heterogeneous cell structure in nonhuman primate 

skeletal tissue, I chose the described sva method. 

This GLMM design matrix (Equation 4) was fit to the M value array data by 

generalized least squares using the limma package in R (Ritchie et al. 2015; Phipson et al. 

2016; Huber et al. 2015), and the estimated coefficients and standard errors for the 

defined tissue type and disease status contrasts were computed. Because each baboon 

contributed both a bone sample and a cartilage sample, an inter-subject correlation was 

performed to account for these repeat measures (Smyth et al. 2005) and included in the 

GLMM. Lastly, for each coefficient, an empirical Bayes approach (McCarthy and Smyth 
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2009; Lönnstedt and Speed 2002; Phipson et al. 2016; Smyth 2004) was used to compute 

moderated t-statistics, log-odds ratios of differential methylation, and associated p-values 

adjusted for multiple testing (Benjamini and Hochberg 1995). Significant DMPs for the 

effect of tissue type, disease status, or both were defined as those having log fold changes 

in M values corresponding to an adjusted p-value of less than 0.05. 

In order to account for genetic relatedness, the coefficients of relatedness (phi2 = 

2 x kinship coefficients), or the expected proportions of alleles that are identical by 

descent between 2 individuals, were computed from a known pedigree using the kinship2 

package in R (Therneau et al. 2015). Following this, two new GLMMs were designed 

and tested using the lmekin function of the coxme package in R (Therneau 2015). The 

first GLMM regressed methylation levels (M values) against the tissue type and disease 

status contrast effects while adjusting for other variables (sex, batch effects, latent 

variables) as fixed effects and kinship (phi2) as a random effect (Equation 5) (Zaghlool et 

al. 2015), and the second performed the same regression with the tissue type and disease 

status contrast effects removed (Equation 6). The log likelihoods of each model were 

then compared using a chi-square test to determine which model better explained the 

variation in methylation. For this test, the degrees of freedom were calculated as the 

absolute difference in the Akaike's information criteria for each model (Mazerolle 2016). 

When the model containing the tissue type and disease status contrast effects performed 

significantly better than the alternative model (p-value < 0.05), this confirmed that the 

site remained a significant DMP for the effects of tissue type, disease status, or both 

when adjusting for the added effects of kinship. Conversely, when the model containing 

the tissue type and disease status contrast effects did not perform better than the 
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alternative model (p-value ≥ 0.05), this indicated that the site was not a significant DMP 

for the effect of tissue type, disease status, or both when adjusting for the added effects of 

kinship. In this instance, this site was no longer considered a significant DMP. 

 

Equation 4: methylation ~ tissue type and disease status contrasts + sex + age + weight + 

batch effects + latent variables 

Equation 5: methylation ~ tissue type and disease status contrasts + sex + age + weight + 

batch effects + latent variables + kinship 

Equation 6: methylation ~ sex + age + weight + batch effects + latent variables + kinship 

 

Lastly, I further examined significant DMPs that had at least a 10% change in 

mean methylation between comparative groups (Δβ ≥ 0.1), as these may have greater 

biological impact than others (Hernando-Herraez et al. 2013). The gene ontology (GO) 

and KEGG pathway enrichment for significant CpGs while taking into account the 

differing number of probes per gene present on the array was determined using the 

missMethyl package in R (Geeleher et al. 2013; Young et al. 2010; Ritchie et al. 2015; 

Benjamini and Hochberg 1995). Significantly enriched (FDR < 0.05) GO biological 

processes were subsequently summarized using REViGO which removed redundant GO 

terms (retained only 50% of the full list of significant terms) and visualized the remaining 

terms in a semantic similarity-based scatterplot (Supek et al. 2011). Semantic similarity 

was calculated using the simRel score, which is a functional similarity measure that 

ranges from 0 for terms that have no similarity to 1 for terms with maximum similarity 

(Schlicker et al. 2006). 
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In addition to DMPs, differentially methylated regions (DMRs) were also 

identified between each comparative group using the DMRcate package in R (Peters et al. 

2015; Wand and Jones 1994; Duong 2013). This method is only concerned with the 

spatial proximity of loci examined and is not biased by any annotations associated with 

these loci. For these analyses, the individual DMP t-statistics, which were derived by 

fitting the M value array data to a GLMM design matrix (Equation 4) by generalized least 

squares using the limma package in R (Ritchie et al. 2015; Phipson et al. 2016; Huber et 

al. 2015), were smoothed across each chromosome using a recommended Gaussian 

kernel bandwidth of 1000 base pairs with a scaling factor of 2. An expected value of this 

smoothed estimate with no experimental effects was also modelled using a Satterthwaite 

approximation (Satterthwaite 1946) in order to calculate a subsequent significance test 

for each DMP. A default threshold was then applied to p-values adjusted for multiple 

testing (Benjamini and Hochberg 1995) to identify FDR-corrected significant DMPs. 

Finally, these significant DMPs were agglomerated together into DMRs based on 

chromosomal location and such that each DMR contained at least 2 CpG sites that were 

less than 1000 base pairs apart. 

 

Results 

 The aim of this study was to use the EPIC array to identify DNA methylation 

patterns in femur bone and cartilage of baboons, 28 with and 28 without knee OA. In 

order to do this, I first assessed the effectiveness of the EPIC array in identifying DNA 

methylation patterns in baboon DNA and of different probe filtering methods. 
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Alignment of EPIC Array Probes with the Baboon Genome 

Probes from the EPIC array were aligned to the baboon genome using methods 

modified from (Hernando-Herraez et al. 2013; Ong et al. 2014) (APPENDIX A). Out of 

the 866,837 50bp probes on the array, 209,802 probes map to the baboon genome with e-

values less than e-10, have only unique BLAST hits, target a CpG site, and meet the 

described alignment filter criteria (Figure 9). These probes covered approximately 23,446 

genes with an average coverage of 8 probes per gene. Additionally, the retained probes 

covered a range of locations with respect to genes and CpG islands (APPENDIX H), 

indicating that these filtered probes maintain a wide distribution throughout the genome. 

After filtering out cross-reactive probes (Y. Chen et al. 2013), probes containing SNPs at 

the CpG site, probes detecting SNP information, probes detecting methylation at non-

CpG sites, and probes targeting sites within the sex chromosomes a final set of 191,954 

probes were retained for downstream analyses. 

 

 

Figure 9. Filtering Effects on EPIC Array Probes for Baboons. 

(A) Pie chart showing the percent of EPIC array probes that map to the baboon (Papio 

anubis) genome with e-values < e-10, have only unique BLAST hits, and target a CpG 

site. Out of 866,837 probes total, 337,818 probes (39%) meet these criteria. (B) Pie chart 
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showing the percent of probes, out of those that successfully mapped to the baboon 

genome, that contain 0 mismatches in 5bp of the probe by and including the targeted CpG 

site and 0-2 mismatches in 45bp of the probe not including the CpG site. Out of the 

337,818 mapped probes, 209,802 probes (62%) meet these criteria. 

 

Effectiveness of EPIC Array Probes using Baboon DNA 

To determine how effectively the EPIC array probes measured DNA methylation 

in baboon DNA, I performed Spearman correlation tests between the hybridization 

efficiency of each probe and parameters defining the alignment quality of each probe to 

the baboon genome. Specifically, both probe alignment bitscores and percent identity 

were significantly negatively correlated with probe hybridization efficiency, and probe 

alignment e-values were significantly positively correlated with probe hybridization 

efficiency, regardless of filtering criteria (APPENDIX I). Additionally, filtered probes 

retained a large proportion of successfully hybridized probes (Figure 10). 
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Figure 10. Hybridization Efficiencies of EPIC Array Probes Retained for Baboon 

Osteoarthritis Study. 

Histogram of alignment bitscores for EPIC array probes with detection p-values > 0.05 

(red) and < 0.05 (blue). These p-values were averaged across all samples, and probes 

included meet the alignment filter criteria. For these probes 2,815 had detection p-values 

> 0.05, and 206,987 had detection p-values < 0.05. 

 

Differential Methylation and Osteoarthritis 

Significant DMPs were interrogated from 191,954 sites and identified between 

disease statuses (OA vs. healthy) and tissue types (bone vs. cartilage), as well as among 

these variables in combination (Table 4). Accounting for kinship slightly reduces these 

DMP counts, but does not diminish their distribution across a variety of functional 

genomic regions and proximities to CpG islands (APPENDIX J). Using a Δβ ≥ 0.1 

threshold substantially decreases the final number of significant DMPs per comparative 

group (Figure 11, Table 5, APPENDIX K). Overall, more DMPs were found between 
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tissue types than between disease states, and cartilage samples revealed more DMPs 

between disease states than did bone samples. This pattern holds true for significant 

DMRs, as well (Table 6, APPENDIX L). 

More than half of all DMPs and those DMPs with Δβ ≥ 0.1 between tissue types 

in both healthy and OA individuals are hypermethylated in bone as compared to cartilage 

(Table 4, Table 5), while the global methylation patterns between disease statuses are 

more complicated. For all DMPs between disease statuses in bone tissues, most are 

hypermethylated in OA individuals as compared to healthy individuals. Conversely, for 

all DMPs between disease statuses in cartilage tissues, most are hypomethylated in OA 

individuals as compared to healthy individuals (Table 4). When just examining those 

DMPs with Δβ ≥ 0.1, OA individuals show increased hypomethylation as compared to 

healthy individuals when examining both bone and cartilage (Table 5). 

 

Table 4. Number of Significant DMPs Identified in the EPIC Array Baboon 

Osteoarthritis Study. 

Differential Methylation 

Healthy Bone 

vs. 
Healthy Cartilage 

OA Bone 

vs. 
OA Cartilage 

OA Bone 

vs. 
Healthy Bone 

OA Cartilage 

vs. 
Healthy Cartilage 

OA Bone vs. 
Healthy Bone vs. 

Healthy Cartilage 

vs. OA Cartilage 

Significant (negative) 49,990 43,936 98 11,698 2,143 

Not Significant 64,435 71,890 191,570 170,582 186,818 

Significant (positive) 77,529 76,128 286 9,674 2,993 

Table showing the number of significant DMPs between comparative groups. Results are 

shown for probes filtered using the alignment criteria, and for these, significant DMPs 

were identified in all comparative groups. 
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The variation in methylation patterns at DMPs with Δβ ≥ 0.1 clusters bone and 

cartilage tissue types into distinct and separate groups, but does not cluster OA and 

healthy individuals as effectively (Figure 12). While OA and healthy samples within 

cartilage differentiate relatively well, except in a couple instances, OA and healthy 

samples within bone do not clearly differentiate. Additionally, significant DMPs with Δβ 

≥ 0.1 for all comparative groups are associated with several genes that have distinct GO 

biological processes (Figure 15, APPENDIX M) and KEGG pathway functions 

(APPENDIX N). 

 

 

Figure 11. Number of Significant DMPs Identified in the EPIC Array Baboon 

Osteoarthritis Study. 

Bar chart showing the number of significant DMPs between comparative groups. Results 

include the number of significant DMPs that remained statistically significant after 

accounting for kinship, the number of significant DMPs that did not remain statistically 

significant after accounting for kinship, and the number of loci that were not found to be 
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statistically significant. Those significant DMPs that remained statistically significant 

after accounting for kinship were additionally split into those that had Δβ < 0.1 and those 

that had Δβ ≥ 0.1. Approximately 66.4% (127,519) of probes were differentially 

methylated between bone and cartilage in healthy baboons, 62.6% (120,064) between 

bone and cartilage in OA baboons, 0.2% (384) between OA and healthy baboons in bone, 

11.1% (21,372) between OA and healthy baboons in cartilage, and 2.7% (5,136) between 

all four combinations of disease state and tissue type. When accounting for genetic 

relatedness, 2.2% (2,807), 2.0% (2,419), 0.5% (2), 0.8% (172), and 0.5% (24) of the 

originally identified significant DMPs do not maintain significant methylation 

associations, respectively. Of those significant DMPs that remained statistically 

significant after accounting for kinship, only 38.0% (47,386), 41.3% (48,562), 10.2% 

(39), 20.3% (4,298), and 52.4% (2,676) had Δβ ≥ 0.1, implying the difference may have 

had regulatory and biological effects. 

 

Table 5. Number of Significant DMPs with Δβ ≥ 0.1 Identified in the EPIC Array 

Baboon Osteoarthritis Study. 

Differential Methylation 
Healthy Bone 

vs. 

Healthy Cartilage 

OA Bone 
vs. 

OA Cartilage 

OA Bone 
vs. 

Healthy Bone 

OA Cartilage 
vs. 

Healthy Cartilage 

OA Bone vs. 

Healthy Bone vs. 

Healthy Cartilage 
vs. OA Cartilage 

Significant (negative) 20,742 20,562 27 2,998 1,106 

Not Significant 144,444 143,165 191,915 187,653 189,275 

Significant (positive) 26,768 28,227 12 1,303 1,573 

Table showing the number of significant DMPs with Δβ ≥ 0.1 between comparative 

groups. Results are shown for probes filtered using the alignment criteria, and for these, 

significant DMPs were identified in all comparative groups. 
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Table 6. Number of Significant DMRs Identified in the EPIC Array Baboon 

Osteoarthritis Study. 

  
No. Significant 

DMRs 

No. Associated 

Genes 

Average CpGs per 

DMR (Min-Max) 

Average Length of 

DMR (Min-Max) 
Associated Gene Symbols 

Healthy Bone 
vs. 

Healthy Cartilage 

21,538 13,083 4 (2-107) 
777bp (3bp-

15,989bp) 

COL11A2, ESR1, FBXL8, FEZF2, 

HOXA11, HOXA11, HOXB3, HOXB5, 
HOXB6, HOXB-AS3, HOXB-AS3, 

HOXC4, HSD17B8, HSD17B8, HSF4, 

MIR219, NRM, PPP1R18, PTPRG-
AS1, RING1, RNY4P10, RP11, 

RUNX3, RXRB, RXRB, SLC39A7, 

ZNF70P1 

OA Bone 

vs. 

OA Cartilage 

20,272 12,496 4 (2-107) 
774bp (3bp-
15,989bp) 

COL11A2, DDAH2, ESR1, FEZF2, 

HOXA10, HOXA10-AS, HOXA9, 
HOXB3, HOXB5, HOXB6, HOXB-AS3, 

HSD17B8, MIR196B, MIR219, PPT2, 

PPT2-EGFL8, PRRT1, PTPRG-AS1, 
RING1, RNY4P10, RP1, RUNX3, 

RXRB, SLC39A7, ZNF70P1 

OA Bone 
vs. 

Healthy Bone 

84 112 6 (2-17) 
489bp (41bp-
1,716bp) 

ANKRD13D, C1orf145, DOCK1, 
GLDN, HOXD8, LIPE, LPPR3, 

RNF180, SH3RF3, SH3RF3-AS1, SSH3 

OA Cartilage 
vs. 

Healthy Cartilage 

4,154 2,768 3 (2-40) 
507bp (3bp-
6,159bp) 

DCN, FBXL8, HOXC6, HOXC9, 

HOXC-AS1, HSF4, MIR4740, 
PPP1R18, RP11, SIX1, SMG6, VMP1, 

ZBTB18 

OA Bone vs. 

Healthy Bone vs. 

Healthy Cartilage 
vs. OA Cartilage 

802 597 4 (2-29) 
486bp (4bp-

5,003bp) 

DCN, DUSP1, ELF1, HOXC6, 
HOXC9, HOXC-AS1, HOXC-AS2, 

SIX1, SMG6, ZBTB18 

Table showing the number of significant DMRs identified between comparative groups, 

the number of unique gene names that overlapped with these regions, the average number 

of CpGs per DMR along with the minimum and maximum number, average length of 

DMRs along with the minimum and maximum length, and gene symbol names associated 

with the top 10 DMRs for each comparative group. For additional details see the 

Appendix L. 
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Figure 12. Methylation Levels at Significant DMPs Identified in the EPIC Array Baboon 

Osteoarthritis Study for All Four Combinations of Disease State and Tissue Type. 

Heatmaps depicting the DNA methylation levels (β values) of all DMPs with Δβ ≥ 0.1 

between all four combinations of disease state and tissue type (x-axis) in all baboon 

samples (y-axis, n=112). Red indicates higher methylation at a DMP, while blue indicates 

lower methylation at a DMP. The dendrogram of all samples (y-axis) clusters individuals 

based on the similarity of their methylation patterns. Bone and cartilage tissues form 

distinct clusters, and OA and healthy samples within cartilage separate relatively well. 

However, these methylation patterns do not cluster OA and healthy samples within bone 

into distinct groups. See Figure 13 for additional information. (B) Manhattan plot 

showing the log10 adjusted p-values of all positions examined between all four 

combinations of disease state and tissue type in all baboon samples (n=112). Samples 

highlighted in green are the significant DMPs with Δβ ≥ 0.1 between all four 

combinations of disease state and tissue type that are displayed in the heatmap. See 

Figure 14 for additional information. 
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Figure 13. Heatmaps of Methylation Levels at Significant DMPs Identified in the EPIC 

Array Baboon Osteoarthritis Study for Several Disease State and Tissue Type 

Comparisons. 

Heatmaps depicting the DNA methylation levels (β values) of (A) the top 15,000 DMPs 

with Δβ ≥ 0.1 between bone and cartilage (x-axis) in healthy baboons (y-axis, n=56), (B) 

the top 15,000 DMPs with Δβ ≥ 0.1 between bone and cartilage (x-axis) in OA baboons 

(y-axis, n=56), (C) all DMPs with Δβ ≥ 0.1 between OA and healthy baboons (x-axis) in 

bone tissues (y-axis, n=56), and (D) all DMPs with Δβ ≥ 0.1 between OA and healthy 

baboons (x-axis) in cartilage tissues (y-axis, n=56). Red indicates higher methylation at a 

DMP, while blue indicates lower methylation at a DMP. The dendrogram of all samples 

(y-axis) clusters individuals based on the similarity of their methylation patterns. Bone 

and cartilage tissues form distinct clusters, and OA and healthy samples within cartilage 

separate relatively well. However, these methylation patterns do not cluster OA and 

healthy samples within bone into distinct groups. 
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Figure 14. Manhattan plots of Significant DMPs Identified in the EPIC Array Baboon 

Osteoarthritis Study for Several Disease State and Tissue Type Comparisons. 

Manhattan plot showing the log10 adjusted p-values of all positions examined between 

(A) bone and cartilage in healthy baboons (n=56), (B) bone and cartilage in OA baboons 

(n=56), (C) OA and healthy baboons in bone tissues (n=56), (D) OA and healthy baboons 

in cartilage tissues (n=56). Samples highlighted in green are the significant DMPs with 

Δβ ≥ 0.1 between each comparative group that are displayed in the heatmaps in Figure 

13. 
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Figure 15. GO Biological Processes Enriched for Significant DMPs All Four 

Combinations of Disease State and Tissue Type in Baboons. 

Multidimensional scaling plot summarizing the GO biological process terms that are 

significantly enriched (FDR < 0.05) for significant DMPs with Δβ ≥ 0.1, taking into 

account the differing number of probes per gene present on the EPIC array. DMPs were 

identified between all four combinations of disease state and tissue type. REViGO was 

used to remove redundant GO terms (retained only 50% of the full list of significant 

terms, see Appendix M) and to visualize the remaining terms in a semantic similarity-

based scatterplot (Supek et al. 2011). Semantic similarity was calculated using the simRel 

score, which is a functional similarity measure that ranges from 0 for terms that have no 

similarity to 1 for terms with maximum similarity (Schlicker et al. 2006). These pairwise 

semantic similarity scores are then plotted in multidimensional scaling space such that 
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similar GO terms are located close to one another in the plot. The color and size of each 

GO term are based on the log10 FDR value, and some of the most significant GO terms 

have their descriptions provided in the plot. See Figure 16 for additional information. 

 

 

Figure 16. GO Biological Processes Enriched for Significant DMPs Identified in Several 

Disease State and Tissue Type Comparisons in Baboons. 

Multidimensional scaling plot summarizing the GO biological process terms that are 

significantly enriched (FDR < 0.05) for significant DMPs with Δβ ≥ 0.1, taking into 

account the differing number of probes per gene present on the EPIC array. DMPs were 

identified between bone and cartilage in OA baboons (A), between bone and cartilage in 
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healthy baboons (B), between healthy and OA baboon bone (C), and between healthy and 

OA baboon cartilage (D). For OA versus healthy bone, no GO categories significant at 

5% FDR were identified, so GO functions with p-values < 0.05 were included in plot. 

See Figure 8 for information on REViGO methods for making figures. 

 

When comparing the DMPs with Δβ ≥ 0.1, DMRs, GO functions, and KEGG 

pathways that were identified between each comparative group, distinct patterns were 

identified. Out of the 54,302 unique DMPs with Δβ ≥ 0.1 identified between bone and 

cartilage in healthy and OA individuals, 77% (41,646) overlap. Similarly, out of the 

24,079 unique DMRs identified between bone and cartilage in healthy and OA 

individuals, 71% (17,085) overlap. Again, this pattern holds up for GO functions, in 

which 78% (1,118 out of 1,427) overlap, and KEGG pathways, which are almost 

completely coincidental (289 out of 296 identical) (Figure 17). Thus, the locations and 

functional associations of differential methylation between bone and cartilage tissues are 

very similar in both healthy and OA individuals. 
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Figure 17. Overlap in Differential Methylation Findings between Bone and Cartilage of 

Healthy versus OA Baboons. 

Venn diagrams showing the overlap in significant DMPs with Δβ ≥ 0.1 between bone and 

cartilage in healthy versus OA baboons (A), the overlap in significant DMRs between 

bone and cartilage in healthy versus OA baboons (B), the overlap in GO biological 

process terms that are significantly enriched for DMPs with Δβ ≥ than 0.1 between bone 

and cartilage in healthy versus OA baboons (C), and the overlap in KEGG pathways that 
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are significantly enriched for DMPs with Δβ ≥ 0.1 between bone and cartilage in healthy 

versus OA baboons (D). 

 

Conversely, out of the 4,332 unique DMPs with Δβ ≥ 0.1 identified between OA 

and healthy individuals in bone and cartilage tissues, only 0.1% (5) are identical. 

Similarly, out of the 3,547 unique DMRs identified between OA and healthy individuals 

in bone and cartilage tissues, 0.1% (4) are identical. This pattern continues for GO 

functions, in which 1.9% (13 out of 692) are identical, but not for KEGG pathways, in 

which all pathways identified in bone are encompassed within those identified in 

cartilage (Figure 18). Thus, the locations of differential methylation between healthy and 

OA individuals are very different in bone versus cartilage tissues. This corresponds with 

different biological functional associations. However, in spite of these differences, the 

molecular pathways through which the differential methylation between healthy and OA 

individuals impacts functional differences may be similar, with those identified in bone 

completely subsumed by those identified in cartilage. Overall, this suggests while the 

proximal changes in methylation and their downstream functional impacts associated 

with the development of OA are different in each tissue, the pathways connecting these 

are somewhat similar across tissues. 
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Figure 18. Overlap in Differential Methylation Findings between Healthy and OA 

Baboons when Using Bone versus Cartilage. 

Venn diagrams showing the overlap in significant DMPs with Δβ ≥ 0.1 between OA and 

healthy baboons when assessing bone versus cartilage tissues (A), the overlap in 

significant DMRs between OA and healthy baboons when assessing bone versus cartilage 

tissues (B), the overlap in GO biological process terms that are enriched for DMPs with 

Δβ ≥ 0.1 between OA and healthy baboons when assessing bone versus cartilage tissues 
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(C), and the overlap in KEGG pathways that are significantly enriched for DMPs with Δβ 

≥ 0.1 between OA and healthy baboons when assessing bone versus cartilage tissues (D). 

No significantly enriched GO terms were found for DMPs with Δβ ≥ 0.1 between OA 

and healthy baboons when assessing bone, so those with p-values < 0.05 are displayed. 

 

A subset of the DMPs identified between OA and healthy baboons were 

associated with genes that overlap with those previously identified as being differentially 

methylated in human OA studies, and some genes identified as being differentially 

methylated in human OA studies were not identified in the current baboon OA study 

(Table 7, Table 8, APPENDIX O, APPENDIX P). Of those genes that do overlap 

between humans and baboons, some show methylation pattern that are identical between 

species, while others have opposing patterns (Alvarez-Garcia et al. 2016; Aref-Eshghi et 

al. 2015; Delgado-Calle et al. 2013; Fernández-Tajes et al. 2014; García-Ibarbia et al. 

2013; Goldring and Marcu 2012; Iliopoulos et al. 2008; Jeffries et al. 2016; Moazedi-

Fuerst et al. 2014; Ramos et al. 2014; Reynard et al. 2014; Rushton et al. 2014a; Saito et 

al. 2010). Specific examples of this are as follows. 
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Table 7. Overlap of Differential Methylation Associations from Human and Baboon 

Osteoarthritis Studies. 

Previous Human OA 

Methylation Findings 

Current Study Baboon OA 

Methylation Findings 
Genes 

Hypermethylated Hypermethylated 
ERBB2, HOXA13*, IL11RA, IRX3, IRX5, KRT5, MARVELD1, MMP16, 
PRDM8, PRTFDC1, PTHLH, SPON1, TBX4*, TGFBR2, VAX2, ZADH2 

 Hypomethylated 

BMP2, BMP7, CD28, COL13A1, COL14A1, COL15A1, DLX5, FLJ42709, 

HOXC4, HOXD8, HS3ST3A1, INSR, NOL4, PPFIA1, SLITRK5, SUSD1, 

WNT11 

 Conflicting 

ACVR1B, ADAMTS2, ALX4, APCDD1, ATOH8, BCL11B, C10orf11, CCBE1, 
CDH11, CDH13, CDKN2B, COL5A1, CSNK1E, CYR61, DISP1, DLX6AS*, 

DYSF*, EDNRB, EGFR, FERD3L, FGD4, FGFR2, FGFRL1, FOXF2, FST, 

FZD10, GRB10, HDAC11, HMGA2, ID4, KCNQ1, KDM4B, KLF4, LSP1, 
MAFB, MAFF, MN1, MSI2, MSX1, MSX2, NCOR2, NID2, NPAS2, NPAS3, 

NRG1, NRP2, PRKAG2, PTPN14, RBP1, RORC, SIX2, SLC15A1, SMAD3, 

SMAD7, SORBS2, SSBP3, THSD4, TIMP3, TMEM200A, TNS1, TRHDE, VASN 

Hypomethylated Hypomethylated 

ACVR1, AGPAT9, ALOX5AP, ARRDC2, BCAT1, BCL6, C10orf90, CHD1L, 

COL7A1, CP, CTSZ, DUSP1, ENG, FLJ43663*, LOC148696*, MLLT10, 
MMP13, MT2A, PGS1, S100A10, SEMA4D, SIT1, SLC39A7*, SRGN, WIPF1, 

NA*, NA* 

 Hypermethylated 
CNGB1, DUSP5, GLI3, LEPR, MSH3, ODZ4, RARRES1, ROBO2, SYNJ2, 

UACA 

  Conflicting 

ACTRT2, ADAMTS4, ADAMTS5, ARAP1, ARHGAP9, ATXN1*, ATXN7L1, 
BEST3, BMP6, CD82, CHST11, CHSY1*, COL6A3, CPA1, CPNE2, 

CRISPLD2, ECM1, ERGIC1*, ETV6, FHAD1, FILIP1, FOXP1, FTO, GLIS1, 

GLIS3, H2AFY, HDAC4, HRNBP3, KDM2B, LAMB3, LDLRAD3, LMO7, LPP, 
LRRFIP1*, MAP3K4, MIR548H4, MTHFD1, MYO18A, NAV2*, NEK7, 

NFIL3*, NIN, OSBPL10, PMEPA1, RUNX1*, RUNX2, RUNX3, SHANK2, 

SLC7A5, SMOC2, TGFBR3, THRB*, TIMP2, TNXB, TTLL5*, WWTR1 

Conflicting Hypermethylated ABL1 

 Hypomethylated NFATC1, SLC2A1 

  Conflicting CREB5, NPR3*, RORA, SPRY4, TGFB2, TRIO 

Details on the previous findings of differential methylation associations with human OA 

that do overlap with the current findings of differential methylation association with 

baboon OA. Table outlines several genes that were found to be differentially methylated 

in human OA studies, whether significant differential methylation with a Δβ ≥ 0.1 was 

also identified in the current baboon OA study, and whether the baboon methylation 

pattern (hypermethylation vs. hypomethylation) was similar to that in humans. 

Conflicting methylation for previous human studies means that different studies reported 

both hypermethylation and hypomethylation of a gene and for the current baboon study 
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means that some sites associated with a particular gene are significantly hypermethylated 

while others are significantly hypomethylated. All of the genes listed had at least 1 site 

associated with it that was tested on the EPIC array. Additional details can be found in 

Appendix O and Appendix P. Normal Font = genes significantly differentially 

methylated in OA vs. healthy in only cartilage, Italicized Font = gene significantly 

differentially methylated in OA vs. healthy in only bone, * = gene contains significant 

DMP that is identical to one identified in previous study. 

 

Table 8. Non-Overlapping Differential Methylation Associations between Human and 

Baboon Osteoarthritis Studies. 

Previous Human 

OA Methylation 
Level Findings 

Current Study Baboon 

OA Methylation Level 
Findings 

Genes 

Hypermethylated 
No significant 

differential methylation 

ADORA3, BIN2, CD5, COL18A1, FOXF1, IGF2AS, PLCXD3, TUBAL3, YPEL1, 

ZNF549, ADAMTS14, ARRDC4, C10orf116, C1orf229, C3orf35, C5orf4, 
CACNA2D1, CLDN5, CNTN1, COL9A3, CSPG5, CTSA, CYYR1, DPYS, EPO, 

FAM163A, FBXO39, FGF4, FLT4, FOXI2, GALR1, GLRB, GNMT, GRIN3A, HBA1, 

HCN4, HIST1H4H, HLA-G, HTRA4, IRX4, KDR, LAMA1, LTBR, NKX2-2, NTSR1, 
PAK7, PCDHB1, PDE10A, PDE1C, PHYHIPL, PKD2L1, PRRT2, PRSS22, PTPN6, 

PTPRO, RBL1, RBP4, RPS6KB1, SALL3, SLC27A4, SLC30A2, SNX31, SOX11, 

SOX17, SPEF2, STEAP4, THAP10, THBD, TMEM150A, TRIM58, TYSND1, WNT2, 
ZFP28, ZMYND19, ZNF454, ZNF667, ZNF678 

Hypomethylated 
No significant 
differential methylation 

A1CF, AIP, ARFRP1, BPIL1, BST2, C13orf16, C14orf38, C8orf34, CD59, CLCN7, 
CLPP, COL20A1, DEFB129, DNTT, GTF2H3, GUCA1A, HINT1, IL18, IL32, JPH2, 

MTRR, NAA25, NTRK3, NUDCD3, OR11A1, OR51S1, PAX8, PIP5KL1, PTPN11, 

RB1CC1, SAA3P, SSU72, STK35, SYNPO2L, TMEM156, ANKRA2, ARHGEF4, 
BLMH, BMP1, C10orf81, COL22A1, CSNK1A1L, CSRP3, CXCR6, DNASE1L1, 

EDARADD, EFCAB6, EIF2B1, EMR2, FAM5C, FCGR2A, IL8, LCN2, LTA, LY9, 

MS4A1, NLRP10, NR1I3, ORMDL2, RBP2, SCAMP1, SMCR8, SP140, TMEM86B, 
TMIGD2, WNT8A, ZNF180 

Details on the previous findings of differential methylation associations with human OA 

that do not overlap with the current findings of differential methylation association with 

baboon OA. Table outlines several genes that were found to be differentially methylated 
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in human OA studies but were not found to have any significant differential methylation 

in the current baboon OA study, and if so whether the methylation pattern 

(hypermethylation vs. hypomethylation) was similar to that in humans. Additional details 

can be found in Appendix P. 

 

TBX4 displays similar OA hypermethylation patterns in human (Alvarez-Garcia et 

al. 2016; Fernández-Tajes et al. 2014) and baboon cartilage (Figure 19). In baboon 

cartilage, out of the 24 CpG sites associated with TBX4 that were examined, 8 DMPs 

were identified. All of these were hypermethylated in OA, and 1 had a Δβ ≥ 0.1 

(APPENDIX Q). Additionally, 2 DMRs were identified in close proximity to this gene – 

one that is 1880bp long and contains 5 CpG sites (hg19 chr17:59533844-59535723) and 

one that is 259bp long and contains 2 CpGs (hg19 chr17:59532306-59532564). 

Conversely, in bone, no DMPs or DMRs were found between healthy and OA 

individuals. (APPENDIX Q). 

HOXD8 displays similar OA hypermethylation patterns in humans (Delgado-

Calle et al. 2013) and baboon bone but opposing OA methylation patterns in baboon 

cartilage (Figure 20). In baboon bone, out of the 26 CpG sites associated with HOXD8 

that were examined, 4 DMPs were identified. All of these were hypermethylated in OA, 

but none had Δβ ≥ 0.1 (APPENDIX Q). Additionally, 1 DMR that is 1716bp long and 

contains 12 CpGs (hg19 chr2:176993841-176995556) was identified in close proximity 

to this gene, and 1 CpG site (cg15520279) was identical between this study and human 

OA studies. Conversely, in baboon cartilage, 6 DMPs were identified. All of these were 

hypomethylated in OA, and all had Δβ ≥ 0.1 (APPENDIX Q). Additionally, 2 DMRs 
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were identified in this gene – one that is 753bp long and contains 3 CpGs (hg19 

chr2:176993089-176993841) and one that is 730bp long and contains 2 CpGs (hg19 

chr2:176995556-176996285) (APPENDIX Q). 

LEPR displays opposing OA methylation patterns between humans with 

hypomethylation (Aref-Eshghi et al. 2015) and baboons with hypermethylation (Figure 

21). In baboon cartilage, out of the 20 CpG sites associated with LEPR that were 

examined, 3 DMPs were identified. All of these were hypermethylated, and 1 had Δβ ≥ 

0.1 (APPENDIX Q). Similarly, in baboon bone, 1 DMP was identified. This was 

hypermethylated but did not have a Δβ ≥ 0.1 (APPENDIX Q). No DMRs were identified 

in close proximity to this gene for baboon cartilage or bone. 

Lastly, RUNX1 displays opposing OA methylation patterns between humans with 

hypomethylation (Alvarez-Garcia et al. 2016; Fernández-Tajes et al. 2014) and baboon 

cartilage with a mixture of hypo- and hyper-methylated sites (Figure 22). In baboon 

cartilage, out of the 60 CpG sites associated with RUNX1 that were examined, 16 DMPs 

were identified of which 9 were hypomethylated and 7 were hypermethylated. 

Additionally, 6 of the hypomethylated DMPs had a Δβ ≥ 0.1, while only 1 of the 

hypermethylated DMPs had a Δβ ≥ 0.1 (APPENDIX Q). Regarding DMRs, one that is 

1198bp long and contains 10 CpGs (hg19 chr21:36258497-36259694) was found to be 

hypomethylated in close proximity to this gene, and one that is 489bp long and contains 6 

CpGs (hg19 chr21:36421467-36421955) was found to be hypermethylated in close 

proximity to this gene. Finally, 1 CpG site (cg13030790), which was hypomethylated in 

OA baboon cartilage, was identical between this study and human OA studies. 
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Conversely, in bone, no DMPs or DMRs were found between healthy and OA individuals 

(APPENDIX Q). 

 

 

Figure 19. Methylation Levels Across TBX4 in Healthy and OA Baboon Cartilage. 

Plot of the methylation levels of significant DMPs across the TBX4 gene (hg19 

chr17:59529134-59562471). Plot shows the average β values for each DMP with error 

bars indicating 1 standard deviation in each direction for each comparative group (red = 

OA baboon cartilage, black = healthy baboon cartilage). DMP chromosomal position in 

relation to the TBX4 gene is also depicted. TBX4 in baboon cartilage displays similar OA 

hypermethylation patterns as those observed in humans (Alvarez-Garcia et al. 2016; 

Fernández-Tajes et al. 2014). In baboon cartilage, out of the 24 CpG sites associated with 

TBX4 that were examined, 8 DMPs were identified. All of these were hypermethylated in 

OA, and 1 had a Δβ ≥ 0.1 (highlighted in yellow). Additionally, 2 DMRs were identified 

in close proximity to this gene – one that is 1880bp long and contains 5 CpG sites (hg19 
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chr17:59533844-59535723) and one that is 259bp long and contains 2 CpGs (hg19 

chr17:59532306-59532564). Conversely, in bone, no DMPs or DMRs were found 

between healthy and OA individuals. See Appendix Q for additional information. 

 

 

Figure 20. Methylation Levels Across HOXD8 in Healthy and OA Baboon Cartilage. 

Plot of the methylation levels of significant DMPs across the HOXD8 gene (hg19 chr2: 

176994422-176997423). Plot shows the average β values for each DMP with error bars 

indicating 1 standard deviation in each direction for each comparative group (red = OA 

baboon cartilage, black = healthy baboon cartilage). DMP chromosomal position in 

relation to the HOXD8 gene is also depicted. HOXD8 in baboon cartilage is 

hypomethylated in OA as opposed to the OA hypermethylation patterns which have been 

observed in humans (Alvarez-Garcia et al. 2016; Fernández-Tajes et al. 2014). In baboon 

cartilage, out of the 26 CpG sites associated with HOXD8 that were examined, 6 DMPs 

were identified. All of these were hypomethylated in OA, and all had Δβ ≥ 0.1. 
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Additionally, 2 DMRs were identified in close proximity to this gene – one that is 753bp 

long and contains 3 CpGs (hg19 chr2:176993089-176993841) and one that is 730bp long 

and contains 2 CpGs (hg19 chr2:176995556-176996285). Conversely, OA methylation 

patterns in baboon bone match those observed in humans. See Appendix Q for additional 

information. 

 

 

Figure 21. Methylation Levels Across LEPR in Healthy and OA Baboon Cartilage. 

Plot of the methylation levels of significant DMPs across the LEPR gene (hg19 

chr1:65886335-66103176). Plot shows the average β values for each DMP with error 

bars indicating 1 standard deviation in each direction for each comparative group (red = 

OA baboon cartilage, black = healthy baboon cartilage). DMP chromosomal position in 

relation to the LEPR gene is also depicted. LEPR in baboon cartilage displays OA 

hypermethylation which opposes the OA hypomethylation patterns observed in humans 

(Aref-Eshghi et al. 2015). In baboon cartilage, out of the 20 CpG sites associated with 
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LEPR that were examined, 3 DMPs were identified. All of these were hypermethylated, 

and 1 had Δβ ≥ 0.1. Similarly, in baboon bone, 1 DMP was identified which is also 

hypermethylated in OA. No DMRs were identified in close proximity to this gene for 

baboon cartilage or bone. See Appendix Q for additional information. 

 

 

Figure 22. Methylation Levels Across RUNX1 in Healthy and OA Baboon Cartilage. 

Plot of the methylation levels of significant DMPs across the RUNX1 gene (hg19 

chr21:36160098-36421595). Plot shows the average β values for each DMP with error 

bars indicating 1 standard deviation in each direction for each comparative group (red = 

OA baboon cartilage, black = healthy baboon cartilage). DMP chromosomal position in 

relation to the RUNX1 gene is also depicted. RUNX1 in baboon cartilage displays a 

mixture of OA hypo- and hyper-methylation patterns which opposes the OA 

hypomethylation patterns observed in humans (Alvarez-Garcia et al. 2016; Fernández-

Tajes et al. 2014). In baboon cartilage, out of the 60 CpG sites associated with RUNX1 

that were examined, 16 DMPs were identified of which 9 were hypomethylated and 7 

were hypermethylated. Additionally, 6 of the hypomethylated DMPs had a Δβ ≥ 0.1, 
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while only 1 of the hypermethylated DMPs had a Δβ ≥ 0.1. Regarding DMRs, one that is 

1198bp long and contains 10 CpGs (hg19 chr21:36258497-36259694) was found to be 

hypomethylated in close proximity to this gene, and one that is 489bp long and contains 6 

CpGs (hg19 chr21:36421467-36421955) was found to be hypermethylated in close 

proximity to this gene. Finally, 1 CpG site (cg13030790), which was hypomethylated in 

OA baboon cartilage, was identical between this study and human OA studies. 

Conversely, in bone, no DMPs or DMRs were found between healthy and OA 

individuals. See Appendix Q for additional information. 

 

Discussion 

Here, I identified DNA methylation variation in femoral bone and cartilage tissues 

from a baboon model of OA. This was done in order to assess the evolutionary 

conservation of epigenetic-OA associations in the primate lineage. 

Using in silico probe filtering methods (Hernando-Herraez et al. 2013; Ong et al. 

2014), I found that 24% of all human probes on the EPIC array reliably mapped to the 

baboon genome, contained a CpG locus, and met specific alignment filter criteria (Figure 

9). This proportion was slightly lower than expected based on the previous findings of 

27% retention for the 450K array (see Chapter 2). This discrepancy may be due to the 

altered design of the EPIC array as compared to the 450K array and to the quality of the 

baboon genome assembly. 

Specifically, the EPIC array assays 866,837 probes, while the 450K array assays 

485,512 probes. Approximately 90% of the probes on the 450K array are identical to 

those on the EPIC array, and the remaining EPIC array probes target CpGs in enhancer 
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regions. Fittingly, 60% of the retained probes in this EPIC array study are identical to 

those retained in the 450K array study, and the remaining 40% of retained probes only 

exist on the EPIC array. Additionally, those probes retained in the 450K array study but 

not in this EPIC array study were not retained because they are not included on the EPIC 

array. Finally, the relatively small number of retained probes targeting CpGs in enhancer 

regions may be due to the baboon genome assembly quality. While the baboon genome is 

well annotated, the average scaffold length (528,927) and contig length (40,262) are 

relatively low compared to other primates. Thus, sequence information for enhancer 

regions in baboons may not be as deeply covered as that for humans. 

Despite this proportional discrepancy, the retained EPIC array probes maintained 

a wide distribution throughout the genome (APPENDIX H), had hybridization 

efficiencies significantly correlated with the alignment quality of each probe to the 

baboon genome (APPENDIX I), and predominantly passed quality controls to produce 

robust signals on the array (Figure 10). Thus, the quality of the retained EPIC array 

probes is comparable to previous findings for the 450K array (see Chapter 2). 

The final set of filtered EPIC array probes for the baboon model of OA was then 

used to assess the evolutionary conservation of epigenetic-OA associations in the primate 

lineage. To do this, I identified significant DMPs between healthy and OA individuals in 

bone and cartilage tissues. I also looked for DMPs between tissue types and between all 

four combinations of disease state and tissue type (healthy cartilage vs. OA cartilage vs. 

healthy bone vs. OA bone). 

 DMPs were identified in all of these comparative groups, with more DMPs found 

between tissue types than between disease states and more disease state DMPs found in 
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cartilage samples than in bone samples (65% of sites significant in healthy bone vs. 

healthy cartilage, 61% of sites significant in OA bone vs. OA cartilage, 0.2% of sites 

significant in OA bone vs. healthy bone, and 11% of sites significant in OA cartilage vs. 

healthy cartilage). Many of these significant DMPs had biologically insignificant changes 

in mean methylation between comparative groups, so only those with at least a 10% 

change (Δβ ≥ 0.1) were considered further. This greatly reduced the overall number of 

DMPs considered but did not substantially affect the proportional trends observed 

between tissue types and disease states in relation to one another (25% of sites significant 

in healthy bone vs. healthy cartilage, 25% of sites significant in OA bone vs. OA 

cartilage, 0.02% of sites significant in OA bone vs. healthy bone, and 2% of sites 

significant in OA cartilage vs. healthy cartilage). 

Regardless of whether the Δβ cutoff was used or not, the current baboon OA 

study identified substantially more DMPs than previous investigations of baboon OA 

using the 450K array (see Chapter 2). This is likely due to the increased sample size of 

the current study, as the number of actual sites examined was comparable between 

studies. Because of this increase in DMPs, subsequent analyses of significant DMRs were 

able to be performed. The number of DMRs identified between tissue types and disease 

states showed trends similar to those for DMPs, and the genes associated with these 

DMRs overlapped with those associated with DMPs (Table 6). These findings further 

confirm the results of the DMP analyses and their functional implications. 

The epigenetic profiles of different tissue types were split such that a little more 

than half of the significant DMPs with Δβ ≥ 0.1 were hypermethylated in bone as 

compared to cartilage and the remaining DMPs were hypomethylated in bone as 
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compared to cartilage (Table 5). This pattern clearly distinguishes bone from cartilage 

(Figure 13, Figure 14) and was identical for baboons with healthy skeletal tissues and 

baboons with OA (Figure 17), which implies that the regulatory functions of this 

differential methylation between tissues were similar regardless of disease state. The 

predominant functions of genes associated with these DMPs included multicellular 

organismal process, developmental process, biological adhesion, cell adhesion, cell 

communication, signaling, and nervous system development (Figure 16). Excluding 

nervous system development, these biological processes seem appropriate given the roles 

of bone and cartilage in the development and maintenance of the skeleton. Nervous 

system development may simply be due to the methods used in this study, which reduced 

functional categories into large overarching groups. This interpretation is supported by 

the fact that this biological process encapsulates functions such as skeletal system 

development and regulation of ossification, which seem appropriate given the roles of 

bone and cartilage in the development and maintenance of the skeleton. Nevertheless, this 

function may also be a byproduct of the collected tissues’ cellular heterogeneity. 

Regardless, the functional associations with tissue type differential methylation are 

almost identical between healthy baboons and OA baboons (Figure 17). 

Comparable numbers and associated functions of significant DMPs between 

healthy bone vs. healthy cartilage and between OA bone vs. OA cartilage indicates that 

these tissues retain distinct epigenetic profiles regardless of their disease state. 

Maintaining a distinct epigenetic profile seems likely in healthy bone and cartilage as 

these tissues have distinct functions within the skeletal system. However, looking at the 

physical manifestation of OA, it may appear that degraded cartilage and bone blend to 
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become almost one pathological tissue type (Figure 1). If this was indeed the case, then 

the epigenetic profiles of OA bone and OA cartilage should look more similar than those 

between healthy bone and healthy cartilage. However, this was not found. Thus, although 

there appear to be distinct epigenetic alterations between disease states within bone and 

cartilage, these alterations are tissue-specific and do not make degraded OA bone and 

cartilage appear more like each other than unlike each other. 

As stated, the epigenetic profiles of different disease statuses were more 

complicated than those of different tissues. In both bone and cartilage tissues a little more 

than half of the significant DMPs with Δβ ≥ 0.1 for each were hypomethylated in OA 

baboons as compared to healthy baboon and the remaining DMPs were hypermethylated 

OA baboons as compared to healthy baboons (Table 5). However, while this pattern 

readily distinguishes OA baboons from healthy baboons in cartilage, this pattern does not 

successfully differentiation OA baboons from healthy baboons in bone (Figure 13, Figure 

14). Superficially, this difference is due to the substantially more disease related DMPs 

identified in cartilage than in bone. However, this difference in numbers of DMPs may 

have etiological implication. For instance, it suggests that cartilage epigenetics may have 

a more influential role in the development of OA than does bone epigenetics. This 

finding is reinforced by several human OA studies (Alvarez-Garcia et al. 2016; Aref-

Eshghi et al. 2015; Fernández-Tajes et al. 2014; Jeffries et al. 2016; Moazedi-Fuerst et al. 

2014; Ramos et al. 2014; Rushton et al. 2014a). On the other hand, it may simply be an 

artifact of bone tissue being more heterogeneous than cartilage tissue, and thus, less able 

for OA epigenetic signals to be isolated using the methods performed in this study. 
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Moreover, the disease related DMPs identified in bone and cartilage barely 

overlap (Figure 18), which indicates that the regulatory functions of the differential 

methylation between disease states is distinct between tissues. Too few DMPs were 

found between OA and healthy bone tissues to identify significantly enriched biological 

processes, but some general functions identified included fibroblast apoptotic function, 

calcium mediated signaling, and calcium ion transport. Conversely, several gene 

functions were enriched between OA and healthy cartilage, the predominant being 

multicellular organismal process, developmental process, tissue development, positive 

regulation of biological process, positive regulation of cellular process, regulation of 

transcription from RNA polymerase II promotor, and ossification (Figure 16). These 

functional differences are consistent given that the locations and amounts of differential 

methylation between healthy and OA individuals are very different in bone versus 

cartilage. However, in spite of these functional differences, the molecular pathways 

associated with differential methylation are similar, with those identified in bone 

completely subsumed by those identified in cartilage (Figure 18). This suggests that 

while the proximal changes in methylation and their downstream functional impacts 

associated with the development of OA are different in each tissue, the pathways 

connecting these are somewhat similar across tissues. 

Overall, these disease-related differential methylated findings indicate that 

cartilage epigenetics may have a more influential role in the pathogenesis of OA than 

does bone epigenetics, which is reinforced by previous findings in humans (Alvarez-

Garcia et al. 2016; Aref-Eshghi et al. 2015; Fernández-Tajes et al. 2014; Jeffries et al. 

2016; Moazedi-Fuerst et al. 2014; Ramos et al. 2014; Rushton et al. 2014a). If the 
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epigenetic profiles of both tissues do directly contribute to the development and 

progression of OA, they do so through differential methylation of different regions and 

the use of overlapping molecular pathways which together contribute to differential 

regulation of different biological processes. Overall, while these finding provide some 

additional insight into the etiology of OA, they do not completely resolve this issues. 

These disease related DMPs do provide further insight into the evolution of OA 

epigenetics, though. When compared with genes found to be differentially methylated in 

human OA studies (Alvarez-Garcia et al. 2016; Aref-Eshghi et al. 2015; Delgado-Calle et 

al. 2013; Fernández-Tajes et al. 2014; García-Ibarbia et al. 2013; Goldring and Marcu 

2012; Iliopoulos et al. 2008; Jeffries et al. 2016; Moazedi-Fuerst et al. 2014; Ramos et al. 

2014; Reynard et al. 2014; Rushton et al. 2014a; Saito et al. 2010), 197 genes found to be 

differentially methylated in healthy and OA baboons overlapped (Table 8). Additionally, 

144 genes previously identified as having differential methylation in human OA studies 

were not identified as being significantly differentially methylated with or without a Δβ ≥ 

0.1 cutoff in the current baboon OA study (APPENDIX Q). Of those genes that do 

overlap between humans and baboons, 43 have similar methylation patterns and 154 have 

alternative patterns (Table 7. Overlap of Differential Methylation Associations from 

Human and Baboon Osteoarthritis Studies.Table 7). Thus, some OA epigenetic patterns 

appear to be evolutionarily conserved between baboons and humans, while many show 

no evidence of conservation or display reversed signals. Specific examples of this 

variation in conservation are as follows. 

In some instances, the OA methylation patterns observed in baboons matched 

those observed in humans. For instance, TBX4 (Gene ID: 9496) displays similar OA 
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hypermethylation in human cartilage (Alvarez-Garcia et al. 2016; Fernández-Tajes et al. 

2014) and baboon cartilage (Figure 19). TBX4, also known as T-box-4, codes for a 

transcription factor that regulates developmental processes of the lower limbs (Simon 

1999). Mutations of this gene in humans have resulted in skeletal pathologies in the joints 

associated with the femoral bone (Bongers et al. 2004; K. Wang et al. 2010). These same 

areas of the leg, specifically the knee joint and hip joint, are also the predominant areas of 

OA development in humans (Cross et al. 2014; Cushnaghan and Dieppe 1991). 

Therefore, less severe alterations of the epigenetic profile of TBX4 which may affect the 

regulation of this gene’s expression may be mechanistically involved in the chronic 

pathogenesis of OA as evidenced by the increase in methylation of this gene in both OA 

humans and OA baboons. Additionally, since TBX4 is involved in hindlimb specification 

and development, changes in methylation across this gene early during life may impact 

these functions and ultimately predispose an individual to OA. Furthermore, the findings 

of this study suggest that this OA methylation candidate gene and its pattern of 

susceptibility appear to be evolutionarily conserved within the primate lineage. 

In other cases, the OA methylation patterns observed in one baboon tissue 

matched those observed in humans, but the OA methylation patterns observed in the 

other baboon tissue were opposite to those observed in humans. An example of this is 

HOXD8 (Gene ID: 3234), which displays similar OA hypermethylation patterns in 

humans (Delgado-Calle et al. 2013) and baboon bone but opposing OA methylation 

patterns in baboon cartilage (Figure 20). HOXD8, also known as homeobox D8, codes for 

a transcription factors that regulates morphogenesis primarily of the lower limb, as 

evidenced by the lower limb malformations that result from mutations in this gene 



  80 

(Goodman 2002; Del Campo et al. 1999). Therefore, similar to TBX4, less severe 

alterations of the epigenetic profile of HOXD8 which may affect the regulation of this 

gene’s expression may be mechanistically involved in the chronic pathogenesis of OA. 

This is supported by the differential methylation of this gene in both OA humans and OA 

baboons. In baboons, OA bone was found to be hypermethylated which is comparable to 

previous findings in humans (Delgado-Calle et al. 2013), while OA cartilage was found 

to be hypomethylated. This discrepancy suggests that the evolution of these OA 

epigenetic profiles may not be conserved. However, the differential methylation observed 

in humans was identified in bone tissues. Therefore, the susceptibility patterns in bone 

tissues may be evolutionarily conserved. Conversely, differential methylation of HOXD8 

has not been identified in human cartilage. This absence of findings in human cartilage 

may be due to the fact that many studies of human cartilage compare degraded and non-

degraded cartilage within the same OA joint (Jeffries et al. 2016; Moazedi-Fuerst et al. 

2014) as oppose to cartilage from OA versus healthy joint or evaluate healthy cartilage of 

the hip joint (Aref-Eshghi et al. 2015; Rushton et al. 2014b) as opposed to healthy 

cartilage of the knee joint. Thus, the susceptibility patterns in baboon cartilage tissues 

may also exist in human cartilage but have not been identified yet, or they might be 

isolated to baboons and not evolutionarily conserved. 

Additionally, for some genes, the OA methylation patterns observed in both 

baboon tissues were opposite to those observed in humans. This is true for the gene LEPR 

(Gene ID: 3953), which displays opposing OA methylation patterns between humans 

with hypomethylation (Aref-Eshghi et al. 2015) and baboons with hypermethylated 

(Figure 21). LEPR, also known as leptin receptor, codes for a protein receptor that binds 
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and mediates the functions of leptin, a hormone that regulates signaling pathways 

involved in fat metabolisms, immune and inflammatory responses, and wound healing. 

The upregulation of LEPR is associated with osteogenic cell differentiation (Niu et al. 

2015), and the release of leptin from human osteoblasts promotes bone mineralization via 

its interaction with LEPR (Enjuanes et al. 2002; Iwamoto et al. 2004). This gene’s role in 

skeletal development and maintenance is further evidenced by studies that found 

alteration in the leptin pathway associated with low bone density skeletal disorders like 

osteoporosis (Crabbe et al. 2006; Fairbrother et al. 2007; H. J. Lee et al. 2014; Kim et al. 

2008; Tam et al. 2014; Ye and Lu 2013). Moreover, altered regulation of the leptin 

signaling pathway has been observed in rheumatoid arthritis (Gómez-Bañuelos et al. 

2015) and osteoarthritis (Simopoulou et al. 2007; Aref-Eshghi et al. 2015). Thus, 

differential regulation of LEPR as mediated by alterations in this gene’s epigenetic profile 

may be mechanistically involved in the chronic pathogenesis of OA. Furthermore, 

mutations in LEPR have been associated with obesity (Becer et al. 2013; de Luis et al. 

2013; Kimber et al. 2008; Répásy et al. 2014), and the risk of developing OA is higher in 

obese individuals than non-obese individuals (Cooper et al. 2000). While this alternative 

pathway through which LEPR regulation can influences OA susceptibility may be 

important in humans, it does not seem as relevant for the baboons included in this study, 

as the steady state weights of OA and healthy individuals were comparable (APPENDIX 

G). Regardless, the multifactorial pathways through which LEPR may impact OA 

development and progression may explain why the epigenetic profiles of this gene are not 

evolutionary conserved, and actually show opposite hypomethylation and 

hypermethylation signals, between humans and baboons. 
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Lastly, differentially methylated genes that overlapped between humans and 

baboons could sometimes show a specific pattern in humans but a mixture of signals in 

baboons. For example, RUNX1 (Gene ID: 861) displays opposing OA methylation 

patterns between humans with hypomethylation (Alvarez-Garcia et al. 2016; Fernández-

Tajes et al. 2014) and baboon cartilage with a mixture of hypo- and hyper-methylated 

sites (Figure 22). RUNX1, also known as runt related transcription factor 1, is involved in 

the regulation of bone and cartilage cell development and differentiation (Stein et al. 

2004). In addition to its association with osteoarthritis, polymorphisms in RUNX1 show 

variable effects on the development of rheumatoid arthritis (Y. H. Lee et al. 2015, 22; 

Martínez et al. 2006; Okada et al. 2014; Orozco et al. 2006, 22; Takata et al. 2008). 

Given this gene’s known functions and its previous associations with skeletal disorders, it 

seems reasonable that changes to RUNX1’s epigenetic profile may affect the regulation of 

this gene and contribute to the chronic pathogenesis of OA in both humans and baboons. 

This idea is further supported by previous findings that one site associated with this gene 

was identified as being significantly hypomethylated in baboon OA cartilage as 

compared to healthy OA cartilage (see Chapter 2). Moreover, these comparable results 

provide evidence for the consistency of using methylation arrays to detect differential 

methylation levels in baboons. When comparing these baboon methylation patterns to 

those previously identified in humans, though, this OA methylation candidate gene and 

its pattern of susceptibility do not appear to be evolutionarily conserved within the 

primate lineage. 

Overall, these findings indicate that some DNA methylation patterns associated 

with OA are evolutionarily conserved between humans and baboons, while others are not. 
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Species differences in OA epigenetics may be due to general speciation events that took 

place during the evolution of these taxonomic groups, to slight differences in the 

development or manifestation of OA in these species, or artifacts of the experimental 

design of this study or human OA studies. For instance, although the present baboon 

study increased the sample size and representation of both sexes as compared to a 

previous investigation of baboon OA epigenetics (see Chapter 2), the sample size was 

still lower than some human OA studies (n=117) (Rushton et al. 2014a). This smaller 

number of individuals may have reduced my power to detect potentially important OA 

related variants, which may explain why fewer OA candidate methylation genes were 

identified in baboons than humans. However, many human OA studies have comparable 

sample sizes to the current baboon study (n=21, n=18, n=53, n=45, n=30, n=12, n=15, 

n=33, respectively) (Alvarez-Garcia et al. 2016; Aref-Eshghi et al. 2015; Delgado-Calle 

et al. 2013; Fernández-Tajes et al. 2014; García-Ibarbia et al. 2013; Jeffries et al. 2016; 

Moazedi-Fuerst et al. 2014; Ramos et al. 2014). Thus, in order to identify candidate 

epigenetic alterations that underlie variation in knee OA better, even larger sample sets of 

both baboons and humans that possibly only focus on the epigenetics of cartilage tissues 

should be considered. 

Additionally, the current study only evaluated one population of baboons; 

whereas, the list of OA candidate methylation genes considered came from several 

studies of OA in different populations of humans (Alvarez-Garcia et al. 2016; Aref-

Eshghi et al. 2015; Delgado-Calle et al. 2013; Fernández-Tajes et al. 2014; García-

Ibarbia et al. 2013; Goldring and Marcu 2012; Iliopoulos et al. 2008; Jeffries et al. 2016; 

Moazedi-Fuerst et al. 2014; Ramos et al. 2014; Reynard et al. 2014; Rushton et al. 2014a; 
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Saito et al. 2010). This may have preferentially biased my human gene list to have more 

than could be identified in any one population. In order to account for this, a replicate 

study of OA epigenetics should be done in baboons to determine if this additional 

replicate alters the results. 

Lastly, this baboon study used a stringent DMP cutoff threshold that limited the 

resulting genes to only those that were associated with DMPs having an average change 

in mean methylation between comparative groups greater than or equal to 10%. This was 

as a precaution against including sites that likely had little biological relevance 

(Hernando-Herraez et al. 2013). However, while some human OA studies enforce 

comparable thresholds (Alvarez-Garcia et al. 2016; Aref-Eshghi et al. 2015; Jeffries et al. 

2016; Rushton et al. 2014b), some do not (Delgado-Calle et al. 2013; Ramos et al. 2014; 

Reynard et al. 2014). Therefore, many genes previously classified as being differentially 

methylated in human OA may be false positives. Until further work to identify the 

mechanisms through which OA develops and progresses is done in humans or other 

model systems, the validity of currently known OA candidate methylation genes will 

remain unknown.  

Regardless of these potential confounding factors, using baboons as a model of 

OA in this study has begun to clarify the etiology of this disorder and the evolutionary 

conservation of epigenetic mechanisms associated with this disorder. This is the first 

study to specifically assess DNA methylation in skeletal tissues from a nonhuman 

primate using the EPIC array and serves as a follow up to a previous study using the 

450K array (see Chapter 2). In conclusion, from an evolutionary perspective, the findings 

of this study inform our understanding of DNA methylation variation in one species and 
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in two skeletal tissues, as well as the degree to which the common skeletal condition of 

OA affects this variation. These findings warrant further investigation in a larger and 

more phylogenetically diverse sample set, and future research in this baboon model of 

OA will help provide insight into the pathogenesis of OA. 
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CHAPTER 4 

AN EVOLUTIONARY PERSPECTIVE OF DNA METHYLATION ASSOCIATED 

WITH AGE WITHING THE PRIMATE LINEAGE 

 

Abstract 

Aging is thought to be a developmentally regulated process that is controlled by 

epigenetic mechanisms, such as DNA methylation. Methylation patterns throughout the 

genome show distinct changes with age in humans. However, the evolution of age 

epigenetics and the degree to which epigenetic signatures of aging are conserved between 

species has not readily been explored. Here, I examine the evolution of aging epigenetics 

specifically within the primate lineage by identifying age-related DNA methylation 

pattern in baboons (Papio spp.) and by comparing these findings to what is known in 

humans. Genome-wide DNA methylation patterns were identified in femoral trabecular 

bone from 46 pedigreed baboons, 28 that were adults and 18 that were juveniles using the 

Illumina Infinium MethylationEPIC BeadChip (EPIC array). Several significantly 

differentially methylated positions (DMPs) were found between these age cohorts, and 

similar to other animals, adult baboons display global hypomethylation as compared to 

juvenile baboons. The significant age-related DMPs identified are associated with genes 

involved in developmental processes and pathways related to the progression of diseases 

of aging. Additionally, while some of these age-related DMPs overlap with and display 

methylation patterns similar to those previously identified in human aging studies, the 

majority of previously identified age-related methylation loci in humans were not 

significantly differentially methylated in baboons. Nevertheless, methylation levels at 
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these human loci are still able to differentiate baboon age cohorts. Overall, these results 

reveal how DNA methylation varies with respect to age in skeletal tissues from one 

primate species and provide insight into the evolutionary conservation of aging 

epigenetics within the primate lineage. 

 

Key Words 

Aging, DNA methylation, evolution, epigenome, bone, baboon 

 

Introduction 

The physical effects of aging are apparent across a wide range of tissues. Over the 

course of aging, the dermis loses its elasticity, hair loses its pigmentation and thins, bones 

become brittle, muscles weaken, blood vessels stiffen, injured tissue regeneration slows, 

and the capacity of the immune system to protect against infections and cancers 

deteriorates (Ryu et al. 2008; Van Neste and Tobin 2004; Ho et al. 2005). This general 

senescence, which is present across several different tissues, may be the result of similar 

underlying molecular mechanisms (Koch and Wagner 2011). 

While the accumulation of DNA damage and the shortening of telomeres have 

been associated with senescence, epigenetic modifications such as DNA methylation also 

have a role in this developmentally regulated process (Campisi and Vijg 2009; 

Christensen et al. 2009; Fraga and Esteller 2007; Gonzalo 2010; Koch et al. 2011; Koch 

and Wagner 2011; Maegawa et al. 2010; Marciniak-Czochra et al. 2009; Martino et al. 

2011; Mugatroyd et al. 2010; Oberdoerffer and Sinclair 2007; Rakyan et al. 2010; 

Schellenberg et al. 2011; D. L. Thompson et al. 1998). The involvement of DNA 
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methylation changes within germline cells, during infancy, and throughout adolescence 

further supports this idea (McCartney et al. 2016; Massart et al. 2016). 

Among several species, genome-wide DNA hypomethylation has been associated 

with aging (Berdyshev et al. 1967; Vanyushin et al. 1973; Wilson et al. 1987). 

Simultaneously, at a finer resolution, certain regions of the genome become 

hypermethylated with age while others become hypomethylated with age (J. T. Bell et al. 

2012; Bollati et al. 2009; Christensen et al. 2009; Fraga et al. 2007; Fraga and Esteller 

2007; Horvath et al. 2012; Mugatroyd et al. 2010; Rakyan and Beck 2006; Rodríguez-

Rodero et al. 2010; Teschendorff et al. 2010). Initial discoveries of age-related DNA 

methylation changes showed tissue-specific patterns (Christensen et al. 2009; R. F. 

Thompson et al. 2010). Specifically, age-associated changes were identified in 

mesenchymal stem cells and fibroblasts (Koch et al. 2011; Bork et al. 2010; Wagner et al. 

2010), tissues of the dermis and epidermis (Grönniger et al. 2010), blood (Rakyan et al. 

2010; Y. Chen et al. 2011), cord blood (Bocker et al. 2011; Adkins et al. 2011), cervical 

smears (Teschendorff et al. 2010), and saliva (Bocklandt et al. 2011), and these tissue-

specific methylation profiles were highly reproducible (Maegawa et al. 2010; R. F. 

Thompson et al. 2010). 

When the results of tissue-specific studies were examined together, some 

differential methylation patterns overlapped between tissue types and were found to be 

independent of sex, disease state, and methylation array platform (J. T. Bell et al. 2012; 

Bocklandt et al. 2011; Hernandez et al. 2011; Horvath et al. 2012; Koch and Wagner 

2011; Numata et al. 2012; Rakyan et al. 2010; Teschendorff et al. 2010). These findings 

prompted the curation of CpG sites with tissue-independent, age-related DNA 
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methylation changes for use in predicting individuals’ ages (Koch and Wagner 2011; 

Horvath 2013). An early study determined that 5 CpG sites could successfully estimate 

donor age (Koch and Wagner 2011). Four of these sites are hypermethylated with age 

(TRIM58 - cg07533148, KCNQ1DN - cg01530101, NPTX2 - cg1279989, GRIA2 - 

cg25148589), and one is hypomethylated with age (BIRC4BP - cg23571857). A more 

recent study expanded on this set to include over 300 CpG sites that have a mixture of 

age-related hypomethylation and hypermethylation (Horvath 2013). The cumulative 

effect of methylation levels across these loci serves as a robust estimator of age, 

regardless of tissue type, in both young and old individuals (Bocklandt et al. 2011; 

Hannum et al. 2013; Horvath 2013; Lin et al. 2016; Spiers et al. 2015; Walker et al. 

2015). Additionally, methylation at these more than 300 CpG sites can predict all-cause 

mortality (Marioni, Shah, McRae, Chen, et al. 2015; B. H. Chen et al. 2016), correlate 

with mental and physical fitness levels of older individuals (Marioni, Shah, McRae, 

Ritchie, et al. 2015; Levine et al. 2015), and associate with several diseases and 

conditions of aging (Horvath 2013; Horvath et al. 2014; Horvath, Garagnani, et al. 2015; 

Horvath, Mah, et al. 2015; Horvath and Levine 2015; Horvath and Ritz 2015; Horvath et 

al. 2016; Levine et al. 2015; Lowe et al. 2016). 

Overall, although these methylation profiles aim to predict chronological age, 

they actually only define an epigenetic age. While epigenetic age often approximates 

chronological age, exceptions to this relationship have been observed. Thus, 

chronological age-matched individuals can have different epigenetic ages. Older 

epigenetic ages than expected have been associated with an increased risk for death from 

all causes (Marioni, Shah, McRae, Chen, et al. 2015; Christiansen et al. 2016; Perna et al. 



  90 

2016), and younger epigenetic ages than expected have been associated with semi-

supercentenarians, or individuals who lived to be at least 105-109 years of age (Marioni, 

Shah, McRae, Chen, et al. 2015). This discrepancy between chronological age and 

epigenetic age may provide insights into the susceptibilities of certain individuals to early 

senescence and diseases of aging. Indeed, the epigenetics of aging has already begun to 

inform our understanding of chronic disease epigenetics (C. G. Bell et al. 2016), and as 

such, understanding aging epigenetics more fully is crucial for these continued efforts. 

One aspect of this field that has not readily been explored yet is how evolution 

has impacted aging processes and mechanisms. Most aging epigenetics research has been 

conducted in humans, which hinders our ability to take an evolutionary perspective. 

While global hypomethylation with aging appears to be evolutionarily conserved across 

several species (Berdyshev et al. 1967; Vanyushin et al. 1973; Wilson et al. 1987), it is 

unknown how other epigenetic signatures of aging have changed throughout animal 

evolution. Here, I begin to explore the evolution of aging epigenetics within the primate 

lineage by examining these patterns in one nonhuman primate and relating them to what 

is known for humans. 

Specifically, for this study, I explored the evolution of aging epigenetics by 

identifying DNA methylation patterns in femoral trabecular bone from 46 pedigreed 

baboons, 28 that were adults and 18 that were juveniles, and assessing whether DNA 

methylation variation is associated with aging in baboons and in a manner similar to that 

observed in humans. 
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Methods 

Ethics Statement 

Nonhuman primate tissue samples included were opportunistically collected at 

routine necropsy of these animals. No animals were sacrificed for this study, and no 

living animals were used in this study. 

 

Nonhuman Primate Samples 

Baboon (Papio spp.) samples come from captive colonies at the Southwest 

National Primate Research Center in the Texas Biomedical Research Institute. These 

animals have a tracked pedigree, which denotes the genetic relationships among all 

individuals. 

Femora were opportunistically collected at routine necropsy of these animals and 

stored in -20°C freezers at the Texas Biomedical Research Institute after dissection. 

These preparation and storage conditions ensured the preservation of skeletal DNA 

methylation patterns. 

Samples include adult (n=28) and juvenile (n=18) baboons with no observable 

pathologies of the distal femur articular surface, and both sexes are represented (Figure 

23, APPENDIX S). Adults are classified as sexually mature individuals, and juveniles are 

classified as sexually immature individuals. Thus, the ages of adults and juveniles 

included in this study fall outside the range of ages at which baboons go through puberty 

and reach sexual maturity (4-9 years) (Cawthon Lang, 2006). 
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Figure 23. Baboon Sample Set Ages for EPIC Array Aging Study. 

Box depicts the average age and one standard deviation, and whiskers depict the full 

range of ages. Healthy adult baboons (n=28) are 16.90±5.02 years, and healthy juvenile 

(n=18) are 0.85±0.63 years. 

 

DNA Extraction 

DNA was extracted from femoral trabecular bone using a phenol-chloroform 

protocol optimized for skeletal tissues (Barnett and Larson 2012). From the distal femoral 

condyles, trabecular bone was collected using coring devices and pulverized into bone 

dust using a SPEX SamplePrep Freezer/Mill. Specifically, bone cores were obtained from 

a transverse plane through the center of the medial condyle on the right distal femur, such 

that the articular surface remained preserved. Cortical bone was removed from these 

cores using a Dremel. 

Cartilage methylation patterns are known to vary between joints and between 

different sites within a joint (den Hollander et al. 2014; Jeffries et al. 2016; Loughlin and 

Reynard 2015; Moazedi-Fuerst et al. 2014; Rushton et al. 2014b). Although similar 

studies of bone methylation patterns have not been conducted yet, the number and types 

of cells, and therefore epigenetic signatures, are expected to vary across different portions 



  93 

of the femur. Thus, tissues were collected from the same portion of the femur in order to 

minimize this variation between samples and comparative groups. 

 

Genome-Wide DNA Methylation Profiling 

Genome-wide DNA methylation was assessed using Illumina Infinium 

MethylationEPIC microarrays (EPIC array). As previously described (see Chapter 3), 

these arrays analyze the methylation status of over 850,000 sites throughout the genome, 

covering over 90% of the sites on the Infinium HumanMethylation450 BeadChip as well 

as an additional 350,000 sites within enhancer regions. For each sample, 400ng of 

genomic DNA was bisulfite converted using the EZ DNA MethylationTM Gold Kit 

according to the manufacturer’s instructions (Zymo Research), with modifications 

described in the Infinium Methylation Assay Protocol. Following manufacturer 

guidelines (Illumina), this processed DNA was then whole-genome amplified, 

enzymatically fragmented, hybridized to the arrays, and imaged using the Illumina iScan 

system. The array data discussed here are available in APPENDIX R.  

 

Methylation Data Processing 

Raw fluorescent data were normalized to account for the noise inherent within 

and between the arrays themselves. Specifically, I performed a normal-exponential out-

of-band (Noob) background correction method with dye-bias normalization (Triche et al. 

2013) to adjust for background fluorescence and dye-based biases and followed this with 

a between-array normalization method (functional normalization) (Fortin et al. 2014), 

which removes unwanted variation by regressing out variability explained by the control 
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probes present on the array as implemented in the minfi package in R (Aryee et al. 2014; 

Fortin et al. 2016) that is part of the Bioconductor project (Huber et al. 2015). This 

method has been found to outperform other existing approaches for studies that compare 

conditions with known large-scale differences (Fortin et al. 2014), such as those assessed 

in this study. 

After normalization, methylation values (β values) for each site were calculated as 

the ratio of methylated probe signal intensity to the sum of both methylated and 

unmethylated probe signal intensities (Equation 1). These β values range from 0 to 1 and 

represent the average methylation levels at each site across the entire population of cells 

from which DNA was extracted (0 =completely unmethylated sites, 1 = fully methylated 

sites). 

Every β value in the Infinium platform is accompanied by a detection p-value, and 

those with failed detection levels (p-value > 0.05) in greater than 10% of samples were 

removed from downstream analyses. Additionally, samples in which more than 30% of 

the β value had a detection p-value > 0.05 were removed from downstream analyses. 

The probes on the arrays were designed to specifically hybridize with human 

DNA, so my use of nonhuman primate DNA required that probes non-specific to the 

baboon genome, which could produce biased methylation measurements, be 

computationally filtered out and excluded from downstream analyses. This was 

accomplished using methods modified from (Hernando-Herraez et al. 2013; Ong et al. 

2014). Briefly, I used blastn (Altschul et al. 1997) to map the 866,837 50bp probes onto 

the Papio anubis genome (Assembly: Panu_2.0, Accession: GCF_000264685.2) using an 

e-value threshold of e-10. I only retained probes that successfully mapped to the baboon 
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genome, had only 1 unique BLAST hit, targeted CpG sites, had 0 mismatches in 5bp 

closest to and including the CpG site, and had 0-2 mismatches in 45bp not including the 

CpG site. This filtering retained 209,802 probes. 

Additionally, β values associated with cross-reactive probes (McCartney et al. 

2016), probes containing SNPs at the CpG site, probes detecting SNP information, probes 

detecting methylation at non-CpG sites, and probes targeting sites within the sex 

chromosomes were removed using the minfi package in R (Aryee et al. 2014; Fortin et al. 

2016) (Figure 24). This filtering retained a final set of 191,631 probes. 

 

 

Figure 24. Normalized and Filtered Methylation Data for EPIC Array Baboon Aging 

Study. 

Density plots of β-values after normalization and probe filtering using the alignment 

criteria (A). Multidimensional scaling plots showing the first two principle components 

that describe genome-wide methylation variation after normalization and filtering using 
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the alignment criteria (B). Each point represents one sample that is either from an adult or 

a juvenile. 

 

Differential Methylation Analyses 

Because β values have high heteroscedasticity, they are not statistically valid for 

use in differential methylation analyses (Du et al. 2010). Thus, M values were calculated 

and used in these analyses instead (Equation 2). 

In order to identify sites that were significantly differentially methylated across 

comparative groups, I designed and tested generalized linear mixed models (GLMMs) 

which related the variables of interest to the DNA methylation patterns for each site, 

while accounting for the effects of additional variables, batch effects, and latent variables 

(Maksimovic et al. 2016). Sites found to have significant associations were classified as 

significantly differentially methylated positions (DMPs). 

Specifically, a GLMM was used to estimate differences in methylation levels 

between adult and juvenile baboons. Additional variables included in this GLMM were 

sex, known batch effects (e.g., array number and position), and unknown latent variables 

calculated using the iteratively re-weighted least squares approach in the sva package in 

R (Jaffe and Irizarry 2014; Jeffrey T. Leek et al. 2012; J. T. Leek and Storey 2008; 

Jeffrey T. Leek and Storey 2007). The 3 latent variables estimated were included to help 

mitigate any unknown batch and cell heterogeneity effects on methylation variation at 

each site. 

Alternative methods to account for cell heterogeneity exist, but they are specific 

to whole blood (Jaffe and Irizarry 2014; Morris and Beck 2015), require reference 
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epigenetic data, or are reference free methods (Houseman et al. 2014) that are 

comparable to the sva method (Kaushal et al. 2015). Out of the known cell types in 

skeletal tissues (Horvath, Mah, et al. 2015), only chondrocytes and osteoblasts have 

reference epigenomes available on the International Human Epigenomics Consortium, 

and these are only for humans, not nonhuman primates. Thus, because no standard 

method is available to correct for the heterogeneous cell structure in nonhuman primate 

skeletal tissue, I chose the described sva method. 

This GLMM design matrix (Equation 7) was fit to the M value array data by 

generalized least squares using the limma package in R (Ritchie et al. 2015; Phipson et al. 

2016; Huber et al. 2015), and the estimated coefficients and standard errors for the 

defined age cohort contrast were computed. Lastly, for each coefficient, an empirical 

Bayes approach (McCarthy and Smyth 2009; Lönnstedt and Speed 2002; Phipson et al. 

2016; Smyth 2004) was used to compute moderated t-statistics, log-odds ratios of 

differential methylation, and associated p-values adjusted for multiple testing (Benjamini 

and Hochberg 1995). Significant DMPs for the effect of age cohort contrasts were 

defined as those having log fold changes in M values corresponding to an adjusted p-

value of less than 0.05. 

In order to account for genetic relatedness, the coefficients of relatedness (phi2 = 

2 x kinship coefficients), or the expected proportions of alleles that are identical by 

descent between 2 individuals, were computed from a known pedigree using the kinship2 

package in R (Therneau et al. 2015). Following this, two new GLMMs were designed 

and tested using the lmekin function of the coxme package in R (Therneau 2015). The 

first GLMM regressed methylation levels (M values) against the age cohort contrast 
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effect while adjusting for other variables (sex, batch effects, latent variables) as fixed 

effects and kinship (phi2) as a random effect (Equation 8) (Zaghlool et al. 2015), and the 

second performed the same regression with the age cohort contrast effect removed 

(Equation 9). The log likelihoods of each model were then compared using a chi-square 

test to determine which model better explained the variation in methylation. For this test, 

the degrees of freedom were calculated as the absolute difference in the Akaike's 

information criteria for each model (Mazerolle 2016). When the model containing the age 

cohort contrast effect performed significantly better than the alternative model (p-value < 

0.05), this confirmed that the site remained a significant DMP for the effect of age cohort 

contrasts when adjusting for the added effects of kinship. Conversely, when the model 

containing the age cohort contrast effect did not perform better than the alternative model 

(p-value ≥ 0.05), this indicated that the site was not a significant DMP for the effect of 

age cohort contrasts when adjusting for the added effects of kinship. In this instance, this 

site was no longer considered a significant DMP. 

 

Equation 7: methylation ~ age cohort contrasts + sex + batch effects + latent variables 

Equation 8: methylation ~ age cohort contrasts + sex + batch effects + latent variables + 

kinship 

Equation 9: methylation ~ sex + batch effects + latent variables + kinship 

 

Lastly, I further examined significant DMPs that had at least a 10% change in 

mean methylation between comparative groups (Δβ ≥ 0.1), as these may have greater 

biological impact than others (Hernando-Herraez et al. 2013). The gene ontology and 

KEGG pathway enrichment for significant CpGs while taking into account the differing 
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number of probes per gene present on the array was determined using the missMethyl 

package in R (Geeleher et al. 2013; Young et al. 2010; Ritchie et al. 2015; Benjamini and 

Hochberg 1995). Significantly enriched (FDR < 0.05) GO biological processes were 

subsequently summarized using REViGO which removed redundant GO terms (retained 

only 50% of the full list of significant terms) and visualized the remaining terms in a 

semantic similarity-based scatterplot (Supek et al. 2011). Semantic similarity was 

calculated using the simRel score, which is a functional similarity measure that ranges 

from 0 for terms that have no similarity to 1 for terms with maximum similarity 

(Schlicker et al. 2006). 

In addition to DMPs, differentially methylated regions (DMRs) were also 

identified between each comparative group using the DMRcate package in R (Peters et al. 

2015; Wand and Jones 1994; Duong 2013). This method is only concerned with the 

spatial proximity of loci examined and is not biased by any annotations associated with 

these loci. For these analyses, the individual DMP t-statistics, which were derived by 

fitting the M value array data to a GLMM design matrix (Equation 7) by generalized 

least squares using the limma package in R (Ritchie et al. 2015; Phipson et al. 2016; 

Huber et al. 2015), were smoothed across each chromosome using a recommended 

Gaussian kernel bandwidth of 1000 base pairs with a scaling factor of 2. An expected 

value of this smoothed estimate with no experimental effects was also modelled using a 

Satterthwaite approximation (Satterthwaite 1946) in order to calculate a subsequent 

significance test for each DMP. A default threshold was then applied to p-values adjusted 

for multiple testing (Benjamini and Hochberg 1995) to identify FDR-corrected significant 

DMPs. Finally, these significant DMPs were agglomerated together into DMRs based on 
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chromosomal location and such that each DMR contained at least 2 CpG sites that were 

less than 1000 base pairs apart. 

 

Results 

The aim of this study was to use the EPIC array to identify DNA methylation 

patterns in femoral trabecular bone of baboons with varied ages, 28 adults and 18 

juveniles. In order to do this, I first assessed the effectiveness of the EPIC array in 

identifying DNA methylation patterns in baboon DNA. 

 

Alignment of EPIC Array Probes with the Baboon Genome 

Similar to the methods in Chapter 3, probes from the EPIC array were aligned to 

the baboon genome using methods modified from (Hernando-Herraez et al. 2013; Ong et 

al. 2014) (APPENDIX A). Out of the 866,837 50bp probes on the array, 209,802 probes 

map to the baboon genome with e-values less than e-10, have only unique BLAST hits, 

target a CpG site, and meet the described alignment filter criteria (Figure 9). These 

probes covered approximately 23,446 genes with an average coverage of 8 probes per 

gene. Additionally, the retained probes covered a range of locations with respect to genes 

and CpG islands (APPENDIX H), indicating that these filtered probes maintain a wide 

distribution throughout the genome. After filtering out cross-reactive probes (Y. Chen et 

al. 2013), probes containing SNPs at the CpG site, probes detecting SNP information, 

probes detecting methylation at non-CpG sites, and probes targeting sites within the sex 

chromosomes, a final set of 191,631 probes were retained for downstream analyses. 
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Effectiveness of EPIC Array Probes using Baboon DNA 

To determine how effectively the EPIC array probes measured DNA methylation 

in baboon DNA, I performed Spearman correlation tests between the hybridization 

efficiency of each probe and parameters defining the alignment quality of each probe to 

the baboon genome. Specifically, both probe alignment bitscores and percent identity 

were significantly negatively correlated with probe hybridization efficiency, and probe 

alignment e-values were significantly positively correlated with probe hybridization 

efficiency, regardless of filtering criteria (APPENDIX T). Additionally, filtered probes 

retained a large proportion of successfully hybridized probes (Figure 25). 

 

 

Figure 25. Hybridization Efficiencies of EPIC Array Probes Retained for Baboon Aging 

Study. 

Histogram of alignment bitscores for EPIC array probes with detection p-values > 0.05 

(red) and < 0.05 (blue). These p-values were averaged across all samples, and probes 
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included meet the alignment filter criteria. For these probes 2,815 had detection p-values 

> 0.05, and 206,987 had detection p-values < 0.05. 

 

Differential Methylation and Aging 

Significant DMPs were interrogated from 191,631 sites and identified between 

age cohorts (adult vs. juvenile) (Figure 26, APPENDIX U). Accounting for kinship 

slightly reduced these DMP counts, and using a Δβ ≥ 0.1 threshold substantially 

decreased the final number of significant DMPs between adults and juveniles. However, 

these filters did not diminish the overall distribution of DMPs across a variety of 

functional genomic regions and proximities to CpG islands (APPENDIX V). Several 

significant DMRs were also identified between adults and juveniles, with patterns similar 

to those identified among DMPs (Table 9, APPENDIX W). 

The methylation patterns at significant DMPs with Δβ ≥ 0.1 generally distinguish 

adult baboons from juvenile baboons. For instance, more than half of all these DMPs are 

hypomethylated in adults as compared to juveniles (Table 10). Additionally, these DMPs 

are associated with several genes that have gene ontology (GO) biological processes 

predominantly involved in developmental functions (Figure 27, APPENDIX X) and 

KEGG pathway functions predominantly involved in development, maintenance, and the 

progression of diseases of aging (APPENDIX Y). Regardless of these unifying feature, 

the specific quantitative methylation level at each DMP do not separate adults and 

juveniles into distinct clusters (Figure 28). Rather, five female adult baboons (ages 11.19 

years, 28.66 years, 12.83 years, 10.96 years, and 11.64 years) cluster more closely with 

juvenile baboons than with other adults. 
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Figure 26. Number of Significant DMPs Identified in the EPIC Array Baboon Aging 

Study. 

Bar chart showing the number of significant DMPs between adult and juvenile baboons. 

Results include the number of significant DMPs that remained statistically significant 

after accounting for kinship, the number of significant DMPs that did not remain 

statistically significant after accounting for kinship, and the number of loci that were not 

found to be statistically significant. Those significant DMPs that remained statistically 

significant after accounting for kinship were additionally split into those that had Δβ < 

0.1 and those that had Δβ ≥ 0.1. Approximately 38.9% (74,545) of probes were 

differentially methylated between adults and juveniles. When accounting for genetic 

relatedness, 3.1% (2,332) of the originally identified significant DMPs do not maintain 

significant methylation associations. Of those significant DMPs that remained 

statistically significant after accounting for kinship, only 45.8% (33,057) had Δβ ≥ 0.1, 

implying the difference may have had regulatory and biological effects. 
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Table 9. Number of Significant DMRs Identified in the EPIC Array Baboon Aging 

Study. 

  
No. Significant 

DMRs 

No. Associated 

Genes 

Average CpGs per 

DMR (Min-Max) 

Average Length of 

DMR (Min-Max) 
Associated Gene Symbols 

Adult 

vs. 

Juvenile 

12,962 9,023 5 (2-93) 791bp (3bp-11,695bp) 

EN1, FOXG1, HOTAIRM1, HOXA2, 

KCNQ1DN, PAX6, PPT2, PPT2-EGFL8, 

RCN1, RP11, SP9, TBR1, ZIC1, ZIC4 

Table showing the number of significant DMRs identified between adult and juvenile 

baboons, the number of unique gene names that overlapped with these regions, the 

average number of CpGs per DMR along with the minimum and maximum number, 

average length of DMRs along with the minimum and maximum length, and gene symbol 

names associated with the top 10 DMRs for each comparative group. For additional 

details see Appendix W. 

 

Table 10. Number of Significant DMPs Identified in the EPIC Array Baboon Aging 

Study. 

Differential Methylation 

Adult 

vs. 

Juvenile 

Significant (negative) 20,665 

Not Significant 158,574 

Significant (positive) 12,392 

Table showing the number of significant DMPs with Δβ ≥ 0.1 between comparative 

groups when accounting for kinship. Results are shown for probes filtered using the 

alignment criteria, and for these, significant DMPs were identified in all comparative 

groups. 

 



  105 

 

Figure 27. GO Biological Processes Enriched for Significant DMPs Associated with 

Aging in Baboons. 

Multidimensional scaling plot summarizing the GO biological process terms that are 

significantly enriched (FDR < 0.05) for significant DMPs with Δβ ≥ 0.1, taking into 

account the differing number of probes per gene present on the EPIC array. DMPs were 

identified between adult and juvenile baboons. REViGO was used to remove redundant 

GO terms (retained only 50% of the full list of significant terms) and to visualize the 

remaining terms in a semantic similarity-based scatterplot (Supek et al. 2011). Semantic 

similarity was calculated using the simRel score, which is a functional similarity measure 

that ranges from 0 for terms that have no similarity to 1 for terms with maximum 

similarity (Schlicker et al. 2006). These pairwise semantic similarity scores are then 

plotted in multidimensional scaling space such that similar GO terms are located close to 
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one another in the plot. The color and size of each GO term are based on the log10 FDR 

value, and some of the most significant GO terms have their descriptions provided in the 

plot. See APPENDIX X for additional information. 

 

 

Figure 28. Methylation Levels at the Top 10,000 Significant DMPs Identified in the EPIC 

Array Baboon Aging Study. 
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(A) Heatmap depicting the DNA methylation levels (β values) of the top 10,000 DMPs 

with Δβ ≥ 0.1 between adults and juveniles (x-axis) in all baboon samples (y-axis, n=46). 

The sex and age of each baboon sample are also provided (y-axis). Red indicates higher 

methylation at a DMP, while blue indicates lower methylation at a DMP. The 

dendrogram of all samples (y-axis) clusters individuals based on the similarity of their 

methylation patterns. Adults and juveniles mostly form distinct clusters, with a few 

female adults (ages 11.19 years, 28.66 years, 12.83 years, 10.96 years, and 11.64 years) 

clustering with juveniles. (B) Manhattan plot showing the log10 adjusted p-values of all 

positions examined between adults and juveniles in all baboon samples (n=46). Samples 

highlighted in green are the top 10,000 significant DMPs with Δβ ≥ 0.1 between age 

cohorts that are displayed in the heatmap. 

 

A subset of significant DMPs identified between adult and juvenile baboons 

overlap with CpGs previously identified as being differentially methylated in human 

aging studies. Human aging studies across a large range of tissues have identified over 

300 CpGs that become hypomethylated or hypermethylated with age (Koch and Wagner 

2011; Horvath 2013), but only 137 of these CpGs were able to be evaluated in baboons. 

Of these, 14 were found to be significantly differentially methylated across baboon ages 

(Table 11), and the rest were either not found to be statistically significant (n=75) or were 

statistically significant but had average changes in methylation levels less than 0.1 (n=48) 

(APPENDIX Z). Comparisons at the gene level as opposed to the CpG site level produce 

similar results (APPENDIX Z). 
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Table 11. Overlap of Differential Methylation Associations from Human and Baboon 

Aging Studies. 

Current Study Baboon Aging 
Methylation Level Findings 

Previous Human Findings 

Hypermethylation with Age Hypomethylation with Age 

Same Methylation Pattern 

ALOX12 (cg03760483) 
DIRAS3 (cg22901840) 

FOXG1B (cg02681442) 

KCNQ1DN (cg01530101) 
LTBP3 (cg08965235) 

NHLRC1 (cg22736354) 

TBX5 (cg21907579) 

VGF (cg04084157) 

ACOT11 (cg10266490) 

BCMO1 (cg22947000) 

Bles03 (cg13547237) 

Opposite Methylation Pattern 
GEFT (cg02364642) 

PLK1 (cg26003813) 
MBNL1 (cg14423778) 

Details on the previous findings of differential methylation associations with human 

aging that overlap with the current findings of differential methylation associations with 

baboon aging. Table outlines several CpG sites associated with genes that were found to 

be differentially methylated in humans of different ages and baboons of different ages 

(Δβ ≥ 0.1) and whether the previously identified human methylation patterns 

(hypermethylation vs. hypomethylation) of each site were similar to that in baboons. 

Additional details on this CpG comparison or a more general gene comparison between 

humans and baboons can be found in APPENDIX Z. 
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Figure 29. Methylation Levels at DMPs in the EPIC Array Baboon Aging Study that are 

also Associated with Aging in Humans. 

(A) Heatmap depicting the DNA methylation levels (β values) of all CpG sites (n=137, x-

axis) that are differentially methylated in humans with respect to age that were also tested 

in the current baboon study. The sex and age of each baboon sample tested are also 

provided (n=46, y-axis). Red indicates higher methylation at a DMP, while blue indicates 
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lower methylation at a DMP. The dendrogram of all samples (y-axis) clusters individuals 

based on the similarity of their methylation patterns. Although the majority of these sites 

were not significantly differentially methylated between adult and juvenile baboons, they 

do generally separate juveniles from adults, with the exception of some female adults 

(ages 28.66 years, 10.96 years, 21.53 years, 11.27 years, 16.03 years, 11.13 years, and 

12.83 years) which cluster with juveniles as opposed to adults. (B) Manhattan plot 

showing the log10 adjusted p-values of all positions examined between adults and 

juveniles in all baboon samples (n=46). Samples highlighted in green are the DMPs that 

are differentially methylated in humans with respect to age, that were also tested in the 

current baboon study, and that are displayed in the heatmap. 

 

Although the majority of age-related methylation loci in humans that were tested 

in the current baboon study (n=137) were not significantly differentially methylated 

between adult and juvenile baboons, they do generally separate these age cohorts (Figure 

29). However, when assessing the quantitative methylation levels at each of these CpGs, 

seven female adults (ages 28.66 years, 10.96 years, 21.53 years, 11.27 years, 16.03 years, 

11.13 years, and 12.83 years) appear to cluster with juveniles as opposed to other adult 

baboons. Three of these adult baboons are among the five that diverged from the 

expected when considering all significant DMPs (Figure 28). Of those CpG sites that are 

significant age-related DMPs in baboon and match those known in humans (n=14), some 

show methylation patterns that are identical between species, while others have opposing 

patterns (Table 11) (Koch and Wagner 2011; Horvath 2013).  
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For example, KCNQ1DN displays general hypermethylation with age in both 

humans (Koch and Wagner 2011) and baboons (Figure 30). In baboons, out of the 50 

CpG sites associated with KCNQ1DN that were examined, 36 DMPs were identified with 

Δβ ≥ 0.1. Of these, 30 DMPs were hypermethylated in adults, and 6 were 

hypomethylated in adults (APPENDIX AA). Additionally, 1 DMR was identified in close 

proximity to this gene that is 1,517bp long and contains 29 CpGs (hg19 chr11:2889602-

2891118), and this DMR had the highest level of significance among all identified DMRs 

(APPENDIX W). Lastly, the CpG site that is hypermethylated with age in humans 

(cg01530101) (Koch and Wagner 2011) is also hypermethylated with age in baboons. 

Conversely, MBNL1 displays opposing methylation patterns in humans and 

baboons, with age-associated hypomethylation in humans (Horvath 2013) and 

predominantly age-associated hypermethylation in baboons (Figure 31). In baboon bone, 

out of the 40 CpG sites associated with MBNL1 that were examined, 4 DMPs were 

identified with Δβ ≥ 0.1. Of these, 3 DMPs were hypermethylated in adults, and 1 was 

hypomethylated in adults (APPENDIX AA). Additionally, 1 DMR that is 2,723bp long 

and contains 16 CpGs (hg19 chr3:151984822-151987544) (APPENDIX W) was 

identified in close proximity to this gene. Lastly, the CpG site that is hypomethylated 

with age in humans (cg14423778) (Horvath 2013) is hypermethylated with age in 

baboons. 
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Figure 30. Methylation Levels Across KCNQ1DN in Adult and Juvenile Baboons. 

Plot of the methylation levels of significant DMPs across the KCNQ1DN gene (hg19 

chr11:2891263-2893335). Plot shows the average β values for each DMP with error bars 

indicating 1 standard deviation in each direction for each comparative group (light grey = 

adult baboon bone, black = juvenile baboon bone). DMP chromosomal position in 

relation to the KCNQ1DN gene is also depicted. Similar to humans, KCNQ1DN is 

overwhelmingly hypermethylated in older baboons as compared to younger baboons 

(Koch and Wagner 2011). In baboons, 36 DMPs were identified with Δβ ≥ 0.1 (26 of 

which are depicted here). Of these, 30 DMPs were hypermethylated in adults, and 6 were 

hypomethylated in adults. Additionally, 1 DMR was identified in close proximity to this 

gene that is 1517bp long and contains 29 CpGs (hg19 chr11:2889602-2891118), and this 

DMR had the highest level of significance among all identified DMRs (Appendix W). 

Lastly, the CpG site that is hypermethylated with age in humans (cg01530101) (Koch and 
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Wagner 2011) is also hypermethylated with age in baboons. See Appendix AA for 

additional information. 

 

 

Figure 31. Methylation Levels Across MBNL1 in Adult and Juvenile Baboons. 

Plot of the methylation levels of significant DMPs across the MBNL1 gene (hg19 

chr3:151962120-152183569). Plot shows the average β values for each DMP with error 

bars indicating 1 standard deviation in each direction for each comparative group (light 

grey = adult baboon bone, black = juvenile baboon bone). DMP chromosomal position in 

relation to the MBNL1 gene is also depicted. In contrast to humans in which MBNL1 

becomes hypomethylated with age (Horvath 2013), MBNL1 is primarily hypermethylated 

in older baboons as compared to younger baboons. In baboons, 4 DMPs were identified 

with Δβ ≥ 0.1 (all of which are depicted here). Of these, 3 DMPs were hypermethylated 

in adults, and 1 was hypomethylated in adults. Additionally, 1 DMR was identified in 

close proximity to this gene that is 2723bp long and contains 16 CpGs (hg19 
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chr3:151984822-151987544) (Appendix W). Lastly, the CpG site that is hypomethylated 

with age in humans (cg14423778) (Horvath 2013) is hypermethylated with age in 

baboons. See Appendix AA for additional information. 

 

Discussion 

Here, I identified DNA methylation patterns in femoral trabecular bone from adult 

and juvenile baboons. This was done in order to identify age-related changes in DNA 

methylation and assess the evolutionary conservation of these changes in the primate 

lineage. 

Using in silico probe filtering methods (Hernando-Herraez et al. 2013; Ong et al. 

2014) and additional filtering criteria, I retained 191,631 EPIC array probes that reliably 

mapped to the baboon genome, contained a CpG locus, met specific alignment filter 

criteria (Figure 9), maintained a wide distribution throughout the genome (APPENDIX 

H), had hybridization efficiencies significantly correlated with the alignment quality of 

each probe to the baboon genome (APPENDIX T), and predominantly passed quality 

controls to produce robust signals on the array (Figure 25). The size and efficiencies of 

this final set of probes was comparable to previous findings for the 450K array (see 

Chapter 2) and EPIC array (see Chapter 3). 

From these filtered probes, several significant DMPs were detected between 

different baboon age cohorts (Figure 26, APPENDIX U). Many of these DMPs had 

biologically insignificant changes in mean methylation, so only those with at least a 10% 

change (Δβ ≥ 0.1) were considered further. This reduced the overall number of DMPs 

considered to 17.25% of the originally interrogated sites. The number of DMRs identified 
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between age cohorts showed trends similar to those for DMPs, and the genes associated 

with these DMRs overlapped with those associated with DMPs (Table 9, APPENDIX 

W). These findings further confirm the results of the DMP analyses and their functional 

implications. 

Overall, within baboons, the number of DMPs and DMRs found between adults 

and juveniles is greater than that found between individuals with different skeletal disease 

states (osteoarthritic vs. healthy) but smaller than that found between different skeletal 

tissue types (bone vs. cartilage) (see Chapter 3). This finding is to be expected since the 

amount of DNA methylation which influences some aspects of gene regulation and 

expression (Suzuki and Bird 2008; Singer et al. 2015) should fluctuate depending on how 

different cellular functions are between comparative groups (Zhang et al. 2013). In the 

case of different tissues, substantial DNA methylation differences may enable some of 

the distinct gene regulation and expression that is necessary for the cells in these tissues 

to promote different tissue functions. In the case of different age cohorts, within the same 

skeletal tissue, there is an emphasis on growth and development in juveniles as compared 

to an emphasis on maintenance in adults. These differences likely require some DNA 

methylation and gene regulatory differences, but not so much as to alter the general 

function of this tissue to anything other than bone-related functions. Lastly, in the case of 

osteoarthritic disease states, fewer regulatory changes are likely needed to initiate the 

dysregulation of tissue function than to promote the substantial functional differences 

between age ranges and tissues types. 

The epigenetic profiles of each age cohort, as defined by the significant DMPs 

with Δβ ≥ 0.1, generally distinguished adult baboons from juvenile baboons. For 
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instance, global methylation levels in adult baboons were decreased as compared to 

juveniles (Table 10). This genome-wide reduction of methylation with aging has also 

been observed in a phylogenetically diverse set of organisms (Berdyshev et al. 1967; 

Vanyushin et al. 1973; Wilson et al. 1987). Additionally, because juvenile bone tissue is 

undergoing growth and development while adult bone tissue is focused on maintenance, 

it is fitting that the significant DMPs identified are associated with several genes 

predominantly involved in developmental processes and pathways (Figure 27, 

APPENDIX X, APPENDIX Y). Also of note is the abundance of genes associated with 

pathways involved in the development and progression of diseases of aging, such as 

cancer (APPENDIX Y). 

Despite these overarching epigenetic features that distinguish adult baboons from 

juvenile baboons, the specific quantitative methylation levels at each DMP do not 

completely separate adults and juveniles into distinct clusters (Figure 28). Rather, five 

female adult baboons appear to cluster more closely with juvenile baboons than with 

other adult baboons. This might seem reasonable if the adults clustering with juveniles 

were the youngest individuals in the adult cohort. However, their ages range from 10.96 

years to 28.66 years, which encompasses the maximum age spread among the adult 

female baboons included in this study. Some adult male baboons were slightly younger 

than this age range (10.52 and 10.57 years), but the 28.66-year-old female baboon is the 

oldest individual in the sample set by almost 3.5 years. 

These unexpected findings may be due to potential sex differences in epigenetic 

signatures or to general discrepancies between chronological ages and epigenetic ages. In 

females, bone tissues are susceptible to variations in hormone regulation with age 
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(Väänänen and Härkönen 1996) and the nutritional demands required during pregnancy 

(Kovacs 2000), and these effects may influence the epigenetic age of females in ways 

that have not been identified yet. Additionally, studies in humans have found that not all 

individuals with identical chronological ages have identical epigenetic ages. For instance, 

people with epigenetic ages older than their chronological ages have overall increased 

risks for death from all causes (Marioni, Shah, McRae, Chen, et al. 2015; Christiansen et 

al. 2016; Perna et al. 2016), while people with epigenetic ages younger than their 

chronological ages have been associated with the capacity to become semi-

supercentenarians (Marioni, Shah, McRae, Chen, et al. 2015). The discrepancy between 

epigenetic age and chronological age in some baboons in this study may simply be an 

example of the same discrepancy that has been observed in humans. Alternatively, 

epigenetic signatures of age may not be as clearly demarcated in bone tissues or may not 

be as robust at separating baboons age cohorts. If the former is true, though, researchers 

should be wary about extending these methods to estimate the ages of skeletal remains 

preserved in the archaeological record. Instead, evaluating DNA methylation patterns in 

teeth may serve as a more suitable method for aging efforts in these conditions (Giuliani 

et al. 2016). Conversely, the sample size utilized in this study may simply not have 

enough power to fully differentiate adults and juveniles. 

These age-related DMPs, however, do provide further insight into the evolution of 

aging epigenetics. Out of the 137 CpG that have been found to be differentially 

methylated with age in humans (Koch and Wagner 2011; Horvath 2013) and which were 

also tested in baboons in the current study, 14 were found to be significantly 

differentially methylated across baboon ages (Table 11). Of these 14 CpG sites, some 
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show methylation pattern that are identical between humans and baboons, while others 

have reversed patterns between species (Table 11). Despite the majority of these human 

age-related DMPs not being significantly differentially methylated between baboon age 

cohorts, the methylation patterns across these sites generally separated adult baboons 

from juvenile baboons, except for seven female adults with ages ranging from 10.96 

years to 28.66 years that cluster more closely with juveniles than other adult baboons 

(Figure 29). Three of these adult female baboons are identical to those that clustered with 

juvenile baboons when considering all significant DMPs (Figure 28). As described 

above, this incomplete sorting of different age cohorts may be due to subtle sex effects on 

the epigenome, the possible disconnect between chronological and epigenetic ages, or an 

aspect of the study design. Alternatively, since many of these human age-related DMPs 

are not significantly differentially methylated in baboons, there may not be enough power 

to distinctly cluster each age group using these particular loci. Thus, while some age-

related epigenetic patterns appear to be evolutionarily conserved between baboons and 

humans, many show no evidence of conservation, and some display opposite signals. 

Specific examples of this variation in conservation are as follows. 

In some instances, the age-related methylation patterns observed in baboons 

matched those observed in humans. For instance, KCNQ1DN (Gene ID: 55539) displays 

similar age associated hypermethylation in humans (Koch and Wagner 2011) and 

baboons (Figure 30). KCNQ1DN, also known as KCNQ1 downstream neighbor, is a non-

protein coding gene that is imprinted and expressed by the maternal allele but otherwise 

has a generally unknown function. It has been associated with aging (Koch and Wagner 

2011) and may possibly be involved in Wilms' tumorigenesis, which is characterized by 
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maternal-specific loss of heterozygosity of the chromosomal region surrounding the 

KCNQ1DN imprinted gene, as well as several other imprinted genes (Xin et al. 2000). 

Because of its limited functional annotations, it is unclear whether there is a biological 

function for an increase in methylation at this gene with age. Nevertheless, the findings of 

this study suggest that this age-related methylation candidate gene and its pattern of 

change over time appear to be evolutionarily conserved within the primate lineage. 

Conversely, for some genes, the age-related methylation patterns observed in 

baboons were opposite to those observed in humans. This is true for the gene MBNL1 

(Gene ID: 4154), which displays hypomethylation with age in humans (Horvath 2013) 

and hypermethylation with age in baboons (Figure 31). MBNL1, also known as 

muscleblind like splicing regulator 1, codes for a splicing factor protein that regulates 

alternative splicing of pre-mRNAs (Gates et al. 2011; Purcell et al. 2012; Edge et al. 

2013). It also appears to be involved in the progression of myotonic dystrophy which is a 

disorder characterized by muscle weakness and wasting (Gates et al. 2011; Purcell et al. 

2012; Edge et al. 2013). Although its function in gene regulation via splicing is 

important, its role in aging is unclear. Nevertheless, the findings of this study suggest that 

this age-related methylation candidate gene and its pattern of change over time are not 

evolutionarily conserved within the primate lineage. 

Overall, these age-related differential methylated findings indicate that global 

methylation patterns between age cohorts are comparable between humans and baboon 

and that the genes associated with these epigenetic changes are involved in 

developmental processes and pathways, which thus, may play crucial roles in 

distinguishing juvenile and adult phenotypes. However, when examined more closely, 
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these methylation patterns do not definitively distinguish all adults from all juveniles. 

Rather, there appears to be a mixing of age-related epigenetic signatures that may be due 

to subtle sex effects, the possible disconnect between chronological and epigenetic ages, 

or an aspect of the study design. Finally, the findings of this study indicate that some 

DNA methylation patterns associated with aging are evolutionarily conserved between 

humans and baboons, while others are not. Species differences in aging epigenetics may 

be due to general speciation events that took place during the evolution of these 

taxonomic groups, to slight differences in the aging processes of these species, or 

artifacts of the experimental design of the current baboon study or previous human aging 

studies. 

For instance, the present baboon study includes only 46 animals, while the study 

which identified over 300 age-related methylation sites in humans (Horvath 2013) was a 

meta-analysis which included 81 human studies with an average sample size of 96 

individuals. This smaller number of individuals may have reduced my power to detect 

significant differential methylation in baboons at several age-related methylation sites. 

Additionally, the CpG sites found to have age-related differential methylation across 

tissues (Koch and Wagner 2011; Horvath 2013) used older versions of the EPIC array, 

which only examined 27,000 or 450,000 sites throughout the human genome. This 

difference in methods may account for some differences observed between humans and 

baboons. Alternatively, the differences observed between humans and baboons may be a 

result of the differences in tissues examined. While previous human aging meta-analyses 

have included methylation data from skeletal tissues such as cartilage (Horvath 2013), 

most samples are from blood or other soft tissues (Horvath 2013; Koch and Wagner 
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2011), not bone. Thus, the absence of bone methylation patterns in human aging studies, 

may contribute to the lack of methylation pattern overlap between humans and baboon 

found in the present study. 

Lastly, this baboon study used a stringent DMP cutoff threshold that limited the 

resulting genes to only those that were associated with DMPs having an average change 

in mean methylation between comparative groups greater than or equal to 10%. This was 

a precaution against including sites that likely had little biological relevance (Hernando-

Herraez et al. 2013). However, age-related epigenetic changes may not have any explicit 

regulatory effects on these genes. Some CpG sites found to have age-related differential 

methylation across tissues (Koch and Wagner 2011) were selected without consideration 

of gene function because previous studies have shown that individual site-specific 

methylation changes are not readily associated with differential gene expression (Koch et 

al. 2011; Bork et al. 2010; Y. Chen et al. 2011). Rather, differential gene expression is 

made possible through the accumulation of several methylation changes within promotor 

regions (Suzuki and Bird 2008) or across the gene body (Singer et al. 2015). Thus, the 

increased filtering used in the current baboon study may have increased the number of 

false negatives, and further work to identify epigenetic aging profiles in nonhuman 

primate tissues should be done to validate the current findings of this research. 

Regardless of these potential confounding factors, using baboons in this study has 

begun to clarify the evolutionary conservation of epigenetic aging processes within the 

primate lineage. This is the first study to specifically assess aging effects on the DNA 

methylation profiles of skeletal tissues from a nonhuman primate. In summary, from an 

evolutionary perspective, the findings of this study inform our understanding of DNA 
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methylation variation in one skeletal tissue from another primate, as well as the degree to 

which chronological age affects this variation. These findings warrant further 

investigation in a larger and more phylogenetically diverse sample set, and future 

research in this area will provide insight into the evolution of aging and senescence. 
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CHAPTER 5 

INTRA- AND INTER-SPECIFIC INVESTIGATIONS OF SKELETAL DNA 

METHYLATION PATTERNS AND FEMUR MORPHOLOGY IN NONHUMAN 

PRIMATES 

 

Abstract 

Complex skeletal traits are the product of genetic, environmental, and epigenetic 

mechanisms. DNA methylation is one such epigenetic mechanism which regulates gene 

expression. Because epigenetic modifications are influential in the development and 

maintenance of skeletal traits, they may also contribute to the evolution of primate 

skeletal anatomy. Further, they may also contribute to general differences between 

species. Skeletal morphology in relation to DNA methylation variation has not, however, 

been assessed in nonhuman primates. Additionally, epigenetic variation in a 

phylogenetically diverse set of nonhuman primates has not been evaluated. This study 

addresses this knowledge gap by identifying intra-specific methylation variation in 

primate skeletal tissue to test the hypothesis that specific features of femur morphology 

are associated with specific variations in methylation and by identifying inter-specific 

methylation variation between nonhuman primate species to determine if lineage specific 

patterns have evolved and may contribute to species-specific morphologies. Here, I used 

the Illumina Infinium MethylationEPIC BeadChip (EPIC array) to identify DNA 

methylation patterns in femur trabecular bone from baboons (n=28), macaques (n=10), 

vervets (n=10), chimpanzees (n=4), and marmosets (n=6). I validated that the 

hybridization efficiency of EPIC array probes is related to the degree of sequence 
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similarity between the probes and each nonhuman primate genome, and I determined that 

approximately 39%, 39%, 39%, 76%, and 17% of the EPIC array probes reliably align to 

the baboon, macaque, vervet, chimpanzee, and marmoset genomes, respectively, contain 

a CpG site of interest, and maintain a wide distribution throughout the genome. I also 

found that filtering probes using alignment similarity criteria retains more efficiently 

hybridized probes than filtering probes using gene symbol similarity criteria. 

Additionally, significant differential methylation was identified in a subset of 

morphological variants within species. However, these significantly differentially 

methylated positions (DMPs) likely do not have large biological effects and may be 

confounded by other variables associated with morphological variation. Furthermore, I 

found several sites that show species-specific methylation patterns. Higher resolution of 

methylation variation across a subset of these regions confirms these patterns and 

provides more insight into their evolution history. Finally, genome-wide DNA 

methylation patterns across all 39,802 sites examined produce a topology that reflects 

known phylogenetic relationships between taxa. From an evolutionary perspective, these 

findings give us an appreciation of DNA methylation variation in skeletal tissue within 

and among five nonhuman primate species. They also provide insight into the degree to 

which this epigenetic variation relates to variation in skeletal morphology and taxonomic 

differences. Expansion of this sample set and more focused testing of additional genes 

and the resulting functions of DNA methylation changes will further inform our 

understanding of epigenetic regulation and complex trait evolution in primates. 
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Introduction 

Primates distinguish themselves from other mammals with their unique suite of 

anatomical features that initially enabled arboreal niche occupation and subsequently 

evolved to fit a myriad of habitats and forms of locomotion, the most unique being 

hominin bipedalism. Skeletal features related to varied body forms are often described as 

the result of environmental adaptations. However, skeletal morphology is more 

accurately defined as the result of complex processes, and environmental (Henriksen et 

al. 2014; Macrini et al. 2013), genetic (Goldring and Marcu 2012), and epigenetic 

mechanisms (Delgado-Calle et al. 2013; García-Ibarbia et al. 2013; Y. Liu et al. 2013; 

Reynard et al. 2014) all contribute to these phenotypes. DNA methylation is one such 

epigenetic mechanism that regulates gene expression, and given its involvement in the 

development and maintenance of skeletal traits, it may also be involved in the evolution 

of diverse skeletal anatomies and speciation divergences in general. 

Epigenetic contributions to primate phenotypic variation were first considered by 

(King and Wilson 1975). They proposed that anatomical and behavioral differences 

between humans and chimpanzees were more likely “based on changes in the 

mechanisms controlling the expression of genes than on sequence changes in proteins” 

(King and Wilson 1975, p.107), and studies to understand methylation variation across 

species began soon afterwards (Gama-Sosa et al. 1983). Although general changes to 

mammalian epigenomes have been examined (Sharif et al. 2010), primate-specific DNA 
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methylation studies have been limited. Most work has focused on epigenetic variation in 

humans – how it varies across distinct tissues within individuals (Lister et al. 2009; 

Slieker et al. 2013), across different individuals (Oates et al. 2006; Petronis et al. 2003; 

Weksberg et al. 2002), across populations (Heyn et al. 2013; Rakyan et al. 2004), in 

relation to aging processes (Fraga et al. 2005), in relation to diet (Jacob et al. 1998; 

Rampersaud et al. 2000; Shelnutt et al. 2004), and how it is inherited across generations 

(Flanagan et al. 2006; Gibbs et al. 2010; Suter et al. 2004; van Dongen et al. 2014). 

Important within species methylation variants have been identified in these studies. 

Similarly, epigenetic variation has been identified between primate species. 

Support was initially inferred from underlying genomic sequences (Prendergast et al. 

2007; Haygood et al. 2007; C. G. Bell et al. 2012). For instance, several promoter CpG 

densities vary across primates. These likely relate to regulatory methylation differences 

across species as primate CpG densities correlate with methylation levels (Weber et al. 

2007). Additionally, gene expression studies, which primarily focus on brain tissues 

(Babbitt et al. 2010; Cáceres et al. 2003; Warner et al. 2009) and a small set of other soft 

tissues (Blekhman et al. 2008; Karere et al. 2010; Karere et al. 2012, 2; Karere et al. 

2013; Tung et al. 2015), have also noted regulatory differences across species. Brain 

tissues tend to be the focus of DNA methylation studies, as well, and methylation 

differences in these tissues have evolved across primates and contributed to resultant 

brain phenotypes and disease vulnerabilities (Enard et al. 2004; Farcas et al. 2009; Zeng 

et al. 2012; Kothapalli et al. 2007; Provencal et al. 2012). Thus, methylation-phenotype 

relationships can be identified in primates. Primate methylation patterns in blood cells 

and other soft tissues have also been studied, but not to the same degree (Pai et al. 2011; 



  127 

Molaro et al. 2011; Martin et al. 2011; Fukuda et al. 2013; Lindskog et al. 2014; 

Hernando-Herraez et al. 2013). Interestingly, two studies using soft tissues and blood 

identified differential methylation and expression of genes essential for skeletal 

development (RUNX1, RUNX3, and COL2A1) between some primates (Lindskog et al. 

2014; Hernando-Herraez et al. 2013). Additionally, ancient DNA methylation studies 

have found other skeletal developmental genes (HOXD complex) differentially 

methylated among modern humans and ancient hominins (Gokhman et al. 2014). These 

findings suggest that primates do exhibit distinct epigenetic patterns and that the 

epigenetics of skeletal development may be an important direction of future research. 

The skeletal system comprises an important set of complex phenotypes, and the 

underlying molecular contributions to this system have been heavily studied in humans 

and model organism (Zamli et al. 2014), but little of this work has taken an evolutionary 

perspective (Ostrer et al. 2006; Rugg-Gunn et al. 2005). As with most phenotypes, 

skeletal phenotypes are influenced by genetic and environmental factors, but epigenetic 

factors such as DNA methylation are now thought to play an important role in skeletal 

tissue development and maintenance (Delgado-Calle et al. 2013; García-Ibarbia et al. 

2013; Goldring and Marcu 2012; Iliopoulos et al. 2008; Loughlin and Reynard 2015; 

Ramos et al. 2014; Reynard et al. 2014). For instance, epigenetic processes are influential 

in regulating skeletal muscle development (Brand-Saberi 2005; Ling et al. 2012; Palacios 

and Puri 2006; Pandorf et al. 2009; Zwetsloot et al. 2009) which can impact the adjacent 

skeletal scaffolding system. Several genes involved in human skeletal development 

appear to be differentially methylated across fetal and adult developmental stages (de 

Andrés et al. 2013). Lastly, methylation variation in humans and model organisms has 



  128 

been implicated in several skeletal pathologies and disorders, such as rheumatoid 

arthritis, osteoporosis, and osteoarthritis (Bovée et al. 2010; Delgado-Calle et al. 2013; 

den Hollander et al. 2014; Dimitriou et al. 2011; Fernández-Tajes et al. 2014; García-

Ibarbia et al. 2013; Goldring and Marcu 2012; Iliopoulos et al. 2008; Jeffries et al. 2014; 

Jeffries et al. 2016; Kasaai et al. 2013; Y. Liu et al. 2013; Loughlin and Reynard 2015; 

Moazedi-Fuerst et al. 2014; Ralston and Uitterlinden 2010; Ramos et al. 2014; Reynard 

et al. 2014; Rivadeneira et al. 2009; Rushton et al. 2014b). Some of these studies are the 

first to assess methylation patterns in human skeletal tissues (Delgado-Calle et al. 2013; 

den Hollander et al. 2014; Fernández-Tajes et al. 2014; García-Ibarbia et al. 2013; 

Jeffries et al. 2014; Moazedi-Fuerst et al. 2014; Rushton et al. 2014b), which is important 

for truly identifying the relationship between epigenetic variation and skeletal phenotypic 

variation. 

The skeletal system is an important complex phenotype to examine further in 

primates because it shows varied morphologies across taxa, because underlying skeletal 

differences contribute to overall morphological diversity, and because skeletal 

morphology is readily used to reconstruct the anatomy and locomotor capabilities of 

extinct species within the primate lineage (Ankel-Simons 2007; Fleagle 1999; Leigh and 

Shea 1995; Schultz 1930; Schultz 1937). With respect to human evolution, femur 

morphology is of particular interest because of its role in bipedalism. Specific human 

features, such as the bicondylar angle and lateral lipping, biomechanically enable 

bipedalism. However, the range of mechanisms that enable the development of such 

skeletal features are not entirely understood. Specifically, the involvement of epigenetic 

variation in nonpathological skeletal phenotypes has not been studied. Nevertheless, it is 
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important to consider these mechanisms when interpreting skeletal features, such as those 

seen in the fossil record, and when making broad conclusions about primate evolution 

from such elements. Lastly, the emerging field of ancient epigenetics is beginning to 

assess DNA methylation patterns in ancient hominin skeletal remains. Many of these 

come from anatomically modern humans, but additional work is being done in 

Neandertal and Denisovan remains (Smith et al. 2015; Gokhman et al. 2014). However, 

the field does not have a clear understanding of DNA methylation patterns in skeletal 

tissues from nonhuman primates, so it’s difficult to put these ancient hominin skeletal 

epigenetic patterns into a broader phylogenetic or evolutionary context. 

Overall, there are clear knowledge gaps in our understanding of nonhuman 

primate skeletal complexity in relation to epigenetic variation and epigenetic differences 

between phylogenetically diverse nonhuman primate species. The present study begins to 

remedy this by assessing how genome-wide and gene-specific DNA methylation in 

primate skeletal tissues varies intra- and inter-specifically and in relation to femur form. 

Specifically, for this study, I explored the evolution of the epigenome and its relation to 

nonpathological skeletal traits within the primate lineage by identifying DNA 

methylation patterns in femur trabecular bone from 28 baboons, 10 macaques, 10 vervets, 

4 chimpanzees, and 6 marmosets and assessed how DNA methylation variation is 

associated intra-specifically with respect to femur morphology variation and inter-

specifically. 
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Methods 

Ethics Statement 

Nonhuman primate tissue samples included were opportunistically collected at 

routine necropsy of these animals. No animals were sacrificed for this study, and no 

living animals were used in this study. 

 

Nonhuman Primate Samples 

Nonhuman primate samples come from captive colonies of chimpanzees (Pan 

troglodytes), baboons (Papio spp.), rhesus macaques (Macaca mulatta), and marmosets 

(Callithrix jacchus) from the Southwest National Primate Research Center in the Texas 

Biomedical Research Institute, as well as vervets (Chlorocebus aethiops) from the Wake 

Forest/UCLA Vervet Research Colony in North Carolina. 

Femora were opportunistically collected at routine necropsy of these animals and 

stored in -20°C freezers at the Texas Biomedical Research Institute after dissection. 

These preparation and storage conditions ensured the preservation of skeletal DNA 

methylation patterns. 

Samples include baboons (n=28), macaques (n=10), vervets (n=10), chimpanzees 

(n=4), and marmosets (n=6). Age ranges are comparable between each group, and both 

sexes are represented (Figure 32, APPENDIX BB). This is important as many skeletal 

features, such as overall bone shape and susceptibility to diseases of skeletal maintenance 

(e.g., OA), are sex and age dependent. 
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Figure 32. Nonhuman Primate Sample Set Ages for EPIC Array Intra- and Inter-Specific 

Study. 

Box plot of sample ages. Box depicts the average age and one standard deviation, and 

whiskers depict the full range of ages. Baboons (n=28) are 16.90±5.02 years, 

chimpanzees (n=4) are 11.31±1.87 years, macaques (n=10) are 14.75±2.65 years, 

marmosets (n=6) are 3.34±1.41 years, and vervets (n=10) are 9.31±10.30 years. 

 

Assessment of Nonpathological Morphologies 

On nonhuman primate femora, 29 linear morphology traits (Figure 33, Table 12) 

were measured using calipers. These measurements characterize overall femur shape. 

Error for each linear measurement was determined by performing triplicate 

measurements on approximately 10% of the samples in each comparative group. These 

measurements were spaced throughout the entire data collection period. Error was 

calculated as the mean absolute difference divided by the mean (Corner et al. 1992; 

White and Folkens 2000). Only measurements with less than 5% error were retained for 

downstream analyses (APPENDIX CC).  
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Figure 33. Nonhuman Primate Morphological Measurements. 

Linear morphological measurements collected from the right femur of each nonhuman 

primate. Measurements selected were based on (McHenry and Corruccini 1978; Terzidis 

et al. 2012). See Table 12 for a detailed description of these measurements.  
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Table 12. Nonhuman Primate Morphological Measurements. 

No. Measurement Definition 

1 femur length greatest distance between greater trochanter and lateral condyle parallel with long axis of bone 

2 bicondylar femur length 
distance between most superior point on head and plane joining most inferior points on lateral and 

medial condyles 

3 maximum femur length distance between most superior point on head and most inferior point on medial condyle 

4 superior shaft width medial-lateral width of shaft inferior to lesser trochanter 

5 superior shaft depth anterior-posterior depth of shaft inferior to lesser trochanter 

6 middle shaft width medial-lateral width of shaft at midpoint 

7 middle shaft depth anterior-posterior depth of shaft at midpoint 

8 inferior shaft width medial-lateral width of inferior most portion of shaft 

9 inferior shaft depth anterior-posterior depth of inferior most portion of shaft 

10 head height greatest superior-inferior distance along junction between the head and neck 

11 head length greatest anterior-posterior distance along junction between the head and neck 

12 head width distance between the articular surface of head and junction between the head and neck 

13 anatomical neck length length from intertrochanteric crest to junction between head and neck 

14 anatomical neck height superior-inferior width at midpoint of anatomical neck 

15 anatomical neck depth anterior-posterior depth at midpoint of anatomical neck 

16 biomechanical neck length 
greatest distance between articular surface of head and lateral surface of greater trochanter parallel 
with axis of neck 

17 proximal width projected distance between most medial point on head and lateral point on greater trochanter 

18 lesser trochanter to head maximum distance between inferior border of lesser trochanter and medial surface of head 

19 lesser trochanter to neck minimum distance between inferior border of lesser trochanter and superior border of neck 

20 lesser to greater trochanter 
distance between inferior border of lesser trochanter and center of superior border of greater 

trochanter 

21 medial condyle height greatest superior-inferior distance along medial condyle 

22 medial condyle depth greatest anterior-posterior distance along articular surface of medial condyle 

23 medial condyle width greatest medial-lateral distance along medial condyle 

24 lateral condyle height greatest superior-inferior distance along lateral condyle 

25 lateral condyle depth greatest anterior-posterior distance along articular surface of lateral condyle 

26 lateral condyle width greatest medial-lateral distance along lateral condyle 

27 intercondylar notch width distance between the medial and lateral condyles 

28 intercondylar notch depth anterior-posterior depth between posterior aspect of distal shaft and posterior aspect of condyles 

29 bicondylar width maximum transverse diameter of distal end 

Linear morphological measurements collected from the right femur of each nonhuman 

primate. Measurements selected were based on (McHenry and Corruccini 1978; Terzidis 

et al. 2012). See Figure 33 for a visual representation of these measurements. 
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DNA Extraction 

DNA was extracted from femoral trabecular bone using a phenol-chloroform 

protocol optimized for skeletal tissues (Barnett and Larson 2012). From the distal femoral 

condyles, trabecular bone was collected using coring devices and pulverized into bone 

dust using a SPEX SamplePrep Freezer/Mill. Specifically, bone cores were obtained from 

a transverse plane through the center of the medial condyle on the right distal femur, such 

that the articular surface remained preserved. Cortical bone was removed from these 

cores using a Dremel. 

Trabecular bone is used in this study because several human skeletal epigenetic 

studies are based on trabecular bone, and it is important to standardize tissue type for 

comparative purposes. Trabecular bone comprises the internal spongy osseous tissue that 

contributes to femoral shape morphology and remodeling, which begins before birth and 

continues throughout life (Clarke 2008). However, trabecular bone in growing 

individuals influences both trabecular and cortical morphology in adulthood (Q. Wang et 

al. 2011), and this suggests that the epigenetics of trabecular bone may be of more 

interest initially than that of cortical bone. Lastly, although trabecular bone is not ideal 

for epigenetic analyses because it contains several cell types (Horvath, Mah, et al. 2015), 

statistical methods can correct for this heterogeneity. 

Cartilage methylation patterns are known to vary between joints and between 

different sites within a joint (den Hollander et al. 2014; Jeffries et al. 2016; Loughlin and 

Reynard 2015; Moazedi-Fuerst et al. 2014; Rushton et al. 2014b). Although similar 

studies of bone methylation patterns have not been conducted yet, the number and types 

of cells, and therefore epigenetic signatures, are expected to vary across different portions 
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of the femur. Thus, tissues were collected from the same portion of the femur in order to 

minimize this variation between samples and comparative groups. 

 

Genome-Wide DNA Methylation Profiling 

Genome-wide DNA methylation was assessed using Illumina Infinium 

MethylationEPIC microarrays (EPIC array). These arrays analyze the methylation status 

of over 850,000 sites throughout the genome, covering over 90% of the sites on the 

Infinium HumanMethylation450 BeadChip as well as an additional 350,000 sites within 

enhancer regions. For each sample, 400ng of genomic DNA was bisulfite converted using 

the EZ DNA MethylationTM Gold Kit according to the manufacturer’s instructions (Zymo 

Research), with modifications described in the Infinium Methylation Assay Protocol. 

Following manufacturer guidelines (Illumina), this processed DNA was then whole-

genome amplified, enzymatically fragmented, hybridized to the arrays, and imaged using 

the Illumina iScan system. The array data discussed here are available in APPENDIX 

DD.  

 

Methylation Data Processing 

Raw fluorescent data were normalized to account for the noise inherent within 

and between the arrays themselves. Specifically, I performed a normal-exponential out-

of-band (Noob) background correction method with dye-bias normalization (Triche et al. 

2013) to adjust for background fluorescence and dye-based biases and followed this with 

a between-array normalization method (functional normalization) (Fortin et al. 2014) 

which removes unwanted variation by regressing out variability explained by the control 
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probes present on the array as implemented in the minfi package in R (Aryee et al. 2014; 

Fortin et al. 2016) which is part of the Bioconductor project (Huber et al. 2015). This 

method has been found to outperform other existing approaches for studies that compare 

conditions with known large-scale differences (Fortin et al. 2014), such as those assessed 

in this study. 

After normalization, methylation values (β values) for each site were calculated as 

the ratio of methylated probe signal intensity to the sum of both methylated and 

unmethylated probe signal intensities (Equation 1). These β values range from 0 to 1 and 

represent the average methylation levels at each site across the entire population of cells 

from which DNA was extracted (0 =completely unmethylated sites, 1 = fully methylated 

sites). 

Every β value in the Infinium platform is accompanied by a detection p-value, and 

those with failed detection levels (p-value > 0.05) in greater than 10% of samples were 

removed from downstream analyses. Additionally, samples in which more than 30% of 

the β value had a detection p-value > 0.05 were removed from downstream analyses. 

The probes on the arrays were designed to hybridize specifically with human 

DNA, so my use of nonhuman primate DNA required that probes non-specific to any of 

the included nonhuman primate genomes, which could produce biased methylation 

measurements, be computationally filtered out and excluded from downstream analyses. 

This was accomplished using two different methods modified from (Hernando-Herraez et 

al. 2013; Ong et al. 2014). 

For both methods, I used blastn (Altschul et al. 1997) to map the 866,837 50bp 

probes onto the baboon, macaque, vervet, chimpanzee, and marmoset genomes (Table 



  137 

13) using an e-value threshold of e-10. I retained probes that successfully mapped to each 

genome, had only 1 unique BLAST hit, targeted CpG sites, had 0 mismatches in 5bp 

closest to and including the CpG site, and had 0-2 mismatches in 45bp not including the 

CpG site. For the second method, which used criteria based on gene symbol similarities, I 

identified the closest nonhuman primate gene to each probe site and checked for 

corresponding gene name matches between humans and each nonhuman primate. This 

information was obtained from different sources for each taxon (Table 13). Only those 

probes with partial or complete gene matches were retained. 

 

Table 13. Nonhuman Primate Genomes Used for Probe Filtering Methods. 

Species Assembly Accession 
Average Scaffold 

Length 

Average Contig 

Length 
Gene Information 

Baboon 

(Papio anubis) 
Panu_2.0 GCF_000264685.2 528,927 40,262 GFF, Ensembl BioMart 

Macaque 

(Macaca mulatta) 
Mmul_8.0.1 GCF_000772875.2 4,193,270 107,156 GFF 

Vervet 
(Chlorocebus aethiops) 

Chlorocebus_sabeus_1.1 GCF_000409795.2 81,825,804 162,724 GFF, Ensembl BioMart 

Chimpanzee 

(Pan troglodytes) 
Pan_tro_3.0 GCF_000001515.7 26,972,556 72,226 GFF 

Marmoset 

(Callithrix jacchus) 
Callithrix_jacchus-3.2 GCF_000004665.1 5,167,444 29,273 GFF, Ensembl BioMart 

Baboon, macaque, vervet, chimpanzee, and marmoset genome assemblies and accession 

numbers used for probe filtering methods. Average scaffold lengths and average contig 

lengths for each genome also provided, as well as the gene information data sources for 

the gene symbol probe filtering method. 

 

Additionally, β values associated with cross-reactive probes (McCartney et al. 

2016), probes containing SNPs at the CpG site, probes detecting SNP information, probes 

detecting methylation at non-CpG sites, and probes targeting sites within the sex 
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chromosomes were removed using the minfi package in R (Aryee et al. 2014; Fortin et al. 

2016) (Figure 34).  

 

 

Figure 34. Normalized and Filtered Methylation Data for EPIC Array Nonhuman Primate 

Intra- and Inter-Specific Study. 

Density plots of β-values after normalization and probe filtering using the alignment 

criteria (i) or gene symbol criteria (ii) for baboons (A), macaques (B), vervets (C), 

chimpanzees (D), marmosets (E), and all the combination of all taxa together (F), 

respectively. 
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Differential Methylation Analyses 

Because β values have high heteroscedasticity, they are not statistically valid for 

use in differential methylation analyses (Du et al. 2010). Thus, M values were calculated 

and used in these analyses instead (Equation 2). 

In order to identify sites that were significantly differentially methylated across 

comparative groups, I designed and tested generalized linear mixed models (GLMMs) 

which related the variables of interest to the DNA methylation patterns for each site, 

while accounting for the effects of additional variables, batch effects, and latent variables 

(Maksimovic et al. 2016). Sites found to have significant associations were classified as 

significantly differentially methylated positions (DMPs). Specifically, a GLMM was used 

to estimate differences in methylation levels associated with the femur morphology 

within each taxonomic group (intra-specific) and between each taxonomic group (inter-

specific). 

 

Intra-Specific Analyses 

For the intra-specific analyses, variables included in each GLMM, in addition to 

the femur morphologies within each taxonomic group, were sex, age (years), and steady 

state weight (kg) when available, as well as unknown latent variables calculated using the 

iteratively re-weighted least squares approach in the sva package in R (Jaffe and Irizarry 

2014; Jeffrey T. Leek et al. 2012; J. T. Leek and Storey 2008; Jeffrey T. Leek and Storey 

2007). Variable numbers of latent variables estimated for each morphology were included 

to help mitigate any unknown batch and cell heterogeneity effects on methylation 

variation at each site (Table 14). 
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Table 14. Samples and Latent Variables Included in Nonhuman Primate Intra-Specific 

Morphology Study. 

Measurement 

Baboon Macaque Vervet Chimpanzee Marmoset 

Samples 
Latent 

Variables 
Samples 

Latent 
Variables 

Samples 
Latent 

Variables 
Samples 

Latent 
Variables 

Samples 
Latent 

Variables 

femur length 21 3 10 1 10 2 4 0 5 1 

bicondylar femur length 21 3 10 1 10 2 4 1 6 1 

maximum femur length 21 3 10 1 10 2 4 1 6 1 

superior shaft width 26 5 10 1 10 2 4 1 6 0 

superior shaft depth 26 5 10 1 10 2 4 0 6 0 

middle shaft width 21 3 10 1 10 2 4 0 6 1 

middle shaft depth 21 3 10 1 10 2 4 0 6 0 

inferior shaft width 28 4 10 1 10 2 4 0 6 0 

inferior shaft depth 28 5 10 1 10 2 4 0 6 1 

head height 26 4 10 1 10 2 4 1 6 0 

head length 26 3 10 1 10 2 4 0 6 1 

head width 26 3 10 1 10 2 4 0 6 0 

anatomical neck length 26 4 10 1 10 2 4 1 6 0 

anatomical neck height 26 4 10 1 10 2 4 0 6 1 

anatomical neck depth 26 4 10 1 10 2 4 0 6 1 

biomechanical neck length 25 5 10 1 10 2 4 0 6 1 

proximal width 25 5 10 2 10 2 4 0 6 0 

lesser trochanter to head 26 4 10 1 10 2 4 1 6 1 

lesser trochanter to neck 26 4 10 1 10 2 4 1 6 1 

lesser to greater trochanter 26 3 10 1 10 2 4 1 5 1 

medial condyle height 28 4 10 1 10 2 4 1 6 0 

medial condyle depth 26 4 10 1 10 2 4 1 5 1 

medial condyle width 28 4 10 1 10 2 4 1 6 1 

lateral condyle height 27 5 10 2 10 2 4 1 6 0 

lateral condyle depth 28 5 10 1 10 2 4 0 5 1 

lateral condyle width 28 5 10 1 10 2 4 0 6 0 

intercondylar notch width 28 4 10 1 10 2 4 1 6 1 

intercondylar notch depth 28 5 10 1 10 2 4 1 6 0 

bicondylar width 28 4 10 1 10 2 4 0 6 1 

Table showing the number of samples and latent variables included in each GLMM 

testing for associations between DNA methylation levels and femur morphology within 

each species. 
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Alternative methods to account for cell heterogeneity exist, but they are specific 

to whole blood (Jaffe and Irizarry 2014; Morris and Beck 2015), require reference 

epigenetic data, or are reference free methods (Houseman et al. 2014) that are 

comparable to the sva method (Kaushal et al. 2015). Out of the known cell types in 

skeletal tissues (Horvath, Mah, et al. 2015), only chondrocytes and osteoblasts have 

reference epigenomes available on the International Human Epigenomics Consortium, 

and these are only for humans, not nonhuman primates. Thus, because no standard 

method is available to correct for the heterogeneous cell structure in nonhuman primate 

skeletal tissue, I chose the described sva method. 

Each GLMM design matrix (Equation 10 for baboons, Equation 11 for macaques, 

vervets, and marmosets when n > 5, and Equation 12 for chimpanzees and marmosets 

when n ≤ 5) was fit to corresponding M value array data by generalized least squares 

using the limma package in R (Ritchie et al. 2015; Phipson et al. 2016; Huber et al. 

2015), and the estimated coefficients and standard errors for each morphology were 

computed. Lastly, for each coefficient, an empirical Bayes approach (McCarthy and 

Smyth 2009; Lönnstedt and Speed 2002; Phipson et al. 2016; Smyth 2004) was used to 

compute moderated t-statistics, log-odds ratios of differential methylation, and associated 

p-values adjusted for multiple testing (Benjamini and Hochberg 1995). Significant DMPs 

for the effect of each morphology were defined as those having log fold changes in M 

values corresponding to an adjusted p-value of less than 0.05. 

 

Equation 10: methylation ~ femur morphology + sex + age + weight + latent variables 

Equation 11: methylation ~ femur morphology + sex + age + latent variables 
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Equation 12: methylation ~ femur morphology + latent variables 

 

Lastly, the gene ontology and KEGG pathway enrichment for significant CpGs 

while taking into account the differing number of probes per gene present on the array 

was determined using the missMethyl package in R (Geeleher et al. 2013; Young et al. 

2010; Ritchie et al. 2015; Benjamini and Hochberg 1995). 

 

Inter-Specific Analyses 

For the inter-specific analyses, variables in addition to taxonomic grouping 

included in the GLMM were sex, age (years), known batch effects (e.g., array number 

and position), and unknown latent variables calculated using the iteratively re-weighted 

least squares approach in the sva package in R (Jaffe and Irizarry 2014; Jeffrey T. Leek et 

al. 2012; J. T. Leek and Storey 2008; Jeffrey T. Leek and Storey 2007). The four latent 

variables estimated for each morphology were included to help mitigate any unknown 

batch and cell heterogeneity effects on methylation variation at each site. As in the intra-

specific analyses, I used sva to correct for heterogeneous cell structure. 

The GLMM design matrix (Equation 13) was fit to the M value array data by 

generalized least squares using the limma package in R (Ritchie et al. 2015; Phipson et al. 

2016; Huber et al. 2015), and the estimated coefficients and standard errors for 

taxonomic group effects were computed. Lastly, for each coefficient, an empirical Bayes 

approach (McCarthy and Smyth 2009; Lönnstedt and Speed 2002; Phipson et al. 2016; 

Smyth 2004) was used to compute moderated t-statistics, log-odds ratios of differential 

methylation, and associated p-values adjusted for multiple testing (Benjamini and 
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Hochberg 1995). Significant DMPs for the effect of taxonomy were defined as those 

having log fold changes in M values corresponding to an adjusted p-value of less than 

0.05. 

 

Equation 13: methylation ~ taxonomic group + sex + age + batch effects + latent 

variables 

 

To determine only those methylation differences that represent fixed changes 

between genera, I used methods similar to those described in (Hernando-Herraez et al. 

2013). Briefly, I identified significant DMPs between all possible pairwise comparisons 

between taxa as described (n=10: baboon-macaque, baboon-vervet, baboon-chimpanzee, 

baboon-marmoset, macaque-vervet, macaque-chimpanzee, macaque-marmoset, vervet-

chimpanzee, vervet-marmoset, chimpanzee-marmoset). I then defined a significant DMP 

as taxon-specific if it was found to be significant in all 4 pairwise comparisons containing 

the taxon of interest but not found in any of the remaining pairwise comparisons. The 

gene ontology and KEGG pathway enrichment of these DMPs was then determined as 

described above. 

Additionally, global changes in methylation were calculated using distance 

matrices, as described in (Hernando-Herraez et al. 2013), of the methylation levels for all 

finalized 39,802 filtered probes. For species-level changes, I averaged the β values per 

probe within a species and then used Euclidean distances to calculate the difference 

between every two species. For individual-level changes, I used Euclidean distances to 

calculate the difference between every two individuals. I used the ape package in R 

(Paradis et al. 2004) to estimate a neighbor joining tree using these distance matrices. For 
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each resulting tree, 1000 bootstraps were performed to determine confidence values for 

each branch. 

 

Gene-Specific DNA Methylation Profiling and Analyses 

Based on the inter-specific DNA methylation patterns identified in this study and 

those identified in other evolutionary anthropological studies (Gokhman et al. 2014), the 

HOXD10 gene was selected for subsequent DNA methylation profiling and analysis at a 

higher resolution using gene-specific sequencing techniques. Specifically, primers were 

designed and optimized to PCR amplify regions spanning across the entire HOXD10 

gene, as well as upstream and downstream several hundred bases (hg19 chr2:176980532-

176985117), in each nonhuman primate species for regular and bisulfite treated DNA 

(APPENDIX EE, APPENDIX FF). 

These gene-specific assays were performed in a subset of the samples tested using 

the EPIC array and included chimpanzees (n=3), baboons (n=3), macaques (n=3), vervets 

(n=3), and marmosets (n=3) (APPENDIX BB). As described above, DNA was extracted 

from femoral trabecular bone using a phenol-chloroform protocol optimized for skeletal 

tissues (Barnett and Larson 2012). Bisulfite treated DNA was bisulfite converted using 

the EZ DNA MethylationTM Gold Kit according to the manufacturer’s instructions (Zymo 

Research). Successful PCR amplification was confirmed using standard gel 

electrophoresis. Gene-specific PCR products were then purified using a standard 

exonuclease I and shrimp alkaline phosphatase protocol and sequenced on the Applied 

Biosystems 3730 capillary sequencer at the DNA Laboratory at Arizona State University. 
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Regular and bisulfite sequences were aligned to the appropriate nonhuman 

primate references within the Enredo-Pecan-Orthus (EPO) whole-genome multiple 

alignments of several primate genomes [Ensembl Compara.8_primates_EPO] (Paten, 

Herrero, Beal, et al. 2008; Paten, Herrero, Fitzgerald, et al. 2008) using MEGA7 (Kumar 

et al. 2016) and Geneious version 9.1.2 (Kearse et al. 2012). Manual annotation of these 

sequences within each sample confirmed that the gene sequences belong to the 

appropriate primate species and that the regular and bisulfite treated sequences only differ 

in cytosine composition. The number and distribution of methylated loci throughout the 

HOXD10 gene were then identified. These were compared to the sample specific findings 

from the EPIC array in order to validate the genome-wide methylation results. Lastly, 

methylated loci were compared within and among species to provide a higher resolution 

of methylation variation within this targeted gene. 

 

Results 

The aim of this study was to use the EPIC array to identify DNA methylation 

patterns in femoral bone from five nonhuman primate species – 28 baboons, 10 

macaques, 10 vervets, 4 chimpanzees, and 6 marmosets – in order to determine how 

methylation varies intra-specifically with respect to femur morphology and how it varies 

inter-specifically. In order to do this, I first assessed the effectiveness of the EPIC array 

in identifying DNA methylation patterns in baboon DNA and of different probe filtering 

methods. 
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Alignment of EPIC Array Probes with Nonhuman Primate Genomes 

Probes from the EPIC array were aligned to the baboon, macaque, vervet, 

chimpanzee, and marmoset genomes using methods modified from (Hernando-Herraez et 

al. 2013; Ong et al. 2014) (APPENDIX A). Out of the 866,837 50bp probes on the array, 

39% map to the baboon genome, 39% map to the macaque genome, 39% map to the 

vervet genome, 76% map to the chimpanzee genome, and 17% map to the marmoset 

genome with e-values less than e-10, with only unique BLAST hits, and that target a CpG 

site (Table 15). Out of these reliably mapped probes, 24% in baboons, 24% in macaques, 

24% in vervets, 71% in chimpanzees, and 9% in marmosets were retained after the 

alignment filter criteria (Figure 35, Table 15). Conversely, 22% in baboons, 19% in 

macaques, 23% in vervets, 32% in chimpanzees, and 10% in marmosets were retained 

after the gene symbol filter criteria (Figure 35, Table 15). Overall, 36,248 probes are 

shared among all taxa for the alignment filter criteria, while 36,248 probes are shared 

among all taxa for the gene symbol filter criteria. 

 

Table 15. Number of EPIC Array Probes Retained for Nonhuman Primates. 

  Total Mapped Probes Alignment Filter Probes Gene Symbol Filter Probes 

Baboon 337,818 209,802 190,703 

Macaque 335,046 207,703 164,754 

Vervet 336,786 207,650 195,555 

Chimpanzee 657,913 622,819 273,306 

Marmoset 143,407 74,599 85,770 

Details on the numbers of probes that successfully mapped to each nonhuman primate 

genome with e-values less than e-10, had only unique BLAST hits, and targeted a CpG 
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site (Total Mapped Probes), probes that fit the alignment filter criteria (Alignment Filter 

Probes), and probes that fit the gene symbol filter criteria (Gene Symbol Filter Probes). 

 

 

Figure 35. Filtering Effects on EPIC Array Probes for Nonhuman Primates. 

(A) Bar chart showing the percent of EPIC array probes that map to the baboon (Papio 

anubis), macaque (Macaca mulatta), vervet (Chlorocebus aethiops), chimpanzee (Pan 

troglodytes), or marmoset (Callithrix jacchus) genomes with e-values < e-10, have only 

unique BLAST hits, and target a CpG site, as well as contain 0 mismatches in 5bp of the 

probe by and including the targeted CpG site and 0-2 mismatches in 45bp of the probe 

not including the CpG site. Out of 866,837 probes total, 209,802 (24%) meet these 

criteria for baboons, 207,703 (24%) for macaques, 207,650 (24%) for vervets, 622,819 

probes (72%) for chimpanzees, and 74,599 (9%) for marmosets. (B) Bar chart showing 

the percent of EPIC array probes that map to each nonhuman primate genome with e-

values < e-10, have only unique BLAST hits, and target a CpG site, as well as are found in 

a gene that matches the human gene. Out of 866,837 probes total, 190,703 (22%) meet 

these criteria for baboons, 164,754 (19%) for macaques, 195,555 (23%) for vervets, 

273,306 probes (32%) for chimpanzees, and 85,770 (10%) for marmosets. 
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When comparing how probes overlap between the alignment filter criteria and the 

gene symbol criteria for each species, 121,308 probes overlapped between both filtering 

methods in baboons (58% and 64% respectively), 104,616 probes overlapped in 

macaques (50% and 63% respectively), 123,500 probes overlapped in vervets (59% and 

63% respectively), 260,263 probes overlapped in chimpanzees (42% and 95% 

respectively), 44,989 probes overlapped in marmosets (60% and 52% respectively), and 

16,916 probes overlapped in the combination of all taxa (40% and 47% respectively) 

(Figure 36). 

Probes that reliably mapped to each nonhuman primate genome, that met the 

alignment filter criteria, or that met the gene symbol criteria covered 9,779 to 24,279 

genes with average coverages ranging from 4 to 20 probes per gene (APPENDIX GG). 

Additionally, the retained probes covered a range of locations with respect to genes and 

CpG islands (APPENDIX GG), indicating that these filtered probes maintain a wide 

distribution throughout the genome. 

After filtering out cross-reactive probes (Y. Chen et al. 2013), probes containing 

SNPs at the CpG site, probes detecting SNP information, probes detecting methylation at 

non-CpG sites, and probes targeting sites within the sex chromosomes a final set of 

189,858 probes were retained for the alignment filter criteria in baboons, 190,898 probes 

in macaques, 191,639 probes in vervets, 576,804 probes in chimpanzees, 68,709 probes 

in marmosets, and 39,802 probes shared among species. Conversely, a final set of 

165,529 probes were retained for the gene symbol filter criteria in baboons, 146,585 

probes in macaques, 175,592 probes in vervets, 254,231 probes in chimpanzees, 75,002 

probes in marmosets, and 33,254 probes shared among species (Figure 34). 
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Figure 36. Overlap of 450K Array Probes for Nonhuman Primates Using Different 

Filtering Methods. 

Venn diagrams showing the number of probes that overlap between the alignment filter 

criteria and the gene symbol criteria for each species. (A) For baboons, out of the 209,802 

probes that meet the alignment filter criteria and the 190,703 probes that meet the gene 

symbol criteria, 121,308 probes (58% and 64% respectively) overlap in both filters. (B) 

For macaques, out of the 207,703 probes that meet the alignment filter criteria and the 

164,754 probes that meet the gene symbol criteria, 104,616 probes (50% and 63% 
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respectively) overlap in both filters. (C) For vervets, out of the 207,650 probes that meet 

the alignment filter criteria and the 195,555 probes that meet the gene symbol criteria, 

123,500 probes (59% and 63% respectively) overlap in both filters. (D) For chimpanzees, 

out of the 622,819 probes that meet the alignment filter criteria and the 273,306 probes 

that meet the gene symbol criteria, 260,263 probes (42% and 95% respectively) overlap 

in both filters. (E) For marmosets, out of the 74,599 probes that meet the alignment filter 

criteria and the 85,770 probes that meet the gene symbol criteria, 44,989 probes (60% 

and 52% respectively) overlap in both filters. (F) For probes that align to all nonhuman 

primate genomes, out of the 42,076 probes that meet the alignment filter criteria and the 

36,248 probes that meet the gene symbol criteria, 16,916 probes (40% and 47% 

respectively) overlap in both filters. 

 

Effectiveness of EPIC Array Probes using Nonhuman Primate DNA 

To determine how effectively the EPIC array probes measured DNA methylation 

in baboon DNA, I performed Spearman correlation tests between the hybridization 

efficiency of each probe and parameters defining the alignment quality of each probe to 

each nonhuman primate genome. Specifically, both probe alignment bitscores and 

percent identity were significantly negatively correlated with probe hybridization 

efficiency, and probe alignment e-values were significantly positively correlated with 

probe hybridization efficiency, regardless of filtering criteria (APPENDIX HH). 

However, filtering probes using the alignment filter criteria retained proportionally more 

successfully hybridized probes than filtering probes using the gene symbol filter criteria 

(Figure 37). Thus, filtering probes using the alignment filter criteria likely produces more 
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reliable results, so only these data were used for downstream differential methylation 

analyses. 

 

 

Figure 37. Hybridization Efficiencies of EPIC Array Probes Retained for Nonhuman 

Primate Intra- and Inter-Specific Study. 

Histogram of alignment bitscores for EPIC array probes with detection p-values > 0.05 

(red) and < 0.05 (blue). These p-values were averaged across all samples within each 

species, and probes included meet (i) the alignment filter criteria or (ii) the gene symbol 

filter criteria. (A) Baboons: For probes meeting the alignment filter criteria (i), 3,880 had 

detection p-values > 0.05, and 205,922 had detection p-values < 0.05. For probes meeting 
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the gene symbol filter criteria (ii), 10,571 had detection p-values > 0.05, and 180,132 had 

detection p-values < 0.05. For all probes that successfully mapped to the baboon genome 

with e-values < e-10, had only unique BLAST hits, and targeted a CpG site, 21,977 had 

detection p-values > 0.05, and 315,841 had detection p-values < 0.05. (B) Macaques: For 

probes meeting the alignment filter criteria (i), 2,586 had detection p-values > 0.05, and 

205,117 had detection p-values < 0.05. For probes meeting the gene symbol filter criteria 

(ii), 7,442 had detection p-values > 0.05, and 157,312 had detection p-values < 0.05. For 

all probes that successfully mapped to the baboon genome with e-values < e-10, had only 

unique BLAST hits, and targeted a CpG site, 17,821 had detection p-values > 0.05, and 

317,225 had detection p-values < 0.05. (C) Vervets: For probes meeting the alignment 

filter criteria (i) 2,007 had detection p-values > 0.05, and 205,643 had detection p-values 

< 0.05. For probes meeting the gene symbol filter criteria (ii), 7,732 had detection p-

values > 0.05, and 187,823 had detection p-values < 0.05. For all probes that successfully 

mapped to the baboon genome with e-values < e-10, had only unique BLAST hits, and 

targeted a CpG site, 15,405 had detection p-values > 0.05, and 321,381 had detection p-

values < 0.05. (D) Chimpanzees: For probes meeting the alignment filter criteria (i), 

6,120 had detection p-values > 0.05, and 616,699 had detection p-values < 0.05. For 

probes meeting the gene symbol filter criteria (ii), 3,241 had detection p-values > 0.05, 

and 270,065 had detection p-values < 0.05. For all probes that successfully mapped to the 

baboon genome with e-values < e-10, had only unique BLAST hits, and targeted a CpG 

site, 9,982 had detection p-values > 0.05, and 647,931 had detection p-values < 0.05. (E) 

Marmosets: For probes meeting the alignment filter criteria (i), 595 had detection p-

values > 0.05, and 74,004 had detection p-values < 0.05. For probes meeting the gene 



  153 

symbol filter criteria (ii), 3,993 had detection p-values > 0.05, and 81,777 had detection 

p-values < 0.05. For all probes that successfully mapped to the baboon genome with e-

values < e-10, had only unique BLAST hits, and targeted a CpG site, 7,481 had detection 

p-values > 0.05, and 135,926 had detection p-values < 0.05. (F) All Nonhuman Primate 

Species Combined: For probes meeting the alignment filter criteria (i), 201 had detection 

p-values > 0.05, and 41,875 had detection p-values < 0.05. For probes meeting the gene 

symbol filter criteria (ii), 770 had detection p-values > 0.05, and 35,478 had detection p-

values < 0.05. 

 

Differential Methylation and Intra-Specific Morphological Variation 

Measurements of 29 linear morphology traits (Figure 33, Table 12) were collected 

from each nonhuman primate right femur (Figure 38), and all of these measurements had 

less than 5% error, except those for intercondylar notch depth in macaques (APPENDIX 

CC). Significant DMPs associated with each intra-specific linear morphology were 

interrogated from 189,858 sites in in baboons, 190,898 sites in macaques, 191,639 sites in 

vervets, 576,804 sites in chimpanzees, and 68,709 sites in marmosets (Table 16). 
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Figure 38. Results of Nonhuman Primate Morphological Measurements. 

Plot of linear morphological measurements in each species. Plot depicts the average 

measurement in millimeters with error bars displaying one standard deviation in each 

direction. See Appendix CC for additional details. 
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Table 16. Number of Significant DMPs Identified in the EPIC Array Nonhuman Primate 

Intra-Specific Study. 

Measurement 
Significant DMPs 

Baboon Macaque Vervet Chimpanzee Marmoset 

femur length 0 0 0 0 0 

bicondylar femur length 1 0 0 0 0 

maximum femur length 1 0 0 0 0 

superior shaft width 0 0 1 0 0 

superior shaft depth 0 0 0 0 0 

middle shaft width 0 0 0 0 0 

middle shaft depth 0 0 0 0 0 

inferior shaft width 0 0 2 0 0 

inferior shaft depth 0 0 0 0 0 

head height 0 0 0 0 0 

head length 0 0 0 0 0 

head width 0 0 0 0 0 

anatomical neck length 0 0 0 273 0 

anatomical neck height 0 0 1 0 0 

anatomical neck depth 0 0 0 0 0 

biomechanical neck length 0 0 0 0 0 

proximal width 0 1 0 0 0 

lesser trochanter to head 0 0 0 0 0 

lesser trochanter to neck 0 0 0 0 0 

lesser to greater trochanter 0 0 0 0 0 

medial condyle height 0 0 0 0 0 

medial condyle depth 0 0 0 0 0 

medial condyle width 0 7 0 0 0 

lateral condyle height 0 0 0 0 0 

lateral condyle depth 0 0 0 0 0 

lateral condyle width 0 0 0 0 0 

intercondylar notch width 0 0 0 0 0 

intercondylar notch depth 0 0 0 0 0 

bicondylar width 0 0 0 0 0 

Table showing the number of significant DMPs associated with each linear morphology 

in each species. Results are shown for probes filtered using the alignment criteria. The 

number of total sites tested for baboons was 189,858, for macaques was 190,898, for 
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vervets was 191,639, for chimpanzees was 576,804, and for marmosets was 68,709. The 

number of samples and latent variables included in each GLMM are provided in Table 

14. 

 

Specifically, in baboons, 1 site was found to be hypomethylated with increasing 

bicondylar femur length and increasing maximum femur length. In macaques, 1 site was 

found to be hypermethylated with increasing proximal femur width, 1 site was found to 

be hypermethylated with increasing medial condyle width, and 6 sites were found to be 

hypomethylated with increasing medial condyle width. In vervets, 1 site was found to be 

hypomethylated with increasing superior shaft width, 2 sites were found to be 

hypomethylated with increasing inferior shaft width, and 1 site was found to be 

hypermethylated with increasing anatomical neck height. In chimpanzees, 216 sites were 

found to be hypomethylated and 57 sites were found to be hypermethylated with 

increasing anatomical neck length. Lastly, in marmosets, no sites were found to have 

differential methylation with variation in morphology (APPENDIX II, APPENDIX JJ). 

While the maximum change in β values (Δβ) for most of these DMPs is greater than 0.1, 

the actual Δβ between individuals with the largest morphology measurements and 

individuals with the smallest morphology measurements is less than 0.1 for several 

DMPs (APPENDIX JJ). 

Tests for enrichment of gene ontology (GO) and KEGG pathway functions were 

done for those intra-specific morphologies that had more than 2 significant DMPs 

associated with them. However, no GO biological processes were found to be enriched in 

DMPs associated with macaque medial condyle width or chimpanzee anatomical neck 
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length. Additionally, KEGG pathway functions were only found to be enriched in DMPs 

associated with chimpanzee anatomical neck length (Table 17). 

 

Table 17. KEGG Pathways Enriched for Significant DMPs Associated with Anatomical 

Neck Lengths in Chimpanzees. 

KEGG ID KEGG Pathway No. Genes Total No. Genes with DMPs P-Value FDR 

path:hsa04662 B cell receptor signaling pathway 65 3 0.0000922857 0.020544140 

path:hsa04658 Th1 and Th2 cell differentiation 81 3 0.0001905770 0.020544140 

path:hsa04650 Natural killer cell mediated cytotoxicity 92 3 0.0002224360 0.020544140 

path:hsa04660 T cell receptor signaling pathway 97 3 0.0002617090 0.020544140 

path:hsa04140 Autophagy - animal 119 3 0.0005084010 0.031927559 

path:hsa01100 Metabolic pathways 1,111 6 0.0009562600 0.047626289 

path:hsa04310 Wnt signaling pathway 133 3 0.0010617330 0.047626289 

KEGG pathways that are significantly enriched (FDR < 0.05) for significant DMPs that 

are associated with anatomical neck lengths in chimpanzees, taking into account the 

differing number of probes per gene present on the EPIC array. Table include the 

identification numbers (KEGG ID) and pathways (KEGG Pathway) for each significantly 

enriched KEGG term, the total number of genes associated with each KEGG pathway 

(No. Genes Total), the number of genes with significant DMPs that are also associated 

with each KEGG pathway (No. Gene with DMPs), the p-value for over-representation of 

each KEGG pathway (P-Value), and the false discovery Rate for each KEGG pathway 

(FDR). 

 

Differential Methylation and Inter-Specific Variation 

In order to determine how methylation varies inter-specifically, significant DMPs 

were interrogated from 39,802 probes that were filtered using the alignment criteria and 
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shared among nonhuman primate species (Table 18, APPENDIX KK). As described 

above, species-specific DMPs were determined by first identifying significant DMPs 

between all possible pairwise comparisons of nonhuman primate species and isolating 

only those DMPs that were significant in all 4 pairwise comparisons containing the taxon 

of interest but not in any of the remaining pairwise comparisons (Hernando-Herraez et al. 

2013). These methods identified 650 (1.63%) species-specific DMPs in baboons, 257 

(0.65%) in macaques, 639 (1.61%) in vervets, 2,796 (7.02%) in chimpanzees, and 13,778 

(34.62%) in marmosets (Table 18), which spanned 7,320 genes with an average number 

of 2 probes per gene (APPENDIX LL). Of these genes, 2,496 have at least 2 probes per 

gene. Additionally, these species-specific DMPs covered a range of locations with 

respect to genes and CpG islands (APPENDIX LL), indicating that these species-specific 

changes in methylation have a decent distribution throughout the genome. 

Using various inter-specific Δβ cutoff thresholds decreases the final number of 

species-specific DMPs to varying degrees (Table 18, APPENDIX KK). For instance, 

using a Δβ ≥ 0.1 threshold decreased the final number of species-specific DMPs to 581 

(1.46%) in baboons, 230 (0.58%) in macaques, 530 (1.33%) in vervets, 1572 (3.95%) in 

chimpanzees, and 12,394 (31.14%) in marmosets (Table 18), which spanned 6,673 genes 

with an average number of 2 probes per gene (APPENDIX LL). Of these genes, 2,276 

have at least 2 probes per gene. Conversely, using a Δβ ≥ 0.4 threshold decreased the 

final number of species-specific DMPs even further to 15 (0.04%) in baboons, 23 

(0.06%) in macaques, 54 (0.14%) in vervets, 89 (0.22%) in chimpanzees, and 473 

(1.19%) in marmosets (Table 18), which spanned 489 genes with an average number of 1 

probe per gene (APPENDIX LL). Of these genes, 33 have at least 2 probes per gene. 
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Counter to these decreases in numbers, though, species-specific DMPs cover a range of 

locations with respect to genes and CpG islands regardless of the Δβ cutoff threshold 

(APPENDIX LL). 

Overall, across Δβ cutoff thresholds, more species-specific DMPs were found in 

the New World monkey marmosets, followed by the great ape chimpanzees, and lastly 

the Old World monkey baboons, macaques, and vervets. Additionally, the proportions of 

hypermethylated and hypomethylated species-specific DMPs within each taxon remain 

fairly constant across Δβ cutoff thresholds (Table 18). In baboons, macaques, vervets, 

and chimpanzees, more than half of all species-specific DMPs show patterns of 

hypermethylation. This pattern is only affected when no Δβ threshold is applied to the 

species-specific DMPs in chimpanzees. Lastly, in marmosets, more than half of all 

species-specific DMPs show patterns of hypomethylation regardless of the Δβ cutoff 

threshold. Nevertheless, the ability of this variation in methylation patterns at species-

specific DMPs to cluster animals into taxonomic groups varies across different Δβ cutoff 

thresholds (Figure 39, Figure 40). For all thresholds, apes, Old World monkeys, and New 

World monkeys cluster into distinct groups. However, within Old World monkeys, 

vervets only cluster into a distinct species group when a Δβ ≥ 0.2 threshold is applied, 

and baboons and macaques only form a distinct clade when a Δβ ≥ 0.3 threshold is 

applied (Figure 39). Species-specific clustering of baboons, macaques, and vervets only 

occurs when a Δβ ≥ 0.4 threshold is applied (Figure 40). 
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Table 18. Number of Significant Species-Specific DMPs Identified in the EPIC Array 

Nonhuman Primate Inter-Specific Study. 

  Baboon Macaque Vervet Chimpanzee Marmoset 

Total Species-Specific DMPs Identified 

Significant DMPs 650 257 639 2,796 13,778 

Hypermethylated 282 76 250 1,370 10,335 

Hypomethylated 314 146 327 1,210 3,342 

Mixture 54 35 62 216 101 

Species-Specific DMPs with Average Δβ ≥ 0.1 

Significant DMPs 581 230 530 1,572 12,394 

Hypermethylated 245 67 213 503 9,408 

Hypomethylated 308 139 277 1,039 2,966 

Mixture 28 24 40 30 20 

Species-Specific DMPs with Average Δβ ≥ 0.2 

Significant DMPs 284 132 301 892 6,017 

Hypermethylated 76 36 85 245 5,401 

Hypomethylated 198 90 205 643 608 

Mixture 10 6 11 4 8 

Species-Specific DMPs with Average Δβ ≥ 0.3 

Significant DMPs 63 55 126 315 1,417 

Hypermethylated 24 8 30 66 1,271 

Hypomethylated 38 46 94 249 144 

Mixture 1 1 2 0 2 

Species-Specific DMPs with Average Δβ ≥ 0.4 

Significant DMPs 15 23 54 89 473 

Hypermethylated 4 2 4 19 414 

Hypomethylated 11 20 50 70 59 

Mixture 0 1 0 0 0 

Details on the number of species-specific DMPs identified for each nonhuman primate 

species in total, when the average absolute change in β values between each pairwise 

species comparison (Δβ) is greater than 0.1, greater than 0.2, greater than 0.3, or greater 

than 0.4. The pattern of methylation (hypermethylated, hypomethylated, or a mixture of 

both) of each species-specific DMP is also indicated. 
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Figure 39. Methylation Levels at Species-Specific DMPs with Various Δβ Threshold 

Cutoffs Identified in the EPIC Array Nonhuman Primate Inter-Specific Study. 

Heatmap depicting (A) the DNA methylation levels (β values) of all species-specific 

DMPs (x-axis) in all nonhuman primate samples (n=58), (B) the DNA methylation levels 

(β values) of all species-specific DMPs with average absolute Δβ values greater than 0.1 

between each taxonomic group (x-axis) in all nonhuman primate samples (n=58), (C) the 

DNA methylation levels (β values) of all species-specific DMPs with average absolute 

Δβ values greater than 0.2 between each taxonomic group (x-axis) in all nonhuman 

primate samples (n=58), and (D) the DNA methylation levels (β values) of all species-

specific DMPs with average absolute Δβ values greater than 0.3 between each taxonomic 

group (x-axis) in all nonhuman primate samples (n=58). The sex and age of each 
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nonhuman primate are also provided (y-axis). Red indicates higher methylation at a 

DMP, while blue indicates lower methylation at a DMP. The dendrogram of all samples 

(y-axis) clusters individuals based on the similarity of their methylation patterns. Samples 

cluster into the large taxonomic groupings of New World monkeys, Old World monkeys, 

and apes, but Old World monkeys do not cluster by species for any of these filtering 

levels. 

 

 

Figure 40. Methylation Levels at Species-Specific DMPs with Δβ≥0.4 Identified in the 

EPIC Array Nonhuman Primate Inter-Specific Study. 

Heatmap depicting the DNA methylation levels (β values) of all species-specific DMPs 

with average absolute Δβ values greater than 0.4 between each taxonomic group (x-axis) 

in all nonhuman primate samples (n=58). The sex and age of each nonhuman primate are 

also provided (y-axis). Red indicates higher methylation at a DMP, while blue indicates 

lower methylation at a DMP. The dendrogram of all samples (y-axis) clusters individuals 
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based on the similarity of their methylation patterns. Samples cluster based on species-

level taxonomic groupings and as predicted based on known species phylogenetic 

histories. 

 

Global changes in methylation across all finalized 39,802 filtered probes and 

averaged within each species reveal that apes, Old World monkeys, and New World 

monkeys are phylogenetically distinct from one another, and these divergences are well 

supported (Figure 41). Similarly, when phylogenetic relationships are evaluated using the 

global changes in methylation of individual animals, apes, Old World monkeys, and New 

World monkeys form distinct lineages that are well supported (Figure 42). However, like 

the clustering of species-specific DMPs, baboons, macaques, and vervets do not form 

distinct lineages based on individual global methylation levels. Several of the branches 

within the Old World monkey clade are poorly supported, though. Phylogenetic 

separation of these Old World monkey species into distinct lineages is only possible 

when the methylation changes considered include species-specific DMPs with Δβ ≥ 0.4 

(Figure 43). 
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Figure 41. Phylogeny Based on Average Species-Level Global Changes in Methylation. 

Observed phylogenetic relationship among nonhuman primates when considering 

average species-level global changes in methylation. This tree was constructed using the 

methylation levels for all of the finalized 39,802 filtered probes. I averaged the β values 

per probe within a species, used Euclidean distances to calculate the difference between 

every two species, and estimated a neighbor joining tree using this distance matrix. For 

the resulting tree, 1000 bootstraps were performed to determine confidence values for 

each branch. The number provide at each node indicates the number of bootstrap 

replicates that support it out of the 1000 performed. 
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Figure 42. Phylogeny Based on Individual-Level Global Changes in Methylation. 

Observed phylogenetic relationship among nonhuman primates when considering 

individual-level global changes in methylation. This tree was constructed using the 

methylation levels for all of the finalized 39,802 filtered probes. I used Euclidean 

distances to calculate the difference between every two individuals, and estimated a 

neighbor joining tree using this distance matrix. For the resulting tree, 1000 bootstraps 

were performed to determine confidence values for each branch. The number provide at 

each node indicates the number of bootstrap replicates that support it out of the 1000 

performed. 
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Figure 43. Phylogeny Based on Individual-Level Changes in Methylation at Species-

Specific DMPs with Various Δβ Threshold Cutoffs. 

Observed phylogenetic relationship among nonhuman primates when considering 

individual-level global changes in methylation. Trees were constructed using the 

methylation levels for (A) all species-specific DMPs, (B) species-specific DMPs with 

average absolute Δβ values greater than 0.1 between each taxonomic group, (C) species-

specific DMPs with average absolute Δβ values greater than 0.2 between each taxonomic 

group, (D) species-specific DMPs with average absolute Δβ values greater than 0.3 

between each taxonomic group, and (E) species-specific DMPs with average absolute Δβ 

values greater than 0.4 between each taxonomic group. I used Euclidean distances to 

calculate the difference between every two individuals, and estimated a neighbor joining 

tree using this distance matrix. For the resulting tree, 1000 bootstraps were performed to 

determine confidence values for each branch. The number provide at each node indicates 

the number of bootstrap replicates that support it out of the 1000 performed. 
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Species-specific DMPs also show associations with genes that have a wide array 

of GO biological processes (APPENDIX MM) and KEGG pathway functions 

(APPENDIX NN). Cellular adhesion is a primary GO function found to be highly 

enriched in species-specific DMPs from macaques, vervets, chimpanzees, and 

marmosets. Species-specific DMPs for chimpanzees and marmosets are also enriched for 

genes involved in the regulation of transcription and gene expression. Additionally, 

enrichment of genes involved in anatomical developmental processes is found in 

baboons, chimpanzees, and marmosets, and chimpanzees and marmosets show further 

enrichment of genes contributing to pattern specification processes, limb development, 

and skeletal system development. Moreover, marmoset species-specific DMPs are 

enriched for genes with functions very closely related to skeletal development, such as 

osteoblast differentiation and ossification, as well as genes involved in metabolism and 

the development of other organ systems including skeletal muscles, nerves, the brain, the 

heart, blood vessels, kidneys, eyes, and ears (APPENDIX MM). Several enriched 

pathways reinforce these molecular functions, and additional pathways related to cancers 

and other disease were also identified (APPENDIX NN). 

Out of the species-specific DMPs identified, some were found to overlap with 

those previously identified as being differentially methylated among primates. These 

include ARTN, COL2A1, and GABBR1 which have been found to be differentially 

methylated among modern humans and great apes (Hernando-Herraez et al. 2013), as 

well as HOXD8, HOXD9, and HOXD10 which have been found to be differentially 

methylated among modern and ancient hominins (Gokhman et al. 2014). Specifically, 1 

species-specific DMP in ARTN shows hypomethylation in marmosets, 3 species-specific 
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DMPs in COL2A1 show hypermethylation in marmosets as compared to all other taxa, 

and while 2 species-specific DMPs in baboons and 3 species-specific DMPs in 

marmosets show hypermethylation in GABBR1, 2 species-specific DMPs show 

hypomethylation in marmosets (APPENDIX KK). Additionally, 3 marmoset species-

specific DMPs show hypermethylation in HOXD8, 1 baboon and 2 marmoset species-

specific DMPs show hypermethylation in HOXD9, 2 chimpanzee species-specific DMPs 

show hypomethylation in HOXD9, and 5 marmoset species-specific DMPs show 

hypermethylation in HOXD10. Of these HOXD10 species-specific DMPs, 4 have Δβ 

between 0.2 and 0.3 and 1 has a Δβ < 0.1 (Figure 44, APPENDIX OO). 

 

 

Figure 44. Genome-Wide Methylation Levels Across HOXD10 in Nonhuman Primates. 

Plot of the methylation levels of significant DMPs across the HOXD10 gene (hg19 

chr2:176981492-176984670). Plot shows the average β values for each DMP with error 

bars indicating 1 standard deviation in each direction for each comparative group (teal = 
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baboon, orange = chimpanzee, purple = macaque, pink = marmoset, and light green = 

vervet). DMP chromosomal position in relation to the HOXD10 gene is also depicted. 

This gene is of interest because it has been found to be differential methylation in ancient 

and modern hominin species (Gokhman et al. 2014). Of the sites depicted here, 5 DMPs 

were found to show significant species-specific methylation in marmosets. Of the 5 

species-specific DMPs in the HOXD10 gene of marmosets, 4 have Δβ between 0.2 and 

0.3 (**) and 1 has a Δβ < 0.1 (*). See Appendix OO for additional information. 

 

Gene-Specific DNA Methylation Profiling and Analyses 

Because of the high number of species-specific DMPs within HOXD10, 

methylation patterns across this gene were assessed at a higher resolution using gene-

specific sequencing techniques. Regular and bisulfite sequences of several regions across 

the HOXD10 were obtained from a subset of EPIC array samples – 3 baboons, 3 

macaques, 3 vervets, 3 chimpanzees, and 3 marmosets (APPENDIX BB, APPENDIX PP, 

APPENDIX QQ, APPENDIX RR). Regular sequencing was very successful, while 

bisulfite sequencing was less successful, with several sequence reads uninterpretable. 

Following the alignment of these sequences to the appropriate nonhuman primate 

references within the EPO whole-genome multiple alignments of several primate 

genomes [Ensembl Compara.8_primates_EPO] (Paten, Herrero, Beal, et al. 2008; Paten, 

Herrero, Fitzgerald, et al. 2008), the presence and absence of methylation across the 

HOXD10 gene in each animal was determined (APPENDIX SS). Specifically, 

methylation was evaluated at human derived CpG sites. Methylation patterns at and 

around the positions targeted by EPIC array probes generally validate that study’s results. 



  170 

Additionally, these data reveal that across the HOXD10 gene, nonhuman primates display 

generally low methylation with some clustered increased amounts of methylation 

upstream of the gene and at the start of the gene body (Figure 45). 

 

 

Figure 45. Gene-Specific Methylation Levels Across HOXD10 in Nonhuman Primates. 

Bar plot of DNA methylation across the HOXD10 gene (hg19 chr2:176981492-

176984670), as well as upstream and downstream several hundred bases (hg19 

chr2:176980532-176985117). Bars depict the presence (tall bar), partial presence 

(medium bar), or absence (low bar) of methylation at human derived CpG sites in 15 

nonhuman primate samples – 3 baboons, 3 macaques, 3 vervets, 3 chimpanzees, and 3 

marmosets. While regular sequencing was very successful, bisulfite sequencing was less 

successful, with several sequence reads uninterpretable. As such, nonhuman primate 
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methylation data is only available for a subset of the CpGs known in humans. Partial 

presence of methylation was called when sequencing fluorescence peaks for cytosine and 

thymine were both present at a particular site and one was at least half the size of the 

other. Overall, these data provide additional information regarding gene-specific 

methylation levels across HOXD10 and confirm some of the EPIC array findings (Figure 

44). CpG sites that were also targeted by the EPIC array are highlighted in yellow and 

include cg18115040 (chr2, position 176981328), cg25371634 (chr2, position 

176981422), cg13217260 (chr2, position 176981469), cg03918304 (chr2, position 

176981654), cg17489939 (chr2, position 176981919), cg26708100 (chr2, position 

176983815), cg10393811 (chr2, position 176983927), cg08992581 (chr2, position 

176983949), and cg06005169 (chr2, position 176984634). See Appendix SS for 

additional information. 

 

Discussion 

Here, I used the EPIC array to identify DNA methylation variation in femur bone 

tissues from five, phylogenetically diverse nonhuman primate species. This was done 

both to determine the effectiveness of this application for nonhuman primate DNA and to 

assess how these patterns vary intra- and inter-specifically.  

I show that using the EPIC array is feasible for skeletal tissues in several 

nonhuman primates. In silico probe filtering methods (Hernando-Herraez et al. 2013; 

Ong et al. 2014) indicated that 39% of all human probes could be reliably mapped to the 

baboon, macaque, and vervet genomes and contained a CpG locus, 76% could be reliably 

mapped to the chimpanzee genome and contained a CpG locus, and 17% could be 
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reliable mapped to the marmoset genome and contained a CpG locus. These proportions 

were slightly lower than expected based on the previous findings of 44% retention for 

baboons using the 450K array (see Chapter 2). However, as previously described, this 

discrepancy may be due to the altered design of the EPIC array as compared to the 450K 

array (see Chapter 3). Additionally, in Old World monkeys, this number was lower than 

expected since previous researchers were able to use these same methods to reliably map 

61% of the human probes on the 450K array to a different Old World monkey, the 

Cynomologus macaque genome (Ong et al. 2014). As previously discussed, this 

discrepancy in number may be due to the quality of each nonhuman primates’ genome 

assembly (see Chapter 2). While all of these Old World monkeys have well annotated 

genomes, the average scaffold length (88,649,475) and contig length (86,040) of the 

Cynomologus macaque genome (Assembly: Macaca_fascicularis_5.0, Accession: 

GCF_000264685.2) are generally higher than those in the baboon, Rhesus macaque, and 

vervet genomes (Table 13). Additionally, the altered design of the EPIC array as 

compared to the 450K array may also contribute to these differences. Regardless, and as 

expected, species more closely related to humans (e.g., chimpanzees) have higher 

numbers of reliably mapped EPIC array probes than species more distantly related to 

humans (e.g., marmosets). 

Subsequent in silico analyses based on sequence alignment criteria (Hernando-

Herraez et al. 2013) and based on gene symbol criteria (Ong et al. 2014) retained similar 

numbers of probes for baboons, vervets, and marmosets, but different numbers for 

macaques and chimpanzees (Figure 35) which is due to the lack of gene information from 

Ensembl BioMart for these genome versions (Table 13). Nevertheless, again, species 
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more closely related to humans have higher numbers of retained probes than species 

more distantly related to humans. Additionally, in chimpanzees, the proportion of probes 

retained using the alignment criteria (72%) exactly matches the proportion previously 

found using the same filtering methods for the 450K array (Hernando-Herraez et al. 

2013). Furthermore, these retained probes maintained wide and comparable distributions 

throughout the genome (APPENDIX GG). However, only a little more than half of the 

resulting probes for each filtering technique overlapped with one another for baboons, 

macaques, vervets, and marmosets, and for chimpanzees, almost all of the retained probes 

using the gene symbol criteria overlapped with those retained using the alignment filter 

criteria (Figure 36). This discrepancy is likely due to the incomplete nature of each 

nonhuman primate genome annotation, as described previously (see Chapter 2). 

Fittingly, after applying the EPIC array to measure DNA methylation patterns of 

genomic material extracted from skeletal tissues collected from each nonhuman primate, 

I found that the hybridization efficiency of probes was significantly correlated with the 

alignment quality of each probe to the baboon genome, and thus, the degree of sequence 

conservation. The majority of filtered probes for both in silico methods passed quality 

controls and produced robust signals on the array, indicating that either filtering 

technique may be appropriate for future research. However, because the filtering method 

based on the alignment filter criteria retained a larger proportion of successfully 

hybridized probes than the method based on the gene symbol criteria (Figure 37) and 

because this method is less influenced by the degree of genome assembly annotation, I 

recommend that this alignment filter criteria method be preferentially used in subsequent 

nonhuman primate studies. 
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This work is an extension of previous work and uses the EPIC array to study 

DNA methylation in several nonhuman primate species. Like its 450K predecessor, the 

EPIC array is advantageous because it is cost efficient per sample and simultaneously 

measures a large number of CpG loci with a broad genomic representation (Michels et al. 

2013). Similar to this study, previous researchers have used the 450K array to measure 

DNA methylation patterns in great apes (Hernando-Herraez et al. 2013), which have 

close evolutionary histories with humans, and in Cynomologus macaques (Ong et al. 

2014), which represent another divergent nonhuman primate species. The current 

research samples primates with a broad range of phylogenetic proximities to humans, 

which further builds on previous studies. Specifically, I assess how DNA methylation 

patterns vary intra- and inter-specifically within the primate lineage. 

With respect to intra-specific morphology, very few sites were found to be 

significantly differentially methylated. Specifically, DMPs were only identified in 

association with baboon bicondylar femur length, baboon maximum femur length, 

macaque proximal femur width, macaque medial condyle width, vervet superior shaft 

width, vervet inferior shaft width, vervet anatomical neck height, and chimpanzee 

anatomical neck length (Table 16). No DMPs were identified in association with 

marmoset morphologies. Additionally, most of these associations only identified one or a 

few DMPs. This limited number of associations may be due to the small sample sizes 

within each species or the small amount of variation identified in each morphology. This 

second point is supported by the fact that almost all of the morphologies found to have 

methylation associations also have the highest intra-specific variation in size as compared 

to morphologies with no methylation associations (Figure 38, APPENDIX CC, 
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APPENDIX JJ). Alternatively, it may be the case that DNA methylation variation does 

not have a large influence on nonpathological femur morphology within nonhuman 

primates. 

Of the few associations observed between methylation and morphology, the 

functional and biological implications of these are questionable. Overall, they likely have 

no causative effects as research has shown that individual site-specific methylation 

changes are not readily associated with differential gene expression (Koch et al. 2011; 

Bork et al. 2010; Y. Chen et al. 2011). Rather, differential gene expression is made 

possible through the accumulation of several methylation changes within promotor 

regions (Suzuki and Bird 2008) or across the gene body (Singer et al. 2015). Thus, the 

individual sites identified as having differential methylation in baboons, macaques, and 

vervets, likely have no gene regulation or larger biological effects. 

This is further supported by the degree of methylation variation observed among these 

DMPs. Sites that have an average change in mean methylation less than 10% (Δβ < 0.1) 

are thought to have little biological relevance (Hernando-Herraez et al. 2013). Thus, 

those DMPs associated with morphological variation that have small changes in 

methylation likely have little to no biological function. 

Furthermore, some of the correlations between morphology and methylation that 

show changes in methylation greater than 10% appear to be highly influenced by a small 

subset of the sample set. This can be seen in the case of macaque proximal width, where 

the majority of the change in methylation is due to two individuals (1 female and 1 male) 

that have extremely low methylation at cg19349877, as compared to all other macaque 

samples that have high methylation at this site (APPENDIX JJ). Additionally, in the case 
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of chimpanzee anatomical neck length which was associated with 273 DMPs, these 

correlations are largely affected by one individual which has an anatomical neck length 

longer than those of the other three chimpanzees. The validity of these associations could 

be determined by increasing sample sizes. Nevertheless, such patterns further support the 

claim that these DMPs have little to no biological effect on morphology. 

Lastly, the limited enrichment of GO biological processes and KEGG pathway 

functions among intra-specific morphologies that had more than 2 significant DMP 

associations indicates the lack of common function among the genes containing DMPs. 

Overall, these finding suggest that while some DMPs appear to be associated with 

morphological variation in nonhuman primates, not enough evidence is present to support 

them having a functional role in the development and maintenance of this morphological 

variation. Larger samples sizes are necessary to validate this. 

With respect to inter-specific variation, several sites were found to have 

significant species-specific methylation differences. Specifically, out of the 39,802 sites 

examined, 650 species-specific DMPs were identified in baboons, 257 in macaques, 639 

in vervets, 2,796 in chimpanzees, and 13,778 in marmosets (Table 18), and these span 

7,320 genes (APPENDIX LL). However, many of these DMPs had biologically 

insignificant changes in mean methylation (Δβ) (Hernando-Herraez et al. 2013), so 

various Δβ cutoff thresholds were considered which reduced the overall number of 

species-specific DMPs among taxa. At the minimum, a 10% change in mean methylation 

(Δβ ≥ 0.1) identified 581 species-specific DMPs in baboons, 230 in macaques, 530 in 

vervets, 1,572 in chimpanzees, and 12,394 in marmosets (Table 18), and these span 6,673 

genes (APPENDIX LL). Conversely, at the extreme, a 40% change in mean methylation 
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(Δβ ≥ 0.4) identified only 15 species-specific DMPs in baboons, 23 in macaques, 54 in 

vervets, 89 in chimpanzees, and 473 in marmosets (Table 18), and these span only 489 

genes (APPENDIX LL). 

Regardless of Δβ cutoff threshold, more species-specific DMPs were found in the 

New World monkey marmosets, followed by the great ape chimpanzees, and lastly the 

Old World monkey baboons, macaques, and vervets. This trend in numbers of species-

specific DMPs is expected given the known phylogenetic relationships between primates, 

with Old World monkeys more closely related to apes and New World monkeys more 

distantly related to both groups (Perelman et al. 2011; Rogers and Gibbs 2014). However, 

while the substantial discrepancy between the number of species-specific DMPs in 

marmosets as compared to all other taxa may simply be due to marmosets having more 

species-specific changes, aspects of the experimental design may also contribute to it. As 

described, marmosets are the only New World primates, so although some of the species-

specific DMPs are marmoset specific, others may actually be specific to all New World 

monkeys. Comparably, DMPs specific to Old World monkeys and catarrhines (which 

include Old World monkeys and apes) may be cancelled out from this study, as such 

changes would be shared between all Old World monkeys and catarrhines, respectively. 

Second, since marmosets are the most phylogenetically distant from humans as compared 

to the other nonhuman primates included in this study (Perelman et al. 2011; Rogers and 

Gibbs 2014), the probe filtering steps may have biased downstream data in favor of 

finding significant results primarily in marmosets. Third, the marmoset data itself has a 

slightly different normalized data distribution than the other nonhuman primates, with 

more mean methylation levels of 50% than is usual (Figure 34). Although, 
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computationally, the filtered array probes examined here appear to hybridize sufficiently 

for marmosets (Figure 37), there may be other unknown biological or technical issues 

that impede proper DNA methylation analyses in marmosets using these arrays, and these 

may have inflated the overall number of marmoset specific DMPs. 

The number of species-specific DMPs identified in this study is comparable to 

those identified in a previous study that assessed methylation patterns in blood from 

chimpanzees, bonobos, gorillas, and orangutans using the 450K array and similar 

alignment criteria filtering methods with a focus on sites that had at least a 10% change in 

mean methylation between species (Hernando-Herraez et al. 2013). This research used a 

final set of 99,919 probes that were shared across all great ape species and covered 

12,593 genes with at least 2 probes per gene. Out of these, 2,284 species-specific DMPs 

were found in humans, 1,245 in chimpanzees and bonobos, 1,374 in gorillas, and 5,501 in 

orangutans (Hernando-Herraez et al. 2013). In the current study, when a 10% change in 

mean methylation (Δβ ≥ 0.1) was specified, only 1,572 sites were found to show 

methylation patterns specific to chimpanzees at the exclusion of all other nonhuman 

species (Table 18). This number is lower than expected given that previously 1,245 sites 

were found to distinguish chimpanzee from other great apes (Hernando-Herraez et al. 

2013), which evolutionarily are more closely related to chimpanzees than are Old World 

and New World monkeys (Perelman et al. 2011; Rogers and Gibbs 2014). However, the 

total number of sites examined in the present study is approximately one-third of that 

examined in the prior great ape study. Thus, a 3-fold increase in the number of sites 

examined might identify a 3-fold increase in chimpanzee species-specific DMPs as 
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compared to Old World and New World monkeys, which would be closer to expectations 

given previous findings (Hernando-Herraez et al. 2013). 

Additionally, the number of DMPs that distinguish species from one another in 

the current study is substantially smaller than the numbers of DMPs identified between 

different skeletal tissue types (bone vs. cartilage) (see Chapter 3), between different age 

cohorts (adults vs. juveniles) (see Chapter 4), and between individuals with different 

skeletal disease states (osteoarthritic vs. healthy) within a nonhuman primate species (see 

Chapter 3). This finding is to be expected since differences in DNA methylation regulate 

gene expression (Suzuki and Bird 2008; Singer et al. 2015) should increase or decrease 

with the degree of differences between cellular functions among comparative groups 

(Zhang et al. 2013). In the case of different tissues, substantial DNA methylation 

differences may enable some of the distinct gene regulation and expression that is 

necessary for the cells in these tissues to promote different tissue functions. In the case of 

different age cohorts, within the same skeletal tissue, slightly fewer DNA methylation 

differences may allow cells to emphasize efforts on growth and development in juveniles 

as compared to maintenance in adults without altering the general function of this tissue 

to anything other than bone-related functions. In the case of osteoarthritic disease states, 

even fewer regulatory changes are likely needed to initiate the dysregulation of tissue 

function than to promote the substantial functional differences between age ranges and 

tissues types. Lastly, in the cases of differences between adult, skeletally healthy, 

nonhuman primate species-specific differences, within the same skeletal tissue, only a 

small number of DNA methylation differences are present. The presence of more 

regulatory variation within species than between species has been observed in other 
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studies (Uebbing et al. 2016) and is likely due to the necessity of specific organs to 

perform specific functions at specific developmental stages regardless of species 

classification. Thus, it is reasonable for epigenetic and regulatory differences, which 

control and enable these age-dependent organ functions, to be greater within a species 

when comparing between tissue types, age cohorts, and possibly disease states, than 

when comparing between species. 

When evaluating how well the methylation patterns at species-specific DMPs 

cluster animals into distinct species, it was observed that a Δβ cutoff threshold of greater 

than 0.4 is necessary to achieve this (Figure 40). Less stringent Δβ cutoff thresholds are 

able to separate apes, New World monkeys, and Old World monkeys into distinct groups, 

but the baboon, macaque, and vervet Old World monkeys do not form distinct species 

groups at these thresholds (Figure 39). Global changes in methylation across all finalized 

39,802 filtered probes show similar phylogenetic patterns. While average species 

methylation patterns reveal a well-supported tree topology that reflects known 

phylogenetic relationships between taxa (Perelman et al. 2011; Rogers and Gibbs 2014) 

(Figure 41), global changes in methylation among individual animals do not separate the 

Old World monkey baboons, macaques, and vervets into distinct phylogenetic groups 

(Figure 42). As before, parsing down these global changes in methylation to only species-

specific DMPs with Δβ ≥ 0.4 enables the phylogenetic separation of these Old World 

monkey species into distinct lineages (Figure 43). In previous studies, global changes in 

methylation were able to separate great apes into species-specific phylogenetic groups 

(Hernando-Herraez et al. 2013). In the current study, the need for a higher Δβ cutoff 

threshold to distinguish species is likely not due to the length of divergence times 
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between the great apes and the haplorhines included in this study. Rather, the slow rate of 

evolution previously observed within baboons and macaques or to methodological 

constraints of the current study may be the cause. 

New World monkeys (platyrrhines) diverged from a common ancestor with 

catarrhines approximately 43.5 million years ago (MYA), and within catarrhines, Old 

World monkeys and apes diverged from one another 31.5 MYA. Within Old World 

monkeys, vervets are a part of the Cercopithecini tribe, while baboons and macaques are 

part of the Papionini tribe. These tribes diverged 11.5 MYA, and within Papionini, the 

common ancestors of baboons and macaques diverged 8.1 MYA. On the other hand, the 

great apes all shared a common ancestor 16.5 MYA, orangutans diverged 16.5 MYA, 

gorillas diverging 8.3 MYA, and humans and chimpanzees diverging from one another 

6.6 MYA (Perelman et al. 2011). The divergence times between baboons, macaques, and 

vervets are comparable to those between humans, chimpanzees, gorillas, and orangutans. 

Therefore, the lengths of divergence times between species do not explain why global 

changes in methylation are unable to fully resolve species-specific phylogenetic clades in 

the current study as compared to previous studies. While nonhuman great apes have 

experienced higher rates of molecular evolution as compared to humans (Elango et al. 

2006), baboons and macaques have slow rates of molecular evolution as compared to 

other Old World monkeys (Elango et al. 2009). This slower genetic rate of evolution in 

baboons and macaques may correspond to slower rates of epigenetic evolution in 

baboons and macaques, making these Old World monkeys appear more similar to vervets 

than expected based on divergence times. Correspondingly, this may make resolving the 

phylogenetic divergences between these taxa more difficult than that between the great 
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apes. Additionally, the number of sites included in the present study (39,802) as 

compared to previous studies (99,919) (Hernando-Herraez et al. 2013) may limit the 

ability of the present study to fully resolve species-specific lineages. This is supported by 

the low support of several branches in the phylogeny based on global changes in 

methylation across individual animals (Figure 42). On the other hand, sample size was 

likely not a contributing factor to the discrepancies between the current study (n=58) and 

previous studies (n=32) (Hernando-Herraez et al. 2013), as the current study has a 

slightly larger total sample size and larger average sample sizes per species (n=11.6 and 

5.8, respectively). 

Alternatively, the fact that global changes in methylation are unable to fully 

resolve Old World monkey species-specific phylogenetic clades in the current study, may 

instead indicate that not enough time has passed for Old World monkey species to evolve 

fixed epigenetic changes between taxa in this tissue. Additionally, it is possible that 

epigenetic variation at many of the sites examined in this study are under balancing 

selection in Old World monkeys which prevents these markers from accurately resolving 

the evolutionary divergences between these species. However, previous research of gene 

regulation differences between species has found that while some drastic deviations in 

gene expression may be under directional or balancing selection (Whitehead and 

Crawford 2006; Romero et al. 2012), most inter-specific regulatory differences appear to 

be under stabilizing selection or neutral evolution  (Brawand et al. 2011; Gilad 2012; 

Romero et al. 2012). 

The evolution of methylation changes along specific nonhuman primate lineages 

is associated with several functions that may contribute to species-specific phenotypic 
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differences (APPENDIX MM, APPENDIX NN). First, several skeletal tissue related 

functions are enriched in species-specific DMPs. Among almost all nonhuman primates, 

cellular adhesion functions are highly enriched. Cellular adhesion is necessary for cells to 

attach to other cells or to the extracellular matrix, which is a necessity for bone cells 

(Mbalaviele et al. 2006). Additionally, in baboons, chimpanzees, and marmosets, 

anatomical developmental processes are enriched, and in chimpanzees and marmosets, 

pattern specification processes, limb development, and skeletal system development are 

enriched. Lastly, in marmosets, specific skeletal functions, such as osteoblast 

differentiation and ossification are also enriched. Overall, these functions validate that 

most patterns of differential methylation relate to skeletal tissue function, regulation, 

development, and maintenance, as well as relate to larger anatomical developmental 

processes. Additionally, functions not specific to the skeletal system were identified. In 

chimpanzees and marmosets, transcription and gene expression regulatory functions were 

enriched. Further, in marmosets, functions related to the development of skeletal muscles, 

nerves, the brain, the heart, blood vessels, kidneys, eyes, and ears were also enriched. All 

together, these findings suggest that many species-specific changes in methylation may 

contribute to the regulation of complex phenotypic changes. While this was not the case 

for linear skeletal morphology, other skeletal traits may be related. 

However, many of the genes associated with the described functions only contain 

an average of 1-2 differentially methylated sites. Previous studies have shown that 

individual site-specific methylation changes are not readily associated with differential 

gene expression (Koch et al. 2011; Bork et al. 2010; Y. Chen et al. 2011). Rather, 

differential gene expression is made possible through the accumulation of several 
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methylation changes within promotor regions (Suzuki and Bird 2008) or across the gene 

body (Singer et al. 2015). Therefore, the enriched functions identified are likely not true 

biological effects due to methylation differences on their own. Rather they hint at 

biological effects that may be the result of the combined effects of several genetic, 

epigenetic, and other regulatory processes.  

Finally, some of genes containing species-specific DMPs overlap with those 

previously identified as being differentially methylated among primates. These include 

ARTN, COL2A1, and GABBR1 which have been found to be differentially methylated in 

blood among modern humans and great apes (Hernando-Herraez et al. 2013), as well as 

HOXD8, HOXD9, and HOXD10 which have been found to be differentially methylated 

among modern and ancient hominins (Gokhman et al. 2014). Specifically, the 

neurotrophic factor ARTN shows species-specific hypomethylation at 1 site in marmosets, 

and in previous work it shows species-specific hypermethylation at 3 sites in humans as 

compared to other great apes (Hernando-Herraez et al. 2013). Additionally, COL2A1 

which codes for a type of collagen found in cartilage, shows species-specific 

hypermethylation at 3 sites in marmosets, and in previous work it shows species-specific 

hypermethylation of 4 sites in humans as compared to other great apes (Hernando-

Herraez et al. 2013). The neuronal receptor GABBR1, however, shows more complicated 

methylation patterns. In the current study, GABBR1 shows species-specific 

hypermethylation at 2 sites in baboons, hypermethylation at 3 sites in marmosets, and 

hypomethylation at 2 sites in marmosets. In previous work, GABBR1 shows relative 

hypomethylation in orangutans and relative hypermethylation in chimpanzees and 

bonobos (Hernando-Herraez et al. 2013). Lastly, 3 genes within the HOXD cluster 
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(HOXD8, HOXD9, and HOXD10), which are involved in limb development, also show 

complicated methylation patterns. In the current study, HOXD8 shows species-specific 

hypermethylation at 3 sites in marmoset, HOXD9 shows species-specific 

hypermethylation at 1 site in baboons and 2 sites in marmosets and species-specific 

hypomethylation at 2 sites in chimpanzees, and HOXD10 shows species-specific 

hypermethylation at 5 sites in marmosets. In previous work, HOXD8 shows 

hypomethylation in modern and archaic hominins, HOXD9 shows hypermethylation in 

archaic hominins as compared to modern humans, and HOXD10 shows hypermethylation 

in archaic hominins as compared to modern humans (Gokhman et al. 2014). 

Of the HOXD cluster genes showing species-specific methylation differences, 

HOXD10 contains the largest number of differences, has an active role in anatomical 

development, and has been found to be differentially methylated among hominins. Thus, 

it was selected for subsequent DNA methylation profiling and analysis at a higher 

resolution using gene-specific sequencing techniques. HOXD10 specifically codes for a 

protein that functions as a sequence-specific transcription factor which is expressed in the 

developing limb buds and is involved in differentiation and limb development. In the 

current study, each nonhuman primate species shows low to intermediate methylation 

levels across the gene body, with 5 sites from the EPIC array showing slightly higher 

methylation levels in marmosets as compared to other taxa (Figure 44, APPENDIX OO). 

A similar pattern is observed in the gene-specific methylation data, but it further reveals 

that in general, HOXD10 is not highly methylated in nonhuman primates. However, 

across all taxa, some clusters of higher methylation are found upstream of the gene and at 
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the start of the gene body, with marmosets on average displaying more methylation in the 

gene body than other taxa (Figure 45, APPENDIX SS). 

In hominins, humans display hypomethylation across the HOXD10 gene body, 

Neandertals displayed intermediate methylation levels, and Denisovans displayed high 

levels of methylation (Gokhman et al. 2014). The variation of methylation patterns in the 

gene body of this gene suggest that intermediate methylation levels may be a more 

ancestral epigenetic state for this region in the primate lineage, while the extreme 

hypermethylation of this region in Denisovans and the extreme hypomethylation of this 

region in humans may be derived epigenetic states. Previous work has proposed that 

methylation differences in HOXD10 may be associated with phenotypic distinctions 

between modern human and archaic hominin limbs (Gokhman et al. 2014). However, the 

current study did not find substantial associations between methylation variation and 

aspects of femur morphology within nonhuman primate species. Further work to 

understand the role of differential methylation of HOXD10 in promoting morphological 

changes of the limb should be explored. 

In conclusion, I determined that the EPIC array can be used to measure genome-

wide DNA methylation in skeletal tissues from several nonhuman primates. While 

significant associations were not readily found between methylation and nonpathological 

skeletal morphologies, several significant differences in methylation were observed inter-

specifically. This is the first study to specifically assess DNA methylation using this 

method in skeletal tissues from a taxonomically diverse set of nonhuman primates. From 

an evolutionary perspective, the results of this study reveal DNA methylation variation in 

five species, as well as the degree to which intra-specific methylation variation relates to 
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skeletal morphology and the degree to which methylation variation is present inter-

specifically. Methylation patterns are not substantially associated with nonpathological 

morphologies. However, among species, methylation variation is associated with genes 

that impact skeletal development and maintenance, and this may have direct downstream 

regulatory and phenotypic effects. Additionally, nonhuman primate species-specific DNA 

methylation patterns help provide a phylogenetic context in which to frame ancient 

hominin epigenetic studies. 
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CHAPTER 6 

CONCLUSION 

The current research assesses how epigenetic patterns vary intra- and inter-

specifically in primate taxa and in relation to skeletal phenotypes. Specifically, the 

overarching objective of this work was to identify genome-wide and gene-specific DNA 

methylation patterns in nonhuman primate skeletal tissues and assess variation within 

species by determining how patterns differ between tissue types, between age ranges, 

between skeletal disease states, between nonpathological skeletal morphologies, and 

among species. 

Overall, more significantly differentially methylated positions (DMPs) were 

identified within species than between species. Within species, skeletal tissue types (bone 

vs. cartilage) (see Chapter 3) showed more DMPs than different age cohorts (adults vs. 

juveniles) (see Chapter 4), which showed more DMPs than different skeletal disease 

states (OA vs. healthy) (see Chapter 3) or variations in nonpathological morphologies of 

the femur (see Chapter 5). These finding are to be expected since other research has also 

observed more regulatory variation within species than between species (Uebbing et al. 

2016). Additionally, within species, differences in DNA methylation and its regulation of 

gene expression (Suzuki and Bird 2008; Singer et al. 2015) should increase or decrease 

with the degree of differences between cellular functions among comparative groups 

(Zhang et al. 2013). 

In Chapter 2, I used the Illumina Infinium Human Methylation450 BeadChip 

(450K array) to identify DNA methylation patterns in bone and cartilage of age-matched, 

adult female baboons, five with and five without knee OA. I validated that the 



  189 

hybridization efficiency of 450K array probes is related to the degree of sequence 

similarity between the probes and the baboon genome. Additionally, approximately 44% 

of the 450K array probes reliably align to the baboon genome, contain a CpG site of 

interest, and maintain a wide distribution throughout the genome. I also found that 

filtering probes using alignment similarity criteria retains more efficiently hybridized 

probes than filtering probes using gene symbol similarity criteria. Both filtering methods 

identified significant DMPs between healthy and OA individuals in cartilage tissues. 

Specifically, these DMPs are associated with 8 genes, and the methylation patterns 

identified in 1 of these genes overlap with those previously identified in humans. 

Conversely, in bone tissues, no DMPs were found between disease states, and no DMPs 

were found between tissue types. In summary, I conclude that the 450K array can be used 

to measure genome-wide DNA methylation in baboon tissues and identify significant 

associations with complex traits and that within primates, while some DNA methylation 

patterns associated with OA are evolutionarily conserved across taxa, others are not. 

In Chapter 3, I used the Illumina Infinium MethylationEPIC BeadChip (EPIC 

array) to further explore the evolution of OA epigenetics by identifying DNA methylation 

patterns in bone and cartilage of 56 pedigreed, adult baboons, 28 with and 28 without 

knee OA, and by assessing whether DNA methylation variation is associated with OA in 

baboons and in a manner similar to that observed in humans. Several significant DMPs 

were found between tissue types. Within cartilage tissue, many DMPs were also 

identified between healthy and OA individuals. Conversely, very few DMPs were 

identified between disease states in bone tissue. In summary, these finding provide some 

insight into the etiology of OA. Furthermore, some genes containing DMPs overlap with 
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and display methylation patterns similar to those previously identified in human OA 

studies, while others genes do not. These results provide insight into the evolutionary 

conservation of epigenetic mechanisms associated with OA. From an evolutionary 

perspective, these results provide evidence for DNA methylation variation in skeletal 

tissue from one primate species and two skeletal tissues. They also reveal the degree to 

which the common skeletal condition OA affects this variation. 

In Chapter 4, I used the EPIC array to examine the evolution of aging epigenetics 

specifically within the primate lineage by identifying DNA methylation patterns in bone 

from 46 pedigreed baboons, 28 that were adults and 18 that were juveniles, and assessing 

whether DNA methylation variation is associated with aging in baboons and in a manner 

similar to that observed in humans. Several significant DMPs were found between these 

age cohorts, and similar to other animals, adult baboons display global hypomethylation 

as compared to juvenile baboons. The significant age-related DMPs identified are 

associated with genes involved in development processes and pathways related to the 

progression of diseases of aging. Additionally, while some of these age-related DMPs 

overlap with and display methylation patterns similar to those previously identified in 

human aging studies, the majority of previously identified age-related methylation loci in 

humans were not significantly differentially methylated in baboons. Nevertheless, 

methylation levels at these human loci are still able to differentiate baboon age cohorts. 

In summary, these results reveal how DNA methylation varies with respect to age in 

skeletal tissues from one primate species and provide insight into the evolutionary 

conservation of aging epigenetics within the primate lineage. 
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Lastly, in Chapter 5, I used the EPIC array and gene-specific methylation 

sequencing to identify DNA methylation patterns in bone from 28 baboons, 10 macaques, 

10 vervets, 4 chimpanzees, and 6 marmosets in order to assess how these patterns vary 

intra-specifically in relation to nonpathological femur bone morphologies and inter-

specifically. I validated that the hybridization efficiency of EPIC array probes is related 

to the degree of sequence similarity between the probes and each nonhuman primate 

genome and determined that approximately 39%, 39%, 39%, 76%, and 17% of the EPIC 

array probes reliably align to the baboon, macaque, vervet, chimpanzee, and marmoset 

genomes, respectively, contain a CpG site of interest, and maintain a wide distribution 

throughout the genome. I also found that filtering probes using alignment similarity 

criteria retains more efficiently hybridized probes than filtering probes using gene symbol 

similarity criteria. Additionally, significant differential methylation was identified in a 

subset of morphological variants within species. However, these significant DMPs likely 

do not have large biological effects and may be confounded by other variables associated 

with morphological variation. Furthermore, I found several sites that show species-

specific methylation patterns. Higher resolution of methylation variation across a subset 

of these regions confirms these patterns and provides more insight into their evolution 

history. Finally, genome-wide DNA methylation patterns across all 39,802 sites 

examined produce a topology that reflects known phylogenetic relationships between 

taxa. In summary, from an evolutionary perspective, these findings give us an 

appreciation of DNA methylation variation in skeletal tissues within and among five 

nonhuman primate species. They also provide insight into the degree to which this 
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epigenetic variation relates to variation in skeletal morphology and taxonomic 

differences. 

In conclusion, although this work is exploratory in nature and cannot make 

substantial claims regarding the mechanisms contributing to DNA methylation variation 

or the functional consequences of this variation within and among nonhuman species, it 

does identify intra- and inter-specific DNA methylation variation in nonhuman primate 

skeletal tissues and how this variation relates to complex traits. It also helps to inform our 

understanding of human evolution by examining the taxonomic diversity of primates 

more deeply and by exploring DNA methylation in novel tissues among nonhuman 

primates. With respect to complex skeletal phenotypes, it expands the range of traits that 

can be explored with respect to epigenetic mechanisms. Additionally, it builds on 

previous pathology focused studies to encourage an evolutionary medicine understanding 

and investigates novel nonpathological phenotypes. Finally, it begins to build a more 

robust phylogenetic context in which ancient epigenetic studies can be framed. All 

together this work begins to lay the foundation for future inquiries into the evolution of 

epigenetic changes within the primate lineage and their contribution to variations in 

complex phenotypes. 
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APPENDIX A 

NONHUMAN PRIMATE ILLUMINA INFINIUM METHYLATION ARRAY PROBE 

FILES  
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 Consult the attached zipped file that contains detailed information on whether 

each probe on the 450K and EPIC arrays map to specific nonhuman primate genomes, 

and if so, how well each probe and the mapped region align and whether associated gene 

symbols for humans and nonhuman primates match. Specifically, the zipped file 

includes: 

 a probe annotation file for baboons using the 450K array 

(Baboon_450K_Probe_Filter.csv) 

 a probe annotation file for baboons using the EPIC array 

(Baboon_EPIC_Probe_Filter.csv) 

 a probe annotation file for chimpanzees using the EPIC array 

(Chimpanzee_EPIC_Probe_Filter.csv) 

 a probe annotation file for macaques using the EPIC array 

(Macaque_EPIC_Probe_Filter.csv) 

 a probe annotation file for marmosets using the EPIC array 

(Marmoset_EPIC_Probe_Filter.csv) 

 a probe annotation file for vervets using the EPIC array 

(Vervet_EPIC_Probe_Filter.csv) 

 descriptions for the column headers in each probe annotation file 

(Probe_Filter_Key.csv) 

The CSV files within the attached zipped file can be opened in Microsoft Excel, Notepad, 

or any other text editor. 

 

Probe_Annotation_Filters.csv  
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APPENDIX B 

NORMALIZED AND FILTERED 450K ARRAY METHYLATION VALUES FOR 

THE BABOON OSTEOARTHRITIS STUDY  
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Consult the attached zipped file that contains the normalized and filtered 450K 

array β-values (450K_Baboon_OA_Beta.csv) and M-values (450K_Baboon_OA_M.csv) 

for each sample and each retained probe that were used in the 450K array baboon 

osteoarthritis study. Each CSV can be opened in Microsoft Excel, Notepad, or any other 

text editor. 

 

450K_Baboon_OA.zip  
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APPENDIX C 

BABOON SAMPLE SET FOR 450K ARRAY OSTEOARTHRITIS STUDY  
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Consult the attached Excel file which can be opened in Microsoft Excel. Table 

outlines each sample’s animal identification number (Animal ID), tissue type (Tissue 

Type), classification as healthy or having knee osteoarthritis (Disease Status), sex (Sex), 

and age in years (Age), as well as whether the tissue sample came from the right or left 

femur (Side) and the medial or lateral condyle (Condyle), the concentration of DNA 

extracted using a Nanodrop (Nanodrop) and a Qubit (Qubit), the amount of DNA run on 

the 450K array (DNA (ng)), and the identification number of the beadchip (Array ID) and 

array (Position) that each sample was run on. 

 

450K_Baboon_OA_Samples.xlsx  
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APPENDIX D 

GENOMIC DISTRIBUTION OF 450K ARRAY PROBES RETAINED FOR 

BABOONS  
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Consult the attached Excel file which can be opened in Microsoft Excel. Details 

on the gene associations, genomic locations, and proximity to CpG islands of all probes 

that successfully mapped to the baboon genome with e-values less than e-10, had only 

unique BLAST hits, and targeted a CpG site (Total Mapped Probes), probes that fit the 

alignment filter criteria (Alignment Filter Probes), and probes that fit the gene symbol 

filter criteria (Gene Symbol Filter Probes). Number of Genes indicates the number of 

unique gene symbols associated with probes. Probes Per Gene indicates the average 

number of probes that target each associated gene. For genomic locations, TSS 200 and 

TSS 1500 indicate the transcription start site areas between the start of the gene and 

200bp upstream or 1500bp upstream respectively, 5'UTR and 3’UTR indicate the 

untranslated regions of genes, 1st Exon indicates the first exon within a gene, and Gene 

Body indicates any area within the exons and introns of a gene. For proximity to CpG 

islands, Island indicates areas within CpG islands, North Shelf indicates areas 2-4kb 

upstream from a CpG island, North Shore indicates areas up to 2kb upstream from a CpG 

island, South Shelf indicates areas 2-4kb downstream from a CpG island, South Shore 

indicates areas up to 2kb downstream from a CpG island, and Open Sea indicates isolated 

CpG site in the genome. 

 

450K_Baboon_ProbeDist.xlsx  
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APPENDIX E 

ALIGNMENT PARAMETER CORRELATIONS OF 450K ARRAY PROBES 

RETAINED FOR BABOON OSTEOARTHRITIS STUDY  
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Consult the attached Excel file which can be opened in Microsoft Excel. Results 

of Spearman correlation tests between 450K array probe detection p-values and 

alignment quality parameters. These parameters included the alignment bitscores, e-

values, and percent identity. For all probes that successfully mapped to the baboon 

genome with e-values less than e-10, had only unique BLAST hits, and targeted a CpG 

site (Total Mapped Probes), probes that fit the alignment filter criteria (Alignment Filter 

Probes), and probes that fit the gene symbol filter criteria (Gene Symbol Filter Probes), 

significant negative correlations were identified for alignment bitscores and percent 

identities, and significant positive correlations were identified for alignment e-values. 

 

450K_Baboon_OA_ProbeCorr.xlsx  
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APPENDIX F 

NORMALIZED AND FILTERED EPIC ARRAY METHYLATION VALUES FOR 

THE BABOON OSTEOARTHRITIS STUDY  
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Consult the attached zipped file that contains the normalized and filtered EPIC 

array β-values (EPIC_Baboon_OA_Beta.csv) and M-values (EPIC_Baboon_OA_M.csv) 

for each sample and each retained probe that were used in the EPIC array baboon 

osteoarthritis study. Each CSV can be opened in Microsoft Excel, Notepad, or any other 

text editor. 

 

EPIC_Baboon_OA.zip  
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APPENDIX G 

BABOON SAMPLE SET FOR EPIC ARRAY OSTEOARTHRITIS STUDY  
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Consult the attached Excel file which can be opened in Microsoft Excel. Table 

outlines each sample’s animal identification number (Animal ID), species (Species), 

tissue type (Tissue Type), classification as healthy or having knee osteoarthritis (Disease 

Status), sex (Sex), age in years (Age), and adult steady state weight in kilograms 

(Weight), as well as the identification number of the beadchip (Array ID) and array 

(Position) that each sample was run on. 

 

EPIC_Baboon_OA_Samples.xlsx  
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APPENDIX H 

GENOMIC DISTRIBUTION OF EPIC ARRAY PROBES RETAINED FOR 

BABOONS  
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Consult the attached Excel file which can be opened in Microsoft Excel. Details 

on the gene associations, genomic locations, and proximity to CpG islands (based on the 

human genome hg19) of all probes that successfully mapped to the baboon genome with 

e-values < e-10, had only unique BLAST hits, and targeted a CpG site (Total Mapped 

Probes) and probes that fit the alignment filter criteria (Alignment Filter Probes). Number 

of Genes indicates the number of unique gene symbols associated with probes. Probes 

Per Gene indicates the average number of probes that target each associated gene. For 

genomic locations, TSS 200 and TSS 1500 indicate the transcription start site areas 

between the start of the gene and 200bp upstream or 1500bp upstream respectively, 

5'UTR and 3’UTR indicate the untranslated regions of genes, 1st Exon indicates the first 

exon within a gene, ExonBnd indicates the gene body exons, and Gene Body indicates 

any area within the exons and introns of a gene. For proximity to CpG islands, Island 

indicates areas within CpG islands, North Shelf indicates areas 2-4kb upstream from a 

CpG island, North Shore indicates areas up to 2kb upstream from a CpG island, South 

Shelf indicates areas 2-4kb downstream from a CpG island, South Shore indicates areas 

up to 2kb downstream from a CpG island, and Open Sea indicates isolated CpG site in 

the genome. 

 

EPIC_Baboon_ProbeDist.xlsx  
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APPENDIX I 

ALIGNMENT PARAMETER CORRELATIONS OF EPIC ARRAY PROBES 

RETAINED FOR BABOON OSTEOARTHRITIS STUDY  
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Consult the attached Excel file which can be opened in Microsoft Excel. Results 

of Spearman correlation tests between EPIC array probe detection p-values and 

alignment quality parameters. These parameters included the alignment bitscores, e-

values, and percent identity. For the probes that fit the alignment filter criteria, significant 

negative correlations were identified for alignment bitscores and percent identities, and 

significant positive correlations were identified for alignment e-values. 

 

EPIC_Baboon_OA_ProbeCorr.xlsx  
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APPENDIX J 

GENOMIC DISTRIBUTION OF SIGNIFICANT DMPS IDENTIFIED IN THE EPIC 

ARRAY BABOON OSTEOARTHRITIS STUDY  
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Consult the attached Excel file which can be opened in Microsoft Excel. Table 

showing the number of significant DMPs between comparative groups when only 

accounting for kinship (Kinship) and when accounting for kinship and using a Δβ ≥ 0.1 

threshold (Δβ ≥ 0.1) and the total number of loci examined that occupy different genomic 

regions (based on the human genome hg19). Number of Genes indicates the number of 

unique gene symbols associated with DMPs. Probes Per Gene indicates the average 

number of DMPs within each associated gene. For genomic locations, TSS200 and 

TSS1500 indicate the transcription start site areas between the start of the gene and 200bp 

upstream or 1500bp upstream respectively, 5'UTR and 3’UTR indicate the untranslated 

regions of genes, 1st Exon indicates the first exon within a gene, ExonBnd indicates the 

gene body exons, and Gene Body indicates any area within the exons and introns of a 

gene. For proximity to CpG islands, Island indicates areas within CpG islands, North 

Shelf indicates areas 2-4kb upstream from a CpG island, North Shore indicates areas up 

to 2kb upstream from a CpG island, South Shelf indicates areas 2-4kb downstream from 

a CpG island, South Shore indicates areas up to 2kb downstream from a CpG island, and 

Open Sea indicates isolated CpG site in the genome. 

 

EPIC_Baboon_OA_DMPDist.xlsx  
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APPENDIX K 

GENE DETAILS OF SIGNIFICANT DMPS IDENTIFIED IN THE EPIC ARRAY 

BABOON OSTEOARTHRITIS STUDY  
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Consult the attached Excel file that can be opened in Microsoft Excel. Tables 

show the details on the significant DMPs between each comparative group – bone vs. 

cartilage in OA, bone vs. cartilage in healthy, OA vs. healthy in bone, OA vs. healthy in 

cartilage, and all four combinations of disease state and tissue type. Table includes the 

identification number of each significant DMP probe (EPIC Array Probe ID), as well as 

additional annotation information for each significant DMP probe (Human Gene Symbol, 

Baboon Gene Symbol, Baboon Chromosome, Baboon CpG Position), the average β 

values for each comparative group (Average β Values), and the difference in β values 

across groups (Absolute Difference in β Values). Results for the initial DMP analysis 

before accounting for kinship (DMP Analysis) includes the log fold difference in M 

values between each comparative group (Log Fold Change in M Values) and the p-values 

for each DMP after accounting for multiple testing (Adjusted P-Value). Results for the 

DMP analyses that account for kinship (Kinship Analysis) include the log likelihood 

values when the comparative group variable of interest was included in (Log Likelihood 

with Variable of Interest) or excluded from (Log Likelihood without Variable of Interest) 

the GLMM, the chi-square value (X2), and the p-value for these tests (P-Value). The 

table order is based on the kinship analysis p-values (smallest to largest) and divided such 

that those probes with the difference in β values greater than 0.1 and less than 0.1 are 

separated. 

 

EPIC_Baboon_OA_DMP.xlsx  
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APPENDIX L 

SIGNIFICANT DMRS IDENTIFIED IN THE EPIC ARRAY BABOON 

OSTEOARTHRITIS STUDY  
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Consult the attached Excel file that can be opened in Microsoft Excel. Tables 

show the details on the significant DMRs between each comparative group (adjusted p-

value < 0.05) – bone vs. cartilage in OA, bone vs. cartilage in healthy, OA vs. healthy in 

bone, OA vs. healthy in cartilage, and all four combinations of disease state and tissue 

type. These analyses used a Gaussian kernel bandwidth of 1000 base pairs with a scaling 

factor of 2 as recommending in the DMRcate package in R. DMRs had to contain at least 

2 CpG sites that were less than 1000 base pairs apart, and p-values were adjusted using 

the Benjamini-Hochberg method. Tables include the genomic location of each DMR 

based on the human (hg19) genome (Human Chromosome, Human DMR Start, Human 

DMR End), the length of each DMR in base pairs (DMR Length (bp)), the number of 

CpG sites constituting the significant region (No. CpGs), the minimum adjusted p-values 

from the CpGs constituting each DMR (Adjusted P-Value), the stouffer transformations 

of the groups of false detection rates for individual CpG sites as DMR constituents for 

each DMR (FDR), the maximum absolute beta fold change within each DMR (Max. Log 

Fold Change in β Values), the mean beta fold change within each DMR (Mean Log Fold 

Change in β Values), and lists of genes with promotor regions that overlap with each 

DMR (Overlapping Promotors). 

 

EPIC_Baboon_OA_DMR.xlsx  
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APPENDIX M 

GO BIOLOGICAL PROCESSES ENRICHED FOR SIGNIFICANT DMPS 

IDENTIFIED IN THE EPIC ARRAY BABOON OSTEOARTHRITIS STUDY  
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Consult the attached Excel file that can be opened in Microsoft Excel. Tables 

contain the GO biological process terms that are significantly enriched (FDR < 0.05) for 

significant DMPs that have Δβ values greater than 0.1 between comparative groups – 

bone vs. cartilage in OA, bone vs. cartilage in healthy, OA vs. healthy in bone, OA vs. 

healthy in cartilage, and all four combinations of disease state and tissue type – taking 

into account the differing number of probes per gene present on the EPIC array. Tables 

include the identification numbers (GO ID) and terms (GO Biological Process Term) for 

each significantly enriched GO term, the total number of genes associated with each GO 

term (No. Genes Total), the number of genes with significant DMPs that are also 

associated with each GO term (No. Gene with DMPs), the p-value for over-representation 

of each GO term (P-Value), and the false discovery Rate for each GO term (FDR). For 

OA versus healthy bone, no GO categories significant at 5% FDR were identified, so all 

GO functions with p-values < 0.05 are listed. 

 

EPIC_Baboon_OA_GO.xlsx  
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APPENDIX N 

KEGG PATHWAYS ENRICHED FOR SIGNIFICANT DMPS IDENTIFIED IN THE 

EPIC ARRAY BABOON OSTEOARTHRITIS STUDY  
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Consult the attached Excel file that can be opened in Microsoft Excel. Tables 

contain the KEGG pathways that are significantly enriched (FDR < 0.05) for significant 

DMPs that have Δβ values greater than 0.1 between comparative groups – bone vs. 

cartilage in OA, bone vs. cartilage in healthy, OA vs. healthy in bone, OA vs. healthy in 

cartilage, and all four combinations of disease state and tissue type – taking into account 

the differing number of probes per gene present on the EPIC array. Tables include the 

identification numbers (KEGG ID) and pathways (KEGG Pathway) for each significantly 

enriched KEGG term, the total number of genes associated with each KEGG pathway 

(No. Genes Total), the number of genes with significant DMPs that are also associated 

with each KEGG pathway (No. Gene with DMPs), the p-value for over-representation of 

each KEGG pathway (P-Value), and the false discovery Rate for each KEGG pathway 

(FDR). 

 

EPIC_Baboon_OA_KEGG.xlsx  
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APPENDIX O 

OVERLAP OF GENES WITH DIFFERENTIAL METHYLATION ASSOCIATIONS 

FROM HUMAN AND BABOON OSTEOARTHRITIS STUDIES  
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Consult the attached Excel file which can be opened in Microsoft Excel. Details 

on the previous findings of differential methylation associations with human OA that do 

overlap with the current findings of differential methylation association with baboon OA. 

Table outlines several genes that overlap between human and baboons (Gene), the 

reference sources in which human data are described (Reference), the number of 

significant DMPs for each gene that were identified as being hypermethylated or 

hypomethylated in baboon OA (No. Probes), and whether any particular EPIC array 

probe exactly overlapped between humans and baboons (Matching Probes). The baboon 

results described here are for the OA vs. healthy comparison in cartilage tissues 

(Cartilage tab) and bone tissues (Bone tab). 

 

EPIC_Baboon_OA_CompareGene.xlsx  
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APPENDIX P 

COMPARISON OF DIFFERENTIAL METHYLATION ASSOCIATIONS WITH 

OSTEOARTHRITIS IN HUMAN AND BABOON STUDIES  
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Consult the attached Excel file that can be opened in Microsoft Excel. Details on 

the previous findings of differential methylation associations with human OA that do and 

do not overlap with the current findings of differential methylation association with 

baboon OA. 

The Overlapping Table outlines several genes with differential methylation in 

human and baboon OA studies (Gene). Details on previous findings in humans include 

the publications source of these data (Reference), the methods used to collect these data 

(Method), as well as specifics (when available) on the locus identification number that 

was differentially methylated (Array Probe ID), the average methylation (β Value for 

OA) for the particular OA phenotype evaluated in each study (Phenotype of Interest), the 

specific comparison made in each study (Comparison), and whether the phenotype was 

hyper- or hypo-methylated after each comparison was performed (OA Methylation 

Level). Details on the current findings of this study include the probe identification 

numbers (EPIC Array Probe ID) of DMPs that were significant after performing specific 

comparisons (Comparison) and accounting for kinship, whether the OA was hyper- or 

hypo-methylated after each comparison was performed (OA Methylation Level), whether 

the Δβ values identified were greater than 0.1 (Δβ Value > 0.1), and the significance level 

of the association (Adjusted P-Value). Additionally, the average β values for each 

comparative group and annotation information for each probe are provided. For the 

current study, when the comparison was tissue type x disease state (OA bone vs. healthy 

bone vs. OA cartilage vs. healthy cartilage), the OA methylation level was listed as 

hypermethylated when methylation in both tissues was higher for OA than that of 
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healthy, hypomethylated when methylation in both tissues was lower for OA than that of 

healthy, or mixed if either of the previous cases was not met. 

The Non-Overlapping Table outlines several genes with differential methylation 

in human OA studies (Gene). Details on previous findings in humans include the 

publications source of these data (Reference), the methods used to collect these data 

(Method), as well as specifics (when available) on the locus identification number that 

was differentially methylated (Array Probe ID), the average methylation (β Value for 

OA) for the particular OA phenotype evaluated in each study (Phenotype of Interest), the 

specific comparison made in each study (Comparison), and whether the phenotype was 

hyper- or hypo-methylated after each comparison was performed (OA Methylation 

Level). Lastly, details on whether each gene or locus was or was not included in the 

current study after probe filtering (Tested in Current Study?) is provided. 

The References Table provides details on the references included in the human-

baboon OA methylation comparisons. 

Abbreviations: NA = gene symbol not available, 27K = Illumina Infinium 

HumanMethylation27K BeadChip, 450K = Illumina Infinium HumanMethylation450K 

BeadChip, microarray = Agilent Human Promoter Microarray, OA = osteoarthritis, OP = 

osteoporosis. 

 

EPIC_Baboon_OA_Compare.xlsx  
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APPENDIX Q 

DMP ANALYSIS RESULTS FOR SPECIFIC GENES IN EPIC ARRAY BABOON 

OSTEOARTHRITIS STUDY  
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Consult the attached Excel file which can be opened in Microsoft Excel. Table 

describing the DMP analysis results for four genes - TBX4, HOXD8, LEPR, and RUNX1. 

Table includes the identification number of each DMP examined (EPIC Array Probe ID), 

as well as additional annotation information for each of these sites (Human Gene Symbol, 

Human Chromosome (hg19), Human CpG Position (hg19), Baboon Gene Symbol, 

Baboon Chromosome, Baboon CpG Position), whether each site was found to be 

significantly differentially methylated between OA and healthy baboons when examining 

cartilage or bone tissues and if so whether OA tissues were hypermethylated or 

hypomethylated as compared to healthy tissues (Significant DMP between OA and 

Healthy Baboons), and the average β values for each comparative group (Average β 

Values). Those significant DMPs that had Δβ ≥ 0.1 are shown in bold. 

 

EPIC_Baboon_OA_DMPGenes.xlsx  
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APPENDIX R 

NORMALIZED AND FILTERED EPIC ARRAY METHYLATION VALUES FOR 

THE BABOON AGING STUDY  
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Consult the attached zipped file that contains the normalized and filtered EPIC 

array β-values (EPIC_Baboon_Aging_Beta.csv) and M-values 

(EPIC_Baboon_Aging_M.csv) for each sample and each retained probe that were used in 

the EPIC array baboon aging study. Each CSV can be opened in Microsoft Excel, 

Notepad, or any other text editor. 

 

EPIC_Baboon_Aging.zip  
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APPENDIX S 

BABOON SAMPLE SET FOR EPIC ARRAY AGING STUDY  
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Consult the attached Excel file which can be opened in Microsoft Excel. Table 

outlines each sample’s animal identification number (Animal ID), species (Species), age 

classification (Age Cohort), sex (Sex), and age in years (Age), as well as the 

identification number of the beadchip (Array ID) and array (Position) that each sample 

was run on. 

 

EPIC_Baboon_Aging_Samples.xlsx  
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APPENDIX T 

ALIGNMENT PARAMETER CORRELATIONS OF EPIC ARRAY PROBES 

RETAINED FOR BABOON AGING STUDY  
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Consult the attached Excel file which can be opened in Microsoft Excel. Results 

of Spearman correlation tests between EPIC array probe detection p-values and 

alignment quality parameters. These parameters included the alignment bitscores, e-

values, and percent identity. For the probes that fit the alignment filter criteria, significant 

negative correlations were identified for alignment bitscores and percent identities, and 

significant positive correlations were identified for alignment e-values. 

 

EPIC_Baboon_Aging_ProbeCorr.xlsx  
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APPENDIX U 

GENE DETAILS OF SIGNIFICANT DMPS IDENTIFIED IN THE EPIC ARRAY 

BABOON AGING STUDY  
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Consult the attached Excel file that can be opened in Microsoft Excel. Table 

shows the details on the significant DMPs between adult and juvenile baboons. Table 

includes the identification number of each significant DMP probe (EPIC Array Probe 

ID), as well as additional annotation information for each significant DMP probe (Human 

Gene Symbol, Baboon Gene Symbol, Baboon Chromosome, Baboon CpG Position), the 

average β values for each comparative group (Average β Values), and the difference in β 

values between age cohorts (Absolute Difference in β Values). Results for the initial 

DMP analysis before accounting for kinship (DMP Analysis) includes the log fold 

difference in M values between each comparative group (Log Fold Change in M Values) 

and the p-values for each DMP after accounting for multiple testing (Adjusted P-Value). 

Results for the DMP analyses that account for kinship (Kinship Analysis) include the log 

likelihood values when the comparative group variable of interest was included in (Log 

Likelihood with Variable of Interest) or excluded from (Log Likelihood without Variable 

of Interest) the GLMM, the chi-square value (X2), and the p-value for these tests (P-

Value). The table order is based on the kinship analysis p-values (smallest to largest) and 

divided such that those probes with the difference in β values greater than 0.1 and less 

than 0.1 are separated. 

 

EPIC_Baboon_Aging_DMP.xlsx  
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APPENDIX V 

GENOMIC DISTRIBUTION OF SIGNIFICANT DMPS IDENTIFIED IN THE EPIC 

ARRAY BABOON AGING STUDY  
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Consult the attached Excel file which can be opened in Microsoft Excel. Table 

showing the number of significant DMPs with Δβ ≥ 0.10 between adult and juvenile 

baboons when accounting for kinship and the total number of loci examined that occupy 

different genomic regions (based on the human genome hg19). Number of Genes 

indicates the number of unique gene symbols associated with DMPs. Probes Per Gene 

indicates the average number of DMPs within each associated gene. For genomic 

locations, TSS200 and TSS1500 indicate the transcription start site areas between the 

start of the gene and 200bp upstream or 1500bp upstream respectively, 5'UTR and 

3’UTR indicate the untranslated regions of genes, 1st Exon indicates the first exon within 

a gene, ExonBnd indicates the gene body exons, and Gene Body indicates any area 

within the exons and introns of a gene. For proximity to CpG islands, Island indicates 

areas within CpG islands, North Shelf indicates areas 2-4kb upstream from a CpG island, 

North Shore indicates areas up to 2kb upstream from a CpG island, South Shelf indicates 

areas 2-4kb downstream from a CpG island, South Shore indicates areas up to 2kb 

downstream from a CpG island, and Open Sea indicates isolated CpG site in the genome. 

 

EPIC_Baboon_Aging_DMPDist.xlsx  
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APPENDIX W 

SIGNIFICANT DMRS IDENTIFIED IN THE EPIC ARRAY BABOON AGING 

STUDY  
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Consult the attached Excel file that can be opened in Microsoft Excel. Table 

shows the details on the significant DMRs between adult and juvenile baboons (adjusted 

p-value < 0.05). These analyses used a Gaussian kernel bandwidth of 1000 base pairs 

with a scaling factor of 2 as recommending in the DMRcate package in R. DMRs had to 

contain at least 2 CpG sites that were less than 1000 base pairs apart, and p-values were 

adjusted using the Benjamini-Hochberg method. Tables include the genomic location of 

each DMR based on the human (hg19) genome (Human Chromosome, Human DMR 

Start, Human DMR End), the length of each DMR in base pairs (DMR Length (bp)), the 

number of CpG sites constituting the significant region (No. CpGs), the minimum 

adjusted p-values from the CpGs constituting each DMR (Adjusted P-Value), the stouffer 

transformations of the groups of false detection rates for individual CpG sites as DMR 

constituents for each DMR (FDR), the maximum absolute beta fold change within each 

DMR (Max. Log Fold Change in β Values), the mean beta fold change within each DMR 

(Mean Log Fold Change in β Values), and lists of genes with promotor regions that 

overlap with each DMR (Overlapping Promotors). 

 

EPIC_Baboon_Aging_DMR.xlsx  
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APPENDIX X 

GO BIOLOGICAL PROCESSES ENRICHED FOR SIGNIFICANT DMPS 

IDENTIFIED IN THE EPIC ARRAY BABOON AGING STUDY  
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Consult the attached Excel file that can be opened in Microsoft Excel. Table 

contains the GO biological process terms that are significantly enriched (FDR < 0.05) for 

significant DMPs that have Δβ values greater than 0.1 between adult and juvenile 

baboons, taking into account the differing number of probes per gene present on the EPIC 

array. Tables include the identification numbers (GO ID) and terms (GO Biological 

Process Term) for each significantly enriched GO term, the total number of genes 

associated with each GO term (No. Genes Total), the number of genes with significant 

DMPs that are also associated with each GO term (No. Gene with DMPs), the p-value for 

over-representation of each GO term (P-Value), and the false discovery Rate for each GO 

term (FDR). 

 

EPIC_Baboon_Aging_GO.xlsx  
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APPENDIX Y 

KEGG PATHWAYS ENRICHED FOR SIGNIFICANT DMPS IDENTIFIED IN THE 

EPIC ARRAY BABOON AGING STUDY  
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Consult the attached Excel file that can be opened in Microsoft Excel. Table 

contains the KEGG pathways that are significantly enriched (FDR < 0.05) for significant 

DMPs that have Δβ values greater than 0.1 between adult and juvenile baboons, taking 

into account the differing number of probes per gene present on the EPIC array. Tables 

include the identification numbers (KEGG ID) and pathways (KEGG Pathway) for each 

significantly enriched KEGG term, the total number of genes associated with each KEGG 

pathway (No. Genes Total), the number of genes with significant DMPs that are also 

associated with each KEGG pathway (No. Gene with DMPs), the p-value for over-

representation of each KEGG pathway (P-Value), and the false discovery Rate for each 

KEGG pathway (FDR). 

 

EPIC_Baboon_Aging_KEGG.xlsx  
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APPENDIX Z 

COMPARISON OF DIFFERENTIAL METHYLATION ASSOCIATIONS WITH 

AGING IN HUMAN AND BABOON STUDIES  
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Consult the attached Excel file that can be opened in Microsoft Excel. Details on 

the previous findings of differential methylation associations with human aging that 

overlap with the current findings of differential methylation associations with baboon 

aging. Tables outlines several CpG sites (CpG Comparison tab) and genes (Gene 

Comparison tab) with differential methylation in human and baboon aging studies. 

Details on previous findings in humans include the publications source of these data 

(Reference), as well as specifics on the locus identification number that was differentially 

methylated (Array Probe ID) and whether increased aging was associated with hyper- or 

hypo-methylation (Methylation Level Associated with Aging). Details on the current 

findings of this study include the probe identification numbers (EPIC Array Probe ID) of 

DMPs that were tested, whether aging was associated with hyper- or hypo-methylation 

(Methylation Level Associated with Aging), and the significance level of the association 

(Adjusted P-Value). Additionally, the average β values for each comparative group and 

annotation information for each probe are provided. 

 

EPIC_Baboon_Aging_Compare.xlsx  
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APPENDIX AA 

DMP ANALYSIS RESULTS FOR SPECIFIC GENES IN EPIC ARRAY BABOON 

AGING STUDY  
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Consult the attached Excel file which can be opened in Microsoft Excel. Table 

describing the DMP analysis results for two genes - KCNQ1DN and MBNL1. Table 

includes the identification number of each DMP examined (EPIC Array Probe ID), as 

well as additional annotation information for each of these sites (Human Gene Symbol, 

Human Chromosome (hg19), Human CpG Position (hg19), Baboon Gene Symbol, 

Baboon Chromosome, Baboon CpG Position), whether each site was found to be 

significantly differentially methylated between adult and juvenile baboons and/or had Δβ 

≥ 0.1 (Baboon DMP Results), and the average β values for each comparative group 

(Average β Values). 

 

EPIC_Baboon_Aging_DMPGenes.xlsx  
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APPENDIX BB 

NONHUMAN PRIMATE SAMPLE SET FOR EPIC ARRAY INTRA- AND INTER-

SPECIFIC STUDY  
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Consult the attached Excel file which can be opened in Microsoft Excel. Details 

of sample set. Table outlines each sample’s animal identification number (Animal ID), 

species (Species), sex (Sex), age in years (Age), the identification number of the beadchip 

(Array ID) and array (Position) that each sample was run on, and whether downstream 

gene-specific analyses were performed on a sample (Gene-Specific Analyses). 

 

EPIC_NHP_Study_Samples.xlsx  
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APPENDIX CC 

DETAILS OF NONHUMAN PRIMATE MORPHOLOGICAL MEASUREMENTS  
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Linear morphological measurements used in GLMMs (Measurements), as well as 

triplicate measurements of linear morphologies and error calculations from these (Error). 

All measurements have units of millimeters. NA indicates that measurement could not be 

accurately collected.  Error was calculated in each taxonomic group and equals the mean 

absolute difference divided by the mean (Corner et al. 1992; White and Folkens 2000). 

Only measurements with an error <5% were included in downstream analyses. This 

included all measurements except for intercondylar notch depth for macaques. NA 

indicates that measurement could not be accurately collected. 

 

EPIC_NHP_IntraStudy_Morphology.xlsx  
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APPENDIX DD 

NORMALIZED AND FILTERED EPIC ARRAY METHYLATION VALUES FOR 

THE NONHUMAN PRIMATE INTRA- AND INTER-SPECIFIC STUDY  



  281 

Consult the attached zipped files that contains the normalized and filtered EPIC 

array β-values (*_Beta.csv) and M-values (*_M.csv) for each sample and each retained 

probe that were used in the EPIC array nonhuman primate intra- and inter-specific study. 

Each CSV can be opened in Microsoft Excel, Notepad, or any other text editor. 

 

EPIC_NHP_IntraStudy_Baboon.zip 

EPIC_NHP_IntraStudy_Chimpanzee.zip 

EPIC_NHP_IntraStudy_Macaque.zip 

EPIC_NHP_IntraStudy_Marmoset.zip 

EPIC_NHP_IntraStudy_Vervet.zip 

EPIC_NHP_InterStudy.zip  
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APPENDIX EE 

NONHUMAN PRIMATE GENE-SPECIFIC HOXD10 PRIMERS  
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Consult the attached Excel file which can be opened in Microsoft Excel. Table 

describing the primers used for the gene-specific amplification of the HOXD10 gene 

using regular and bisulfite treated DNA. Details include the name of the HOXD10 region 

being amplified (PCR Name), whether the primer was designed to amplify regular or 

bisulfite treated DNA (Primer Type), the species in which the primers were designed to 

amplify each HOXD10 region (Species), the sequences for the forward and reverse 

primers in the 5' to 3' direction (Forward Primer Sequence (5'-3'), Reverse Primer 

Sequence (5'-3'), the length of amplicons in base pairs (Amplicon Length), and the 

optimized annealing temperature (Optimized Tm). 

 

GeneSpecific_HOXD10_Primers.xlsx  
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APPENDIX FF 

GENE-SPECIFIC HOXD10 PCR ASSAY SPECIFICATIONS  
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Consult the attached Excel file which can be opened in Microsoft Excel. 

Specifications for gene-specific HOXD10 PCR assays. The Temperatures tab describes 

the PCR amplification temperature conditions used for both regular and bisulfite treated 

DNA. The annealing temperature varied for primer pairs. See optimized temperature for 

each primer pair in Appendix EE. The Regular Reagents and Bisulfite Reagents tabs 

describe the reagent initial concentrations ([initial]), final concentrations ([final]), and 

amounts (Volume (uL)) used for PCR amplification of regular DNA and bisulfite 

converted DNA, respectively. The minimum initial concentration for DNA was 5ng/uL. 

 

GeneSpecific_HOXD10_Specs.xlsx  
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APPENDIX GG 

GENOMIC DISTRIBUTION OF EPIC ARRAY PROBES RETAINED FOR 

NONHUMAN PRIMATES  



  287 

Consult the attached Excel file which can be opened in Microsoft Excel. Details 

on the gene associations, genomic locations, and proximity to CpG islands (based on the 

human genome hg19) of all probes that successfully mapped to each nonhuman primate 

genome with e-values less than e-10, had only unique BLAST hits, and targeted a CpG 

site (Total Mapped Probes), probes that fit the alignment filter criteria (Alignment Filter 

Probes), and probes that fit the gene symbol filter criteria (Gene Symbol Filter Probes). 

Number of Genes indicates the number of unique gene symbols associated with probes. 

Probes Per Gene indicates the average number of probes that target each associated gene. 

For genomic locations, TSS 200 and TSS 1500 indicate the transcription start site areas 

between the start of the gene and 200bp upstream or 1500bp upstream respectively, 

5'UTR and 3’UTR indicate the untranslated regions of genes, 1st Exon indicates the first 

exon within a gene, ExonBnd indicates the gene body exons, and Gene Body indicates 

any area within the exons and introns of a gene. For proximity to CpG islands, Island 

indicates areas within CpG islands, North Shelf indicates areas 2-4kb upstream from a 

CpG island, North Shore indicates areas up to 2kb upstream from a CpG island, South 

Shelf indicates areas 2-4kb downstream from a CpG island, South Shore indicates areas 

up to 2kb downstream from a CpG island, and Open Sea indicates isolated CpG site in 

the genome. 

 

EPIC_NHP_ProbeDist.xlsx  
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APPENDIX HH 

ALIGNMENT PARAMETER CORRELATIONS OF EPIC ARRAY PROBES 

RETAINED FOR NONHUMAN PRIMATE INTRA- AND INTER-SPECIFIC STUDY  
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Consult the attached Excel file which can be opened in Microsoft Excel. Results 

of Spearman correlation tests between EPIC array probe detection p-values and 

alignment quality parameters. These parameters included the alignment bitscores, e-

values, and percent identity. For all probes that successfully mapped to one of the 

nonhuman primate genomes with e-values < e-10, had only unique BLAST hits, and 

targeted a CpG site (Total Mapped Probes), probes that fit the alignment filter criteria 

(Alignment Filter Probes), and probes that fit the gene symbol filter criteria (Gene 

Symbol Filter Probes), significant negative correlations were identified for alignment 

bitscores and percent identities, and significant positive correlations were identified for 

alignment e-values. 

 

EPIC_NHP_Study_ProbeCorr.xlsx  



  290 

APPENDIX II 

GENE DETAILS OF SIGNIFICANT DMPS IDENTIFIED IN THE EPIC ARRAY 

NONHUMAN PRIMATE INTRA-SPECIFIC STUDY  
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Consult the attached Excel file which can be opened in Microsoft Excel. Table 

showing details on all significant DMPs associated with a linear morphology in a 

nonhuman primate species. Table includes the identification number of each significant 

DMP probe (EPIC Array Probe ID), as well as the log fold difference in M values 

between each comparative group (Log Fold Change in M Values), the p-values for each 

DMP after accounting for multiple testing (Adjusted P-Value), and additional annotation 

information for each significant DMP probe (Human Gene Symbol, Baboon Gene 

Symbol, Baboon Chromosome, Baboon CpG Position). 

EPIC_NHP_IntraStudy_DMPGene.xlsx  
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APPENDIX JJ 

GENE DETAILS OF SIGNIFICANT DMPS IDENTIFIED IN THE EPIC ARRAY 

NONHUMAN PRIMATE INTRA-SPECIFIC MORPHOLOGY STUDY  
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Consult the attached Excel file that can be opened in Microsoft Excel. Tables 

show details on all significant DMPs associated with a linear morphology in a nonhuman 

primate species – baboon bicondylar femur length, baboon maximum femur length, 

macaque proximal width, macaque medial condyle width, vervet superior shaft width, 

vervet inferior shaft width, vervet anatomical neck height, and chimpanzee anatomical 

neck length. Tables includes the identification number of each significant DMP probe 

(EPIC Array Probe ID), as well as additional information about each sample associated 

with the significant DMP. Specifically, the animal identification number (Animal), sex 

(Sex), age in years (Age), morphological measurement in millimeters (Measurements), β 

value for each DMP (β Values), maximum absolute change in β values for each DMP 

(Max Δβ), and the realized change in β values between the nonhuman primate with the 

largest morphology measurement and the nonhuman primate with the smallest 

morphology measurement for each DMP (Realized Δβ) are provided. 

 

EPIC_NHP_IntraStudy_DMP.xlsx  
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APPENDIX KK 

GENE DETAILS OF SIGNIFICANT SPECIES-SPECIFIC DMPS IDENTIFIED IN 

THE EPIC ARRAY NONHUMAN PRIMATE INTER-SPECIFIC STUDY  
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Consult the attached Excel file that can be opened in Microsoft Excel. Tables 

show the details on the significant DMPs identified between taxonomic groups – 

baboons, macaques, vervets, chimpanzees, and marmosets – and showing species-

specific methylation patterns. Table includes the identification number of each significant 

DMP probe (EPIC Array Probe ID), additional annotation information for each 

significant DMP probe (Human Gene Symbol, Human Chromosome, Human CpG 

Position, Nonhuman Primate Gene Symbol, Nonhuman Primate Chromosome, 

Nonhuman Primate CpG Position), the species-specific methylation observed for the 

species of interest (Nonhuman Primate Specific Methylation Pattern), the average β 

values for each taxonomic group (Average β Values), the difference in β values (Δβ) and 

p-values accounting for multiple testing (Adjusted P-Value) for each pairwise inter-

specific comparison made for each DMP, and the average absolute difference in β values 

between the species of interest and each other taxonomic group (Average Absolute 

Difference in β Values). The table orders are divided such that those probes with the 

difference in β values less than 0.1, between 0.1 and 0.2, between 0.2 and 0.3, between 

0.3 and 0.4, and greater than 0.4 are separated. Mixture indicates that pairwise DNA 

methylation comparisons between species have a combination of hypomethylation and 

hypermethylation. Human annotation information is for hg19. 

 

EPIC_NHP_InterStudy_DMP.xlsx  
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APPENDIX LL 

GENOMIC DISTRIBUTION OF SIGNIFICANT SPECIES-SPECIFIC DMPS 

IDENTIFIED IN THE EPIC ARRAY NONHUMAN PRIMATE INTER-SPECIFIC 

STUDY  
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Consult the attached Excel file which can be opened in Microsoft Excel. Details 

on the gene associations, genomic locations, and proximity to CpG islands (based on the 

human genome hg19) of all probes that successfully mapped to each nonhuman primate 

genome with e-values less than e-10, had only unique BLAST hits, targeted a CpG site, 

and fit the alignment filter criteria. Number of Genes indicates the number of unique gene 

symbols associated with DMPs. Probes Per Gene indicates the average number of DMPs 

within each associated gene. For genomic locations, TSS 200 and TSS 1500 indicate the 

transcription start site areas between the start of the gene and 200bp upstream or 1500bp 

upstream respectively, 5'UTR and 3’UTR indicate the untranslated regions of genes, 1st 

Exon indicates the first exon within a gene, ExonBnd indicates the gene body exons, and 

Gene Body indicates any area within the exons and introns of a gene. For proximity to 

CpG islands, Island indicates areas within CpG islands, North Shelf indicates areas 2-4kb 

upstream from a CpG island, North Shore indicates areas up to 2kb upstream from a CpG 

island, South Shelf indicates areas 2-4kb downstream from a CpG island, South Shore 

indicates areas up to 2kb downstream from a CpG island, and Open Sea indicates isolated 

CpG site in the genome. 

 

EPIC_NHP_InterStudy_DMPDist.xlsx  
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APPENDIX MM 

GO BIOLOGICAL PROCESSES ENRICHED FOR SIGNIFICANT SPECIES-

SPECIFIC DMPS IDENTIFIED IN THE EPIC ARRAY NONHUMAN PRIMATE 

INTER-SPECIFIC STUDY  
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Consult the attached Excel file that can be opened in Microsoft Excel. Tables 

contain the GO biological process terms that are significantly enriched (FDR < 0.05) for 

species-specific DMPs – baboons, macaques, vervets, chimpanzees, and marmosets – 

taking into account the differing number of probes per gene present on the EPIC array 

and assessed in the current study. Tables include the identification numbers (GO ID) and 

terms (GO Biological Process Term) for each significantly enriched GO term, the total 

number of genes associated with each GO term (No. Genes Total), the number of genes 

with significant DMPs that are also associated with each GO term (No. Gene with 

DMPs), the p-value for over-representation of each GO term (P-Value), and the false 

discovery Rate for each GO term (FDR). 

 

EPIC_NHP_InterStudy_GO.xlsx  
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APPENDIX NN 

KEGG PATHWAYS ENRICHED FOR SIGNIFICANT SPECIES-SPECIFIC DMPS 

IDENTIFIED IN THE EPIC ARRAY NONHUMAN PRIMATE INTER-SPECIFIC 

STUDY  
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Consult the attached Excel file that can be opened in Microsoft Excel. Tables 

contain the KEGG pathways that are significantly enriched (FDR < 0.05) for species-

specific DMPs – baboons, macaques, vervets, chimpanzees, and marmosets – taking into 

account the differing number of probes per gene present on the EPIC array and assessed 

in the current study. Tables include the identification numbers (KEGG ID) and pathways 

(KEGG Pathway) for each significantly enriched KEGG term, the total number of genes 

associated with each KEGG pathway (No. Genes Total), the number of genes with 

significant DMPs that are also associated with each KEGG pathway (No. Gene with 

DMPs), the p-value for over-representation of each KEGG pathway (P-Value), and the 

false discovery rate for each KEGG pathway (FDR). 

 

EPIC_NHP_InterStudy_KEGG.xlsx  
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APPENDIX OO 

DMP ANALYSIS RESULTS FOR HOXD10 GENE IN EPIC ARRAY NONHUMAN 

PRIMATE INTER-SPECIFIC STUDY  
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Consult the attached Excel file which can be opened in Microsoft Excel. Table 

describing the differentially methylation position (DMP) analysis results for the HOXD10 

genes. Table includes the identification number of each DMP examined (EPIC Array 

Probe ID), as well as additional annotation information for each of these sites (Gene 

Symbols, Chromosomes, CpG Positions), whether each site was found to be significantly 

differentially methylated between taxonomic groups and if so whether the specified 

species was hypermethylated, hypomethylated, or had a mixture of hyper- and hypo-

methylation as compared to other species (Species-Specific DMP), and the average β 

values for each taxonomic group (Average β Values). Of the 5 species-specific DMPs in 

the HOXD10 gene of marmosets, 4 have Δβ between 0.2 and 0.3 (bold) and 1 has a Δβ < 

0.1 (not bolded). Human information came from hg19. 

 

EPIC_NHP_InterStudy_DMPGene.xlsx  
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APPENDIX PP 

GENE-SPECIFIC HOX10 RAW SEQUENCES  
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Consult the attached zipped file that contains the raw, unprocessed chromatogram 

files (*.ab1) and sequence files (*.seq) for all the regular and bisulfite gene-specific 

sequences of HOXD10 used in the EPIC array nonhuman primate inter-specific study. 

These files can be opened in MEGA7 (Kumar et al. 2016), Geneious version 9.1.2 

(Kearse et al. 2012), or other software compatible with reading these data types. 

 

GeneSpecific_HOXD10_Sequences.zip  
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APPENDIX QQ 

GENE-SPECIFIC HOXD10 REGULAR SEQUENCE ALIGNMENTS  
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Consult the attached FASTA file that contains an alignment of the processed, 

regular gene-specific sequences of HOXD10 used in the EPIC array nonhuman primate 

inter-specific study. These sequences are aligned to the regions surrounding and 

including HOXD10 from several primates that were obtained from the EPO whole-

genome multiple alignments of several primate genomes [Ensembl 

Compara.8_primates_EPO] (Paten, Herrero, Beal, et al. 2008; Paten, Herrero, Fitzgerald, 

et al. 2008). This file can be opened in MEGA7 (Kumar et al. 2016), Geneious version 

9.1.2 (Kearse et al. 2012), or any other text editor. 

 

GeneSpecific_HOXD10_AlignReg.fasta  
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APPENDIX RR 

GENE-SPECIFIC HOXD10 BISULFITE SEQUENCE ALIGNMENTS  
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Consult the attached FASTA file that contains an alignment of the processed, 

bisulfite gene-specific sequences of HOXD10 used in the EPIC array nonhuman primate 

inter-specific study. These sequences are aligned to the regions surrounding and 

including HOXD10 from several primates that were obtained from the EPO whole-

genome multiple alignments of several primate genomes [Ensembl 

Compara.8_primates_EPO] (Paten, Herrero, Beal, et al. 2008; Paten, Herrero, Fitzgerald, 

et al. 2008) and bisulfited converted in silico. This file can be opened in MEGA7 (Kumar 

et al. 2016), Geneious version 9.1.2 (Kearse et al. 2012), or any other text editor. 

 

GeneSpecific_HOXD10_AlignBS.fasta  
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APPENDIX SS 

GENE-SPECIFIC SEQUENCING RESULTS FOR HOXD10 GENE IN EPIC ARRAY 

NONHUMAN PRIMATE INTER-SPECIFIC STUDY  
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Consult the attached Excel file which can be opened in Microsoft Excel. Table 

describing the results for the gene-specific regular and bisulfite sequencing across the 

HOXD10 gene (hg19 chr2:176981492-176984670), as well as upstream and downstream 

several hundred bases (hg19 chr2:176980532-176985117). Table includes the positions 

of human derived CpG sites in the HOXD10 gene (Human CpG Position) based on the 

sequence alignments produced in this study (Appendix QQ and Appendix RR). CpG sites 

that were also targeted by the EPIC array are shown in bold, and probe information is 

also provided (EPIC Array Probe ID). For each nonhuman primate sample examined, the 

presence of nucleotide mutations (Mutation) at CpG sites, as well as the dinucleotide 

resulting from these mutations shown in parentheses, at CpG sites was determined based 

on regular sequences (Appendix QQ), and the presence of methylation (Methylation) at 

CpG sites was determined based on bisulfite sequences (Appendix RR). Abbreviations: 

no data collected (-), data quality too poor to call base pair (NA), methylation present at 

site indicated by cytosine in bisulfite sequence (yes), no methylation at site indicated by a 

lack of cytosine at site (no), partial methylation indicated by a partial cytosine signal at 

site (partial), CpG site 1bp upstream or downstream of that in humans (*), and CpG site 

2bp upstream or downstream of that in humans (**). Overall, out of the 161 human 

derived CpG sites, 21 showed mutations in baboons except in 1X2996 which had one 

additional mutation likely due to intra-specific variation, 25 showed mutations in 

macaques except in 17538 which only had 19 mutations due to poor sequence quality and 

the inability to call variants at these sites, 21 showed mutations in vervets, 3 showed 

mutations in chimpanzees except in 4-0191 which only had 2 mutations likely due to 

intra-specific variation, and 28 showed mutations in marmosets except in 18482 which 
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only had 19 mutations due to poor sequence quality and the inability to call variants at 

these sites. None of the methylation present in these nonhuman primate samples is 

present at mutated CpG sites. 

 

GeneSpecific_HOXD10_CpG.xlsx 


