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ABSTRACT

In accelerated life tests (ALTs), complete randomization is hardly achievable because

of economic and engineering constraints. Typical experimental protocols such as

subsampling or random blocks in ALTs result in a grouped structure, which leads to

correlated lifetime observations. In this dissertation, generalized linear mixed model

(GLMM) approach is proposed to analyze ALT data and find the optimal ALT design

with the consideration of heterogeneous group effects.

Two types of ALTs are demonstrated for data analysis. First, constant-stress

ALT (CSALT) data with Weibull failure time distribution is modeled by GLMM.

The marginal likelihood of observations is approximated by the quadrature rule; and

the maximum likelihood (ML) estimation method is applied in iterative fashion to

estimate unknown parameters including the variance component of random effect.

Secondly, step-stress ALT (SSALT) data with random group effects is analyzed in

similar manner but with an assumption of exponentially distributed failure time in

each stress step. Two parameter estimation methods, from the frequentist’s and

Bayesian points of view, are applied; and they are compared with other traditional

models through simulation study and real example of the heterogeneous SSALT data.

The proposed random effect model shows superiority in terms of reducing bias and

variance in the estimation of life-stress relationship.

The GLMM approach is particularly useful for the optimal experimental design

of ALT while taking the random group effects into account. In specific, planning

ALTs under nested design structure with random test chamber effects are studied. A

greedy two-phased approach shows that different test chamber assignments to stress

conditions substantially impact on the estimation of unknown parameters. Then, the

D-optimal test plan with two test chambers is constructed by applying the quasi-

likelihood approach. Lastly, the optimal ALT planning is expanded for the case
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of multiple sources of random effects so that the crossed design structure is also

considered, along with the nested structure.
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Chapter 1

INTRODUCTION

Lifetime estimation and prediction of a product have long been a great concern

for reliability engineers. Information extracted from products’ life tests plays a fun-

damental role for all reliability-related decision making such as establishing warranty

policy or evaluating new product designs. Due to the impractical time duration of a

life test of products in usual environmental condition, accelerated life tests (ALTs),

by which test units are exposed to higher-than-usual stress levels, are widely used

to obtain failure time observations in manageable test time. In a sense that lifetime

(i.e., the response variable) depends on stress conditions (i.e., explanatory variables),

a regression type of model is used for statistical inference of ALT data.

ALT is a special type of experiment as it has some interesting characteristics which

are distinct from typical experiments. First, failure time data need to be modeled

by a positive continuous random variable, which means that the response variable is

not normally distributed. In many cases, a log-location-scale family, such as Weibull

or log-normal distribution, is considered for the failure time distribution model. Sec-

ondly, in spite of being accelerated, lifetime of some test units are still longer than

the test duration; and it causes right-censored data, where the exact failure time is

unobserved. Lastly, the inference obtained in the test region should be extrapolated

to the usual stress region, which is located beyond the region where the data is col-

lected. Despite all of these challenges, data analysis and efficient experimental designs

for ALT have been well-studied in the literature (see e.g., Nelson, 2009; Meeker and

Escobar, 2014).
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Among other modeling approaches for ALT data, the generalized linear model

(GLM) (McCullagh and Nelder, 1989) has been recently applied to data analysis and

optimal planning of ALTs (Aitkin and Clayton, 1980; Lee and Pan, 2010; Monroe

et al., 2011; Yang and Pan, 2013). The GLM provides a structured framework for

statistical inferences and experimental design of ALTs. For example, most popu-

lar statistical software packages are capable for the parameter estimation of a GLM

model. Despite its usefulness, the GLM approach for ALT assumes that the obser-

vations are independent of each other. In practice, however, complete randomization

of an ALT is easily violated by, for example, different sources of test materials or

use of non-homogeneous test stands, which all leads to the involvement of unwanted

nuisance factors into the test. For more information about the experimental pro-

tocols which hinder the independent reliability data, see e.g., Vining (2013). As a

result, ALT data obtained from the same group (e.g., observations from the same test

chamber) are expected to be correlated.

In this thesis, failure time data analysis and optimal experimental designs for

ALTs with restricted randomization are discussed. In particular, ALT data is modeled

taking correlations between observations into account. The generalized linear mixed

model (GLMM) approach, which is a natural expansion of GLM for random effect

models, is suggested to accommodate a heterogeneous group effect of ALTs with

right-censoring plan. Although, most recently, data analysis for correlated ALT data

has been studied by several researchers (León et al., 2007; Pan and Kozakai, 2013;

Freeman and Vining, 2010; Kensler et al., 2015), the experimental design for ALT

under the mixed effect model, to the best of my knowledge, has not been studied yet.

In this aspect, the GLMM provides a useful framework for planning correlated ALTs,

so does the GLM for the independent ALTs.
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The remainder of this thesis is structured as follows. Chapter 2 describes the

GLMM approach for analyzing constant-stress ALT (CSALT) data with random

group effects. The iterative maximum likelihood method for parameter estimation

is presented; and the asymptotic variance-covariance matrix of the estimated param-

eters is derived. The marginal likelihood of GLMM involves an integration without

a closed form. The quadrature method is used to approximate it by which the fast

evaluation of the likelihood function is available. The proposed model is applied

to two real reliability data, which are examples of subsampling and random blocks,

respectively.

Chapter 3 extends the GLMM approach to the analysis of step-stress ALT (SSALT)

data. By the memoryless property of the exponential distribution, SSALT data is

transformed to the pseudo-CSALT data. Two different methods are examined for the

parameter estimation from the frequentist and Bayesian perspectives, but both are

based on the deterministic approach. Traditional fixed effect models and the proposed

random effect model are compared by the simulation study and real SSALT data.

In Chapter 4, the chamber-to-chamber variation is addressed for planning ALTs.

When an ALT is conducted with multiple test chambers, an assignment of test cham-

bers to each stress condition is important. This experiment can be seen as a type

of nested designs where the stress conditions are nested in the test chambers. First,

impacts of different test chamber assignment plans are illustrated by two-phased ap-

proach. Second, the quasi-likelihood approach, enabled by GLMM, is introduced to

construct the D-optimal design. A specific example of ALT with two stress factors is

considered with two test chambers tested on four different stress conditions.

Chapter 5 addresses, extending the idea of Chapter 4, the D-optimal design with

multiple sources of random group effects. In real world applications, it is not unusual

to have products provided by different suppliers be tested on different test chambers.
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In this case, the observations are grouped not only by test chambers but also by

suppliers. A similar example with Chapter 4, but with an additional random effect,

is described to illustrate the construction of the D-optimal design.

Finally, contributions of this thesis and future research is described in Chapter 6.
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Chapter 2

DATA ANALYSIS FOR ACCELERATED LIFE TESTS WITH CONSTRAINED

RANDOMIZATION

Accelerated life tests (ALTs) often involve experimental protocols with

constrained randomization such as subsampling or random block. As a

result, lifetime data may involve a grouped structure among the obser-

vations. In this chapter, we develop a generalized linear mixed model

(GLMM) approach for analyzing ALT data with a grouped structure in

order to reflect random effects of groups in the model. The GLMM ap-

proach provides a flexible way to model censored failure time data with

random effects. Particularly, for the Weibull failure time distribution, we

describe an iterative procedure for the model parameters estimation and

derive the asymptotic variance-covariance matrix using the approximated

likelihood function. Two examples of lifetime data with subsampling and

random block are analyzed by the proposed method, which is implemented

by modern computer software.

2.1 Introduction

2.1.1 Problem

Randomization is one of the basic principles of experimental design. A completely

randomized design assumes all experimental responses to be independent of each

other. Planning an accelerated life test (ALT) with multiple stress factors can be

treated as an experimental design problem, thus it should follow this principle. In
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reality, however, ALT experiments are inevitably going to violate the randomization

assumption because of the engineering and economic constraints of such tests. Typical

experimental protocols in ALTs include subsampling or random block, and both lead

to a grouped structure among observations. Data analysis that does not take into

account any of these constrained randomization conditions may result in incorrect

inferences on parameters of interest.

Recently, there have been several attempts to take into account experimental pro-

tocols (e.g., subsampling or random block) in reliability data analysis. Freeman and

Vining (2010) described a two-stage method for analyzing reliability data from de-

signed experiments containing subsampling. León et al. (2007) used Bayesian Monte

Carlo Markov Chain (MCMC) methods to make inferences from an ALT where the

test units come from different batches and the batch effect is random. Freeman and

Vining (2013) provided a Weibull nonlinear mixed model (NLMM) methodology for

incorporating random effects in the analysis. They applied quadrature approximation

on the expectation of the likelihood function over random effects. Pan and Kozakai

(2013) proposed a semiparametric model with random effects and the Bayesian piece-

wise exponential inference method. Xiao and Tang (2013) suggested a method that

incorporates the idea of frailty, which accounts for the subsampling effect, and the

technique of multiple imputations to deal with censored data. Wang et al. (2015)

presented an improved two-stage approach using bootstrapping and an unbiasing

factor.

In this chapter, we propose a generalized linear mixed model (GLMM) approach

to analyzing multiple-stress ALT data with constrained randomization. The idea is

based on Aitkin and Clayton (1980) in which they reformulated likelihood functions of

right censored survival data under exponential, Weibull or extreme value distribution

as a generalized linear model (GLM). Monroe et al. (2011) and Yang and Pan (2013)
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utilized the GLM approach for the experimental designs of ALTs. We extend the

inference procedure of Aitkin and Clayton (1980) to mixed models so that random

effects can be accommodated. This approach shares the same principle of fitting the

grouped failure time data by maximizing the approximated likelihood with the NLMM

method (Freeman and Vining, 2013), the most recent approach among the frequentist

methods. However, our approach has several advantages over the other approaches.

These advantages are (1) it provides more flexible ways to model failure time data as

the failure time distribution is not specified in advance and censored observations can

be easily accommodated; (2) it enjoys the use of GLMMs, a well-developed non-linear

mixed model, and the computing algorithms that have been implemented in several

statistical software packages; and (3) it opens the opportunity for the experimental

design study of ALT with random effects as GLM has been used for fixed effects

model in Monroe et al. (2011) and Yang and Pan (2013).

2.1.2 Motivating Examples

Zelen (1959) described the glass capacitor life test experiment, which was con-

ducted with two stress variables, voltage and temperature. The dataset consists of

64 failure/censoring time observations under 8 different stress combinations. In a

complete randomized design, each glass capacitor should be randomly assigned to a

test stand and tested at the same time; instead, Zelen’s data were generated from

8 test stands with 8 glass capacitors (i.e., subsamples) per test stand. In this case,

correlation may exist among failure times from the same test stand.

Another well-known ALT experiment with constrained randomization is provided

by Gerstle and Kunz (1983), in which they studied the reliability of pressure vessels

wrapped by different spools (i.e., random blocks). A total of 108 pressure vessels were

tested at four different pressure levels and 8 spools were used to wrap pressure vessels.
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Since different spools may have different strength, lifetimes of pressure vessels with

the same spool may be correlated.

2.2 Methodology

In this section, we describe the method for analyzing failure time data with a

grouped structure by the GLMM approach. The basic principle for parameter esti-

mation is maximizing the expected log-likelihood function; thus, the marginal log-

likelihood function or its approximation needs to be obtained by integrating out ran-

dom effect variables. Given its popularity, the case of Weibull failure time distribution

will be shown in this section, but the method can be easily extended to other distri-

butions. The asymptotic variance-covariance matrix of the estimated parameters is

also derived for statistical inferences.

2.2.1 Generalized Linear Mixed Model Approach

Suppose we conduct an experiment in which randomization is constrained by

subsampling or random blocks, thus there exists groups in the data. Let tij be the

failure time of the jth test unit in the ith group with i = 1, . . . ,m and j = 1, . . . , nj,

and xij = (1, x1ij, . . . , x
p
ij)
′ be the corresponding vector of explanatory variables (i.e.,

stress condition). A normal random variable ui is introduced to reflect the random

effects among groups. That is,

ui ∼ iid.N(0, σ2
u).

Let f(t|u), F (t|u), R(t|u) = 1 − F (t|u) and h(t|u) = f(t|u)/R(t|u) be probability

density function (pdf), cumulative density function (cdf), reliability function and

hazard function of failure time t, all conditional on the group effect u, respectively.

The Cox’s proportional hazard (PH) model (Cox, 1972) can be extended to the mixed
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model as follows:

h(tij|ui) = h0(tij) exp(ηij) (2.1)

where ηij = x′ijβ + ui is a linear predictor which includes the random effect as its

intercept. Thus, the conditional pdf of failure time is

f(tij|ui) = h0(tij) exp(ηij −H0(tij)e
ηij) (2.2)

where H0(tij) =
∫ t
−∞ h0(vij) dvij and it is the cumulative baseline hazard function.

For right censored failure time data, let cij be an indicator variable taking the

value 1 if tij is a failed observation, and 0 if tij is a censored observation. We assume

that the failure times of a given group are independent of each other within the group.

Hence, the marginal likelihood of entire observations in all groups can be written as

L =
m∏
i=1

∫ ∞
−∞

ni∏
j=1

f(tij|ui)cijR(tij|ui)1−cijπ(ui) dui

=
m∏
i=1

∫ ∞
−∞

ni∏
j=1

h(tij|ui)cijR(tij|ui)π(ui) dui

=
m∏
i=1

∫ ∞
−∞

ni∏
j=1

[h0(tij)e
ηij ]cij exp(−H0(tij)e

ηij)π(ui) dui

=
m∏
i=1

∫ ∞
−∞

ni∏
j=1

(
µ
cij
ij e
−µij
)

[h0(tij)/H0(tij)]
cij π(ui) dui (2.3)

where µij = H0(tij)e
ηij and π(ui) is the normal pdf of ui. The term in the round

bracket of the likelihood function Eq. (2.3) is the kernel of the likelihood function

for Poisson distributed random variable with mean µij. The second term does not

involve the parameters of fixed effects β and of random effects σ2
u, but may depend on

other unknown parameters in the baseline hazard function. Therefore, the parameter

estimators, β̂ and σ̂2
u, that maximize the likelihood function (or log-likelihood func-

tion) are the same as those that maximize the likelihood function (or log-likelihood

function) from the Poisson distribution.
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Given ui, we can treat the indicator variable cij as from Poisson distribution with

conditional mean µij = E [cij|ui], and the GLMM formulation is written as

• The response variable : cij|ui ∼ ind.Poisson(µij);

• The linear predictor : ηij = x′ijβ + ui;

• The random effects distribution : ui ∼ iid.N(0, σ2
u);

• The link function : log µij = ηij + logH0(tij),

where the second term in the right hand side of the link function is an offset term.

We maximize the log-likelihood function in an iterative fashion. Given initial

estimates of the unknown parameters in H0(tij), the ML estimates of β and σ2
u are

obtained from GLMM parameter estimation method which can be conducted by

software packages such as R or SAS. With these estimates of β and σ2
u, the updated

estimates of the unknown parameters in H0(tij) can be obtained from the likelihood

equations with respect to these parameters, and this sequence of steps continued until

convergence.

2.2.2 Weibull Distribution

The PH model is a semiparametric model, that is, the baseline hazard function

is typically unspecified. Thus, the GLMM formulation is applicable on any right

censored data set as long as the PH assumption of Eq. (2.1) is acceptable. Meanwhile,

it is well-known that, for Weibull distribution, the PH model is equivalent to the

accelerated failure time (AFT) model which is one of the most popular models in the

reliability field. For this reason, we focus on the Weibull distribution in this chapter,

although it is also possible to use other distributions (e.g., extreme value distribution)

by changing the baseline hazard function (see Aitkin and Clayton, 1980).
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The pdf of Weibull distribution is obtained as follows from Eq. (2.2) by specifying

H0(tij) = tαij with an unknown shape parameter α > 0 that is assumed to be common

to all failure times in different groups.

f(tij|ui) = αλijt
α−1
ij exp (−λijtαij), tij > 0

where λij = eηij is a scale parameter (or intrinsic failure rate) modeled as log-linear

relationship with the linear predictor. From Eq. (2.3), the likelihood function is

L =
m∏
i=1

∫ ∞
−∞

ni∏
j=1

(
µ
cij
ij e
−µij
)

[α/tij]
cij π(ui) dui

where µij = tαije
ηij , thus the link function is

log µij = ηij + α log tij,

and the log-likelihood is

logL =
m∑
i=1

ni∑
j=1

cij(logα− log tij) +
m∑
i=1

log

∫ ∞
−∞

ni∏
j=1

(
µ
cij
ij e
−µij
)
π(ui) dui. (2.4)

Note that Eq. (2.4) includes the integration with respect to the random effect ui,

which may not be evaluated analytically.

2.2.3 Maximum Likelihood Estimation

The likelihood equations can be derived by setting the partial derivatives of

Eq. (2.4) with respect to each unknown parameter equal to zeros, which are given,

by exchangeability between integral and derivative, as follows:

∂ logL

∂α
=

∑m
i=1

∑ni

j=1 cij

α
−

m∑
i=1

{∫∞
−∞ pi(ui) qi(ui) π(ui) dui∫∞
−∞ pi(ui) π(ui) dui

}
= 0, (2.5a)

∂ logL

∂βk
= −

m∑
i=1

{∫∞
−∞ pi(ui) r

k
i (ui) π(ui) dui∫∞

−∞ pi(ui)π(ui) dui

}
= 0, (2.5b)

∂ logL

∂σ2
u

= −
m∑
i=1

{∫∞
−∞ pi(ui) s(ui) π(ui) dui∫∞
−∞ pi(ui) π(ui) dui

}
= 0, (2.5c)
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where

pi(ui) =

ni∏
j=1

(
µ
cij
ij e
−µij
)
, (2.6a)

qi(ui) =

ni∑
j=1

log tij(µij − cij), (2.6b)

rki (ui) =

ni∑
j=1

log xijk(µij − cij), (2.6c)

s(ui) =
1

2σ2
u

− u2i
2σ4

u

, (2.6d)

for each group i = 1, . . . ,m. From Eq. (2.5a), the ML estimate of α satisfies

α̂ =

∑m
i=1

∑ni

j=1 cij∑m
i=1

{∫∞
−∞ pi(ui) qi(ui)π(ui) dui∫∞
−∞ pi(ui)π(ui) dui

} (2.7)

The integrals in the denominator cannot be simplified further or be expressed in

a closed analytical form; thus, some numerical integration method is needed. As seen

in Eq. (2.7), each integration is a single-dimension integral with respect to a normal

density, which can be evaluated accurately using Gauss-Hermite (G-H) quadrature

(McCulloch et al., 2008). It can be seen that the denominator of Eq. (2.7) is a sum

of ratios of two integrals of the form∫ ∞
−∞

g(ui)
e−u

2
i /(2σ

2
u)√

2πσ2
u

dui (2.8)

which, by a variable transformation of ui =
√

2σuv, can be written as∫ ∞
−∞

g(
√

2σuv)√
π

e−v
2

dv ≡
∫ ∞
−∞

g∗(v)e−v
2

dv. (2.9)

G-H quadrature approximates the integral in Eq. (2.9) as a weighted sum:∫ ∞
−∞

g∗(v)e−v
2

dv ≈
d∑

k=1

g∗(xk)wk, (2.10)

where d is the number of quadrature points, xk’s are the evaluation points and wk’s are

the corresponding weights. For more specific definitions of xk and wk, see McCulloch

12



et al. (2008), chapter 14. Given d, xk’s and wk’s can be calculated using existing

software packages. By applying Eq. (2.10), the ratio of the integrals in Eq. (2.7) is

approximated by∫∞
−∞ pi(ui) qi(ui) π(ui) dui∫∞
−∞ pi(ui) π(ui) dui

≈
∑d

k=1 pi(
√

2σuxk) qi(
√

2σuxk)wk∑d
k=1 pi(

√
2σuxk)wk

(2.11)

See Subsection 2.3.2 for the determination of the number of quadrature points.

Now, we can iteratively maximize the log-likelihood function with respect to un-

known parameters, α, βk’s and σ2
u. It begins from an initial value of α(0) which is often

set to 1 (i.e., a model with exponential distribution is fitted), then fits GLMM model

with α(0) to estimate β
(0)
k ’s and σ2

u
(0)

, calculate the updated α(0)′ using Eq. (2.7), and

fits GLMM again with α(1) = (α(0) + α(0)′)/2 to obtain β
(1)
k ’s and σ2

u
(1)

(Aitkin and

Clayton, 1980). This procedure continues until the difference of the new value of α

with the previous one is substantially small.

2.2.4 Asymptotic Variance-covariance Matrix

The asymptotic variance-covariance matrix of the parameter estimates can be

obtained by the inverse of the observed Fisher information matrix (i.e., the negative

second derivatives of the log-likelihood function). For notational convenience, let

π(ui) = π in Eq. (2.3), pi(ui) = pi, qi(ui) = qi, r
k
i (ui) = rki and s(ui) = s in Eq. (2.6).

In addition, let

qqi =

ni∑
j=1

µij log2 tij,

qrki =

ni∑
j=1

µij xijk log tij,

rkrli =

ni∑
j=1

µij xijk xijl,

ss = − 1

2σ4
u

+
u2i
σ6
u
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for each group i = 1, . . . ,m. Then the second derivatives of the log-likelihood function

are derived as follows:

∂2 logL

∂α2
= −

∑m
i=1

∑ni

j=1 cij

α2
−

m∑
i=1

{
(
∫∞
−∞ pi qi π dui)

2

(
∫∞
−∞ pi π dui)2

−
∫∞
−∞ pi (q

2
i − qqi) π dui∫∞

−∞ pi π dui

}
,

∂2 logL

∂βk∂βl
= −

m∑
i=1

{∫∞
−∞ pi r

k
i π dui

∫∞
−∞ pi r

l
i π dui

(
∫∞
−∞ pi π dui)2

−
∫∞
−∞ pi (r

k
i r

l
i − rkrli) π dui∫∞

−∞ pi π dui

}
,

∂2 logL

∂(σ2
u)

2
= −

m∑
i=1

{
(
∫∞
−∞ pi s π dui)

2

(
∫∞
−∞ pi π dui)2

−
∫∞
−∞ pi (s

2 − ss) π dui∫∞
−∞ pi π dui

}
,

∂2 logL

∂α∂βk
= −

m∑
i=1

{∫∞
−∞ pi qi π dui

∫∞
−∞ pi r

k
i π dui

(
∫∞
−∞ pi π dui)2

−
∫∞
−∞ pi (qi r

k
i − qrki ) π dui∫∞

−∞ pi π dui

}
,

∂2 logL

∂α∂σ2
u

= −
m∑
i=1

{∫∞
−∞ pi qi π dui

∫∞
−∞ pi s π dui

(
∫∞
−∞ pi π dui)2

−
∫∞
−∞ pi qi s π dui∫∞
−∞ pi π dui

}
,

∂2 logL

∂βk∂σ2
u

= −
m∑
i=1

{∫∞
−∞ pi r

k
i π dui

∫∞
−∞ pi s π dui

(
∫∞
−∞ pi π dui)2

−
∫∞
−∞ pi r

k
i s π dui∫∞

−∞ pi π dui

}
.

Let the second derivatives of the log-likelihood function evaluated at the ML estimates

be

∂2 logL

∂βk∂βl

∣∣∣∣
θ=θ̂

= −akl,
∂2 logL

∂βk∂σ2
u

∣∣∣∣
θ=θ̂

= −bk,
∂2 logL

∂(σ2
u)

2

∣∣∣∣
θ=θ̂

= −c,

∂2 logL

∂α∂βk

∣∣∣∣
θ=θ̂

= −dk,
∂2 logL

∂α∂σ2
u

∣∣∣∣
θ=θ̂

= −e, ∂2 logL

∂α2

∣∣∣∣
θ=θ̂

= −f,

where θ = (β, σ2
u, α) is the parameter vector and θ̂ is the ML estimates of the param-

eters. Then the asymptotic variance-covariance matrix of the estimated parameters

is obtained by

Avar(β̂, σ̂2
u, α̂) =


A b d

b′ c e

d′ e′ f


−1

(2.12)

where A is a (p + 1) × (p + 1) matrix whose elements are akl; b = (b0, · · · , bp)′; and

d = (d0, · · · , dp)′.
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One advantage of using GLMM is that common statistical software calculates the

Hessian matrix during the optimization iteration, and we can retrieve this matrix,

which is composed of A, b and c, from the GLMM output. Thus, we only need to

calculate d, e and f . Again, we approximate integrals included in second derivatives

using G-H quadrature.

2.3 Implementation

2.3.1 Life-stress Relationship

One of the major challenges in ALTs is the need for extrapolation of the results

obtained from the region of accelerated test stress conditions into the region of use

stress conditions. Physical acceleration models which study the failure mechanisms

of materials under different types of stress variables play an important role for the

life-stress relationship that is necessary for the extrapolation. For example, the gener-

alized Eyring model can be used to describe the relationship of life with temperature

and another stress variable such as humidity or voltage, which is the case of the

glass capacitor lifetime experiment introduced in Subsection 2.1.2. The inverse power

model is another life-stress relationship, which is frequently used for a non-thermal

accelerating variable like voltage or pressure. We can use the inverse power model

for the pressure vessel reliability study, the second example in Subsection 2.1.2, as

pressure has been used for a stress variable. For more details of these models, see

Escobar and Meeker (2006).

Although each physical model has its own form, most of them suggest the use of

natural stress variables as the explanatory variables of the regression model, so that

the extrapolation is physically reasonable. The Eyring model leads to the natural

stress variables for temperature given as s = 1/kT , where k = 8.62 × 10−5eV/K
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is Boltzmann’s constant and T = temp ◦C + 273.15 is the temperature in degrees

Kelvin, and the log transformation for another stress variable (e.g., s = ln(Voltage)

in our first example). The inverse power model also implies the log transformation of

a stress variable (e.g., s = ln(Pressure) in our second example).

2.3.2 Number of Quadrature Points

The number of quadrature points, d, used in Eq. (2.11) is a tuning parameter

that needs to be determined for updating α using Eq. (2.7). It is known that 20

quadrature points are usually enough for a good degree of approximation for a single

integral (McCulloch et al., 2008). However, a ratio of two integrals could be more

sensitive to d, depending on the magnitude of these integrals, especially when both

of them are small. We investigated the accuracy of quadrature approximation with

different number of quadrature points by comparing them with those from the Monte

Carlo (MC) sampling. The Strong Law of Large Number (SLLN) implies that the

integral of Eq. (2.8) can be approximated by the sample average as follows:∫ ∞
−∞

g(ui)π(ui) dui = E[g(ui)] ≈
1

M

M∑
r=1

g(ui).

For large M the average converges almost surely to the expectation.

In our study, we found that more than 100 quadrature points were needed for

convergence to the result from the MC sampling. For example, given the estimated

parameter values from the first iteration of the analysis of pressure vessel data, Fig-

ure 2.1 shows the approximated ratio of integrals in Eq. (2.11) for spool 2 (i = 2)

by G-H quadrature with different d (varying from 1 to 200), and it also shows the

converging result by MC sampling. One can see that, when d is less than 100, the

result from quadrature approximation fluctuates, but it appears to converge to the
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Figure 2.1: Approximated ratio of integrals by G-H quadrature and MC sampling

MC sampling result when d is greater than 100. Based on this finding, we used 100

quadrature points to ensure the accuracy of G-H quadrature.

2.3.3 Analysis of Glass Capacitor Data

As described in Subsection 2.1.2, eight glass capacitors were tested under each of

the eight stress level combinations of temperature-voltage. After the fourth failure

for each stress condition, the test was terminated (i.e., type-II censoring). Zelen

(1959) did not explicitly describe the experimental protocol for the life test of glass

capacitors; however, it is reasonable to assume that test units with the same stress

levels had been tested on the same test stand simultaneously because of time and cost

limitations. In this case, the experimental unit is the test stand but the observational

unit is each capacitor, and hence subsampling is involved in the test. Table 2.1
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summarizes the result of the test. Note that the stress variables from the original

data (temp ◦C and Volt) were transformed to the natural stress variables. In addition

to the data given in Table 2.1, we generated the indicator variable cij’s for censoring

as described in Subsection 2.2.1, and used them as responses of GLMM fitting. We

assume that there is no interaction between the two stress variables. Therefore, the

linear predictor and the link function in this example are given as ηij = β0 + β1s
1
ij +

β2s
2
ij + ui and log µij = ηij + α log tij, respectively, where i = 1, . . . , 8 is the index of

test stand and j = 1, . . . , 8 is the index of test unit.

Table 2.1: Life test data of glass capacitors

Test stand s1 = 1/kT s2 = lnV Failure time (hrs)

1 26.19 5.30 439, 904, 1,092, 1,105

2 26.19 5.52 572, 690, 904, 1,090

3 26.19 5.70 315, 315, 439, 628

4 26.19 5.86 258, 258, 347, 588

5 25.61 5.30 959, 1,065, 1,065, 1,087

6 25.61 5.52 216, 315, 455, 473

7 25.61 5.70 241, 315, 332, 380

8 25.61 5.86 241, 241, 435, 455

We used SAS PROC GLIMMIX for the GLMM fitting. There are several estima-

tion methods PROC GLIMMIX provides, and one of the methods is using maximum

likelihood by G-H quadrature, which is suitable for our purpose. We also implemented

the iteration procedure using SAS/IML and 100 quadrature points were used for a

calculation of updated α. Iteration stopped when α(i)′ − α(i) ≤ 10−5.

18



A total number of 8 iterations were taken for the convergence. Table 2.2 shows

the parameter estimates for fixed effects from the last iteration, and the estimated

shape parameter is α̂ = 2.812. The variance of the random effect σ2
u is estimated as

zero while Freeman and Vining (2013) reported a non-zero estimate of σ2
u. We found

that the approximated value of the log-likelihood function in Eq. (2.4) evaluated at

the ML estimates of our method is slightly larger than the one of Freeman and Vining

(2013), so more accurate results. Therefore we conclude that no random effects exist

among test stands in this example. In this case, we can remove the random effect

term from the linear predictor and fit the data by simple fixed effects model using

GLM.

Table 2.2: Parameter estimates for fixed effects

Parameter Estimate Std. error t value p-value

β0 −5.39 16.15 −0.33 0.7497

β1 −1.51 0.61 −2.46 0.0173

β2 4.56 0.79 5.81 < .0001

2.3.4 Analysis of Pressure Vessel Data

This dataset consists of the lifetimes of 108 pressure vessels being tested at four

different stresses of the wrapping fiber (23.4, 25.5, 27.6 and 29.7 MegaPascals). The

pressure vessels were manufactured in batches by 8 different spools and each spool

was used to wrap a number of pressure vessels. Table 2.3 shows a part of the dataset,

and the entire one can be found in Gerstle and Kunz (1983). Again, we transformed

the stress variable by taking log. Test units that had not yet failed at 41,000 hours

were right-censored (type-I censoring) and there exist 11 censored observations at the

stress level of s = 3.15. The linear predictor is given as ηij = β0 + β1s
1
ij + ui, where
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i = 1, . . . , 8 is the index of spool and j = 1, . . . , ni is the index of test unit. The other

conditions are the same as in the previous section.

Table 2.3: Life test data of pressure vessels (part), failure time with an asterisk *

indicates a censored data.

s = lnMpa Spool Failure time Number of test units

3.39

2 2.2

39
7 4.0

...
...

4 1802.1

3.32

3 19.1

24
3 24.3

...
...

4 6177.5

3.24

6 225.2

24
7 503.6

...
...

1 31008.0

3.15

7 4000.0

21
7 5376.0

...
...

8 41000.0*

A total of 12 iterations were required for the convergence. Table 2.4 shows the

estimates of the regression coefficients and the variance of random effect reported by

the output of GLMM model from SAS. In addition, the predicted random effects for
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each spool (i.e., ûi, i = 1, . . . , 8) as well as those standard errors are shown in Ta-

ble 2.5, which are another output of SAS. We can observe that there exists significant

variations of spool effects in, e.g., spool 4 or spool 7. By Eq. (2.7) and Eq. (2.11),

the estimated shape parameter is α̂ = 1.251.

Table 2.4: Parameter estimates of pressure vessel data

Parameter Estimate Std. error t value p-value

β0 −103.91 4.3097 −24.11 < .0001

β1 28.8143 1.2909 22.32 < .0001

σ2
u 2.4077 1.2504

Table 2.5: Predicted random effects of each spool

Spool Estimate Std. error t value p-value

1 −1.6977 0.6125 −2.77 0.0067

2 0.8552 0.5885 1.45 0.1493

3 1.7441 0.6192 2.82 0.0059

4 −2.3128 0.6141 −3.77 0.0003

5 0.0679 0.6355 0.11 0.9151

6 0.3222 0.6124 0.53 0.6000

7 2.3484 0.6226 3.77 0.0003

8 −0.9985 0.6131 −1.63 0.1065

The standard errors in Table 2.4 may underestimate the variances of estimated

parameters because the GLMM model does not contain the estimation of α. In

order to obtain the complete asymptotic variance-covariance matrix of the parameter

estimates, we extracted the Hessian matrix from the last GLMM fitting output of
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SAS (Table 2.6). Indeed, because SAS optimizes −2 logL (deviance), we need to

multiply 1/2 to the Hessian matrix to obtain A, b and c in Eq. (2.12).

Table 2.6: Hessian matrix of −2 logL

β0 β1 σ2
u

β0 6.4003 21.1875 0.000424

β1 21.1875 71.3389 −0.02047

σ2
u 0.000424 −0.02047 1.2796

In the meantime, we obtained d = (22.62, 62.81)′, e = −2.06 and f = 502.24 by

calculating corresponding second derivatives in Subsection 2.2.4 using G-H quadra-

ture. After combining the results and taking the inverse, we get the following variance-

covariance matrix:

Avar(β̂0, β̂1, σ̂
2
u, α̂) =



78.56 −21.90 −2.99 −0.81

−21.90 6.14 0.82 0.22

−2.99 0.82 1.70 0.04

−0.81 0.22 0.04 0.01


and the standard errors can be obtained by se(β̂0) =

√
78.56 = 8.86, se(β̂1) =

√
6.14 = 2.48, se(σ̂2

u) =
√

1.70 = 1.31, and se(α̂) =
√

0.01 = 0.10. We can observe

the calculated standard errors of β̂0, β̂1 and σ̂2
u are bigger than those in Table 2.4.

2.4 Conclusions

In this chapter, we proposed a GLMM approach to the ALT data analysis with

constrained randomization. This approach provides a structured framework for mod-

eling censored failure time data with random effects and it can be easily implemented

in statistical software. Our model is developed under the proportional hazard as-

sumption, which is essentially a semiparametric model, thus it can be applied to
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many other failure time distributions in addition to the Weibull distribution. In the

examples above, we utilized physical acceleration models to derive the life-stress re-

lationship, which has been overlooked by previous researches on similar problems.

Furthermore, it is expected that the proposed GLMM approach can assist in the

experimental design study of ALTs with random effects.
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Chapter 3

ANALYZING STEP-STRESS ACCELERATED LIFE TESTING DATA WITH

HETEROGENEOUS GROUP EFFECTS

Step-stress accelerated life testing (SSALT) is a special type of experi-

ments that test a product’s lifetime with time-varying stress levels. Typ-

ical testing protocols deployed in SSALTs cannot implement complete

randomization of experiments; instead, they often result in grouped struc-

tures of experimental units and, thus, correlated observations. In this

chapter we propose a generalized linear mixed model (GLMM) approach

to take into account the random group effect in SSALT. Failure times are

assumed to be exponentially distributed under any stress level. Two pa-

rameter estimation methods, adaptive Gaussian quadrature (AGQ) and

the integrated nested Laplace approximation (INLA), are introduced. A

simulation study is conducted to compare the proposed random effect

model with the traditional model, which pools data groups together, and

with the fixed effect model. We also compare AGQ and INLA’s with dif-

ferent priors for parameter estimation. Results show that the proposed

model can validate the existence of group-to-group variation. Lastly the

GLMM model is applied to a real data and it shows that disregarding ex-

perimental protocols in SSALT may result in large bias in the estimation

of the effect of stress variables.
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3.1 Introduction

3.1.1 Background and Motivation

Life tests for highly reliable products or materials require an extremely long time

for observing any failures. Accelerated life testing (ALT) attempts to address this

problem by elevating some environmental stresses so as to obtain failure time data

quickly. In contrast to constant-stress ALT (CSALT), where the stress applied on a

test unit is fixed at a single level, step-stress accelerated life testing (SSALT) varies

stress levels over the testing period, typically in an increasing pattern, as long as the

test unit has not failed yet. Therefore, the testing method will push the test unit to

failure with more and more severe stresses and further reduce the total testing time.

Most previous studies on statistical analysis of SSALT data have been conducted

based on the assumption that lifetimes of test units are independent of each other.

Only by a completely randomized experiment would this assumption be valid. In

reality, however, it is almost impossible to guarantee the complete randomization

in ALT due to the limited availability of test equipment and test units, as well as

budget and time constraints. Some experimental protocols such as subsampling or

random blocks can be seen as a compromise between available resource and complete

randomization. Subsampling arises from discordance between experimental units and

observational units (Vining, 2013); for example, it occurs when multiple test units

are located on the same test stand, while testing stresses are applied on test stands,

not individual test units. Random blocks may come from a batch manufacturing or

different raw materials used by test units. Figure 3.1 illustrates these experimental

protocols. One can see that both the protocols result in a grouped structure among

the observations, and in this case lifetimes within the same group may be correlated. If

these correlations were ignored in data analysis, inaccurate result would be obtained.
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Figure 3.1: Experimental protocols causing a grouped structure in SSALT

Motivating examples of such grouping structure in SSALT can be found in the

literature. Zhao and Elsayed (2005) illustrate an SSALT experiment to obtain life-

times of light emitting diodes (LEDs), where each experimental set is made of a board

containing 4 × 8 LEDs. Although Zhao and Elsayed (2005) exploit only a single set

of test units, multiple experimental sets may be tested in different test chambers to

obtain more data. In these cases, it is reasonable to assume that observations from

32 test units tested at the same test chamber are correlated. Another example can

be found in Nelson (1980), in which the SSALT data of power cable insulation with

time-varying stress of voltage is described. This dataset contains the failure or cen-

sored time of a total of 21 test units of 7 test groups with 3 test units each. Test

units within a same group tested at the same test stand, and different groups may

have different stress profiles, which leads to the case of subsampling.

Information extracted from products’ life tests plays a fundamental role for all

reliability-related decision making such as establishing warranty policy or evaluating

new product designs. Such decisions based on erroneous finding may cause incalcula-

ble harm to manufacturers. Therefore more accurate estimations and predictions of

product reliability from the more realistic model are required.
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3.1.2 Previous Work

Traditional ways to model SSALT can be summarized based on their assump-

tions on how the varying stress affects a product’s lifetime. The cumulative exposure

(CE) model (Nelson, 1980) assumes that the survived test units will fail according

to the cumulative density function (cdf) for current stress level starting at the pre-

viously accumulated cdf level. Alternatively, Khamis and Higgins (1999) proposed

a transformed exponential model, called KH model, motivated by its mathematical

simplicity. It turns out that, by the KH model, the stress makes a direct impact on

the hazard rate of the product’s lifetime according to the proportional hazard (PH)

model. Sha and Pan (2014) illustrated the difference of these two models by depict-

ing the composite cumulative hazard function of SSALT. Graphically, the CE model

forms the composite cumulative failure rate by a horizontal shift of the individual

cumulative hazard function segment under CSALT with corresponding stress; while

the PH model makes it by vertical shift. However, for exponentially distributed life-

times, these two models are the same because an exponential random variable has a

linear cumulative failure rate, which produces the identical result by either horizontal

or vertical shift.

The presence of group effects among observations leads to a random effect model

since we are interested in a whole population of all possible groups, while not in

specific groups that emerged from the experiment; thus, these groups are regarded

as samples from a population. For CSALT, several studies have been conducted to

take into account these random group effects during the past few years. León et al.

(2007) illustrated Bayesian analysis using Markov chain Monte Carlo (MCMC) with

an application concerning random blocks. They compared fixed and random group

effect models and showed that the random group effect model provided more precise
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estimates and predictions. Pan and Kozakai (2013) had a discussion of the frailty

modeling approach to the same dataset. Freeman and Vining (2010, 2013) proposed

a nonlinear mixed model (NLMM) to incorporate random effects. Their simulation

study revealed that the proposed method was more robust in various scenarios com-

pared to traditional methods with the independence assumption. Kensler et al. (2015)

extended the NLMM method further to reflect experiments containing subsampling

and random blocks simultaneously. Another extension can be found in Lv et al. (2015)

where they incorporated different failure mechanisms by allowing the shape param-

eter of the Weibull lifetime distribution to be dependent on accelerating stresses.

Wang et al. (2015) studied the bias in the lower percentile estimate when there was

subsampling in right censored reliability data and they proposed a two-stage boot-

strapping approach to establish an unbiasing factor. Seo and Pan (2016) described

a generalized linear mixed model (GLMM) approach for right-censored CSALT data

with random group effects. They argued that the GLMM was more flexible to model

failure time data and easier to implement for the parameter estimation. Most re-

cently, Rodŕıguez-Borbón et al. (2017) used a proportional hazard model with error

effect to analyze the ALT data from a knock sensor accelerated life test.

While CSALT with constrained randomization has been previously discussed, sim-

ilar models for SSALT have not received much attention in literature. In this chapter,

we propose a generalized linear mixed model (GLMM) approach to analyze failure

time data from SSALTs with heterogeneous group effects. We assume that 1) life-

times at individual stress levels are exponentially distributed; and 2) lifetimes can be

right-censored by Type-I (i.e., termination of predetermined testing time) or Type-II

(i.e., obtaining predetermined number of failures) censoring. We introduce a random

group effect to the previously studied SSALT model and build GLMM formulation

from the conditional likelihood function. Two GLMM parameter estimation methods,
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from the frequentist and Bayesian points of view, respectively, are introduced. Finally,

the proposed estimation methods are assessed and compared with other traditional

methods through a simulation study.

3.2 SSALT Model

Lee and Pan (2010) proposed a generalized linear model (GLM) approach for

SSALT with exponentially distributed lifetimes under a constant stress, but only

with fixed effects. They have shown that the likelihood of a single observation from

SSALT can be constructed by likelihoods of each stress step segment’s observations

under CSALT. They then built the GLM with Poisson response using an indicator

variable for censoring. In this section, we extend this model to accommodate the

random group effects.

3.2.1 SSALT with Random Effects

Suppose we have a total of N =
∑m

i=1 ni test units where m is the number of

groups formed by experimental protocols and ni is the number of test units in the

ith group. The jth test unit in the ith group is tested under the SSALT planned

with l steps of stress levels. Note that l could vary depending on the stress profile

that the ijth unit is tested on, but, for convenience, we use the notation without a

subscript ij unless it is necessary. Let xijk, k = 1, . . . , l be stress levels corresponding

to each step, which are changed at the time points ξij1, . . . , ξij,l−1. We assume that

the stress factor is represented as a form of a natural variable by a suitable physical

acceleration model (e.g., log transformation by inverse power law). In addition, We

introduce normal random variables ui’s to reflect each group effect. That is,

ui ∼ iid.N(0, σ2
u), i = 1, . . . ,m, (3.1)
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where σ2
u is a variance component of group effect and it is one of the unknown pa-

rameters in the model.

Let tijk be the failure time of the ijth test unit under the constant stress level

xijk, which is exponentially distributed with a failure rate λijk. The failure rate λijk

is related to stress level xijk through a log linear function given by

log (λijk) = β0 + β1xijk + ui, (3.2)

where β0 and β1 are unknown regression parameters reflecting the fixed effect size of

the stress; ui causes random variation of the intercept. The conditional probability

density function (pdf) and reliability function of tijk given ui under individual constant

stress levels are then given, respectively, by

fcs(tijk|ui) = λijk exp(−λijktijk), tijk > 0 (3.3)

Rcs(tijk|ui) = exp(−λijktijk), tijk > 0 (3.4)

where the subscript cs indicates a constant stress.

Now let tij, without the subscript k, be the failure time of the ijth test unit under

the step-stress profile applied to the unit. By either CE or PH model, we can show

that the conditional pdf of tij given ui is given by

fss(tij|ui)

=



λij1 exp {−λij1tij}, 0 ≤ tij < ξij1

λij2 exp {−λij2(tij − ξij1)− λij1ξij1}, ξij1 ≤ tij < ξij2

λij3 exp {−λij3(tij − ξij2)− λij2(tij − ξij1)− λij1ξij1}, ξij2 ≤ tij < ξij3

· · ·

λijl exp {−λijl(tij − ξij,l−1) · · · − λij2(tij − ξij1)− λij1ξij1}, ξij,l−1 ≤ tij <∞,
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and it can be rewritten in terms of the pdf and reliability functions in Eq. (3.3) and

(3.4) by

fss(tij|ui)

=



fcs(tij|ui), 0 ≤ tij < ξij1

Rcs(ξij1|ui)fcs(tij − ξij1|ui), ξij1 ≤ tij < ξij2

Rcs(ξij1|ui)Rcs(ξij2 − ξij1|ui)fcs(tij − ξij2|ui), ξij2 ≤ tij < ξij3

· · ·

Rcs(ξij1|ui) · · ·Rcs(ξij,l−1 − ξij,l−2|ui)fcs(tij − ξij,l−1|ui), ξij,l−1 ≤ tij <∞.
(3.5)

Eq. (3.5) says that a single test unit’s conditional likelihood of failure at the

kth step of the stress profile can be treated as the conditional likelihoods of k test

units with constant stresses, in which the first k − 1 units are survived and the last

unit is failed. This equivalent likelihoods between SSALT and CSALT is due to the

memoryless property of exponential distribution, which is illustrated in Figure 3.2.

If we observe a unit that is working under the stress level x1 at the time point ξ1,

the remaining lifetime of this unit under a higher stress level x2 is stochastically the

same as the lifetime of a new test unit under the stress level x2. Likewise, if the

unit survives until ξ2, it can be treated as a new test unit again when the test stress

level is changed to the next level x3. As a result, a single observation under SSALT

generates three pseudo data points under constant stresses in this example.

We define cijk = 1, yijk = tij−ξij,k−1 if ijth unit is failed at kth step; and cijk = 0,

yijk = ξijk − ξij,k−1 if it is survived. In other words, cijk is an indicator variable for

censoring and yijk is the survival time at the kth step. In addition, let pij ≤ lij be

an index of the step where the failed or censored observation is obtained. Then the

conditional likelihood of the observations on a single test unit from the SSALT is

31



stress

time
𝑥1

𝑥2
𝑥3

𝜉1 𝜉2 𝑡

𝜉1

𝜉2 − 𝜉1

𝑥1

𝑥2

𝑡 − 𝜉2

𝑥3

failed censored

Figure 3.2: Memoryless property of exponential lifetime distribution in SSALT

given by

Lij|ui =

pij∏
k=1

fcs(yijk|ui)cijkRcs(yijk|ui)1−cijk ,

which is an another expression of Eq. (3.5). Let qi =
∑ni

j=1 pij be the total number

of step segments from all observations in ith group. The conditional likelihood of the

ith group is then given by

Li|ui =

ni∏
j=1

pij∏
k=1

fcs(yijk|ui)cijkRcs(yijk|ui)1−cijk

=

qi∏
s=1

fcs(yis|ui)cisRcs(yis|ui)1−cis

=

qi∏
s=1

λcisis exp (−λisyis),

where s = 1, . . . , pi1, pi1 + 1, . . . , pi1 + pi2, . . . , qi.

By the definition of ui in (3.1), observations from different groups are independent.

Therefore, the marginal likelihood of all observations in all groups can be constructed

by integrating out the random effect variable for each group and then multiplying the

likelihoods of all groups, that is

L =
m∏
i=1

∫ ∞
−∞

qi∏
s=1

λcisis exp (−λisyis) π(ui) dui, (3.6)
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where π(ui) = (2πσ2
u)
−1/2 exp (−u2i /(2σ2

u)), the pdf of ui.

3.2.2 GLMM Formulation

The GLMM (McCulloch and Searle, 2001) is a class of models that include random

effects into the linear predictor of a generalized linear model. It is often used for

mixed models where the response conditional on the random effects is not normally

distributed, but follows a distribution in the exponential family (e.g., binary or count

data). The formulation of a GLMM consists of four components: the conditional

distribution model of the response variable, the linear predictor that consists of fixed

and random effects, the distribution model of random effects, and the link function

that relates the conditional mean of the response with the linear predictor. Since the

random effect is not directly observable, inference for model parameters in a GLMM

is conducted based on the marginal likelihood of observed data.

Eq. (3.6) can be rewritten in terms of µis = λisyis as

L =
m∏
i=1

∫ ∞
−∞

qi∏
s=1

(
µcisis e−µis

)
y−cisis π(ui) dui.

The term in the round bracket is the Poisson kernel of random variable cis with a

conditional mean µis = E[cis|ui]. From Eq. (3.2), we see that the unknown parameters

are only included in this term. Therefore, the likelihood of yis’s can be treated as if

it is constructed by Poisson random variables cis’s. We now can formulate the model

according to components for GLMM as follows:

• Response variable: cis|ui ∼ ind.Poisson(µis);

• Linear predictor: ηis = β0 + β1xis + ui;

• Random effect: ui ∼ iid.N(0, σ2
u);

• Link function: g(µis) = log µis = ηis + log yis.
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The link function is log link and it includes an offset term log yis. The log-likelihood

is then

logL =
m∑
i=1

log

∫ ∞
−∞

qi∏
s=1

(
µcisis e−µis

)
π(ui) dui −

m∑
i=1

qi∑
s=1

cisyis. (3.7)

The integration in the first term does not have a closed form. Its evaluation requires

a numerical approximation.

3.3 Numerical Methods for Parameter Estimation

Two parameter estimation methods are briefly discussed in this section. The first

one is adaptive Gaussian quarature (AGQ), which is a maximum likelihood estimation

(MLE) method, proposed by Pinheiro and Bates (1995). The second one is integrated

nested Laplace approximation (INLA), which is an approximate Bayesian method, by

Rue et al. (2009). In this section, we provide the salient ideas of those two methods

by tracking the procedures with SSALT data. For more comprehensive descriptions

and examples, see the original papers.

3.3.1 Adaptive Gaussian Quadrature

Early works for parameter estimation in GLMM, including the penalized quasi-

likelihood (PQL) and the marginal quasi-likelihood (MQL) proposed by Breslow and

Clayton (1993), were based on approximating GLMM to the linear mixed model

(LMM), therefore an iterative algorithm for LMM can be applied to GLMM. How-

ever, it is known that these procedures produce biased estimates in certain cases,

especially for binary data. On the other hand, more direct methods to evaluate in-

tractable integrals in the likelihood function using quadrature approximation have

been recognized as being more accurate and more computationally efficient.

To maximize the log-likelihood function (3.7), the integral in the first term is

required to be evaluated numerically for given values of unknown parameters, β̂ =
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(β̂0, β̂1) and σ̂2
u. Monte Carlo sampling is an easy way to approximate integrals. Let

h(ui) =
∏qi

s=1 (µcisis e−µis) in Eq. (3.7). Then,∫ ∞
−∞

h(ui)π(ui) dui = E[h(ui)] ≈
1

M

M∑
k=1

h(uik)

where uik’s are random samples drawn from the density π(ui). The function whose

value is evaluated by random samples (i.e., h(ui) in this case) is called the target

density. By the Strong Law of Large Number, this approximated quantity converges

to the true value of the integral when M → ∞. However it is not an efficient

way to evaluate the integration for the purpose of optimization, which needs several

iterations, as it requires sufficiently large number of random samples even for a single

evaluation.

Meanwhile, importance sampling is known as a much more efficient stochastic

integration method than Monte Carlo sampling. It introduces a proposal distribution

ω(ui) as follows. ∫ ∞
−∞

h(ui)π(ui) dui =

∫ ∞
−∞

h(ui)
π(ui)

ω(ui)
ω(ui) dui

Now it generates random samples from ω(ui), instead of π(ui). Obviously the target is

changed as well by the introduction of the proposal distribution, and it is the original

target weighted by the importance weights π(ui)/ω(ui). One possible choice for ω(ui)

is a distribution which resembles the original integrand h(ui)π(ui).

Alternatively, the Gaussian quadrature rules can be viewed as a deterministic ver-

sion of the Monte Carlo sampling. It provides an accurate approximation when the in-

tegrand includes specific kernel function. In specific, Gauss-Hermite (GH) quadrature

can be used for the kernel function e−v
2
, which can be seen as a kernel of N(0, 1/2).

Given the number of quadrature points d, GH quadrature approximates the integral
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as follows. ∫ ∞
−∞

g(v)e−v
2

dv ≈
d∑

k=1

g(xk)wk

where g(v) is an arbitrary function; xk’s are fixed evaluation points; and wk’s are the

corresponding weights. In GH quadrature, the target function g(v) is only evaluated

by some predetermined evaluation points xk’s instead of random samples drawn from

the density N(0, 1/2); and hence the weights are given to reflect the probability mass

at each point. In our case, using a variable transformation, ui =
√

2σuv, we obtain∫ ∞
−∞

h(ui)π(ui) dui =

∫ ∞
−∞

h(
√

2σuv)
e−v

2

√
π

dv ≈
d∑

k=1

h(
√

2σuxk)
wk√
π

where
√

2σuxk and wk/
√
π can be viewed as the evaluation points and weights ex-

tracted from N(0, σ2
u).

Likewise, AGQ is a deterministic version of the importance sampling (Pinheiro

and Bates, 1995). That is, we exploit the proposal distribution which approximates

h(ui)π(ui); and then generate the evaluation points and weights from the proposal.

More specifically AGQ approximates h(ui)π(ui) to the Gaussian density with the

mean centered at the mode and the variance calculated using the curvature at the

mode of h(ui)π(ui). The integration part of Eq. (3.7) can be written as

1√
2πσu

∫ ∞
−∞

exp

{
− u2i

2σ2
u

+

qi∑
s=1

(cis log µis − µis)

}
dui. (3.8)

This form of integrand is frequently found in the joint likelihood of the GLMM model.

The first term of the exponent comes from the normal random effect and the second

term is due to the data likelihood. Let g(ui) denote the function in the curly brackets.

The Gaussian approximation of the integrand in Eq. (3.8) is given as

exp {g(ui)} ≈ exp

{
−(ui − u∗i )2

2σ2∗

}
(3.9)

where the derivation of u∗i and σ2∗ is provided in Appendix A.
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As in the importance sampling, Eq. (3.9) is multiplied to the original integrand

and divided by itself. That is,∫ ∞
−∞

exp {g(ui)} dui =

∫ ∞
−∞

exp {g(ui)}

exp
{
− (ui−u∗i )2

2σ2∗

} exp

{
−(ui − u∗i )2

2σ2∗

}
dui (3.10)

=
√

2σ∗
∫ ∞
−∞

exp
{
g(u∗i +

√
2σ∗v)

}
exp

{
v2
}

exp
{
−v2

}
dv

(3.11)

≈
√

2σ∗
d∑

k=1

exp
{
g(u∗i +

√
2σ∗xk)

}
exp

{
x2k
}
wk (3.12)

where the variable is transformed by v =
ui−u∗i√

2σ∗
in (3.11); and the GH quadrature

rule is applied in (3.12). As a result AGQ evaluates the integration of (3.10) by the

summation with u∗i +
√

2σ∗xk as the evaluation points; and
√

2σ∗ exp {x2k}wk as the

weights. AGQ is known as efficient quadrature method, which means it requires only

a small number of evaluation points.

3.3.2 Integrated Nested Laplace Approximation

Bayesian inference is particularly useful when only a small number of test units

are available as in the case of ALTs. Engineers’ domain knowledge from previous

or similar products can be utilized through the specification of prior distributions of

model parameters. For SSALT, Lee and Pan (2008) presented how an informative

prior can be elicited from experts’ opinions. They derived a conjugate prior and

posterior distributions for a simple SSALT with Type-II censoring. However, for a

general inference problem the conjugacy may not be justified beside of computational

convenience; hence, it often requires some sampling methods such as MCMC to build

a posterior distribution. Recent research utilizing MCMC for SSALT data include

Lee and Pan (2012), Xu et al. (2014) and Hamada (2015).
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Despite its popularity, MCMC still has some practical impediments. First, it re-

quires substantially large amount of time to obtain a sufficient number of samples,

which precludes a simulation study of Bayesian analysis. Second, it is not straight-

forward to determine whether the generated samples converge to the posterior distri-

bution of interest, although theoretical results indicate that the MCMC algorithms

converge in the long run (Sinharay, 2004). In our study, we found that MCMC often

failed to converge even with a very long run when we applied it on the GLMM model

of SSALT. In addition, it produced large correlation among subsequent samples and

failed to achieve good mixing of samples. To overcome these problems, we consider

an approximate Bayesian method using Laplace approximation, in which no sampling

is needed. Some early work of this approach to ALTs include Achcar (1993). In this

chapter, we apply INLA, where it is originally developed to account for approximate

Bayesian inference of latent Gaussian models. INLA has been applied to various sta-

tistical models including GLMM, and previous studies show that it provides fast and

accurate approximation to MCMC results (Holand et al., 2013; Grilli et al., 2015;

Fong et al., 2010).

In INLA, as in most Bayesian approaches for regression models, Gaussian priors for

coefficients of fixed effects are assigned, i.e., β0 ∼ N(0, τ−10 ) and β1 ∼ N(0, τ−11 ); and

a non-Gaussian prior is assigned for the precision parameter of random effects, where

the typical choice is a Gamma distribution, i.e., τu = 1/σ2
u ∼ π(τu) = Gamma(a, b)

with the unnormalized density τ
(a−1)
u e−bτu . Let z = (β0, β1, u1, . . . , um)T denote the

vector of all Gaussian random variables; Q(τu) = diag(τ0, τ1, τu, . . . , τu) be the (m +

2)× (m+ 2) precision matrix of z; and D be the observed data containing cis’s and
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yis’s. The joint posterior of z and τu is then given as

π(z, τu|D) ∝ π(z, τu,D)

= π(τu)π(z|τu)
m∏
i=1

π(Di|z, τu)

∝ π(τu)|Q(τu)|1/2 exp

{
−1

2
zTQ(τu)z +

m∑
i=1

qi∑
s=1

(cis log µis − µis)

}
.

We wish to obtain the posterior marginal of the precision π(τu|D), and using that

we also want to obtain the posterior marginal of each Gaussian variables, zp’s, by

integrating out τu from the joint as follows:

π(zp|D) =

∫
π(zp|τu,D)π(τu|D) dτu, p = 1, . . . ,m,m+ 1,m+ 2. (3.13)

The INLA applies Laplace approximations to each density of the integrand in Eq. (3.13).

Then it exploits the numerical integration to combine two densities. That is,

π(zp|D) ≈ π̃INLA(zp|D) =

∫
π̃LA(zp|τu,D) π̃LA(τu|D) dτu (3.14)

≈
d∑

k=1

π̃LA(zp|τ ku ,D) π̃LA(τ ku |D) ∆k, (3.15)

where π̃ denotes an approximated density; the subscript LA indicates the Laplace

approximation; d is the number of evaluation points for the numerical integration;

and ∆k’s are area weights. Appendix A provides more details of π̃LA(zp|τu,D) and

π̃LA(τu|D). Eq. (3.15) implies that the posterior marginal of a Gaussian variable

is constructed by a mixture of densities π̃(zp|τ ku ,D) weighted by π̃LA(τ ku |D) ∆k at

selected points.

3.4 Simulation Study

3.4.1 Simulation Design

The objectives of this simulation study are 1) to compare different models with

or without the random group effect, and 2) to compare two parameter estimation
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Figure 3.3: Simulation setting

methods for GLMM described in Section 3.3, with various prior distribution settings.

We presume a 4-step progressive SSALT experiment with a single stress factor, which

has a similar stress profile to the one of Zhao and Elsayed (2005) introduced in

Subsection 3.1.1, but with modified stress levels and step-change time points. In

specific, stress levels are postulated as (x1, x2, x3, x4) = (6.32, 6.41, 6.50, 6.55); and

so are step-change time points as (ξ1, ξ2, ξ3) = (4, 8, 12) with the test termination

time at ξ4 = 15. We assume that all test units across all groups are tested under

the same stress profile, and all groups contain the same number of test units (i.e.,

n1 = · · · = nm = n). In addition, the following acceleration model is assumed for test

units in the ith group and at the kth stress level.

log(λijk) = −55 + 8.2xk + ui, j = 1, . . . , n. (3.16)

Figure 3.3 illustrates (a) the stress profile of the SSALT and (b) examples of the

cumulative hazard functions with different random effects, which are ui = 0.5, 0, and

−0.5.

Several magnitudes of variance components are considered and they are σu =

0.2, 0.5, 0.8, 1.1 and 1.4. A total of 1,000 data sets are generated for each σu value.
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For each dataset, the number of groups m and the number of test units within a

group n are generated from the discrete uniform with the range of [3, 8] and [5, 10],

respectively; hence, the total number of test units can be varied from 15 to 80.

Simulation data cannot be generated from standard parametric distributions since

the cdf of the failure time under step-stress is a piecewise function; hence, we obtain

data by the inverse of cdf. The detailed procedure for generating the simulation data

is provided in Appendix A.

We attempt to fit each dataset using three different models. The first model

is a pooled group model with a linear predictor log(λik) = β0 + β1xk, in which all

test units are assumed to be independent and the correlations of observations within

groups are ignored. The second model accommodates the fixed group effect through

log(λik) = β0+β1xk+bi with bi’s being fixed unknown effects. This model can be used

when we are only interested in the specific groups within the experiment rather than

a population of group effects. For a pooled and fixed group models, the parameters

are estimated by GLM method (Lee and Pan, 2010). The third model is a random

group effect model that is considered in this chapter. We try AGQ with 20 quadrature

points and two INLA’s with different prior distributions for the estimation of β’s and

σu. The flat normal priors with large variances N(0, 1000) are given as priors of β’s

for both INLA models. This is often used as a non-informative prior of regression

coefficients. On the other hand, in terms of the prior distribution of the precision

parameter τu = 1/σ2
u, the first INLA model uses Gamma(0.001, 0.001), which is a

popular choice for a non-informative prior of variance component; and the second

INLA model uses Gamma(0.5, 0.0164), as suggested by Fong et al. (2010). Based on

the fact that when ui|τu ∼ N(0, τ−1u ) and τu ∼ Gamma(a, b), the marginal prior of

ui becomes non-standardized Student’s t, where the degrees of freedom is given as

2a and the scale parameter is given as
√
b/a, one can see that Gamma(0.001, 0.001)
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prior makes the tails of marginal prior for the random effect too much heavy. On

the other hand Gamma(0.5, 0.0164) prior produces one of Student’s t with 1 degree

of freedom (i.e., the Cauchy distribution) and the 95% range of exp (ui) is given as

[0.1, 10] (see Fong et al., 2010); and hence the marginal prior of the random effect

becomes more concentrated on the center.

3.4.2 Simulation Results

We investigate the point estimates of β0, β1 from each model, and σu from the

random effect model described in Subsection 3.4.1. For INLA, posterior means of

β0, β1 and σu are used for their point estimates. Figure 3.4 shows box plots of point

estimates for unknown parameters with small and large values of σu. Here, INLA1 and

INLA2 indicate INLA methods with Gamma(0.001, 0.001) and Gamma(0.5, 0.0164)

priors for 1/σ2
u, respectively. In Figure 3.4b three data points beyond σ̂u > 20 are

removed for the clarity of plotting.

When σu is small (see Figure 3.4a), the pooled model produces even less biases

for estimations of β0 and β1 than the random effects model because the correlations

between observations are almost ignorable and regression coefficients estimates are

not influenced by the estimation of σu. On the other hand when σu is large (see

Figure 3.4b), the pooled model shows severe biases in regression coefficients estimates

since it ignores large amount of correlation among observations. Table 3.1 summarizes

this result more clearly by presenting relative bias of β̂’s, defined as (Med(β̂)− β)/β

where Med(β̂) is the median of estimates from the simulation, along with σu. An

absolute value that is close to zero for this relative bias is desired. The table shows

that the biasness of estimators from the pooled model quickly escalates as σu increases.

It also shows that estimates from the fixed model produce large bias regardless of the

magnitude of σu. On the other hand, three methods of the random effect model
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Figure 3.4: Box plots of point estimates for β0, β1 and σu with σu = 0.2 and σu = 1.4,

where the horizontal line of each plot indicates the true parameter value.
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Table 3.1: Relative bias of β̂0 and β̂1 by σu

σu (Med(β̂0)− β0)/β0 (Med(β̂1)− β1)/β1

Pooled Fixed AGQ INLA1 INLA2 Pooled Fixed AGQ INLA1 INLA2

0.2 −0.002 0.137 0.036 0.046 0.036 −0.001 0.144 0.038 0.049 0.038

0.5 −0.115 0.162 0.027 0.037 0.013 −0.119 0.170 0.027 0.039 0.015

0.8 −0.281 0.161 0.000 0.020 −0.022 −0.294 0.164 −0.003 0.024 −0.022

1.1 −0.422 0.178 0.013 0.028 −0.005 −0.440 0.179 0.012 0.030 −0.004

1.4 −0.576 0.200 0.017 0.038 −0.004 −0.603 0.206 0.020 0.038 −0.003

provide much improved results. They all maintain small bias across all values of σu.

It seems AGQ and INLA2 produce slightly smaller bias than INLA1; and the bias of

INLA2 is reduced as σu increases.

Figure 3.4 displays the estimation of σu from AGQ, INLA1 and INLA2. One can

see that, when σu = 0.2, more than 50% of σ̂u from AGQ is zero, which means AGQ

could not detect the small variance component in many cases. On the contrary, two

INLA methods produced interquartile ranges (i.e., Q3−Q1) of estimates distinguished

from zero, which indicates a better performance for detecting small group-to-group

variations. This can be thought as the consequence of the priors given to INLA. In

fact, Gamma(0.001, 0.001) and Gamma(0.5, 0.0164) prior distributions have peaks

near zero although they are very flat priors (see e.g., Grilli et al., 2015). It probably

causes some portions of posterior mass for σu being placed away from zero. Partic-

ularly, INLA2 shows more closer estimates to zero than INLA1, which can be also

explained by the use of more informative prior in INLA2. Table 3.2 contains the

median and interquartile of σ̂u with true values of σu. It shows INLA2, compared to

INLA1, consistently produces closer-to-zero estimates and more narrower interquar-

tile ranges across all σu.
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Table 3.2: Median and interquartile range of σ̂u by true values of σu

σu ASQ INLA1 INLA2

0.2 0.000 (0.000, 0.254) 0.315 (0.099, 0.519) 0.237 (0.222, 0.290)

0.5 0.369 (0.000, 0.577) 0.409 (0.180, 0.707) 0.295 (0.226, 0.590)

0.8 0.650 (0.373, 0.884) 0.771 (0.342, 1.144) 0.594 (0.270, 1.004)

1.1 0.902 (0.590, 1.213) 1.151 (0.642, 1.669) 0.974 (0.474, 1.388)

1.4 1.157 (0.805, 1.525) 1.564 (1.033, 2.108) 1.279 (0.808, 1.722)

We also investigate interval estimates of AGQ and INLA’s. For INLA, the 95%

quantile credible intervals from the posterior distributions of β0, β1 and τu are consid-

ered. In AGQ, we adopt a confidence interval based on the profile likelihood (see e.g.,

Pawitan, 2013). As we can see from Figure 3.4, the distribution of σ̂u is asymmetric

in general, especially when σu is small. In this case, the Wald-type confidence inter-

val based on an asymptotic normality of estimators would perform poorly, especially

when we have a small sample. The profile likelihood confidence interval is a better

choice. A brief description of this method is as follows. Given the joint likelihood

L(σu,β) the profile likelihood of σu, for example, is

L(σu) = max
β

L(σu,β).

and a 95% confidence interval for σu is the set of all values σ∗u such that a two-sided

test of the null hypothesis H0 : σu = σ∗u would not be rejected at 0.05 significance level.

That is ∀σ∗u such that the likelihood ratio statistic 2[logL(σ̂u, β̂)− logL(σ∗u)] < χ2
1,0.95

or

∀σ∗u s.t. logL(σ∗u) > logL(σ̂u, β̂)− χ2
1,(1−α)/2,

where σ̂u and β̂ are the MLE’s from L(σu,β); and χ2
1,(1−α) is the 1− α quantile of a

χ2 distribution with 1 degree of freedom.
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Table 3.3: Coverages of 95% interval estimates

σu β0 β1 σu (τu for INLA’s)

AGQ INLA1 INLA2 AGQ INLA1 INLA2 AGQ INLA1 INLA2

0.2 0.954 0.946 0.955 0.950 0.946 0.955 0.986 0.959 0.984

0.5 0.942 0.940 0.942 0.941 0.943 0.943 0.953 0.959 0.972

0.8 0.948 0.945 0.946 0.946 0.945 0.944 0.897 0.926 0.890

1.1 0.958 0.953 0.951 0.956 0.952 0.948 0.879 0.913 0.854

1.4 0.938 0.933 0.934 0.939 0.936 0.931 0.898 0.924 0.876

Table 3.3 shows the coverage results of 95% interval estimates from each methods.

The coverages for β’s from all three methods look quite close to 0.95, the target cov-

erage, except slightly decreased coverages for σu = 1.4. The coverage of the variance

component, however, seems to depend on the estimation method and the magnitude

of the parameter’s true value. Among the three methods, INLA1 shows relatively

consistent and acceptable coverages, while AGQ and INLA2 produce comparable re-

sults with large variation. The coverages of both AGQ and INLA2 methods fall under

90% when σu ≥ 0.8.

Furthermore, we investigate the effect of sample size on model parameter estima-

tion by using AGQ, INLA1 and INLA2. It is found that when the variance component

σu is small, INLA2 has a better performance than other two methods regardless of

sample size. When σu is relatively large and sample size is small, INLA2 and AGQ

have comparable performance and they are better than INLA1, but when sample size

is large, all three methods show similar performance.
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Table 3.4: Stress profiles

Step
Stress level

(kVolts)

Holding time (min.)

Profile 1 Profile 2 Profile 3 Profile 4

1 5.0 10 10 10 10

2 10.0 10 10 10 10

3 15.0 10 10 10 10

4 20.0 10 10 10 10

5 26.0 15 60 240 960

6 28.5 15 60 240 960

7 31.0 15 60 240 960

8 33.4 15 60 240 960

9 36.0 15 60 240 960

10 38.5 15 60 240 960

3.5 Application to Real Data

The dataset of Nelson (1980), introduced in Subsection 3.1.1, have been previ-

ously analyzed by several studies (e.g., Nelson, 2008; Lee and Pan, 2010; Hamada,

2015) with different distribution assumptions and methods. We note that Nelson

(2008) pointed out significant non-homogeneity among groups of this data by resid-

ual analysis and a likelihood ratio test. Lee and Pan (2010) partially considered the

non-homogeneity by removing data of groups founded being significantly different

from other groups. Regardless, most previous analysis ignored the group effect. In

this section, we fully take into account the heterogeneous group effect using GLMM

model.
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Table 3.5: Cable insulation SSALT data

Test

unit

Thick

(mils)
Group Profile

Failure or censored time for each step

1 2 3 4 5 6 7 8 9 10

1 27

1 1

10+ 10+ 10+ 10+ 15+ 15+ 15+ 15+ 2

2 27 10+ 10+ 10+ 10+ 15+ 15+ 15+ 15+ 13

3 27 10+ 10+ 10+ 10+ 15+ 15+ 15+ 15+ 13

4 29.5

2 2

10+ 10+ 10+ 10+ 60+ 60+ 60+ 60+ 60+ 30+

5 29.5 10+ 10+ 10+ 10+ 60+ 60+ 60+ 60+ 60+ 5+

6 28 10+ 10+ 10+ 10+ 60+ 60+ 60+ 60+ 60+ 5

7 29

3 3

10+ 10+ 10+ 10+ 240+ 240+ 240+ 240+ 240+ 93

8 29 10+ 10+ 10+ 10+ 240+ 240+ 240+ 240+ 240+ 9

9 29 10+ 10+ 10+ 10+ 240+ 240+ 240+ 240+ 240+ 93+

10 29

4 3

10+ 10+ 10+ 10+ 240+ 240+ 240+ 240+ 106.4

11 30 10+ 10+ 10+ 10+ 240+ 240+ 240+ 240+ 240+ 10.8

12 29 10+ 10+ 10+ 10+ 240+ 240+ 240+ 240+ 97.9

13 30

5 4

10+ 10+ 10+ 10+ 960+ 960+ 500.9+

14 30 10+ 10+ 10+ 10+ 960+ 960+ 500.9

15 30 10+ 10+ 10+ 10+ 960+ 960+ 743.4

16 30

6 4

10+ 10+ 10+ 10+ 960+ 960+ 960+ 3.9

17 30 10+ 10+ 10+ 10+ 960+ 160

18 30 10+ 10+ 10+ 10+ 960+ 960+ 2.9

19 30

7 4

10+ 10+ 10+ 10+ 323.9+

20 30 10+ 10+ 10+ 10+ 858.4+

21 30 10+ 10+ 10+ 10+ 960+ 960+ 960+ 960+ 262.1
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Table 3.4 shows the step-stress profiles applied to the test. All four profiles have

the same pattern from step 1 to step 4 for the burn-in period, but different stress

holding time afterwards. Table 3.5 provides the failure or survived time for each step

of each test units, where the plus sign indicates the survived time. As represented

in Figure 3.2, observations of 21 test units generate 176 pseudo observations with 15

failure time and 161 censored time.

We assume the exponential distribution for failure time, which has been shown to

be a reasonable assumption for this dataset (Lee and Pan, 2010). The inverse power

law with consideration of the insulation thickness results in the natural stress variable

of log(volts/mils) (Nelson, 1980).

For model comparison, AIC (Akaike Information Criterion) of each model by the

frequentist approach is calculated and shown in the first column of Table 3.6. It clearly

represents superiority of the random effect model (AGQ). Table 3.6 also shows the

result of point estimates for each method. The parameters are estimated in a similar

manner as discussed in Section 3.4. The result shows a quite similar pattern with

the simulation study. In particular, β̂1’s from the pooled model and the fixed model

seem to underestimate and overestimate β1, respectively, compared to other random

effect models. Similarly, β̂0’s from the pooled model and the fixed model seem to

overestimate and underestimate, respectively. In addition, the estimated σ̂u from the

random effect model indicates a substantially large group-to-group variation existed

in the dataset. As being expected, AGQ and INLA2 provide σ̂u’s more close to zero

compared to INLA1.

The impact of discrepancy in parameter estimates between different models be-

comes even more dramatic when those are extrapolated to the usual stress condition.

For instance, Figure 3.5 illustrates the estimated mean failure time of pooled, fixed

and random effect model by AGQ. The usual stress level in this example is given
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Table 3.6: Model comparison for cable insulation data

AIC
Parameter estimates

β̂0 β̂1 σ̂u

Pooled 108.3 −120.45 16.15 –

Fixed 78.8 −427.09 59.50 –

AGQ 69.2 −250.56 34.57 2.61

INLA1 – −261.54 36.13 3.51

INLA2 – −237.78 32.77 2.53

as log(400volts/mils) = 5.991. While the estimations are not very different around

the stress range (6.9, 7.2) in which most failures are observed, there exists a huge

difference at the usual stress condition.

Figure 3.6 depicts the 95% interval estimates of AGQ and INLA’s produced by the

same methods as in the simulation study. We observe INLA methods present more

narrow intervals than AGQ. In particular, the interval for σ̂u by INLA2 is narrower

than those by AGQ and INLA1; but we need to consider that the true coverage of

this interval may not reach to 95% as we observe from the simulation study.

Lastly, the prediction of random effects for each group, ũi, i = 1, . . . , 7, and 95%

prediction intervals are obtained from each method. These are the estimation for

the realized values of random variable ui’s. In particular, the prediction of AGQ is

obtained from the conditional mode of ui given data with fixed parameter values, β̂

and σ̂u; and those of INLA’s are obtained by the posterior mean of ui’s. Figure 3.7

shows the result and one can observe heterogeneous group effects as their values are

different from zero, especially in group 3 and 6. What we found in this study can
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Figure 3.5: Estimated mean time to failure

verify arguments from Nelson (2008), where residual plots of the same data have

shown big effects of group 3 and 6 (group C and F in Nelson, 2008).

We notice that AGQ provides relatively small intervals compared to INLA’s, which

is probably due to the different estimation method for ui. That is, the prediction of

AGQ is based on the fixed variance component value, while, in INLA, the posterior

density of ui is obtained by the mixture of conditional densities of ui given the variance

component. Even as we consider the wider intervals of INLA’s, those of group 3 and

6 are still different from zero.

As one can see from this example, the absence of a random effect in an ALT

model may cause a serious misinterpretation of test result. Therefore, reliability test

practitioners need to carefully examine any group or cluster structure of a test caused

by, e.g., different operators or different test stands, and include this group effect into
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Figure 3.6: Point estimates (dots) and 95% interval estimates (corresponding lines)

for power cable data

the model. We recommend fitting the data using the traditional model as well as the

random effect model, and compare the results.

3.6 Conclusion and Future Work

It is always worthwhile to consider the involvement of random effects in SSALT

data analysis, because practical experimental protocols are necessary to make a fea-

sible and cost-effective life test. In this chapter, we develop a GLMM approach to

the analysis of SSALT data so as to infer the random group effect introduced by

subsampling or random blocks. This approach provides the structural framework for

modeling lifetime observations from complicated test plans and with censoring. The

simulation study has shown that ignoring the group-to-group variation can cause

serious problems for the parameter estimation of the acceleration model, which in
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turn may lead to even more erroneous conclusions for a product’s lifetime when it

is extrapolated to the usual stress condition. In lieu of the Monte Carlo simula-

tion for approximating the integral involved in parameter estimation, we propose two

deterministic approximation methods, AGQ and INLA, from the frequentist’s and

Bayesian points of view, respectively. Our simulation study shows that both methods

have reasonable performance, but the INLA with slightly informative prior could be

superior to others at detecting small variance components.

The exponential distribution assumption for failure time used in this chapter may

be unrealistic in other ALT applications. Applying the Weibull distribution will allow

more flexibility to the model. To do that, we need to estimate an additional parameter

that determines the shape of the distribution, which is related to the failure mode.

However, if we have knowledge for this shape parameter, say α, from the previous or

similar products, a simple variable transformation of tα will make the response follow

an exponential distributions again. Therefore, we can still apply the GLMM model
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on the transformed failure time. If the shape parameter is unknown, we would need

an additional procedure to estimate it and couple it with the GLMM approach to

estimating other model parameters. This will be studied in our future research.
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Chapter 4

PLANNING ACCELERATED LIFE TESTS WITH RANDOM EFFECTS OF

TEST CHAMBERS

In accelerated life tests (ALTs), test units are often tested in multiple test

chambers along with different stress conditions. The non-homogeneity of

test chambers precludes the complete randomized experiment, and may

affect the life-stress relationship of the tested product. These chamber-

to-chamber variations should be taken into account for ALT planning so

as to obtain more accurate test results. In this chapter, planning ALTs

under a nested design structure with random test chamber effects is stud-

ied. First, by a two-phase approach, we illustrate to what extent differ-

ent test chamber assignments to stress conditions impact the estimation

of unknown parameters. Then, the D-optimal test plan with two test

chambers is considered. To construct the optimal design we establish the

generalized linear mixed model (GLMM) for failure time data and apply

quasi-likelihood method, where the test chamber assignment is determined

as well as the other decision variables required for planning ALTs.

4.1 Introduction

4.1.1 Background and Motivation

The accelerated life test (ALT) is a popular testing method in industry which aims

to assess product lifetime within an acceptably short period of time. It accelerates

the product failure by applying the higher-than-usual levels of environmental stresses
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(e.g., temperature, voltage, humidity, etc.), then the data obtained from ALTs would

be exploited by reliability practitioners to identify the lifetime-stress relationship and

predict the product reliability in the usual stress condition. Planning ALT has a big

impact on these statistical inferences and predictions of failure time distribution. As

such, optimal experimental designs of ALT, which seek to obtain statistically efficient

test plans that satisfy some desirable criteria, have been studied by many researchers

(see, e.g., Nelson, 2005a,b). Typical decision variables of optimal ALT design include,

given other assumptions, locating test stress conditions and determining the number

of test units to be allocated at each stress condition.

Although previous studies on the optimal ALT design have achieved success to

some extent, most of them have been derived based on an assumption that lifetime

observations are independent of each other. It is, however, extremely expensive and

time-consuming to achieve total randomization in a real experimental setting. For

instance, reliability engineers often put many test units in the same test chamber

and test them at the same time. In addition, multiple test chambers may be used

and they are set at different stress levels. In this case observed failure times are not

only affected by the stress factor but also by the test chamber, which may cause

discordance of actual stress intensity between two chambers. Consequently, failure

time observations from the same test chamber may be correlated to each other. In

recent literature (e.g., León et al., 2007), it has been shown that the correlation among

the observations from the same test chamber or any other group structure in ALT can

lead to severe misunderstanding of the lifetime-stress relationship, especially when a

large group-to-group variation exists. Therefore, such correlation should be reflected

in the ALT plan so as to avoid poor experimental results and to obtain more accurate

inference on the acceleration model and reliability prediction.
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In this chapter, we consider the effect of heterogeneous test chambers on optimal

ALT plans. Specifically we focus on the ALT with two stress factors with the following

additional assumptions.

• Two test chambers are available.

• The test chamber effect is assumed to be random; that is, its effect is assumed

to be a sample drawn from a population of random test chamber effects. This

is a reasonable assumption when the main interest lies in the variation in the

population effect rather than the specific chamber.

• We also impose a constraint that two test chambers cannot afford to be run

at the same stress level combination. With this constraint, our ALT plan can-

not set the same stress condition at different chambers, which is economically

impractical in real applications.

• The failure time given the chamber effect follows the Weibull distribution with

known shape parameter.

• The right censoring strategy is used.

With these constraints, the experiment can be seen as the two-stage nested design

(see, e.g., Montgomery, 2008), where the stress conditions are nested under the test

chambers. Figure 4.1 illustrates an instance of a test plan with the nested structure

considered in this chapter. Note that the stress conditions nested in the first test

chamber (i.e., j = {1, 2}) are all different from those nested in the second test chamber

(i.e., j = {3, 4}). In addition, because each test chamber may have an unequal

number of stress conditions and each stress condition may have an unequal number

of observations, it is an unbalanced nested design.
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Figure 4.1: Nested structure of ALT plan with random test chamber effects

Now the additional decision associated with this problem is “How to assign test

chambers to each test location?” and we call it the chamber assignment problem.

In this chapter we propose two approaches for creating the optimal ALT plans with

the consideration of random chamber effect. The first one is a two-phase approach,

where the test stress conditions and the number of allocations are determined first,

and then the chamber assignment is considered separately. The second one is the

quasi-likelihood approach, in which all decisions are made at the same time in an

integrated manner.

4.1.2 Previous Work

Unlike the regular experimental design with linear regression model, where the

response is normally distributed with a constant variance, ALT design is character-

ized by some features which shall be taken into account for its modeling. First, the

response, i.e., failure time, is not normally distributed. Instead the log-location-scale

family distributions such as Weibull or lognormal distribution are usually assumed

for the failure time variable. Second, failure time observations almost always include

censored data. The limited testing time gives rise to right-censored data; and the

periodic monitoring of test produces interval-censored data. Lastly, since the exper-

imental region is deviated from the normal levels of stress variables, the estimated
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regression model has to be extrapolated to the use stress condition beyond the test

region. Therefore, the regression model should be built under a physically reasonable

model corresponded to the type of stress factors, e.g., Arrhenius model for thermal

stress factor. For more details on these characteristics of failure-time data, see Meeker

and Escobar (2014).

A vast amount of literature has been published on the optimal ALT planning since

it was first studied by Chernoff (1962). Traditionally the optimal design for ALT is

determined by minimizing the (asymptotic) variance of the maximum likelihood esti-

mator for some unknown parameters of interest, which is usually directly calculated

by the likelihood function of the corresponding failure time distribution. Mann (1972)

considered a problem of obtaining the minimum variance least squares curve inter-

cept at the use condition for a polynomial function modeled for the Weibull scale

parameter. Meeker and Nelson (1975) provided the charts for optimum ALT plans,

which had shown that more test units should be allocated at the lower stress condi-

tion than at the higher one. Park and Yum (1996) developed optimal ALT plans with

two stress factors. Escobar and Meeker (1995) suggested the compromise two-factor

ALT plans by splitting the degenerate optimum test plan, where the objective was

to balance the prediction variance and the parameter estimation. Tang et al. (1999)

considered optimal test plans under the failure distribution with failure-free life (e.g.,

two-parameter exponential distribution). Bai et al. (1989) presented the optimal test

plan for step-stress ALTs with censoring. For more comprehensive review and list of

literature on ALT planning, see Nelson (2005a,b, 2015).

More recently, there have been attempts to approach the ALT planning problem

within the framework of optimal design theory of experimental designs. Particularly,

the generalized linear model (GLM) (McCullagh and Nelder, 1989) plays an important

role for this unification. Aitkin and Clayton (1980) first modeled lifetime data using
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GLM. Monroe et al. (2011) applied the GLM approach to designing ALT experiments

with right censoring plan. Yang and Pan (2013) and Pan and Yang (2014) expanded

the GLM approach for optimal ALT planning with the interval censoring strategy.

Pan et al. (2015) developed ALT plans with uncertainty in model specification using

the GLM framework. Furthermore, Seo and Pan (2015a) developed an R package for

creating and evaluating optimal ALT plans using the GLM approach.

Despite such a large body of work surrounding ALT planning, most of them as-

sumes the non-correlated data. Although the correlated failure time data were ana-

lyzed in recent literature (e.g., León et al., 2007; Kensler et al., 2015; Seo and Pan,

2016), ALT planning, which considers a source of correlation, has not been studied

yet in our knowledge.

The rest of this chapter is organized as follows. In Section 4.2, independent and

correlated ALT data are modeled by GLM and GLMM, respectively. The two-phase

approach to find better assignments of test chambers are demonstrated in Section 4.3.

The quasi-likelihood based approach to create D-optimal test plan using GLMM is

developed and a comparison study is conducted in Section 4.4. Finally, in Section 4.5,

the contribution and possible extensions of the proposed method are discussed.

4.2 Modeling Failure Time Data using GLM and GLMM

In this section we briefly review the GLM modeling approach for independent ALT

observations and the GLMM (see, e.g., McCulloch and Searle, 2001) for correlated

ALT observations. GLMM is an expansion of GLM to the mixed model where the

linear predictor contains both the random and fixed effect terms.
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4.2.1 Independent ALT Data with Right Censoring

Consider an ALT with m different stress conditions. At each stress condition

j = 1, . . . ,m, nj test units are tested, so the total number of test units is n =∑m
j=1 nj. Let tij be the failure time of the ith test unit at the jth stress condition

and xj = (1, xj1, . . . , xjp)
′ be the vector of the jth stress level of p stress factors. We

assume tij’s are independent and follow the Weibull distribution such as

tij ∼ ind. Weibull(λj, α),

where α is the shape parameter and it is assumed to be common to all failure times;

λj is the scale parameter, which depends on the stress factor levels by the log-linear

relationship as

log λj = ηj = x′jβ, (4.1)

where β = (β0, β1, . . . , βp)
′ is a vector of unknown regression coefficients. The prob-

ability density function (pdf) and reliability function of tij are given as f(tij,xj) =

αλjt
α−1
ij exp(−λjtαij) and R(tij,xj) = exp(−λjtαij), respectively. Let cij be an indicator

variable for right censored observation, that is, cij = 1 if tij is a failure observation

and cij = 0 if tij is a right-censored observation. Then the likelihood function of the

entire set of observations is given by

L(α,β; t, c,X) =
m∏
j=1

nj∏
i=1

f (tij,xj)
cijR (tij,xj)

(1−cij)

=
m∏
j=1

nj∏
i=1

(
αλjt

α−1
ij

)cij exp
(
−λjtαij

)
,

where t and c are vectors of observations; and X = (x1, . . . ,xn)′ is the design matrix.

Let µij = λjt
α
ij, then the log-likelihood function is given as

logL =
m∑
j=1

nj∑
i=1

(cij log µij − µij) +
m∑
j=1

nj∑
i=1

cij log(α− tij).
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Given α, the unknown parameters are only included in the first term, which is equiv-

alent, up to constants, to the log-likelihood function of cij ∼ ind.Poisson(µij), where

µij is the mean of the Poisson distribution. The relationship between µij and the

explanatory variables is given by

g(µij) = log µij = x′jβ + α log tij

where the last term is the offset term.

4.2.2 Correlated ALT Data by Test Chamber Effects

Suppose we now have two test chambers, k = 1, 2. Let j(k) be a set of stress

levels nested in the kth test chamber. For instance, j(1) = {1, 2} and j(2) = {3, 4},

as shown in Figure 4.1. Then tij(k) is the failure time of the ith test unit with jth

stress level and xj(k) = (1, xj(k)1, . . . , xj(k)p)
′ is the vector of jth stress level, which is

nested in the kth test chamber. We introduce random variables Uk’s to reflect the

chamber effect as follows.

Uk ∼ i.i.d.N(0, σ2
U), k = 1, 2,

where σ2
U is a variance component of chamber effects. Let uk be the realized value

of chamber effect sampled from the population of Uk. The conditional failure time

distribution given the chamber effect is the Weibull distribution. That is,

tij(k)|Uk ∼ ind.Weibull(λj(k), α),

where λj(k) is defined as

log λj(k) = ηj(k) = x′j(k)β + uk (4.2)

and the conditional pdf of tij(k) is given by

f
(
tij(k),xj(k)|Uk

)
= αλj(k)t

α−1
ij(k) exp

(
−λj(k)tαij(k)

)
,
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Let cij(k) be an indicator variable for right censored observations, then the marginal

likelihood of all observations in all test chambers is given as follows.

L =
2∏

k=1

∫ ∞
−∞

 ∏
j∈j(k)

nj∏
i=1

(
αλj(k)t

α−1
ij(k)

)cij(k)
exp

(
−λj(k)tαij(k)

) π(uk)duk (4.3)

Let λj(k)t
α
ij(k) = µij(k); then the Eq. (4.3) can be rewritten as

logL =
2∑

k=1

∑
j∈j(k)

nj∑
i=1

cij(k)
(
logα− log tij(k)

)

+
2∑

k=1

log

∫ ∞
−∞

 ∏
j∈j(k)

nj∏
i=1

µ
cij(k)
ij(k) exp

(
−µij(k)

) π(uk)duk

As in the GLM case, given α, the unknown parameters are only included in the second

term, which is equivalent, up to constants, to the log-likelihood function of

cij(k)|Uk ∼ ind.Poisson(µij(k)), (4.4)

where µij(k) = E
[
cij(k)|Uk

]
is the conditional mean of the Poisson distribution. The

relationship between µij(k) and the explanatory variables, i.e., stress factors and the

chamber effect, is given by the link function, g(µij(k)) = log µij(k) = x′j(k)β + uk +

α log tij(k), where the last term is the offset term. Accordingly the inverse link function

is given as

µij(k) = g−1 = exp
(
x′j(k)β + uk + α log tij(k)

)
.

4.3 Two-phase Approach to Test Chamber Assignment Problem

In this section, we use a modified example of Yang and Pan (2013) to demonstrate

the optimal ALT design with random test chamber effects. Suppose an ALT for an

electronic device with two stress factors, temperature and humidity. The use condition

of this device is given as 30◦C, and 25% relative humidity (RH). A total of 100 test

units are available for the test, and these test units are all homogeneous. The total
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testing time is 30 time units, and the test units that survived until the end of the

test are right censored. Two test chambers are used; and once its test chamber

is determined, its failure time is assumed to follow the Weibull distribution with a

known shape parameter, α = 1. Suppose that the accelerated stress conditions can

be varied in the range (60◦C, 110◦C) for temperature, and (60%, 90%) for humidity.

According to Eyring model, the natural stress variables of these two factors are defined

as S1 = 11605/T , where T is the temperature in degrees Kelvin, and S2 = log(h),

where h is the percentage of relative humidity. It is convenient to apply coding

schemes, x1 = (S1 − SH1 )/(SL1 − SH1 ); x2 = (S2 − SH2 )/(SL2 − SH2 ), so that the design

space of this experiment becomes a unit square at the first quadrant. The highest

stress levels and the lowest stress levels of both stress variables are coded as (0, 0)

and (1, 1), accordingly the use condition is located at (1.758, 3.159). For planning

ALT, the acceleration model and the parameters in the model should be provided as

planning values. In this example we assume the following acceleration model:

ηj(k) = −4.086x1j(k) − 1.476x2j(k) + uk. (4.5)

It is also required to have a planning value for the variance component of random

chamber effects for planning ALT with correlated observations, and we assume σ2
U =

0.25.

Given all planning values, we must determine (1) the levels of stress factors; (2)

the allocations of test units; and (3) the test chamber assignment, satisfying some

optimality conditions. For this, our first approach is to separate the whole problem

into two, and resolve each problem in greedy manner. In Phase-I, we construct

the optimal test plan without consideration of chamber effects (i.e., independent

observations). In this phase, the planning variables in (1) and (2) are determined.

In Phase-II, we explore the best assignment of test chambers using Monte Carlo
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simulation. In this phase, the planning variable in (3) is determined. This approach

may seem naive, but it gives useful insight into how many support points are required

to identify the test chamber effects; and how much the test chamber assignment may

influence on the parameter estimation.

4.3.1 Phase-I: Optimal ALT Design using GLM Approach

Without taking test chamber effects into account, all observations are independent

to each other. The optimal test plan in this case can be easily constructed by the

GLM approach, which does not consider the source of correlation. Consequently, the

ALT data is modeled as in Subsection 4.2.1. With GLM, we now consider the D-

optimal design, which achieves the minimum general variance of regression coefficients

estimates among all test plans. Equivalently, it can be constructed by maximizing

the determinant of the information matrix as follows:

ψ∗ := arg max
ψ

|X(ψ)′WX(ψ)|, (4.6)

where X(ψ) is the design matrix generated from the test plan ψ, and W is the weight

matrix derived from the link function of GLM, which is a diagonal matrix due to the

independency assumption (for more details, see Seo and Pan, 2015a).

Table 4.1 shows the D-optimal test plan generated by ALTopt (Seo and Pan,

2015b), a software package in R; and Figure 4.2 depicts the design plot of the test

plan, where the size of each circle is proportional to the test unit allocation. Note

that, while the linear predictor in this GLM has only three unknown parameters, β0,

β1, and β2, this test plan is supported by four distinct test locations.
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Table 4.1: D-optimal test plan under independent observations

Design

Point

Temperature Humidity Allocation

Actual Coded Actual Coded

j ◦C x1 RH x2 nj

1 110.00 0.000 90.00 0.000 34

2 67.74 0.826 90.00 0.000 26

3 110.00 0.000 60.00 1.000 32

4 87.74 0.411 60.00 1.000 8
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Figure 4.2: Design plot of D-optimal test plan under independent observations
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ALTopt: an R Package for Optimal ALT Planning using GLM

ALTopt (Seo and Pan, 2015b) is a software package to create and evaluate optimal

ALT experimental designs based on the GLM theory. It is capable to handle both of

right-censoring and interval-censoring plans, and also accommodates three statistical

optimality criteria - D-optimal, U -optimal and I -optimal.

The objective function as in, e.g., Eq. (4.6) for D-optimal test plan with right-

censoring, is optimized by using stats::optim in R with the “L-BFGS-B” method. This

function allows box constraints on design variables. In our case, we have a cuboidal

design region where the levels of each stress factor are coded to be between 0 and 1.

More details about the“L-BFGS-B” method are available in Byrd et al. (1995).

The optimization procedure begins by generating an initial test plan with n design

points, which are randomly selected from possible points in the design region. For

example, if we have 100 test units and 2 stress factors the optimization process begins

from 100 randomly chosen initial points, which spread out over the design region.

Throughout the optimization procedure, each of these 100 points converges to its

own optimal location.

To create a practical test plan, it is useful to reduce the number of distinct design

points by using clustering. Two clustering methods are implemented in the package.

First, when the design points are very close, the simple rounding (to the 3rd decimal

place) method can be applied to the stress levels. Second, when there exist too many

design points, the k-means clustering can be used as an alternative, where the number

of clusters should be specified by users. By carefully selecting the number of clusters,

it is possible to reduce the number of distinct design points without significantly

affecting the objective function value.
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The final recommended test plans are provided by a table containing each stress

condition and the number of test units for each condition. The corresponding ob-

jective values of these plans are also shown. This package also provides graphical

functions for evaluating and comparing various test plans.

4.3.2 Phase-II: Test Chamber Assignment by Monte Carlo Simulation

In Phase-II, we further assume u1 = 0.5 and u2 = −0.5, so that the maximum

likelihood estimator (MLE) of σ2
U could be matched to 0.25 as we assumed previously.

We now consider every possible way to assign two test chamber, k = 1, 2, to four test

locations, j = 1, 2, 3, 4. Table 4.2 enumerates all alternative test chamber assignment

plans.

Each chamber assignment is assessed by Monte Carlo simulation with 1, 000 sim-

ulated ALT data sets, each of which is generated by the following procedure.

(1) According to Eq. (4.2) and Eq. (4.5), calculate the scale parameter at each test

location, so the conditional cdf of failure time is determined. For instance, given

the chamber assignment plan A1, they can be calculated as

λ1(1) = exp(−4.086(0)− 1.476(0) + 0.5) = 1.649;

λ2(2) = exp(−4.086(0.826)− 1.476(0)− 0.5) = 0.021;

λ3(2) = exp(−4.086(0)− 1.476(1)− 0.5) = 0.139;

λ4(2) = exp(−4.086(0.411)− 1.476(1)− 0.5) = 0.026.

(2) Draw 100 samples zij(k)’s from Unif(0, 1).

(3) Obtain tij(k) by the inverse of conditional cdf for the corresponding test location.

That is,

tij(k) = −
ln(1− zij(k))

λj(k)
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Table 4.2: Alternatives of test chamber assignments

Chamber

Assignment

Test Chamber

k = 1 k = 2

A1 j(1) = {1} j(2) = {2, 3, 4}

A2 j(1) = {2} j(2) = {1, 3, 4}

A3 j(1) = {3} j(2) = {1, 2, 4}

A4 j(1) = {4} j(2) = {1, 2, 3}

A5 j(1) = {1, 2} j(2) = {3, 4}

A6 j(1) = {1, 3} j(2) = {2, 4}

A7 j(1) = {1, 4} j(2) = {2, 3}

A8 j(1) = {2, 3} j(2) = {1, 4}

A9 j(1) = {2, 4} j(2) = {1, 3}

A10 j(1) = {3, 4} j(2) = {1, 2}

A11 j(1) = {1, 2, 3} j(2) = {4}

A12 j(1) = {1, 2, 4} j(2) = {3}

A13 j(1) = {1, 3, 4} j(2) = {2}

A14 j(1) = {2, 3, 4} j(2) = {1}

(4) Generate the indicator variable for censoring; and, for censored observations,

replace the failure time with the censored time. That is,

cij(k) =


1, if tij(k) < 30

0, if tij(k) ≥ 30

, tij(k) =


tij(k), if tij(k) < 30

30, if tij(k) ≥ 30

Each data set is fitted by SAS PROC GLIMMIX using the quadrature method

(Littell et al., 2006). The simulation results are illustrated by Figures. 4.3 through

4.6, where the parameter estimates by each test chamber assignment are displayed
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Figure 4.3: Box plots for point estimates for σ2
U by each test chamber assignment

plan. The horizontal line indicates the true parameter value. Three data points

beyond σ̂2
U > 2.5 in A3 and A11 are removed for the clarity of plotting

by box plots. One can see that, in general, test chamber assignment has a big impact

on each parameter’s estimate. In particular, Figure 4.3 shows the medians of σ̂2
U for

A7 and A8 plans are closer to the true value of σ2
U , which indicates those plans have

relatively better performances to detect random effects among test chambers. On the

other hand, chamber assignments of A1, A2, A5, A6, A9, A10, A13 and A14 show an

inability to detect random effects for all simulated data sets. There are some other

test plans, namely, A3, A4, A11 or A12 resulting non-zero estimates of the variance

component for some cases, and yet their medians, so in the majority of cases, are still

stuck in zero. Table 4.3 shows the mean squared error (MSE) of σ̂2
U for assignment

plans whose squared bias are less than 0.0625 (i.e., assignment plans which have an
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Table 4.3: Mean squared error of σ̂2
U

Chamber

Assignment
(E[σ̂2

U ]− σ2
U)2 var(σ̂2

U) MSE

A1 0.0625 – –

A2 0.0625 – –

A3 0.0195 0.0719 0.0914

A4 0.0376 0.0383 0.0759

A5 0.0625 – –

A6 0.0625 – –

A7 0.0049 0.0305 0.0354

A8 0.0017 0.0380 0.0397

A9 0.0625 – –

A10 0.0625 – –

A11 0.0040 0.2602 0.2642

A12 0.0602 0.0055 0.0657

A13 0.0625 – –

A14 0.0625 – –

ability, in partial at least, to detect the random effects). As expected from the box

plots, A7 and A8 show the best performances.

It would be worth noting that, although it is not shown here, any test plan sup-

ported by only three distinct test locations cannot detect random effects at all, no

matter how the test chambers are assigned. For instance, one can enforce a D-

optimal design to produce three test locations by clustering the original test locations

in Phase-I, so that the test plan is capable of estimating all unknown parameters in
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Figure 4.4: Box plots for point estimates for β0 by each test chamber assignment

plan. The horizontal line indicates the true parameter value.

the linear predictor with the smallest number of test locations. However, with three

test locations, there is no possible way to distinguish the fixed effects from the ran-

dom effects. In other words, once three test locations determine the slopes and the

intercept of the fitted surface (i.e., fixed effects), then there is no remaining varia-

tion requiring the random effects, and hence MLE of GLMM always produces a zero

estimate for the variance component. Therefore having four distinct test locations

is a necessary condition for the best test plan, and the assignment of test chambers

should be chosen based on that condition.

The quality of the variance component estimate directly affects the quality of esti-

mation for the regression coefficients. From Figure. 4.4 to 4.6, A7 and A8 consistently

show relatively smaller bias for all regression coefficients than the other assignment

plans. Some plans result in better performance for a part of regression coefficients,
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Figure 4.5: Box plots for point estimates for β1 by each test chamber assignment

plan. The horizontal line indicates the true parameter value.

but not overall. For instance, A4 and A11 show small bias for β1 and β2, but not for

β0; and A5 and A10 show the smallest bias for β1 among all assignment plans, but

large bias for β0 and β2. We can also interpret this result by the analogy with the lin-

ear mixed model (LMM) case. In LMM, where the response is normally distributed,

it is well-known that orthogonal blocking is an optimal design strategy (Goos, 2012).

That is, in a design space with two factors, assigning design points lying in a diagonal

direction into the same block makes D-optimal design for the uncorrelated model

being the same as that for the correlated model. It is certainly not the case that the

orthogonal blocking can be applied for the design in Figure 4.2 because the design

has an unbalanced number of allocations at each design point, and also some design

points are not located at the factorial points (j = {2, 4}). Nonetheless, it can be seen

that A7 and A8 are the most similar plans with the orthogonal blocking. Therefore
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Figure 4.6: Box plots for point estimates for β2 by each test chamber assignment

plan. The horizontal line indicates the true parameter value.

it is not unusual that those plans have good performances. On the other hand, one

can see that the variances of regression coefficients estimates of A7 and A8 are con-

sistently larger than those of other plans. This can be seen as an impact of non-zero

estimates of the variance component; that is, since A7 and A8 can detect the random

effects, these plans may also harbor more uncertainty for regression coefficients.

Overall, the MSE of regression coefficients estimates for each assignment plan are

shown in Table 4.4. It shows A4 and A11 are also competitive assignment plans (in

terms of β̂) as well as A7 or A8. While A7 and A8 assign two stress conditions to

each test chamber, A4 and A11 assign three stress conditions to one of test chamber

and a remaining one to the other test chamber. In next section, we consider these

two different cases to find the optimal test plan.
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Table 4.4: Mean squared error of β̂

Chamber

Assignment

∑
(E[β̂]− β)2

∑
var(β̂) MSE

A1 2.38 0.24 2.62

A2 1.40 0.19 1.59

A3 0.48 0.56 1.04

A4 0.29 0.29 0.58

A5 1.25 0.19 1.44

A6 2.20 0.24 2.44

A7 0.19 0.65 0.84

A8 0.07 0.47 0.55

A9 1.94 0.19 2.13

A10 1.25 0.23 1.48

A11 0.18 0.39 0.57

A12 0.88 0.21 1.09

A13 1.42 0.22 1.65

A14 2.05 0.19 2.24

4.4 D-optimal Test Plan with Test Chamber Effect

Because the two-phase approach determines decision variables in two separated

steps, the outcome is not optimal as a whole. Furthermore, it requires investigation

of candidate designs by a simulation study, which is time-consuming. In this section,

a completely integrated approach to create the optimal ALT plan with test chamber

effects is established, where all required decision variables are determined simultane-
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ously. We exploit the GLMM formulation established in Subsection 4.2.2 to find the

optimal design.

Though related work on optimal designs under GLMM is sparsely found in the

literature, they make a substantial contribution to our study. Among others, the

method used in this section is similar to that of Niaparast (2009), where the in-

formation matrix based on quasi-likelihood is utilized with the marginalized mean

and variance-covariance matrix of the response variable in GLMM. Hassler (2015)

illustrates optimal designs for GLM with random blocks via several possible design

criteria, and shows that the quasi-likelihood based approach is superior to the other

criteria. While Niaparast (2009) presumes the crossed design case with a single vari-

able, we apply the method to the nested design with multiple variables. The number

of stress conditions is fixed by four (i.e., m = 4) because it is the smallest num-

ber of supporting points to detect the non-zero variance component, as discussed in

Section 4.3.

4.4.1 Variance-covariance Structure

The marginalized mean and variance of cij(k) in Eq. (4.4) are given, respectively,

by

µ∗ij = E
[
cij(k)

]
= exp

(
x′j(k)β + σ2

U/2
)
tαij(k), (4.7)

var
(
cij(k)

)
= µ∗ij + µ∗ij

2ξ, (4.8)

where ξ = eσ
2
U − 1. We use the notation µ∗ij for the marginalized mean instead of

µ∗ij(k) since it does not depend on a specific test chamber. As the mean is unequal to

the variance, cij(k) is no longer the Poisson random variable. The covariance of two

observations within the same test chamber is given by

cov
(
cij(k), ci′j′(k)

)
= µ∗ijµ

∗
i′j′ξ, ∀ij(k) 6= i′j′(k) (4.9)
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Also, cov
(
cij(k), ci′j′(k′)

)
= 0, ∀k 6= k′. The derivation of Eq. (4.7), (4.8) and (4.9)

are inserted in Appendix B. Let j = {1, 2, 3, 4}; then, without loss of generality,

the way to assign two test chambers is either j(1) = {1}, j(2) = {2, 3, 4} or j(1) =

{1, 2}, j(2) = {3, 4}. Accordingly the marginal variance-covariance matrix of cij(k) is

given as either

V1 =

V(1) 0

0 V(2)

 =



V11 0 0 0

V22 V23 V24

V33 V34

sym V44


, (4.10)

or

V2 =

V(1) 0

0 V(2)

 =



V11 V12 0 0

V22 0 0

V33 V34

sym V44


, (4.11)

where V(k), k = 1, 2 is the variance-covariance matrix of observations in kth test

chamber, and Vjj′ is given by

Vjj′ =



µ∗1j + µ∗1j
2ξ µ∗1j

2ξ · · · µ∗1j
2ξ

µ∗2j
2ξ µ∗2j + µ∗2j

2ξ · · · µ∗2j
2ξ

...
...

. . .
...

µ∗njj
2ξ µ∗njj

2ξ · · · µ∗njj
+ µ∗njj

2ξ


, j = j′, (4.12)

Vjj′ =



µ∗1jµ
∗
1j′ξ µ∗1jµ

∗
2j′ξ · · · µ∗1jµ

∗
nj′j

′ξ

µ∗2jµ
∗
1j′ξ µ∗2jµ

∗
2j′ξ · · · µ∗2jµ

∗
nj′j

′ξ

...
...

. . .
...

µ∗njj
µ∗1j′ξ µ∗njj

µ∗2j′ξ · · · µ∗njj
µ∗nj′j

′ξ


, j 6= j′. (4.13)

In Eq. (4.7), the marginal mean depends on the failure time observation tij(k), yet

it is not available in design phase. Therefore, we replace µ∗ij with its expected value.
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That is,

µ∗ij = E
[
exp

(
x′j(k)β + σ2

U/2
)
tαij(k)

]
= exp

(
x′j(k)β + σ2

U/2
)
E

1− exp
(
−ex

′
j(k)

β+U tαc

)
ex
′
j(k)

β+U

 , (4.14)

where tc is the censoring time. For the derivation of Eq. (4.14), see Appendix B. The

expected value in Eq. (4.14) can be calculated by Monte Carlo sampling as follows:

E

1− exp
(
−ex

′
j(k)

β+U tαc

)
ex
′
j(k)

β+U

 =
1

M

M∑
r=1

1− exp
(
−ex

′
j(k)

β+urtαc

)
ex
′
j(k)

β+ur
(4.15)

where u1, u2, . . . , uM are random draws from N(0, σ2
U). Now µ∗1j = . . . = µ∗njj

= µ∗j ,

and hence Eq. (4.12) and (4.13) can be expressed as

Vjj′ =


µ∗jInj

+ ξµ∗j
21nj

1′nj
, j = j′

ξµ∗jµ
∗
j′1nj

1′n′j
, j 6= j′

where Inj
denotes the nj × nj identity matrix and 1nj

is the nj × 1 vector with all

entries equal to 1. Consequently Eq. (4.10) and (4.11) can be written as

V1 =



µ∗1In1 + ξµ∗1
21n11

′
n1

0

0


µ∗2In2 0 0

0 µ∗3In3 0

0 0 µ∗4In4

+ ξ


µ∗21n2

µ∗31n3

µ∗41n4


[
µ∗21

′
n2

µ∗31
′
n3

µ∗41
′
n4

]


V2 =



µ∗1In1 0

0 µ∗2In2

+ ξ

µ∗11n1

µ∗21n2

[µ∗11′n1
µ∗21

′
n2

]
0

0

µ∗3In3 0

0 µ∗4In4

+ ξ

µ∗31n3

µ∗41n4

[µ∗31′n3
µ∗41

′
n4

]


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4.4.2 D-optimality Criteria

The unconditioned cij(k)’s do not follow any standard probability distribution, yet

we know the mean and the variance of those. In this case the following quasi-score

function can be used to estimate the unknown parameters (Myers et al., 2012).

D′V−1(c− µ) = 0,

where c is n×1 vector of cij(k), µ is the vector of means, V is n×n variance-covariance

matrix, and D is n× (p+ 1) matrix of derivatives given as

D =
dµ

dβ
=
dµ

dη

dη

dβ
= ∆X,

where η is the vector of linear predictor ηj(k)’s in Eq. (4.2), ∆ = diag{µ∗11′n1
, µ∗21

′
n2
,

µ∗31
′
n3
, µ∗41

′
n4
} is the diagonal matrix of the marginal mean of each observation, and X

is the n× (p+ 1) design matrix. The information matrix of the quasi-score function

is given by

D′V−1D = X′∆V−1∆X.

Let ψ1 and ψ2 be, namely, aggregated designs, which are vectors containing deci-

sion variables defining design matrix X (and ∆, V as well) with variance-covariance

structure V1 and V2, respectively. That is,

ψ1 =



x11(1) x21(1) p1

x12(2) x22(2) p2

x13(2) x23(2) p3

x14(2) x24(2) p4


, ψ2 =



x11(1) x11(1) p1

x12(1) x12(1) p2

x13(2) x13(2) p3

x14(2) x14(2) p4


(4.16)

where 0 < pj < 1, j = 1, 2, 3, 4 are proportions of test unit allocations for correspond-

ing stress conditions, and
∑4

j=1 pj = 1. Note that the order of each row in ψ1 and ψ2

determines the test chamber assignment. For instance, in ψ2, stress conditions at the
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first two rows are assigned to the same test chamber and those at the last two rows

are assigned to the other test chamber.

The D-optimal design is selected as follows.

ψ∗ =


ψ∗1, if f1(ψ

∗
1) > f2(ψ

∗
2)

ψ∗2, otherwise

where ψ∗1 := arg maxψ1
f1(ψ1) = |X′∆V1−1∆X|, and ψ∗2 := arg maxψ2

f2(ψ2) =

|X′∆V2−1∆X|. That is, two candidate D-optimal designs with different variance-

covariance matrix structures in Eq. (4.10) and (4.11) are created first, and one of

them with the higher determinant is chosen as the final D-optimal design.

4.4.3 Information Matrix

We apply Niaparast (2009) for the evaluation of the objective function, which

simplifies the calculation of information matrix by avoiding the matrix inversion, and

restricts the decision variables to the desired form as in Eq. (4.16). Applying block

diagonal structure of V as in Eq. (4.10) or (4.11), we obtain

X′∆V−1∆X = X′∆

V(1) 0

0 V(2)


−1

∆X

= X(1)
′∆(1)V(1)

−1∆(1)X(1) + X(2)
′∆(2)V(2)

−1∆(2)X(2)

= IM(1) + IM(2)

where X(k) and ∆(k) are the sub-matrices of X and ∆, respectively, corresponding

to kth test chamber, and IM(k) = X(k)
′∆(k)V(k)

−1∆(k)X(k) denotes the information

matrix from the observations of kth test chamber. Using this notation, V(k) can

be rewritten as V(k) = ∆(k) + ξdiag(∆(k))diag(∆(k))
′, where diag(∆(k)) denotes

the vector of diagonal elements of ∆(k); and, it can be shown that (Lemma 3.1. in
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Niaparast, 2009),

IM(k) = X(k)
′
(
∆(k)

−1 + ξ1n(k)
1′n(k)

)−1
X(k) (4.17)

where n(k) is the number of test units in kth test chamber. Let X̃ = (x1, . . . ,xm)′

be the m × 1 aggregated design matrix neglecting the number of test units; and

∆̃ = diag{n1µ
∗
1, . . . , nmµ

∗
m}. Then Eq. (4.17) can be further simplified as (Lemma

3.2. in Niaparast, 2009)

IM(k) = X̃′(k)

(
∆̃(k) −

ξ∆̃(k)1m(k)
1′m(k)

∆̃(k)

1 + ξ1′m(k)
∆̃(k)1m(k)

)
X̃(k)

where m(k) denotes the number of stress conditions nested in kth test chamber. Lastly

n1, . . . , nm in ∆̃ are replaced by np1, . . . , npm so that decision variables are all con-

tinuous.

4.4.4 Implementation and Results

We implement the quasi-likelihood approach for the optimal ALT plan of an ex-

ample introduced early in this section using R. The initial values of stress conditions

in the aggregated design are randomly selected within the range (0, 1); and the pro-

portions of those conditions are produced as follows, so that those are all positive and

sum to 1:

p1 = a1, p2 = a2 − a1, p3 = a3 − a2, p4 = 1− a3,

where a1 < a2 < a3 are sorted samples from (0, 1). The method “L-BFGS-B” (Byrd

et al., 1995) is used for the optimization routines with feasible region (0, 1) for each

decision variable. We use M = 1, 000, 000 samples for calculation of Monte Carlo

integration in Eq. (4.15) whenever the objective function is evaluated.

Table 4.5 shows D-optimal design for the same example discussed in the two-

phased approach (σ2
U = 0.25). We found that f2(ψ

∗
2) > f1(ψ

∗
1) and hence ψ∗ = ψ∗2.
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Table 4.5: D-optimal test plan with σ2
U = 0.25

Test chamber

Assignment

Design

Point

Temperature Humidity Allocation

Actual Coded Actual Coded

k j ◦C x1 RH x2 nj

1 1 110.00 0.000 90.00 0.000 22

1 2 84.13 0.482 60.00 1.000 27

2 3 110.00 0.000 60.00 1.000 21

2 4 65.88 0.867 90.00 0.000 30

Accordingly first two rows and last two rows in ψ∗, respectively, are assigned to the

same test chamber as shown from the first column of the table. Figure 4.7 shows the

design plot of the test plan. One can see that stress conditions located in diagonal

direction are assigned to the same test chamber, which validates the results of the

simulation study from the two-phased approach. Although the stress conditions look

similar with the D-optimal design without consideration of test chamber effects in

Figure 4.2, there are big discrepancies in the test unit allocations. While the design

in Figure 4.2 does not allocate many test units to the lowest stress level (n4 = 8), the

design in Figure 4.7 allocates 27 test units to the lowest stress condition so that the

test units are allocated to each test chamber with more balance. This balanced test

unit allocation greatly increases the determinant of the information matrix. It turns

out that the objective function value of the design in Figure 4.2 with test chamber

assignment plan A7 (or A8) is only 785, while that of the design in Figure 4.7 is about

1, 500.

We also create D-optimal test plans for different magnitudes of the variance com-

ponents. Figure. 4.8 through 4.10 show those with σ2
U = 0.10, 0.40 and 0.50, respec-
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Figure 4.7: Design plot of D-optimal test plan with σ2
U = 0.25

tively. It seems there is no big difference between these test plans, and therefore this

design is robust to the magnitude of chamber-to-chamber variations.

Finally, to validate the D-optimal test plan’s performance, we conducted a simu-

lation study in the same way as in Subsection 4.3.2. Figure 4.11 shows box plots of

1, 000 estimates for each parameters. For comparison, the four test plans using the

two-phased approach with best performance (smallest MSE) are displayed together.

For all parameters, the D-optimal test plan shows the most smallest bias and the

smaller or similar variance. Numerically, the MSE for σ̂2
U of D-optimal test plan is

0.0144, and the MSE for β̂ is 0.24, which are the smallest, in both cases, than any

other test plans created by the two-phase approach. Especially, in terms of the vari-

ance component, the D-optimal test plan is notably superior than the other plans,

which implies that it is a good design not only for the regression coefficients estimates

but also for the random effects of test chambers.
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Figure 4.8: Design plot of D-optimal test plan with σ2
U = 0.10
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Figure 4.9: Design plot of D-optimal test plan with σ2
U = 0.40
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Figure 4.10: Design plot of D-optimal test plan with σ2
U = 0.50

4.5 Conclusion

In this chapter, the problem of planning ALTs under the nested design structure

with two heterogeneous test chambers is considered. From the two-phase approach,

where decisions on stress conditions along with those test unit allocations and the test

chamber assignment are made separately, we paint a picture of how much the test

chamber assignment may affect on the estimation of unknown parameters. Then we

establish the integrated approach to determine all decision variables simultaneously

to build D-optimal ALT plan using GLMM and quasi-likelihood techniques, which

achieves the remarkable design with smaller bias and variance of the parameter esti-

mates.

There exist apparent opportunities to evolve and expand this research. First, as

appeared in other optimal design problems with non-linear regression models, the

GLMM approach proposed in this chapter also suffers from the design dependence

problem, that is, the information matrix is a function of model parameters, which are
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Figure 4.11: Parameter estimates of D-optimal design

unknown in general. For ALT planning, it is a common practice to presume these

parameter values from similar products’ experiments or engineers’ knowledge, and

perform a study to see how different parameter values affect the test plan. Although

sensitivity analysis with different values of σ2
U is shown in this chapter, more compre-

hensive analysis including other parameters (e.g., the shape parameter) are required.

Second, more various types of heterogeneity involved in life tests could be taken into

account for planning ALTs. The test chamber effects may not be the only source to

give rise to correlated observations. For instance, test units manufactured by batch

process or different materials may cause correlation between observations from the
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same batch or same material. Lastly, different types of censoring or optimality criteria

could be studied.
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Chapter 5

PLANNING ACCELERATED LIFE TESTS WITH MULTIPLE SOURCES OF

RANDOM EFFECTS

In this chapter, another source of random effects – suppliers of test units

– is assumed in addition to the random effects of test chambers. In this

case, a crossed structure of suppliers is added to the nested structure of

test chambers in the experimental design. The D-optimal ALT test plan is

constructed by the quasi-likelihood approach. The iterative procedure of

three steps of optimization algorithm is developed to determine the test

chamber assignment, the number of test unit allocations, and the test

locations. The result shows that the D-optimal design can be obtained

by equally allocating test units of each supplier to test locations.

5.1 Introduction

In the previous chapter, the D-optimal ALT test plan with test chamber effects

was obtained by using the quasi-likelihood approach. The corresponding experimen-

tal protocol is a subsampling plan where several test units are located at the same test

chamber. Another type of experimental protocol which leads to the grouped structure

in reliability tests is a random block. In real applications, test units might be man-

ufactured in different manufacturing batches or supplied by different suppliers. In

these cases, test units from the same manufacturer or supplier produce another group

structure in addition to the one by the test chamber, and it leads to an additional

source of random effects. For more about the experimental protocols in reliability

tests, see Vining (2013).
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In this chapter, expanding the previous chapter, we consider multiple sources

of random effects, which are different test chambers and suppliers, for the optimal

ALT planning. Suppose we have the following assumptions in addition to those in

Chapter 4.

• Test units are supplied by two different manufacturers.

• The total number of test units is given as n, but no restriction is assumed for

the number of test units provided by each manufacturer. That is, we assume

each manufacturer is capable of supplying any number of test units suggested

by the optimal design.

• The supplier’s effect is assumed to be random.

Figure 5.1 illustrates the group structures of these two sources of random effects.

Whereas the test units at the same stress conditions are nested in one of two test

chambers, the test units from different suppliers can be placed on the same stress

condition, which adds the crossed structure of suppliers to the nested structure of

test chambers.

5.2 Quasi-likelihood Approach

5.2.1 Modeling ALT Data with Multiple Random Effects

The ALT data with multiple random effects is modeled by GLMM similarly as in

the previous chapter, but with an additional random effect term. We introduce two

independent random variables, U c and U s, to reflect the random effects due to test
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1 2Stress conditions (fixed), 𝑗

Observations, 𝑖
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Figure 5.1: Nested and crossed structure of ALT plan with random test chamber

effects and random supplier effects

chambers and suppliers, respectively. That is,

U c
k ∼ i.i.d.N(0, σ2

Uc), k = 1, 2,

U s
l ∼ i.i.d.N(0, σ2

Us), l = 1, 2,

cov (U c
k , U

s
l ) = 0, ∀k, l

where σ2
Uc and σ2

Us are, respectively, variance components of chamber effects and

supplier effects. The conditional failure time distribution is given as

tij(k)l|U c
k , U

s
l ∼ ind.Weibull(λj(k)l, α),

where λj(k)l is defined as

log λj(k)l = ηj(k)l = x′j(k)β + uck + usl

and it can be rewritten, using matrix notation, as

η = Xβ + Zu
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or 

η1(1)1

η2(1)1

η3(2)1

η4(2)1

η1(1)2

η2(1)2

η3(2)2

η4(2)2



=



1 x11(1) x21(1)

1 x12(1) x22(1)

1 x13(2) x23(2)

1 x14(2) x24(2)

1 x11(1) x21(1)

1 x12(1) x22(1)

1 x13(2) x23(2)

1 x14(2) x24(2)




β0

β1

β2

+



1 0 1 0

1 0 1 0

0 1 1 0

0 1 1 0

1 0 0 1

1 0 0 1

0 1 0 1

0 1 0 1





uc1

uc2

us1

us2



By a similar argument as in the previous chapter, we can treat the indicator variable

for censoring as if

cij(k)l|U c
k , U

s
l ∼ ind.Poisson(µij(k)l),

where µij(k)l = E
[
cij(k)l|U c

k , U
s
k

]
is the conditional mean of the Poisson distribution.

5.2.2 Information Matrix

It can be shown that the marginal mean of cij(k)l is given as

µ∗ij(k)l = E
[
cij(k)l

]
= exp

(
x′j(k)β +

σ2
Uc + σ2

Us

2

)
tαij(k)l

As in the previous chapter, tαij(k)l is replaced by its expected value, which is,

E
[
tαij(k)l

]
= E

1− exp
(
−ex

′
j(k)

β+Uc+Us

tαc

)
ex
′
j(k)

β+Uc+Us

 ,
and it is calculated by a large number of samples of two random effects from the

following distribution. uc
us

 ∼ N2


0

0

 ,
σ2

Uc 0

0 σ2
Us


 (5.1)
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The marginal variance is given as

var
(
cij(k)l

)
= µ∗ij(k)l + µ∗ij(k)l

2ξ,

where ξ = eσ
2
Uc+σ

2
Us − 1. Accordingly the covariances of two observations are given as

cov
(
cij(k)l, ci′j′(k)l

)
= µ∗ijµ

∗
i′j′ξ, ∀ij(k)l 6= i′j′(k)l

cov
(
cij(k)l, ci′j′(k′)l

)
= µ∗ijµ

∗
i′j′ξs, ∀ij(k)l 6= i′j′(k′)l

cov
(
cij(k)l, ci′j′(k)l′

)
= µ∗ijµ

∗
i′j′ξc, ∀ij(k)l 6= i′j′(k)l′

cov
(
cij(k)l, ci′j′(k′)l′

)
= 0, ∀ij(k)l 6= i′j′(k′)l′

where ξs = eσ
2
Us − 1 and ξc = eσ

2
Uc − 1.

Let n be the total number of test units and p be the number of stress factors. The

information matrix from the quasi-score function is given by

X′∆V−1∆X (5.2)

where X is the n × (p + 1) design matrix, ∆ is the n × n diagonal matrix of

µ∗ij(k)l’s, and V is the n × n variance-covariance matrix. In Chapter 4, two differ-

ent variance-covariance structures, V1 and V2, according to the number of stress

conditions assigned to each test chamber, were considered. The optimal design,

however, was always obtained by using V2, in which two stress conditions were as-

signed to each test chamber. In this chapter, therefore, we consider only the case of

j(1) = {1, 2}, j(2) = {3, 4} in general. The variance-covariance matrix then is given

as

V =



V(1)1 V(12)1 V(1)12 0

V(2)1 0 V(2)12

V(1)2 V(12)2

sym V(2)2


(5.3)
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where V(k)l is the variance-covariance matrix of observations for the same test cham-

ber and supplier, V(kk′)l is the covariance matrix of observations for the different test

chamber but the same supplier, and V(k)ll′ is the one for the same test chamber but

for different suppliers. Accordingly ∆ can be represented by

∆ =



∆(1)1 0

∆(2)1

∆(1)2

0 ∆(2)2


where ∆(k)l = diag{µ∗j(k)l1′nj(k)l

, µ∗j′(k)l1
′
nj′(k)l

}. Then

V(k)l = ∆(k)l + ξdiag
(
∆(k)l

)
diag

(
∆(k)l

)′
V(kk′)l = ξsdiag

(
∆(k)l

)
diag

(
∆(k′)l

)′
V(k)ll′ = ξcdiag

(
∆(k)l

)
diag

(
∆(k)l′

)′
5.3 D-optimal Design Construction

5.3.1 Initial Design Generation

Recall the example of ALT with two stress factors, temperature and humidity, in

Chapter 4. In this section, an additional random effect term of a supplier is included

in the acceleration model, that is

ηj(k)l = −4.086x1j(k) − 1.476x2j(k) + uck + usl .

The D-optimal design is constructed by selecting the locations of four stress condi-

tions, the assignment of two test chambers, and the number of test units allocations

for each combination of stress conditions and suppliers, such that the determinant of

the information matrix in (5.2) is maximized. The aggregated design is defined as
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the following form.

ψ =



x11(1) x21(1) n1(1)1

x12(1) x22(1) n2(1)1

x13(2) x23(2) n3(2)1

x14(2) x24(2) n4(2)1

x11(1) x21(1) n1(1)2

x12(1) x22(1) n2(1)2

x13(2) x23(2) n3(2)2

x14(2) x24(2) n4(2)2



, (5.4)

where nj(k)l, j = 1, 2, 3, 4; k = 1, 2; l = 1, 2 represents the number of test units allo-

cated at the jth stress condition, nested in the kth test chamber, from the lth supplier;

and
∑

l

∑
k

∑
j nj(k)l = n. The initial design for the input of the optimization pro-

cedure is created by randomly selecting x1j(k), x
2
j(k), j(k) = 1(1), 2(1), 3(2), 4(2) from

the range of (0, 1). Note that the first four stress conditions in (5.4) are simply copied

to the last four stress conditions. The initial values of the last column of (5.4) is

generated by follows:

n1(1)1 = a1, n2(1)1 = a2 − a1, n3(2)1 = a3 − a2, n4(2)1 = a4 − a3,

n1(1)2 = a5 − a4, n2(1)2 = a6 − a5, n3(2)2 = a7 − a6, n4(2)2 = n− a7

where a1 < a2 < a3 < a4 < a5 < a6 < a7 are sorted integers sampled from (0, n).

5.3.2 Optimization

The optimization is conducted by iterations of three separate steps as follows.

1. Exchange the test chamber assignment

The first step is to find the best test chamber assignment. The first two stress

conditions in the initial design are assigned to the same test chamber and the
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others to the another chamber, that is j(1) = {1, 2}, j(2) = {3, 4}. We evaluate

the objective function for alternative test chamber assignment plans, which are

j(1) = {1, 3}, j(2) = {2, 4} and j(1) = {1, 4}, j(2) = {2, 3}, and choose one

with the highest objective function value.

2. Exchange the number of allocations

The second step is to exchange the number of test unit allocations between

all pairs of stress conditions. For each pair of nj(k)l’s in (5.4), one test unit is

exchanged in a way to increase the objective value. For example, for the pair

of n1(1)1 and n2(1)1, we consider two cases, (n1(1)1 + 1, n2(1)1 − 1) and (n1(1)1 −

1, n2(1)1 + 1), and evaluate the objective function for both cases. If any case

produces a better objective value, the design is replaced. Once these exchanges

are finished for all pairs, the entire procedure is repeated until there is no more

change in the third column of the right hand side of (5.4).

3. Optimize the stress conditions

The third step is to find the locations of four stress conditions which produce

the best objective function value given the current test chamber assignment and

the number of allocations. Since decision variables are continuous in the range

of (0, 1), we can use a general non-linear optimization routine. The method

“L-BFGS-B” (Byrd et al., 1995) provided by R is used for this purpose.

For an initial design, these three steps are repeated until there is no improvement

of the objective value. This entire process is conducted multiple times with several

different initial designs to find the global optimal design.

This optimization procedure can be adapted to some different cases with devia-

tions of assumptions in Subsection 5.1. First, it can be applied to the case of more

than two suppliers by extending the variance-covariance matrix in (5.3) and corre-
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sponding ∆ matrix, which is obvious. Second, if the number of test units from each

manufacturer is limited by some capacities, the second optimization step is separated

to two sub-steps, one for the first supplier and the other one for the second sup-

plier. In this case, the number of test units is only exchanged within the rows of the

corresponding supplier.

5.4 Implementation and Results

5.4.1 D-optimal Test Plan

The D-optimal design for the case of σ2
Uc = 0.25 and σ2

Us = 0.25 was obtained

by the procedure described in Subsection 5.3.2 with 10 randomly generated initial

designs. The objective function was calculated by M = 2, 000, 000 samples of (U c, U s)

in Eq. (5.1). Table 5.1 and Figure 5.2 show the result. It can be seen that the test

locations of two stress factors are quite similar to the case of the single source of

random effect in Chapter 4 (see Table 4.5); and also two test chambers are allocated

in a similar way with the one in the previous chapter, where the two test locations in

a diagonal direction in Figure 5.2 are assigned to the same test chamber. In terms of

the number of test unit allocations, the sum of test unit allocations of both suppliers

for each test location is very close to the case in Chapter 4. For example, the sum

of 10 and 11 test units, which is 21, from supplier 1 and 2, respectively, for a test

location j = 1 is close to the number of test units allocated at the corresponding test

location in the previous chapter, which is 22, as can be seen from Figure 4.7. We also

observe that test units from two suppliers are almost equally allocated to each test

locations. For example, 10 test units from supplier 1 and 11 test units from supplier

2 have been allocated for the test location j = 1.
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Table 5.1: D-optimal test plan with σ2
Uc = 0.25 and σ2

Us = 0.25

Supplier Test chamber

Assignment

Design

Point

Temperature Humidity Allocation

Actual Coded Actual Coded

l k j ◦C x1 RH x2 nj(k)l

1 1 1 110.00 0.000 60.00 1.000 10

1 1 2 66.87 0.845 90.00 0.000 14

1 2 3 84.08 0.483 60.00 1.000 15

1 2 4 110.00 0.000 90.00 0.000 11

2 1 1 110.00 0.000 60.00 1.000 11

2 1 2 66.87 0.845 90.00 0.000 15

2 2 3 84.08 0.483 60.00 1.000 14

2 2 4 110.00 0.000 90.00 0.000 10
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Figure 5.2: Design plot of D-optimal test plan with σ2
Uc = 0.25 and σ2

Us = 0.25
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In short, the D-optimal design of multiple random effects shown in Figure 5.2

seems to be constructed by splitting the D-optimal design of the nested structure

shown in Figure 4.7 equally into two parts so that the effect of different suppliers

can be measured in each test location with balanced number of test units. In fact

Theorem 3.1. in Niaparast (2009) has shown that the optimal population design (i.e.,

optimal design for all suppliers) is obtained by the uniform optimal individual design

(i.e., optimal design for a supplier) in a crossed design structure; and our results verify

the theorem numerically.

5.4.2 Optimization Process

It would be worth observing how the optimization process described in Subsec-

tion 5.3.2 actually works for this example. In this subsection, we follow each step of

the search process from the initial design to the optimal design.

Figure 5.3a shows the initial test plan, where four stress conditions and the test

unit allocations are randomly generated. The test chamber assignment is exchanged in

Figure 5.3b so as to increase the objective function value. According to the second step

of Subsection 5.3.2, test unit allocations are updated in Figure 5.3c, which produces

much more balanced allocations between two suppliers compared to the initial design.

The next step is to find the optimal stress conditions, and Figure 5.3d shows the result.

This step improves the objective function value from 12.566 to 924.217, which is the

largest improvement among those by a single step in the entire process. The first

iteration is finished, and all three steps are repeated in the next iteration. For the

second iteration, the result of the exchange of test chamber assignment (i.e., the first

step) is not depicted since there is no change. However the objective function keeps

increasing on the second and third steps. Figure 5.3 depicts the test plans until the

fourth iteration and the objective function value reaches to 1006.711. In fact, the
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(a) Initial design: stress conditions and the number of test units are randomly generated

(objective function value:= 3.599)
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(b) Iteration 1 (step 1): chamber assignment is updated (4.107)

Figure 5.3: Optimization process
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(c) Iteration 1 (step 2): number of test units is updated (12.566)
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(d) Iteration 1 (step 3): stress conditions are updated (924.217)

Figure 5.3: Optimization process (continued)
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(e) Iteration 2 (step 2): number of test units is updated (939.283)
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(f) Iteration 2 (step 3): stress conditions are updated (988.394)

Figure 5.3: Optimization process (continued)
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(g) Iteration 3 (step 2): number of test units is updated (1002.090)
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(h) Iteration 3 (step 3): stress conditions are updated (1005.143)

Figure 5.3: Optimization process (continued)
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(i) Iteration 4 (step 2): number of test units is updated (1006.288)
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(j) Iteration 4 (step 3): stress conditions are updated (1006.711)

Figure 5.3: Optimization process (continued)
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entire optimization process was completed at the seventh iteration and the optimal

objective function value was 1007.673.

5.5 Conclusion

In this chapter, the D-optimal ALT test plan was constructed with multiple

sources of random effects. We considered the crossed design structure by different

suppliers of test units as well as the nested design structure by different test cham-

bers. It has been shown that the D-optimal design could be obtained by mixing

similar numbers of test units from different suppliers for each test condition. Also the

optimal test conditions were slightly different from those in the case of single random

effect by test chambers, which was seemingly caused by increased random effects in

the acceleration model.

Extending this chapter, it would be worthwhile to investigate the optimal test

plans for various cases with different combinations of σ2
Uc and σ2

Us . Also any improve-

ment of the optimization procedure proposed in this chapter, in terms of computa-

tional time or D-efficiency, would be another opportunity for future research.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

A product’s reliability assessment affects all different aspects of reliability-related

decision making in industries. For a precise evaluation of the product’s lifetime, it is

important to reflect a possible influential factor caused by the experimental setting

in real world to the mathematical model. This dissertation considered the effects

from heterogeneous groups in a sample of reliability tests. In ALTs, test observations

are likely to be constructed by several different groups due to, e.g., the discordance

between the experimental unit (i.e., test chamber) and observational unit (i.e., test

unit) or different sources of materials. In this dissertation, the effects of those groups

were treated as a random variable, and ALT data was modeled upon a framework of

GLMM. The first half of this thesis studied reliability data analysis and the second

half described the optimal test plan, taking heterogeneous random group effects into

account.

In Chapter 2, lifetime observations with constrained randomization from a constant-

stress ALT were modeled by a Poisson GLMM. The iterative maximum likelihood was

developed for the parameter estimation, and the variance-covariance matrix was cal-

culated by the quadrature approximation. The GLMM provides several advantages.

First, it is a structured framework for censored failure time data with random effects.

Second, it can be easily implemented in statistical software. Third and most impor-

tantly, owing to the recent studies of experimental designs for GLMM, the optimal

ALT planning can be derived.

Chapter 3 examined the exploitation of GLMM for a step-stress ALT data anal-

ysis. According to the memoryless property of exponential random variable, the
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SSALT data was transformed to the pseudo CSALT data. Both maximum likelihood

and Bayesian approaches were used for the parameter estimation. Deterministic ap-

proximation methods, AGQ and INLA, were applied in this chapter. The proposed

model was compared to other traditional models by a simulation study, and applied

to the SSALT data of power cable insulation. From the results, we observed that the

random group effect should be considered in the model to avoid highly biased param-

eter estimation, which might significantly affect the reliability assessment when the

model was extrapolated to the normal use condition. The prediction of each group

effect was also provided from the estimation results of GLMM, and it enabled us to

examine an abnormal group without an additional residual analysis.

Since life tests are expensive and require long period of time, it is also essential

to plan ALTs in an efficient way where information for statistical inference of an

acceleration model could be extracted as much as possible from those tests. Chapter 4

and Chapter 5 tackled such problems by pursuing the optimal experimental design for

GLMM. Particularly in Chapter 4 the test chamber assignment problem was studied

where observations from the same test chamber were likely to be correlated. We

observed the test chamber assignment to test locations had a substantial impact on

the parameter estimation under the nested design structure. Also D-optimal test

plan was obtained by using quasi-likelihood approach, and it performed better than

any test plan constructed by the greedy approach.

Chapter 5 dealt with an additional random effect caused by heterogeneous test

units for ALT planning. We postulated a situation for which test units were supplied

by two different manufacturers, and failure time observations of those from the same

manufacturer were correlated. The objective function of D-optimal test plan could

be derived by the similar manner as Chapter 4 using quasi-likelihood, while the opti-

mization was carried out by iterations of updating each decision variable. As a result

106



the D-optimal design was obtained by uniformly allocating test units from different

suppliers to each test location.

There are some limitations of this thesis and future research opportunities. First,

many different types of sensitivity analysis could be conducted with violations, to a

small or large extent, of assumptions in this dissertation. For example, the normality

assumption for the random effect may be violated in a real world application. We may

be able to conduct a simulation study to see how the GLMM approach is sensitive to

deviations from the normal distribution of random effects. Another opportunity for

the sensitivity analysis lies in cases with incorrect planning values for the experimental

design study, i.e., the presumed model of the linear predictor and the value of the

variance component. An optimal design derived from a specific planning value would

not be optimal for a different planning value, and it would be worth to observe how

sensitive the optimal design is to changes of each parameter in the linear predictor

and the variance of random effects. Besides, this dissertation only deals with the first

order model with main effects of stress factors for the acceleration model. However,

we may consider some other acceleration models, such as a quadratic model, as a

true life-stress relationship. As an alternative to the sensitivity study, the Bayesian

approach (DuMouchel and Jones, 1994) could be adapted to tackle such dependency

problems due to the uncertainty in the acceleration model.

Second, some practical constraints for planning ALTs could be taken into account.

For example, a manufacturer may have a limited budget and time for a test; test

chambers may have a limited capacity for the number of test units to be tested at

the same time; or the number of test units provided by each supplier may be limited.

In these cases, we may consider restricting a feasible region of a design space by

including a suitable constraints in terms of cost, time, and number of test units into

the optimization problem. Alternatively, an additional objective function could be
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added so as to e.g., minimize the total cost or testing time with maintaining the least

acceptable D-efficiency, which leads to an optimization with dual objective functions

where one is related to the statistical efficiency and the other one controls the practical

constraints.

Lastly, this dissertation only dealt with failure time data. These days, however,

a product’s failure is hardly observed even with elevated environmental stresses. For

this reason, a product’s degradation data is widely used for diagnostic and prediction

tools, and the heterogeneous group effects could be taken into account for degradation

data analysis. In addition, thanks to modern sensor technologies and the Internet of

things (IoT), it is easy and inexpensive to collect data on the state of machinery being

operated. With such abundant data from all different environments, it would be more

important to consider heterogeneous effects in the model. Based on this dissertation’s

findings, these topics will be studied in the future.
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A.1 Derivation of Gaussian Approximation

The first and second derivatives of g(ui) are

∂g(ui)

∂ui
= − ui

σ2
u

+

qi∑
s=1

(cis − µis) (A.1)

∂2g(ui)

∂u2i
= −

(
1

σ2
u

+

qi∑
s=1

µis

)
(A.2)

Since Eq. (A.2) is negative, there is a unique point u∗i such that u∗i = arg maxui g(ui).

As Eq. (A.1) is vanished at u∗i , one can determine u∗i by the following iterations.

u
(k+1)
i = σ2

u

qi∑
s=1

(cis − µ(k)
is ), µ

(k)
is = exp(β0 + β1xis + u

(k)
i )

where the iteration can be started with the initial value u
(0)
i = 0. Let µ∗is = exp(β0 +

β1xis + u∗i ), then it can be shown that, by the second-order Taylor expansion at u∗i ,

the Gaussian approximation of exp {g(ui)}, without normalizing constant, is given as

exp

{
− u2i

2σ2
u

+

qi∑
s=1

(cis log µis − µis)

}
≈ exp

{
−(ui − u∗i )2

2σ2∗

}
which is the kernel of the normal density with the mean u∗i and the variance σ2∗ =(∑qi

s=1 µ
∗
is + 1

σ2
u

)−1
.

A.2 Laplace Approximation

The Laplace approximation of the posterior marginal of π(τu|D) refers to

π̃LA(τu|D) ∝ π(z, τu,D)

π̃G(z|τu,D)

∣∣∣∣
z=z∗(τu)

(A.3)

where π̃G(z|τu,D) is the Gaussian approximation to the full conditional density of z;

and z∗(τu) is the mode of the full conditional of z, for a given τu. The mode z∗(τu)

has to be recalculated for each given value of τ ku , which will be used for the numerical

integration in Eq. (3.14). For the problem in this paper, the full conditional of z is
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given as

π(z|τu,D) ∝ exp

{
−1

2
zTQ(τu)z +

m∑
i=1

qi∑
s=1

(cis log µis − µis)

}

which has the similar form with Eq. (3.8) of AGQ; but now it is a multidimensional

version. The Gaussian approximation of this form is known particularly being ac-

curate (Rue et al., 2009). The major reason of the use of Laplace approximation in

INLA is π(τu|D) in Eq. (3.13) would not be well approximated to the Gaussian den-

sity directly; but by introducing the Gaussian variable z from Eq. (A.3), it achieves

substantially accurate results.

We can conduct the Gaussian approximation by the similar way of AGQ. Then

we obtain

π̃G(z|τu,D) ∝ exp

{
−1

2
(z − z∗(τu))

T (Q(τu) + C∗)(z − z∗(τu))

}
where Q(τu) + C∗ is the precision matrix.

The other density π̃LA(zp|τu,D) in Eq. (3.14) is calculated by the similar manner,

but now the full conditional density depends on two variables as follows.

π̃LA(zp|τu,D) ∝ π(z, τu,D)

π̃G(z\p|zp, τu,D)

∣∣∣∣
z\p=z

∗
\p(zp,τu)

where z\p is the Gaussian variables except the pth element. Therefore, the mode

z∗\p(zp, τu) has to be calculated for each combination of (zp, τ
k
u ).
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A.3 Simulation Data Generation

Algorithm 1 Simulation data generation

1: pseudoData← NULL; . matrix including columns of stress level, failure time,
censoring indicator and group index

2: for i = 0 to m do
3: draw a sample ui from N(0, σ2

u);
4: for k = 1 to 4 do . determine the conditional cdf of each group
5: calculate λijk, j = 1, . . . , n, by Eq. (3.16);
6: end for
7: for j = 1 to n do
8: draw a sample zij from Unif(0, 1); . random samples in y-axis of the

conditional cdf
9: obtain tij by the inverse of conditional cdf of SSALT (Eq. (A.4)); .

projecting zij into x-axis
10: if tij ≤ ξ1 then . pseudo data generation
11: append (x1, tij, 1, i) to pseudoData;
12: else if tij ≤ ξ2 then
13: append (x1, ξ1, 0, i) to pseudoData;
14: append (x2, tij − ξ1, 1, i) to pseudoData;
15: else if tij ≤ ξ3 then
16: append (x1, ξ1, 0, i) to pseudoData;
17: append (x2, ξ2 − ξ1, 0, i) to pseudoData;
18: append (x3, tij − ξ2, 1, i) to pseudoData;
19: else if tij ≤ ξ4 then
20: append (x1, ξ1, 0, i) to pseudoData;
21: append (x2, ξ2 − ξ1, 0, i) to pseudoData;
22: append (x3, ξ3 − ξ2, 0, i) to pseudoData;
23: append (x4, tij − ξ3, 1, i) to pseudoData;
24: else
25: append (x1, ξ1, 0, i) to pseudoData;
26: append (x2, ξ2 − ξ1, 0, i) to pseudoData;
27: append (x3, ξ3 − ξ2, 0, i) to pseudoData;
28: append (x4, ξ4 − ξ3, 0, i) to pseudoData;
29: end if
30: end for
31: end for
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where the inverse cdf is given as

tij = F−1ss (zij|ui)

=



− ln(1−zij)
λi1

, 0 ≤ zij < 1− e−λi1ξ1

− ln(1−zij)+λi1ξ1
λi2

+ ξ1, 1− e−λi1ξ1 ≤ zij < 1− e−λi2(ξ2−ξ1)−λi1ξ1

− ln(1−zij)+λi2(ξ2−ξ1)+λi1ξ1
λi3

+ ξ2,

1− e−λi2(ξ2−ξ1)−λi1ξ1 ≤ zij < 1− e−λi3(ξ3−ξ2)−λi2(ξ2−ξ1)−λi1ξ1

− ln(1−zij)+λi3(ξ3−ξ2)+λi2(ξ2−ξ1)+λi1ξ1
λi3

+ ξ3,

1− e−λi3(ξ3−ξ2)−λi2(ξ2−ξ1)−λi1ξ1 ≤ zij < 1.

(A.4)
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B.1 Derivation of Marginal Mean, Variance, and Covariance

The marginalized mean, variance and covariance for Poisson GLMM can be ex-

pressed as closed forms (McCulloch and Searle, 2001). The marginal mean is calcu-

lated as

µ∗ij(k) = E
[
cij(k)

]
= E

[
E
[
cij(k)|Uk

]]
= exp

(
x′j(k)β + α log tij(k)

)
E [exp(Uk)]

= exp
(
x′j(k)β + α log tij(k)

)
MU(1)

= exp
(
x′j(k)β + α log tij(k)

)
exp

(
σ2
U/2
)

= exp
(
x′j(k)β + α log tij(k) + σ2

U/2
)

where MU(1) is the moment generating function (MGF) of U evaluated at 1. Re-

call the MGF of normal random variable U is given as MU(t) = exp(µut + σ2
ut

2/2).
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Accordingly the marginal variance is calculated as

var
(
cij(k)

)
= var

(
E
[
cij(k)|Uk

])
+ E

[
var
(
cij(k)|Uk

)]
= var

(
µij(k)

)
+ E

[
µij(k)

]
= var

(
exp

(
x′j(k)β + α log tij(k) + Uk

))
+ E

[
exp

(
x′j(k)β + α log tij(k) + Uk

)]
= E

[
exp

{
2
(
x′j(k)β + α log tij(k) + Uk

)}]
−
[
E
[
exp

(
x′j(k)β + α log tij(k) + Uk

)]]2
+ E

[
exp

(
x′j(k)β + α log tij(k) + Uk

)]
= exp

{
2
(
x′j(k)β + α log tij(k)

)}
MU(2)− exp

{
2
(
x′j(k)β + α log tij(k)

)}
M2

U(1)

+ exp
(
x′j(k)β + α log tij(k)

)
MU(1)

= exp
{

2
(
x′j(k)β + α log tij(k) + σ2

U/2
)}

exp
(
σ2
U

)
− exp

{
2
(
x′j(k)β + α log tij(k) + σ2

U/2
)}

+ exp
(
x′j(k)β + α log tij(k) + σ2

U/2
)

= E
[
cij(k)

]2 (
eσ

2
U − 1

)
+ E

[
cij(k)

]
= µ∗ij(k) + µ∗ij(k)

2ξ
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The marginal covariance of two observations in the same test chamber is calculated

as

cov
(
cij(k), cij′(k)

)
= cov

(
E
[
cij(k)|Uk

]
,
[
cij′(k)|Uk

])
+ E

[
cov

(
cij(k), cij′(k)|Uk

)]
= cov

(
µij(k), µij′(k)

)
+ E[0]

= cov
(
exp

(
x′j(k)β + α log tij(k) + Uk

)
, exp

(
x′j′(k)β + α log tij′(k) + Uk

))
= exp

(
x′j(k)β + x′j′(k)β + α log tij(k) + α log tij′(k)

)
cov (exp(Uk), exp(Uk))

= exp
(
x′j(k)β + x′j′(k)β + α log tij(k) + α log tij′(k)

)
var (exp(Uk))

= exp
(
x′j(k)β + x′j′(k)β + α log tij(k) + α log tij′(k)

) (
E [exp(2Uk)]− E [exp(Uk)]

2)
= exp

(
x′j(k)β + x′j′(k)β + α log tij(k) + α log tij′(k)

) (
MU(2)−M2

U(1)
)

= exp
(
x′j(k)β + x′j′(k)β + α log tij(k) + α log tij′(k)

) (
e2σ

2
U − eσ2

U

)
= exp

(
x′j(k)β + α log tij(k) + σ2

U/2
)

exp
(
x′j′(k)β + α log tij′(k) + σ2

U/2
) (
eσ

2
U − 1

)
= µ∗ij(k)µ

∗
ij′(k)ξ
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B.2 Derivation of Expected Value of tαij(k)

Let yij(k) = tαij(k)|Uk, yc = tαc . Given α, then yij(k) ∼ Exp(λj(k)).

E
[
tαij(k)

]
= E

[
E
[
tαij(k)|Uk

]]
= E

[
E
[
yij(k)

]]
= E

[
P (yij(k) < yc)E

[
yij(k)|yij(k) < yc

]
+ P (yij(k) ≥ yc)E

[
yij(k)|yij(k) ≥ yc

]]
= E

[
P
(
yij(k) < yc

) ∫ yc
0
yij(k)λj(k) exp

(
−λj(k)yij(k)

)
dyij(k)

P
(
yij(k) < yc

) + exp
(
−λj(k)yc

)
yc

]

= E

[
1− exp

(
−λj(k)yc

)
λj(k)

]

= E

[
1− exp

(
−λj(k)tαc

)
λj(k)

]

= E

1− exp
(
−ex

′
j(k)

β+U tαc

)
ex
′
j(k)

β+U


Thus, it follows that

E
[
exp

(
x′j(k)β + σ2

U/2
)
tαij(k)

]
= exp

(
x′j(k)β + σ2

U/2
)
E
[
tαij(k)

]
= exp

(
x′j(k)β + σ2

U/2
)
E
[
E
[
tαij(k)|Uk

]]
= exp

(
x′j(k)β + σ2

U/2
)
E

1− exp
(
−ex

′
j(k)

β+U tαc

)
ex
′
j(k)

β+U


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