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ABSTRACT

Exabytes of data are created online every day. This deluge of data is no more

apparent than it is on social media. Naturally, finding ways to leverage this un-

precedented source of human information is an active area of research. Social media

platforms have become laboratories for conducting experiments about people at scales

thought unimaginable only a few years ago.

Researchers and practitioners use social media to extract actionable patterns such

as where aid should be distributed in a crisis. However, the validity of these patterns

relies on having a representative dataset. As this dissertation shows, the data collected

from social media is seldom representative of the activity of the site itself, and less so

of human activity. This means that the results of many studies are limited by the

quality of data they collect.

The finding that social media data is biased inspires the main challenge addressed

by this thesis. I introduce three sets of methodologies to correct for bias. First, I

design methods to deal with data collection bias. I offer a methodology which can

find bias within a social media dataset. This methodology works by comparing the

collected data with other sources to find bias in a stream. The dissertation also

outlines a data collection strategy which minimizes the amount of bias that will appear

in a given dataset. It introduces a crawling strategy which mitigates the amount of

bias in the resulting dataset. Second, I introduce a methodology to identify bots and

shills within a social media dataset. This directly addresses the concern that the users

of a social media site are not representative. Applying these methodologies allows the

population under study on a social media site to better match that of the real world.

Finally, the dissertation discusses perceptual biases, explains how they affect analysis,

and introduces computational approaches to mitigate them.
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The results of the dissertation allow for the discovery and removal of different

levels of bias within a social media dataset. This has important implications for social

media mining, namely that the behavioral patterns and insights extracted from social

media will be more representative of the populations under study.
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Chapter 1

INTRODUCTION

Social media is an important outlet to understanding human activity. Over the

last few years many social media sites have given users a way to express their interests,

friendships, and behavior in an online setting. Because of their ubiquity, these

platforms have been critical in many global events. During the Arab Spring protests,

these platforms helped protesters to organize. Across several natural disasters such as

Hurricane Sandy, several earthquakes, typhoons, and floods, social media has been

used both by the affected to request assistance as well as for humanitarian aid agencies

to spread information about critical aid resources. Social media is used by everyday

people to discuss current events, and their lives. There are several sites with hundreds

of millions of users, and a few sites with billions of users all sharing, posting, and

discsussing what they see around them.

Noticing the richness, extent, scale, and dynamic nature of social media data,

researchers welcome the opportunities to use social data to answer questions regarding

human behavior, information diffusion, and influence propagation on social media (Liu

et al. 2016). Though not all social media sites provide sample data even for research

purposes, some sites do provide mechanisms through which researchers can obtain a

sample of data to conduct their research. One example is Twitter, a microblogging

site where users exchange short, 140-character messages called “tweets.” Ranking as

the 8th most popular site in the world by the Alexa rank in August of 2016,1 the site

boasts 313 million monthly users publishing 500 million tweets per day. Twitter’s

1http://www.alexa.com/topsites
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platform for rapid communication is a vital platform in recent events including

Hurricane Sandy,2 the Arab Spring (Shamanth Kumar et al. 2013), and several

political campaigns (Tumasjan et al. 2010; Gayo-Avello, Metaxas, and Mustafaraj

2011). As a result, Twitter’s data has been coveted by both computer and social

scientists to better understand human behavior and dynamics. Because of its open

nature with sharing data as well as the vast richness and size of the data generated

on Twitter, many research projects use Twitter data to understand human behavior

online. This has led to Twitter being called the “fruit fly”, or model organism, for

computational social sciences research (Tufekci 2014).

Despite the wide adoption of social media, especially Twitter, for computational

social sciences research, there are many problems that stand in the way of making

accurate assessments from this data. The data that is obtained from social media

sites does not represent the activity of people in the real world (Duggan and Brenner

2013). The objective of this thesis is to provide tools and techniques to identify and

mitigate the biases that occur in social media in order to provide researchers with a

more unbiased view for their research.

1.1 Problem Statement

While social media is an amazing resource for societal research, there may exist

biases on the social media platforms. These biases are introduced during data collection.

Researchers should account for them in their study, i.e., whether a representative

dataset is obtained for planned computational social science research. If the goal

2http://www.nytimes.com/interactive/2012/10/28/nyregion/hurricane-sandy.html
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The World Social Media Sampled Social Data

1	 2	

Figure 1: Overview of the Social Data Collection Process: Human Behavior Becomes
Data upon Which Research Is Conducted. Humans Generate Data on Social Platforms
(“1”) Which Is Then Collected by Researchers in Order to Answer Questions about
Their Behavior (“2”). At Both Points, Nonrepresentative Sampling Procedures Are in
Place That Will Skew the Results Taken by Researchers on Sampled Social Data.

of computational social science is to study society at scale, then the data studied

must provide an accurate reflection of society. In this work I study whether the data

that comes from Twitter, the model organism, is representative of society. More

specifically, I first study whether or not the sampled data that researchers often use

for their research is representative of the full, unsampled data on Twitter. I next study

the ways in which Twitter itself is not representative of society. I identify ways in

which the data can be biased, and introduce computational techniques for detecting

and mitigating these biases. In this work, I focus on bias that arises from sampling

strategies on social media and potential sources of data bias, and present ways of

detecting and mitigating bias in order to draw credible conclusions about society from

sampled and limited data. Both sampling mechanisms in data disclosure, as well as

the implicit sampling mechanisms for users on a social media site are focused upon in

this dissertation.
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(a) Statistics of Papers That Use Twitter.
N = 843.

(b) Statistics of Sources in Twitter Papers.
N = 391.

Figure 2: Breakdown of Papers That Use Twitter (Left), and among Them Who Use
the Different APIs as Data Sources (Right). Twitter Is a Major Source for Social
Media Research, with 46% of All Papers Using It in Their Findings. Overall, 46% X
78% = 36% of All Papers Use the Streaming API. “unclear” Refers to Papers That
Did Not Properly Disclose How They Obtained Their Tweets.

1.1.1 The Scale of the Problem

In our discussion of data collection bias, one natural question which may arise

in this work is the emphasis on Twitter’s APIs. Why are they significant? A study

performed in 2014 found that among all of the papers published at The International

Conference on Weblogs and Social Media (ICWSM), a preliminary conference in the

area of social media mining, in 2013, almost half of them used Twitter to obtain some

results for their research.

In this thesis we complement their analysis by analyzing the papers from all of

the ICWSM conferences held from 2010 - 2017, inclusive. We downloaded 843 papers,

including long papers, short papers, and demos. First, we counted the number of

papers that used Twitter to obtain results. This was done by using a regular expression.

The case-insensitive regular expression “\bTwitter\b” was used. to count the number
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of papers. Empirically, we discovered that papers that mention Twitter at least 5

times tend to use it in their analysis. Applying this rule to all of the papers from

ICWSM, we find that 46% of all papers use Twitter in some capacity for their research.

This supports the analysis performed by Tufekci 2014.

Furthermore, we broke down the Twitter-based papers based upon how they

collected their Twitter data. We used regular expressions to break the papers into

one of four categories: Firehose, Streaming/Sample APIs, REST APIs, or Unclear.

Unclear means that the paper did not specify how they got to their data well enough

for us to classify it into one of the other three categories. To do this, we employed

regular expressions. The breakdown of the papers is shown in Figure 2b. We find that

78% of these papers, or 36% of all papers at ICWSM, use the Streaming or Sample

APIs.

This analysis is provided to give an understanding of the scale of data collection

bias, a prominent theme of this dissertation. While we focus on ICWSM for this

analysis, it is not limited to this one conference. Twitter data is also used widely

in other major academic venues such as the World Wide Web (WWW) Conference,

and the Computer-Supported Cooperative Work and Social Computing (CSCW)

conference. Perhaps more importantly, it is also used widely by advertising agencies

and government and private-sector analysts across the world.

Malicious user bias is another problem that deserves intense study to due the

prevalence of malicious users. Bots alone contribute to a large amount of the bias

on social platforms. Twitter, Inc. claims that bots account for 8.5% of the accounts

on the site are automated.3 Other claims are larger, with one study noting that

3https://qz.com/248063/twitter-admits-that-as-many-as-23-million-of-its-active-users-are-
actually-bots/
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Figure 3: An overview of the topics in this dissertation.

approximately 50% of the accounts created in 2014 were bots.4 In our own dataset

collected from the Firehose (Morstatter et al. 2013), we note that 34.5% of all of

the accounts from 2011 have been suspended.5 These accounts can add a significant

amount of bias to any dataset collected from social media.

1.2 Problems Addressed in this Thesis

The theme of this dissertation is addressing pitfalls that befall social data research.

Under this umbrella, we provide tools and techniques to detect, assess, and mitigate

several different types of pitfalls that can occur in social data. The pitfalls discussed

in detail in this dissertation can be seen in Figure 1. The pitfalls shown here are major

pitfalls, and cover a wide range of the research done using social media data; however,

they are not comprehensive. We leave out pitfalls, for example ethical issues related to

4https://blogs.wsj.com/digits/2014/03/21/new-report-spotlights-twitters-retention-problem/

5Accounts are usually suspended for bot behavior, but there are other reasons that account for a
small percentage of these suspended users. These reasons include sharing copyrighted content and
hate speech.
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handling social data (Zimmer 2010), and the notion that individuals behave differently

on online platforms than they would in the real world (Wilson et al. 2009). In the

related work chapter, we will discuss other types of pitfalls, such as those introduced

in Olteanu et al. 2016. In this thesis, we focus on the following pitfalls for social data

analysis:

• Bias from Researchers. This pertains to biases from researchers’ assumptions

about the validity of their data. When collecting data from social media, one

cannot be sure if that data actually represents the true population of the site. I

address this question by comparing data obtained through Twitter’s sampled

APIs with Twitter’s full dataset. I am the first to address this problem in social

data.

Confirming that bias can exist in the way that data is distributed is an important

one, but comparing the data from the full dataset is not tractable for most

researchers due to the prohibitive cost. Thus, I develop ways for researchers and

practitioners to assess the amount of bias in their dataset, as well as to collect

data in such a way that the amount of bias is mitigated.

• Bias from Adversaries. Bias is not just a factor of bizarre blackbox sampling

strategies employed by social data APIs. There are malicious actors who seek

to inject bias into the data one receives in order to change the statistics of the

site. This is often done in political contexts to inflate the perceived popularity

of a candidate or message,6 but it’s also very effective in other domains like

advertising. It is important that those studying social media data accurately

6https://www.pastemagazine.com/articles/2017/06/how-the-trump-russia-data-machine-
games-google-to.html
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identify as many of these malicious actors as possible, not just so that we can

remove them, but also so that we can get a better understanding of their agendas.

The way social media data is generated provides unique vulnerabilities that can

be exploited by malicious actors. I introduce a new attack vulnerability for

social data. I also demonstrate simple strategies for identifying users who are

using this attack to increase the prevalence of their messages.

Specialized users on social media can introduce bias by skewing the perception

of popularity of an idea, candidate or product. Shills are highly specialized and

trained to combat opposing opinions. In concluding this section, we discuss how

shills can be detected based upon their online behavior and show how they differ

from other classes of malicious users.

• Perceptual Biases from Social Media Designers. Bias in social media

data does not stop at the way data is distributed, or how that distribution is

manipulated by nefarious actors. There are also many perceptual biases that can

occur in social media data. One example is that the way that data is produced

on social media may not be perceived the way that the author intended. This

can have real impact on the way that this data is perceived and thus analyzed.

I will introduce one type of bias that is unique to the way data is analyzed: that

the intended meaning behind the emojis used by the authors of social media

posts varies by the platform the author used to write the post.

By addressing these issues, the contribution of the dissertation can be summarized

as tools and techniques to identify and remove social data bias. While these biases

occur from different perspectives, and can be introduced at different steps in the

research process, they all have the side effect of introducing artifacts into the data.

These artifacts then will pollute the conclusions taken from social media data. By
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applying the techniques in this dissertation, we allow those who use social media data

as part of their research to obtain more credible and generalizable results from this

social data.

In this dissertation, I will outline the steps that I have taken to address each of

these issues. First, in Chapter 2 I will address other work that has been done to address

the problem of social data bias and how it supports and furthers our findings and

conclusions. Next, in Chapter 3 I introduce our strategy for measuring and detecting

data collection bias from social data APIs like the Twitter Streaming API. In Chapter

4 I will introduce a method for measuring the amount of bias that is present in a

dataset collected from these APIs, and present methodologies for collecting data from

these outlets in such a way that the amount of bias is minimized. Chapter 5 discusses

the vulnerabilities of APIs to malicious users, and discusses the ways to detect these

users. It then focuses on detecting bots that attempt to pollute social data platforms

and introduces the concepts of shills. Chapter 6 introduces conceptual biases that

can be present in social media data, and focuses on one type: platform-specific emoji

biases. It also introduces ways to correct for them. Finally, Chapter 7 concludes the

thesis and discusses areas of future work.
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Chapter 2

RELATED WORK

This chapter contains other works related to this dissertation. It is organized

based upon the topics presented in the subsequent chapters. We begin by presenting

a taxonomy of the different types of bias that can manifest in social data. We

then continue to present the related work for each of the subsequent chapters in the

dissertation.

External	influencers	
trying	to	skew	
percep5ons.	

Astroturfing	offline.	
Bots,	spammers	online.			

	“Gaming	the	system.”	
Gerrymandering	
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“Weapons	of	math	
destruc5on,”	cases	
where	human	bias	is	
encoded	into	the	data.	
Recidivism	offline,	
demographic	bias	

online.	

Issues	caused	by	the	
way	in	which	data	is	
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Figure 4: Overview of the Two Dimensions along Which We Characterize Bias. “Intent”
Refers to the Knowledge of the Actor about the Extent to Which They Are Biasing
the Data. “Source” Refers to Whether the Bias Originates from Within or Outside of
the System.
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2.1 Dimensions of Social Data Bias

In this section we take a broader view to social data bias. We look at other work,

not just limited to computer sciences literature, which addresses the issue of bias

pertaining to social data. The discussion will be presented with two main dimensions

of bias. The first dimension is intent, which is whether or not the data is being

intentionally manipulated. I characterize the concerns about bias as coming from

intentional skewing of the data by a body of people or a group. The second dimension

of bias is whether it is endogenous of exogenous to the data. I view exogenous bias as

that which comes from external factors and endogenous as that which occurs in the

way the data is handled. A characterization of these dimensions is shown in Figure 4.

Below, I will discuss each of the quadrants in detail as well as present research work

that helps to further characterize these dimensions. Where appropriate, I will discuss

how my work fits into the general theme of the quadrant.

2.1.1 Unintentional Exogenous Bias

This refers to the case where bias is unintentionally encoded into data by selection

processes external to the system. These unintentional biases can be learned by machine

learning algorithms, and perpetuate this same bias in their predictions. This is the

type of bias that leads to machine learning algorithms that are more likely to predict

that a black person will re-commit a crime (Angwin et al. 2016), that are less likely

to predict a black person as the winner of a beauty contest,7 or are more likely to

7https://www.theguardian.com/technology/2016/sep/08/artificial-intelligence-beauty-contest-
doesnt-like-black-people
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predict Asians as “blinking” in photographs.8 As Cathy O’Neil points out in her book,

Weapons of Math Destruction, the common problems leading to these phenomenon are

incorrect data and uninterpretable measures, statistics, or algorithms (O’Neil 2016).

The problem of recidivism prediction, or predicting whether a prisoner will reoffend,

is one area that has received a lot of attention in terms of fairness. Some public

prison systems have hired private companies to algorithmically determine if a person

will re-commit. This has been shown to overpredict African Americans as likely

to reoffend at a higher rate than whites (Angwin et al. 2016). This problem was

underscored by Richard Berk (Berk 2011b), who discusses the legal and data-related

problems pertaining to treating false-positives and false negatives with even care. This

issue has inspired new algorithms to address these issues. One example is a model,

created by Berk, to account for the asymmetric needs of parole officers (Berk 2011a).

For example, Cynthia Rudin’s group (Zeng, Ustun, and Rudin 2016) employed a

“Supersparse Linear Model” which has two interesting attributes that can be used

for this problem. First, it allows the user to specify the true positive rate and false

positive rate for each class, allowing to better control the tolerance for false positives.

Secondly, the weights learned by the linear model are small, and interpretable. This

allows for decision makers such as judges to understand why the model is making

the prediction it is making. In the area of reinforcement learning, work has been

done to ensure that the actions taken by the agent are “fair” (Jabbari et al. 2016).

Their evaluation of fairness employs a definition of fairness that says that an agent

should never prefer an action if a more rewarding action is available (Joseph, Kearns,

Morgenstern, and Roth 2016). In future work, they show that this can learn at least

8http://content.time.com/time/business/article/0,8599,1954643,00.html
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as fast as existing reinforcement learning processes (Joseph, Kearns, Morgenstern,

Neel, et al. 2016). This has real-world implications for things such as hiring processes.

Beyond recidivism prediction, there are a number of other areas in which bias

present in the data can be amplified by machine learning processes. One example is

word embeddings. Word embeddings offer a way to represent instances, namely words,

through “contexts.” These contexts are learned based upon the proximity of words in

a corpus. In addition to this they also often semantic properties that allow users to

quickly understand certain aspects of the dataset. One example of these properties

is analogies, where simple vector arithmetic is used to find relationships among the

words. One famous example of this property is “king” - “man” + “woman” = “queen,”

where taking the vector for king and subtracting that of man and adding the one

for woman will yield a vector that is closes to the word “queen.” It has been found

word embeddings trained on real world data reveal unsavory properties about society.

For example, Bolukbasi et al. 2016 found that “Computer Programmer” - “man” +

“woman” = “Homemaker.” They claim that this finding reflects sexist undertones in

the text upon which the word embeddings are trained. To get around this issue, the

authors proposed an approach to find dimensions of the model that are correlated

with gender, and then skew them such that words that should not be correlated with

gender are not. This is done at a slight cost in terms of predictive accuracy of the

model. This is a direct approach to debiasing the data. Similar approaches have been

taken to debias the data. One example is in a series of papers authored by Wu, where

bias is also mitigated through identifying correlated features that should not correlate

with the predictive variable (Wu and Wu 2016; Zhang, Wu, and Wu 2016), such as

race in the case of housing decisions.

As a final note, it is important to note that the traditional “machine learning”
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interpretation of the word bias also fits in here. Many machine learning algorithms are

formulated with the understanding that the data is not always centered, and account

for this by adding a bias term to the formulation (Bishop 2006). This fits in this

category because this type of bias is usually unintentional and occurs in the way the

data is generated, not usually within the model.

2.1.2 Unintentional Endogenous Bias

This refers to problems that can exist when the mechanisms through which data is

distributed cause the data to be collected in such a way that inferences drawn upon it

are skewed. We further split this group into two subcategories, those where the data

distribution mechanism is known and those where it is not.

In some cases, the way in which the data is generated is known. Despite this,

the problem of how to accurately collect samples has a long history. For example,

the method through which people are selected for polling is completely visible, but

this has consistently caused problems for pollsters. This was true in the widely

mispredicted election of Dewey and Truman (Mosteller 1949) and continues to elections

today (Allcott, Gentzkow, et al. 2017). This is the case on many social media sites,

such as those in which it is customary to create custom software to collect the data.

These were commonly used in the early days of collecting data from the web (Boldi

et al. 2004; Cho and Garcia-Molina 1999), and correspond to many web-scale datasets

that are still in use today.9 Many attempts have been constructed to combat this type

of bias (Granovetter 1976; Ye, Lang, and Wu 2010; Borgatti, Carley, and Krackhardt

9Two example repositories built from such crawling strategies are the ASU Social Com-
puting Data Repository (http://socialcomputing.asu.edu/), and the Stanford SNAP Repository
(https://snap.stanford.edu/data/#socnets).
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2006). In fact, it has been found that many network sampling approaches fail to yield

samples that can recover the initial parameters of the underlying distribution (Ahmed,

Neville, and Kompella 2013).

While these sampling approaches are important, a new type of sampling has arisen

in recent years. Driven both by the abundance and speed of data produced on social

media, some sites have acknowledged the use of collecting data for research and

applications. The key difference is that instead of writing a crawler that collects the

data, the data is provided by the social media site. This creates a sort of “black box”

for data distribution. This is where the majority of my work is situated. Previously,

researchers just used this outlet to collect data with the assumption that it would

be provided in a statistically representative manner. My work initially challenged

this assumption (Morstatter et al. 2013) by showing the different ways in which the

data from these outlets could be biased. In light of these findings, we also created

two approaches for correcting this type of bias (Morstatter, Pfeffer, and Liu 2014;

Sampson et al. 2015).

2.1.3 Intentional Exogenous Bias

This section refers to the set of malicious actors who work in tandem to make

their voice heard at disproportionate levels. This is not distinctive to social media.

One real-world example of this astroturfing (Cho et al. 2011), where companies or

political advocacy groups hire real people to go to a rally to lobby on their behalf.

This phenomenon is exacerbated in the online world where faces are not counted,

but online accounts. This has caused a surge in bot accounts that create fake posts

and connections in order to make certain users or topics seem more salient. Many
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approaches have been proposed to address this problem (Chu et al. 2010; Lee, Eoff,

and Caverlee 2011; Ratkiewicz, Conover, Meiss, Goncalves, Flammini, et al. 2011;

Thomas, Grier, and Paxson 2012; Thonnard and Dacier 2011; Xie et al. 2008).

My work is situated in how to identify bots in such a way that the most bots are

removed (Morstatter, Wu, et al. 2016).

2.1.4 Intentional Endogenous Bias

This refers to attempts by people or groups to “game the system.” Actors within

a system can work in tandem to skew its results. This is becoming increasingly

common, especially in online systems. One example is how government censors in

China selectively remove content to allow for some contrary opinions, but ultimately

stop people from gathering offline (King, Pan, and Roberts 2013, 2014). Recently,

the administrators of Reddit10 manually changed the content of some users posts to

make it appear as if they did not favor one presidential candidate.11 What these

methods have in common is that malicious actors privy to the internal working of the

system can exploit it to bias content in their favor. Examples of this phenomenon are

abundant offline. For example, gerrymandering is a common practice used to draw

district lines in such a way as to prefer an outcome for one party (Issacharoff 2002).

Recently, the technique for skewing bias has taken been discovered on social media.

In my work I identify a method through which malicious bots can time their tweets

10http://www.reddit.com

11https://www.cnet.com/news/reddit-ceo-admits-to-editing-user-comments-amid-pizzagate-
malarkey/
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so that they are 82x more likely to be selected by Twitter’s APIs (Morstatter, Dani,

et al. 2016).

Having discussed this quadrant of different social biases, we now turn our attention

to specific areas that are

2.2 Sampling Bias in Social Media Data

Twitter’s Streaming API has been used throughout the domain of social media and

network analysis to generate understanding of how users behave on these platforms. It

has been used to collect data for topic modeling (Hong and Davison 2010; Pozdnoukhov

and Kaiser 2011), network analysis (Sofean and Smith 2012), and statistical analysis

of content (Mathioudakis and Koudas 2010), among others. Researchers’ reliance

upon this data source is significant, and these examples only provide a cursory glance

at the tip of the iceberg. Due to the widespread use of Twitter’s Streaming API in

various scientific fields, it is important that we understand how using a sub-sample of

the data generated affects these results.

From a statistical point of view, the “law of large numbers” (mean of a sample

converges to the mean of the entire population) and the Glivenko-Cantelli theorem

(the unknown distribution X of an attribute in a population can be approximated

with the observed distribution x) guarantee satisfactory results from sampled data

when the randomly selected sub-sample is big enough when samples are taken i.i.d..

From a network algorithmic (Wasserman and Faust 1994) perspective, the question is

more complicated. Previous efforts have delved into the topic of network sampling

and how working with a restricted set of data can affect common network measures.

The problem was studied earlier in (Granovetter 1976), where the author proposes
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an algorithm to sample networks in a way that allows one to estimate basic network

properties. More recently, Costenbader and Valente 2003 and Borgatti, Carley, and

Krackhardt 2006 have studied the effect of data error on common network centrality

measures by randomly deleting and adding nodes and edges. The authors discover that

centrality measures are usually most resilient on dense networks. In Kossinets 2006,

the authors study global properties of simulated random graphs to better understand

data error in social networks. Leskovec and Faloutsos 2006 proposes a strategy for

sampling large graphs to preserve network measures.

We compare the datasets by analyzing facets commonly used in the literature.

We start by comparing the top hashtags found in the tweets, a feature of the text

commonly used for analysis. In Tsur and Rappoport 2012, the authors try to predict

the magnitude of the number of tweets mentioning a particular hashtag. Using a

regression model trained with features extracted from the text, the authors find that

the content of the idea behind the tag is vital to the count of the tweets employing it.

Tweeting a hashtag automatically adds a tweet to a page showing tweets published

by other tweeters containing that hashtag. In Yang et al. 2012, the authors find that

this communal property of hashtags along with the meaning of the tag itself drive the

adoption of hashtags on Twitter. De Choudhury et al. 2010 studies the propagation

patterns of URLs on sampled Twitter data.

Topic analysis can also be used to better understand the content of tweets. Kireyev,

Palen, and Anderson 2009 drills the problem down to disaster-related tweets, discov-

ering two main types of topics: informational and emotional. Finally, Yin et al. 2011;

Hong et al. 2012; Pozdnoukhov and Kaiser 2011 all study the problem of identifying

topics in geographical Twitter datasets, proposing models to extract topics relevant
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to different geographical areas in the data. Joseph, Tan, and Carley 2012 studies how

the topics users discuss drive their geolocation.

Geolocation has become a prominent area in the study of social media data.

In Wakamiya, Lee, and Sumiya 2011 the authors try to classify towns based upon the

content of the geotagged tweets that originate from within the town. De Longueville,

Smith, and Luraschi 2009 studies Twitter’s use as a sensor for disaster information by

studying the geographical properties of users tweets. The authors discover that Twit-

ter’s information is accurate in the later stages of a crisis for information dissemination

and retrieval.

2.3 Assessing the Impact of Data Collection Bias

Our related work for this portion of the dissertation falls into three areas: one

concerning work previously done on Twitter’s Streaming API, another concerning

research done to verify other black box systems on the web, and finally another area

devoted to previous evidence of bias found on Twitter’s Streaming API.

2.3.1 Work with the Streaming API

Twitter’s Streaming API has been used throughout the domain of social media and

network analysis to generate understanding of how users behave on these platforms. It

has been used to collect data for topic modeling (Hong and Davison 2010; Pozdnoukhov

and Kaiser 2011; Shamanth Kumar et al. 2012), network analysis (Sofean and Smith

2012), and statistical analysis of content (Mathioudakis and Koudas 2010), among
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others. Researchers’ reliance upon this data source is significant, and these examples

only provide a cursory glance at the tip of the iceberg.

2.3.2 Bias in Black Box Systems

The topic of assessing the results from a black box system is related to our

work. Another web sciences black box that has been studied is Amazon’s Mechanical

Turk (AMT). In Crump, McDonnell, and Gureckis 2013, the authors assess the

representativeness of the users on AMT, and provide example tasks showing areas

where these users give good performance. In a similar vein, Snow et al. 2008 proposes

a method to correct for response bias in the results obtained from AMT. In the area

of social media research, this topic has also been studied from the perspective of

link propagation. In De Choudhury et al. 2010, the authors analyze the effect data

sampling has on the way link propagation is perceived. Specifically, the authors study

URLs shared on sampled Twitter data.

2.3.3 Bias in Twitter Data

There are many potential areas of bias in Twitter. One possible area of bias in

Twitter data comes from the demographic makeup of the users on the site, often

referred to as “participation bias.” In Mislove et al. 2011, the authors use last names

of users to estimate their race, and find that the ethnicity/race distribution of Twitter

users diverges widely from U.S. Census estimates. Duggan and Brenner 2013 finds

similar results, and also finds that adults aged 18-29, African Americans, and urban

residents are over-represented on the site.
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The bias we focus on in much of this dissertation is concerned with sample bias

from Twitter’s APIs. The work performed in Morstatter et al. 2013 compared four

commonly-studied facets of the Streaming API and Firehose data, looking for evidence

of bias in each facet. They obtained widely different results across facets. First,

they studied the statistical differences between the two datasets, using correlation to

understand the differences between the top n hashtags in the two datasets. They find

bias in the occurrence of the top hashtags for low values of n.

The authors compared topical facets of the text by extracting topics with LDA (Blei,

Ng, and Jordan 2003), where they found similar evidence of bias. The authors discover

that the topics extracted through LDA are significantly different than those extracted

from the gold standard Firehose data. The other facets compared in the data were

the networks extracted from the dataset. Here, the authors extracted the User × User

retweet network from both sources and compare centrality measures across the two

networks. They find that, on average, the Streaming API is able to find the most

central users in the Firehose 50% of the time. The final facet they compare is the

distribution of “geotagged” tweets. Here, they find no bias and that the number of

geotagged tweets from the Streaming API is over 90% of that in the Firehose.

2.4 Mitigating Data Collection Bias

The predictive power of social media services, such as Twitter, has been used to

effectively track and predict the spread of disease (Achrekar et al. 2011; Garcia-Herranz

et al. 2014; Gomide et al. 2011). Other efforts have shown promising results by using

social media to discover a wide range of collective knowledge such as real-time political

polling (Ceron et al. 2014; Tumasjan et al. 2010) and the potential success of movies
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at box-office (Asur and Huberman 2010; Lu, Wang, and Maciejewski 2014). However,

there are very few standards governing how data from social media is gathered and

how research and predictions should be approached (Madlberger and Almansour 2014).

A number of studies have shown that the method used for sampling can introduce

various forms of bias which introduce error into results and remain largly unnoticed

(Gonzalez-Bailon et al. 2014; Morstatter et al. 2013). Very little research has gone into

methods for correcting for bias. Morstatter et al. proposed using bootstrapping (Efron

and Tibshirani 1994) and secondary data sources to obtain a confidence interval for

the occurrence rate of a hashtag between the two sources. Such a statistical difference

could be used as a red flag for the presence of bias in the stream (Morstatter, Pfeffer,

and Liu 2014).

Several relevant works have attempted to uncover the underlying mechanisms

with which Twitter disseminates tweets through its various streaming APIs. In 2013,

Morstatter et al. tested the differences between the public Twitter streaming API,

which is commonly used by researchers but will only return up to 1% of all available

data, and the prohibitively priced “firehose” stream, which offers all of the available

data to those willing to pay for it (Morstatter et al. 2013). This work uncovered a

number of anomalies such as varying top hashtags, differing topic distributions, and

varying network measures when using the same searches on both the paid and free

services. They explain that according to the “law of large numbers” if the sample is

truely random then it should relate well with the results from the population, in this

case the “firehose” results (Morstatter et al. 2013). These differences indicate that

the streaming API introduces some form of bias when determining how to limit the

results sent to a stream (Morstatter, Pfeffer, and Liu 2014).

The possible causes of this sampling bias have been a continuing source of inquiry.
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Joseph, Landwehr, and Carley 2014 used five independent streaming sources the

differences between multiple streaming results taken at similar but varying time

windows. They used a set of keywords and usernames including stop words such as

“the” and “i” and words that they specifically invented for the experiment. In order to

determine if starting time had an impact on the results they staggered each start by a

fraction of a second. After running these tests multiple times, they showed that, when

using the same keywords across each stream, 96% of unique tweets were captured by

all streams (Joseph, Landwehr, and Carley 2014). Since the experiment used stop

words that undoubtedly make up a significant portion of English tweets, a random

distribution method would have given results that varied wildly across the separate

streaming connections. This is strong proof that the sampling method used by Twitter

is highly deterministic.

Kergl et al. found further evidence of non-random sampling. In earlier forms

of the Twitter streaming API, the three data streaming levels which provided 1%,

10%, and 100% of Twitter data were named “Spritzer”, “Gardenhose”, and “Firehose”

respectively. These streams, unlike the filter-based stream, provide data from the

entire body of current tweets. Through analysis of the unique tweet IDs provided

by Twitter, the authors discovered that the unique IDs included data, such as the

timestamp when the tweet was created, the data center that created it, and other

information related to the underlying technical infrastructure of the Twitter data

centers. Analysis of the timestamp in particular showed that, in the limited streams,

the timestamps only fell over a specific interval of milliseconds directly related to

the percentage of sample coverage specified by the service level (Kergl, Roedler, and

Seeber 2014). Though no similar timestamp-based sampling method appears to be

used in the filtered search stream, the non-random nature of the filtered data, in
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addition to the use of simple deterministic methods in past dissemination schemes,

indicates that there are underlying artifacts in the filtered stream infrastructure as

well that may be adding bias to gathered samples.

The 1% boundary has proven to be a significant hindrance for applications and

research that require as close to a complete set of data as possible. These include

mission critical response situations, such as those necessary for emergency response

and monitoring applications (S Kumar et al. 2011; Vieweg et al. 2010), as well as any

form of research that is highly affected by sample bias. As a direct result of the high

cost of the “firehose” service, many users have attempted to develop novel solutions

for gathering data to improve either the size and coverage of the dataset (Li, Wang,

and Chang 2013) or the overall quality of results for a smaller sample (Ghosh et al.

2013). Li, Wang, and Chang 2013 proposed a system that uses “automatic keyword

selection” to determine the best search terms to use for a given search through a

keyword cost-based system. Using this method improved topic coverage from 49% of

targeted tweets obtained through human-selected keywords to 90% in the automatic

system. Ghosh et al. took an alternate approach and attempted to improve the quality

of their sample by gathering topic-based twitter data from experts and comparing the

“diversity, timeliness, and trustworthiness” to a larger sample of community tweets

of the same topic. While the expert-based search did show an improvement in all of

these areas, they cautioned that crowd-based data could not be entirely discounted as

it captured other significant properties such as the flow of conversation in the topic

that is otherwise ignored by experts (Ghosh et al. 2013).
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2.5 Identifying Bots in Social Media Data

Bot detection approaches in general try to build a classifier that labels a given

user as a bot or not. In the first part of this section we introduce different detection

methods and group them based on features they extract from the data to train the

classifier. Then we discuss techniques of ground truth acquisition, their distinctions,

pros and cons from both the perspective of convenience and resulting data quality.

Finally, we enumerate evaluation mechanisms that have been used for this task.

Recent statistics show that more than 50% of Twitter accounts are not human

users. Social network administrators are well aware of these harmful activities and

try to delete these users using their suspension/removal systems. By one estimate

28% of accounts created in 2008 and half of the accounts created in 2014 have been

suspended by Twitter.12 What is not well taken care of is the role of bots in facilitating

these malicious activities. In one study, 145,000 accounts survived for months without

detection. Today, 16% of spammers in Twitter are bots (Grier et al. 2010).

Although social network spam detection approaches are still insufficient, bot

detection in social networks has received wide attention from the research community

in recent years (Cook et al. 2014; John et al. 2009; Kanich et al. 2008; Stone-Gross et al.

2011). Methods proposed to solve this problem mostly observe it as a classification

task which extracts features from the user in order to classify it as a bot or a human.

A categorization of the features used in these classifiers is as follows:

• Content of posts and messages: In using content, the goal is to find properties

that show the difference between what is published by a bot and what is published

by a normal user. The text sent by each bot is significantly different from another

12http://blogs.wsj.com/digits/2014/03/21/new-report-spotlights-twitters-retention-problem/
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bot but they all tend to use URLs to link to the content they promote (Xie

et al. 2008). Although the content is specific to each bot, they all have high

tendency in using URLs for promotional purposes. Furthermore, extracting

the sentiment of tweets (Ratkiewicz, Conover, Meiss, Goncalves, Flammini,

et al. 2011; Ratkiewicz, Conover, Meiss, Goncalves, Patil, et al. 2011), language

and length of messages (Thonnard and Dacier 2011), number of URLs (Chu

et al. 2010; Lee, Eoff, and Caverlee 2011; Wang 2010), number of mentions and

similarity between all pairs of tweets posted by a user (Lee, Eoff, and Caverlee

2011), and originality of tweets (Wang 2010) are all examples of using content.

• Profiles and activities: Automation involved in generating bot accounts results

in profile properties that contain detectable patterns. Bots that were working

together towards political disruption in 2011 Russian parliamentary election

were found to have similar email addresses and account creation times (Thomas,

Grier, and Paxson 2012).

Bots mostly tweet using automatic devices (Chu et al. 2010), have a shorter life

time (Lee, Eoff, and Caverlee 2011), short subscriber details (Cook et al. 2014),

and use hijacked IP addresses (Thomas, Grier, and Paxson 2012). In an effort

to escape from suspension systems, the controller of bots spreads the machines

from which he launches his attacks geographically (Kanich et al. 2008).

Even when profile information is not available, the username alone can be a

bot indicator. The length of the screen name (Lee, Eoff, and Caverlee 2011)

and the distance of the unigram/bigram distribution from verified names (Lee

and Kim 2014) can differentiate bots from normal users. Matching how well

the screen name matches human typing patterns can differentiate automated

users (Zafarani and Liu 2015).
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• Network structure and connections: To boost their desired effect, Twitter

bots follow normal users hoping to be followed back. To this aim they show

mass following and unfollowing behaviors and thus their connections show

different characteristics. The number of followers, number of friends, ratio of

the the friends to followers, percentage of bidirectional friends, and the standard

deviation of unique numerical IDs of followers and friends have been all used to

represent this (Lee, Eoff, and Caverlee 2011).

In order to build a classifier, we need to obtain a gold standard dataset: a set of

users and their bot/human label to evaluate the results. Of course, this information

does not come affixed to each user when the researcher collects the dataset. Thus, the

onus is on the researcher to collect these labels. There are three main approaches to

this:

• Manual annotation: As in most other classification problems, manual labeling

can be to obtain ground truth. Although this method has been used widely

in this field (Chu et al. 2010; Cook et al. 2014; Grier et al. 2010; Ratkiewicz,

Conover, Meiss, Goncalves, Patil, et al. 2011; Xie et al. 2008), we still have the

challenge of how to choose annotators and how many annotators are sufficient

in order to achieve reliable labels. Furthermore, this method does not scale as it

takes time to recruit users and funds to pay them.

• Suspended users lists: This method leverages the social networking site itself to

obtain the labels. The researcher simply observes the users and sees which ones

get suspended or removed by the site. This approach is simple, but the concern

remains that the reason of suspension and deletion is not usually indicated in

such lists. Thus, many suspension lists include users who violated other rules
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and regulations of the site. Methods proposed in John et al. 2009; Lee and Kim

2014; Thomas, Grier, and Paxson 2012 use these lists.

• Honeypots: A newer ground truth acquisition method is based on using

honeypots, bots created by the researcher to lure other bots. Honeypots show

non-human behaviors and can be made in groups to increase their effect by

connecting and interacting with each other without intervention in activities of

normal users. Due to the fact that they are designed in a way that any normal

user can immediately tell they are bots, any user in the network that connects

to a honeypot will be considered as a bot. By using this method, a researcher

can gather a large set of bots active in a network with high confidence. This

method has been applied (Lee, Eoff, and Caverlee 2011; Thonnard and Dacier

2011).

When building a classifier, the proposed method should be evaluated by means of

an evaluation metric. The most widely used metrics in bot detection are accuracy and

precision (Chu et al. 2010; Lee, Eoff, and Caverlee 2011; Ratkiewicz, Conover, Meiss,

Goncalves, Flammini, et al. 2011; Thomas, Grier, and Paxson 2012; Thonnard and

Dacier 2011; Xie et al. 2008). Although they can reach extremely high precision, few

report their recall. This drawback will have a significant effect as most of the bots

will remain undetected (low recall) at the expense of precision.

2.6 Detecting Shills in Online Social Networks

The problem of detecting shills online falls closely to three problems: crowdturfing

detection, bot detection, and detecting online activists. We organize the discussion of

our related work along these themes.
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Crowdturfing is the process of maliciously using crowdsourcing systems in order to

spread fake reviews. This is close to our problem as it involves the mass proliferation

of opinion by paid workers. In Wang et al. 2012, the authors performed an analysis

on different crowdsourcing which harbor malicious tasks such as crowdsourcing fake

reviews, and spreading disinformation about competitive brands. Lee et al. Lee,

Tamilarasan, and Caverlee 2013 furthered this line of research by proposing a machine

learning framework to detect workers on crowdsourcing sites that may facilitate

crowdturfing operations. Other researchers try to find evidence of crowdturfing

reviews by analyzing the text of the social media sites (Ott, Cardie, and J. Hancock

2012; Ott, Cardie, and J. T. Hancock 2013). While these are close to our problem,

the key difference is that these algorithms focus on review spam and the nature of

the unskilled workers in order to make these classifications. Our problem is different

because these shills are highly trained and provided with diverse “talking points” when

generating their own content.

Another related task to shill detection is bot detection. Bot detection, shill

detection, and crowdturfing all involve the use of a “controller” who directs the content

produced by the controllee (Conover et al. 2011), which is a similar structure to

the behavior of shills. Furthermore, bots are able to manipulate the discussion on a

site by mass-posting on certain topics in order to get those topics to trend on the

social networking site (Ferrara, Varol, Davis, et al. 2016). Furthermore, other work in

bot detection uses similar feature sets such as language (Ratkiewicz, Conover, Meiss,

Goncalves, Flammini, et al. 2011; Thonnard and Dacier 2011), and the user’s network

properties (Zafarani and Liu 2015; Thomas, Grier, and Paxson 2012). Another area

where our work dovetails with bot detection is ground truth curation. Both our

project and bot detection have the problem that a user can rarely definitively be
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proven to be a in the positive class. Instead, both problems rely on heuristics to yield

ground truth. Heuristics used in bot detection commonly include manual annotation

of user accounts (Chu et al. 2010; Cook et al. 2014), observing the social sites to see

which users the site bans for bot behavior (John et al. 2009; Lee and Kim 2014), and

creating honeypots (Lee, Eoff, and Caverlee 2011; Morstatter, Wu, et al. 2016) to lure

bots into following them. We utilize the first approach as it is the most feasible to

bot detection. We train the users using the set of criteria described previously, and

ask them to label the data.

Our study can be compared with studies on the political nature of social media. The

detection of shills is similar to the identification of central political activists (Morales

et al. 2015) in that both partially rely on the content expressed by key individuals

in topics pertaining to their political representatives’ respective agendas (Ranganath

et al. 2016). Although we do indicate that the responsibility of influencing others

lies in a few key individuals, we are not studying polarization of political opinions

(Morales et al. 2015). Furthermore, our end goals differ in the specificity. While most

try to identify promoters on social media (Li et al. 2014), promoters are a different

type of user in the sense that they do not hide their identity to be seen as regular

users. More recently, Ferrara, Varol, Menczer, et al. 2016 propose a dynamic time

warping algorithm to detect users behaving in tandem on a social media site.

Our goals differ from other politically-motivated studies of social media. For

example, Morales et al. 2015 exploits the fact that political polarization tends to form

around those with extreme opinions on political issues and created a model with the

purpose of identifying these individuals. Our work differs from theirs in that although

both project are trying to find key users in the center of political conversations, we

are only trying to find paid political advocates out of these users. Another similarity
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with other existing projects is the concept of finding “hidden” political activists. For

example, Li et al. 2014 find hidden campaigns on social media. A key difference

when is the target audience. Another major difference lies in the approach: Li et al.

2014 heavily leveraged the network in their approach. Since Reddit does not have a

network, we are unable to apply this approach in our classification and instead rely

heavily upon natural language processing tools when extracting features.

There exist other political analysis projects that targeted a variety of audience

groups due to their holistic nature (Conover et al. 2011). In contrast, our targeted

audience group consists of individuals who are interested in the subject after SuperPAC

announced its involvement. While our purpose does not involve scoring each individual

on a set scale as possible shill, the process of denoting an user as a shill does slightly

involve such rating, which is heavily used in Wong et al. 2013.

2.7 Perceptual Bias in Social Data

There are hundreds of different cognitive biases recognized by the social sciences.

Many of these are catalogued in Baron 2000, and a very comprehensive list can be

found on the “List of cognitive biases” Wikipedia page.13

In this section we discuss the related work as it pertains to perceptual bias from

three different perspectives. First, since our solution heavily relies on word embeddings

to create the emoji mapping, we enumerate some recent work on word embeddings.

Next, we discuss other resources for informal text and continue to discuss other work

that has been done on emoji analysis. Finally, we discuss other work that has been

done in the context of platform-specific emoji rendering.

13https://en.wikipedia.org/wiki/List_of_cognitive_biases
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2.7.1 Developing An Emoji Mapping with Word Embeddings

One of the first word embedding algorithms was the Neural Network Language

Model (Bengio et al. 2006). Currently, one of the most famous word embedding

algorithms, Word2Vec (Mikolov et al. 2013), has risen to prominence. This algorithm

works embedding words that appear next to each other in the text next to each other

in the embedding. Word2Vec provides two approaches to solving this problem: the

“continuous bag of words” (CBOW) and the “skip-gram” (SG) architecture. While

skip-gram has been shown to better solve analogies (Mikolov, Yih, and Zweig 2013),

we compare with both approaches.

The simple rules combined with other constraints has been shown to create powerful

embeddings that work in many different settings. For example, they have been used

to produce state-of-the-art performance in the areas of syntactic parsing (Socher

et al. 2013), named entity recognition (Dhillon, Foster, and Ungar 2011), antonym

detection (Ono, Miwa, and Sasaki 2015), sentiment analysis (Maas et al. 2011; Tang,

Wei, Qin, et al. 2014; Tang, Wei, Yang, et al. 2014), and machine translation (Zou

et al. 2013). Furthermore, researchers have tried to go beyond using vectors to model

just words, and have used them to model sentences, paragraphs, and documents (Le

and Mikolov 2014).

2.7.2 Linguistic Resources for Informal Text

Before emojis were commonplace, there has been a long history of trying to

better represent and understand text, both formal and informal. One of the most

influential resources is WordNet (Miller 1995), which represents words not only by
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their definitions, but also provides a graph of the relationship between the words.

Extensions to this approach abound, but perhaps the most relevant one to our work is

SentiWordNet (Baccianella, Esuli, and Sebastiani 2010), which considers the sentiment

of the words when building the resource. In the context of informal text, SlangSD (Wu,

Morstatter, and Liu 2016) provides a sentiment resource for mapping slang words

to sentiment scores by leveraging Urban Dictionary’s data. Crowdsourcing has been

used to extract the emotional meanings for words (Mohammad and Turney 2013).

2.7.3 Emoji Analysis

As emojis have become an important tool that help people communicate and

express their emotions, the study of emojis as they pertain to sentiment classification

and text understanding is attracting attention (Barbieri et al. 2016; Barbieri, Ronzano,

and Saggion 2016; Eisner et al. 2016; Hallsmar and Palm 2016; Hu et al. 2013;

Kelly and Watts 2015; Novak et al. 2015). Hu et al. 2013 proposes a unsupervised

framework for sentiment classification by incorporating emoticon signals. Hallsmar

and Palm 2016 investigates the feasibility of an emoji training heuristic for multi-class

sentiment analysis on Twitter with a Multinomial Naive Bayes Classifier. Eisner et al.

learn emoji representation by running Skip-gram on descriptions of emojis provided

in the Unicode standard. The resulting emoji representation along with the word

embedding from Google News are used to perform sentiment analysis and the results

show that emoji representation can improve sentiment analysis. Instead of using

Unicode description, Barbieri, Ronzano, and Saggion 2016 learns the vector skip-gram

model for twitter emojis using tweets, which also demonstrate the ability of Emojis

in improving sentiment analysis. Novak et al. 2015 and Barbieri et al. 2016 analyze
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the sentiment of emojis with respect to tweet corpus of different languages, position

of emojis in text, etc. They find that there is no significant difference for emoji

usage in different languages, and people are more likely to express positive sentiments

when putting emojis at the end of their text. We build on this work by studying the

difference for emoji usage in different platforms. Kelly et al. shows that emojis can

be used as appropriations which can help facilitate communications using interview

data. Cappallo, Mensink, and Snoek 2015 propose a framework called Image2Emoji,

which combines visual and text information to guide the process of emoji scoring. Lu

et al. 2016 explores the ubiquitous usage pattern of emojis by people from different

cultures. They find that theses pattern can be applied to improve user experience

qualities for input methods and understand user preferences. Wijeratne et al. 2016

use emojis to build a sense inventory.

2.7.4 Platform Specific Emoji Rendering

The aforementioned studies on emoji analysis ignore the fact that the same emoji

unicode has different emoji images on different platform. Thus, the sentiment or

semantic meanings of the same emoji may be perceived differently for people using

different platforms and thus cause misunderstanding. Therefore, recently, there are

researchers paying attention to this issue (Miller et al. 2016; Tigwell and Flatla 2016).

Miller et al. 2016 show that emoji misinterpretation exists within and across platforms,

from both semantic and sentiment perspectives. The analysis is based on a survey

to collect people’s feedback of sentiment scores and semantic meaning on different

rendering of emojis, which does not consider the context of emojis. Similarly, Tigwell

and Flatla 2016 also explore platform-dependent emoji misinterpretation problem
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inhttp://on.wsj.com/1Qo215n. They design a questionnaire to collect user’s sentiment

feedback on 16 emojis from Android and iOS platform, and compute a valence-arousal

space to guide sentiment analysis. Different from existing approaches exploring

platform specific emoji rendering problems, we use real world data to verify the

existence of emoji ambiguity and provides a mapping-based solution to identify the

intended emoji from original posts.
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Chapter 3

DETECTING SOCIAL DATA COLLECTION BIAS

When we use social media data, we want the data we collect to be representative

of the problem we wish to study. Unfortunately, this is often not the case. As we will

demonstrate in this chapter, there are many ways in which the data we collect from

Twitter is not representative of Twitter itself, let alone any singular problem we wish

to study.

Because Twitter is so prominent for research, we need to make sure that the data

collected by researchers is “fit for purpose.” Social media data is often difficult to

obtain, with most social media sites restricting access to their data. Twitter’s policies

lie opposite to this. The “Twitter Streaming API”14 is a capability provided by Twitter

that allows anyone to retrieve at most a 1% sample of all the data by providing some

parameters. According to the documentation, the sample will return at most 1% of all

the tweets produced on Twitter at a given time. Once the number of tweets matching

the given parameters eclipses 1% of all the tweets on Twitter, Twitter will begin to

sample the data returned to the user. The methods that Twitter employs to sample

this data is currently unknown. The Streaming API takes three parameters: keywords

(words, phrases, or hashtags), geographical boundary boxes, and user ID.

One way to overcome the 1% limitation is to use the Twitter Firehose—a feed

provided by Twitter that allows access to 100% of all public tweets. A very substantial

drawback of the Firehose data is the restrictive cost. Another drawback is the sheer

Portions of this chapter have been published at ICWSM 2013 (Morstatter et al. 2013).

14https://dev.twitter.com/docs/streaming-apis
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(a) Firehose (b) Streaming API

Figure 5: Tag Cloud of Top Terms from Each Dataset.

amount of resources required to retain the Firehose data (servers, network availability,

and disk space). Consequently, researchers as well as decision makers in companies

and government institutions are forced to decide between two versions of the API:

the freely-available but limited Streaming, and the very expensive but comprehensive

Firehose version. To the best of our knowledge, no research has been done to assist

those researchers and decision makers by answering the following: How does the use

of the Streaming API affect common measures and metrics performed on the data?

In this article we answer this question from different perspectives.

We begin the analysis by employing classic statistical measures commonly used

to compare two sets of data. Based on unique characteristics of tweets, we design

and conduct additional comparative analysis. By extracting topics using a frequently

used algorithm, we compare how topics differ between the two datasets. As tweets

are linked data, we perform network measures of the two datasets. Because tweets

can be geo-tagged, we compare the geographical distribution of geolocated tweets to

better understand how sampling affects aggregated geographic information.
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3.1 A Dataset for Detecting Bias

From December 14th, 2011 - January 10th, 2012 we collected tweets from the

Twitter Firehose matching any of the keywords, geographical bounding boxes, and

users in Table 1. During the same time period, we collected tweets from the Streaming

API using TweetTracker (S Kumar et al. 2011) with exactly the same parameters.

During the time we collected 528,592 tweets from the Streaming API and 1,280,344

tweets from the Firehose. The raw counts of tweets we received each day from both

sources are shown in Figure 6. One of the more interesting results in this dataset is

that as the data in the Firehose spikes, the Streaming API coverage is reduced. One

possible explanation for this phenomenon could be that due to the Western holidays

observed at this time, activity on Twitter may have reduced causing the 1% threshold

to go down.

One of the key questions we ask is how the amount of coverage affects measures

commonly performed on Twitter data. Here we define coverage as the ratio of data

from the Streaming API to data from the Firehose. To better understand the coverage

of the Streaming API for each day, we construct a box-and-whisker plot to visualize

the distribution of daily coverage, shown in Figure 7. In this period of time the

Streaming API receives, on average, 43.5% of the data available on the Firehose on

any given day. While this is much better than just 1% of the tweets promised by the

Streaming API, we have no reference point for the data in the tweets we received.

The most striking observation is the range of coverage rates (see Figure 7). Increase

of absolute importance (more global awareness) or relative importance (the overall

number of tweets decreases) result in lower coverage as well as fewer tweets. To give
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Figure 6: Raw Tweet Counts for Each Day from Both the Streaming API and the
Firehose.

Table 1: Parameters Used to Collect Data from Syria. Coordinates Below the Boundary
Box Indicate the Southwest and Northeast Corner, Respectively. The Last Keyword
Is the Arabic Word for “Syria.”

Keywords Geoboxes Users

#syria, #assad, #alep-
povolcano, #alawite,
#homs, #hama, #tar-
tous, #idlib, #damas-
cus, #daraa, #aleppo,
#houla, #

@SyrianRevo

(32.8, 35.9), (37.3, 42.3)

the reader a sense for the top words in both datasets, we include tag clouds for the

top words in the Streaming API and the Firehose, shown in Figure 5.
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3.2 Statistical Measures

We investigate the statistical properties of the two datasets with the intent of

understanding how well the characteristics of the sampled data match those of the

Firehose. We begin first by comparing the top hashtags in the tweets for different

levels of coverage using a rank correlation statistic. We continue to extract topics

from the text, matching topical content and comparing topical distribution to better

understand how sampling affects the results of this common process performed on

Twitter data. In both cases we compare our streaming data to random datasets

obtained by sampling the data obtained through the Firehose.

3.2.1 Top Hashtag Analysis

Hashtags are an important communication device on Twitter. Users employ them

to annotate the content they produce, allowing for other users to find their tweets

and to facilitate interaction on the platform. Also, adding a hashtag to a tweet is
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equivalent to joining a community of users discussing the same topic (Yang et al.

2012). In addition, hashtags are also used by Twitter to calculate the trending topics

of the day, which encourages the user to post in these communities.

Recently, hashtags have become an important part of Twitter analysis (M. Efron

2010; Tsur and Rappoport 2012; Recuero and Araujo 2012). For both the purpose of

community formation and trend analysis it is important that our Streaming dataset

convey the same importance for hashtags as the Firehose data. Here we compare the

top hashtags in the two datasets using Kendall’s τ rank correlation coefficient (Agresti

2010).

Kendall’s τ of Top Hashtags

Kendall’s τ is a statistic which measures the correlation of two ordered lists by

analyzing the number of concordant pairs between them. Consider two hashtags, #A

and #B. If both lists rank #A higher than #B, then this is considered a concordant

pair, otherwise it is counted as a discordant pair. Ties are handled using the τβ

statistic as follows:

τβ =
|PC | − |PD|√

(|PC |+ |PD|+ |TF |)(|PC |+ |PD|+ |TS|)
(3.1)

where PC is the set of concordant pairs, PD is the set of discordant pairs, TF is the set

of ties in the Firehose data, but not in the Streaming data, TS is the number of ties

found in the Streaming data, but not in the Firehose, and n is the number of pairs in

total. The τβ value ranges from -1, perfect negative correlation, to 1, perfect positive

correlation.

To understand the relationship between n and the resulting correlation, τβ, we

construct a chart showing the value of τβ for n between 10 and 1000 in steps of 10.
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Figure 8: Relationship between n - Number of Top Hashtags, and the Correlation
Coefficient, τβ.

To get an accurate representation of the differences in correlation at each level of

Streaming coverage, we select five days with different levels of coverage as motivated

by Figure 7: The minimum (December 27th), lower quartile (December 24th), median

(December 29th), upper quartile (December 18th), and the maximum (December

19th). The results of this experiment are shown in Figure 8. Here we see mixed results

at small values of n, indicating that the Streaming data may not be good for finding

the top hashtags. At larger values of n, we see that the Streaming API does a better

job of estimating the top hashtags in the Firehose data.
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Figure 9: Random Sampling of Firehose Data. Relationship between n - Number of
Top Hashtags, and τβ - The Correlation Coefficient for Different Levels of Coverage.

Comparison with Random Samples

After seeing the results from the previous section, we are left to wonder if the

results are an artifact of using the Streaming API or if we could have obtained the

same results by any random sampling. Would we obtain the same results with a

random sample of equal size from the Firehose data, or does the Streaming API’s

filtering mechanism give us an advantage? To answer this question we repeat the

experiments for each day in the previous section. This time, instead of using Streaming

API data, we select tweets uniformly at random (without replacement) until we have

amassed the same number of tweets as we collected from the Streaming API for that

day. We repeat this process 100 times and obtain results as shown in Figure 9. Here

we see that the levels of coverage in the random and Streaming data have comparable

τβ values for large n, however at smaller n we see a much different picture. The
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random data gets very high τβ scores for n = 10, showing a good capacity for finding

the top hashtags in the dataset. The Streaming API data does not consistently find

the top hashtags, in some cases revealing reverse correlation with the Firehose data at

smaller n. This could be indicative of a filtering process in Twitter’s Streaming API

which causes a misrepresentation of top hashtags in the data.

3.2.2 Topic Analysis

Topic models are statistical models which discover topics in a corpus. Topic

modeling is especially useful in large data, where it is too cumbersome to extract

the topics manually. Due to the large volume of tweets published on Twitter, topic

modeling has become central to many content-based studies using Twitter data

(Kireyev, Palen, and Anderson 2009; Pozdnoukhov and Kaiser 2011; Hong et al. 2012;

Yin et al. 2011; Chae et al. 2012). We compare the topics drawn from the Streaming

data with those drawn from the Firehose data using a widely-used topic modeling

algorithm, latent Dirichlet allocation (LDA) (Blei, Ng, and Jordan 2003). Latent

Dirichlet allocation is an algorithm for the automated discovery of topics. LDA treats

documents as a mixture of topics, and topics as a mixture of words. Each topic

discovered by LDA is represented by a probability distribution which conveys the

affinity for a given word to that particular topic. We analyze these distributions to

understand the differences between the topics discovered in the two datasets. To get

a sense of how the topics found in the Streaming data compare with those found

with random samples, we compare with topics found by running LDA on random

subsamples of the Firehose data.
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Figure 10: The Jensen-Shannon Divergence of the Matched Topics at Different Levels
of Coverage. The X-Axis Is the Binned Divergence. No Divergence Was > 0.15. The
Y-Axis Is the Count of each Bin. µ Is the Average Divergence of the Matched Topics,
σ Is the Standard Deviation.
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Figure 11: The Distribution of Average Jensen-Shannon Divergences in the Random
Data (Blue Curve), with the Single Average Obtained through the Streaming Data
(Red, Vertical Line). Z Indicates the Number of Standard Deviations the Streaming
Data Is from the Mean of the Random Samples.

Topic Discovery

Here we compare the topics generated using the Firehose corpus with those

generated using the Streaming corpus. LDA takes, in addition to the corpus, three

parameters as its input: K - the number of topics, α - a hyperparameter for the

Dirichlet prior topic distribution, and η - a hyperparameter for the Dirichlet prior

word distribution. Choosing optimal parameters is a very challenging problem, and is
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not our focus. Instead we focus on the similarity of the results given by LDA using

identical parameters on both the Streaming and Firehose corpus. We set K = 100

as suggested by Dumais et al. 1988 and use priors of α = 50/K, and η = 0.01. The

software we used to discover the topics is the gensim software package (Rehurek and

Sojka 2010). We select the same days as we did for the comparison of Kendall’s τ .

Topic Comparison

To understand the differences between the topics generated by LDA, we compute

the distance in their probability distribution using the Jensen-Shannon divergence

metric (Lin, Jan). Since LDA’s topics have no implicit orderings we first must match

them based upon the similarity of the words in the distribution. To do the matching

we construct a weighted bipartite graph between the topics from the Streaming API

and the Firehose. Treating each topic as a bag of words, we use the Jaccard score

between the words in a Streaming topic T Si and a Firehose topic T Fj as the weight of

the edges in the graph,

d(T Si , T
F
j ) =

|T Si ∩ T Fj |
|T Si ∪ T Fj |

. (3.2)

After constructing the graph we use the maximum weight matching algorithm proposed

in Galil 1986 to find the best matches between topics from the Streaming and Firehose

data. After making the ideal matches, we then compute the Jensen-Shannon divergence

between the two topics. Treating each topic as a probability distribution, we compute

this as follows:

JS(T Si ||T Fj ) =
1

2
[KL(T Si ||M) +KL(T Fj ||M)], (3.3)

whereM = 1
2
(T Si +T Fj ) and KL is the Kullback-Liebler divergence (Cover and Thomas

2006). We compute the Jensen-Shannon divergence for each matched pair and plot
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a histogram of the values in Figure 10. We see a trend of higher divergence with

lower coverage, and lower divergence with higher coverage. This shows that decreased

coverage in the Streaming data causes variance in the discovered topics.

Comparison with Random Samples

In order to get additional perspective on the accuracy of the topics discovered in

the Streaming data, we compare the Streaming data with data sampled randomly

from the Firehose, as we did earlier to compare the correlation. First, we compute

the average of the Jensen-Shannon scores from the Streaming data in Figure 10, S.

We then repeat this process for each of the 100 runs with random data, each run

called xi. Next, we use maximum-likelihood estimation (Casella and Berger 2001) to

estimate the parameters of the Gaussian distribution from which these points originate,

µ̂ = 1
100

∑100
i=1 xi, and σ̂ =

√
1

100

∑100
i=1(xi − µ̂)2. Finally, we compute the z-Score for

S, z = S−µ̂
σ̂

. This score gives us a concrete measure of the difference between the

Streaming API data and the random samples. Results of this experiment, including

z-Scores are shown in Figure 11. Nonetheless, we are still able to get topics from the

Streaming API that are close to those found in random data with higher levels of

coverage. A threshold of 3-sigma is often used in the literature to indicate extreme

values Guthrie 2010, Section 6.3.1. With this threshold, we see that overall we are

able to get significantly better topics with the random data than with the Streaming

API on 4 of the 5 days.
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3.3 Network Measures

Because Twitter is a social network, Twitter data can be analyzed with methods

from Social Network Analysis (Wasserman and Faust 1994) in addition to statistical

measures. Possible 1-mode and 2-mode networks are: User × User retweet networks,

User × Hashtag content networks, Hashtag × Hashtag co-occurrence networks. For

the purpose of this article we focus on User × User retweet networks. Users who send

tweets within a certain time period are the nodes in the network. Furthermore, users

that are retweeted within this time period are also nodes in this network, regardless

of the time their original tweet was tweeted. The networks created by this procedure

are directed and not symmetric by design, however, bi-directional links are possible

in case a→ b and b→ a. We ignore line weight created by multiple a→ b retweets

and self-loops (yes, some user retweet themselves). For the network metrics, the

comparison is done on both the network, and the node levels. Networks are analyzed

using ORA (Carley et al. 2012).

3.3.1 Node-Level Measures

The node-level comparison is accomplished by calculating measures at the user-

level and comparing these results. We calculate three different centrality measures at

the node level, two of which—Degree Centrality and Betweenness Centrality—were

defined by Freeman as “distinct intuitive conceptions of centrality” (Freeman 1979, p.

215). Degree Centrality counts the number of neighbors in unweighted networks. In

particular, we are interested in In-Degree Centrality as this reveals highly respected

sources of information in the retweet network (where directed edges point to the
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Table 2: Average Centrality Measures for Twitter Retweet Networks for 28 Daily
Networks. “All” Is All 28 Days Together.

Measure k = Top−k
(min-max)

All

In-Degree 10 4.21 (0–9) 4
In-Degree 100 53.4

(36–82)
73

Potential
Reach

100 59.2
(32–83)

80

Betweenness 100 54.8
(41–81)

55

source). Betweenness Centrality (Freeman 1979) identifies brokerage positions in

the Twitter networks that connect different communities with each other or funnel

different information sources. Furthermore, we calculate the Potential Reach which

counts the number of nodes that are reachable in the network weighted with the

path distance. In our Twitter networks this is equivalent to the inverse in-distance of

reachable nodes (Sabidussi 1966). This approach results in a metric that finds sources

of information (users) that potentially can reach many other nodes on short path

distances. Before calculating these measures, we extract the main component and

delete all other nodes (see next sub-section). In general, centrality measures are used

to identify important nodes. Therefore, we calculate the number of top 10 and top

100 nodes that can be correctly identified with the Streaming data. Table 2 shows

the results for the average of 28 daily networks, the min-max range, as well as the

aggregated network including all 28 days.

Although, we know from previous studies (Borgatti, Carley, and Krackhardt 2006)

that there is a very low likelihood that the ranking will be correct when handling

networks with missing data, the accuracy of the daily results is not very satisfying.
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When we look at the results of the individual days, we can see that the matches

have, once again, a broad range as a function of the data coverage rate. In Borgatti,

Carley, and Krackhardt 2006 the authors argue that network measures are stable

for denser networks. Twitter data, being very sparse, causes the network metrics’

accuracy to be rather low in the case when the data sub-sample is smaller. However,

identifying ∼50% key-players correctly for a single day is reasonable, and accuracy

can be increased by using longer observation periods. Even more, the Potential Reach

metrics are quite stable for some days in the aggregated data.

3.3.2 Network-Level Measures

We complement our node-level analysis by comparing various metrics at the

network level. These metrics are reported in Table 3 and are calculated as follows.

Since retweet networks create a lot of small disconnected components, we focus only

on the size of the largest component. The size of the main component and the

fact that all smaller components contain less than 1% of the nodes justify our focus

on the main component for this data. Therefore, we reduce the networks to their

largest component before we proceed with the calculations. To describe the structure

of the retweet networks we calculate the clustering coefficient, a measure for local

density (Watts and Strogatz 1998). We do not take all possible triads of directed

networks into account, but treat the networks as undirected when calculating the

clustering coefficient. Din > 0 shows the proportion of nodes in the largest component

that are retweeted and max(Din) shows the value of the highest unscaled In-Degree

value, i.e., number of unique users retweeting the same single user. The final three

lines of Table 3 are network centralization indexes based on the node-level measures
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that have been introduced in the previous paragraph. Freeman 1979 describes the

centralization CX of a network for any given metric as the difference of the value

CX(p∗) of the most central node to all other node values compared to the maximum

possible difference:

CX =

∑
i = 1n[CX(p∗)− CX(pi)]

max
∑
i = 1n[CX(p∗)− CX(pi)]

(3.4)

High centralization indicates a network with some nodes having very high node-level

values and many nodes with low values while low centralization is the result of evenly

distributed node-level measures.

We do not discuss all details of the individual results but focus on the differences

between the two data sources. First, the coverage of nodes and links is similar to

the coverage of tweets. This is a good indicator that the sub-sample is not biased to

the specific Twitter user (e.g. high activity). The smaller proportion of nodes with

non-zero In-Degree for the Firehose shows us that the larger number of nodes includes

many more peripheral nodes. A low Clustering Coefficient implies that networks are

hierarchical rather than interacting communities. Even though the centralization

indexes are rather similar, there is one very interesting result when looking at the

individual days: The range of values is much higher for the Streaming data as a result

of the high coverage fluctuation. Further research will analyze whether we can use

network metrics to better estimate how sufficient the sampled Streaming data is.

3.4 Geographic Measures

The final facet of the Twitter data we compare is the geolocation of the tweets.

Geolocation is an important part of a tweet, and the study of the location of content
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Table 3: Comparison of Network-Level Social Network Analysis Metrics.

Firehose Streaming API
Metrics avg.day 28

days
avg.day 28

days
nodes 6,590 73,719 2,466

(37.4%)
30,894
(41.9%)

links 10,173 204,022 3,667
(36.0%)

76,750
(37.6%)

Din > 0 25.1% 19.3% 32.4% 20.5%
max(Din) 341 2,956 167.3 1,252

main comp. 5,609 70,383 2,069 28,701
main comp.

%
84.6% 95.5% 82.5% 92.9%

Clust.Coef. 0.029 0.053 0.033 0.050
DCin Centr. 0.059 0.042 0.085 0.043
BC Centr. 0.010 0.053 0.010 0.050
PReach
Centr.

0.130 0.240 0.156 0.205

and users is currently an active area of research (Cheng, Caverlee, and Lee 2010;

Wakamiya, Lee, and Sumiya 2011). We study how the geographic distribution of the

geolocated tweets is affected by the sampling performed by the Streaming API.

The number of geotagged tweets is low, with only 16,739 geotagged tweets in the

Streaming data (3.17%) and 18,579 in the Firehose data (1.45%). We notice that

despite the difference in tweets collected on the whole we get 90.10% coverage of

geotagged tweets. We start by grouping the locations of tweets by continent and can

find a strong Asian bias due to the boundary box we used to collect the data from both

sources, shown in Table 1. To better understand the distribution of geotagged tweets

we repeat the same process, this time excluding tweets originating in the boundary

box set in the parameters. After removing these tweets, more than 90% of geotagged

Tweets from both sources are excluded from the data and the Streaming coverage
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Table 4: Geotagged Tweet Location by Continent. Excluding Boundary Box from
Parameters.

Continent Firehose Streaming Error
Africa 156 (5.74%) 33 (3.10%) -2.64%

Antarctica 0 (0.00%) 0 (0.00%) ±0.00%
Asia 932 (34.26%) 321 (30.11%) -4.15%

Europe 300 (11.03%) 139 (13.04%) +2.01%
Mid-Ocean 765 (28.12%) 295 (27.67%) -0.45%
N. America 607 (22.32%) 293 (27.49%) +5.17%

Oceania 54 (1.98%) 15 (1.41%) -0.57%
S. America 3 (0.11%) 2 (0.19%) +0.08%

Total 2720 (100.00%) 1066 (100.00%) ±0.00%

level is reduced to 39.19%. The distribution of tweets by continent is shown in Table 4.

Here we see a more even representation of the tweets’ locations in Asia and North

America.

3.5 Discussion

In this chapter we asked whether data obtained through Twitter’s sampled Stream-

ing API is a sufficient representation of activity on Twitter as a whole. To answer

this question we collected data with exactly the same parameters from both the free,

but limited, Streaming API and the unlimited, but costly, Firehose. We provide

a methodology for comparing the two multifaceted sets of data and results of our

analysis.

We started our analysis by understanding the coverage of the Streaming API data,

finding that when the number of tweets matching the set of parameters increases, the

Streaming API’s coverage is reduced. One way to mitigate this might be to create
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more specific parameter sets with different users, bounding boxes, and keywords. This

way we might be able to extract more data from the Streaming API.

Next, we studied the statistical differences between the two datasets. We used

a common correlation coefficient to understand the differences between the top n

hashtags in the two datasets. We find that the Streaming API data estimates the top

hashtags for a large n well, but is often misleading when n is small. We also employed

LDA to extract topics from the text. We compare the probability distribution of

the words from the most closely-matched topics and find that they are most similar

when the coverage of the Streaming API is greatest. That is, topical analysis is most

accurate when we get more data from the Streaming API.

The Streaming API provides just one example of how sampling Twitter data

affects measures. We leverage the Firehose data to get additional samples to better

understand the results from the Streaming API. In both of the above experiments we

compare the Streaming data with 100 datasets sampled randomly from the Firehose

data. We compare the statistical properties to find that the Streaming API performs

worse than randomly sampled data, especially at low coverage. We find that in the

case of top hashtag analysis, the Streaming API sometimes reveals negative correlation

in the top hashtags, while the randomly sampled data exhibits very high positive

correlation with the Firehose data. In the case of LDA we find a significant increase

in the accuracy of LDA with the randomly sampled data over the data from the

Streaming API. Both of these results indicate some bias in the way that the Streaming

API provides data to the user.

By analyzing retweet User × User networks we were able to show that we can

identify, on average, 50–60% of the top 100 key-players when creating the networks

based on one day of Streaming API data. Aggregating some days of data can increase
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the accuracy substantially. For network level measures, first in-depth analysis revealed

interesting correlation between network centralization indexes and the proportion of

data covered by the Streaming API.

Finally, we inspect the properties of the geotagged tweets from both sources.

Surprisingly, we find that the Streaming API almost returns the complete set of the

geotagged tweets despite sampling. We attribute this to the geographic boundary

box. Although the number of geotagged tweets is still very small in general (∼1%),

researchers using this information can be confident that they work with an almost

complete sample of Twitter data when geographic boundary boxes are used for data

collection. When we remove the tweets collected this way, we see a much larger

disparity in the tweets from both datasets. Even with this disparity, we see a similar

distribution based on continent.

Overall, we find that the results of using the Streaming API depend strongly

on the coverage and the type of analysis that the researcher wishes to perform.

This leads to the next question concerning the estimation of how much data we

actually get in a certain time period. We suggest that we found first evidence in

different types of analysis that can help us to estimate the Streaming API coverage.

Uncovering the nuances of the Streaming API will help researchers, business analysts,

and governmental institutions to better ground their scientific results based on Twitter

data.

Looking forward, we hope to find methods to compensate for the biases in the

Streaming API to provide a more accurate picture of Twitter activity to researchers.

Provided further access to Twitter’s Firehose, we will determine whether the method-

ology presented here will yield similar results for Twitter data collected from other

domains, such as natural disaster, protest, and elections.
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Chapter 4

ASSESSING AND MITIGATING SOCIAL DATA COLLECTION BIAS

In this chapter we introduce two approaches to addressing the problem of overcom-

ing social data bias. The first is based upon identifying bias in a previously-collected

social media dataset. The second is based upon collecting social media data in such a

way that the resulting dataset contains less data collection bias than it would have if

the data had been collected in another way.

4.1 Assessing Bias in Previously Collected Datasets

Twitter is a microblogging site where users share short, 140-character messages

called “tweets”. Twitter has become one of the largest social networking sites in

the world with 240 million users who publish 500 million tweets each day15 from

their web browsers and mobile phones. Due to Twitter’s massive size and ease

of mobile publication, Twitter has also become a central tool for communication

during protests (Campbell 2011) and disasters (Humanitarianism in the Network Age

2012). This has caused an immense push from both the computer and social science

research communities who have used data from the site for wide applications of social

media research from predicting users’ location (Cheng, Caverlee, and Lee 2010) or to

characterize the life cycle of news stories (Castillo et al. 2014).

Portions of this chapter have been published at WWW 2014 (Morstatter, Pfeffer, and Liu 2014)
and Hypertext 2015 (Sampson et al. 2015).

15https://blog.twitter.com/2013/new-tweets-per-second-record-and-how
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One way to get around the 1% limit is to purchase the Twitter Firehose, a feed

offered by Twitter that allows for access to 100% of all of the public tweets posted

on the site. Simply comparing the results from the Streaming API with the Firehose

is one way to verify the results of the sampled service. This is the approach taken

in Morstatter et al. 2013. Unfortunately, verifying results using the Firehose is not an

option for most researchers as access to Twitter’s Firehose is restrictively expensive

and access is limited to users with a business agreement with Twitter16.

In this chapter, the word “bias” only pertains to sample bias. We say that a

hashtag is “biased” if the relative trend is statistically significantly over-represented

or underrepresented in contrast to its true trend on Twitter. In particular, we are

looking for particular time periods of bias in the Streaming API. Based on Twitter’s

documentation, the sample size is determined by the volume of a query at a point

in time. There are times when the sample is representative, and times when it is

biased. We try to find time periods where the data from the Streaming API is biased,

meaning not an accurate representation of the true activity on Twitter.

The focus of this chapter lies in finding and assessing an alternative method for

bias detection in the Streaming API. Our goal is to detect the bias automatically,

using methods that are openly available to researchers. We begin this process by

discussing the related work, which includes a discussion of other work that discovers

bias in the Streaming API. We continue to introduce and vet another data source, the

Sample API17, and propose a methodology that utilizes this data source to show a

user when there is bias in the results of their Streaming API query. Finally, we show

that the Streaming API gives nearly the same results to identical queries originating

16https://dev.twitter.com/discussions/2752

17https://dev.twitter.com/docs/api/1/get/statuses/sample
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from different points around the world, and to identical queries started at different

points in time during the overlap of their execution.

4.1.1 Discovering Bias in the Streaming API without the Firehose

With work showing evidence that the Streaming API is biased, researchers must

be able to tell whether their Streaming API sample is biased. Vetting their dataset

using the methodology proposed with the Firehose is prohibitive for many reasons.

We propose a methodology that can give an indication of bias for a particular hashtag.

In this section, we investigate whether another open data source, Twitter’s Sample

API, can be used to find bias in the Streaming API. We show that using the Sample

API, one can accurately detect bias in the Streaming API without the need of the

prohibitive Firehose. We focus on alternative methods to help the user understand

when their data diverges from the true activity on Twitter. We continue to show that

not only can one find the bias using this method, but that these results are consistent

regardless of when and where the Streaming API query was issued.

Validation of the Streaming API

We define the true trend of a particular hashtag, h as a function, f(h). We define

the trend of h as it is conveyed through the Streaming API as t(h). To make this

estimation, we consider another freely-available open Twitter data source, the Sample

API. Unlike the Streaming API, the Sample API takes no parameters and returns

a 1% sample of all of the Tweets produced on Twitter. Here, we empirically assess

the Sample API’s ability to return a truly random sample and continue to build a
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Table 5: Data Collected to Test Bias Detection Approach Introduced in This Chapter.

Data Source Keywords No. Tweets
Firehose (Gnip) syria 214,383
Sample API N/A 734,172

Table 6: Significance Levels of τβ Statistic for Top K Hashtags, Sample API vs.
Firehose. All Lists of Size Greater Than 40 Had p-Values < 10−6.

Top-k τβ p-value
10 0.988826 0.000069
20 0.778663 0.000001
30 0.655072 0.000001
40 0.549759 0.000002
50 0.604880 < 10−6

... ... ...
450 0.476931 < 10−6

framework to compare the Streaming API data with the Firehose using the Sample

API as a proxy. We call the trend from the Sample API s(h). Given the sparsity of

the Sample API, it is likely impossible to find the real trend f(h) from s(h), however

s(h) can be used as an indicator to understand when t(h) is biased.

Vetting the Randomness of the Sample API

Given the evidence of bias that was observed in the Streaming API, we must

proceed with caution before using the Sample API as a surrogate gold standard. We

begin our assessment of the randomness of the Sample API by collecting data from

the feed. We collect all of the tweets available through the Sample API on 2013-08-30

from 17:00 - 21:00 UTC, and post-filter them by the keyword “syria”. Simultaneously,

we collect all of the tweets matching the keyword “syria” from the Gnip Twitter feed.
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The Gnip18 feed is another outlet for Firehose data, it also provides 100% of the

publicly-available Tweets on Twitter. We report the keywords and the collection

volume for this dataset in Table 5.

To verify the validity of this source we compare the ranked list of top hashtags in

both sets. We first plot Kendall’s τβ score of the Sample API against the Firehose.

Kendall’s τβ calculates the number of concordant and discordant pairs between two

ranked lists. This score gives us a sense of whether the frequency of hashtags coming

through the Sample API is the same as the Firehose. We plot the average and standard

deviation of 100 perfectly randomly sampled datasets of the same size as the Sample

API against the Firehose. A plot of the rank correlation in the top hashtags from the

Firehose and the Sample API is shown in Figure 12.

Overall we see that the shape of the trend of the Sample API closely resembles that

of the random samples, a promising sign that the Sample API is unbiased. However,

we still see that the τβ values occasionally fall outside of one standard deviation of

the distribution of random samples. We perform a statistical test to ensure that the

Sample data and Firehose data are not independent. To perform the statistical test

we calculate two-sided significance level from the Kendall τ statistic, which tests the

following hypothesis:

H0 – The top k hashtags in the Firehose data and the top k hashtags in the Sample

API data are independent, τβ = 0.

The results of this experiment at varying levels of k are shown in Table 6. In all

cases we are able to reject H0 with a 95% confidence level. The strong correlation

between the top hashtags and the strong similarity between the two distributions

demonstrates that the Sample API is representative of the true activity on the Firehose.

18http://gnip.com/
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Figure 12: Rank Correlation of Sample API and Gnip Firehose. Relationship between
n - Number of Top Hashtags, and τβ - the Correlation Coefficient for Different Levels
of Coverage.

With the revelation that the Sample API is a random sample of the Firehose,

one might be tempted to simply use this as a replacement for the Streaming API,

post-filtering the Sample API’s data to suit their needs. While this is correct from

the perspective of data sampling, this approach will lead to a massive loss in data.

For example, assume that a query matches 10% of the data on the Firehose. Filtering

the Sample API will give us a dataset that is 0.1% of the size of the Firehose, but

unbiased. The Streaming API’s sometimes-biased sampling method will give us a

1% sample of the Firehose that is 10x larger than the Sample API. This may be

counterintuitive as larger samples have a greater chance of being unbiased, however

since the issue resides in the sampling methodology of the Streaming API a sample of

any size from this source has the potential to be biased. The size difference between

the two sources cannot be ignored. Instead, we will use the Sample API to identify

periods of bias in the Streaming API.
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(a) Streaming API Results. Trendline for “#be-
lievemovie” over one day.
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(b) Sample API Results. Trendline for “#be-
lievemovie” over one day.
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(c) Trendlines from 100 bootstrapped samples
of the Sample API.
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(d) Bootstrapped average and ±3 standard de-
viations overlaid with Streaming API.

Figure 13: Figures Outlining Different Steps of the Process for Finding Bias in the
Streaming API.

Finding Bias in the Trend of a Hashtag

Now that we know that the Sample API gives us an unbiased picture of Twitter’s

Firehose, we can continue to construct a framework that incorporates this source to

find bias. Herein, we propose a methodology that finds the bias in the Streaming API

and reports to the user collecting the data when there is likely bias in the data.

With only one unbiased view from the Sample API, it is difficult to understand
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what we should expect from our Streaming API data. When the results from both

sources match there is clearly no problem. When there is a difference how do we know

if the relative error between the Sample API and the Streaming API at one time

step is significant or if it is just a small deviation from a random sample? To better

understand the Sample API’s response, we bootstrap (B. Efron 1987) the Sample API

to obtain a confidence interval for the relative activity for the hashtag at a given time

step.

We begin by normalizing both the Sample API and Streaming API time series.

This is done by calculating the mean, and standard deviation of each of the counts

in the time series. Finally, we normalize each point by its standard score, which is

calculated as:

Standard_Score(ti) =
ti − µT
σT

, (4.1)

where µT and σT are the mean and standard deviation of all of the time periods in

the time series, respectively, and ti is an individual time series point. This is done to

ensure that the distribution of points from both time series is N (0, 1). We create 100

bootstrapped samples for each hashtag. We then extract the time series data from

each sample and normalize them as we did before. This gives us a distribution of

readings for each time period in the dataset. Next, we compare this distribution to

the normalized time series from the Streaming API to detect the bias. We take the

sample mean and sample standard deviation of this distribution at each point ti as µbi

and σbi . Borrowing the threshold used in control charts (Ryan 2011), we say that any

Streaming API value at time ti that is outside of ±3σti is biased.

We show a full example of our method in Figure 13. We enumerate the process

for a single hashtag, “#believemovie” on August 5th, 2013. We choose this hashtag

as it is one of the most frequent hashtags on this day. The process begins with the
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time series data for this hashtag from both the Streaming and Sample APIs, shown

in Figures 13a and 13b, respectively. Looking at the two figures, we immediately

see a difference in the trends of this hashtag from the two sources. To obtain a

confidence interval on the difference of the two sources, we create 100 bootstrapped

samples. The time series extracted from these samples are shown in Figure 13c.

Finally, taking the mean and 3 standard deviations of the bootstrapped samples at

each time point, we obtain the confidence intervals seen in Figure 13d. We make

several observations from Figure 13d. First, a spike that occurs between hours 10

and 11 is underrepresented in the Streaming data. Also, the spikes that appear after

hour 16 are both over-represented in the Streaming API. Due to the nature of our

bootstrapping method, these observations are all statistically significant at the 99.7%

confidence interval.

Signal Usability Under Sparsity

One potential drawback of our method lies in the sparsity of the Sample API.

Accounting for only 1% of the Firehose, the “long tail” of hashtags will largely be

ignored by the Sample API. This is problematic for researchers who wish to verify

their Streaming API query’s results when their query is focused upon hashtags that

do not see a lot of activity as a fraction of the entire activity on Twitter. One

counterargument is that these kinds of queries will likely not eclipse the 1% threshold,

and in general will be unbiased.

One observation we make is that the times where our bootstrapping method will

be futile is in times where there is data for the hashtag from the Streaming API

and no data from the Sample API. In such cases, a bootstrapping approach will give
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Figure 14: Cumulative Known Zeros Ranked by Hashtag Popularity. We See That the
Most Popular Hashtags Have Relatively Few Points of Missing Data, While the Less
Popular Hashtags Have Many More. To Help the Reader Separate the Higher-Ranked
Hashtags’ Missing Values, We Plot the x-Axis on a Log Scale.

us a degenerate distribution with mean 0, not allowing for meaningful comparison

between the sources. We test the sparsity of the Sample API by finding “known zeros”,

hashtags seen in the results of the Streaming API query, but not in the Sample API

for a particular time unit.

Figure 14 shows the number of known zeros in the top 1,000 hashtags, with each

hashtag ordered by frequency. Here, we see that the first hashtags are nearly perfect,

with a total of only 4 known zeros in the top 10 hashtags. However, as we continue

down the list, we begin to see more and more known-zeros. While this method helps

researchers to find bias in their Streaming API queries, there are still many hours for

many hashtags where no claim can be made about the validity of the data.

4.1.2 Geographic and Temporal Stability of Queries

In addition to tackling the bias problem, we also analyze the stability of the results

when the data are collected in different geographic areas, and for queries started at
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different times. Do identical Streaming API queries started at different times get

different responses during the overlap of their execution? Do identical Streaming API

queries get different responses if they are executed from different geographical regions?

To ensure that the results obtained in this chapter hold for researchers outside of the

US, we assess whether Twitter issues the same results to identical queries.

To answer these questions, we collected data from the Streaming API in both the

United States (USA) and Austria (AT) with the following scheme: every 20 minutes,

we start a query that lasts for 30 minutes. For example, queryUSA1 and queryAT1 collect

tweets from 00:00 - 00:30 UTC, queryUSA2 and queryAT2 from 00:20 - 00:50 UTC, and

queryUSA3 and queryAT3 from 00:40 - 01:10 UTC, and so on. Each query is configured

with exactly the same parameters. In structuring our queries this way, we can control

both for time, and for location. By looking at the 10-minute overlaps in the adjacent

within-country queries (i.e. all queryCi and queryCi+1), we can gain an understanding

of whether identical queries started at different times get the same results. By looking

at entire queries across countries (i.e. queryUSAi and queryATi ), we can understand

whether identical queries started at the the same time from different locations get the

same results.

The data we collected spans from 2013-10-20 06:20 UTC - 2013-10-22 22:20 UTC.

Each query starts exactly on the 20-minute interval and lasts for exactly 30 minutes.

In this way, we collect 194 datasets in total from each country. In the between-country

case, we compare the entire dataset as both queries are running in both locations. In

the between-time case, we only compare the 10-minute overlaps between queryCi and

queryCi+1.
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Table 7: Number of Comparisons, Median, Average, and Standard Deviation of Twitter
ID Jaccard Scores across All Comparisons. Because the Temporal Comparisons Are
between Query, We Have One Less Than in the Geographic Comparison.

Comparison N Median Mean σ
Geographic Comparison 194 0.976 0.941 0.092
USA Time Comparison 193 0.996 0.995 0.003
Austria Time Comparison 193 0.996 0.942 0.186

Between-Country Results

To compare the datasets, we calculate the Jaccard score of the Tweet IDs from

queryUSAi and queryATi . We then take the median, average, and standard deviation of

these Jaccard scores. These results are reported in the first row of Table 7. Here, we

see a very high average and a very low standard deviation between the Jaccard scores,

indicating that the results from these two queries are nearly identical. These results

indicate that no preference was given to the queries originating in the United States.

We are hopeful that researchers outside of the US will obtain similar results.

Between-Time Results

To compare the datasets, we fix the country C and calculate the Jaccard score

of the Tweet IDs from queryCi and queryCi+1. The results for the USA and Austria

queries are shown in rows 2 and 3 of Table 7, respectively. In the case of the USA,

we see even stronger results, with an extremely high average and an extremely low

standard deviation. Here, we can see that the overlapping times receive practically

the same dataset in all cases. In the case of the Austrian datasets, we see that there

is a wider distribution of Jaccard scores between query windows, however we continue
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to see an extremely high mean, which gives us confidence in the coverage in these

results.

4.1.3 Discussion

In this chapter we ask how to find bias in the Streaming API without the need for

costly Firehose data. We test the representativity of another freely-available Twitter

data source, the Sample API. We find that overall the tweets that come through the

Sample API are a representative sample of the true activity on Twitter. We propose a

solution to harness this data source to find time periods where the Streaming API is

likely biased. Finally, we show that results obtained through the Streaming API for a

given time period see a significant amount of overlap between queries generated from

both the United States and from Austria, and between queries started at different

points in time.

One question that arises is how to integrate the results of our framework into an

individual’s research. One solution is to focus research efforts on time periods where

no (or little) bias is found in the dataset. Another potential solution is to purchase

Twitter data from a reseller such as Topsy19 or Gnip, but only paying for the biased

time periods. A third solution is to incorporate other forms of social media such as

blogs. This allows for a multifaceted view of the data, and can give the researcher more

depth in times where their Twitter data may be of question. One way to incorporate

these other views is to cross-reference users from Twitter with other social media

outlets, one such solution has been proposed in Zafarani and Liu 2013.

We have studied the feasibility of our method with the sparse signal that we get

19http://www.topsy.com
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from the Sample API. Overall, we find that this method can be used when the query

issued by the researcher receives a lot of attention from Twitter users. We also find

that this method is less useful when the query receives less data. One potential way

to alleviate this problem is to use other bootstrapping methods such that proposed

in Kirk and Stumpf 2009, which takes into account neighboring values to compute the

values. Future work will attempt to find bias in sparse data scenarios, and adapting

these methods to the speed and ephemerality of Twitter data.

4.2 Mitigating Social Data Collection Bias

In the previous chapter we discussed how we could identify bias in a previously

collected dataset. We showed how a statistical methodology could enable a researcher

to identify and remove bias in a dataset. However, this has the unsavory side effect of

asking a researcher to ignore certain parts of their dataset. This is not ideal for many

researchers who need to use as much data as possible in order to collect statistically

valid samples.

In this chapter we present a new approach for collecting social media data that

enables us to collect a representative sample from a social media site. This is based

upon reparameterizing the queries that we send to the APIs in order to maximize the

amount of data that we are able to obtain, and minimize the amount of sampling bias.

This is based upon our finding earlier that the amount of bias is a function of how the

sampling rate that Twitter imposes upon us.

Herein, we try to optimize the amount of data we get from the Streaming API. The

Twitter Streaming API uses a mechanism called “limit track” to inform the requester

of the number of tweets that were not delivered to them due to exceeding the 1% rate
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Figure 15: The General Idea behind the Splitting Mechanisms Proposed in This
Section. The Grey Areas Denote the Relevant Tweets That We Want to Collect. If
We Just Have One Crawler Tracking “#imwithher,” Then We Get the Entirety of the
Grey Area in the Circle but Lose the Grey “x”s. By Creating Additional Crawlers, We
Can Get a Greater Number of Those “x”s, in Turn Getting a Larger Sample of the
Data.

limit. The limit track data is provided periodically along with tweets delivered in a

particular stream. Unfortunately, if the limit track value provided by Twitter is not a

reliable measurement, then it becomes significantly more difficult to determine the

overall sample population, and, as a result, the level of bias in the sample remains

unknown.

4.2.1 Designing Novel Crawling Approaches

The main idea behind all of the methods in this chapter is that they are based

upon splitting the parameters into multiple crawls. By doing this we should be able

to get more tweets than with one crawler alone. This will be confirmed through

experimentation in a subsequent section. There are many ways to split the parameters

in order to achieve this task. We will propose two and investigate their usefulness.

The idea behind these approaches is that each individual crawler may be able to
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Figure 16: Overview of The Round Robin Splitting Approach.

give us more data than any one crawl. This is depicted in Figure 15, where we see

that we are able to capture more the grey (relevant) area with additional crawlers.

4.2.2 Round Robin Splitting

The round robin method of stream keyword splitting is an effective baseline for

other splitting methods as it is a straightforward method that requires very little

additional processing power. Sampling the amount of tweets gathered and missed

at each split level requires running one baseline stream that contains all selected

keywords as well as k additional streams that contain the keywords split between each

stream. While it is possible to sample all split levels simultaneously, the number of

required accounts for a test of this type is xk = k(k+1)
2

where k is the number of split

levels and x is the number of accounts. Sampling all splits up to a split level of 7

would require 28 separate account which is unfeasible for our purposes. Additionally,

the processing power required to maintain the set of unique tweet IDs for each stream

becomes problematic very quickly. Alternatively, using a single baseline stream that

contains all keywords and comparing the results to each split level independently

requires a much lower number of accounts, xk = k + 1.

Both of the methods introduced in this chapter consist of a “priming stage.” The
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priming stage consists of a 15 minute run with a single crawler. This is done to get a

first set of tweets in order to make the splitting. All splits after that are performed on

the tweets collected in the previous iteration. This is shown on the left of Figure 16.

At the completion of the priming stage, the word pairs, from the most frequently

occurring to the least frequently occurring, are assigned to streams in a round robin

fashion. Each split level runs for 30 minutes before resetting all streams, including

the baseline stream, and beginning the next split level. Resetting the baseline stream

is key to analyzing each stream level in this method as it allows a comparison of the

difference between a single stream and multiple split streams over a given window of

time and thereby making it unnecessary to maintain all data for every level of split at

once.

The graph shown in Figure 17 show that we were able to eclipse the limit track

maximum by 12 splits at which point we were able to gather six times as many unique

tweets containing proper keywords than was possible with a single stream. Reaching

20 split levels nearly doubled the number of unique tweets gathered over the maximum

indicated by Twitter. Constructing round robin splits can be found in Algorithm 1.

Algorithm 1: Round Robin Splits Construction
input : graph G, num_clusters k
output : array of lists
for node v in G(V, E) do

keywordList += v
end
sortedList := Sort(keywordList by occurrence rate);
for word, index in sortedList do

listNum := index % k;
assign word to split list k

end
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Figure 17: Round Robin Splitting Based on Word Co-Occurrence Tends to Show a
Steady Rate of Gain as Additional Crawlers Are Added.

c1	

c2	

Figure 18: Overview of the Spectral Clustering Splitting Approach.

4.2.3 Spectral Splitting

Spectral clustering, an extension of K-Means clustering which performs “low-

dimension embedding” (Ng, Jordan, and Weiss 2001), directly leverages the word

occurrence graph. This clustering method allows us to define a number of clusters, K,

and the spectral clustering algorithm will incorporate the nuances of the similarity
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Figure 19: The Results of Spectral Clustering Show an Increase in the Overall Sample
Coverage. However, the Clustering Creates Unbalanced Splits Where One Stream,
While Still a Good Cluster, May Contain Significantly More Words Than Others.
The Lack of Balance Manifests through Instability in the Rate of Gain from Each
Additional Crawler.

between the items in order to improve cluster results. Like most clustering algorithms,

spectral clustering does not make any guarantee on the size of each cluster.

This approach is based upon performing a spectral clustering of the keyword

co-occurrence graph, as shown in Figure 18. The main idea behind this method is that

we want to reduce the redundancy of the data collected by each crawler. As intuition,

imagine if after we performed a split, each cluster retrieved exactly the same data.

That would not be beneficial as we are not gaining any new data and not learning

anything new about the core set of hashtags we wish to study. Thus, to improve the

performance of our approach we want each cluster to get as much unique data as
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Figure 20: Results of Different Methodologies at the 3-Split Level.

possible. By grouping keywords that tend to occur together in clusters, we are likely

to minimize the redundancy of the data that each cluster provides.

The approach is simple. First, we use the “priming step,” explained above, to get

a set of tweets. Next, we build a word-word co-occurrence graph based upon how the

co-occur in tweets. This is a weighted graph where nodes are words, and edges are

the number of times that the pair of words co-occur in the corpus of tweets. Next,

we run spectral clustering on this graph to yield a series of clusters. These clusters

become the parameters for the crawl in the next iteration of the crawler.

The results of this approach can be seen in Figure 19. Clustering based on word

occurrence quickly passes the Twitter limit with only 6 streams active but shortly

thereafter struggles to gain much ground. Wild fluctuation can be observed between

each split level and while there is overall growth it is possible to gather a smaller

sample with a larger split level. Such inconsistencies were not observed in Figure

17 further indicating how detrimental sensitivity to cluster size is when considering

methods for gathering tweet samples. Spectral clustering based splits can be found in

Algorithm 2.
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Algorithm 2: Process for Constructing Spectral Clustering Splits.
input : graph G, num_clusters k
output : array of lists
matrix A := [][];
for node v in G(V, E, W) do

wordIDs[v] := unique ID
end
/* create affinity matrix for spectral clustering */
for word pair (v1,v2) in G(V, E, W) do

Construct symmetric matrix A for all words such that v1,v2 := E.weight;
end
labels := the result of Spectral Clustering with k clusters and the matrix A;
for label, cluster in labels do

splitLists[cluster].append(label)
end

Table 8: Sample Coverage by Approach. “1-Split” Is the Amount of Data That We
Would Get with No Splitting Approach.

1-split 2-split 3-split 4-split

Round Robin 19.02% 50.54% 82.58% 64.34%
Spectral Clustering 19.02% 28.95% 78.63% 82.08%

4.2.4 Performance of Splitting Approaches

We have proposed two methods for splitting keywords in social media data queries

and shown preliminary results for how they perform on Twitter. We will now compare

these methodologies in order to show how they perform side-by-side.

A comparison of each splitting method can be seen in Figure 20. These results are

the average coverage rates related to the total sample size estimated from the limit

track over 20 trials. Though the Twitter limit track is not a perfect indicator of the

total population of data available from a complete set, it is used in this comparison as

a relative measure as opposed to an absolute. Given additional crawlers, it is very
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likely that the limit track would again be eclipsed. Each splitting method was able to

produce a sample significantly closer to the total population as estimated by Twitter

and always many times larger than a single stream.

77



Chapter 5

BIAS FROM MALICIOUS ACTORS

Bias does not originate purely from data collection. There are many actors in the

real world that attempt to skew the contents of social media. This is done to make

certain ideas, products, or candidates appear to be more popular than they truly may

be. The ways in which they inject this bias into social media data varies. In this

chapter we will introduce three such methods and ways to detect them. First, we will

introduce bots. Bots are automated accounts that work together at a large scale to

skew the content of a site in their favor. By automatically posting a large number of

social media messages, they can easily make their message seem more prominent than

it actually is. Bots generally work together, with thousands of millions of accounts

working in tandem to promote a message.20 However, the decisions that a social

media site makes when distributing data can enable them to further promote their

messages. In this chapter we will discuss how bots can take advantage of Twitter’s

data distribution mechanisms to promote their messaging. Finally, not all users that

attempt to skew the perceptions of social media users are bots. Many are sophisticated

users who are trained to promote pointed content online. We will investigate one

specific case of these users, “shills,” and discuss possible ways to detect them.

Portions of this chapter have been published at WWW 2016 (Morstatter, Dani, et al. 2016) and
ASONAM 2016 (Morstatter, Wu, et al. 2016).

20https://krebsonsecurity.com/2011/12/twitter-bots-drown-out-anti-kremlin-tweets/
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5.1 Identifying Bots: The Importance of Recall

Social media is an important part of every day life. With billions of users producing

and consuming information every day, it is a natural extension that people turn to this

medium to read and disseminate news. With so many people turning to social media,

malicious users like bots have begun using these sites to sway the discussion (Ratkiewicz,

Conover, Meiss, Goncalves, Patil, et al. 2011; Ratkiewicz, Conover, Meiss, Goncalves,

Flammini, et al. 2011; Thomas, Grier, and Paxson 2012). Bots, social media accounts

that are controlled by software, have risen to prominence on social media. Bots cause

users to lose trust that social media platforms can deliver news honestly, as they

become suspicious that the stories they see at the top of their feeds were “pushed”

there by manipulative bots. Furthermore, bots impinge the work researchers perform

on social media as they can cause researchers to draw false conclusions about the

populations under study. Researchers wish to understand human behavior through

the lens of social media (Mejova, Weber, and Macy 2015), and this is often impinged

by the wealth of content pollution created by automated social media accounts.

Bot detection is an important task in social media. Twitter, a popular social media

platform, is plagued by automated accounts. One study has estimated that over half

of the accounts on Twitter are not human21. More conservative studies estimate that

the number of bots on Twitter lie somewhere between 5-9% of the overall population22.

These bots, generate 24% of the tweets produced on Twitter23. While some bots

21http://blogs.wsj.com/digits/2014/03/21/new-report-spotlights-twitters-retention-problem/

22http://www.nbcnews.com/technology/1-10-twitter-accounts-fake-say-researchers-2D11655362

23https://sysomos.com/inside-twitter/most-active-twitter-user-data
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innocuously tweet the time of day or a record of historical events, the ones we detect

in this study seek to actively sway the discussion on social media by promoting certain

trends and retweeting particular users. These bots are considered malicious as they

try to perturb the discussion on social media, swaying the discussion to the topics of

their choosing by falsely amplifying the size of a topic or keyword.

Bots are not just a danger to the users of social media, but also to those that study

it. By coordinating massive tweeting campaigns of particular hashtags, bots have

been able to influence measures on Twitter, including the trending topics (Ratkiewicz,

Conover, Meiss, Goncalves, Flammini, et al. 2011). This manipulation of Twitter also

bleeds across into the analysis that is done on this particular platform. Bots can also

influence statistics performed on Twitter data, such as the top hashtags and the most

important users in the data. This means that bots not only have the potential to

damage the active conversation on social media, but they can also cause additional

destruction by harming the quality of the work done by researchers studying social

media. Clearly, there is a need for us to remove bots from social media both for the

benefit of users and researchers.

Current approaches to bot detection focus on precision (Lee and Kim 2014;

Ratkiewicz, Conover, Meiss, Goncalves, Flammini, et al. 2011; Xie et al. 2008).

Optimizing precision can be useful as it helps to avoid the possibility of a real user

being deleted from the site, which may anger other real users or cause them to leave

the site. However, this is one extreme. An algorithm that only considers precision will

have many false-negatives, as it will only predict the most acute examples as bots,

leaving many bots undetected. This is not ideal from a research perspective, where we

wish to study human behavior on social media. Thus, we want to include recall as the

objective of our bot detection model. However, this is another extreme. The major
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concern with optimizing recall is that it is trivial to achieve a perfect score: simply

marking every user as a bot will yield a recall of 100%. Thus, we propose to study

the balance between these measures. While our model focuses on recall, we measure

its performance using the F1 score.

We propose a model that can detect bots on social media with a focus on recall.

We evaluate by taking into account both precision and recall to strike the balance

between these important evaluation measures. In this way, we show that our method

can help to remove the most bots, while simultaneously keeping the precision relatively

high. By applying BoostOR, researchers can remove more bots from their social media

dataset and focus on the messages produced by real users.

5.1.1 Bot Definition

A bot is any automated account in an online social network. This definition differs

slightly from the one found in Boshmaf et al. 2011 and Boshmaf et al. 2013 as they

differentiate social bots from self-declared and spambots although socialbots and

spambots may have the same structure and purpose.

5.1.2 Problem Statement

Given a set of all of the users in a dataset, U , and a set of labeled bots b ⊂ U ,

identify a set of users u ⊂ U that maximizes the function:

F1(u, b) = 2
PR

P +R
(5.1)

where P = |u∩b|
|u| is the precision of the model, and R = |u∩b|

|b| is the recall.
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The main contributions of this section are as follows:

• We collect two bot datasets using state-of-the-art collection techniques, and test

two labeling techniques. We publish this data to allow for reproducibility and

encourage comparison with future work.

• We build a model that detects bots on Twitter with an emphasis on the F1

measure, which considers recall as well as precision. We compare this model to

existing approaches for bot detection and find that the model achieves superior

performance in this task, yielding high recall with only a minor loss in precision,

which contributes to it achieving the best F1 score in all algorithms we studied.

5.1.3 Labeled Datasets for Bot Detection

Obtaining a social bot dataset can be difficult due to the challenge in obtaining

definitive ground truth. While many approaches have been employed to obtain ground

truth, we use two main approaches to label social media users as bots or humans: 1)

observing whether the social media platform suspends these users and treating these

suspended users as bots, and 2) creating “honeypot” bot accounts that to lure bots

into following them, and then labeling these followers as bots.

We create two datasets to test the bot detection approaches. The labels for each

dataset are obtained using different labeling approaches. Here, we enumerate the two

datasets used in this study, along with describing the bot labeling approach24.

24Both datasets can be obtained from the following link: http://www.public.asu.edu/ fmor-
stat/ASONAM_data.zip.
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Table 9: Statistics of the Data Used for Bot Detection.

Property Libya Arabic Honeypot

Tweets 1,150,192 504,679
Retweets 576,167 220,500
Unique Users 94,535 6,285
Labeling Approach Suspended Accts Honeypots
Bot Ratio 7.5% 49.0%

Arab Spring in Libya

From February 3rd, 2011 to February 21st, 2013, we collected Twitter data per-

taining to Arab Spring activity in Libya. The data was collected from Twitter’s

Streaming API25, a service which provides a stream of tweets matching a query (Ku-

mar, Morstatter, and Liu 2014). The query we used to collect this data consisted of the

following keywords: #libya, #gaddafi, #benghazi, #brega, #misrata, #nalut,

#nafusa, #rhaibat, as well as a geographic bounding box around Libya26. Statistics

on the dataset are shown in Table 19.

We obtained labels of whether a user is a bot or human by observing how Twitter

handled these users. In February of 2015, we crawled each user in the dataset and

observed the status of his Twitter account. We observed the user’s account status via

the statuses/user_timeline API endpoint27. The status can take on one of three

values:

1. Active: A user whose account is still open and available on the site.

25https://dev.twitter.com/streaming/reference/post/statuses/filter

26Southwest Lng/Lat: 23.4/10.0; Northeast Lng/Lat: 33.0,25.0.

27https://dev.twitter.com/rest/reference/get/statuses/user_timeline

83



2. Deleted: A user whose account has been deleted. A user can be deleted by

violating Twitter’s policies. This is considered a permanent ban.

3. Suspended: A user whose account has been suspended for violating Twitter’s

policies. This is considered a temporary ban, where the user can petition Twitter

to have his account reinstated.

These labels were obtained by using Twitter’s APIs to crawl the dataset and inspecting

the response code from the API. Through this process we discovered that 92.5% of

the users are active, 4.7% are deleted, and 2.8% are suspended. Because deleted and

suspended have similar meanings, we consider both labels as a bot.

At first glance, we notice that the fraction of users identified as bots by this labeling

technique is around 7.5%. This distribution gives a very conservative estimate of the

number of bots on Twitter. This is a side effect of an industry approach which focuses

purely on precision in order to avoid accidentally deleting some real users. We realize

that this is not representative of the true distribution of bots on the site (Wei et al.

2015), and that many bots may have been overlooked by Twitter. With this in mind,

we introduce our next dataset which focuses on detecting bots in the wild through

honeypots which tweet specific content.

Arabic Honeypot Dataset

This dataset consists of bots tweeting messages in Arabic. To collect this dataset,

we construct a honeypot network. This network consists of 9 accounts controlled

automatically by a single controller. Each account tweets messages containing Arabic

phrases identified by a subject matter expert pertaining to a specific group of people.

Each account also randomly follows other honeypots in our network. Since bots have
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a lower chance of forming social ties (Thomas et al. 2011), we perform this random

following process to lower the chance that our accounts are deleted by Twitter’s

automatic account removal algorithm. Additionally, each honeypot can randomly

retweet one of the other honeypots it follows in order to give that honeypot prominence

on the network and lower its probability of being deleted due to Twitter’s policies.

All of the bots in our honeypot dataset behave identically, as dictated by the

controller. Each bot collects tweets using the selected Arabic phrases from Twitter’s

Streaming API. At random time intervals, the bot either copies the tweet, passing it

off as its own, or retweets it from the user who originally posted it. The full logic for

the honeypot controller is shown in Algorithm 3. Using a network of 9 honeypots,

we consider all followers of our honeypots to be bots: due to the way our honeypots

behave, no normal user would follow them (Lee, Eoff, and Caverlee 2011). With this

approach we collected 3,602 active bot accounts who followed one of our honeypot

accounts.

While the honeypot method yields a set of bot accounts, it does not give us a

set of real users. This is because we only look at the bot followers to our honeypots,

and we do not have ground truth labels for real users. In order to test our model, we

need to collect a set of real users to use as negative training instances. To do this,

we manually inspected a seed set of 10 users who also tweeted the same phrases. We

did not extract verified accounts as these users are not normal users. They are often

controlled by public relations firms and tweet on specific topics. We did this to ensure

that the algorithm we train finds bot patterns in the text, and does not simply learn

the difference in language distributions. Moving forward with the assumption that

real users do not follow malicious bots, we use 1-link snowball sampling to collect

their immediate network. We ensured that each user in the sample had fewer than
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Algorithm 3: Logic for Honeypot Controller. The Controller Manages the
Honeypot Accounts Used to Collect Bots in the Wild. All Randomly-Generated
Numbers Mentioned in the Pseudocode Are Generated Uniformly at Random.
while True do

Randomly choose one honeypot, h;
r ←− random number ∈ [1, 10];
if r = 1 then

h retweets the most recent tweet from another randomly-selected
honeypot;

end
else

Sample tweets from Twitter Streaming API for 20 seconds, filtering
based on Arabic phrases, call sample set S;
r ←− random number ∈ [1, 10];
s←− randomly-selected tweet from S;
if r < 3 then

h retweets s;
end
else

h copies s and tweets it word-for-word;
end

end
Wait 10 seconds;

end

1,000 followers to make sure that we did not collect any celebrities (Zafarani, Abbasi,

and Liu 2014). We also inspected each user in the sample to ensure that he tweeted

one of the phrases at some point in his last 200 tweets. This approach yielded 3,107

real-world accounts, which helped us to maintain the same class distribution reported

in other approaches (Lee, Eoff, and Caverlee 2011).

5.1.4 Bot Detection Approaches

We propose a model for bot detection which considers recall in its formulation. As

baselines we consider popular heuristics used to detect bot accounts. We also consider
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a model based upon topic modeling. In this section we present the formulation for all

of the bot-detection approaches we study. We begin by introducing the heuristics and

baselines considered, and continue to introduce our model, BoostOR.

Heuristics

Here we introduce a set of heuristics that are used to differentiate bot from non-bot

users in social media. These heuristics are based upon state-of-the-art studies in bot

detection on social media.

Fraction of Retweets

This measures the number of times the user published a retweet divided by the number

of tweets the user has published, calculated as:

HeuristicRetweet(u) =
|{x|x ∈ tweetsu, x is retweet}|

|tweetsu|
. (5.2)

Whether a tweet is a retweet is determined by looking at the “retweeted_status”

field of the tweet’s data when returned through the API. If the field contains tweet

information, we consider it to be a retweet. This measure was introduced in Ratkiewicz,

Conover, Meiss, Goncalves, Flammini, et al. 2011, and hypothesizes that bots are

unable to produce original content, so they rely on the retweet feature in Twitter in

order to establish their presence.

Average Tweet Length

A tweet’s text is limited to 140 characters, but it is possible that bots post fewer than

that as they could just be promoting a URL or a hashtag (Lee and Kim 2014). To

account for this, we introduce this heuristic which measures the average length of the

user’s tweets. It is the sum of the characters in all of the tweets the user has published

87



divided by the number of tweets the user has published, formally:

HeuristicLength(u) =

∑|tweetsu|
i |tweetsui |
|tweetsu|

, (5.3)

where |tweetsui | is the length of user u’s i-th tweet, measured by the number of

characters in the tweet.

Fraction of URLs

This measures the number of times the user published a tweet containing a URL

divided by the number of tweets the user has published, formally:

HeuristicURL(u) =
|{x|x ∈ tweetsu, x contains URL}|

|tweetsu|
. (5.4)

Whether a tweet contains a URL is determined by looking at the “entities” field of the

tweet returned by Twitter’s API. This measure has been studied previously (Ratkiewicz,

Conover, Meiss, Goncalves, Patil, et al. 2011; Xie et al. 2008), and hypothesizes that

bots are motivated to persuade real users into visiting external sites operated by their

controller. In this way, this heuristic traps bots that are trying to promote URLs in

their tweets.

Average Time Between Tweets

It has been discovered that many bots tweet in a “bursty” nature (Lee and Kim 2014;

Xie et al. 2008), publishing many of their tweets within a short amount of time. This

behavior is measured as:

HeuristicT ime(u) =
1

|tweetsu| − 1

N∑
i=2

(ti − ti−1), (5.5)

where ti is the time stamp of the i-th tweet in u’s timeline, sorted chronologically in

ascending order (i.e. ti ≥ ti−1).
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Topic Modeling

Bot accounts are created by malicious users to spread misinformation through

their tweets. Thus, their content can be a strong indicator to expose such potential

compromised accounts. The problem with using content for bot detection is that

the raw text features are of high dimensionality and sparse, causing the “Curse of

Dimensionality”. Inspired by the recent advances of topic modeling, we adopt latent

Dirichlet allocation (LDA) to obtain a topic representation of each user. Since the raw

features (words) can be viewed as being generated by a mixture of topics, and the bots

are naturally more interested in certain topics, denoting each user as a distribution

over different topics may help the learning process better identify them from regular

accounts.

LDA is an unsupervised and probabilistic model that has been proven useful for

extracting latent semantics of documents. The principle idea behind LDA is that it

treats each document as a distribution over topics, and each topic as a distribution

over the vocabulary in the dataset. LDA requires one parameter28, K, the number of

topics in the corpus. From here, LDA learns two matrices:

1. Φ: the Topic×Word matrix. Each topic in LDA, Φi, is a probability distribution

over the entire vocabulary in the corpus. Thus, Φj
i is the probability of word j

occurring in topic i.

2. Θ: the Document × Topic matrix. Since each document is modeled as a

distribution over topics, this each row, Θi, contains the document’s distribution

over all of the topics learned by LDA.

28We use the default hyperparameter value of α = 1
K , and β = 1

K .
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Figure 21: Illustration of the Models.

In this approach, we treat the user as a document. Each user’s document consists

of the concatenation of all of the content of his tweets. We feed these documents

into LDA with K = 200, obtaining Φ and Θ values for the corpus29. Since the Θ

matrix contains the affinity for each user to each topic, we can treat these as features

to be fed into a classifier. We build an SVM classifier by directly using Θ as the

Instance× Feature matrix, where the instances are users and the features are their

affinities for the latent dimensions discovered by LDA.

Supervised Model for Bot Identification

In this section, we will introduce how we optimize F1, which includes both precision

and recall, when exposing bots. Since bots are usually generated by different parties

for different purposes, the discriminant characteristics of bots from different groups

are unrelated. Such heterogeneity of bots makes it challenging to come up with a

classifier. To this end, we formulate the problem as a boosting task. Boosting methods

aim to achieve an optimal classifier through ensembling weak classifiers, which are

29We will discuss our selection of K in the experiments section.
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more proper for this problem since different weak classifiers will focus on different

bots.

First, we investigate whether boosting algorithms are directly applicable for bot

detection. For generality, we selected AdaBoost for optimization. AdaBoost trains one

weak classifier based on all training examples every iteration. In each iteration, the

misclassified examples in the previous round are higher weighted in the next round.

The final classifier is the weighted ensemble of all weak classifiers. Therefore, the key

issues are how the weight are determined for different weak classifiers and training

examples. Here we use α to denote classifier weight, the weight of classifier t can be

calculated as follows:

αt = −1

2
ln(βt), (5.6)

where βt denotes the extent of the base learner deviates from the optimal solution. βt

can be directly calculated with training error ε as follows:

βt =
εt

1− εt
. (5.7)

As shown in Eq. 5.8, αt is greater than zero if εt is less than 50%; while αt is less

than zero if εt is greater than 50%. εt can be calculated through Eq. 5.8.

εt =
1∑m

i=1 Dt(i)

m∑
i=1

Dt(i)1(hi(vi) 6= yi), (5.8)

where the function 1(·) equals one when the condition holds, and zero otherwise.

The second issue is to determine the weight of each training instance at each

iteration. The instance weight is regulated depending on whether it is correctly

classified in the previous round and the performance of the weak learner. As denoted

in Eq. 5.9, when the weak learner’s error rate is less than 50%, weights of misclassified

users will increase while those of the rest decrease.
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Dt+1(i) =
Dt(i)exp(−αtyiht(vi))

Zt
(5.9)

Zt =
m∑
i=1

Dt(i)exp(−αtyiht(vi)).

The algorithm of AdaBoost for bot detection is illustrated in Algorithm 4. Note that

m is the number of all users and k is the number of features. Since LDA is adopted to

represent the user, here each user vector vi can be viewed as a probability distribution

over k topics. The user labels are denoted by Y = {y1, . . . , ym} ∈ {−1, 1}m×1, where

yi = 1 means that user i is a bot.

Algorithm 4: AdaBoost for Bot Detection
Input: The user-feature matrix V ∈ Rm×k,
the user-label matrix Y ∈ {−1, 1}m×1 and a weak learner h : V→ Y
the initial user weight vector D1 = (D1(1), . . . ,D1(m))
the maximum number of iterations maxiter.

Output: The ensemble classifier H(v) = sign(
∑T

t=1 αtht(v))
For t = 1, . . . , maxiter
Train weak learner using instance weight Dt ;
Get the trained classifier ht : V→ Y and training error εt as Eq. 5.8;
Calculate the weight αt ∈ R for ht as Eq. 5.6;
Update user weight as Eq. 5.9;
until Convergence.

Since we aim to achieve a classifier which is sensitive to bots, we investigate how

AdaBoost could be adapted for optimizing recall. As mentioned before, the weight of

bots may be reduced if they are correctly classified. The reduction of weight leads

subsequent weak classifiers to less focus on these bots, which is unfavourable. Therefore,

we next investigate how the sensitivity to bots can be kept through regulating the

weights of training instances. An intuitive solution is to avoid reducing weights of

bots, which can be formulated as follows:

Dt+1(i) = Dt(i)β
−yi|hi(vi−yi)|. (5.10)
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As shown in Eq. 5.10, if a regular user is predicted to be a bot, the corresponding

weight will be multiplied by β|hi(vi−yi)| ∈ (0, 1], while the mislabeled bots still gain

more weights. The loss between prediction and ground truth spans between the range

of [0, 1], and an exponential form ensemble predictor is adopted. This means that the

training error after T iterations is bounded. We name the new boosting algorithm as

Boosting through Optimizing Recall (BoostOR). The detailed algorithm is shown in

Algorithm 4. Figure 21a illustrates how the example weight is updated in AdaBoost

model. The mislabeled instances will gain a larger weight in the second round of

iteration. While in BoostOR, the weight change depends on the labels of the user. If

a bot is wrongly predicted, its weight is enlarged. mislabeled regular users are more

often ignored.

Since the weight of regular users are reduced instead of removed, trivial solutions

will not be easily achieved in real world data, where bots are the minority group. In

next section, we empirically prove this with two real world Twitter datasets.

Algorithm 5: BoostOR for Bot Detection
Input: The user-feature matrix V ∈ Rm×k,
the user-label matrix Y ∈ {1,−1}m×1 and a weak learner h : v→ y
the initial user weight vector D1 = (D1(1), . . . ,D1(m))
the maximum number of iterations maxiter.

Output: The ensemble classifier H(v) = sign(Πmaxiter
i=1 (β

−hi(v)
i − β−

1
2

i )
For t = 1, . . . , maxiter
Train weak learner using instance weight Dt ;
Get the trained classifier ht : V→ Y and training error εt as Eq. 5.8;
Calculate the weight αt ∈ R for ht as Eq. 5.6;
Update user weight as Eq. 5.10;
until Convergence.
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Figure 22: Performance of BoostOR Varying Number of Topics.

5.1.5 Experimental Results

In this section we empirically investigate the performance of BoostOR with respect

the ability to maximize the F1 score on bot detection. We perform two experiments:

first to show the performance of different algorithms, and second to show how the

parameters used in building the AdaBoost and BoostOR models can influence the

results of these methods.

Bot Classification

We apply each heuristic, as well as AdaBoost and BoostOR to both the Libya

dataset, shown in Table 12, and the Arabic Honeypot dataset, shown in Table 13.

We find that both AdaBoost and BoostOR outperform the heuristics, with BoostOR

performing the best on both datasets. Interestingly, we find that SVM underperforms,

achieving a worse result than the heuristics when optimizing the F1 score.

One thing to note about the heuristics is that they conform to the class distribution.

That is, when they achieve their maximum performance they are simply always
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Table 10: HeuristicT ime Measure on the Arabic Honeypot Dataset.

Prediction
Bot Human

Tr
ut
h Bot 49.9% 50%

Human 0% 0.1%

Table 11: BoostOR Measure on the Arabic Honeypot Dataset.

Prediction
Bot Human

Tr
ut
h Bot 42.8% 7.7%

Human 14.8% 34.7%

predicting the user is a bot. In other words, the results of heuristic measures indicate

that we should delete our entire dataset for both datasets. While this yields what

seem to be competitive results, the implication of this approach is not reasonable.

While the F1 score is useful to measure the performance, we need to dig deeper to

understand the implication of these results.

To illustrate the difference in performance between the heuristics and our proposed

model, we show a confusion matrix of the best-performing heuristic, HeuristicT ime,

in Table 10 and a confusion matrix of BoostOR in Table 11 on the Arabic Honeypot

dataset. First, we notice that the heuristic never misclassifies as a human as a bot.

This is in line with the goals of the industry. However, we see in the BoostOR results

in Table 11 that we achieve superior performance by lowering the false-negative rate

of the model, which is in line with the goals of the researcher.
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Table 12: The Precision, Recall and F1 Measure of Different Models on Libya Dataset.

Method Precision Recall F1

HeuristicURL 6.74% 65.12% 12.21%
HeuristicRetweet% 7.73% 53.63% 13.51%
HeuristicLength 7.74% 53.63% 13.51%
HeuristicT ime 7.48% 99.89% 13.91%
SVM 29.24% 8.78% 13.53%
AdaBoost 75.25% 7.48% 13.61%
BoostOR 75.41% 8.14% 14.69%

Table 13: The Precision, Recall and F1 Measure of Different Models on Honeypot
Dataset.

Method Precision Recall F1

HeuristicURL 49.69% 96.39% 65.58%
HeuristicRetweet% 50.05% 99.33% 66.56%
HeuristicLength 50.00% 99.82% 66.63%
HeuristicT ime 49.99% 99.96% 66.65%
SVM 62.41% 62.52% 62.47%
AdaBoost 79.76% 72.41% 75.91%
BoostOR 71.42% 82.48% 76.55%

Sensitivity of Topic Modeling

In previous experiments, the number of topics, K, of LDA is set as 200 for all

methods. In this section, we study how the number of topics will influence the

performance of the proposed model, BoostOR. The change of precision, recall and F1

score as a function ofK is illustrated in Figure 22. On both datasets, the dimensionality

spans from 50 to 500 and the variations of performance are observed.

As shown in the figures, the best performance is achieved when there are around

200 topics. When K deviates from the optimal value of 200, no matter increasing or

decreasing, the performance decreases. Too many topics enable some redundant and
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meaningless topics to exist, while some important topics may be neglected if the K is

too small.

5.1.6 Discussion

In this chapter we explore the problem of finding bots on social media. We begin

by collecting two datasets, each with different labeling mechanisms. Then we continue

to propose a bot detection method that optimizes the F1 score of the model, which

considers recall in addition to precision.

The datasets we use to test this method were labeled through different processes.

The first dataset we consider is labeled through using Twitter’s labeling processes

of active/suspended/deleted users. The second dataset was obtained by building a

honeypot network and collecting the users who follow our honeypot accounts. These

datasets encompass different topics and were labeled using two different methods,

which make them ideal for testing both the performance and generalizability of our

model.

Next, we propose to optimize the F1 score of the bot detection problem through

boosting a basic learner. In order to recall more bots from the dataset, the proposed

BoostOR focuses more on the mislabeled bots and downweights mislabeled regular

users. The theoretical analysis shows that the optimization can be done efficiently.

Experimental results on two real world datasets show that our model outperforms

the state-of-the-art bot detection techniques as well as heuristics which are often

considered for this problem.

Future work seeks to further improve the recall of the bot detection task. Existing

approaches which focus on precision could potentially be modified to improve recall.
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We wish to exploit the sparsity of text in order to better separate bots from normal

users. Additionally, we will continue to refine the process for collecting labeled social

media datasets.

5.2 Tampering Bias in Social Data Streams

Social media has become a very active research area in recent years. One limiting

factor for many researchers is the amount of data they are able to collect. Many social

media sites strictly limit or outright forbid the collection of data on their sites for

research purposes. One major social media site, Twitter, stands out among these sites

for its willingness to share data with researchers. Twitter does this mainly through

its real-time feeds, called the “Streaming” APIs. There are three main APIs that

researchers can access directly: 1) the “Filter API”, which gives the user a directed

sample based on the input of the user, 2) the “Sample API” which returns a random

1% sample of all public tweets generated on Twitter, and 3) the “Firehose” which yields

100% of all public tweets. While the Firehose seems like the obvious monetary cost of

using this API as well as the server requirements for hosting the data prevent most

researchers from being able to use this option. The Filter API and the Sample API can

be used by researchers worldwide to download tweets in real-time, collecting at most

1% of all of Twitter’s public statuses, or “tweets” completely free of charge (Morstatter

et al. 2013).

The Filter API and the Sample API are appealing to researchers, and it is important

that researchers understand the underlying mechanisms of these APIs so that they

can have confidence in the data collected through them. Biases introduced in the

data collection process can propagate to the research results. For instance, bias has
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been found in Twitter’s Filter API. By comparing the results of a Firehose crawl with

a Filter API crawl, the authors of one study (Morstatter et al. 2013) discover that

bias in the way tweets are sampled yields completely different statistics, e.g. the top

hashtags in the data and the topics in the text.

While evidence of bias has been found in the Filter API, studies on the Sample

API have been largely positive, with indications that this data outlet is unbiased.

By empirically studying the data, one study (Morstatter, Pfeffer, and Liu 2014)

found that the results were not statistically significantly different than the results

of the Firehose. Another study (Kergl, Roedler, and Seeber 2014) discovered the

underlying mechanisms behind how Twitter samples the data in the Sample API.

First, they show the different components that make up the identification number (ID)

for each and every individual tweet. A portion of this ID contains the millisecond-level

timestamp when the ID was generated. The authors find that the Sample API selects

the tweets based on this timestamp, with any tweet whose ID was generated in the

millisecond range of [657, 666] to be selected by the Sample API. Twitter, assuming

that the millisecond-level information of the ID’s timestamp is random, chooses this

mechanism to distribute their tweets. This sampling mechanism seems reasonable.

Humans don’t have millisecond-level control over the tweet’s timestamp. The muscle

movements to click a mouse or tap a phone screen combined with the network delay

make the timestamp nearly impossible for a human to predict at the millisecond-level

granularity.

Unfortunately, many of the users of Twitter are not humans, but bots: accounts

controlled by computers. Estimates of the number of bots on Twitter range from

5-9% (Elder 2013). Many of these bots have malicious intent: using their ability to

generate massive amounts of noise to try to skew statistics of the data (e.g. sentiment

99



towards particular topics, top keywords). Bots have the ability to control the exact

time their tweets are posted, allowing them to control (to a certain extent) the time

that Twitter receives their tweet. If bots are able to control if their tweets appear in

the Sample API, it could affect the integrity of this stream: bots could modify the

statistics of this data stream, affecting both research and applications that depend on

this stream.

In this chapter we evaluate two questions: 1) “can the millisecond-level information

of the timestamps associated with tweet IDs be anticipated?”, and 2) “can we leverage

this to build software which generates tweets that have a greater chance of being

included in Twitter’s Sample API?”

5.2.1 Anticipating the Sample API

Here we investigate whether the tweet ID’s millisecond-level timestamp information

can be predicted. In this first experiment we see how the millisecond-level information

of the tweet ID corresponds to the millisecond at which the tweet was sent. To do

this, we send tweets at each whole millisecond in the range [0, 990] in intervals of 10.

For each tweet we send, we observe the millisecond-level information of the tweet’s ID.

We extract this using the process outlined in Kergl, Roedler, and Seeber 2014, which

identifies specific bits in the binary representation of the ID that contain this info.

We repeat this experiment 6 times, and plot the results in Figure 23. We observe a

strong linear relationship between the time the tweet is sent and the millisecond ID

of the tweet ID. Furthermore, we find that the millisecond delta is consistent with

an average delta of 171ms. Using this information we devise an approach that can
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generate tweets with a greater probability of landing in the Sample API in the next

section.

5.2.2 Manipulating the Sample API

In the previous section we showed empirically that the millisecond-level timestamp

information of a tweet ID is a function of the time the tweet is posted. Using this

insight, we design an algorithm that adaptively adjusts the millisecond lag in order

to maximize the amount of tweets that appear in the Sample API. The pseudocode

for this algorithm is shown in Algorithm 6. The essence of this algorithm is that it

adaptively measures the network lag between when the tweet is sent and when the

tweet is received by Twitter, measured by the ID of the tweet. We use a moving
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average of the last w tweets to estimate the lag. Details on how to extract i from the

tweet ID can be found in Kergl, Roedler, and Seeber 2014.

To measure the effectiveness of our algorithm, and by extension the possibility to

bias the Sample API, we conduct 5 trial runs. In each experiment we produce 100

tweets. We use w = 3 in our experiments. We set m = 661 as it is the midpoint of

[657, 666] and should give us the greatest chance of hitting the window where the

Sample API selects its tweets. Also, we set δ̂init = 491 as it is the expected delta

from 661 as we discovered in the previous section. We achieve 82± 9% coverage,

contrasted with 1± 0% coverage when tweets are produced under normal conditions.

Algorithm 6: Maximize the Probability of a Post Being Selected by the Sample
API. 1(·) Is the Indicator Function.

Data: w: window size; m: target millisecond; δ̂init: initial delta
h← empty list;
target← m− δ̂init;
while true do

wait until the target-th millisecond of the next second;
post a tweet, t;
c← current time in milliseconds;
i← time in milliseconds from tweet t’s ID;
append i− c to the end of h;
δ̂ ← 1

w

∑|h|
k=|h|−w h[k] mod 1000;

target← 1000 · 1(m− δ̂ < 0) +m− δ̂;
end

5.2.3 Discussion

Twitter’s Sample API is a popular tool among researchers in the area of social

media mining. The results of this chapter show that by timing the creation time of

tweets, bots and spammers can have a large impact on the information that is provided
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through the Sample API, effectively injecting bias into this data outlet. This is a

major problem for users who wish to ensure that their data is a representative sample

of the real activity on Twitter. The approach presented in this chapter is intended

to give researchers an understanding that despite recent findings that say that the

Sample API is unbiased, results should be taken with care when this data outlet is

used in analysis. Furthermore, social media sites can use these results to improve the

design of their APIs. API designers can surpass this issue by adding random bits to

the timestamp portion of the ID, or by pre-generating IDs before distributing them.

5.3 Bias from Sophisticated Actors: The Case of Shills

There is ample evidence to suggest that social media acts as a powerful tool

for campaigns. In the realm of politics, social media can spread political informa-

tion (Tufekci and Wilson 2012), build political brands (Harfoush 2009), energize

supporters (Juris 2012), and to reach and persuade potential voters (DiGrazia et al.

2013; Tumasjan et al. 2010). Politicians and political activists have employed many

different social media techniques to spread their message. Most recently, both major

parties’ presidential campaigns used social media to spread information as well as to

lambaste political opponents. What these techniques all have in common is that they

are overt, where users of a social media site know who the political players are and

can watch and contribute as their dialogue and messaging plays out online.

We live in an era where opinion manipulation is rampant online. There are many

covert groups that attempt to sway the opinion of real people by manipulating and

misrepresenting facts in order to make one side of a debate look more prominent than

it actually is. There are many ways for this to manifest online. One is through the
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presence of bots, automated accounts who push certain hashtags or opinions to the

top of trending lists (Lee, Eoff, and Caverlee 2011; Chu et al. 2010). Because these

accounts are automated, they do not contain rich original text like normal users, a

weakness that can be leveraged to detect them in the real world. Another covert

strategy is the deployment of “crowdturfers” (Lee, Tamilarasan, and Caverlee 2013).

These are real people who are hired en masse by campaigns to generate text on their

behalf. Because they are not experts on the topic they discuss, they can often be

detected due to their novice nature (Ott, Cardie, and J. T. Hancock 2013). Both

of these covert types of users can quickly spread opinions and propaganda quickly

throughout a network.

Recently, a covert technique has gained prominence in swaying opinion

in social media, “shills.” The first mention of online shills was in 1999

http://partners.nytimes.com/library/tech/99/10/circuits/articles/14spin.html. In

2016, they were used in the U.S. elections.30 Shill accounts promote their campaign

by directly engaging with those holding opposing opinions. These users complement

the work done by bots and crowdturfers by suppressing and distorting opposing

information on social media. Instead of creating new posts, these accounts usually do

this in the form of directed replies to the opposition. This is done to delegitimize users

who are spreading information that is contrary to the goals of their campaign. Shills

directly engage with other users, so they must be able to directly address the points

of a contrary opinion. This requires greater sophistication than bots can provide, and

a deeper level of training than is provided to crowdsourced workers (Lee, Tamilarasan,

and Caverlee 2013). Shills are professional users employed by campaign organizers

30http://www.thedailybeast.com/articles/2016/04/21/hillary-pac-spends-1-million-to-correct-
commenters-on-reddit-and-facebook.html.
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who seed these users with talking points and facts and then ask them to go and

engage with users holding differing opinions on social media sites. The requirement

that shills be paid professionals means that there are relatively few of them in the

wild; however, these users make a lot of noise.31 Following the 1:10:89 rule for content

creation on social media (Shirky 2008) we know that it takes very few users to affect

change online.

Shills, while a small contingent of the site, can greatly affect a social media platform.

If the users do not trust the content on a site to be from genuine users, they may go

elsewhere to obtain trustworthy information. If shills are left to run amok, then their

combative nature can prevent those with contrary opinions to theirs from posting,

reducing the authenticity of discourse on the site. If shills have their way, they will

substantially skew the content of a social media site, which skews statistics performed

on data from that site. It is critical that we find these shills in order to ensure that

the discourse that is carried out on social media is organic, free of paid promotional

content for any idea or candidate.

We propose a framework to categorize shills in online social media. Focusing on

one prominent social media site, Reddit, we develop a process that can describe the

behavior of shills. We demonstrate its efficacy by showing that it can be used to

differentiate shills from real users using real-world data.

5.3.1 Social Media Shills

The general term “shill” denotes an enthusiastic accomplice (Green 2011). The

term initially arose to describe a person who helps a salesman by drawing excitement

31The shills in our study post 23% more content than other users.
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for a product. Historically, when salesmen would come to a village to sell a product

they would place a shill in the crowd. After the salesman had described the product,

the shill would then speak up and loudly announce that the product had indeed

worked as advertised. In order for the shill to be effective, it is paramount that the

link between the salesman and the shill not be publicized: the shill must be perceived

as an ordinary individual. In doing so, the unsuspecting audience believes that the

product actually has merit, and will buy it hoping to have the same results.

This phenomenon has made its way into the online world (Steiglitz 2007), with

modern shills acting on behalf of their employers to encourage certain opinions in

social media. Online shills are users that are paid by a campaign or organization to

help manage their image online. Shills combat opposing information that is spread on

social media. This can be in the form of replies that prevent an opposing narrative

from taking root and spreading on the site. Further, shills behave differently than

true political supporters as they focus more on combating opposing opinion than

spreading promotional or supportive content. “Correct the Record,” an organization

which employs shills, states that it has “addressed more than 5,000 people that have

personally attacked Hillary Clinton on Twitter.”Shills behave in a different manner

from other covert users such as bots and crowdturfers, so it is unlikely that any existing

approach will be effective in identifying them. We attempt to identify patterns that

can be used to discover shills.
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5.3.2 Collecting Data for Studying Shills

The data we collect pertaining to shill accounts comes from Reddit32, where we

crawled and labeled users posting in a politically-active forum on the site. In this

section we describe the process by which we collected the data, and annotated the

users as shills. Finally, we provide some analysis on our labels to show that while we

may never be certain if the user is a shill, that they are exhibiting the properties that

we are looking for in shill detection.

Reddit is a large social media site where users share and comment on links. On

Reddit, posts are submitted to “subreddits”, which are groups of posts organized

around a common theme or interest. The scope of interest is initially set by the

organizers, or “moderators”, of the specific subreddit, however the content and general

discussion is provided by the people who read the subreddit, the “subscribers”. Users

on Reddit refer to subreddits with the /r/ prefix to denote that they are talking about

a subreddit. For example, if a user were to mention the bernie sanders subreddit, they

may include “/r/sandersforpresident” in their text. This convention is encouraged by

the site, which automatically links to the subreddit when it is mentioned in this way.

Given shills’ nature, we hypothesize that shills most commonly post in politically-

oriented subreddits. In the context of politics, subreddits exist at every granularity.

The “/r/politics” subreddit being the most general, inviting users from any political

orientation to post to the subreddit. Furthermore, there are entirely different subreddits

specifically designed for political candidates (e.g. /r/the_donald, /r/hillaryclinton),

as well as subreddits for specific interests (/r/timetolegalize for marijuana legalization,

/r/environmental_policy for discussion regarding climate protection, etc.). We selected

32http://www.reddit.com
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the /r/politics subreddit to crawl due to its generality. Because this subreddit

welcomes discussion from all political views, it contains many highly polarized groups

each supporting different major candidates within. In addition, this is the most likely

to invite shill activity: since people from all backgrounds are there they are more

likely to reach audiences outside of the ones that the shill agrees with; and we are

also more likely to find diverse opinion to trigger the shills into posting responses.

Furthermore, /r/politics is one of the largest subreddits on Reddit with over 3 million

subscribers, so shills may also be motivated to choose this subreddit for the large

audience which will read their posts.

We collected posts from the /r/politics subreddit the beginning of April, 2016

through mid-June 2016. For all of the links submitted to the subreddit, we gathered

all of the users who commented on or replied to any of them and collected the most

recent 1,000 comments and replies from each user. This data was crawled by using

Reddit’s REST API33.

After collecting the data, we assigned ground truth labels for the users: “shill,”

and “not-shill.” We employed three human annotators to label the user accounts. We

took a random sample of 185 users to annotate. In our sample, we only considered

users that posted at least 10 times. For a given user, the annotator was provided with

a text file containing at most the most recent 1,000 replies made by that user, with

each reply occupying a single line of the file. Subreddit information, timestamps, and

the user’s screen name are not provided. After reading all of the 1,000 replies by the

user, the human then made the assignment based on the following criteria:

1. Did the user’s replies entirely, or almost entirely, support one candidate?

2. Did the user’s posts generally contain claims to support their arguments?

33Adding “.json” to the end of any Reddit URL yields JSON representation of that page.
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3. Did the user explicitly mention a tie to any campaign?

It is important to note that for criterion 2 that the claims purported in the replies

did not need to be backed by citations, nor did they need to be true. All that was

required was that the user’s reply be supported by claims. If the annotator could

answer “yes” to the first two criteria, and “no” to the third, then the annotator would

mark this user as a shill. We took the intersection of the three sets of users identified

as shills by each annotator.

The labeling process for this problem is very difficult as there is no underlying

ground truth in the data. Despite our robust, multi-person approach to labeling

shills, we still do not know if they are actually shills or just people who are extremely

passionate about defending their candidate in online forums. Instead, we follow the

labeling approach that is taken in bot detection research (Chu et al. 2010; Lee, Eoff,

and Caverlee 2011), where we can at best be highly suspect that a user is a shill. Due

to the large amount of time required to annotate each user, we limited our labeling to

185 users. The dataset will be shared upon request.

Statistics of our dataset are shown in Table 14. Surprisingly, the three annotators

found a total of 17 shills within the dataset. This means that 9% of all of the users

we labeled are shills. This number is strikingly high. We attribute this high number

to the nature of the subreddit we crawled. /r/politics is very likely to accrue a large

amount of diverse and argumentative political discussion, the likes of which are prime

for shill activity. Furthermore, since /r/politics is so large, shills may deem it more

important to address posts created in this venue. Almost assuredly, this number

would be much smaller on another subreddit.
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Table 14: Dataset Statistics

Property Value

Users 9,379
Posts 6,754,832
Types 3,361,118
Tokens 120,341,645
Replies 6,754,832
Labeled 185
Labeled Non-Shills 168 (91%)
Labeled Shills 17 (9%)

5.3.3 Characterizing Shills

Shills are topic-focused, keeping their discussion limited to very specific political

examples, and they are more interested in politically-oriented topics than non-shill

users. Using these observations, we introduce a preliminary approach to characterize

them based upon their topical engagement. We extract features to help a machine

learning classifier differentiate shill accounts from real users.

5.3.4 Shill Characteristics

Many of the features we use are extracted with the help of Latent Dirichlet

Allocation (LDA) (Blei, Ng, and Jordan 2003). LDA discovers underlying “topics” in

a corpus. In addition to the corpus, the algorithm takes “K,” the number of topics

the algorithm is to learn. With this input, LDA learns the following:

1. Topics. These are represented as ranked lists of keywords over the vocabulary of

the corpus, where the rank is determined by the words probability of occurring
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in the topic. We represent these lists as T, where Ti
j is the probability of word

i occurring in topic j.

2. Document × Topic affinity matrix. In addition to the topics, the model also

learns each document’s affinity for each topic. LDA learns the probability that

each document is generated from each of the K topics. This is represented as

Dd
j , the affinity of user d for topic j.

We run LDA over each dataset, treating users as documents. Each document’s text is

a bag of words containing all of the text from that user’s posts.

Going forward we list the features based upon each of our aforementioned observa-

tions. We will describe the features from the perspective of one user, u.

1. Content Features. We extract features pertaining to the text that the user

writes in their posts.

a) Topic Affinities [K features]. These consist of the Du topic affinity features

from the results of LDA. This will help us to understand the degree to

which a user focuses on specific topics.

b) Affinity Entropy [1 feature]. Shills are likely to be focused around a

particular topic. Entropy (Gray 2011) is a measure of the randomness of a

probability distribution, with a greater entropy indicating a greater degree

of randomness. It is computed as:

hu = −
K∑
k=1

Du
klog2D

u
k , (5.11)

which yields a single feature measuring the users focus around any specific

topic.
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2. Account Features We extract features that represent both the user’s activity

on the site, as well as how their content is perceived. These features are as

follows:

a) Daily Post Rate [1 feature]. The number of days in which the user has

posted on the site, out of the total days they are present in the last 1,000

comments. E.g., if the users last 1,000 comments appear during 230 unique

calendar days, then their score will be 4.35.

b) Subreddit Entropy [1 feature]. Reddit has natural mechanisms under which

users can categorize their content, “subreddits”. Subreddits are boards where

users post content pertaining to the underlying theme of the subreddit. We

measure the frequency that each user posts in each subreddit, and then

compute the entropy of the probability distribution. This measures the

diversity of the subreddits that the user posts in. Treating the frequency

of posting in each subreddit as a probability distribution, we compute the

entropy, or focus, that the user has for the subreddits.

c) Hour Probability [24 features]. This measures the probability that each

user posts in a given hour of the day. It may be that hired shills work

according to a schedule, and by calculating the probability at each hour we

may be able to learn their schedule. This consists of one feature for each

hour of the day.

d) Hour Entropy [1 feature]. This is the focus of the probability distribution

above. It is possible that the user may only log in for a brief period of time

each day to do their shilling. To capture this, we measure the focus of the

user around any hour of the day.

3. Community-Based Content Features The relative difference between the
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topics they focus on compared to the rest of the users in the dataset may be

equally important. In fact, in our investigation, we learned that shills tend to

oppose opinions in social media, meaning that they may focus on different topics

than those they are conversing with. Thus, we experiment with two feature

groups that can provide information about how different the user is from the

rest of the group.

a) Focus Topic Significance [K features]. This is measured as the z-

score (Casella and Berger 2001) of the difference between the focus of

the user on a topic against the focus of the community on the topic. For a

topic k ∈ [1, K], the feature is calculated as:

zuk =
Du
k − µk
σk

(5.12)

where µk = 1
|U |
∑

j∈U Dj
k is the average focus of a user on topic k, and

σk =
√

1
|U | [
∑

j∈U Dj
k − µk] is the standard deviation.

After feature extraction, each user is described by a total of: K topic affinity

features + 1 topic entropy feature + 27 account features +K topic significance features

= 2K + 28 features. In addition to measuring the performance of the classification

algorithms on the model, we will also investigate the impact of K on the results.

An important note about this set of features is that while not all features are

specifically designed to measure “shillness,” some are. Specifically, the “Focus Topic

Significance” is designed to measure this. Consider the case of cross validation, which

is what we use to select the models. If the shills in the training set have a particular

relative topic affinity, then that feature maybe picked up by the classifier in order to

identify further shills. We validate this finding in the feature importance section.

113



Table 15: Confusion Matrix Showing the Average Cosine Similarity between the Two
Groups of Clusters.

Shill Not Shill

Shill 0.53 0.66
Not Shill 0.66 0.61

Feature Analysis: Clustering

We have collected a dataset of shills and non-shills and have proposed a set of

features to formally describe these users. We investigate how different these two

classes of users are. By setting K = 50, we investigate the separability of this dataset.

We look at the clusters that are formed by the labels. We compute the average

cosine similarity between all of the users in the shill class, and all of the users in the

nonshill class, and the average distance between the two classes. The results of this

measurement are shown in Table 15. Here we see that the within-cluster distance for

each class is smaller than the between cluster distance. This means that the users in

each cluster are more similar than the users between clusters, which is a promising

indication that there is a difference between the two classes.

Feature Analysis: User Behavior

Analyzing the key difference that describe the shill behavior versus non-shill

behavior was done using the non-parametric Wilcoxon rank-sum test (Mann and

Whitney 1947). The Wilcoxon rank-sum test ranks all values in two different groups

then finds whether one group ranking tends to be statistically different than the other

group ranking. The most significant shift was captured in the samples between the
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Figure 24: The Distribution of Feature Values for Features Identified as Most Important
by the Wilcoxon Rank-Sum Test.

shill and the non-shill groups in four different features (Subreddit Entropy, Topic

Affinity 38, 27, and 33) with α < 0.005. Figure 24 provides a visual description of

how shill behavior differs from non-shill. First, shills tend to demonstrate higher

topic affinity than non-shills. Second, shills demonstrate less Reddit entropy than

non-shills. Thus, inference into behavioral patterns given the statistical analysis leads

to a conclusion that shills tend to focus on topics relating to specific keywords such

as “Hillary”, “Clinton”, “Bernie”, and “Trump” discussions and seldom vary to other

non-political topics. Going forward, we will propose a classifier to separate the two

classes.

5.3.5 Identifying Shills

In this section we apply the data and feature extraction approach to build a

classifier that can leverage the labeled data to differentiate these two classes. After

building the classifier, we investigate how the classifier makes its decisions, what

features it determines are most important, and the source of classification errors.

115



5.3.6 Shill Detection

We test various approaches in a standard machine learning framework. We use

10-fold cross validation. We report the average across the 10 runs. We compare several

classifiers, organized into four groups:

• Baselines.

i. Always-Shill: Assigns the “shill” label to every user.

ii. Random: Randomly assigns a label to each instance following the distri-

bution of labels in the training data.

iii. Clinton: Because we are studying pro-Clinton shills hired by Correct the

Record, we see if simply mentioning the candidate reflects shill behavior.

We denote any user that mentions “Clinton”, case insensitive, in over 10%

of their posts as a shill.

• Activists. A classifier that strives to find activists in political campaigns (Ran-

ganath et al. 2016). This is included to compare the task of shill detection to

identifying political activists.

• BoostOR. A recent classifier that detects bots (Morstatter, Wu, et al. 2016),

with code made available by the authors. This is to help understand the

differences between shill detection and bot detection.

• Shill Classifiers. Classifiers trained with the features described in the “Char-

acterizing Shills” section. We choose algorithms which produce interpretable

models in order to estimate the importance of different features.

Using the classification setup described, we test several classifiers for their ability

to differentiate the two classes. Due to the nature of the data, we do not evaluate
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deep learning classifiers. The results are shown in Table 16. These results can be

interpreted in several ways. First we see that the best classifier is Logistic Regression.

When this classifier identifies a shill, it is correct slightly under half of the time. The

recall is 45%, meaning that we detect just under half of the shills present in the data.

This elucidates the difficulty of the problem. Shills are people writing original text; it

is challenging to differentiate them from political enthusiasts.
Another result is the performance of the activist classifier proposed by Ranganath

et al. 2016. While their proposed approach is very strong for identifying advocates, it
does not perform well at identifying shills. This demonstrates that finding advocates
is a fundamentally different problem; advocates display different behavioral patterns.

Table 16: Classification Results.

Classifier Precision Recall F1

Random 0.050 0.050 0.050
BoostOR 0.183 0.150 0.165
Always-Shill 0.090 1.000 0.165
Clinton 0.112 1.000 0.201
Activists (Ranganath et al. 2016) 0.225 0.500 0.310
SVM 0.325 0.350 0.337
Decision Tree 0.335 0.550 0.417
Logistic Regression 0.475 0.450 0.462

Sensitivity to K

Many of the features we investigate are based upon the topics generated by LDA.

Thus far we have set the number of topics to K = 50. Here we investigate the

classifier’s sensitivity to K by varying it and seeing the results.

We vary K from 5 to 500, and plot the results in Figure 25. We see that initially

more topics are good, but after K = 50, more topics begin to add noise to the model

and actually decrease performance. Informed by these results, we conduct all future

experiments with K = 50 topics.
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Figure 25: F1 As a Function of the Number of Topics Used to Create the Dataset.
Here We See That the Performance of the Model Peaks at K = 50 Topics.

Feature Importance

In the above experiment, we evaluate several classification algorithms for their

ability to discern between the two classes. We provided the features we used to

make these classifications along with their justification. In this section we will rank

the features based on their predictive power to understand what facets are actually

contributing to the classification.

To rank the features we perform a feature ablation test, where we run the classifi-

cation algorithm once for each feature to test its importance. In each run, we test

the feature by assessing the F1 performance of the classifier with all features (p1) and

then re-assessing the performance with that feature removed (p2). The difference in

performance, p1 − p2, is used as that feature’s predictive power.

The most important features identified by this experiment can be seen in Table 17.

These results show two important observations about shill behavior. First, shills tend

to focus on topics differently than regular users. We know this because the top features

used to identify them are topic focus significance scores, as well as the topic affinity

entropy. This means that not only do shills focus on different topics than non-shills,
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Table 17: Most Important Features in Our Dataset. These Are the Features Which
Effected Performance by at Least 3%.

Feature Top 5 Topic Words p1 − p2
Subreddit Entropy (Not Applicable) 0.194
Topic 38 Affinity politicaldiscussion, sanders, 0.056

clinton, bernie, vote
Topic 27 Affinity politics, trump, hillary, 0.039

bernie, people

but they also are focused on just a handful of topics. We know this because the topic

entropy score helped to separate the two classes.

Error Analysis
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Figure 26: Low-Dimensional Embedding of the Features with Tags Comparing Their
Real Label with That Assigned by the Classifier. TP, TN, FP, and FN Are “True
Positives”, “True Negatives”, “False Positives”, and “False Negatives” Respectively.

To look at the differences between correctly-classified, and incorrectly-classified

instances, we plot a low-dimensional embedding of the data. Using Principle Compo-

nent Analysis (PCA), we extract the first two principle components of the data, and
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plot each user according to their position along these two dimensions. Additionally,

we tag each instance based upon how it was classified, as either a true positive, true

negative, false positive, or false negative. This plot can be seen in Figure 26. Shills

tend to appear in the lower-left corner of the figure. Furthermore, almost all of the

true positives occupy this space with no true positive occurring outside of the lefthand

side of the figure. That is not to say that the classifier does not attempt to predict

shills outside of this region, however it does so incorrectly. False positives are present

throughout the main cluster of users at the left side of the plot. This tells us that the

rich and thought-out language used by shills enables them to camouflage themselves

and avoid detection. Another important distinction is that the classifier finds many

false positives in the bottom-left, meaning that the presence of shills with this feature

value can cause the classifier into identifying real users as shills in these instances.

Overall, the mixture of the users is a problem, with no clear separation based on the

PCA position. This is likely due to the similarity between shills and activists.

Identifying the Most Informative Shills

Our dataset contains very few positive instances, so the burden of providing

information about the positive class falls upon just a few instances. As such, it is

likely that there are a few users which help the classification. To measure the impact

of each individual user, we repeat the experiment above, except this time we hold out

a shill user from the dataset, and perform 10-fold cross validation again. We then

compare the performance with the performance of when every user is present.

We found that for 5 users, holding them out individually will drop the F1 by

more than 10.0%, meaning that their content strongly helps the classifier to identify
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Figure 27: Differences in Word Choices between Normal Shills and the Shills That
Add the Most Predictive Power in the Model. The X-Axis Is the Frequency of the
Word in the Corpus, and the Y -Axis Is the Probability That a Predictive Shill Uses
This Word, Divided by the Probability That a Regular Shill Uses It. Words above
100 Are Preferred by the Predictive Shills, and Words below This Line Are Preferred
by Normal Shills. We Annotate Words That Are Used Significantly More Than the
Other Class.

patterns within the shill class.34 This indicates that individual users do make a large

impact on the classification.

In light of these findings, it is natural to wonder what content drives these particular

users to give such a strong description of this class. In order to see how these users are

different from the rest of the shills. We plot the frequency of each word on the x-axis,

and its relative prevalence among the “predictive shill” users on the y-axis in Figure 27.

This plot shows us that the most predictive shills focus disproportionately on hot

button issues such as immigration. Furthermore, the super shills also mentioned

/r/sandersforpresident at a disproportionately higher rate than other shills, while

other shills focused on mentioning /r/hillaryclinton, and more informal words such as

34If all 5 of these users are held out together, the total drop in F1 performance is 17.0%.
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“lol” and “games” in their text.35 While shills in general stay away from these words,

these less-predictive shills use these words disproportionately more, meaning that they

may be less trained than the more predictive shills.

Comparing Shills with Other Covert Users

In the previous section we have proposed a method to identify shills. This method

works primarily due to the way the shills are characterized, which enables their

behavior to be captured by off-the-shelf algorithms. In this section, we investigate

whether the patterns identified by our method are specific to shills, or if their behavior

is also shared by other classes of covert users.

To make this comparison we test our framework at the task of bot detection. Using

a sample of bot users identified in the complete dataset of Reddit comments,36 in

May 2015, we collected the entire history of these 43 users. In order to make these

results comparable, we ensure the same class distribution as in the shill detection

task, collecting non-bot users. We verified their status as humans by comparing

their usernames with a list of known bots,37 and manually verifying their text for

the presence of bot activity (users posting repetitive, or nonsensical content were

removed). After our preprocessing, we were left with 432 non-bot users.38

35In this case, the word “games” is used in the context of the “games” that other candidates are
playing, and not in the context of video games.

36https://bigquery.cloud.google.com/table/fh-bigquery:reddit_comments.2015_05

37https://www.reddit.com/r/autowikibot/wiki/redditbots

38A list of users from both classes is available at https://goo.gl/PPsR8E.
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Table 18: Results of Different Approaches on the Bot Detection Task. “Shills” Is the
Logistic Regression Approach for Detecting Shills.

Approach Precision Recall F1

Shills 0.09 0.75 0.16
Always-Bot 0.09 1.00 0.17
BoostOR 0.68 0.58 0.63

Taking this list of users, we extract features from each user as described in the

“Categorizing Shills” section. We use 10-fold cross validation. We report the average

across the 10 runs. We use the classification approach identified as the best within the

shill task, the Logistic Regression classifier. The results of this experiment are shown

in the “Shills” row of Table 18. While our shill classifier is able to learn meaningful

patterns to separate shills from non-shills, it cannot learn patterns to separate bots

from non-bots.

To give a sense of the performance of the classifier, we compare with two other

approaches. The first is a baseline that simply classifies every user as a bot (“Always-

Bot” in Table 18). The other is a recent bot detection approach, BoostOR (Morstatter,

Wu, et al. 2016). The shill classifier performs worse than a simple baseline approach

on this task. BoostOR is able to significantly outperform these baselines, showing

that this task is feasible when using an approach that is designed for bot detection.

This shows that the shill classifier’s performance is not low due to the dataset being

too difficult, but instead because the shill feature set is not fit for bot detection. This

means that bot detection is a different problem from shill detection.
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5.3.7 Discussion

In this chapter we present the novel problem of shills in online social media. We

discussed how they can harm the authenticity of social media sites by injecting paid

content that favors their cause. We discuss how shills operate, and how their behavior

in the online space differs from similar tasks such as bot detection and finding covert

campaigns in social media. To back these observations, we collected a dataset of users

from /r/politics, a political Reddit forum, and labeled a selection of the users as shills

or as people. We find that 9% of all of the users on this forum are shills, a strikingly

high number. Based on our observations, we define a strategy to characterize these

users in a way that allows for automated approaches to identify them. Next, we

demonstrate the efficacy of this strategy by showing that we can build a classifier

to separate these instances. Our F1 performance in this task is superior to several

baselines. It is also superior to the state-of-the-art from activist detection, indicating

that identifying shills is a different problem.

After building the classifier itself, we investigated how it makes its predictions. We

found that the most discriminative feature was “Subreddit Entropy,” a feature that

measure the diversity of Subreddits the user posts to. This is an important finding

as it shows that shills are unable to behave as regular users due to the contraints

imposed on their time while shilling for their cause on the site. We also found that the

classifier learns a handful of topics that are focused upon by shill users. These topics

are politically-oriented with words like “trump,” “sanders,” and “law” ranking highly

in these topics. When LDA is trained with 50 topics, it yields the best performance.

We observed that not only are some features very important in the classification,

but so are some users. We found that for 5 of the 17 shills, removing one of them will
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reduce the classifiers F1 performance by more than 10%. These users are providing a

significant amount of information to the classifier. By plotting their content in relation

to the content of other shills, we observe that they focus more on words pertaining

to hot-button issues, such as immigration. Also, they tend to talk more about other

candidates.

Shill detection is an important problem because shills can change the discourse in

an online platform. Furthermore, shill detection is a difficult problem because shills

are real people who can perform certain activities to evade detection systems. Future

work seeks to improve the performance of the classification task. Other areas of work

could be to use the shills, once discovered, to better understand the leanings of a

political campaign. Also, shill detection may be more effective on social media sites

that offer richer features, such as a social network. Furthermore, we noticed that

shills who tend to focus on hot-button issues tend to give the most information to the

classifier. Focusing on these users during data collection may yield better results.
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Chapter 6

PERCEPTUAL BIAS IN SOCIAL DATA: CROSS-PLATFORM EMOJI

MISINTERPRETATION

Perceptual bias refers to when an entity matches its stimuli to their own pre-

conceived notions regarding the world (Gerber and Green 1999). This is usually

considered from a human standpoint, where people match what they see to what

they’ve experienced in the past. After people have formed a conclusion regarding

an issue, they are less likely to process future information in an objective fashion.

This is common in partisan politics, as evidenced in related work (Jerit and Barabas

2012). However, these perceptual biases can go beyond humans and can appear in

machine learning applications. In this chapter we will demonstrate one example of

how a perceptual bias can diminish the performance of machine learning models. We

will show that how a prior assumption about the meaning of a specific aspect of the

content of social media data, the emojis used by the users of a social media site, can

cause a reduction in the accuracy of a common text analysis task, sentiment analysis.

Social media and web communication are a major part of every day life for most

people. Sites like Facebook, Twitter, and WhatsApp all have hundreds of millions to

billions of users who communicate on these platforms each and every day. While images

and videos have become commonplace on these sites, text is still the predominant

method of communication. This happens on our smartphones, tablets, and computers

billions of times every day.

While communication through text has long been the norm, it still has many key

issues that keep it from having the depth of face-to-face conversation. One of these
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issues is the lack of emotional cues (Daft and Lengel 1986). When conversation is

carried out through text, the lack of non-verbal cues removes key emotional elements

from the conversation (Byron and Baldridge 2005). One solution to this problem

is emoticons, which are combinations of standard keyboard characters to create

facial representations of human emotion, e.g., :), :(, ^_^, and :D. While widely

used, there are only a limited number of character combinations that make a cogent

representation of a human emotion, and the exact meaning of many emoticons can be

ambiguous (Walther and D’Addario 2001). To provide for richer expression, “emojis”

can convey a richer set of non-verbal cues.

Emojis are a set of reserved characters that, when rendered, are small pictograms

that depict a facial expression, or other object. Unlike emoticons, these are not

combinations of characters devised by the users, but instead single characters that

are rendered as small pictures on the screen. There are currently over 1,800 different

emojis defined by the Unicode specification, a number that grows with each iteration

of the specification.39 These emojis are either facial expressions (e.g., “grinning face,”

, character code U+1F600),40 or ideograms (e.g., “birthday cake,” , character

code U+1F382).

While emojis have allowed for increased expression of emotion through text, they

have an inconsistency. That is, emojis are rendered differently on each platform.

Different fonts display the same character according to a different style; similarly, each

major platform has its own font to display these characters. With regular characters

this is not crucial as each character has a predefined meaning. Emojis do not enjoy

39http://www.unicode.org/Public/emoji/3.0/emoji-data.txt

40Unless otherwise noted, when an emoji appears inline, the depiction comes from Emoji One
(http://emojione.com/), which is considered the standard.
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this predefined definition, and these changes in rendering can have an impact on

the way that the emoji is interpreted. Emojis are often small depictions of human

faces, so slight variations can make the face look entirely different. This can cause

a different interpretation of the text than was initially intended by the author for

emotional interpretation to the text. This issue was raised in Miller et al. 2016, where

human workers on a crowdsourcing platform rated the sentiment of emojis. The

results of these ratings indicate that the same emoji can be perceived as positive

on some platforms, while it can be perceived as negative on others. Miller’s finding

is important, with repercussions for the 2 billion people who use a smartphone.41

Furthermore, recent research suggests that emojis are replacing emoticons on social

media sites such as Twitter (Pavalanathan and Eisenstein 2015). With so many people

affected by this possibility for miscommunication, it is important that we study the

implications and possible solutions to this problem.

In this chapter, we answer the following research questions:

RQ1 Does misinterpretation based upon emoji rendering occur in real world data?

Miller et al. 2016 discovered this possibility for misinterpretation using surveys.

We assess if these phenomena appear in real world social media datasets.

RQ2 What is the scale of this misinterpretation? If this misinterpretation manifests,

that does not necessarily mean that it affects a vast array of communication.

We measure the extent to which communication on one social network, Twitter,

is affected by misinterpretable emojis.

RQ3 How can the problem of cross-platform emoji interpretation be addressed? Using

our insights from the first two analytical portions, we construct a solution that

produces a mapping of emojis from one platform to those on another.

41https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
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Table 19: Amount of Data Collected by Platform. The “Source(s)” Column Indicates
the Applications We Chose to Represent Each Platform.

Platform Source(s) Tweets

Android Twitter for Android 5,839,392

iOS Twitter for iPad 12,850,344
Twitter for iPhone
iOS

Twitter Twitter Web Client 1,562,655

Windows Twitter for Windows Phone 114,175
Twitter for Windows

Total 20,366,566

RQ4 Does correcting for emoji misinterpretation have a meaningful effect on analysis?

We measure the usefulness of our mapping by applying it to a common text

analysis task: sentiment analysis. We show that the performance is increased

by mapping all tweets to a common emoji language.

6.1 Analyzing Platform-Specific Emoji Usage

Previous work by Miller et al. 2016, 2017 identified platform-specific emoji meaning

by carrying out surveys with human participants on Amazon’s Mechanical Turk. While

these insights are extremely useful, we must verify that these patterns truly occur in

real-world data. In this section we outline our process for collecting an emoji dataset

and measure the effect to which platform plays a role in the use of emojis.
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6.1.1 Collecting a Platform-Specific Emoji Dataset

The dataset used in this work consists of social media posts collected from Twitter.

Twitter is an attractive option for our analysis for several reasons. First, it is large.

With approximately 500 million tweets each day, it is one of the largest social media

sites. Also, because of its 140-character limit, users may be prone to use emojis

because they can help the user to be more expressive within the restrictive character

limit. Furthermore, Twitter, like many other social networking sites, is a place where

people post using many different platforms. Additionally, the site makes the source of

the post available as part of its metadata.

To collect the dataset used in this work, we manually identify a subset of emojis

that have human faces or other emotional signals. This is to avoid emojis which lack

a natural expression of emotion such as “helicopter” (U+1F681), and “mantelpiece

clock” (U+1F570). The full list of codes used in the data collection will be released

upon request. Using this list of emojis we query Twitter’s Filter API,42 which takes

as input a list of keywords to track, using our list of emojis. We tracked this data for

28 days, collecting a total of 20 million tweets.

Because the nature of this work is focused on the platform-specific nature of the

emojis, we separate the tweets based on the platform from which they were posted.

Twitter is an open platform, meaning that it has a fully documented and available

API which any third party can use to make software to post to Twitter. While

Twitter does not explicitly mention which platform the user used to write the tweet,

they do provide details about the software used to author the tweet in their “source”

field. This source is made available in the data that comes from their APIs. In some

42https://dev.twitter.com/streaming/reference/post/statuses/filter
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Table 20: Average Jaccard Coefficient of Emojis across Platforms. Random Indicates
a Random Sample across All Tweets of the Size of the iOS Corpus.

Android iOS Twitter Windows Random

Android 1.000 0.153 0.111 0.062 0.010
iOS 0.153 1.000 0.086 0.052 0.018

Twitter 0.111 0.086 1.000 0.047 0.005
Windows 0.062 0.052 0.047 1.000 0.002
Random 0.010 0.018 0.005 0.002 1.000

cases, the “source” is a clear indication of the platform because some software is only

available on one platform. We use these when determining the platform from which

the tweet was posted. We identify four platforms with distinct emoji sets according to

Emojipedia:43 iOS, Android, Windows, and Twitter. We select these because they are

major platforms. There are two reasons behind this. First, the results obtained from

these platforms will apply to more users on the social media site. Second, by choosing

large platforms we can accrue a more sizable dataset, which will yield a more stable

mapping. Statistics of the dataset, as well as the applications we selected to represent

each platform, are shown in Table 19.

Now that we have collected an emoji dataset, we will continue to investigate the

differences between the usage of emojis on different platforms. Towards answering

RQ1, this analysis is performed from two perspectives: 1) the positioning of the

emojis within a word embedding, and 2) the sentiment of the posts in which the

emojis appear.

43http://emojipedia.org/
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6.1.2 Measuring Emoji Embedding Agreement

First, we investigate how consistent the embeddings of the emojis are across

platforms. Word2Vec (Mikolov et al. 2013), a word embedding algorithm, learns a

vector for each word in the vocabulary. For a given word, the vector is constructed

based upon the neighboring words each time the given word is used. Thus, we employ

this technique to measure how consistent the usage of emojis is across platforms.

First, we build a base word embedding by training a SkipGram Word2Vec model

using the entire dataset with emojis removed.44 Then we use this base embedding to

train a platform-specific embedding by adding the emojis back in and updating the

model with the new data. It is important to note that we do not update non-emoji

words, we only update the vectors of the newly-added emojis. After following this

process, we have 4 platform-specific emoji embeddings. To give a sense of how these

deviate from general Twitter conversation, we also create a platform-agnostic word

embedding by training a random sample of tweets of the size of the iOS platform.

Word embeddings have the property that words that are more semantically similar

will be embedded closer together (Mikolov et al. 2013), where “closeness” is defined

by cosine similarity. We compare the usage of the emojis on each platform by seeing

the words that are embedded closest to each emoji. For each platform, we extract

the closest 1,000 words to the emoji. To compare the differences across platforms, we

compute the Jaccard coefficient between the top 1,000 on the first platform and the

top 1,000 on the second. We compute the average Jaccard coefficient across all emojis.

The results of this experiment are shown in Table 20. The results indicate that

the emojis are embedded next to very different words across models. The most

44This process is explained in greater detail in Section 6.2.1.
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Figure 28: Average Sentiment for Each Platform by Emoji. Error Bars Indicate the
Variance Calculated from the Bootstrapped Samples. A Sentiment Score of 0.0 Is
“Neutral,” 1.0 Is “Perfectly Positive,” and -1.0 Is “Perfectly Negative.” the X-Axis
Labels Indicate the Unicode Character Code of the Emoji.

agreeing platforms are iOS and Android, where an average of 153 words are common

across the top 1,000 in the emojis. We also note that Windows has a much lower

average agreement than other models. Finally, all platforms are extremely different

from a random sample. This means that combining tweets from all platforms, as is

done in many analytical tasks, will yield a significantly different representation than

considering each platform individually.

While we have discovered that the emojis are used in different contexts across

platforms, that does not necessarily mean that their meaning is perceived differently.

To better answer this question, we assess the sentiment of the tweets in which the

emojis occur.
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6.1.3 Assessing Emoji Sentiment

Having collected an emoji dataset, we continue to see if the usage of the emojis is

different across platforms. To measure the consistency of the meaning of the emoji,

we perform sentiment analysis on the tweets containing the emoji. Using the Pattern

library’s sentiment analysis tool,45 we compute the average sentiment for each emoji

on each platform. This is done by removing the emoji from the tweet and using the

sentiment analysis tool to compute the sentiment score for the remaining text. Finally,

we consider the possibility that each platform may have a different sentiment “bias,”

that is the sentiment expressed on those platforms is different. For example, Windows

Phone may be preferred by business users who are less likely to express negative

sentiment in their posts. To account for this, we take the average sentiment across all

tweets on the platform, and subtract that from the emoji’s score.46 We then take the

average sentiment across all tweets in which the emoji occurs and plot the average in

Figure 28. Because we only have one corpus for each platform, we bootstrapp (Efron

and Tibshirani 1994) the corpus to obtain confidence intervals. By sampling with

replacement, we create 100 bootstrapped samples and reproduce the process above to

understand the variance in the data. This is how we obtain the confidence intervals

displayed in Figure 28.

The results of this experiment show several phenomena about the usage of emojis

online. First, we see that in many of the emojis that there is a significant difference

between the sentiment in at least two of the platforms. Among those, some even have

45http://www.clips.ua.ac.be/pages/pattern

46All platforms have roughly the same sentiment bias of +0.20 with the exception of Windows
Phone with a sentiment bias of +0.30.
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Table 21: Example Emojis Provided to Illustrate the Difference in Meaning. The
Names and Codes Are Official, Provided by the Emoji Unicode Standard.

Name Code Android iOS Twitter Windows

Fearful Face U+1F628
Clapping Hands U+1F44F

diverging sentiment polarities. In these cases, if one were to read only the tweets from

a particular platform, they would think that emoji has a completely different meaning

than it does on another platform. To illustrate this point, we provide an example of

the emoji differences. We include their official definition according to the Unicode

standard,47 and their depiction across the different platforms in Table 21. Take, for

example, the “fearful face” emoji. In the case of this emoji, Figure 28 indicates that

Android, iOS, and Twitter all have this emoji hovering at the roughly “neutral” area

of the sentiment spectrum. Windows, however, is an extreme outlier with most users

including this emoji in positive tweets. The intuition behind this phenomenon is

demonstrated clearly by the “Fearful Face” emoji shown in Table 21, where Android,

iOS, and Twitter display the emoji completely differently from Windows. We speculate

that the difference in the way the emojis forehead is rendered could cause this difference

in interpretation. Another difference that appears in the “Clapping Hands” emoji,

this time with Twitter being the outlier. Android, iOS, and Windows all clearly show

two hands with action lines indicating that they are moving together. Twitter, on the

other hand, is less perceptible. Only one hand is clearly visible, and this could give

the impression of a “slap” motion, yielding the more negative sentiment.

We have now conducted two experiments on the cross-platform use of emojis.

These experiments both illustrate that the use of emojis is platform specific, answering

47http://unicode.org/emoji/charts/full-emoji-list.html
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RQ1. In the case of our word embedding experiment, we find that the words that

neighbor a certain emoji are vastly different between platforms, indicating that they

are used in different contexts. This point is furthered by our sentiment analysis

experiment, where we found that some emojis have significantly different sentiment

scores across platforms, confirming the results of Miller et al. 2016 on a large-scale,

real-world dataset.

6.1.4 The Scale of Misinterpretation

We continue to address RQ2, which involves measuring the scale at which emojis

can contribute to miscommunication across platforms. We have used real-world data

to show that this problem exists, however, we do not know the extent to which users

are affected by this phenomenon. Is this a wide-reaching problem impinging most

Twitter users or is it an esoteric issue restricted to the few users who happen to include

emojis in their text?

Based on the results of our experiment, we find that 38.2% of all emojis yield a

statistically significant sentiment difference between different platforms. While this

is a minority, these emojis appear in 73.4% of all of all the tweets in our dataset.

Since our dataset was collected using emojis, we need to leverage outside information

to estimate the impact for all of Twitter. To estimate the fraction of tweets using

these emojis, we use the Sample API,48 which provides a 1% sample of all of the

tweets on Twitter, irrespective of whether they contain an emoji. We collected data

from the Sample API during the same time period we collected the emoji dataset.

Through analyzing this data, we observe that of the 94,233,024 tweets we collected

48https://dev.twitter.com/streaming/reference/get/statuses/sample
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from the Sample API during this time period, 8,129,483 tweets (8.627%) use emojis

that are prone to misinterpretation. In other words, 1 in every 11 tweets sent on

Twitter contain an emoji that has a statistically significant interpretation to a user on

a different platform.

These findings indicate that there is a need to disambiguate emojis across platforms.

To this end, the rest of this chapter proposes a strategy for generating a mapping

which can disambiguate emoji choice across platforms. Next, we evaluate this mapping

to show that it can increase the performance of sentiment analysis tasks.

(a) Platform-Independent Word Embedding

(b) Platform-Dependent Emoji Embedding

Figure 29: An Illustration of Platform-Dependent Emoji Mapping Construction. The
Three Rectangles Blue, Green, Red Means Corpus of Three Platforms. Each Line Is a
Sentence. Triangle and Star Denote Emojis. Red Triangle Means an Emoji in Red
Platform While Yellow Triangle Means the Same Emoji in Yellow Platform.
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6.2 A Cross-Platform Emoji Mapping Solution

The fact that the representations of emojis are different both from the perspective

of the embedding as well as the sentiment suggests that a mapping may help us

disambiguate emoji meaning across platforms. But how can we construct such a

mapping? In this section, we describe our approach to constructing a platform-

dependent emoji mapping. This is done towards the goal of answering RQ3. The

goal of this mapping is to provide a translation from an emoji on one platform to

its corresponding emoji on another. The purpose of the platform-dependent emoji

mapping is to disambiguate platform-specific emoji interpretation. To construct the

cross-platform emoji mapping, we need to understand the semantic meaning and

the sentiment polarity of the emojis on each platform. We then can construct the

platform-dependent mapping by identifying emojis that have the closest semantic and

sentiment polarities across platforms. Thus, the key step is to learn the representation

of emojis from the texts on each platform such that the representations capture the

platform-dependent semantic meanings of emojis and also allow simple similarity

matching to construct the mapping.

Recent advances in natural language processing suggest that word embeddings

such as Skip-gram (Mikolov et al. 2013) and GloVe (Pennington, Socher, and Manning

2014), which represent each word as a low-dimensional distributional vector, are able to

capture the semantic meanings of words. The low-dimensional vector representations

also allow a similarity calculation using cosine or Eulidean distance, which eases

the mapping construction. In addition, recent findings on emoji analysis (Barbieri,

Ronzano, and Saggion 2016; Eisner et al. 2016) demonstrate that by treating each

emoji as a word and performing Skip-gram on texts, the vector representation learned
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by Skip-gram can capture semantic meanings and sentiment polarities of emojis, which

improve the performance of sentiment classification. Therefore, word embedding is a

natural choice to learn platform-dependent semantic meanings of words and emojis

for mapping construction.

While word embeddings may be suitable for this task, there are two challenges

which we must overcome in order to create the mapping. The first challenge is that

we must find a way to map emojis from a source platform to their true equivalent

semantic emoji on the target platform. The second challenge is that when we build

our platform-specific embedding, the position of the words will change, as well as the

emojis. Thus, we need to figure out a way to represent the words within a common

space first, so that we can extend it to measure the emojis relative to the words. Our

solution addresses both of these challenges.

In the subsequent sections we will introduce in detail how we leverage a word

embedding approach to build a platform-dependent emoji embedding and how to use

the embedding to construct the mapping.

6.2.1 Building the Embedding

For simplicity of explanation, let Tp, p = 1, . . . , P be the set of tweets from each

platform. The process of building word and emoji embeddings are illustrated in Figure

29. As shown in Figure 29a, since the interpretation of words are platform-dependent,

for each corpus Tp, we first remove the emojis, which are denoted as T̃p. We then

combine T̃p, p = 1, . . . , P , as one large corpus T̃ . Then Skip-gram is applied on T̃ to

learn word embedding W ∈ RK×N , where K is dimension of the vector representation

and N is the size of the vocabulary without emojis. The advantages of combining T̃p,
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p = 1, ..., P , as one large corpus T̃ are two-fold: (i) we obtain a large corpus which

allows us to train a better word embedding; and (ii) word embedding in each platform

is the same, which satisfies the assumption that word interprations are the same for

each platform. After the platform-independent word embedding is learned, then we

can learn the platform-dependent embeddings for emojis. The process is depicted in

Figure 29b. For each corpus Tp, as the process of Skip-gram, we first use a context

window of size 5 to extract the neighboring words of emojis in the corpus. Let (ei, wj)

denote a pair of neighboring words, where ei means emoji i and wj means word j.

The extracted pairs are then put into the set Pp. We then learn the representation of

emoji ei in corpus Tp by optimizing the following problem:

min
epi

∑
wj :(ei,wj)∈Pp

(
log σ(wT

j e
p
i ) +

N∑
k=1

log σ(−wT
k e

p
i )
)

(6.1)

where epi is the vector representation of ei in corpus Tp. Equation 6.1 is essentially the

negative sampling form of the objective function of the Skip-gram approach, where

we try to learn the emoji representaion which is able to predict the neighboring words.

Note that the difference with Skip-gram is that word embeddings W is fixed across

different corpus, we only learn epi . We do the same thing for each corpus, which gives

us epi , p = 1, . . . , P , i.e., the vector representations of the same emoji in different

platforms.

6.2.2 Constructing the Mapping

In this section, we detail the emoji mapping construction process. To construct

the mapping between emojis across different platforms, we consider it in a pair-wise

scenario. We treat one platform as the source platform and the other as the target

platform. Without loss of generality, let E = {ei, i ∈ {1, ...,m}} be the set of emojis
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that occur in both platforms. By learning the emoji embedding representations in

each platform, we are able to capture the platform-dependent semantic features for

the emojis. Thus, given an emoji in the source platform, we can leverage the emoji

embedding representation to connect the semantic space between the source and target

platforms, and then find the most similar emoji in the target platform.

Specifically, based on all the emoji embeddings from the source platform {esi , i ∈

{1, ...,m}} and target platform {eti, i ∈ {1, ...,m}}, we want to map the most similar

emoji in target platform for each emoji in the source platform. To compute the

similarity of two emoji embeddings, we adopt the cosine similarity measure as follows,

sim(esi , e
t
j) =

esi · etj
||esi || · ||etj||

(6.2)

Given an emoji ei in the source platform, we first compute the similarity between ei

with all emojis in target platform. Then we select the emoji which gives the maximum

similarity score. We solve the following objective function to obtain the mapping

emoji êj in target platform for ei,

êj = arg max
ej∈E

sim(esi , e
t
j) (6.3)

we then get a mapping pair (ei, êj), where the first emoji is from the source platform

and the second one is from the target platform. Note that the emoji mappings are

directional, which means if (ei, êj) is a mapping pair, (êj, ei) is not necessarily a

mapping pair.

6.3 Evaluating the Mapping

Now that we have presented the methodology for constructing the emoji mapping,

we will validate its utility, answering RQ4. We measure the utility of our mapping by
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Figure 30: Performance Results across All “Source” X “Target” Pairs. Asterisks
Indicate (Source, Target) Pairs Where the Mapping Is Not Significantly Better Than
the Two Baselines. F1 Is Computed with Respect to the “Positive” Class. Tweets with
Sentiment Scores in the Range of (-0.2, 0.2) were Deleted.

seeing how well it can help in a common text analysis task: sentiment analysis. We

design experiments to show that the sentiment analysis task is improved by applying

our emoji mapping to the data to bolster the consistency of analogy meaning in the

dataset. This simultaneously shows the efficacy of our approach as well as the extent

to which emoji ambiguity plays in standard text analysis tasks.

6.3.1 Predictive Evaluation

We have shown that emoji usage is different across platforms. This means that

the same emoji can have different sentiment meanings across platforms. From a

machine learning perspective, this means that platform-specific emoji renderings

introduce noise into the dataset, ultimately lowering the classification performance.

We hypothesize that by applying our mapping we are in effect converting the dataset

into a single language emoji dataset, and the consistent emoji language will help in

assigning a sentiment label.
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6.3.2 Experimental Setup

In each experiment, we evaluate our mapping using a pair of platforms. One of

the platforms is the “source”, and another is the “target.” The experiment consists of

two phases. In the first phase, we mix the data from both platforms together, perform

sentiment analysis, and measure the accuracy using 5-fold cross validation. We call

the average accuracy across all 5 folds “A1.” In phase two, we apply the mapping to

the emojis on the “target” platform, and then repeat the process in phase one. We

call the average accuracy from this experiment “A2.” We measure the effectiveness of

the mapping as A2 - A1.

In preprocessing, we remove stopwords, and strip the case from all words. We

tokenize the dataset using the “TweetTokenizer” module in Python’s NLTK (Bird,

Klein, and Loper 2009). Following the labeling approach outlined previously, we use

the VADER library to assign a sentiment score to each tweet as ground truth.The

sentiment score provided by this library is a continuous value from [-1.0, 1.0]. We

convert this problem to a binary classification task. We delete all tweets in the range

(-0.2, 0.2) to ignore ambiguous cases. We then assign the sign of the label from the

Pattern library as the label of the tweet. When training the word embeddings as well

as the emoji embeddings, we use K = 20 as the number of dimensions. To prevent

information leakage between the training and test sets, the emoji mapping used in

these experiments is built using data collected from September 23rd, 2016 - October

4th, 2016. The training and test instances used in our cross validation experiments

are taken from October 5th, 2016 - October 20th, 2016.

Each tweet is represented by the average of the word vectors for all of the words

W ′ and emojis E ′ in the tweet. We always use the target embedding for emojis. Thus,
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a tweet is represented as follows:

repr =
1

|W ′|
∑
wk∈W ′

wk +
1

|E ′|
∑
ei∈E ′

eti, (6.4)

where w and et are word embedding and target platform emoji embedding. When

the mapping is applied, the representation is as follows:

repr_map =
1

|W ′|
∑
wk∈W ′

wk +
1

|E ′|
∑
ej∈E ′

êtj, (6.5)

where êj is the mapping of the target emoji on the source platform.

Having extracted the data, the labels, and formalized the representation, we use

SVM to build a classifier using 5-fold cross validation. The only difference between

each set up is how each tweet is represented. We compare three tweet representations:

1. Mapping. This is the representation where the emojis in the target platform

are mapped to the emojis in the source platform. This corresponds to the

representation obtained by Equation 6.5.

2. No Mapping. This is the representation when no mapping is applied. This is

obtained by the representation in Equation 6.4.

3. No Emojis. Our hypothesis is that the incorrect emojis are adding noise to our

dataset, which hinders classification. Aside from our proposed solution, another

way to de-noise the dataset is to simply remove the emojis. We do this by using

the following representation formula:

repr_noemoji =
1

|W ′|
∑
wk∈W ′

wk. (6.6)

Emojis are simply not considered in the resulting feature representation.
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6.3.3 Experimental Results

We report the average across the 5 folds in Figure 30. The results overall are

encouraging. In most of the source/target pairs we obtain significantly better results

than both doing nothing, and removing the emojis. Further, we note that removing

the emojis beats doing nothing in almost all of the cases, further validating our noise

assumption. The only two pairs where the mapping does not obtain significantly

better results are iOS → Windows (“source” → “target”), and Android → Windows.

The lower results across these two cases could be a side effect of the nature of the

Windows emojis. The results of our previous analysis indicate that the Windows

emoji set is significantly different from the rest in many cases, and that could prevent

us from learning a quality mapping.

The results in Figure 30 indicate that we can obtain a significant (sometimes as

much as 25%) gain in sentiment classification accuracy for some pairs. It is important

to note that these experiments were carried out using only tweets that contained

emojis, which is due to the way the dataset was collected. Therefore, an improvement

of this magnitude can only be achieved on a similar dataset.

Using the random 1% sample of Twitter data introduced in Section 6.1.4, we

discover that 15.0% of all tweets contain at least one of any emoji. Our analysis from

the same section indicates that 8.627% of all tweets, and thus 57.5% of tweets containing

an emoji are affected by this phenomenon. This justifies the huge improvements seen

in Figure 30. We speculate that another factor that contributes to the superior

performance is the large amount of data upon which the embeddings were trained.
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6.3.4 Results by Sentiment Threshold

In the previous experiment we removed tweets that had a sentiment score between

(-0.2, 0.2). The motivation behind this step is that tweets within this threshold were

so ambiguous that they could not be meaningfully assessed for sentiment. In this

section, we vary this parameter to see how robust our method is to ambiguous tweets.

We vary the sentiment threshold from 0.1 (leaving many ambiguous tweets) to 0.9

(leaving only the most sentiment-expressive tweets).

Instead of showing the results of every possible combination, which is impossible

due to space limitations, we instead test whether the two sets of results are significantly

different from each other. The T-test tests the null hypothesis that the means of the

two distributions are equal. The results can be seen in Table 22 for the comparison

between Mapping and No Mapping, and in Table 23 for the comparison between

Mapping and No Emoji. In the first case we can easily reject this null hypothesis at

the α = 0.05 significance level in all cases except for iOS→Windows. Despite passing

the significance bar, this is pair still yields the least significant result in Table 23.

This is consistent with our previous result, where this particular mapping did not fare

significantly better, and further supports our suspicion that Windows is an outlier

due to the way it renders emojis.

6.4 Discussion

In this work, we set out to answer a series of questions regarding the nature and

extent of cross-platform emoji misinterpretation, and to provide a solution that can

146



Table 22: Sentiment Threshold Significance T-Test between “Mapping” and “No Map-
ping” Experimental Designs. The Only Insignificant Mapping Is “iOS → Windows.”

Accuracy F1

Twitter→Windows 3.538e-09 1.200e-05
Twitter→Android 2.493e-08 8.754e-07
Twitter→iOS 8.071e-08 4.887e-07
Windows→Twitter 4.418e-07 5.687e-05
Windows→Android 3.538e-09 8.440e-07
Windows→iOS 2.115e-08 1.960e-05
Android→Twitter 1.234e-07 1.193e-05
Android→Windows 2.586e-07 3.037e-03
Android→iOS 2.081e-04 6.212e-06
iOS→Twitter 2.726e-06 1.313e-05
iOS→Windows 0.294 0.094
iOS→Android 8.877e-08 3.407e-06

help researchers and practitioners to overcome this platform-specific inconsistency in

their analysis. In the introduction, we outlined four research questions based around

these issues. Here, we summarize our findings as they pertain to each question and

end with a discussion of areas of future work.

RQ1 Does misinterpretation based upon emoji rendering occur in real world data?

To perform this study we use Twitter, a large, open platform where users post hundreds

of millions of tweets per day, and where the data made available by Twitter contains the

source from which the tweet was posted, which can be used to identify the underlying

platform. We find that the sentiment of the tweets in which emojis occur differs

widely and significantly across platforms. In multiple cases, the same emoji exhibited

opposing sentiment polarities on different platforms. This finding goes beyond surveys

done in Miller et al. 2016 to find these patterns in real-world data.

RQ2 What is the scale of this misinterpretation? By analyzing a random sample

of tweets, we obtain that 8.627%, or roughly 1 in every 11 of all of the tweets contain
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Table 23: Sentiment Threshold Significance T-Test between “Mapping” and “No Emoji”
Experimental Designs. Significance T-Test Results for Sentiment Classification with
Respect to Sentiment Threshold. All the Results Are Significant with α = 0.05.

Accuracy F1

Twitter→Windows 2.466e-06 5.142e-08
Twitter→Android 8.818e-09 1.923e-09
Twitter→iOS 6.121e-08 2.400e-08
Windows→Twitter 6.047e-08 1.665e-07
Windows→Android 3.293e-08 3.141e-07
Windows→iOS 9.665e-08 1.417e-06
Android→Twitter 3.525e-06 2.021e-06
Android→Windows 1.744e-03 1.124e-04
Android→iOS 7.423e-08 8.920e-09
iOS→Twitter 2.078e-05 2.954e-06
iOS→Windows 3.701e-04 3.399e-02
iOS→Android 3.303e-08 4.338e-08

an emoji that is used in a statistically significantly different fashion on a different

platform.

RQ3 How can the problem of cross-platform emoji interpretation be addressed?

With these findings in mind, we endeavor to construct an emoji mapping to help

researchers, practitioners, and even readers of social media data to better understand

the intended message of the sender given their platform-specific emoji mapping. By

leveraging word embeddings, we are able to exploit the property that “similar words are

embedded closer together” in order to find the corresponding emoji across platforms

and build an (emoji, platform) → (emoji, platform) mapping.

RQ4 Does correcting for emoji misinterpretation have a meaningful effect on

analysis? We evaluate the effectiveness of our embedding by applying it to sentiment

analysis. We chose sentiment analysis as it is a prediction problem very common

to social media data. We show that by mapping all tweets to a consistent emoji
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vocabulary, we can significantly increase the performance of sentiment analysis by

diminishing the amount of emoji noise in the dataset.

This work opens up the doors for many areas of research. While we have largely

explored this platform disagreement in emoji meanings from the perspective of com-

putational and predictive tools, it certainly is not limited to this. In fact, it may be

useful to include our mapping in user interfaces in order to increase understanding

between individuals communicating on different platforms. Alternatively, social media

platforms can take the approach of a “closed” platform, where all platforms conform

to a single emoji set. WhatsApp is an exemplar of this closed approach.

There are many possible extensions to our mapping approach. For example, our

mapping assumes that each emoji will have an analogue on the target platform. That

is not always the case. For instance, the clown emoji (“clown face,” , character code

U+1F921) exists on Android, Twitter, and Windows Phone, but it is not available

on iOS at the time of this writing. Furthermore, our mapping only consists of four

platforms, a limitation. With sufficient data the mapping can be extended to represent

many more. Resolving these issues are key to improving the utility of our mapping.

The mapping, code, and data used in this work is available in accordance with

Twitter’s data sharing policies online.49 We provide all of the performance scores used

to obtain the significance results from the sentiment threshold experiment, as well

as an expanded version of Figure 28, containing all of the emojis considered in the

analysis.

49http://www.public.asu.edu/ fmorstat/emojimapping/
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Chapter 7

CONCLUSIONS

This chapter concludes the dissertation with a summary of my contributions and

a look towards future directions of this thesis.

7.1 Methodological Contributions

Here we discuss the methodological contributions made in this thesis including the

technical and algorithmic contributions we made throughout.

1. Discovering Bias in Social Media APIs. I introduce a methodology for

identifying bias in social data APIs. Introduced in Chapter 3, this methodology

uses statistical techniques to identify the extent to which a dataset collected

from social media differs from the true population. An important part of this

methodology is the way in which I create multiple samples from the population for

more robust evaluation of these statistical difference. However, this methodology

relies on the full population, which is not a valid assumption for researchers to

have given the limiting cost. Due to this limitation, this dissertation provides

other ways of validating these differences.

2. Statistical Techniques for Assessing Bias without the Firehose. In

Chapter 4, I introduce a new methodology for identifying sample bias in the API

without the need for the Firehose. This works by comparing the data with other

sources of data which are readily available for researchers. This methodology
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works by bootstapping these sources and creating confidence intervals for how

biased these data sources are.

3. Algorithms for Collecting Data with less Sampling Bias. While identify-

ing data collection bias is important for researchers to understand the limitations

of their data, it is ideal to collect a dataset that is not biased to begin with.

Towards this end, I have developed several methodologies that collect data from

these APIs in such a way that they contain less sampling bias. These methods

rely on clustering techniques to reparameterize the queries to the API in such

a way that a larger sample is gleaned from these resources. I verify that these

samples are indeed a more accurate representation of the data from the Firehose.

4. Algorithms for Detecting Malicious Users. In this dissertation, I view

these from two angles. First, from the perspective of users who intentionally

manipulate the data from the APIs in order to make their messaging seem more

prominent. Secondly, from the perspective of bot detection where I develop a

new approach to identify more bots in a social media dataset.

a) Bots manipulating the APIs. In Chapter 6 I develop an algorithm to prove

that it is possible to build bots in such a way that they will be able to

disproportionately skew the content of the Sample API. We then develop

a methodology that uses knowledge about the limitations that Twitter

imposes on users to expose the bots that are carrying out these attacks.

b) Improving bot detection approaches. Most bot detection approaches focus

on precision, or ensuring that the users that they identify as bots are

correct. While precision is important from the perspective of companies to

lower the chance of enraging real users, it is less important from a research

perspective. When using algorithms that focus on precision, we find that
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these algorithms still leave a number of bots in the dataset. Thus, it is

crucial that these algorithms also focus on recall. In Chapter 7 we developed

a new algorithm which is a tweak on AdaBoost to improve the recall of

bot detection algorithms. We showed that this methodology can achieve

superior performance to state-of-the-art bot detection algorithms.

5. Identifying and Correcting Perceptual Bias in Social Media Data. In

the penultimate chapter of this thesis, I shed light on the problem of perceptual

bias in social data. That is, even with a dataset collected using a representative

sample and after removing the bots, there are ways in which we perceive the

data that do not match reality. One way is the way in which we interpret the

way users choose emojis for their tweets. Prior work has discovered that emoji

use varies across platforms. I show how it can hinder a common task done on

social media data: sentiment analysis. I also develop a methodology which can

construct a mapping from emojis on one platform to those on another.

7.2 Future Directions

These findings pave the way for many areas of future work, both from the angle of

theoretical issues and applications. These include:

1. Considering other possible sources of bias. This thesis presents several

avenues for bias in social media data. However, there are countless more. For

instance, there are hundreds of different cognitive biases that can manifest in

social media data, as discussed in the related work chapter.These biases all have

the potential to wreak havoc on analyses performed on social data. Future work
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is to assess the extent to which these biases skew social data. If they do, then

other areas of future work will be to develop techniques to reduce their effect.

2. Extending the understanding shill behavior. Our study of shills shined

light on how they behave. We were able to learn important patterns of how they

carry out their attacks online. Unfortunately, our study was limited in two critical

ways. First, we did not have a dataset of adequate size to make meaningful

claims about specific patterns, including temporal or language patterns. A larger

dataset would be needed to make credible claims about their behavior pertaining

to language. Second, we only studied one specific instance of shill behavior

online: the use of shills by Hillary Clinton’s campaign in the 2016 election. More

work will be needed to verify these patterns in other shill campaigns. Finally,

we used off-the-shelf classification techniques

These areas address the sources of social data bias that we discuss in this work. To

conclude the future work discussion, we echo a sentiment that was introduced in the

introduction. There are many areas of social data bias that are ripe for future work.

For example, there are ethical biases and behavioral biases such as those discussed

in Olteanu et al. 2016. In addition to these, we point out that we have provided a

preliminary framework to deal with the biases that we solve in this dissertation. This

framework is intended to be employed by future work. This dissertation serves as a

platform to illuminate the way for researchers to obtain more credible, reproducible

results using this novel source of data, social media. This framework can both be

extended to further explore the biases presented here, and it can also be applied to

new types of bias.
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