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ABSTRACT 

 

Random forest (RF) is a popular and powerful technique nowadays. It can be used 

for classification, regression and unsupervised clustering. In its original form introduced 

by Leo Breiman, RF is used as a predictive model to generate predictions for new 

observations. Recent researches have proposed several methods based on RF for feature 

selection and for generating prediction intervals. However, they are limited in their 

applicability and accuracy. In this dissertation, RF is applied to build a predictive model 

for a complex dataset, and used as the basis for two novel methods for biomarker 

discovery and generating prediction interval.  

Firstly, a biodosimetry is developed using RF to determine absorbed radiation 

dose from gene expression measured from blood samples of potentially exposed 

individuals. To improve the prediction accuracy of the biodosimetry, day-specific models 

were built to deal with day interaction effect and a technique of nested modeling was 

proposed. The nested models can fit this complex data of large variability and non-linear 

relationships. 

Secondly, a panel of biomarkers was selected using a data-driven feature selection 

method as well as handpick, considering prior knowledge and other constraints. To 

incorporate domain knowledge, a method called Know-GRRF was developed based on 

guided regularized RF. This method can incorporate domain knowledge as a penalized 

term to regulate selection of candidate features in RF. It adds more flexibility to data-

driven feature selection and can improve the interpretability of models. Know-GRRF 

showed significant improvement in cross-species prediction when cross-species 
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correlation was used to guide selection of biomarkers. The method can also compete with 

existing methods using intrinsic data characteristics as alternative of domain knowledge 

in simulated datasets.  

Lastly, a novel non-parametric method, RFerr, was developed to generate 

prediction interval using RF regression. This method is widely applicable to any 

predictive models and was shown to have better coverage and precision than existing 

methods on the real-world radiation dataset, as well as benchmark and simulated datasets.  
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CHAPTER 1 

INTRODUCTION 

1.1 Predictive Modeling 

In the world of information exposure, machine learning has become a critical part 

of the scientific methodology, allowing for revealing underlying pattern in data and 

predictions of a phenomenon based on history observations. In biomedical informatics 

domain, recent advances in technologies of microarray and next-generation sequencing 

have made it possible to access to our gigantic gene profiles. An important goal of most 

gene expression studies is to understand the relationship between gene expression, 

environmental exposure and disease susceptibility1. Traditional biostatistical approach, 

despite the sound theoretical foundations, do have limitations for detecting non-linear 

patterns and interactions2. Plus, because of the genetic heterogeneity inherent in most 

diseases and cross-center or cross-cohort heterogeneity in biomedical studies, identifying 

the true genotype-phenotype relationship is of great complexity. To address the 

challenges of significant heterogeneity, gene-gene interaction, gene-environment 

interaction, and non-linear underlying patterns, we need to develop more computational 

methods. 

Efficient and effective algorithms for predictive modeling have been developed to 

address the challenges of complex gene expression data. Random forest (RF), introduced 

by Breiman3, is a very popular and efficient machine-learning tool coming from 

assembling classification or regression trees. In its original form, RF can handle both 
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categorical and continuous variables and can be widely applicable for classification, 

regression and clustering problems.  

Random forest is popular because of its excellent performance in predictive 

ability4. It has several significant strengths in biomedical domain.  One advantage is that 

RF can handle high-dimensional gene expression data but still quite robust to overfitting5. 

Secondly, the hierarchical tree structure may uncover interactions among genes and/or 

environmental factors that may not show significant marginal effect6. RF is useful for 

studying gene-gene interaction or gene-environment interaction because it doesn’t 

demand a pre-specified model with all interaction terms. In other words, RF can let the 

data tell what the model is rather than fit the data into a pre-conceived model. Further, RF 

can detect non-linear patterns of genotype-phenotype relationships. In addition, tree-

based methods are suited to deal with certain types of genetic heterogeneity, since early 

splits in the tree define separate models for subsets in the data7. Last but not the least, 

there are some high-quality and free implementations of RF. One example is a R package 

randomForest, from Liaw and Wiener, which is based on the original Fortran code from 

Breiman and Cutler8. 

In Chapter 2, we described an applied project, in which RF was used as the basis 

of the prediction algorithm of a high-throughput diagnostic system for determining 

absorbed dose of ionizing radiation from gene expression analysis of whole blood RNA. 

We demonstrated the challenges of non-linearity, gene-gene interaction, gene-

environment interaction and high heterogeneity in this dataset. RF was used to deal with 

those challenges. However, the primary limitation of RF and other tree-based methods is 

the nature of greedy algorithm. That is, the algorithm finds the best single variable for the 
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root node before adding additional variables as nodes in the model1. To model a general 

interaction effect between environment and across all genes, we forced the root node of 

RF models to be the environmental predictor. To further solve the heterogeneity, we 

proposed a framework of nested modeling to model subsets of samples and then assemble 

them. These techniques showed promises in improving the prediction accuracy of the 

prediction algorithm.  

1.2 Biomarker Discovery 

In the process of modeling the true genotype-phenotype relationships, we are 

usually facing a challenge of identifying relevant biomarkers. Biomarker discovery for a 

given disease or condition is important for many reasons9. Firstly, measurement of 

biomarkers requires advanced technology and can be expensive and time consuming in 

testing. For early diagnosis or detection of a disease, especially in situation where instant 

decisions need to be made, we prefer to measure a small number of biomarkers only. 

More importantly, testing on the most relevant biomarkers avoid overfitting and lead to 

the most accurate decision. Moreover, we can gain a deeper insight into the biological 

mechanism or underlying processes that generate the data. Therefore, computational 

method for biomarker discovery is essential for a good predictive model. 

Using RF as the learning method, there are some algorithms developed for feature 

selection, e.g., VSURF10 and varSelRF11. Both two methods consist of multiple iterations 

by adding or eliminating the features according to their variable importance (VI) scores at 

each iteration. Starting from ranking VI score from an ordinary RF, they select features to 

fit RF iteratively, and return the features that lead to the smallest out-of-bag (OOB) error. 
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In the RF framework, the most widely used VI score for a given variable is the increasing 

in the mean squared error (MSE) for regression and misclassification rate for 

classification when the observed values of this variable are randomly permuted in the 

OOB samples. Both methods rely on the permutation based VI scores, which is believed 

to be more reliable than the total decrease of node impurity measure12.  

The algorithm of VSURF firstly ranks all explanatory variables by VI score and 

retains all variables with VI score above a certain threshold. To find important variables 

for interpretation purpose, it starts from the most important variable, adding one variable 

at a time sequentially to the model. The algorithm finds the set of variables that leads to 

the model with the least OOB error. In this way, important variables are found even with 

some redundancy.  To select a smaller set of variables for prediction purpose, a stepwise 

variable introduction strategy is introduced. Among the variables selected from the 

interpretation step, each variable is entered into the model sequentially. The variable is 

kept if the OOB error drops otherwise it is removed. In this way, the algorithm finds a 

sufficient parsimonious set of important variables for prediction. 

Unlike VSURF, the method varSelRF is used for classification data only. In the 

method, instead of considering one feature at a time, the authors eliminated a fraction of 

features with the smallest importance score, e.g., 1/5, at each iteration. Thus, varSelRF is 

less computationally demanding than VSURF, however useful features with small 

importance scores may be eliminated. The key point of these RF-based methods is that 

they are fully non-parametric and free from the usual linear assumptions, while they keep 

all the advantages of RF performance. However, ensembles of RF demand a great 

amount of computation. 
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These RF-based feature selection algorithms show the benefits of RF for 

biomarker discovery. We implemented VSURF to select genes to predict absorbed dose 

for the radiation biodosimeter. However, beyond the model fit, we need to take into 

account some constraints and issues based on domain knowledge.  One challenge is to 

incorporate those constraints or domain knowledge into those data-driven feature 

selection algorithms. Domingos suggests use of domain knowledge as the most promising 

approach for constraining knowledge discovery and for avoiding overfitting13. For 

example, Jin proposed a new approach of knowledge-integrated biomarker discovery to 

overcome the obstacles of data noise in Mass Spectrometry analysis14. They built up a 

protein-protein interaction network for cardiovascular disease and put pairs of biomarkers 

into Support Vector Machines (SVM) for classification. Similarly, Zhou derived gene-

gene mutual information and combined with protein-protein interaction networks by a 

boosted tree regression method to discover disease-associated genes15. These methods 

showed improvement of model performance by the inclusion of knowledge-based 

information. However, they emphasized more on the development of knowledge network 

but there was no systematic way to select subsets of biomarkers that lead to the best 

model fit. 

In Chapter 3, we proposed a method of feature selection to incorporate domain 

knowledge for biomarker discovery, based on guided regularized random forest16. We 

used an embedded way for feature selection and penalized each biomarker by domain 

knowledge at each splitting node of RF. Using cross-species prediction as an example, 

we showed how domain knowledge can help to improve the animal model prediction on 
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human data. We also generalized this method to simulated scenarios, using intrinsic data 

characteristics as alternative of domain knowledge. 

1.3 Prediction Interval 

Lastly, in bioinformatics and many other domains, researchers develop models to 

predict the value of a quantity of interest from a number of observable variables.  

However, in many applications, decision makers need not only an accurate prediction but 

also the precision of that prediction. This precision is often represented using a prediction 

interval (PI).  While PI can often be readily generated for linear models when using 

common statistical models, creating PI for complex models is often more challenging and 

typically requires the use of non-parametric methods. Existing methodologies are few and 

limited in scope.  For example, quantile regression forest (QRF), utilized the full 

conditional distribution coming from RF to generate PI17, is overly conservative in its 

prediction coverage and has limited generalizability. In Chapter 4, we modified QRF and 

proposed a non-parametric method, RFerr, to create PI. This method is widely applicable 

and especially useful for complex models. We compared RFerr with QRF on several 

benchmark datasets and simulated datasets, and a real-word dataset from the 

biodosimeter. We found this novel approach improved PI with more accurate coverage 

and better precision. 

To conclude, the goal of this thesis is to demonstrate the use of RF to fit complex 

data of high heterogeneity, non-linearity relationship and interaction. Further, we extend 

the framework of RF to novel methods for feature selection and generating prediction 

interval.  
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CHAPTER 2 

ALGORITHM DEVELOPMENT OF A BIODOSIMETRY: APPLICATION OF 

RANDOM FOREST 

2.1 Introduction 

2.1.1 Significance of a Biodosimeter 

In the event of a large-scale radiation exposure, accurate and quick assessment of 

absorbed radiation dose would be desired for early triage and individualized medical 

treatment. In such an event, the vast majority of individuals would receive low and 

biologically insignificant dose18. With the help of dose estimates, we can rapidly triage 

people for prioritized medical management19 and to reliably assist in decision support for 

personalized medicine. According to some clinical guidelines, the treatment of radiologic 

victims should vary with dose estimates, exposure scenarios and presenting symptoms18. 

It is suggested that a short-term therapy with cytokines is appropriate when the exposure 

is relatively low, while a prolonged therapy with cytokines, blood transfusion, and even 

stem-cell transplantation would be more appropriate when exposure dose is high18. 

Therefore, the dose information provided by a biodosimetry is essential to achieve the 

most effective and efficient treatment, by identifying victims who would benefit the most 

by a certain medical intervention. 

Exposure to radiation generally leads to few immediate visible clinical signs, e.g. 

vomit. But it can severely cause damage to vital physiological functions and produce 

long-lasting health consequences among survivors20. Conventional biomosimetries 

integrate physical and clinical measurements to assess dose but have practical limitations. 
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For example, lymphocyte count can be used as an indicator to radiation dose21. However, 

because of the large variation in lymphocyte counts among normal individuals, this 

method generally requires repeated measurements over a prolonged period of time. 

Cytogenetic biodosimetry (CB) is another widely accepted method for dose assessment, 

which also requires about 4-5 days for measurements22. There are two more advanced 

algorithms utilizing clinical information to provide radiation assessment23, however, a 

high-throughput, quantitative assay and a prediction algorithm based on biomarkers is 

more desired. Currently, the dicentric assay is considered to be the gold standard for 

radiation biodosimetry. Although new approaches, such as automation of DNA repair and 

cytogenetic assays24, protein biomarker25,26 and metabolomics methods27 are being 

developed to improve the assay, it is still time consuming and requires sophisticated 

equipment and highly trained personnel. Therefore, our goal is to develop a high-

throughput biomosimeter that can easily provide rapid and accurate prediction of dose in 

response to the radiation disaster.  

Gene expression changes measured in easily accessible peripheral blood (PB) 

samples show promise for radiation biodosimetry. Therefore, we developed a high-

throughput diagnostic system for determining absorbed dose of ionizing radiation in the 

range from 0.5 – 10 Gy, based on gene expression analysis from whole blood RNA. The 

diagnostic system is designed to identify radiation-exposed individuals and assess 

radiation dose, especially during the first few days after exposure. The system can 

process patients’ blood samples and quantify gene expression through a high-throughput 

system. A prediction algorithm is then used to predict absorbed dose from gene 
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expression. Medical professional reports concerning dose estimate would be generated 

for physicians and patients for further treatment.  

2.1.2 Experimental Design 

Biodosimetries were developed by several groups using various models, including 

human blood samples irradiated ex vivo28,29,30,31 and blood samples from mice irradiated 

in vivo32,33,34,35. None of these models were satisfactory for the use in healthy human36. 

The ex vivo model, in which blood samples from healthy human were irradiated outside 

the body and cultured under lab conditions, is able to recapitulate some acute dose-

response seen in patients exposed in vivo, but cannot capture the full response of a 

complete organism. Mice in vivo model allows detailed dose-response testing and is more 

representative to a realistic scenario, but they are phylogenetically removed from humans.  

The most reliable biodosimetry would rely on human blood samples irradiated in 

vivo, but it is not ethical or practical to irradiate healthy people. The majority of human 

subjects who absorb radiation 1 Gy or more are usually accompanied with certain health 

issues, such as cancer, burns, or broken bones. These conditions could potentially 

confound their transcriptional profile. Moreover, the dose and post-exposure sampling 

time of the radiation from treatment is naturally different from a radiation disaster. In 

treatment, the radiation is usually delivered several times at a small fractional dose, and 

often targeted on a specific area of the body. While in a mass-exposure event, the 

radiation is exposed at a single time and uniformly absorbed by the body.  

Animal models can be built in a more controlled system than is possible with 

humans35. Due to the close phylogenetic relationship to humans, samples from non-
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human primates (NHP) are more preferred to develop a biodosimetry intended for human. 

However, there have been few reports using NHP models for radiation biodosimetry 

development. Therefore, we collected NHP samples irradiated in vivo to build a NHP 

model. Specifically, we randomly assigned NHPs into several groups to receive a certain 

amount of radiation. Our data mainly came from two labs. NHPs were irradiated by 

Cobalt 60 irradiator in Citox lab at each of the dose level of 0, 2, 4, 6, 7 and 10 Gy (n=12 

per dose). PB samples were obtained from these irradiated NHPs 24 hours before 

irradiation, and again on the 1, 2, 3, 5 and 7 days after irradiation. In parallel, in ROTR 

lab, NHPs were irradiated by LINAC irradiator at each of the dose level of 0, 2, 4, 6 and 

8 Gy (n=20 per dose), and were irradiated at each of the dose level of 1 and 10 Gy (n=10 

per dose). Besides, we also included some additional datasets, including blind samples, 

multigeneration samples and fractional dose (FD) samples that were part of other studies 

in ROTR lab. PB samples at ROTR lab were obtained from irradiated NHPs three days 

before irradiation, and on the 1, 3, 5 and 7 days after irradiation. Summary of sample size 

from different sources is shown in Table 1 and  Table 2.  

2.1.3 Quantification of Gene Expression 

All PB samples were processed by the high-throughput system in the clinical lab 

network. At the earlier stage of this project, gene expressions were measured by high-

throughput microarray and RNA-seq. A large number of genes were measured. The 

predictability of each gene was examined through their dose-response curve and 

univariate analysis. The most dose-responsive gene and/or the best-fitted gene were 

selected. Among them, genes with high baseline variability or strongly confounded by 
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age/gender/disease were excluded. At last, 79 biomarker candidates as well as 9 reference 

genes were targeted for qPCR assay development. This 88-gene panel was selected by 

integration of comprehensive datasets and confounder databases. It covered a broad range 

of radiation-related biological pathways, providing a great robustness of biodosimetry 

models. 

In the modeling process, mRNA expressions of the 88 genes were quantified by 

reverse-transcription real time PCR (Polymerase chain reaction). PCR is a technique used 

to amplify a single copy or a few copies of a piece of DNA. At each cycle, it doubles the 

number of DNA fragments in the sample. To measure gene expression, RNA is converted 

to cDNA and pre-amplified. Then in qPCR we measure the number of cycles it takes for 

the abundance of cDNA to exceed a certain cycle threshold (Ct). If there is a large 

amount of cDNA at the start of the reaction, fewer cycles will be required to accumulate 

enough products to cross the threshold line. Higher Ct value indicates lower abundance of 

a given gene. 

To reduce the variability from sample to sample, a reference gene is used to 

normalize the quantifications of gene expression. PPP6R3 is the gene we measured that 

has the least variability and is used as a housekeeper in our study. Ideally the reference 

gene should not respond to the external environment. As shown in Figure 1, PPP6R3 is 

constant across doses on early days. However, Ct value of PPP6R3 increases with dose, 

especially on day 7. That is because, on day 7, the lymphocyte count decreases in blood 

samples, so does the RNA abundance of all genes, including PPP6R3. But since the 

effect of lymphocyte count is beyond the effect of genes, the normalized value (ΔCt) still 

allows for different samples to be compared. To reduce the sample-to-sample variability 



 12 

and capture the dose-response of the raw Ct, we use ΔCt as the main predictors for 

modeling. Numeric value of PPP6R3 was categorized to indicate low, medium, and high 

level of lymphocyte count and was used as a candidate predictor.  

∆𝐶𝑡! = 𝐶𝑡! − 𝐶𝑡!!!!!!  #(2.1)  

 

 

2.1.4 Overview of datasets 

Table 1 Number of NHP from Difference Sources by Dose (Outlier Removed) 

Datasets Radiated dosage (Gy) Total 
0 1 2 3 4 6 7 8 10 12 13.2 

Citox 12  12  12 12 12  12   72 
ROTR 20 10 20  20 20  20 9   119 

FD          3 4 7 
Multigeneration 12    23 22      57 

Blind 3   2        5 
Total 47 10 32 2 55 54 12 20 21 3 4 260 
Table 1 and Table 2 shows the number of NHP evaluated for gene expression at 

each dose level and the number of observations at each time point from various sources, 

Figure 1 Dose-responsive Relationship of Reference Gene. Two plots are from 
two labs, Citox and ROTR, respectively. Variability of PPP6R3 was observed 
between the two labs. Lines of different colors represent dose-responsive curves on 
different day. 
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respectively. The outliers were removed if they had missing or invalid values for the 

housekeeping gene. Samples with missing data in three genes or more were removed or 

sent back to measure again. The rest of missing data were replaced by imputed value. 

Missing data was imputed by random forest and we used rfImpute function in R package 

randomForest. The final dataset that included 1357 observations from 260 animals was 

used to build a predictive model for predicting radiation dose. 

Table 2 Number of NHP from Difference Sources by Day (Outlier Removed) 

Datasets Pre-irradiated Days after exposure Total 
-3 -1 1 2 3 5 7 

Citox  72 71 68 72 72 70 425 
ROTR 119  118  119 118 116 590 

FD 7  7 3 4 7 6 34 
Multigeneration 57  57  57 56 56 283 

Blind 5  5  5 5 5 25 
Total 188 72 258 71 257 258 253 1357 

2.1.5 Overview of the full algorithm 

The ultimate objective for the biodosimeter is to facilitate diagnosis and 

management of radiation harm to human. But since the prediction algorithm is built from 

NHP models, additional algorithms are needed prior to applying the device on human.  

In the event of a radiation disaster, we would firstly draw blood samples from 

people who are potentially affected and the gene expression will be quantified by the 

high-throughput qPCR. Preliminary data cleaning includes quality control check and 

multiple imputation for missing data. A species-conversion algorithm will be used to map 

human gene expression to NHP gene expression. For patients who are under GCSF 

administration, an additional GCSF-conversion algorithm will also be applied.  After data 

cleaning and required conversion, the predictive model built with NHP data can be used 
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to predict radiation dose and provide an interval along with the point estimate. Figure 2 

presents an overview of the algorithm framework.  

 

Figure 2 Overview of the prediction algorithm. Quality control criteria, multiple 
imputation models, species conversion algorithm, and GCSF conversion algorithm are 
applied before we use the NHP algorithm to make a dose prediction for a human sample. 

 

2.1.6 Challenge with the available experimental data 

Using the available animal data, we built predictive models to predict radiation 

dose from gene expression. However, fitting the specific data has several challenges.  

1) The dataset is high dimensional with numerous gene predictors. These genes 

are to some extent correlated with each other.  

2) There is a large variability in this dataset. Animals were irradiated by different 

radiation sources at different labs. There is a large biological difference among the 

animals, and there is a large technical variability from the experiments.  
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3) Dose prediction should be continuous. However due to the experimental 

constraints, radiation was only received at certain discrete levels, i.e., 0, 1, 2, 4, 6, 7, 8, 10 

Gy.  

4) We have repeated measures at different time points, so observations within one 

animal are correlated.  

5) There are interaction effects, between day and genes, and between gene and 

gene. The relationships between genes and dose vary across days. Different sets of genes 

were dose-responsive on different days.  

6) The relationships between genes and dose are not linear. Different sets of genes 

were dose-responsive at different dose levels. 

 

 
Figure 3 Day Effect on Dose-responsive Relationships. Dose was plotted against ΔCt 
of some representative gene. Lines with different colors represented the dose-responsive 
curves on different days. Width of ribbons indicated standard error. For example, 
ACAA1 was an up-regulated gene on all days but the abundance of ACAA1 decreased on 
later days. CAMK4 was a down-regulated gene on the first few days but was less dose-
responsive on later days, while ALAS2 was on the opposite. 

Challenge 1: Day Effect 

Although RF is well known for its excellent predictive ability, there were still 

some challenges that cannot be easily dealt with by RF. One big challenge was the 
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interaction effects between day and gene expression. We observed a day effect on gene 

expression for all genes. That is, gene expression at the same dose level differed across 

days. Moreover, there were interaction effects between day and most genes. The 

relationships between dose and genes depended on day. Exploratory dose-responsive 

curves were examined before modeling. Figure 3 displayed some representative plots 

showing the relationships between dose and gene expression across days. For example, a 

day effect was observed for gene ACAA1. The expression of ACAA1 was consistently 

lower on later days. The dose-responsive patterns were almost the same on all days 

though. In contrast, for most of the other genes, the dose-responsive patterns differed 

across days. Gene sets that were dose-responsive were different from day to day. For 

example, ALAS2 was not responsive to radiation on early days, but was more dose-

responsive on later days. While CAMK4 was more dose-responsive on early days than on 

later days.  

Challenge 2: Non-linear Dose Response 

The second challenge of modeling was the non-linear relationships between gene 

expression and dose. Genes that were responsive to higher dose may not show its 

importance overall.  
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Figure 4 Non-linear Dose-responsive Relationships. ΔCt of some representative genes 
were plotted against delivered dose. Lines with different colors represented the dose-
responsive curves on different days. Width of ribbons indicated standard error. 

 

The non-linear trends were observed in most of genes. For example, as shown in 

Figure 4, CAMK4 on day 1 had a linear relationship with dose, but not on the other days. 

Because of the non-linearity, genes tended to respond to radiation only at a certain dose 

level. For example, PDE4B was more responsive at higher dose range while CDKN1A is 

more dose-responsive at lower dose range. Technically RF can handle the non-linearity in 

a nice way, but with a large number of candidate genes, feature selection added more 

problems to the non-linearity challenge. Different sets of genes need to be considered for 

different dose ranges.  

Challenge 3: Heterogeneity of Data 

Another big challenge was the large variability in the data. Variability came from 

a biological difference among animals, different protocols and radiation sources used in 

different labs, and technical variability in measurement and experiments. Modeling the 

heterogeneous data in one model was inferior. To deal with the large variability and 

handle feature selection at different dose ranges, we need more homogenous subgroups. 

For example, animals with similar radiation response can be grouped together, or animals 
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from the same labs can be grouped together. Within more homogenous groups, we can 

build submodels to predict radiation dose. By grouping similar animals together, we 

would be able to remove some noise and make better predictions within each 

homogenous group.  

2.2 Methods 

2.2.1 Early Work 

Some early work was done to model the radiation dose using mice microarray 

data. Because of the non-linear relationship between gene expression and dose, quadratic 

regression and 5-parameter logistic regression curves were tried to fit the data. However, 

due to the high-dimensionality of the data and the correlations among genes, feature 

selection process was extremely difficult, especially with the presence of interaction 

terms and quadratic terms. The regression models turned out to be too complex and were 

suspicious of overfitting. To deal with the non-linearity and the presence of interactions 

in an easier manner, we turn to random forest (RF) for a solution. 

2.2.2 Modeling 

To deal with interaction effect and capture the day effect, we built RF models 

respectively for each day, referred to naïve day-specific model. Pre-irradiated samples 

were combined with irradiated samples on a specific day for training. Furthermore, we 

tried fine-tuning to further improve the performance of each naïve day-specific model by 

nested modeling. To generate more homogenous subgroups, we separated samples 

according to their dose estimate by supervised prediction. We firstly built a primary 
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model using RF and created subgroups with similar dose estimate. We set fixed intervals 

to separate samples into smaller groups. Table 3 was the grouping schema we used to 

separate samples. The interval length was set to either 3 Gy or 4 Gy. Using 3 Gy intervals, 

there were nine subgroups created and thus more submodels were built. Using 4 Gy 

intervals yielded fewer submodels and thus less complicated. We chose the 

number/interval of subgroups based on this rational: if the subgroups were too big, there 

would remain large variability and the nested modeling would not make a big difference. 

If the subgroups were too small, each subgroup may not have enough distinct response 

values, which was not good for a regression prediction. Moreover, models with too few 

training data were not robust and may be in danger of overfitting.  

Table 3 Schema of Creating Subgroups Based on Dose Estimates 

Grouping interval (Gy)  
Subgroup 3 Gy  4 Gy  

0-3 0-4 1 
1-4 2-6 2 
2-5 4-8 3 
3-6 6-10 4 
4-7 >8 5 
5-8  6 
6-9  7 
7-10  8 
>8  9 
 

Once subgroups were defined, we built submodels individually for each group. 

Feature selection was done for each submodel. For prediction of a new sample, we firstly 

generate an initial dose estimate from the naïve day-specific model. If the dose estimate 

is within the ranges of several subgroups, we make predictions using all corresponding 

submodels. For example, if a new sample is predicted as 3.6 Gy from the naïve day-
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specific model and the subgroups have an interval of 3 Gy, since 3.6 Gy is within the 

range of 1-4 Gy, 2-5 Gy, and 3-6 Gy, we would make predictions using all three 

corresponding submodels (submodel 2, 3, 4). The final dose estimate of the new sample 

is the average of the corresponding submodels’ predictions. 

2.2.3 Description of NHP Algorithm 

The proposed algorithm for NHP nested model is summarized as follows: 

Model training: 

1) Combine pre-irradiated samples and samples obtained on day 𝑖, 𝑖 ∈

{1,2,3,5,7}. Build a naïve day-specific model 𝑀! to predict dose using selected genes. 

Features are selected using a specific feature selection process. 

2) Group samples into homogenous subgroups based on predictions 𝑌!!from 

𝑀! (Grouping criteria refer to Table 3). Note that samples may belong to more than one 

subgroups. 

3) Build a RF submodel 𝑆𝑀!,!  using samples in subgroup 𝑗, 𝑗 ∈

1,2,… ,9 . Feature selection is done for each submodel.  

Model testing: 

1) Given a test sample 𝑥!"# obtained on day i, run an initial model 𝑀! to get 

a prediction 𝑦!!,!"# . 

2) Determine applicable submodels 𝑆𝑀!,!  according to Table 3. Note that 

there may be more than one applicable submodels. 

3) Run each applicable submodel to get a dose estimate. Take an average of 

dose estimates as the final prediction. 
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𝑦!"# = 𝑦!!,!,!"#  # 2.2  

To compare with the day-specific naïve models and nested models, we also 

applied some popular algorithms on the complete dataset, using nearest neighbor (NN), 

ridge regression (RR) and RF. We combined pre-irradiated samples, which were obtained 

before irradiation with irradiated samples obtained on all days for training (n=1357). The 

same set of selected genes (16 genes) and day information were used as predictors to 

build these models. The selection of gene panel was described later. 

NN was implemented using kknn function in R packages kknn. Parameters tuned 

for NN included the number of neighbors considered (k). We set k to 12 and kernel 

function to optimal for the best performance of NN. RR was implemented using 

linearRidge function in R package ridge under default setting. No interaction term or 

higher-order term was specified in the regression model. RF was implemented using 

randomForest function in R package randomForest. Because there was an unavoidable 

randomness in RF algorithm, we repeated the RF modeling 5 times to assess the 

variability from multiple runs. 

2.2.4 Group by Clustering 

Another way to create homogenous subgroups is by unsupervised clustering. 

When dose information was not given for training, an unsupervised clustering algorithm 

can split samples into a certain number of clusters based on their gene expression. Similar 

to supervised model, this method generated subgroups based on their radiation response, 

but not the actual dose delivered.  
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K-means clustering algorithm was used for unsupervised clustering. K-means 

clustering is a method commonly used to group samples into different clusters37. This 

algorithm requires firstly determination of the number of clusters (k) in the data, and 

randomly assigning k numbers of centroids to the dataset. Then it clusters samples to the 

closest centroid according to their distance. Centroids and distances are calculated 

iteratively and the algorithm converges when the centroids no longer change. 

Once clusters were determined, we used the cluster label as the response to build 

a predictive model using RF. When a new sample came in, we firstly determined which 

cluster the new sample belonged to, and then used the corresponding submodel to 

generate a dose estimate. 

Using Day 1 data as an example, we implemented K-means clustering using 

kmeans function in R package stats. We at first determined the number of clusters (k) by 

examining the within-groups sum of squared errors (SSE) with the change of k. The 

number of clusters was set to 5 and 6 to test the unsupervised model. 

To evaluate each model, leave-one-out cross-validation was used for all methods. 

The evaluation was repeated 5 times to capture the variability of RF. Prediction accuracy 

is only reported for irradiated samples (n=1098). The performance metrics we used were 

Mean Squared Error (MSE) and prediction accuracy within 1 Gy. Prediction accuracy at 

different dose levels may have different clinical implications. Accuracy at a lower dose 

range (0-3 Gy) is important for early triage. Accuracy at a middle dose range (3-7 Gy) is 

important to determine which treatment would be applicable according to the exposure 

dose. On the other hand, patients who exposed to extremely high-level radiation (>7 Gy) 

will show obvious signs and call for rapid medical intervention and further testing. 
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Prediction accuracy for high dose samples is less important. Due to the limited samples at 

higher dose, we grouped samples that are exposed to more than 10 Gy into one group.  

2.2.5 Feature Selection 

We used VSURF function in R package VSURF to select features for each day and 

each submodels separately. To generate a sufficient parsimonious panel of radiation 

biomarkers, we also considered some constraints and prior knowledge. Although most 

selection were data driven, we also tried manually excluding, adding or replacing genes. 

Constraint 1: Prior Knowledge of Genes 

There is an intrinsic difference in human and NHP genes. Although a species 

conversion algorithm was developed to map human genes to NHP genes, some NHP 

genes were not well predictable. Therefore, highly human-correlated genes are more 

preferable. Beyond the predictive capacity, we considered the cross-species correlation in 

biomarker discovery. If two genes were equally predictive of dose, we preferred the one 

that was more correlated with human gene.  

Similarly, some genes are more likely to be influenced by potential confounders, 

such as GCSF treatment, disease, gender and age. We also considered the confounding 

effects. If two genes were equally predictive of dose, we preferred the one that was not 

confounded by potential confounders. 

In practice, to incorporate the prior knowledge of these genes, we manually 

included or excluded some genes according to their characteristics. If an undesirable gene 

was selected by VSURF, we tried excluding it or replacing it with some other genes that 
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are highly correlated with it. If the error rate didn’t increase significantly, we chose the 

set of genes without the undesirable genes. 

Constraint 2: Continuity Across Models 

As observed from exploratory plots, the dose-responsive curves of each gene vary 

across days and across dose ranges. Feature selection was done for each day and each 

dose range (submodel) separately. However, for the sake of interpretability, we want to 

keep the consistency of predictors across days and submodels. That is, same gene is 

desired to be used for consecutive models in a continuous manner. For example, TEX10 

was selected for models on day 1, 2 and 3. ALOX5 was selected for submodel 7, 8 and 9 

on day 1.   

However, data-driven feature selection would not consider the continuity across 

models. We manually added or deleted genes in order to enforce that continuity. For 

example, if a gene is selected by VSURF for day 1 and day 3, we added it to day 2 model 

if it doesn’t hurt the model performance. Or if a gene is selected for submodel 2 and 4 but 

not for submodel 3, we manually added it to submodel 3.  

Constraint 3: Total Number of Biomarkers in the Panel 

As discussed before, our ultimate aim for feature selection is to generate a panel 

of the smallest possible number of biomarkers to predict dose. Therefore, we want to 

control the total number of genes that are used in the whole model. To do that, we 

examined how many times a gene was selected by the algorithm and in which models it 

was used. If a gene is only selected in one submodel on a single day, we excluded it or 

replaced it by an existing gene.   
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2.3 Results 

Figure 5 shows the change of Mean Square Error (MSE) with the number of 

neighbors in NN algorithm. Table 4 compares the performance of NN to RR, grand all-

day RF model, naïve day-specific RF models and nested day-specific RF models. Genes 

that were used for modeling were shown in Table 9. The selected gene panel includes 16 

genes that were used on different days and different submodels. PPP6R3 was the 

reference gene and the binned category of PPP6R3 was used on Day 5 and 7 as a 

predictor. Genes marked as red were used in the naïve models. All 16 genes were used to 

build NN, RR, and RF on the complete dataset.  

 

Figure 5 Parameter Tuning for Nearest Neighbor Algorithm. We observed a drop of 
MSE as k increased from 1 to 20, and then MSE increased with k. It suggested an 
overfitting when k was too large. We set k to 12 for the best performance of nearest 
neighbor algorithm.  
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Figure 6 Model Comparison: Prediction Accuracy (%) within 1 Gy. Accuracy of RR 
and NN were lower than RF. There was no variability associated with RR and NN. RF-
based models were evaluated five times and error bar indicated the variability. Nested 
Day-specific RF models outperformed all the other models.  

 
The performance was the best using nested day-specific models. To determine the 

best strategy to generate subgroups, we tested several methods to build nested models. 

Table 5 was a comparison of all nested methods on Day 1. The naïve day-specific RF 

model yielded a prediction accuracy of 66%. Nested modeling using supervised 

prediction as the primary model worked the best. Using a fixed interval of 3 Gy improved 

the overall accuracy to 74%, and using a fixed interval of 4 Gy improved the overall 

accuracy to 72%. Nested modeling using clustering didn’t improve the accuracy 

significantly. With five clusters, accuracy was improved to 69%. With six clusters, 
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accuracy was not improved. Therefore, we tested the nested modeling on the other days’ 

data using supervised prediction for grouping. 

We tested the nesting modeling using 3 Gy interval and 4 Gy interval on other 

days. It didn’t appear one way of subgrouping was always outperforming the other. In 

fact, the 3 Gy fixed interval method worked the best for the first three days’ datasets, but 

worse than the 4 Gy fixed interval method on day 5 and day 7. Performance comparison 

was shown from Table 6. 

 

Figure 7 Within-group SSE with the Change of k. The changes of SSE with k were 
very similar from day 1 to day 7. With more clusters, sum of squared errors (SSE) always 
decreases. The best number of clusters can be found at the elbow of the curves. 
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Figure 8 Clustered Samples on Day 1. We investigated the number of clusters (k) from 
3 to 7. Color indicates data sources. Data from different sources were not separated well. 
Y-axis represents actual dose. Samples with close exposed doses were clustered. 

 

 

Table 5 Model Comparison of Nested Modeling Methods (Day 1) 

Model  <1 Gy % 
0 1 2 4 6 7 8 10 avg 

Naïve model 100 60 75 60 64 92 30 35 66 
Nested model (3 Gy interval) 100 80 91 67 60 92 60 45 74 
Nested model (4 Gy interval) 100 80 84 65 60 92 55 35 72 
Nested model (5 clusters) 100 100 88 53 64 83 45 30 69 
Nested model (6 clusters) 100 70 81 45 63 83 65 20 66 
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Figure 9 Nested Models Comparison on Day 1. Nested model using fixed interval in 
general improved the prediction accuracy within 1 Gy. Nested model using clustering 
didn’t improve the performance significantly. 

 

Table 6 Model Comparison of Nested Modeling Methods (Day 3 - 7) 

 

 

 

 

 

 
Methods 

 
Day 

<1 Gy (%) 
0 1 2 4 6 7 8 10 avg 

Naïve model  
3 

98 100 91 78 72 83 70 33 78 
Nested model (3 Gy) 98 100 91 82 74 83 85 57 82 
Nested model (4 Gy) 98 100 88 88 74 67 60 57 80 

Naïve model  
5 

98 90 81 62 64 25 65 20 66 
Nested model (3 Gy) 98 100 84 66 68 56 65 25 71 
Nested model (4 Gy) 98 100 81 70 70 63 70 20 72 

Naïve model  
7 

96 90 69 78 75 67 65 50 75 
Nested model (3 Gy) 96 90 88 73 75 67 60 59 76 
Nested model (4 Gy) 100 90 88 76 75 67 65 59 78 
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Table 7 Model Performance: MSE and Prediction Accuracy within 1 Gy (%) 

Day\Dose MSE 0 1 2 4 6 7 8 >10 Avg. 
1 1.38 100 80 94 65 58 92 60 33 72 
2 0.65 100 - 91 70 82 83 - 67 82 
3 0.70 98 100 94 82 74 75 80 52 82 
5 1.40 98 100 90 64 68 50 70 19 71 
7 0.85 100 90 88 78 74 67 65 64 79 
Avg. 1.06 99 93 91 72 69 73 69 44 76 
 

Table 8 Model Performance: Mean Dose Estimate (Gy) 

Day\Dose 0 1 2 4 6 7 8 >10 
1 0.1 1.5 2.5 4.6 6.5 7.2 6.9 8.2 
2 0.1 - 2.4 3.9 6.4 7.4 - 9.0 
3 0.1 0.9 2.3 4.4 6.4 7.3 7.6 8.4 
5 0.1 1.1 2.2 4.9 6.0 6.4 7.4 8.1 
7 0.1 1.3 2.7 4.6 6.0 6.2 6.8 8.4 

Avg. 0.1 1.2 2.4 4.6 6.2 6.9 7.2 8.4 
SD 0.2 0.8 0.8 1.0 1.1 1.0 1.3 1.2 

 

The model performance of the nested model was shown in Table 7. The final 

predictions were obtained under leave-one-out cross-validation (LOOCV). By building 

day-specific models and nested modeling, the prediction accuracy was improved from 66% 

to 76%. The largest improvement was observed on samples that received radiation at the 

dose range of 2-4 Gy and more than 7 Gy. As shown in the table, the biodosimetry can 

successfully classify non-affected population and irradiated population with an accuracy 

of 98%. Prediction accuracy is the highest on day 2 and day 3. As seen in Table 8 and 

Figure 10, dose estimates are close to the true dose delivered but prediction variability is 

quite large on day 5 and day 7. The dose estimates for samples irradiated at a higher dose 

are still likely to be underestimated.  
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Table 9 Model Performance: Gene Panel of the Biodosimetry 

Gene Day 1 Day 2 Day 3 Day 5 Day 7 
CXXC5 X X X   
TEX10 X X X   
CD97 X X X   
MYC X X X X  

ACAA1 X X X X  
SPECC1  X X X X 
PNOC  X X X X 
ALAS2   X X X 
ALOX5 X X X X  
CAMK4 X X X X  

CDKN1A X X X X X 
COCH X X X X  
HBA2   X X X 
HCK  X X X  

MOB3B   X X X 
PDE4B     X 
PPP6R3     X X 
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Figure 10 Model Performance: Dose Estimates under LOOCV. Estimated dose is 
plotted against true dose delivered. Error bars show the actual predictions for all samples. 
Dose levels are indicated by different colors.  

 

2.4 Discussion and conclusion 

This study validates the use of high-throughput assay on PB samples for 

biodosimetry applications in radiation mass causalities. The biodosimetry is designed to 

be used in a general scenario, regardless of the processing lab or irradiator. However, in a 

possible occurrence of a large radiological or nuclear event, the medical system is easily 

overwhelmed, so as the laboratories where the samples are processed. The use of multiple 
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laboratories could provide assurance of the generalizability and capability of an adequate 

biodosimetry38. To meet this requirement, we modeled a full set of heterogeneous 

samples, collected from different labs and irradiated with different irradiators. This posed 

a challenge of heterogeneity for modeling. 

The predictive value of the biodosimetry is critical when it is used to aid in 

medical triage and to manage the care of those with radiation injuries. In this applied 

project, we applied RF regression to predict radiation dose from gene expression. To deal 

with the heterogeneity of the dataset, we built five day-specific models and applied a 

nested modeling technique to reduce variability in each submodel. Compared to a grand 

all-day combined RF model, the prediction accuracy within 1 Gy was improved from 67% 

to 76%.  

The grand all-day combined RF model is not satisfactory. One reason may be the 

heterogeneity in the all-day combined data. Different sets of gene were dose-responsive 

on different days. It was hard to capture the heterogeneity in one RF model. Such 

complexities influenced the model performance. Another reason may be that RF cannot 

handle well the interaction effects between day and gene. Because most of the genes had 

interaction effects with day, day was expected to play an important role in the predictive 

model. However, in the feature selection process, day was not as predictive as individual 

gene in the model if we combined all observations in one dataset. One possible reason 

may be that the day effect was mostly an interaction effect. The interaction of day with 

each gene was predictive of the radiation dose. But the marginal effect of day was not 

significant. Because decision tree is a greedy algorithm that only considers the 

information gain at the current single split, it may not consider the day factor as important 
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as other genes. Because almost all gene effects depended on day, the day effect was 

beyond all gene effects. We would not want to treat the day factor the same as the other 

genes. Therefore, day would be better at the top level of the decision tree rather than at 

some random decision nodes. The prediction of the day-specific models had smaller MSE 

and higher prediction accuracy than the grand all-day model. The largest improvement is 

seen at the dose range from 1 Gy to 6 Gy, which is the most important dose range 

concerning clinical implications. 

Nested models further improved accuracy by ensembling submodels and 

predicting in a more refined prediction space. We observed that the prediction accuracies 

for higher dose samples were often much worse than for lower dose samples. Using day-

specific models, the prediction accuracy within 1 Gy were below 70% for samples 

irradiated by more than 7 Gy, and was only 38% for samples irradiated by more than 10 

Gy. The worse accuracy for higher dose was also observed in other biodosimetry. Paul 

and Amundson pointed out, as doses rise above 5-8 Gy range, any biodosimetric method 

based on lymphocytes, including the gold-standard cytogenetic methods, will be of 

decreasing utility39. 

The difference in accuracy across delivered dose may be caused by the non-

linearity of dose response. Paul and Amundson found similar pattern of dose-responsive 

behavior: the majority of the genes in their profiles were responding only at one dose, or 

showing increased expression at one dose and decreased expression at another39. It 

motivated us to separate samples into smaller groups with smaller dose ranges. So we can 

focus on improving prediction at specific dose range. By nested modeling, the accuracy 
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of samples irradiated by more than 7 Gy was improved to above 70%, and accuracy of 

samples irradiated by more than 10 Gy was improved to 44%. 

We also tested clustering algorithm to generate subgroups for nested modeling. 

Clustering methods generally didn’t work well for this dataset. One reason may be 

because that the model used to determine clusters was not satisfactory. In clustering, 

although dose information was unknown, the clusters seemed to be separated by the 

radiation dose, rather than data sources as we expected (Figure 8). The variability caused 

by different sources was not removed. Because samples were not separated well in a 

meaningful way and clusters were subject to change from run to run, using cluster label 

as a response variable may only capture some noise and part of the dose information. 

Secondly, some clusters, especially clusters with lower dose samples, included too few 

response values, which was difficult for regression prediction. Thirdly, variability of 

responses in higher-dose cluster was still large. Predictions of those submodels could be 

even worse with fewer samples in each subgroup.  

The accuracy improvement by nested models may be caused by feature selection. 

By dividing samples into smaller groups with close dose estimate, we were able to select 

the most relevant genes for the specific dose range. In a literature review of about 300 

publications on protein biodosimetry of human exposure to ionizing radiation, different 

panels of gene were found to produce a unique response pattern depending on the dose 

and time after exposure. A panel of biomarkers, each with different dose and time optima, 

is highly recommended to improve individual radiation biodosimetry40. While 

considering constraints and domain knowledge, we downsized the gene panel to 16 genes, 

which is significantly smaller than existing methods. For example, twenty-five features 
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were selected only to classify the unexposed and exposed samples41. To distinguish at a 

broader range of radiation dose, a 74-gene signature were used to classify between 4 

doses and controls39.  

Other than the improved prediction accuracy, our biodosimetry has some general 

advantages, compared to existing methods. Firstly, most of biodosimetries are often used 

to distinguish between a few dose levels or predict in a small dose range. For example, a 

3-nearest neighbor classifier built from patient data can predict samples as exposed to 0, 

1.25 or 3.75 Gy with 94% accuracy41. The Dicentric Chromosome Assay (DCA) is 

considered the gold standard in biological dosimetry. It only has a dose range of 

approximately 0.5-5 Gy42,43. Beyond that, the relation between dose and dicentrics breaks 

down because higher radiation dose would reduce cell proliferation. As damaged cells 

cycle slower than undamaged cells, fewer cells can actually reach metaphase44. In 

contrast, our algorithm can predict in a continuous scale of radiation exposure from 0 Gy 

to 10 Gy. Secondly, we allow for a rapid, single-time measurement. Because DCA is time 

consuming as all scoring must be performed manually, it is difficult to implement in a 

mass casualty event45. Our biodosimetry take day a predictor and provide a dose estimate 

for patients from day 1 to day 5 after radiation exposure. 

One big limitation of the algorithm is the complexity, especially from the nested 

models. The computational cost of modeling was very high. By building day-specific 

models, we increased the number of models to five. In nested models, we built five or 

nine submodels according to day. Feature selection was done for each initial model as 

well as all submodels. The computational cost for testing is affordable though. We only 

need to run one day-specific model to choose submodels and then use up to three 
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submodels to predict dose for a new sample. The computation time of testing is more of a 

concern. To achieve a fast and accurate biodosimetry, this complex algorithm is a 

compromise.  

Another concern is the chance of overfitting. Although evaluated by cross-

validation, this algorithm may be suspicious of overfitting because of the complexity. To 

avoid overfitting, we did feature selection for each submodel. The number of genes used 

in each submodel was quite small so each submodel should be robust to overfitting. 

Moreover, the naïve model was only used to determine applicable submodels. The initial 

dose estimate indicated a wide range of possible submodels that may apply to the new 

samples. The actual dose estimates from the naïve model were not used for the final dose 

prediction.  

In future work, we can generalize the nested modeling technique to deal with 

heterogeneous data in general. In nested models, we firstly build a model to create 

subgroups, in which the samples are more homogenous. Then we target on each 

homogenous dataset and build a submodel for it. By using nested modeling, we aim for 

creating better predictions from submodels and then improve the performance of the 

overall model. To generalize this methodology, we can test the technique on various 

datasets, varying by their heterogeneity and/or complexity and find out when this method 

would be the most applicable. We can also try different strategies to create homogenous 

subgroups and determine the number of subgroups. In this application, subgroups were 

created by dose estimate within either 3 Gy or 4 Gy intervals. Unsupervised clustering 

did not work well in this applied project because no genes are good predictors of clusters. 

In situation where we can successfully cluster subjects into meaningful groups, an 
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unsupervised algorithm may be preferred. Finally, we need to find the best way to 

aggregate predictions from submodels. For simplicity, we took an average of predictions 

from submodels that were applicable. In future, we can also try weighted average by the 

distance to or probability of each submodel. 

However, the use of nested modeling techniques should be extremely careful. 

Overfitting is always a concern for complex algorithms. When sample size is limited and 

feature set is large, we should reduce the selected features in the predictive algorithm as 

much as possible. In this applied project, we selected features for each submodel using a 

data-driven selection algorithm VSURF, while considering prior knowledge and 

constraints. We tried adding, removing or replacing genes manually to incorporate 

domain knowledge and constraints. However, it requires a lot of repeat work and we may 

omit useful features during the manual selection process. In biomarker discovery studies, 

incorporate domain knowledge into an automated feature selection algorithm is a 

common challenge and we address it in the next chapter. 
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CHAPTER 3 

A NOVEL METHOD OF BIOMARKER DISCOVERY WITH GUIDED 

REGULARIZED RANDOM FOREST 

3.1 Introduction 

Feature selection is usually needed along with predictive modeling. In general, 

feature selection can help to provide more insights into the underlying relationships or 

processes by focusing on a smaller number of features; generate more reliable predictions 

by excluding noises; and provide faster and more efficient models for future studies and 

testing46. In most biomarker discovery applications, we typically assume that all features 

are equally important before the selection procedures. In reality, we usually have some 

prior knowledge or constraints for some features. It has been shown that use of prior 

knowledge induces a large gain in stability with improved classification performance47. 

However, there is a lack of systemic ways for feature selection with constraints in 

biomedical studies. In this chapter, we developed a novel feature selection method while 

considering some domain knowledge or constraints. 

Traditionally, there are three general approaches for feature selection: filters, 

wrappers and embedded methods48,49. Filter type methods are usually based on the 

intrinsic characteristics, which determine the relevance to the target. Simple methods 

based on statistical test (t-test, F-test) have been shown to be effective. One common 

practice of these methods is to simply select the top-ranked features according to 

statistics, e.g., p-value or VI score. These methods can be implemented easily and 
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efficiently. But they would also result in high redundancy in the feature sets and the 

cutoff is quite subjective. Another criticism is that they ignore the interaction between 

variables since most proposed techniques are univariate. 

In wrapper methods, feature selection is “wrapped” around a learning method. 

They utilize the learning machine of interest as a black box to select subsets of variables49. 

The usefulness of a feature can be directly determined by the performance of the learning 

method. By using the learning machine as a black box, wrappers are simple but require 

either “brute force” search or more efficient greedy search strategies. Common practices 

include forward selection, backward selection or stepwise selection. VSURF and 

varSelRF are examples of wrapper methods using RF as the learning method. While they 

keep all the advantages of RF, ensembles of RF demand a great amount of computation.  

“Embedded” methods implement the same idea as wrapper but proceed more 

efficiently. They usually define a loss and directly optimize a two-part objective function 

with a goodness-of-fit term and a penalty for a large number of variables. Examples 

include L1-regularized regression via Lasso50 and the use of weights for each feature in 

linear classifier, such as SVMs51. These weights are used to reflect the relevance of each 

variable in a multivariate way. Variables with very small weights are removed from the 

feature set.  

3.1.1 Guided Regularized Random Forest 

In the framework of RF, the regularized random forest (RRF) is an example of 

“embedded” method. It uses RF in an embedded way to select features at each node. RRF 

was initially proposed to reduce redundancy for feature selection by building only one 
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ensemble, instead of multiple ensembles16. The ordinary RF models have a built-in 

mechanism to perform feature selection at each splitting node52. Variable with the highest 

information gain would be selected at the splitting node. However, with a small number 

of instances and a large number of features, many features can share the same 

information gain at a node. Therefore, RF is likely to select a feature that is not strongly 

relevant. RRF applies the tree regularization to RF and can select a compact subset of 

features. RRF is built in a similar way as RF. The main difference is that the information 

gain in RRF is regularized by a penalty coefficient 𝜆! . When 𝜆!  is determined from 

variable importance score, the algorithm is referred to as guided RRF (GRRF).  

𝐺𝑎𝑖𝑛! 𝑋! , 𝑣 = 𝜆!  𝐺𝑎𝑖𝑛 𝑋! , 𝑣    𝑖 ∉ 𝐹
𝐺𝑎𝑖𝑛 𝑋! , 𝑣   𝑖 ∈ 𝐹 # 3.1  

𝐹 starts from an empty set and then accumulate each selected feature used for splitting. If 

feature 𝑖 is not selected in previous nodes, a regularization term 𝜆! is used to penalize 

feature 𝑖 for splitting node 𝑣. Therefore, RRF can penalize variables based on redundancy. 

Penalty coefficient λ is constrained between 0 and 1. A smaller λ leads to a larger penalty. 

The feature with the highest penalized information gain Gain! X!, v  would be added to 

the feature set F.  

GRRF guilds the penalty by variable importance of each feature. Variables whose 

VI score is higher tend to be penalized less. When implementing the GRRF, the authors 

assigned a penalty coefficient 𝜆!  as a function of VI. VI is normalized to meet the 

constraint of penalty coefficient.   

𝑉𝐼!! =
𝑉𝐼!

𝑚𝑎𝑥!!!
! 𝑉𝐼!

# 3.2  
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𝜆! = 1− 𝛾 + 𝛾𝑉𝐼!!# 3.3

 In equation (3.3), regularized coefficient 𝛾 ∈ [0,1]  controls the degree of 

regularization. A higher 𝛾 indicates a more important role that VI plays in determining 

the penalty. Deng and Runger found the size of feature set is decreasing with the increase 

of 𝛾 but is less sensitive to 𝛾 when 𝛾 is greater than 0.5. Error rate is robust to the change 

of 𝛾16. 

3.1.2 Limitation of GRRF 

RRF suggested an idea of penalizing features in the process of node splitting and 

GRRF further suggested weighting the penalty by the importance of variables. Inspired 

by these ideas, we incorporate domain knowledge as a weight instead of VI for feature 

selection using RF by applying the framework of GRRF. However, there are some 

limitations that need to be addressed on. 

1. The variable set selected by GRRF has a large variation. Because the penalty is 

depending on whether or not the feature is selected in previous nodes, the order of 

selection brings extra randomness.  

2. Unlike wrapper methods, GRRF doesn’t select features while considering or 

optimizing the model performance. Among the 10 datasets they investigated, the 

prediction accuracy using features selected by GRRF is no better than an ordinary RF 

using all features. 

3. Because there is only one ensemble built, the feature set and model performance 

entirely depend on the penalty coefficient. However, there is a lack of guidance on how 

to set the parameter and the performance is generally insensitive to the tuned parameter.  
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4. GRRF uses VI to guide the regularization. VI is based on RF itself and is not 

stable from run to run. It also points out that the permutation VI overestimates the VI of 

highly correlated variable53. 

3.1.3 New algorithm: Know-GRRF 

GRRF, like all other data-driven feature selection methods, in not intended to 

incorporate domain knowledge. We modified GRRF to take domain knowledge into 

account for feature selection, thus we refer it to Know-GRRF. We firstly redefined the 

penalty coefficient 𝜆, as a function of domain knowledge indicated in the regularization 

term. The coefficient defined in GRRF can regulate the size of feature sets but is not 

improving the model performance. We proposed a different way to determine 𝜆. 

Secondly, we implemented GRRF for regression. Similar to penalizing Gini 

information gain in classification, we penalize the decrease of MSE for regression 

problem. GRRF for regression was implemented in the RRF R package (V1.7) available 

at CRAN, the official R package archive. To reduce randomness, we set mtry to the 

number of all features for GRRF regression. 

We developed a more generalizable method for feature selection using Know-

GRRF. The biggest challenge here is to more efficiently optimize the regularization term 

to achieve the best model performance. We developed an “embedded” method to search 

the best regularization parameter while optimizing model performance. For example, we 

can minimize Akaike's information criterion (AIC) of the training model. Similar to L1 

and L2 regularization, AIC is a two-part loss function of goodness-of-fit measure and 

number of features.  
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𝐴𝐼𝐶 = 2𝑘 − 2 ln 𝐿 # 3.4  

ln (𝐿) =
𝑦!

!

!

ln𝑝! + 1− 𝑦! ln 1− 𝑝!    𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

−
𝑛
2 𝑙𝑛

𝑦! − 𝑦! !!
!

𝑛                          𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

# 3.5  

 

n is the sample size and k is the number of selected features. In classification problems, 

𝑝! is the probability of being predicted as 𝑦! . If  𝑝! = 0, it was replaced by  𝑝! =
!
!!

, or if 

𝑝! = 1, it was replaced by 𝑝! = 1− !
!!

. 

The proposed algorithm for Know-GRRF is summarized as follows: 

1. Select a statistic (VI, correlation, q-value, etc) or define domain knowledge as 

numerical scores to reflect the relative importance of all features. Normalize the scores by 

dividing the maximum value of the score. 

𝑠𝑐𝑜𝑟𝑒!! =
𝑠𝑐𝑜𝑟𝑒!

𝑚𝑎𝑥!!!
! 𝑠𝑐𝑜𝑟𝑒!

# 3.6  

2. Build a GRRF model. Set mtry to the number of all features and penalty 

coefficient as an exponential function of the normalized score. 

𝜆! =  𝑠𝑐𝑜𝑟𝑒!!
!# 3.7  

3. Build a RF model using the feature set returned by GRRF in Step (2) and compute 

model performance, e.g., MSE or AIC using OOB predictions. 

4. Repeat Step (2) and (3) n times. Return the mean of model performance over n 

runs. 

5. Optimize 𝛿 in equation (3.7) to minimum the mean of MSE or AIC in Step (4). 
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6. Set 𝛿 to the optimized value in Step (5). Build GRRF models m times and return 

m sets of selected features. Run a stability test by adding features sequentially according 

to the selection frequency and select the set of features that lead to the best model 

performance, i.e, smallest AIC. 

 

3.2 Method 

To test Know-GRRF, we applied it on the real-world data sets from the radiation 

biodosimetry research project. We incorporated cross-species correlation as domain 

knowledge for Know-GRRF, and compared it to some existing methods. We also test the 

generalizability of Know-GRRF on simulated datasets. Because domain knowledge is not 

available for simulation, we use intrinsic data characteristics to select features using 

Know-GRRF.  

3.2.1 Radiation Datasets 

a. Twenty-five human subjects who went through radiation as part of cancer 

therapy were included in this study. They received accumulate radiation dose of 3.6 Gy, 

7.2 Gy and 10.8 Gy on day 1, 2, 3 consecutively. Thirty-five genes, including two 

reference genes, were profiled using qPCR. Genes with missing value in more than half 

of the observations were removed from further analysis. The final set of candidate genes 

for feature selection was 28 (N=115). 

b. Part of NHP data on day 1 was used to train the model (Citox and ROTR 

datasets, N=190). The same set of 28 genes was candidate for the predictive model. 
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c. NHPs who received single dose of radiation at dose level of 4 Gy, 7 Gy and 10 

Gy on day 1 were used to map human genes to NHP genes. (N=96). 

d. Cross-species gene correlations of the 28 genes were obtained from 10 human 

subjects and 10 NHP subjects who received radiation at fractional dose in another study36. 

Radiation was given to human and NHP in the same way at 0, 3.6, 7.2, or 10.8 Gy. Cubic 

regression lines were fitted for each gene and Pearson’s R was calculated across fitted 

values of human and NHP for at 0, 3.6, 7.2, 10.8, and 13.2 Gy.  

3.2.2 Human-to-NHP Conversion Models 

Because human gene and NHP gene are at different ranges, tests on human 

samples suggested that human gene expression values may need to be adjusted prior to 

application of the NHP model. A “multi-gene” approach utilizing all gene values for 

cross-species conversion were used before applying NHP biodosimetry models36. For 

simplicity, we developed some “single-gene” models using univariate simple linear 

regression models to map human gene to NHP gene one by one. NHPs who received 

single dose at dose level of 0 Gy, 4 Gy, 7 Gy and 10 Gy were used to train the conversion 

model. Mean ΔCt of a given human gene at four dose levels (0, 3.6, 7.2, 10.8) were 

predictors and mean ΔCt of the corresponding NHP gene at four dose levels (0, 4, 7, 10) 

were responses. One simple linear regression model was built for each gene. Before 

applying NHP model on human data, we convert human data by 28 regression models.  
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3.2.3 Feature Selection Methods 

We used Know-GRRF to select genes for NHP model, while optimizing the 

performance on human data, by incorporating domain knowledge of cross-species 

correlation. To apply Know-GRRF, we firstly normalized cross-species correlation by 

equation (3.8) and penalty coefficient is modified as equation (3.9). We investigated the 

performance of Know-GRRF with a parameter setting: 𝛿 ∈ {0.1, 0.5, 1, 2, 3,… , 18,19}. 

At each of the setting of 𝛿, we run Know-GRRF 10 times and retrieved 10 corresponding 

sets of selected features. With each set of features, we built a RF model using NHP data 

then applied it to predict human-converted data. To reduce the variability of feature sets, 

we run a stability test over the 10 sets of features. Features that were consistently selected 

by Know-GRRF were retained in the final feature sets. We found the best set of features 

at 𝛿 = 12 and stability is greater than 90% (features were selected in 10 out of 10 runs). 

We examined the pattern of penalty coefficient with the change of δ. 

 

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛!! =
𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛!

𝑚𝑎𝑥!!!
! 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛!

# 3.8  

𝜆! =  𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛!!
!# 3.9  

For comparison, we also applied VSURF and GRRF on the same set of data. 

VSURF were used under default setting and we used the “feature set for prediction” to 

build NHP model.  We also tested two versions of GRRF, using VI and cross-species 

correlation respectively. The penalty coefficient was determined in the same way of the 

original GRRF. To incorporate domain knowledge, we replaced VI with cross-species 

correlation and investigated the performance of GRRF at a parameter settings: 
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γ ∈ {0, 0.05, 0.1,… , 0.95, 1}. Similar to Know-GRRF, we run GRRF 10 times at each of 

the setting of γ. Using the resulted 10 sets of features, we built 10 NHP models 

individually and tested on human data. We also examined the pattern of penalty 

coefficient with the change of γ. 

3.2.4 Performance Metrics 

We built NHP models with selected features by each method and calculated MSE 

of NHP data and human data. NHP MSE was calculated from the OOB predictions and 

Human MSE was from independent test. We investigated the number of features, NHP 

MSE and human MSE under each setting of GRRF and Know-GRRF. To measure the 

variability, we run both methods 10 times at each parameter setting to calculate standard 

deviation. The parameters (𝛾 or 𝛿) were set at the best performance and we compared the 

performance to VSURF. The final performance for each method was calculated from 10 

runs of RF models using one set of features. NHP MSE was calculated by LOOCV and 

human MSE were calculated as independent testing. 

3.2.5 Simulation 

To test the generalizability of Know-GRRF, we compared Know-GRRF to 

several other methods on simulated datasets for both classification and regression by the 

following procedures.  

One hundred i.i.d random variables (X1, X2, … X100) were generated under 

standard normal distribution (N=200). Half of the observations were used as training set 

for feature selection, and returned features were applied to the other half of the dataset for 

modeling. With each set of features selected by different methods, we built RF models 
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under default setting. To account for the model variability, ten RF models were built 

using each set of selected features and standard deviation was assessed. We compared 

prediction error rates or MSE averaged from 10 runs.  

Table 10 True Relationship in Simulated Scenarios 

Scenario Relationships 
Linear Y = 0.3𝑋! + 0.5X! + 0.7X! + 0.9𝑋! + 1.1X! + 1.3X! + 1.5X! + 1.7X!

+ 1.9X! + 2.1X!" 
Higher-order 𝑌 = 0.9𝑋! + 1.1X! + 1.3X! + 1.7X! + 1.9X! + 2.1X!" + 1.7𝑋!!!  
Interaction 𝑌 = 0.1 + 0.9𝑋! + 1.1X! + 1.3X! + 1.7X! + 1.9X! + 2.1X!" + 1.7𝑋!!𝑋!" 

 

Six scenarios for classification or regression were simulated varying in 

complexity, including linear relationship, higher-order relationship and interaction. The 

true relationship was shown in Table 10. Response variable (Y) was dichotomized to 

binary for two-class classification problem.  

Because there is no domain knowledge in simulated data, we used intrinsic data 

characteristics for regularization in Know-GRRF. We tested the use of q-value in Know-

GRRF for two-class classification. Two samples t-test is done to get the p-value and q-

value is the adjusted p-value using Benjamini & Hochberg (BH) method54. The 

regularization term 𝛿 in Know-GRRF was found by optimizing the averaged AIC (n=10 

in Step 4) of reduced models. Results were compared to varSelRF under default and 

original GRRF using normalized VI at the setting of γ = 0.5 for the best performance.  

𝜆! = 𝑞!!
!# 3.10  

𝑞!! =
1− 𝑞!

𝑚𝑎𝑥!!!
! (1− 𝑞!)

# 3.11  
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For regression, we tested the use of VI in Know-GRRF. Same normalized VI 

scores were used for both GRRF and Know-GRRF. The regularization term 𝛿 in Know-

GRRF was found by optimizing the averaged AIC (n=10 in Step 4) of reduced models. 

Results were compared to VSURF under default and original GRRF at the setting of γ = 

0.9 for the best performance. 

𝜆! = 𝑉𝐼!!
!# 3.12  

𝑉𝐼!! =
𝑉𝐼!

𝑚𝑎𝑥!!!
! 𝑉𝐼!

# 3.13  

3.3 Result 

3.3.1 Radiation Data 

Table 11 Sample Size of Human Subjects and NHP Subjects  

Dose (Gy) 0 1 2 3.6/4 6 7.2/7 8 10.8/10 Total 
Human 42* - - 24 - 25 - 24 115 

NHP for conversion 32 - - 32 - 12 - 20 96 
NHP for modeling 32 10 32 32 32 12 20 20 190 

*Pre-irradiated samples were included as subjects receiving 0 Gy.   
 

Table 12 Human Demographic Characteristics 

Subgroup Female Male White Hispanic Age 40+ Age<40 Total 
Patient 16 9 13 3 15 10 25 
Sample 72 43 59 13 70 45 115 
 

Table 11 is the sample size of NHP subjects and human subjects. NHP subjects 

used for conversion were those irradiated at the closest dose level to human subjects. The 

complete set of NHP data on day 1 was used for modeling. Demographic characteristics 

of 25 patients were shown in Table 12. Accumulate radiation was given on three days. 



 52 

Samples were obtained from patients before the radiation therapy and 24 hours after each 

irradiation. The total number of samples for testing is 115.  

 

Figure 11 Regression Model for Human-NHP Conversion. Linear regression models 
were built to map human genes to NHP genes one by one. Plots of three representative 
genes are shown. The red lines represent the linear models we used for conversion. 
Cross-species correlation is low for gene CD97, moderate for gene ALOX5 and high for 
CDKN1A. 

 

Dose-responsive correlation for human and NHP data are shown in Figure 12. 

There are some differences in dose-responsive pattern between NHP and human data. For 

example, the most dose-responsive genes in NHP data, CAMK4 and CD97, only show 

moderate correlations with dose in human data. On the other hand, MYC, which has the 

highest correlation with dose for human, is not among the most dose-responsive genes for 

NHP. To improve the predictability of NHP model on human data, we used the cross-

species correlations as the domain knowledge for feature selection.  
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Figure 12 Dose-responsive Correlation and Cross-species Correlation. Dose-
responsive genes differ between human genes and NHP genes. Figure (b) and (c) are 
human gene-dose correlation. Dose-responsive genes remain the same after linear 
conversion. Figure (d) displays cross-species correlation.  

 

As shown in Figure 13, the number of features selected decreased with the 

increase of regularized coefficient 𝛾 in GRRF or 𝛿 in Know-GRRF. The number of 

feature set was less sensitive to 𝛾 and was still relatively large (~24) even when 𝛾 reached 

the maximum. On the other hand, the number of features decreased fast with 𝛿 and 

became really small (~3). Figure 14 showed the human independent test performance 

with the change of 𝛾 and 𝛿. Human test performance was slightly better with larger 𝛾 but 

didn’t change much at different setting of GRRF. Because the number of genes selected 

was fewer when 𝛾 is large, we set 𝛾 to 0.9 for GRRF. Human test performance was the 

(a) (b) 

(c) (d) 
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best using Know-GRRF at the setting of 𝛿 = 12. There was no variability in the selected 

feature sets among 10 runs. Thus, we set 𝛿 to 12 and stability is 100% for Know-GRRF. 

As suggested by Figure 15, domain knowledge played a more important role and 

coefficients were more differentiable when 𝛾 or 𝛿 was larger. However, 𝛾 is constrained 

from 0 to 1 and could reach a maximum. Thus, 𝛿 in Know-GRRF is a better parameter to 

control the degree of regularization than 𝛾 in GRRF.  

Table 13 compares NHP sample MSE and Human sample MSE using different 

sets of features that were chosen by each of the method. Each method selected one set of 

features under a specific setting. With each of the selected feature set, 10 RF models were 

built and SD reflects the variability of RF models. Using all 28 genes in RF result in low 

MSE for NHP but high MSE for human data. VSURF and GRRF using VI score reduced 

the feature set but were not able to improve model performance. Incorporating cross-

species correlation, GRRF reduced human MSE from 9.05 to 7.90 using a set of 13 genes. 

The method we proposed, Know-GRRF, reduced human MSE to 4.01 using a set of only 

3 genes. NHP performance under LOOCV decreased with the use of cross-species 

correlation. 
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Figure 13 Comparison of Number of Selected Features using GRRF and Know-
GRRF without Stability Test. X-axes are tuned parameters 𝛄 and 𝜹. Y-axis is the 
number of features selected. GRRF was tested with a parameter settings: 
𝛄 ∈ 𝟎,𝟎.𝟎𝟓,𝟎.𝟏,… ,𝟎.𝟗𝟓,𝟏 ,  shown in red dot. Know-GRRF was tested with a 
parameter setting: 𝜹 ∈ 𝟎.𝟏,𝟎.𝟓,𝟏,𝟐,𝟑,… ,𝟏𝟖,𝟏𝟗 , shown in blue dot. Error bar shows 
the variability of feature numbers among 10 runs of both methods. The line ranges from 
the minimum to the maximum number of features for each setting. Variability reflects the 
selection variability. 
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Figure 14 Comparison of MSE in Human Sample Predictions using GRRF and 
Know-GRRF without Stability Test. X-axes are tuned parameters 𝛄 and 𝜹. Y-axis is 
the MSE of human sample predictions. GRRF was tested with a parameter settings: 
𝛄 ∈ 𝟎,𝟎.𝟎𝟓,𝟎.𝟏,… ,𝟎.𝟗𝟓,𝟏 , shown in red dot. Know-GRRF was tested with a 
parameter setting: 𝜹 ∈ 𝟎.𝟏,𝟎.𝟓,𝟏,𝟐,𝟑,… ,𝟏𝟖,𝟏𝟗 , shown in blue dot. Error bar shows 
the variability of feature numbers among 10 runs of both methods. The line ranges from 
the minimum to the maximum number of features for each setting. Variability reflects 
both the feature selection variability and modeling variability. 
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Figure 15 Penalty Coefficient for Each Gene. The left panel is coefficients calculated 
from equation (3.12) in Know-GRRF, at the setting of 𝜹 = 𝟎.𝟐 and 𝜹 = 𝟎.𝟓. The right 
panel is coefficients calculated from equation (3.3) in original GRRF, at the setting of 
𝜸 = 𝟎.𝟐 and 𝜸 = 𝟎.𝟖. Coefficients are more differentiable when 𝜹 or 𝜸 is larger. Know-
GRRF can better differentiate variables and not constrained by a limit. 

 

 

 

 

 

 

 

 

 

 



 58 

 

Table 13 Model Comparison using Different Sets of Features  

 

Table 14 and Figure 16 show the dose estimates for NHP under LOOCV and 

human samples predictions using features selected by VSURF and Know-GRRF. Using 

cross-species correlation in Know-GRRF improved the dose estimate of human samples, 

especially subjects who received a high dose of radiation.  

Table 14 Dose Estimate for NHP under LOOCV and Human Data (Gy) and (SD) 

 Dose  0 1 2 4/3.6 6 7/7.2 8 10/10.8 
 
NHP 

VSURF 0.32 
(0.40) 

1.58 
(1.01) 

2.37 
(0.77) 

4.42 
(1.22) 

6.35 
(1.00) 

6.88 
(0.85) 

6.91 
(1.19) 

8.40 
(0.99) 

Know-
GRRF 

0.33 
(0.39) 

2.18 
(1.12) 

3.54 
(1.17) 

4.89 
(1.46) 

6.01 
(1.38) 

5.83 
(0.99) 

5.96 
(1.47) 

7.17 
(0.98) 

 
Human 

VSURF 1.90 
(1.48) 

- - 4.53 
(1.85) 

- 5.42 
(1.71) 

- 6.36 
(1.99) 

Know-
GRRF 

0.40 
(0.62) 

- - 3.78 
(1.11) 

- 5.72 
(1.49) 

- 7.49 
(1.48) 

 

Methods Genes       MSE     (SD) 
NHP  Human  

No All 28 genes 1.52 
(0.025) 

7.82 
(0.058) 

VSURF CAMK4, CD97, ALPK1, 
ALOX5, CXXC5 

1.62 
(0.017) 

9.51 
(0.160) 

GRRF 
(VI, γ=0.9) 

 ACAA1, ALOX5, ALPK1, 
CAMK4, CD97, CDKN1A, 
IL27RA, PPM1K, SLC6A6, 
TBP, TEX10, XENO 

1.59 
(0.019) 

8.30 
(0.074) 

GRRF 
(correlation) 
γ=0.9) 

ACAA1, ALAS2, ALOX5, 
ALPK1, CAMK4, CD97, 
CDKN1A, COCH, CXXC5, 
GPR183, IL27RA, INPP5J, 
MOB3B, MYC, OAZ1, 
PNOC, PPM1F, PPM1K, 
PPP6R3, SCARB1, SLC6A6, 
SPECC1, TBP, TEX10, XENO 

1.52 
(0.026) 

7.31  
(0.064) 

Know-GRRF 
(𝛿=12, 
stability=100%) 

CDKN1A, CXXC5, MYC  3.21 
(0.075) 

4.01 
(0.050) 
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Figure 16 Dose Estimates for NHP and Human Samples. Figure (a) shows results 
using features selected by Know-GRRF, (b) shows results using features selected by 
VSURF. NHP were irradiated at dose level of 0, 1, 2, 4, 6, 7 and 10 Gy and human 
subjects were irradiated at dose of 0, 3.6, 7.2, 10.8 Gy.  
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3.3.2 Simulation Results 

Table 15 Methods Comparison in Linear Classification (Scenario 1) 

Method Features Error /SD (%) TPR (%) FPR (%) 

No feature selection All 100 Xs 0.30 /0.036 - - 
varSelRF 5 9 28 36 42 0.28 /0.011 20% 3% 

GRRF (𝛾 = 0.5) 5 6 7 9 12 28 42 61 0.24 /0.020 40% 4% 
Know-GRRF 

(𝛿 = 2.30, Stability=100%) 
5 6 7 9 10 42 0.25 /0.012 50% 1% 

Known 1 to 10 0.19 /0.016 - - 
 

Table 16 Methods Comparison in Classification with Higher-order Term (Scenario 2) 

Method Features Error /SD (%) TPR (%) FPR (%) 

No feature selection All 100 Xs 0.30 /0.012 - - 
varSelRF 4 5 9 10 30 61 0.26 /0.014 57% 2% 

GRRF (𝛾 = 0.5) 4 5 9 10 61 85 0.27 /0.015 57% 2% 
Know-GRRF 

(𝛿 = 1.97, Stability=60%) 
4 5 6 9 10 61 0.23 /0.020 71% 1% 

Known 4 5 6 8 9 10 11 0.22 /0.019 - - 
 

Table 17 Methods Comparison in Classification with Interaction (Scenario 3) 

Method Features Error /SD (%) TPR (%) FPR (%) 
No feature selection All 100 Xs 0.31 /0.025 - - 

varSelRF 5 8 9 10 29 0.24 /0.012 50% 1% 
GRRF (𝛾 = 0.5) 5 8 10 0.27 /0.014 38% 0% 

Know-GRRF 
(δ=0.81, Stability=100%) 

5  8  9 10 52 0.25 (0.020) 50% 1% 

Known 4 5 6 8 9 10 11 12 0.24 /0.018 - - 
 

In scenario 1, Know-GRRF returned the same set of genes from all 10 runs, so no 

stability test is needed. In scenario 2, we did a stability test by sequentially adding 

features according to their selection probability. When stability is 60%, averaged AIC 

was the smallest.  Thus, we selected features that were outputted 6 or more times from 10 

runs. Similarly, in scenario 3, when stability criterion was set to 100%, averaged AIC was 
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the smallest. The final feature set of features that are selected consistently in all 10 runs. 

Figure 18 (a) shows the result of stability test in scenario 2 and 3. 

In classification problem, Know-GRRF is able to select more relevant features 

and fewer irrelevant features than varSelRF and GRRF. True positive rate (TPR) is 

higher and false positive rate (FPR) is lower. OOB error from RF using feature selected 

by Know-GRRF is comparable or better than other methods. The optimization function 

can automatically find 𝛿 that leads to the least AIC. Setting stability criteria can result in 

less variability in the returned feature set. Variability of feature selection was not 

assessed here. SD is the variability of RF models using same set of features. In simulated 

data with higher-order relationship, no method was able to select X11. The reason may be 

because that dichotomizing the response variable alleviates the relationship, q-value and 

VI are small for X11. The features (X11 and X12) in interaction were not selected by any of 

the algorithms either. It is still a difficult scenario for feature selection.  
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Figure 17 Classification Performance of Know-GRRF without Stability Test. To 
confirm that the optimization function can find the best parameter, we investigated 
Know-GRRF at the setting of 𝜹 ∈ {𝟎.𝟏,𝟎.𝟐,𝟎.𝟒,𝟎.𝟖,𝟏,𝟐,… ,𝟏𝟎} and examined how 
averaged AIC was changed with 𝜹. The best value of 𝜹 can be found by optimization 
function in R. Variability reflects both the selection variability and modeling variability. 
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Table 18 Methods Comparison in Linear Regression (Scenario 4) 

Method Features MSE (SD) TPR (%) FPR (%) 
No feature selection All 100 Xs 13.66 (0.241) - - 

VSURF 6 7 8 9 10 8.02 (0.159) 50% 0% 
GRRF (𝛾 = 0.9) 3 4 6 7 8 10 10.34 (0.156) 60% 0% 

Know-GRRF 
(𝛿 = 0.69, Stability=100%) 

3 4 6 7 8 9 10 7.79 (0.154) 70% 0% 

Known 1 to 10 8.08 (0.217) - - 
 

Table 19 Methods Comparison in Regression with Higher-order Term (Scenario 5) 

Method Features MSE (SD) TPR (%) FPR (%) 
No feature selection All 100 Xs 33.30 (0.478) - - 

VSURF 8 10 11 33.23 (0.429) 43% 0% 
GRRF (𝛾 = 0.9) 6 8 9 10 11 41 51 36.25 (0.328) 71% 2% 

Know-GRRF 
(𝛿 = 2.75, Stability=100%) 

8 10 11 33.16 (0.325) 43% 0% 

Known 4 5 6 8 9 10 11 36.43 (0.472) - - 
 

Table 20 Methods Comparison in Regression with Interaction (Scenario 6) 

Method Features MSE (SD) TPR (%) FPR (%) 
No feature selection All 100 Xs 17.61 (0.208) - - 

VSURF 6 8 9 10 18.93 (0.259) 50% 0% 
GRRF (𝛾 = 0.9) 6 8 9 10 51 93 19.38 (0.198) 50% 2% 

Know-GRRF 
(𝛿 = 0.98, Stability=100%) 

6 8 9 10 18.99 (0.169) 50% 0% 

Known 4 5 6 8 9 10 11 12 18.58 (0.160) - - 
 

Know-GRRF returned the same set of features from 10 runs for scenario 5. No 

stability test is needed. We did a stability test for scenario 4 and 6. We added features 

sequentially according to their selection probability and calculated averaged AIC for each 

set of features. The stability criteria were chosen at the smallest AIC. The final feature set 

was the set that lead to the best model performance. Figure 18 (b) shows the result of 

stability test in scenario 4 and 6. 
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For regression problems, performance of Know-GRRF and VSURF are quite 

comparable, but better than GRRF consistently. They selected fewer features and resulted 

in smaller MSE than GRRF. All three methods successfully identified the higher-order 

term (𝑋!!) in Scenario 5. It confirms that the failure in classification problem may be 

caused by dichotomization of the response variable. However, features in interaction 

(𝑋!!,𝑋!") were not selected by any of the algorithms. The reason may be that feature are 

selected or not based on the model performance, whereas the RF model itself may not be 

able to handle this interaction perfectly. Note even if we added 𝑋!! and 𝑋!" in the feature 

set to build a RF model, the MSE was not reduced.  

 

Figure 18 Stability Test on Some Scenarios. Stability criteria were set at the smallest 
AIC. Except scenario 2, AIC was the smallest when stability is 100%. Features that were 
consistently returned in all 10 runs were in the final feature set. In scenario 2, features 
that were returned 6 or more times were in the final feature set. 
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Figure 19 Regression Performance of Know-GRRF without Stability Test. To 
confirm that the optimization function can find the best parameter, we investigated 
Know-GRRF at the setting of 𝜹 ∈ {𝟎.𝟏,𝟎.𝟐,𝟎.𝟒,𝟎.𝟖,𝟏,𝟐,… ,𝟏𝟎} and examined how 
averaged AIC was changed with 𝜹. The best value of 𝜹 can be found by optimization 
function in R. Variability reflects both the selection variability and modeling variability. 
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3.4 Discussion and Conclusion 

The methods comparison on radiation dataset showed the importance of domain 

knowledge in feature selection. In general, a knowledge-based feature selection method 

has some significant advantages. Firstly, for high-dimensional data, e.g., microarray data, 

a large number of variables are simply noise and may cause overfitting. Incorporating 

domain knowledge can help to find out truly impactful variables and increase the model 

accuracy. Secondly, the domain knowledge can be used to make sense of the model and 

understand the mechanism or biological relationships. Thirdly, data-driven feature 

selection is subject to change with different samples or different data. Domain knowledge 

is consistent and would increase the reproducibility of feature sets and thus increase the 

generalizability of a predictive model.  

The idea of using domain knowledge for feature selection has been studied widely. 

Helleputte and Dupont suggested transfer learning, which focus on extract knowledge 

from existing source and apply it to a different but related task47. Most of the knowledge 

are used for “pre-processing” as filters or “ad-hoc” explanation after modeling. For 

example, they typically rank genes according to their differential expression among 

phenotypes and pick the top-ranked genes55. Zhou developed gene-gene mutual 

information to prioritize candidate genes associated with a given disease15. Barzilay 

studied SVM and proposed to construct a kernel function according to some domain 

knowledge in texture recognition56. Ding utilized mutual information as a measure of 
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relevance of genes and proposed a minimum redundancy, maximum relevance (MRMR) 

feature selection framework57. Genetic algorithms are widely applied to feature selection 

problems using evolutionary computation as domain knowledge58. These methods mostly 

incorporate domain knowledge as a filter. Here, we proposed an embedded method to 

wrap domain knowledge using RF.  

We modified the framework of GRRF to incorporate cross-species correlation as 

the domain knowledge. We downsized the feature set to three genes and reduced human 

sample prediction error (MSE) from 9 to 4. Three genes selected by Know-GRRF include 

CDKN1A, CXXC5 and MYC. CDKN1A is a well-known gene to be transcriptionally 

regulated by p53 in response to stresses such as ionizing radiation36 and reported by 

multiple groups as the top candidate gene for use in biodosimetry40,41,59,60.  CXXC5 is 

related to DNA damage and was reported as a potential therapeutic target in primary 

acute myeloid leukemia cells in response to radiation therapy61. MYC is found as a novel 

biomarker for radiation. It is an important gene that regulates a range of cellular 

processes including biogenesis and protein synthesis62. The role of CXXC5 and MYC in 

response to radiation is worth studying in the future. 

One concern of using cross-species correlation to help with feature selection is 

that the NHP predictive model performs worse than using data-driven algorithms only. A 

compromise is made here to gain better predictions for human samples. This is a common 

dilemma in cross-species transfer of learning. Park suggested that biodosimetry models 

based on interspecies-correlated genes had comparable dose-prediction accuracies on 

both species compared to using the full set of dose-responsive genes36. In their study, the 

better performance on NHP may because they found 52 genes that are highly correlated 



 68 

in expression pattern between species. Among a larger set of genes, it is more likely to 

include dose-responsive genes for NHP.  

Our new method Know-GRRF improved the original GRRF in some aspects. 

Firstly, Know-GRRF modified the penalty coefficient to control the degree of 

regularization using an exponential function. In this way, the number of feature selected 

and the resulting model performance are more sensitive to the tuned parameter. The 

larger the regularization parameter is, the higher influence we put on the domain 

knowledge. Secondly, we proposed a more systematic way to tune the parameter by 

optimizing an objective function (AIC) of the resulting models. According to the figures 

showing the relationship between AIC and 𝛿, a global minimum can often be found by 

convex optimization. Thirdly, we added a stability test to find consistently selected 

features. All RF and RF-based methods have large variation in both feature selection and 

predictive modeling. By running a stability test, we can remove some random, irrelevant 

features selected by GRRF and improve the reproducibility from run to run.  

Furthermore, we generalize the use of Know-GRRF for feature selection in more 

general cases, even when no domain knowledge is available. We compared it to current 

widely used methods VSURF and varSelRF in six simulated scenarios. Performance of 

Know-GRRF is comparable to VSURF or varSelRF, if not better. But the computational 

time is much less, especially compared to VSURF, which adopted a stepwise selection 

procedure. We also tested using q-value instead of VI as the weight for each feature in 

classification. The results suggest the use of other statistics can be successfully applied to 

the Know-GRRF framework. Similarly, we may use other domain knowledge, such as 

mutual information and evolutionary weight, to regulate the penalty coefficient.  
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There are some limitations of Know-GRRF. In our simulation of scenarios with 

interaction terms, none of those tested methods were able to identify the features with 

interaction. Because Know-GRRF is not intended to solve XOR problems, we may need 

some other methods to tackle this challenge. If we have domain knowledge of interaction, 

for example, gene-gene interaction, we may be able to incorporate it to find interacting 

features. But this is beyond of the scope of this dissertation.  

Secondly, it requires some computation for optimization and build more 

ensembles than GRRF. To search for the best value of the regularization term, we need to 

solve a convex optimization problem. We may set a larger tolerance to achieve faster 

computation, because there is a wide range of minima as solutions. Stability test requires 

more ensembles but can reduce variability from run to run. And meanwhile, we can 

assess the variation in the process of stability test. Know-GRRF is still based on RF, so 

variation is hard to be eliminated. However, we are able to remove random selected 

features by using a stability test. 

Compared to VSURF and varSelRF, the use of Know-GRRF requires more steps 

than one encapsulated function. To obtain weights, we need extra analysis to get any 

intrinsic data characteristics such as q-value or VI. We also need optimization to 

determine the right scale of penalty. While allowing for more flexibility, the 

implementation of Know-GRRF requires more effort.  

Moreover, though the prior knowledge can be helpful in improving the stability 

and model performance, using such information to guide the feature selection may meet 

certain limitations since biomarker discovery aims at finding new features rather than 
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known ones63. We need to control the degree of regularization in Know-GRRF to 

emphasize or reduce the use of knowledge in feature selection. 

For future study, we can simplify the implementation of Know-GRRF with built-

in functions and options, so users can use this method easier. It could also be interesting 

to apply Know-GRRF to larger bioinformatics data. Relevant domain knowledge is 

crucial to improve the performance of Know-GRRF compared to other methods. For 

example, we incorporated evolutionary weight as the penalty term to select genes that can 

predict 5-year survival for breast cancer patients (GEO data in NCBI). The performance 

was not improved from using other methods, including varSelRF and univariate t-test 

controlling false discovery rate. To provide more useful insights for feature selection, we 

may need more specific domain knowledge regarding breast cancer survival or mutual 

information of gene and breast cancer. We can also combine the use of domain 

knowledge and intrinsic data characteristics. Because Know-GRRF heavily rely on the 

regularization coefficient, deriving the coefficients from several sources may improve the 

overall performance. 

The stability of feature selection is of interest for future work. Because of the 

randomness of RF, all methods based on RF have a large variability. It is very likely that 

those methods, including VSURF, GRRF or varSelRF would return different sets of 

features from multiple runs. We used a stability criterion in Know-GRRF to reduce this 

variability. Variables that were selected by chance can be removed from the feature set. 

How to set this criterion is quite subjective now and may be worth studying in the future. 

In a short conclusion, we proposed a framework of Know-GRRF to incorporate 

domain knowledge for feature selection. Instead of manually testing different 
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combinations of genes, we can automatically select a set of genes that are mostly relevant 

from both data perspective and knowledge perspective. The method improved the GRRF 

in the way of constructing penalty coefficients and optimized the resulting model 

performance. Moreover, Know-GRRF can be generalized to do feature selection in 

general cases using intrinsic data characteristics for regularization. The performance is 

comparable to existing “wrapper” method VSURF and varSelRF, and better than 

“embedded” method GRRF. 
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CHAPTER 4 

A NOVEL METHOD TO GENERATE PREDICTION INTERVAL USING RANDOM 

FOREST REGRESSION 

4.1 Introduction 

In solving the problems of model-based prediction, decision makers often require 

not only an accurate point prediction of certain variables but also the uncertainty 

associated with the prediction. Uncertainty of the model output can be estimated using 

prediction interval (PI). For the biodosimetor, it is desirable not only to provide a point 

estimate of radiation dose, but also to provide an interval for future predictions. Such 

interval indicates the dispersion of observations around the predicted value. It reflects the 

uncertainty of model output and can be used as an indicator of prediction precision. 

Prediction interval usually consists of an upper and a lower limit between which 

the future value is expected to lie with a prescribed probability. The concept should be 

distinguished from another commonly used statistical term confidence interval (CI). CI 

applies to interval estimates for fixed but unknown parameters, while PI is an interval 

estimate for an unknown future value. PI deals with the accuracy of an estimate with 

regard to the actual observed value, rather than an estimate of population mean, thus it is 

more practical in real-world application64. Because PI account for not only the 

uncertainty in predicting the population mean, but also variability in data, PI is usually 

wider than CI. 

Parametric methods for prediction interval involve an estimation of residual 

variance. In traditional linear regression model, PIs are given as a linear combination of 
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prediction and standard deviation of residuals. In more complex models, such as the 

random forest, strong assumptions about errors are hard to be met and conditional 

distribution of prediction is hard to be determined. Researches on the error variance 

estimation, bootstrap techniques and other non-parametric methods demonstrate potential 

to construct PI for random forest. In this chapter, we first introduced some traditional 

methods to create PI and their limitations on this certain project. To deal with some 

specific problems, we then introduced a novel method we developed for constructing PI 

using random forest, called RFerr. We applied this new method to generate PI for the 

biodosimetor. In addition, we also tested the methodology in simulation study and 

compared it to existing methods on benchmark datasets. 

4.1.1 Prediction Interval in Linear Regression 

In classical linear regression problems, the task is to estimate a function 𝑓(𝐱;𝜃) 

given data points D={x, y}, where 𝜃 is the true values of the parameters of the regression 

model. The least square estimate of 𝜃 is 𝜃 and 𝑦! = 𝑓 𝑥!;𝜃 . The true value 𝑦! = 𝑦! +

𝑒! , 𝑖 = 1,2,…𝑛, where n is number of data points and 𝑒! is the model error, which is 

assumed to be independently and identically distributed (iid) with the distribution N(0, 

𝜎!). Assuming prediction is unbiased and 𝑒! ~ N(0, 𝜎!) , most of the methods construct 

100(1-α)% prediction interval as (𝑦 − 𝑍! !𝜎,𝑦 + 𝑍! !𝜎). An unbiased estimate of 𝜎! 

with n-p degree of freedom is given by the equation (4.1). 

𝑠! =
𝑦! − 𝑦! !

𝑛 − 𝑝 # 4.1  
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Noted that CI should be distinguished and it depends on the standard error of 

estimation and can be calculated as equation (4.2) 

𝑦 ± 𝑍! !
!
!

 # 4.2       

Both PI and CI are symmetric about an unbiased estimator 𝑦, and 𝑍! ! is the 

cumulative probability of standard normal distribution at the level of 𝛼 2. This method is 

introduced in most of textbooks on regression65. 

This estimation above assumes that error has Gaussian distribution with mean 

zero and a constant variance in the output space. When the assumption is not true, 

estimation of 𝜎! was modified to be  

𝑠!!
! = 𝑠! 1+ !

!
+ !!!! !

!!! !!!
,# 4.3    

where 𝑠! is the error variance, 𝑠!! is the sample variance and 𝑥 is the sample mean66. It 

can be seen from this equation that the error variance at 𝑦! is always larger than 𝑠! and it 

depends on the distance between 𝑥! and 𝑥. The further the observation 𝑥! is from the 

center of input space, the larger the error variance is. This approach can be generalized to 

multivariate linear regression. However, since the linear regression variance estimator 

approach requires many assumptions to use, which is not practical in most of the times, it 

is not ideal for non-linear or more complex models containing many equations.  

4.1.2 Bootstrap Techniques 

The traditional method needs to estimate error variance to make inference about 

prediction interval. It is considered as parametric approach. A non-parametric approach is 

more preferred when no assumption can be made about the sampling distribution. In this 
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case, simulation and resampling based techniques, such as bootstrapping, or Monte Carlo 

techniques are used to construct PI. 

The idea of bootstrap is to take samples from population and use the sample 

characteristics to infer population67. Nonparametric bootstrapping refers to resampling 

from an empirical distribution of the real data, while parametric bootstrapping refers to 

resampling from a known theoretical underlying distribution.  

Nonparametric bootstrapping was applied to construct PI for standard linear 

regression model68 and autoregressive model69. For linear regression, they generated 

prediction errors using bootstrap algorithm and obtained residuals by sampling with 

replacement from the empirical distribution of the residuals. PI limits were calculated as 

the combination of predicted value and upper or lower quantiles of the residuals. In a 

sense, the bootstrap “simulates” the distribution of prediction error by resampling68. The 

intervals were contrasted to other nonparametric procedures in some Monte Carlo 

experiments and they were found to be consistently liberal, especially for small sample 

size.   

These results for regression had a similar application for time series in 

autoregressive model69.  Standard forecast techniques usually assume that the error 

sequence of the series up to time t, {y1, y2…yt} is Gaussian. The conditional distribution 

of Yt+k is Gaussian as well. Bootstrap prediction interval provides a nonparametric 

conditional distribution of Yt+k and demonstrates its potential in a simulation study. 

Moreover, their preliminary results also suggested the use of bootstrap bias correction 

can improve coverage without increasing interval length. In addition, smoothing the 
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empirical distribution of the residuals before resampling can potentially improve the 

interval estimate.  

In a short summary, bootstrap prediction interval algorithm is a useful addition to 

the traditional measures of prediction uncertainty. These methods created prediction 

intervals using the measure of empirical measures of prediction errors calculated from 

resampling, so the property of intervals doesn’t depend on the sampling distribution. 

However, such techniques have some limitation. Firstly, it is generally computational 

time consuming for resampling and modeling, especially for complex models. Secondly, 

nonparametric bootstrapping has its limitation with small sample size. More importantly, 

because the intervals were based on residuals, such techniques require strong assumption 

that the model is correctly specified otherwise the contribution of model bias would be 

neglected68.  

4.1.3 Error Variance of Random Forest 

Random forest is a robust model for improving predictive accuracy and it is 

simple to understand and implement. However, it lacks the theoretical framework in 

which distributional statistics can be easily determined. In addition, the prediction from 

random forest model is not unbiased so that the prediction intervals are not symmetric 

about the prediction estimation. Therefore, methods are needed to make statistical 

inference for random forest model. 

Inference about prediction usually requires an estimator of variability, such as 

error variance, or a sampling distribution of a pivotal quantity. Residuals in random forest 

regression are composed of bias and variance. Mendez and Lohr suggested estimating 
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error variance based on mean squared error and bias correction using bootstrapping70. 

The estimator was proposed by subtracting an estimator of average bias from mean 

squared error. Averaged bias can be calculated from parametric bootstrapping or non-

parametric bootstrapping. However, this method assumed error variance was equal. 

Coulston proposed a semiparametric way using Monte Carlo approach to approximate 

prediction uncertainty for random forest regression71. They use bootstrap resampling to 

parameterize a large number of RF models and assess prediction errors. Then they 

quantify prediction error based on error distribution and calculate interval as a linear 

combination of point estimate and its standard deviation. By using this method, they 

generate conservation (wider than necessary) prediction intervals.  

4.1.4 Quantile Regression Forest 

A nonparametric method often refers to a method that does not rely on 

assumptions about the probability distribution. Quantile regression is such a method, 

which takes the empirical distribution from training data and computes quantiles from the 

empirical distribution. 

Quantile regression forest (QRF) was introduced by Meinshausen to create 

prediction interval for random forest output72. Similar to random forest, QRFs are 

ensembles of regression trees. QRF uses a non-parametric approach to construct 

conditional quantiles from the empirical distribution of response variable provided by RF 

model. The key difference of QRF and RF is that, for each terminal node, random forest 

keeps only the mean of samples that fall into the node and neglects all other information. 

In contrast, QRF keeps not only the mean, but also the whole empirical conditional 
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distribution of each terminal node. Thus for a new sample, the point prediction is the 

same as prediction from RF, while the prediction interval can be computed from the 

empirical distribution provided by QRF.  

There are several advantages to using QRF. Meinshausen proved the consistency 

of its estimates and showed in numerical examples that the algorithm is competitive in 

terms of predictive power. In addition, QRF shares many of the strengths of RF, 

including its flexible modeling, performance in high-dimensional data and its robustness 

to noise variables. Last but not the least, since QRF uses an empirical distribution of the 

response variable to calculate quantiles, it does not rely on any distributional assumptions 

about the predicted values or residuals. It has been proved to perform well in terms of 

prediction coverage, especially in situations where the conditional distributions are not 

Gaussian. 

QRF has limited applicability in some cases. Firstly, because QRF uses the 

empirical distribution of the response variable from training data, the distribution may be 

restricted to the limited number of unique values. Especially when the response variable 

has few unique values in the training data, the empirical distribution may not be well 

estimated. In such cases, we have found the coverage probability of 95% PI generated by 

QRF were often close to 100% and the intervals were usually wide. Secondly, because 

QRF is based on RF, which constructs trees to accurately estimate the mean but not the 

complete conditional distribution, QRF may neglect some variables that are associated 

with the variability but not the mean.  In the cases where there are variables that are 

strongly associated with the variability in the prediction but are not associated with the 
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response itself, the empirical distribution of residuals might be useful for quantifying the 

uncertainty in the response and generating prediction intervals.  

To deal with the discreteness of response variable in the radiation dataset, we 

need a more continuous variable for QRF model. Shrestha and Solomatine proposed a 

method for estimating prediction uncertainty using machine learning techniques64. The 

method is based on the idea that the residuals from model output are the best available 

quantitative indicator of the discrepancy between the model and the real world. These 

residuals can be modeled using the model inputs by mapping functions error=f(x; θ). The 

input space is partitioned into different clusters having similar residuals or residuals with 

similar distribution. The prediction interval (PI!!,PI!!) for each cluster can be computed 

from empirical distribution of the corresponding residuals. Once the quantiles of residuals 

are obtained, the final prediction interval for jth observation can be computed by simply 

adding the model output as (y! − PI!!, y! + PI!!). This method is referred as the local 

uncertainty estimation model (LUEM). 

Inspired by the idea of LUEM, we built a model of prediction residuals to reflect 

the uncertainty of predictions. We propose a novel approach, RFerr, which combines the 

notion of the residual model and the use of empirical distribution of historical data to 

compute prediction intervals.  RFerr integrates the QRF algorithm with a model of error 

to generate PI. Instead of utilizing the empirical conditional distribution of a response 

variable, RFerr constructs PI for non-parametric models by analyzing the empirical 

conditional distribution of prediction errors.  In this approach we model the prediction 

residuals using RF to generate the distribution of predictions and calculate PIs for new 
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samples. RFerr is intended to generate PI, particularly in settings where QRF does not 

perform well. 

4.1.5 Description of the RFerr Algorithm 

This proposed method can be applied to generate prediction interval for the 

random forest model we built for the biodosimetor. It is actually applicable to any kind of 

predictive model. Once the predictive model is built, the prediction residuals are 

calculated as the difference of predicted values and observed values. These residuals are 

then used to train a second-level error model by QRF. The final prediction interval of 

response can be obtained by shifting the conditional distribution of residuals by the 

original predicted value. The proposed algorithm to generate prediction interval is 

summarized as follows: 

1. Build a predictive model M1 from the training data L = (X,Y), with Y as a 

continuous response variable. Y = f(X). 

2. Obtain the prediction error defined as E = Y− Y.  Predicted Y can be cross-

validation prediction or out-of-bag (OOB) prediction if available. 

3. Given a new sample sample! = x!"#, use the predictive model M1 built in Step 1 

to get the predicted value y! for the test sample. y! = f(x!"#). 

4. Grow regression forest model M2 from training data, using prediction residuals E 

as response and X as predictors. E = g(X). M2 has all properties of a regression forest.  

5. Drop OOB samples x(!!",!) down each regression tree T(θ) in M2, as well as the 

new sample x!"#. Extract all observed values of x(!!",!) in leaf nodes l(θ, x!"#) that 

x!"# falls in. Similar to the weights defined in random forest, here we let the weight 
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vector w!(x, θ) be given by a positive constant if x! is part of leaf l θ, x!"#  and is an 

OOB sample. Otherwise w! x, θ = 0. The weights sum to one, and thus 

w! x, θ =
1 !!∈!! !,!!"# &!!∈! !!",!

#{j: x! ∈ R! !,!!"# &x! ∈ x !!",! }
# 4.4  

Let w! x  be the averaged weights over the collections of regression trees. 

w! x = k!! w! x, θ!

!

!!!

# 4.5  

6. As analogies of QRF, we approximate the conditional distribution function of 

error E given X = x using the weights defined in Step (5).  

F e X = x = w! x 1 !!!!

!

!!!

# 4.6  

Lastly, compute the conditional quantile of error from the distribution function given 

𝑥!"#, denoted as 𝑄!"(𝑋 = 𝑥!"#) and 𝑄!"(𝑋 = 𝑥!"#). Prediction interval of the test 

sample 𝑋! = 𝑥!"# is given as [𝑦! − 𝑄!"(𝑋 = 𝑥!"#), 𝑦! − 𝑄!"(𝑋 = 𝑥!"#)].  

Random forest has been shown consistent for a simple model73 and is established 

as universal consistent averaging rules with a number of theorems74. Furthermore, 

Meinshausen proved the consistency of QRF under less stringent assumptions72. The 

major difference of RFerr and QRF is the use of OOB samples instead of all samples in 

regression forest, which modified the weights but would not affect the proof of 

consistency. As we know, prediction error is the difference of the true response and the 

predicted response, so the distribution function of error follows the difference of the true 

response and the distribution of predicted response. Since both the point estimate and the 
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quantile estimate of error are consistent estimates, the difference of the quantities are 

consistent estimates of response. 

4.2 Methods 

4.2.1 Datasets 

To test RFerr, we used three types of data sets: (1) the real-world data sets from 

radiation biodosimetry research project, (2) existing benchmark data sets previously used 

for PI estimation by QRF and (3) simulated data. 

The real-world data were NHP data in Citox lab obtained on day 2 after 

irradiation (Day 2, N=68). Because the predictive radiation dose was desired to be at a 

continuous scale, but radiation was delivered at certain discrete levels, the dataset is ideal 

to test RFerr algorithm. 

Table 21 Characteristics of Datasets 

Dataset Source # of 
variables 

Sample 
size 

Response variable # of unique 
responses 

Radiation Real-world 19 68 Dose of radiation exposed 6 
BostonHousing mlbench 13 506 Median value of owner-

occupied homes 
229 

         Ozone 
(complete cases) 

mlbench 12 203 Daily maximum one-hour-
average ozone reading 

35 

BigMac2003 alr3 9 69 Minutes of labor to 
purchase a Big Mac 

40 

Fuel2001 alr3 5 51 Ratio of total gallons of 
gas sold and the 

approximate number of 
miles driven 

51 

To test the generalizability of this method, we compared it with QRF on some 

well-known benchmark datasets used in the paper72. The datasets used in the paper of 
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QRF were from R package mlbench and alr3. Dataset information is shown in Table 21. 

Furthermore, we simulated a scenario where there exist some variables, which are 

predictive of the response variability instead of the mean. The hypothesis is that those 

variables are not predictive about the response mean hence they are not likely to be used 

in QRF model. In contrast, variables that are related to the variability are predictive about 

the prediction errors/dispersion, so they will be useful for RFerr. 

Specifically, we simulated 100 datasets, each with 500 observations.  To generate 

each observation, we simulated six independent standard normal random variables, five 

of which (X1 – X5) are predictive of response while the other one (X6) is predictive of 

response variability.  

Y = b! + b!x! + b!x! + b!x! + b!x! + b!x! + ex!# 4.7     

In equation (4.7), e is a standard normal variable. Coefficients b0, …, b5 were set to 0.2, 

0.5, 0.6, 0.7, 0.8 and 0.9, respectively. We applied both RFerr and QRF on each 

simulated dataset.  

4.2.2 Modeling 

For the radiation dataset, regression, QRF and RFerr were used to create 

prediction interval of exposed dose. Simple linear regression was applied to predict dose 

estimate and prediction interval using parametric methods. RFerr was applied in two 

ways. Since we can choose any predictive model to be M1 in step (1), we built M1 using 

either regression or random forest. The second-level error model M2 in Step (4) was built 

using random forest. The two models were denoted as RFerr-reg and RFerr-RF, 

respectively. Finally, we built a QRF model on the same dataset.  All methods used the 
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same set of genes without feature selection.  

For benchmark and simulation datasets, RFerr was compared to QRF on all 

datasets. RFerr was applied with both M1 and M2 built in random forest. All modeling 

was done in RStudio. M1 in RFerr was implemented using randomForest R package 

under default setting, while the nodesize was set to 10 in M2. All available variables were 

used for both M1 and M2 for simplicity. The idea to restrict the nodesize to 10 in M2 is 

to grow a relatively small tree so that sufficient samples can reside in the same nodes for 

a smoother empirical distribution. QRF was implemented using a R package called 

quantregForest under default setting. The nodesize in quantregForest was defaulted to 10 

as well.  

In addition, in benchmark datasets, we tested different versions of RFerr using 

different sets of samples to generate the empirical distribution. Specifically, we tested 

using OOB samples, in-bag samples or all samples in Step #5 to create prediction interval. 

They are labeled as RFerr(out), RFerr(in) and RFerr(all) respectively. 

4.2.3 Evaluation  

Four models were built to create prediction interval on radiation dataset. Leave-

one-out cross-validation was used to evaluate the model performances. For benchmark 

and simulation datasets, we compared the performance of RFerr to QRF under 5-fold 

cross-validation. The performance metrics we are interested in the coverage under cross-

validation and the length of prediction interval. Ideally the (1-α)% PI should have the (1-

α)% observations staying within its corresponding intervals. So the miscoverage rate 

should be close to α%. In addition, a precise PI indicates more certainty about the future 
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prediction, thus a PI with shorter length is more preferred. Miscoverage rate is defined as 

the percentage of observations whose actual response falls out of the lower and upper PI 

limits. Interval length is defined as the average difference of the upper PI limits and lower 

PI limits for all samples in one dataset. 

Miscoverage rate =
I(y ∉ PI∝,   PI!!∝]

N y
# 4.8  

Interval length =  !"!!∝!!"∝
! !

# 4.9         

Because both RFerr and QRF are based on RF, which cause some variability, the 

modeling processes were repeated 100 times on benchmark datasets to obtain the mean 

and standard error of the miscoverage rate and precision of prediction interval. 

4.3 Results 

4.3.1 Radiation Data 

A non-constant residual variance from RF predictive models across delivered 

dose levels was observed in Figure 20. Lower dose samples are overestimated and higher 

dose samples are underestimated. Variance is obviously larger at middle-to-higher dose 

range than lower dose range.  

To construct a prediction interval for dose estimate, we built four models on the 

radiation dataset under LOOCV and compared their performance.  
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Figure 20 Prediction Errors across Dose. Variance of residuals is not constant across 
observed dose. Variance is larger for observed dose greater than 4 Gy. Samples of lower 
dose are all overestimated and samples of higher dose are all underestimated. 

Table 22 Miscoverage Rate and Length of PI on Radiation Dataset 

Models Miscoverage rate (%) Interval length 
Regression 11.7 (5.2, 21.9) 3.3 
RFerr-reg 4.4 (0.9, 12.3) 3.8 
RFerr-RF 4.4 (0.9, 12.3) 3.2 

QRF 0 (0, 5.2) 5.4 
 

As shown in Table 22, PI calculated from standard regression model using a 

parametric method had the highest miscoverage rate. Numbers in parentheses of 

miscoverage rate is the 95% confidence interval calculated under binomial assumption. A 

further examination of the residuals revealed that the simple linear regression model may 

be misspecified since assumptions about residuals were not met (Figure 20). We used 

RFerr to construct PI with the same regression model as the predictive model. 

Miscoverage rate of RFerr-reg was 4.4% and the confidence interval crossed 5%. It 

indicated that PI calculated from RFerr doesn’t require strong assumptions about 

residuals. McNemar’s test suggested the miscoverage rates by regression method and 
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RFerr-reg are different (p=0.07). Paired t-test showed the interval length generated by 

parametric method and RFerr differed significantly (t=-5.12, p<0.001), when we used 

regression model as the predictive model. RFerr-reg has a correct coverage but the 

interval is precise. Paired t-test showed the interval length generated by QRF and RFerr 

also differed significantly (t=11.41, p<0.001), when we used RF as the predictive model. 

Overall, RFerr-RF has the most precise interval with an accurate coverage rate. 
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Figure 21 Prediction Interval on Radiation Dataset. (a) presents PIs created by 
traditional regression methods; (b) present PIs created by RFerr with regression model as 
the primary model; (c) presents PIs created by RFerr with random forest model as the 
primary model; (d) presents PIs created by Quantile Regression Forest. For all plots, X-
axis represents 68 samples and Y-axis indicates dose. Red dots represent the actual dose 
delivered. Vertical lines indicate the 95% prediction interval for each sample. 
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We also used RFerr with a RF model as the predictive model. Miscoverage rate of 

RFerr-RF was still 4.4% but the average length of PIs decreased to 3.2. Although RFerr 

was able to construct legitimate PI for a mis-specified model, with a better predictive 

model, RFerr could generate more precise PI. Lastly, the average length of PIs generated 

by QRF was 5.4 while the miscoverage rate was 0%. Figure 21 displays the 95% PIs 

created for each of the samples using each of the four models. As seen in Figure 21 (d), 

the PI bounds generated by QRF were the same for a group of samples. QRF may behave 

too conservative on this dataset. To conclude, RFerr generated shorter and more 

differentiated PIs than QRF, and its miscoverage rates were closer to the prescribed rate 

than the regression model and QRF.  

4.3.2 Benchmark Data 

Table 23 Miscoverage Rate and Length of PI on Benchmark Datasets 

Dataset Methods Mean (SE) 
Miscoverage rate (%) Interval length 

BostonHousing 
 

QRF 2.1 (0.43) 16.35 (0.22) 
RFerr 4.8 (0.73) 11.45 (0.14) 

Ozone QRF 3.7 (0.83) 18.10 (0.25) 
RFerr 4.7 (1.01) 16.83 (0.22) 

BigMac2003 QRF 2.7 (1.52) 62.75 (3.42) 
RFerr 5.0 (1.92) 67.63 (3.41) 

Fuel2001 QRF 5.0 (1.79) 492.99 (26.45) 
RFerr 5.0 (2.69) 437.68 (31.89) 

 

The performance comparisons on benchmark datasets are shown in Table 23. 

Because there was variability in both RFerr and QRF modeling, we repeated the 

modeling process 100 times. Mean is the average performance from 100 repetitions. SE 

is the standard deviation of the mean estimates from 100 repetitions. The results showed 
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RFerr was able to construct an appropriate prediction interval with a more accurate 

coverage rate and a relatively shorter length than QRF. The 95% PIs created by QRF had 

miscoverage rates much lower than 5%, except for Fuel2001 dataset. In contrast, the 95% 

prediction intervals created by RFerr had miscoverage rates all very close to 5%. The 

interval lengths were all shorter than those by QRF, except for BigMac2003 dataset. 

Figure 22 showed RFerr(in) and RFerr(all) both had miscoverage rates higher 

than 5%, although interval lengths were shorter.  
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Figure 22 Miscoverage Rate and PI Length on Benchmark Datasets. Boxplots were 
generated from 100 repetitions. The left-hand side panel displays miscoverage rates and 
the horizontal line represents the prescribed miscoverage rate (5%). The right-hand side 
panel displays the lengths of prediction intervals.  
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Figure 23 Comparison of QRF and RFerr on BigMac. (a) Distribution of response 
variable of BigMac dataset is highly skewed. (b) and (c) are PIs generated by QRF and 
RFerr respectively. Prediction variability is much higher for samples at the right tail. 
Some lower bound of PIs in (c) fall below 0 so we need to adjust them.  
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4.3.3 Simulation Results 

The results from simulation are shown in Table 24 and Figure 24. Mean and 

standard error are calculated from 100 simulated datasets. Again, RFerr has a 

miscoverage rate closer to 5% and the interval length is shorter than QRF.  

Table 24 Miscoverage Rate and Length of PI on 100 Simulated Datasets 

Methods Mean (SE) 
Miscoverage rate (%) Interval length 

QRF 3.56 (0.67) 5.94 (0.22) 
RFerr 4.64 (0.73) 4.52 (0.21) 

 

Figure 24 Miscoverage Rate and PI Length on Simulated Datasets. (a) compares the 
miscoverage rate of 95% prediction interval. The horizontal line represents the prescribed 
miscoverage rate (5%). Median of the miscoverage rate resulted from RFerr over 100 
simulated datasets is closer to 5% than from QRF. (b) compares the length of 95% 
prediction interval. RFerr overall produces more precise prediction intervals than QRF.  

4.4 Discussion and Conclusion 

RFerr can create prediction interval for non-linear, non-additive, high-

dimensional data. Unlike parametric methods, it doesn’t require strong assumptions about 
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the sampling distribution of error. Instead, it works with complex models such as random 

forest and utilizes the empirical distribution of residuals. RFerr showed a more accurate 

coverage rate and more precise prediction interval, compared to quantile regression forest, 

which similarly is based on random forest.  

As seen from the results, the prediction intervals generated by QRF are usually 

wide and sometimes identical for many samples. One possible reason may be the 

discreteness of the response variable. For example in the radiation dataset, dose is a 

continuous response variable, but only certain dose levels were administered due to the 

experimental design. Because QRF uses the empirical distribution of the training data, 

which consist of few unique discrete values, the quantile statistics from the empirical 

distribution are bounded by certain values. More importantly, for all the datasets (except 

Fuel2001), including the radiation, benchmark and simulated datasets, QRF generates PIs 

with miscoverage rates much lower than 5%. This suggests QRF can be too conservative. 

On the other hand, RFerr generated more precise prediction intervals on all datasets 

except for BigMac2003. One possible reason is that the distribution of its response 

variable in BigMac2003 is highly skewed (Figure 23 a). Figure 23 (b) and (c) compared 

the PI generated by QRF and RFerr. Note that for samples at the right tail, PIs were 

generally much wider by both methods because the sample size was limited at the tail. 

Lower bounds of PI for some samples by RFerr even fell below 0. After adjusting those 

lower bounds, the length of PI by RFerr became 57.82, which was shorter than QRF.  

RFerr provides an accurate PI for all datasets with a miscoverage rate right about 

5%. Not only for the discreteness problem, RFerr outperforms QRF when predictors are 

informative about the variability but not the mean of response variable. Both QRF and 
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RFerr are based on RF predictive model, however, predicting prediction error is a better 

idea than predicting response when we need to capture the dispersion of future prediction. 

More importantly, RFerr is not restricted to create PI for random forest model. Since it 

models the residuals from any predictive model, such as regression model, RFerr is 

widely applicable. 

Moreover, PI created by RFerr is robust to model misspecification. Unlike QRF, 

RFerr is more widely applicable and can generate PI for any predictive model other than 

RF. For radiation dataset, we used either linear regression or RF as the predictive model 

for dose. Although linear regression model is not a great fit, the coverage of PI by RFerr 

is still accurate. The length of PI is a little wider than using a better fit RF model. The 

reason may because that the OOB sample prediction errors simultaneously include all 

causes of errors in the model predictions, including random variations in the data 

collection, parameter estimation errors, and errors due to incorrect model specification. 

The empirical approach does not assume that the prediction is unbiased. Instead, it is 

based on the empirical analysis of past prediction errors that would have been made by 

the chosen model.  

Empirical prediction interval methods usually compute the prediction errors as 

residuals and then apply non-parametric methods, such as Chebyshev’s inequality and 

kernel density estimators75, and semi-parametric methods, such as quantile regression76, 

to construct prediction intervals. By using residuals rather than future prediction errors, 

these methods usually result in shorter PIs with higher miscoverage rates77. We illustrated 

this point by using OOB, in-bag or all samples in RFerr algorithm. It was shown that 

RFerr(out) generated 95% PIs with miscoverage rates the closest to the desired percentile. 
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It is because that the OOB sample provides a better representative sample of future 

observations, its empirical distribution is a better approximation of future prediction 

errors. Therefore, in the application of RFerr, OOB samples should be used to obtain the 

prediction interval. 

In addition, RFerr can handle multiple imputation and interpolation naturally. In 

predictive modeling, it is not unusual to deal with missing data. Multiple imputation is a 

technique to replace each missing value with a set of plausible values that represent the 

uncertainty about the true value78. Usually, each imputed value will be analyzed 

independently and a pooled estimate will be generated for the sample with missing values. 

In RFerr, multiple plausible values would be imputed for a missing value and each 

imputed copy is analyzed separately. For each imputed copy, the empirical conditional 

distribution of response variable is found by shifting the empirical distribution of 

residuals by the point estimate of response, and the final distribution of all imputed 

copies is a mixture of individual empirical response distributions. Prediction interval can 

be then obtained by taking quantiles from the merged distribution. The prediction interval 

calculated by RFerr incorporates the variation in imputation for missing data, above and 

beyond the variation in estimation and data. 

Similarly, RFerr works for interpolation, when there are multiple models. When 

interpolating between two models, two point estimates can be obtained respectively. Two 

error models are then built and so as the conditional empirical distributions of residuals. 

After shifting the two residual distributions by two point estimates respectively, we can 

merge them by a weighted sampling with replacement. Finally, prediction interval can be 

computed using the quantiles of the merged distribution. 



 97 

RFerr has some limitations. It requires more computation time than QRF, since it 

requires an extra model of error to build. Time can be saved though by limiting the tree 

size or terminal node size for the error model. A sufficient number of terminal node size 

can guarantee a better coverage of PI. Moreover, RFerr is more complex. Instead of 

creating prediction interval for the response variable directly, we build an error model 

and create prediction interval for the residuals. This additional step can be beneficial 

when the response variable is discrete or there exists some predictors that are predictive 

of variability. Otherwise, the traditional QRF would work great to generate PI. Lastly, 

QRFerr can cause some out of bound issue when creating PI. For example, in the 

radiation dataset, a legitimate value for dose estimate would be greater than 0. And in the 

BigMac dataset, time to purchase a Mac should also be greater than 0. However, because 

RFerr generates PI as the difference of a point estimate and a residual estimate, it 

possibly falls out of the range. In this case, users need to be careful to define the 

prediction range and adjust the prediction interval accordingly.  

To conclude, we proposed a novel method RFerr to construct prediction interval 

using an error model in random forest. By building a second-level model of residuals, this 

method can be used with any type of predictive model to create corresponding prediction 

interval. It is especially useful when the response variable is continuous but restricted to a 

few unique values, or where there exist variables that are predictive of prediction 

variability. Because RFerr is based on empirical methods, it doesn’t require assumptions 

about the residual distribution, nor it requires the point estimate to be unbiased.  
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CHAPTER 5  

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

This dissertation proposed two novel methods for feature selection and predictive 

modeling. RF has its built-in mechanism for feature selection and is well known for its 

excellent performance in prediction. Therefore, we developed the new methodologies 

based on RF.  

The new method Know-GRRF is an improvement from GRRF, which can 

incorporate weights to guide the regularization of random forest. We can control the 

degree of regularization better by defining an exponential function of the regularization 

parameter.  Moreover, model performance is considered in search of the regularization 

parameter so that model performance is optimized. In addition, the stability test would 

select features, which are consistently returned from multiple runs so the feature set 

selected by Know-GRRF is more stable. Know-GRRF was used to incorporate domain 

knowledge for regularization in biomarker discovery. We also showed its generalizability 

using intrinsic data characteristics in simulated datasets.   

The new method RFerr can generate prediction interval in predictive modeling for 

any kind of predictive models, and is especially useful for complex models. It is a non-

parametric method so it doesn’t require for assumptions in traditional linear regression. In 

RFerr, we use the idea of QRF but build a model of error instead to examine the 

empirical distribution of residuals. By using the OOB samples, we can able to get a good 
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representation of future prediction error. We can then use predicted residuals to estimate 

the dispersion of future prediction.  

There are several applications of these methodologies in this dissertation. We 

firstly applied random forest to a gene expression dataset for predictive modeling. By 

building day-specific models and nested models, the predictive algorithm has better 

performance with regard to accuracy. The model shows the strength of RF in dealing 

with challenges in bioinformatics data, including interaction, non-linearity and 

heterogeneity. However, the model built with NHP data doesn’t predict well for human 

samples because of the inherent difference in two species. Genes that are dose-responsive 

in NHP may not respond to radiation in human. Therefore, we use cross-species 

correlation to guide the selection of biomarkers in NHP model. Specifically, we applied 

Know-GRRF for cross-species prediction, using the cross-species correlation as domain 

knowledge. The method shows significant improvement in human sample prediction 

compared to other methods, including VSURF and GRRF. We also applied Know-GRRF 

on simulated datasets varying in complexity, using intrinsic data characteristics. The 

feature sets selected by Know-GRRF generally have higher TPR and lower FPR. Models 

built with selected features by Know-GRRF also have smaller error rate or MSE.  

Moreover, for the biodosimetry, decision makers not only want a point estimate, 

but also need an interval estimate of the predicted dose, which can reflect the uncertainty 

of future prediction.  However, RF model doesn’t provide a prediction interval along with 

the dose estimate. Therefore, we applied RFerr to generate prediction interval. The 

interval generated by RFerr has a more accurate coverage and a more precise length than 

QRF using RF as the predictive model. We also compared RFerr and QRF on some 
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benchmark datasets and simulated datasets. They all suggested a better performance by 

RFerr.  

5.2 Future Work 

In predictive modeling, we built day-specific models and nested RF models to 

predict radiation dose from gene expression. By separating samples into smaller groups, 

we can remove some noise and target on more homogenous group. And by selecting 

features for each dose range, we can model a more linear relationship in subset of data. In 

future work, we can generalize this methodology to deal with non-linearity and 

heterogeneity. We can use either unsupervised clustering or supervised prediction to 

separate samples. Testing this method on various datasets of different complexity could 

suggest when this method would be the most helpful.  

Know-GRRF was showed to have good performance using either domain 

knowledge or intrinsic data characteristics for guided regularization.  In future study, we 

could use both two sources to guide the selection of biomarkers simultaneously. Two 

parameters can be used to control the relative importance of the domain knowledge in the 

dataset. If the domain knowledge in not relevant, the algorithm would put more weight on 

the data characteristics.  

Secondly, we can decrease the computation time of Know-GRRF by improving 

the optimization. We can increase the step size or the tolerance to expedite the 

convergence. In addition, we can investigate several data points to get an idea of the 

range of the tuned parameter. We can also use some domain knowledge to set the upper 
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or lower bound of the search space. When domain knowledge is very important, the 

regularization parameter usually is larger.  

In future work, we can also apply Know-GRRF on larger bioinformatics data. The 

application of Know-GRRF in this dissertation is on an experimental dataset with limited 

sample size. To test its generalizability, we can apply it on available bioinformatics data 

from database, using domain knowledge such as mutual information or evolutionary 

weight for biomarker discovery.  

Lastly, to improve RFerr in future study, we can save some computation time by 

using RF as the predictive model. OOB error from RF can be used as the response 

variable in the error model directly. Otherwise, LOOCV would be needed to calculate 

residuals. Moreover, setting a larger nodesize in the error model can decrease the 

computation time significantly. Because residuals are generally more similar than the 

responses are, we usually would result in a very deep tree for the error model. Nodesize 

was defaulted to 10 in the error model of RFerr as suggested by QRF, but it may be worth 

studying the influence of nodesize on the final performance as well as the computation 

time.  
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