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The number and variety of connectivity estimation methods is likely to continue to
grow over the coming decade. Comparisons between methods are necessary to prune
this growth to only the most accurate and robust methods. However, the nature of
connectivity is elusive with different methods potentially attempting to identify different
aspects of connectivity. Commonalities of connectivity definitions across methods upon
which base direct comparisons can be difficult to derive. Here, we explicitly define
“effective connectivity” using a common set of observation and state equations that are
appropriate for three connectivity methods: dynamic causal modeling (DCM), multivariate
autoregressive modeling (MAR), and switching linear dynamic systems for fMRI (sLDSf).
In addition while deriving this set, we show how many other popular functional and
effective connectivity methods are actually simplifications of these equations. We discuss
implications of these connections for the practice of using one method to simulate data
for another method. After mathematically connecting the three effective connectivity
methods, simulated fMRI data with varying numbers of regions and task conditions is
generated from the common equation. This simulated data explicitly contains the type of
the connectivity that the three models were intended to identify. Each method is applied
to the simulated data sets and the accuracy of parameter identification is analyzed. All
methods perform above chance levels at identifying correct connectivity parameters. The
sLDSf method was superior in parameter estimation accuracy to both DCM and MAR for
all types of comparisons.
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INTRODUCTION
There is a growing consensus that cognition can be fruitfully
analyzed by studying the dynamic integration of information
computed by multiple, spatially discrete, functionally specialized
brain regions (McIntosh, 1999, 2001). In studies of cognition
utilizing functional magnetic resonance imaging (fMRI), as well
as other neuro-imaging methods, application of functional and
effective connectivity measures has become dramatically more
common. Connectivity methods are used to identify approxima-
tions to the integrative dynamics of multiple brain regions at a
coarse-grained level of analysis. For fMRI, the spatial scale is mea-
sured in millimeters and the temporal scale measured in seconds.
Though, these scales are far from that of neurons, dendrites, and
spikes, theory, and evidence strongly suggests that the dynamic
patterns of interactions at any level of analysis can be analyzed
roughly independently from the details of the smaller units that
interact to form the patterns themselves (Kelso, 1995; Haken,
1996). Thus, adequate understanding of the dynamic interactions

between brain regions measured at the scale of fMRI may not
require complex units such as multi-compartment spiking neu-
rons as a computational substrate. The interregional interactions
at this coarser level are potentially interesting in their own right
and represent a rich dataset to mine for unique biomarkers of dis-
ease and differential abilities (Büchel et al., 1999; Mechelli et al.,
2002; Bokde et al., 2009; Whalley et al., 2009; Rowe, 2010; Horwitz
and Rowe, 2011).

Increased interest in connectivity analysis of neuro-imaging
has resulted in an explosion of the number of different methods
for estimating the existence and strength of interregional interac-
tions (Moeller and Strother, 1991; Horwitz et al., 1992; Alexander
and Moeller, 1994; Friston, 1994; McIntosh and Gonzalez-Lima,
1994; Bullmore et al., 1996; McIntosh et al., 1996; McKeown
et al., 1998; Büchel et al., 1999; Friston et al., 2003; Harrison
et al., 2003; Sun et al., 2004; Valdés-Sosa, 2004; Roebroeck et al.,
2005, 2011; Seth, 2005; Valdés-Sosa et al., 2005; Marrelec et al.,
2006; Patel et al., 2006; Shimizu et al., 2006; Smith et al., 2006,
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2010; Rajapakse and Zhou, 2007; Havlicek et al., 2010; Chen
et al., 2011). Each connectivity method approximates interre-
gional brain dynamics in a specific manner as determined by the
statistical model behind the method. Though the term “connec-
tivity” is consistently used to describe each of these methods, the
underlying statistical models are often not consistent. Because
of these differences, it is not clear which methods are directly
comparable or even attempting to measure the same underlying
type of approximate dynamics (Horwitz, 2003). How then should
researchers evaluate different connectivity methods and select the
method appropriate to their study? If one method identifies a pat-
tern of connectivity in a dataset that another method fails to find
does this indicate the first method is superior (cf. David et al.,
2008)? If two methods identify a similar pattern of connectivity
in the same dataset, does this indicate the connectivity is more
likely to exist (cf. Penny et al., 2004)? Answers to these questions
will require a deeper understanding of the relations between the
mathematical foundations of different connectivity measures and
direct comparative evaluations designed with these relations in
mind.

The most direct comparison for connectivity methods is rel-
ative accuracy. That is, can the method identify interactions
between functional units at the correct magnitude? This direct test
requires knowledge of the ground truth; the nature, location, and
magnitude of the actual interregional interactions. Unfortunately,
this ground truth is simply unknown for in vivo data for sev-
eral reasons. To avoid this difficulty, researchers often resort to
testing methods using in silico simulated data where the ground
truth is presumably known (e.g., Bullmore et al., 2001; Calhoun
et al., 2002; Roebroeck et al., 2005; Smith et al., 2011a). While the
types of simulated data used by researchers are often simplistic
(though see Seth et al., 2013), simulations with known ground
truth remain necessary to test the validity and effectiveness of
connectivity methods.

Recently, an analysis of the accuracy of several disparate con-
nectivity methods was conducted using simulated data (Smith
et al., 2011a). Dynamic causal modeling (Friston et al., 2003;
DCM) was used, in reverse, to generate simulated fMRI data from
known patterns of interregional connectivity and known noisy
inputs. The various methods were then applied to the simulated
data and their ability to recover the known connectivity patterns
was compared. A problem with this study as well as previous
comparisons of multiple methods is that the ground truth used
for evaluation considered only the location and magnitude of
the simulated interregional interactions; the nature of the inter-
actions contained in the simulated data and the nature of the
interactions a method was intended to identify were not consid-
ered. Given the ambiguity of the concept of connectivity, it is not
immediately clear that the connectivity simulated by one method
can be reasonably used to comparatively evaluate multiple dis-
parate connectivity methods. The true interregional dynamics of
in vivo fMRI data are surely complex and different connectiv-
ity measures may identify different aspects of these dynamics. In
contrast, simulated data is simplistic by design, containing only
the type of interregional interactions that were induced by the
researcher. If the simulated data does not contain the type of inter-
action that a method was developed to identify, it is trivial to show

that the method fails to identify the simulated connectivity. What
is critical for method evaluation then is to simulate connectivity
according to the type intended to be identified by the methods
scrutinized. Therefore, only methods with compatible mathemat-
ical models of connectivity can be directly compared using the
same simulated data.

The current study compares the accuracy of three different but
fundamentally related methods, stochastic dynamic causal mod-
eling for fMRI (sDCMf), switching linear dynamic systems for
fMRI (sLDSf), and multivariate autoregressive models (MAR)
using simulated data. First we present a unifying review of the
foundations of several common connectivity methods. The meth-
ods are all placed into a similar multi-equation format that
separates equations defining connectivity from those defining
data observation. The underlying connectivity equation behind
the three methods of interest is derived and a single equation is
found to be applicable to all three. The form of the output equa-
tions for each method is defined and how these output equations
may affect simulation accuracy is discussed. For completeness,
parameter identification for each method is also briefly discussed.
Finally, fMRI data from interconnected regions is simulated using
the common equation and each method applied to attempt to
recover the known connectivity. We conclude with a discussion
of the strengths and failings of each method and suggest future
directions for connectivity modeling.

UNIFYING CONNECTIVITY METHODS
First, a unifying discussion of common connectivity methods is
presented to formally define what is meant by connectivity at the
level of explicit equations. The discussion begins with the rela-
tively simple equations behind so called “functional” connectivity
measures. These simple equations are then expanded to form
the basis of so called effective connectivity measures. The same
equations are expanded again to produce the dynamic models of
interest here. For clarity, constants in the equations necessary for
centering or scaling have been omitted from the discussion unless
necessary.

Assume a researcher is interested in approximating the interac-
tions between signals arising from a set of brain regions of interest
as measured by fMRI. Let xi

t be a scalar variable representing the
value of the signal of interest at spatial location i and temporal
location t and let yi

t be its measurement. To keep the discussion
general, the specific nature of the signal of interest (e.g., local field
potential or spatio-temporally integrated synaptic activity) will
not be specified until later. Assume there are n spatial locations
(brain regions) from which the signals of interest are measured
and for which the connectivity is to be computed. Let xt (resp. yt)
be a column vector in �n containing the signals (resp. measure-
ments) from regions [1 : n] at time t and X (resp. Y) be an n by
T matrix collecting xt (resp. yt ) for a set of temporally contiguous
time points [1τ, 2τ, 3τ . . . Tτ] equally spaced by some distance τ

in time.

RELATING OBSERVATIONS TO SIGNALS
The first step in generating any model is to state an observa-
tion equation that relates the signals of interest X to the observed
data Y. A typical assumption is that the measurements are some
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direct function of the signals but corrupted by some noise due to
the act of measurement and other unknown factors. A simple,
analytically tractable form of this relation would be a linear
function with Gaussian errors1 as shown in Equation 1.

yt = Cxt + ξt, ξ ∼ N(0, R) (1)

Here ξ represents the corrupting noise with mean 0 and covari-
ance R. The observation matrix C describes the extent to which
the underlying signal at each spatial location is present at each
measurement location. For some neuro-imaging methods where
each measurement represents multiple underlying sources such as
MEG, the matrix C could represent a (simplistic) model of source
mixing and bone/scalp conduction. In fMRI, however, the obser-
vations are spatially specific. This spatial localization requires that
xi not influence yj for i �= j; meaning C must be diagonal. The
simplest means to achieve this for the moment is to set C to
an identity matrix that can be ignored as in Equation 2. This
simplified linear model will be expanded later in the discussion.

yt = xt + ξt, ξ ∼ N(0, R) (2)

DEFINING STATIC FUNCTIONAL CONNECTIVITY
Different equations for the interactions among the signals yield
different forms of connectivity. It is only by comparing and con-
trasting these equations that similarities and differences between
various connectivity measures are realized. If a researcher assumes
that the signals are independent through time (i.e., there is no
function relating the signals at one time point to the signals
at any other time point), they may choose from a family of so
called static connectivity methods. The signals themselves are
not known a priori and must be estimated from the data. Thus,
the signals themselves are defined in terms of random variables.
Assuming these variables are normally distributed and that the
interactions among regions are linear results in the model shown
in Equation 3.

xt = Gεt , ε ∼ N(0, Q) (3)

Here G contains weights for mixing the as-yet-unknown, non-
localized components ε together to produce the localized signals
of interest. Given Equations 2 and 3, an explicit form for the
distributions of X and Y can be specified as in 4.

X ∼ N(0, GQGT)

Y ∼ N(0, GQGT + R)
(4)

Obviously constraints must be placed on G, Q, and R for the
signal X to be meaningful and for the model to be identi-
fied. A degenerate model (from the viewpoint of connectivity)
could be obtained by simply setting R the covariance matrix
of the measurements Y and setting G to a zero matrix, result-
ing in a rather useless signal. Without loss of generality, Q can
be set to an identity matrix with the additional information
subsumed by G. This simplification makes the components ε

1We use the tilde ∼ to indicate “distributed as” and N(a, b) to indicate a
normal distribution with mean a and covariance (inverse precision) b.

orthonormal (independent with unit variance). If the observation
noise covariance, R, is restricted to an identity matrix multi-
plied by an arbitrary scalar, σ, and the limit taken as σ goes to
zero (i.e., zero observation noise), Equations 2, 3, 4 form the
Karhunen–Loève transform from signal processing also known as
Principal Components Analysis (PCA; Jolliffe, 1986; Diamantaras
and Kung, 1996; Tipping and Bishop, 1999)2. When PCA is used
in (functional) connectivity analysis, typically only a few compo-
nents with the greatest affect on the observed data variance are
examined. Commonly used heuristics for selecting the number of
components (e.g., 80 or 90% of the data variance; Jolliffe, 1986)
are essentially assuming a non-zero bound for σ. If R is merely
restricted to an arbitrary diagonal matrix, Equations 2, 3, and 4
describe the exploratory factor analysis (FA) method. In either
case, the signals can be identified by maximizing the posterior
probability of x given y as in 5 with the appropriate constraints
on R (Roweis and Ghahramani, 1999). Note that as R approaches
zero the covariance

p(x|y) ∼ N

(
GT

(
GGT + R

)−1
y, I − GT

(
GGT + R

)−1
G

)

(5)
of p(x|y) goes to zero and the maximum likelihood solution for X
and G are obtainable via iterative least squares (Wold et al., 1987;
Diamantaras and Kung, 1996; Wold, 1996).

The normality assumption for the signals and measurements
can be relaxed by adding a non-linear function to Equation 3 as
given in Equation 6.

xt = Gg(εt), ε ∼ N(0, I) (6)

If R is again restricted to an identity matrix multiplied by an arbi-
trary scalar, σ, and the limit taken as σ goes to zero, Equations
2 and 6 describe the popular Independent Components Analysis
(ICA) model 3. If some if the components are assumed to be
“noise” their variance is returned to R after identification of the
zero noise system as in the PCA case above. It has been shown
(Roweis and Ghahramani, 1999) that if the hyperbolic tangent
function is used as the learning non-linearity in identifying the
ICA demixing matrix, the non-linear function g(ε) in Equation 6
is given by Equation 7. Thus, ICA can be seen as both

g(ε) = ln

(
tan

(
π

4

(
1 + erf

(
ε√
2

))))
(7)

a linear model with non-gaussian error or a non-linear model
with Gaussian errors (Roweis and Ghahramani, 1999).

DEFINING STATIC EFFECTIVE CONNECTIVITY
The connectivity contained within the G matrix of the PCA,
FA, and ICA methods presented above are often referred to as

2The limit being taken as σ and thus R go to zero rather than simply setting
R to zero is only necessary to preserve a proper probability model for PCA
(Tipping and Bishop, 1999).
3This is, however, a considerable abuse of the terminology of ICA. Typically
ICA would refer to ε as the underlying signals or sources and, since R
is 0, would not distinguish between observations Y and X. Despite the odd
terminology used the equations are correct.
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“functional.” The signals xi and xj are functionally connected if
the elements of the matrix G at G(i,k) and G(j,k) are both large
in magnitude for at least one k ∈ [1 : n]. This would indicate the
existence of a common component to the two signals of inter-
est and therefore a non-zero correlation between them. There
is, however, no inherent interaction, directionality, or “causality”
between the signals in Equations 3 or 6 in their generic form. The
signals xt are functions of the componentsεt , not of each other.

Effective connectivity is typically taken to imply causality or at
least directionality to the connectivity (Valdés-Sosa et al., 2011).
Returning to the linear model of Equation 3 with Q = I, if R is
again restricted to a diagonal matrix, and G is constrained a pri-
ori to have at most n(n − 1)/2 non-zero values and be acyclic
(satisfied if G is lower-triangular), Equations 2,3, and 4 describe
the confirmatory FA model, also known as Structural Equation
Modeling (SEM)4. With appropriate priors, 2 through 4 can also
describe Linear Gaussian Bayesian Networks (BN, Rajapakse and
Zhou, 2007). To see how the lower triangular (or other acyclic)
restriction implies directionality in Equation 3, consider the three
element model shown in Figure 1. The matrix G is shown in
Figure 1A implying the functional connectivity (i.e., common
components) shown in Figure 1B. Ignoring terms with zero coef-
ficients, the restrictions described above result in the following set
of equations for the G matrix of Figure 1A.

xi
t = εi

t

x
j
t = αεi

t + ε
j
t

xk
t = βεi

t + γε
j
t + εk

t (8)

Since the signal xi is localized in space and xi and εi are equiva-
lent, the component εi is localized as well. Thus, we are justified

in rewriting the signal in region j, x
j
t , as a function of the region

xi
t and its residual error ε

j
t with α indicating the strength of the

connectivity from region i to region j.

x
j
t = αxi

t + ε
j
t (9)

Similarly, xk
t may be rewritten as a function of xi

t and x
j
t .

xk
t = βxi

t + γ
(

x
j
t − αxi

t

)
+ εk

t

xk
t = (β − γα) xi

t + γx
j
t + εk

t

(10)

Therefore, the directional connectivity graph in Figure 1C is
a direct result of the Equations in 8. Returning to the non-
linear model in Equation 6 and again restricting G to be

4These assumptions lead to recursive SEMs (i.e., a SEM that is described by a
directed acyclic graph) that are uniquely identifiable via ordinary least squares.
Some cyclic (i.e., non-recursive) SEMs can be identified using instrumen-
tal variables or other approaches, but identification can be considered only
on a case by case basis. Without instrumental variables, often only a set of
multiple equivalent non-recursive (cyclic) models can be identified without
resorting to stochastic sampling methods (Richardson, 1996; Storkey et al.,
2007; Lacerda et al., 2008).

A

B

C

FIGURE 1 | Identifying effective connectivity from restricted functional

connectivity. (A) The G matrix relating unknown noise to the unobserved
“neural” signals. Using the connectivity model of 1.6, the matrix G
determines the covariance of the signal space via GGT. Connectivity in G is
directional in the sense that Gi influences Gk via β but Gk does not
influence Gi . (B) Graphical depiction of the relationship between the
common factors ε and the signals x implied by the pattern of values in (A).
The variable xi is only influenced by εi while xj is influenced by εi and εj ,
and so on. (C) Effective connectivity between the signals. The effective
connectivity depicted in C is a direct consequence of the matrix G in (A).
See the text for the solution.

lower-triangular, the functional connectivity of the ICA method
becomes the effective connectivity of the Linear Non-Gaussian
Acyclic method (LiNGAM, Shimizu et al., 2006) in a manner
directly analogous to the relation between exploratory FA and
SEM. Thus, the type of connectivity contained in the static effec-
tive connectivity methods SEM and LiNGAM is not inherently
different from their static functional connectivity counterparts
as they rely on the same underlying equations; they are merely
restricted subsets of the same connectivity model. In light of this
similarity, and to keep consonance with terminology from other
fields, we suggest the use of the term “confirmatory connectivity”
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and “exploratory connectivity” in place of effective and functional
respectively for these static methods.

DEFINING DYNAMIC CONNECTIVITY IN DISCRETE TIME
SEM, BN, and LiNGAM are static connectivity methods in that
they require the assumption of no temporal structure to the data
(though see e.g., Fisher, 1970 for a dynamic interpretation of
SEM). That is, any permutation of the temporal ordering of Y
will produce identical values in G for these methods. Though a
useful fiction, this assumption is untenable when the observations
are closely spaced in time as is the case for fMRI. If a linear tem-
poral dependency of xt on its past values (e.g., xt−τ) is included
in Equation 3, the multivariate autoregressive (MAR 5) model is
recovered.

xt = Axt − τ + Gεt , ε ∼ N(0, I) (11)

Note that the measurement function given by Equation 2 is still
being used with Equation 11 for the MAR model 6. Note as well
that there are now two “connectivity” matrices. As before, G
describes the connectivity that is instantaneous relative to the
sampling rate, or occurring “within” the sample interval. This
connectivity can be thought of as residual static exploratory
(functional) connectivity or, if restricted as in SEM, residual static
confirmatory (effective) connectivity. In addition, the new matrix
A describes connectivity across time. The connectivity in A is
directional and causal. However, if G is not strictly diagonal,
the elements of A as identified in 11 must be interpreted with
some caution as they do not account for all the interregional
interactions (Sims, 1980; Sims and Zha, 1998; Lütkepohl, 2007;
Rubio-Ramírez et al., 2010; Chen et al., 2011; Smith et al., 2011b).
To identify the unique effect of an externally induced change in
one variable on the system described by 11 requires an additional
restrictions on the within time connectivity G as seen before with
SEM (Rubio-Ramírez et al., 2010). If G is invertable structured
such that it can be written in lower-triangular form by reordering
the variables, the within time connectivity, S0, is given by G−1

while the cross time connectivity, S1, is given by AG−1 (Sims,
1980; Rubio-Ramírez et al., 2010). While most MAR modeling
for fMRI has been conducted using the framework of Granger
Causality 7 and has considered only the through time connec-
tivity in the A matrix (cf. Seth, 2005) analysis of both A and G
may be more useful to better understand connectivity at the rel-
atively low sampling rate of fMRI (Chen et al., 2011; Smith et al.,
2011b).

For completeness Equation 12 gives a generic form of the
MAR connectivity equation that includes external inputs, vt ,

5Also referred to as vector autoregressive (VAR) and, if instantaneous rela-
tionships between the signals are considered, structural vector autoregressive
(SVAR) models.
6The R matrix could also be set to zero to ensure a pure MAR model; oth-
erwise 1.2 and 1.10 describe a similar but more general state space model
(Lütkepohl, 2007). Any MAR model can be described in state space form, but
not all state space models are MAR models.
7Strictly speaking a MAR analysis is not identical to a Granger Causality anal-
ysis though the terms are often used interchangeably. See REFS for more
details.

and possible temporal variability for the connectivity and noise
covariance. The t subscript on the matrices indicates that these
values may change with time

xt = At xt − τ + Btvt + Gtεt , ε ∼ N(0, I) (12)

(e.g., with changing task condition). This generic connectivity
equation contains stationary SEM (At = 0, Bt = B, Gt = G) and
stationary MAR (At = A, Bt = B, Gt = G) as special limited cases.
Obviously, the MAR connectivity equation should not be used to
simulate data for SEM with a non-zero A matrix (see Fisher, 1970
for a possible exception to this rule).

The full temporal variability in 12 is difficult to solve; iden-
tifying a unique full A matrix for each time-point is a severely
under-determined problem. Methods for identifying X and each
unique At do exist; for example by assuming a model for At

given At−τ (Wan and van der Merwe, 2001; Havlicek et al., 2011;
Smith et al., 2011b). However, typically At is more constrained.
If the matrices in 12 are assumed constant over some interval
and interval boundaries are known, standard methods for identi-
fying MAR model parameters may be used within the intervals.
Bilinear models, which assume At is a function of a constant
matrix A altered by a known external variable are another simple
method to identify a constrained At (cf. Penny et al., 2005; Makni
et al., 2007; Ryali et al., 2011). The bilinear model is easily pre-

sented in the form of 12 by setting At to A + ∑
j Hju

j
t where H is

the (non-temporally varying) bilinear term and ut is the known
input influencing this term (Smith et al., 2010) 8. If ut is simply
an indexing variable, the result is similar to the constant inter-
val method. However, the bilinear model does not account for
non-stationarity in the error and other inputs, holding Gt and
Bt to constant matrices. If a small number of distinct A, B, and
G matrices are assumed to exist (e.g., Ai, Bi, Gi, i ∈ [

1, 2, . . . , p
]
)

and the probability of their application at a time t is conditioned
on an additional variable s with the same temporal index (e.g.,
p(At = Ai|st = si)), the switching linear dynamic system (sLDSf)
model is recovered (Smith et al., 2010). If the index variable s
is known, the parameters of the sLDSf model can be recovered
in a similar manner as in the constant interval case. If the index
variable s is unknown, the problem is more difficult, but solvable
(Kim, 1994; Murphy, 1998; Barber, 2006; Fox et al., 2010). The
connectivity of sLDSf can be as general as Equation 12 assuming
the limited set of Ai, Bi, and Gi matrices in the sLDSf model form
a basis spanning the space of possible At , Bt , and Gt matrices such
that any At matrix (resp. Bt , Gt) can be represented as a weighted
combination of the given Ai (resp. Bi, Gi) matrices (Smith et al.,
2011b).

DEFINING DYNAMIC CONNECTIVITY IN CONTINUOUS TIME
The MAR and sLDSf methods are defined in discrete time. That
is, the connectivity equations describe the evolution of values of
the signals xt over a fixed set of time-points t ∈ [1τ 2τ 3τ . . .].
These equations can be transformed, without error, such that they
describe the differences between temporally contiguous values of

8Most descriptions of bilinear models for connectivity use B to indicate the
bilinear term that is labeled H here.
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the signals xt (i.e., xnτ – x(n − 1)τ). This is the so called “delta” form
of the MAR model and is shown in Equation 13.

(xt + τ − xt)
/
τ = Ātxt + B̄tvt + Ḡtεt (13)

For the technically minded, the conversion from 12 to 13 is given
in Appendix B. The left-hand side of Equation 13 can be seen as
an Euler approximation to a derivative, thus as the sampling rate
τ approaches 0, Equation 13 approaches the derivative of xt as
in 14.

ẋt = Ãt xt + B̃tvt + η̇t (14)

Because it is expressed in terms of a derivative, if the value of x is
known at some time point (e.g., x0), 14 can be used to identify a
value of xt for any value of t > 0. Thus, 14 is referred to as contin-
uous time. The continuous time matrices in 14 have been marked
with the tilde to distinguish them from the discrete time versions
in 12. The vector η̇t is a white noise disturbance which must tech-
nically have infinite variance and its full treatment is beyond the
scope of the current discussion. Because of this, Equation 14 is
more often expressed via a stochastic integral of the integrated
version of η̇t as

dx = Ãtxt dt + B̃tvtdt + dηt, E [[dη]] E [[dη]]T = Q̃dt (15)

in 15 where E[x] indicates the expected value of x and Q̃dt can be
considered an incremental covariance matrix. If the noise process
in 14 is removed, the result is a deterministic differential equation
similar to that used to describe connectivity in the original deter-
ministic Dynamic Causal Model (dDCM, Friston et al., 2003).
All that is needed to recover dDCM from 14 with η̇t = 0 is to

replaceÃt with Ã + ∑
j H̃ju

j
t to form the bilinear model as done

in the previous section. The bilinear continuous time neural con-
nectivity of sDCMf can be recovered from 15 in a similar manner
and is given in Equation 16.

dx =
⎛
⎝Ã +

∑
j

H̃ju
j
t

⎞
⎠ xtdt + B̃vt dt + dηt, E [[dη]] E [[dη]]T

= Q̃dt (16)

The letters used as matrix labels in 16 have been changed from
those of Friston et al. (2003) to remain consistent with the
equations above.

The relation between continuous time connectivity expressed
in 16 and the discrete time connectivity of 12 has been well stud-
ied (cf. Åström, 1970; Bar-Shalom et al., 2001; Ljung and Wills,
2010). Assuming the system matrices (Ã, B̃, and Q̃) and the input
vt are constant over the interval [t − τ : t] then the exact system
matrices for an equivalent discrete time system can be derived
from the continuous time versions as follows:

At = eτÃt

Bt = Ã−1
t

(
eτÃt − I

)
B̃t

(17)

where eA indicates the matrix exponential of A and A−1 indicates
the inverse of A. The matrix Bt can still be computed from B̃t

even if Ãt is singular. The covariance of the stochastic input for
the discrete time system can also be derived from the stochastic
continuous time system via the Equations in 18.

εt =
∫ s = t

s = t−τ

eÃt − τ + s dηs

Q =
∫ s = τ

s = 0
eÃs Q̃eÃT

s ds

(18)

Thus, the corresponding discrete time Q is the solution to the
continuous Lyapunov equation:

ÃtQ + QÃT
t + Q̃ − eτÃt Q̃eτÃT

t = 0 (19)

To reduce this Q to an identity matrix as assumed in 12 and
recover G, recall that if a matrix W is the Cholesky factor of a
symmetric matrix Z then:

W = chol(Z)

Z = WIWT
(20)

Examining Equations 3 and 4 we see that if the covariance of εt is
Q, then the covariance of Gεt is GQGT . Thus, the matrix G from
12, assuming identity covariance of ε, is derived from the matrix
Q̃ in 15 by solving for Q in 19 and then taking the Cholesky factor
of the resulting matrix9.

It is important to stress that the mapping from continuous
time to discrete time is subjective. That is, assuming an appro-
priate sampling interval, there is one and only one discrete time
system that corresponds to a given continuous time system. The
matrix exponential function in Equation 17 is unique as is the
solution to 1910. Assuming the continuous time matrices contain
no frequencies higher than the half the sampling rate, the converse
is also true. The inverse of the matrix exponential, the matrix
log, may or may not have a unique solution (Culver, 1966), but
other methods exist for discrete-to-continuous conversion (Raol
et al., 1987; Åström and Wittenmark, 1996; Franklin et al., 1997).
Unfortunately, if the sampling period is insufficient, there will be
many continuous time systems that could correspond to a given
discrete time system.

To summarize, Equation 15 and its equivalent discrete time
counterpart in Equation 12, as derived by Equations 17 through
20, represent generic dynamic effective connectivity equations
that contain dDCM, sDCMf, sLDSf, MAR, SEM, FA, and PCA as
special cases. However, not all of the special cases are compatible.
Assuming appropriate care is taken with scaling, definition, and
conversion of the system matrices, sDCMf, sLDSf, and MAR can
all share the single connectivity Equation 12. However, dDCM is
not compatible with sLDSf, MAR or any of the static connectivity

9If there are known zeros in G, it can be solved via maximum likelihood
methods rather than Cholesky factors.
10While the discrete time error covariance matrix Q is unique, the repre-
sentation of the same system using the G matrix may not be. There may be
additional G matrices for which GIGT = Q. This is not a concern if a method
solves for Q rather than G.
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measures. The dDCM form of 15 assumes Q̃t (and thus Gt ) is zero

and all connectivity is described by Ã + ∑
j H̃ju

j
t while the static

connectivity measures such as SEM assume At (and thus (Ãt)
is zero and all connectivity is described by Gt . Therefore, using
dDCM to generate simulated fMRI data for testing static con-
nectivity methods (e.g., SEM, FA, PCA, ICA, correlations, partial
correlations, etc.), because of its lack of compatibility with these
measures, is inappropriate.

DIVERGING OBSERVATION MODELS
The discussion above focused on identifying the connectivity
equations; the observation equation was ignored beyond the
assumption that yi was dependent only on xi and not xj for
i �= j and assuming various restrictions on the observation noise
covariance R. Though 12 represent the common connectivity
equation for sDCMf, sLDSf, and MAR, the methods do not share
common observation equations. The observation equations for
each of the three methods are discussed below in turn.

MAR
The MAR observation equation is the simplest of the three meth-
ods discussed here. The observation equation assumed by a MAR
analysis of fMRI data is essentially Equation 2. However, 2 can
be further simplified in the MAR case by setting ξ and R to 0
and placing any observation noise variance into the variance of ε

in Equation 12 and scaling the system matrices accordingly. This
would make Q an arbitrary diagonal matrix. It could be argued
that this simplistic observation equation is a poor model for
mapping from predominantly neurally based variables (e.g., local
field potentials) to the hemodynamic variable observed via fMRI
(Smith et al., 2011a). The BOLD signal obtained in fMRI is an
epiphenomenon arising from neural, glial, and vascular sources
(Logothetis et al., 2001; Logothetis and Pfeuffer, 2004; Logothetis,
2008). It has been assumed that BOLD signals in one region
do not causally influence BOLD signals in other regions. This
would seem to invalidate the MAR observation equation since
the signals, X, would be defined and interact in “hemodynamic”
space. However, the BOLD response can be accurately modeled
as a causal low pass filter (Henson, 2003). While the exact shape
of this filter may vary from subject to subject and from region
to region within subjects, there is a common generic shape of
the BOLD filter (Aguirre et al., 1998; Handwerker et al., 2004,
2012). The impulse response of this filter can be approximated
by a Poisson function or mixture of two Beta functions (Friston
et al., 1994). To the extent that the transfer function of the sys-
tem described by Equation 12 contains no frequencies higher than
those passed by the BOLD filter, passage of X through this filter
would result in a relatively undistorted temporal shift of the true
signal (Barnet and Seth, 2011; Seth et al., 2013). Unfortunately, a
change from one set of system matrices to another in the connec-
tivity equation would likely induce a high frequency component
in X. This suggests that MAR is likely better suited to the so-
called resting state fMRI or slow block design experiments than
to event related or other rapidly changing designs. However, the
output equation of MAR requires no additional parameters to
be estimated and the MAR model can be identified in closed
form.

sLDSF
The observation equations used in sLDSf are based on the linear
convolution model of Penny et al. (2005). The sLDSf observation
equations are presented in Equations 21 and 22.

yt = βφzt + Dvt + ζt, ζ ∼ N(0, R) (21)

zt = [
xt , xt−τ, xt−2τ, xt−3τ, . . . , xt − (h−1)τ

]
(22)

The variable zt contains h errorless lagged copies of the signals x
from xt−(h−1)τ to xt . The observation, yt , is an instantaneous lin-
ear function of zt any additional observation level input vt (e.g.,
movement related variables) and noise ζt with a diagonal covari-
ance matrix Rij = 0 for i �= j. The matrix � is an a priori known
set of basis vectors that span the likely variability in the hemo-
dynamic impulse response function (hIRF) such as a canonical
hemodynamic response and its derivatives with respect to time
and dispersion (Penny et al., 2005). The matrix β contains region-
ally specific weights for these bases to generate a unique hIRF βi�.
The linear output βi�Zi

t is thus equivalent to convolving each
signal with a regionally specific hemodynamic response (Smith
et al., 2010). The SLDSf output equations with three basis vectors
require the estimation of three additional parameters per region.

sDCMF
The output equations for sDCMf are the most complex of the
three methods. DCMf uses a non-linear dynamic system to model
the biophysical states that engender the BOLD signal (Friston
et al., 2003). The DCMf output equations embody the Balloon–
Windkessel model (Buxton et al., 1998; Mandeville et al., 1999;
Friston et al., 2003; Riera et al., 2004; Buxton, 2012). The region-
ally localized signal xi causes an increase in an equally localized
vasodilatory signal. Inflow responds to this signal and affects
blood volume as well as feeding back to the vasodilatory sig-
nal. Change in deoxyhemoglobin content is a function of flow,
volume, oxygen extraction as well as its past. This complex inter-
action can be summarized with Equations 23 through 26 where s
is the vasodilatory signal, f is inflow, v is blood volume, q is:

ds

dt
= x − κs − γ( f − 1) (23)

df

dt
= s (24)

τ
dv

dt
= f − v1/α (25)

τ
dq

dt
= f (1 − (1 − ρ)1/f/ρ − v1/α

/
v (26)

deoxyhemoglobin content, alpha is Grubb’s exponent and rho is
resting oxygen extraction fraction. The observed BOLD signal
is then taken to be a static non-linear function of volume and
deoxyhemoglobin with additional biophysical parameters as in
Equation 27. In all, the output

y = 0.02(9ρ − ρ2 + 1.8 − 2q /v − 2ρv − 0.2v) (27)

equations of sDCMf require five additional parameters to be
estimated per region.
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PARAMETER ESTIMATION
The parameter estimation methods of MAR, SLDSf, and
sDCMf are briefly reviewed. For more detailed descriptions see
(Murphy, 1998; Neumaier and Schneider, 2001; Lütkepohl, 2007;
Daunizeau et al., 2009; Friston et al., 2010; Li et al., 2011; Smith
et al., 2010).

MAR
Coefficients of MAR models can be obtained through linear
regression of past on future values using least-squares meth-
ods (Lütkepohl, 2007). To avoid numerical issues related to
forming and inverting the covariance of the predictor matrix,
we implemented the regression via QR factorization (Stewart,
1987). For each simulation, all time points within a condition
were selected and the first four observations per block were
discarded. Inputs were shifted forward in time by 4 s to accom-
modate the delay in the peak hemodynamic response 11. The
inputs and observations were combined to form a single design
matrix and used to predict the observations 1 s after the times
included.

sLDSf
The parameters of the sLDSf model are identified using an iter-
ative Bayesian Expectation Maximization (EM, Dempster et al.,
1977) algorithm written by the first author in a combination of
Matlab and ANSI C. In brief, starting estimates of the system
matrices based on a MAR model are used to estimate the signals
given the observed data using Kalman filtering/smoothing (Bar-
Shalom et al., 2001; Haykin, 2002; Lütkepohl, 2007; Smith et al.,
2010). The likelihood of the data given the model is also calcu-
lated. This is the expectation step of the EM algorithm. The like-
lihood is maximized given these signals by updating the system
matrices. The matrices are updated by setting the derivatives of
the likelihood function with respect to each of the system matrices
to zero and solving (Shumway and Stoffer, 1982; Ghahramani and
Hinton, 1996; Murphy, 1998; Penny et al., 2005). These updated
system matrices are then used to estimate new signals. This itera-
tive process is repeated until the change in likelihood at each step
drops below a specified threshold.

The likelihood of the data given the model was modified to
include priors on the system matrices (cf. Makni et al., 2007; Ryali
et al., 2011). The parameter identification method implemented
here used the Empirical Bayes framework (Bishop, 2006). A mul-
tivariate normal-inverse gamma prior distribution was used for β

and the diagonal elements of R (Bishop, 2006). The prior mean of
β was set to [1,0,0] at each region for the canonical hIRF, its tem-
poral derivative, and its dispersion derivative, respectively. The
necessary hyperparameters were estimated from the data (Bishop,
2006). A matrix-normal-Wishart density was used for the conju-
gate prior for A, B, and Q given X and u (Minka, 2000) and shown

11The MAR regressions were also attempted using the inputs at the true time
convolved with a canonical hIRF. This resulted in poorer performance as did
deconvolution of the observations using a canonical hIRF (division in fre-
quency space followed by a low-pass filter). Results of these inferior methods
are not reported here.

in 28. The prior mean of A was set to the

p

(
[A, B]|

[
X
u

])
∼ NW−1

×
⎛
⎝

[
0.5

TR
I, 0

]
,
∑

j

αj

[
X
u

]
Sj

[
X
u

]T

, zI, z

⎞
⎠ (28)

identity matrix multiplied by 0.5/TR and the prior mean of B was
set to zero. Two separate variances were estimated for the values
in A and B; one for the elements of A and one for the elements
of B. The matrix Sj in 28 is an appropriate selection matrix to
allow for the separate variances and z is the estimated degrees of
freedom. The necessary hyperparameters were estimated from the
data (Minka, 2000).

sDCMf
Parameter identification for sDCMf was performed with SPM12
(http://www.fil.ion.ucl.ac.uk/spm 4750 2012-05-24 14:05:41Z).
This version uses the generalized filtering method described by
Friston et al. (2010) and Li et al. (2011). Parameter identification
involves approximating the conditional density on the unknown
parameters and signals and maximizing an approximate bound
on the log evidence using a variational Bayesian method. The
function spm_dcm_estimate included in SPM12 was called via a
separate script with the following parameter settings: stochastic =
1; center = 1; endogenous = 0; delays = 0; dt = 1 s. In addition, if
for a given simulation any element of the simulated A matrix was
zero for all conditions in that simulation, sDCMf, was informed
to set this element to zero.

IMPLICATIONS
The commonality of the connectivity equations for sDCMf,
SLDSf, and MAR suggest the following steps to simulate in silico
interregional effective connectivity for these methods. First, the
continuous time matrices Ãt B̃tQ̃t and the vector vt are defined
in the simulation for all possible values of t. Second, a small step

size, τ, is chosen such that
�

At B̃tQ̃t and vt are all constant on the
interval t–τ to t. The discrete time matrices At , Bt , and Qt and/or
Gt for step size τ are identified using 17 and solving 19. The signal
data, X, is then simulated using these discrete time matrices at a
step size τ with suitable random noise passed through G. We stress
that this is not equivalent to integrating a deterministic version of
15 using the Euler or Runge–Kutta method with a temporal step
of τ and then adding noise with covariance Q̃ after each step. The
matrix Q̃ is not the appropriate noise covariance for such discrete
time steps because the noise also needs to be integrated over this
period (Ljung and Wills, 2010). Simulated fMRI data can then be
generated using an appropriate function of the simulated signal
that is consistent with real fMRI data but is not the actual output
function of any of these methods. Parameters of sDCMf, sLDSf,
and MAR models are identified for the simulated fMRI data. The
true system matrices and the identified sDCMf system matrices
are then converted, without error, to a step size common to the
sLDSf and MAR (typically the simulated TR). Once all system
matrices are expressed in a common format they can be directly
compared.
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To produce simulated fMRI data from the signal data created
as above, one could apply method specific output equations to
generate method specific data. However, because the MAR output
equation does explicitly not model the BOLD response this would
not be a realistic test of the utility of MAR for fMRI. To avoid
bias, a different output model was chosen for the simulations.
The mixture of two betas model implemented in the function
spm_hrf() distributed with SPM8 () was used to create hIRFs
that would then be convolved with the signals. The spm_hrf()
function essentially forms two time series from beta probability
distributions and subtracts the second from the first. The pur-
pose of the second is to model the post-stimulus undershoot
seen in BOLD data. The function has eight parameters: step time,
delay of response peak from onset, delay of undershoot peak from
onset, dispersion of response, dispersion of undershoot, ratio of
response to undershoot, onset length, and length of kernel. To
create variable hIRFs, three parameters to the spm_hrf() func-
tion were allowed to vary at random from typical values; delay of
response peak from onset, delay of undershoot peak from onset,
and ratio of response to undershoot.

The resulting variable hIRFs, while distinct from the exact
sDCMf or sLDSf output equations, should be well modeled by
both methods. Though DCMf can model non-linear aspects of
the hemodynamic response, these non-linearities are only impor-
tant when using an estimated hemodynamic response from a
short stimulus to predict the response to a longer stimulus or
when considering only overly simplistic models of the neural
response (Yesilyurt et al., 2008; Marxen et al., 2012). The Balloon–
Windkessel model as implemented in DCMf and the linear con-
volution model produce equivalent outputs when inputs are slow
and no distinction is typically seen between them (Seth et al.,
2013). To ensure both DCMf and SLDSf were able to mimic the
simulation hIRFs, both the basis function method of SLDSf and
the non-linear system method of DCMf were directly tested. To
test the SLDSf basis method, fifty random hIRFs were generated
and optimal weights on the three bases were identified using ordi-
nary least squares. The mean R2 for the basis function method was
0.9966 and the minimum R2 was 0.9809. For the non-linear sys-
tem method of DCMf, the best fitting set of parameters (in terms
of squared error) for the hemodynamic model were identified
for the same 50 random hIRFs using the Levenburg–Marquardt
method as implemented in the Matlab function lsqnonlin().
Both the mean and minimum r2 for the non-linear system
method were greater than 0.9999. While a paired t-test indi-
cated that the superior performance of the non-linear system
method over the basis function method was statistically signifi-
cant [t(49) = 5.96, p < 0.001] the basis function method fits were
extraordinarily accurate and in practice the difference is likely
meaningless.

METHODS
All simulations were performed in the Matlab (Mathworks Inc.,
Natic MA) 2012a environment. Matlab functions for generating
the simulations are included as supplementary material. Briefly,
for each individual simulation with n regions, an n-dimensional
Hurwitz stable continuous time transition matrix was created for
each of p conditions. For a continuous time transition matrix to

be Hurwitz stable, all of its eignvalues must be in the open left half
plane of the complex plane (i.e., negative real part). Stable transi-
tion matrices were created by drawing n real random values from
a gamma distribution with shape parameter 3 and scale parameter
0.275 and negating them. These n negative values were treated as
eigenvalues and left-multiplied, right-divided by an orthonormal
n by n eigenvector matrix created using the randn() function and
orthonormalized using the orth() function. The resulting sym-
metric matrix was rotated using an additional random n by n
matrix. Entries in the resulting matrix with absolute value less
than 0.1 were set to zero. The continued continuous time stability
of the resulting matrix was tested by examining the eigenvalues
of the constructed matrix. If a non-stable matrix was created, the
process was repeated. The instantaneous error covariance matrix
was created using n random positive eigenvalues from the range
zero to one generated using the rand() function and a second
orthonormal n by n eigenvector matrix without further rotation
to maintain symmetry. The matrix describing the effect of exter-
nal input on the state space was generated using the randn()
function and all entries with absolute value less than 0.1 were
set to zero. The resulting matrices were converted to their dis-
crete time counterparts (A, B, and G) using Equations 14 to 17
with a step size of 25 ms. Discrete time versions of the true matri-
ces were also created with a step size of 1000 ms for evaluation
purposes.

The simulation consisted of a 10 min (600 s) time series having
25 blocks with 24 s per block. The ordering of the blocks in each
simulation was created as follows. For simulations consisting of
two conditions (i.e., p = 2), an ABAB design was used. For three
or more conditions (i.e., p > 2) a Markov transition matrix was
created with zero probability of remaining within condition an
equal probability of jumping to any other condition. A random
ordering of 25 blocks was generated using this Markov matrix and
the rand() function.

Inputs to the state space were generated by randomly setting 60
of the 25 ms steps to 1 for each of two inputs. Discrete time noise
was created from an orthonormal distribution for every 25 ms of
a 600 s period. The signal data was then created at each 25 ms
step using the condition series, input, noise, and system matrices
according to Equation 11.

A hIRF was created for each of the n regions at the 25 ms step
size. The mixture of two betas model implemented in the function
spm_hrf() distributed with SPM8 (www.fil.ion.ucl.ac.uk/spm/)
was used to create the hIRFs with the following parameter set-
tings: TR = 0.025, delay of response peak from onset = 3.5 s +
[0–3]s, delay of undershoot peak from onset = 12 s + [0–3]s, dis-
persion of response = 1, dispersion of undershoot = 1, ratio of
response to undershoot = 11 + [0–3], length of kernel = 20 s. For
each region, the signal from that region was convolved with the
region’s impulse response and then down-sampled by selecting
every 40th value to create a 1 s step size. Orthogonal white noise
was then added with a SNR of 6.0206 db. The resulting observa-
tions were mean centered and scaled to unit variance. A sample
time series is presented in Figure 2.

For testing the methods, the number of regions ∈ {3, 5} and
conditions ∈ {2, 3} in the simulated dataset were varied, and
50 different simulations were created for each combination of
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FIGURE 2 | Representative data from a simulation. (A) Shown is 600 s
of the “neural” level signal from a single simulation. (A) inset is a close-up
of 25 s from this time series. This time series is sampled at 0.025 Hz. (B)

The hemodynamic response generated by this “neural” signal. (B) inset is
a close-up of the same 25 s segment. This time series is sampled at 1 Hz.

parameter settings. Each of the methods was then applied to
the simulated data. Analysis was conducted on a custom work-
station (AVADirect, www.avadirect.com, Cleveland, OH) with
two Xeon X5690 processors and 48GiB RAM running RedHat
Enterprise Linux Release 6.1, Kernel 2.6.32-131.13.1.el6.x86_64.
Identification of MAR models was essentially instantaneous for all
simulations. Identification of sLDSf models took approximately
36 s for the most complex simulations while identification of
sDCMf models took approximately 6495 s for the same simula-
tions. Because of the time cost for estimating the sDCMf models,
more complex simulations (e.g., more than 5 regions or more
than 3 conditions) were not examined.

To directly compare the three methods, the continuous time
transition matrices identified by sDCMf were converted to their
discrete time counterparts at a 1 s sampling rate as were the orig-
inal true continuous time simulation matrices. The sLDSf and
MAR transition matrices were identified at this sampling rate and
thus did not require further manipulation. Four measures were
chosen to assess the relative accuracy of the methods. First, the
r2 for the comparison between the true and estimated A matrices

each method on each simulation according to Equation 29.

r2 = 1 −
∑

elements

(Atrue − Aest)2/(Atrue − Ātrue)2 (29)

Note that while 29 is the correct formula, because the result is
a subtraction of a squared value from one, there is a possibil-
ity that the resulting r2 will be negative if the prediction of A is
worse than simply guessing the mean of A. For sDCMf and sLDSf,
the scaling of the signals of interest, and thus the A matrices,
is arbitrary. Considering the sLDSf method equations, given an
arbitrary invertible matrix T of the correct dimensions, a model
with system matrices A and C is equivalent to one with matri-
ces AT and CT−1. Thus, any scaling that preserves the one-to-one
spatial relationship between the signals within and observations
of the regions is acceptable. To account for such scaling differ-
ences, two additional accuracy measures were calculated as in 30
and 31. In 31 κ is a scalar that

r2 = 1 −
∑

elements

(Atrue − κAest)2/(Atrue − Ātrue)2 (30)

r2 = 1 −
∑

elements

(Atrue − KAest)2/(Atrue − Ātrue)2 (31)

minimizes the squared difference between the matrices as iden-
tified via least-squares. In 3.3, K is a diagonal matrix where each
element minimizes the squared difference between corresponding
columns of the two matrices.

The simulation matrices were selected to be stable and thus are
constrained to have a certain form. Both sDCMf and SLDSf use
priors on the A matrices to bias parameter identification toward
stable matrices. Thus the “chance” r2 for the three accuracy mea-
sures above given this knowledge is greater than zero. To avoid
this bias a final accuracy measure was calculated. Because more
than one true transition matrix was created for each simulation
(one per condition) the element-wise difference between the true
matrices in each simulation was computed (i.e., the change in
connectivity from one condition to another). The same differ-
ence was computed for the matrices estimated by the connectivity
methods. The r2 between the true difference and the estimated
difference was calculated by converting the matrix differences to
vectors and correlating them. The expected value of the corre-
lation between the difference matrices is zero whether or not
knowledge of the stability of the matrices is used.

In addition, a “chance” accuracy level was determined for
the three matrix value accuracy measures. Each simulated tran-
sition matrix was used as an “estimate” of all other matrices
of the same size with column-wise, global, and no scaling as
above. These random estimates were then scaled as appropriate
for each of the three measures considered involving the accuracy
for a single matrix. This chance measure gives a baseline level of
accuracy for a hypothetical method with perfect knowledge of
how the system matrices were created. We note that this is more
information than any of the methods here had access to and as
such may not be a actual baseline but should still be a useful
comparison.

Frontiers in Neuroscience | Brain Imaging Methods May 2013 | Volume 7 | Article 70 | 10

http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Smith et al. Identifying effective connectivity parameters

RESULTS
Median r2 values of the four accuracy measures for each of the
three connectivity methods are given in Tables 1–4. In general
all methods performed above chance levels for all comparisons.
All signtests, corrected for multiple comparisons, contrasting the
three methods against the chance distributions for all simula-
tion types were significant. Thus, all three methods were able
to identify some interregional interactions from the simulated
data. All three methods performed best when column-wise scal-
ing was allowed followed by global scaling, then no scaling.
All methods were least accurate when examining the differ-
ences between system matrices though these accuracies were
still superior to chance (zero) levels. Using paired sign tests
(Matlab function signtest) to compare median r2 levels, the
sLDSf method achieved superior accuracy to both sDCMf and
MAR in all conditions. When column-wise scaling was per-
mitted (Table 1), there were no significant differences in per-
formance between the sDCMf and MAR methods. When only
global scaling was permitted (Table 2), sDCMf outperformed
MAR for the five-region simulations though there were no sig-
nificant performance differences between these two methods
for the three-region simulations. When no rescaling was per-
mitted (Table 3), sDCMf performance was statistically better
than MAR for all simulations except the simplest (two condi-
tion, three region) simulations were performance was not reli-
ably different. When considering differences between matrices
within simulations, sDCMf performance was statistically better
than MAR for all combinations of number of conditions and
regions.

Table 1 | Median accuracy of estimated transition matrices in r2.

Method Two conditions Three conditions Number of regions

COLUMN-WISE SCALING OF ESTIMATED MATRICES

sDCMf 0.7631 0.7887 3

0.6816 0.7059 5

SLDSf 0.8778 0.8879 3

0.8423 0.8149 5

MAR 0.8158 0.7702 3

0.6904 0.6888 5

Table 2 | Median accuracy of estimated transition matrices in r2.

Method Two conditions Three conditions Number of regions

GLOBAL SCALING OF ESTIMATED MATRICES

sDCMf 0.6957 0.6817 3

0.6140 0.6243 5

SLDSf 0.7710 0.7501 3

0.7316 0.7412 5

MAR 0.7036 0.6404 3

0.5902 0.6205 5

DISCUSSION
The current study presents a systematic and valid test between
several connectivity methods including the popular sDCMf and
MAR. The nature of connectivity estimated by the methods was
described at the level of equations between signals of interest. A
single equation was found that could accommodate the connec-
tivity type estimated by all three methods. This allowed the three
methods to be compared fairly using the same simulated datasets.

While none of the methods performed perfectly, all performed
above chance levels. When differential scaling of the signals was
accounted for, all methods performed well with most variances-
accounted-for exceeding 70%. The more realistic global scaling
results were also adequate with all methods performing at approx-
imately r2 > 0.6. Unfortunately true scaling information would
not be available for in vivo data. Without scaling the performance
of sDCMf and MAR, and to a lesser extent sLDSf, deteriorated.
For sDCMf this was most likely due to the use of its own internal
scaling which possibly differed from the scaling of the simulation.
For MAR this was most likely due to the method’s combination
of observation noise and signal noise into a single component
affecting the signals thus shrinking the connectivity parameters.

As noted however, if prior knowledge of the stability of the
transition matrices is used, the expected accuracy of a random
matrix is non-zero. The sDCMf and sLDSf methods were able
to use this information in the form of priors during estimation.
The MAR method applied here used no prior information regard-
ing matrix stability and in addition, required fewer parameters.
The reduced performance of MAR relative to sDCMf and sLDSf
should be evaluated in light of these facts. Indeed, when column-
wise scaling was permitted, performance of MAR was on par

Table 3 | Median accuracy of estimated transition matrices in r2.

Method Two conditions Three conditions Number of regions

NO SCALING OF ESTIMATED MATRICES

sDCMf 0.5144 0.5179 3

0.5084 0.5248 5

SLDSf 0.7161 0.7247 3

0.6852 0.6948 5

MAR 0.5238 0.4523 3

0.4758 0.4677 5

Table 4 | Median accuracy of estimated differences in transition

matrices in r2.

Method Two conditions Three conditions Number of regions

sDCMf 0.3480 0.2436 3

0.2263 0.1517 5

SLDSf 0.5868 0.4420 3

0.3971 0.3706 5

MAR 0.2061 0.1052 3

0.1274 0.1089 5
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with that of sDCMf which used both prior knowledge and mul-
tiple additional parameters with a non-linear output function.
A Bayesian MAR with appropriate priors would likely improve
the performance of the method (Bishop, 2006). However, the QR
based regression used here is similar to that used in popular MAR
statistical packages (e.g., Schneider and Neumaier, 2001; He et al.,
2011; Seth, 2010).

The correlation between the true and estimated task differ-
ences, rather than the individual matrices themselves, represents
the strongest test of the methods. Prior knowledge of the form
of a stable matrix would not improve performance on these
differences since deviation from this form (i.e., the condition dif-
ferences) is random. The sLDSf method performed better than
the other methods recovering a median variance accounted for
of almost 60% for the simplest condition. However, the remain-
ing accuracies for the other conditions and those for the other
methods were fairly poor, dropping to as low as 11% variance-
accounted-for by the MAR method. The simulations here used a
fairly realistic signal to noise level around 6 db. This corresponds
to standard deviations of 0.8 and 0.2 for the signal and noise,
respectively, when combined into the observations passed to the
connectivity methods. This corresponds to levels seen in some-
what above average quality fMRI data. Higher SNR would likely
increase performance of all methods. Given the time commitment
required by sDCMf, testing the additional factor of SNR would
be difficult. The effect of observation noise magnitude as well
as noise type (e.g., white versus colored) on these connectivity
methods remains an important area of further study.

The sDCMf and sLDSf methods are quite similar. However,
there are three important distinctions between them. First is the
inclusion of a probability model for the task in sLDSf that allows
for estimation of the task sequence as well as signal states in
additional datasets (Smith et al., 2010). Second, sLDSf uses a lin-
ear observation equation while sDCMf uses a non-linear system.
Third, in estimating parameters, sLDSf uses state estimates condi-
tioned on the full data set; that is, it estimates a probability density
for the neural state conditioned on all of the available observed
data and uses these estimates to identify parameters. In contrast,
sDCMf conditions the probability of the signal state only on the
observed data from the beginning of the series up to 25 s after the
given time point (Daunizeau et al., 2009). This is because the non-
linearity in the output equations makes conditioning on the full
series difficult (though see Wan and van der Merwe, 2001). The
task probability model contained in sLDSf was not used in the
current simulations were it was assumed that the task sequence
was known. The superior performance then of sLDSf relative to
sDCMf was likely due to the full data conditioning and the relative
ease of fitting parameters of linear versus non-linear functions. It
is well known that “smoothed” estimates that are conditioned on
the full data set are superior to “filtered” estimates that consider
only the data up to the current time point. This was shown in
an fMRI context using a model similar to sLDSf (Penny et al.,
2005). Though the non-linear system output equation used in
sDCMf is more flexible and can mimic a greater variety of hIRFs
than the linear equation, identifying these parameters requires
more complex algorithms. As shown above, the non-linear sys-
tem model, though based on biophysical realism, is only slightly

more accurate than the linear basis method at estimating hIRFs
when no non-linearities are present in the signal. For block exper-
imental designs or well spaced event related designs, the cost of
this non-linear system model in terms of connectivity parame-
ter accuracy likely exceeds any benefit due to superior estimation
of the hIRF. The benefit of the non-linearity would be restricted
to situations where stimuli and trials were of variable length and
included very short stimuli or where hemodynamic parameters
are estimated using data with trials or inputs less than 1–2 s then
applied to data with a much longer trials or inputs (Friston et al.,
2000). In these cases possible non-linearity in the hIRFs would
result in an incorrect response by a linear model. Neither of
these situations was applicable in the simulations here thus the
non-linearity was not necessary.

All of the tested methods were far from perfect at identify-
ing connectivity parameters from the data sets examined here.
While higher SNR simulated data would likely increase perfor-
mance, all of the presented methods suffer from the same flaws
that are present in essentially all models of fMRI connectivity. The
directed transfer functions of the simulated connectivity matrices
considered here contained power at frequencies higher than the
Nyquist of typical fMRI sampling rates. Information regarding
this portion of the simulated connectivity would be absent in sim-
ulated fMRI at realistic sampling rates (cf. Seth et al., 2013). While
aliasing of these higher frequency signals is not an issue given that
the hIRF passes little below 0.25 Hz (Henson, 2003), the slow-
ness and dispersion of the hemodynamic response creates its own
problems. Figure 3A shows the mean (± one standard deviation)
coherence between the true signals of interest and those estimated
by sLDSf for the two condition, three region simulations. The
location of the task transition effect in frequency space is iden-
tified in black. Clearly, there is little relation between the true
and estimated signals at frequencies higher than 0.2 Hz. Compare
Figure 3A with Figure 3B which shows the mean (± one standard
deviation) coherence between the true signals of interest and true
simulated fMRI data from the same set of data. The difference
between the two coherence estimates is shown in Figure 3C where
negative values indicate higher coherence for the sLDSf estimate.
The coherence between the true signals and the sLDSf estimated
signals is slightly better than the simulated fMRI for lower fre-
quency portions of the data. However, due to the hemodynamic
filtering, neither the simulated fMRI data nor the SLDSf estimate
of the signal accurately approximates the high frequency portions
of the true signal of interest.

Unfortunately, the higher frequency components of the true
signal are simply not contained in the measured fMRI data when
examined as a time series. Though a proper experimental design
can be used to identify sub-second differences in BOLD sig-
nal onsets, data sampled at 1 Hz. cannot contain information
regarding signals with frequencies higher than 0.5 Hz. None of
the methods examined here can be expected to recover infor-
mation about a signal that is not there to recover. None of the
methods examined here will truly identify interactions occur-
ring between regions a few hundreds of milliseconds apart unless
the interaction produces longer lasting consequences. Temporal
directionality of individual neural “spikes” 100 ms. Apart in time
cannot be seen using fMRI data at conventional sampling rates.
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FIGURE 3 | (A) Mean (±1.96 SD) coherence estimates between the
simulated “neural” signals and those estimated via sLDSf across all two task
block simulations. The frequency of task block alternation is shown in black.
Coherence between the signals becomes negligible for frequencies above
0.25 Hz. (B) A Mean (±1.96 SD) coherence estimates between the simulated
hemodynamic and simulated “neural” signals across all two task block
simulations. The frequency of task block alternation is again shown in black.
As with the estimated data, coherence between the signals becomes

negligible for frequencies above 0.25 Hz. (C) Mean difference between the
coherence estimates for the estimated “neural” signal and the simulated
hemodynamic measurements. The zero difference line is shown in black.
Values above this line are frequencies where the simulated hemodynamic
signal had greater coherence with the simulated “neural” signal than did the
estimated “neural” signal. The estimated “neural” signals have marginally
better coherence with the true simulated neural signals until approximately
0.2 Hz after which the coherence differences are essentially random.

However, lower frequency fluctuations in the power of high fre-
quency signals may be observed and are likely more relevant
to connectivity analysis in fMRI (cf., Martínez-Monts et al.,
2004). MAR models and linear dynamic systems can be inden-
tified within limited frequency bands (Wills et al., 2009). Such

frequency restrictions could force the methods to ignore higher
frequency components of the signal that could not possibly be
passed through the hemodynamic filter. This would have the
added benefit of encouraging researchers who use connectivity
methods to consider the meaning of the identified connectivity
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parameters from a signal processing stand-point rather than sim-
ply considering the numeric value of the parameters in isolation
(Smith et al., 2011b).

Based on the overview presented here, we make the follow-
ing recommendations for fMRI connectivity simulation studies.
While simulation based studies of connectivity methods are nec-
essary, they are not trivial to perform. Some parts of some models
are directly comparable after appropriate conversion. However,
some models will always remain distinct. For example, determin-
istic DCM cannot be used to simulate data for SEM; one considers
the task effect on internal dynamics (changes in A) in the absence
of state noise while the other considers the task effect on state
noise patterns (changes in G) in the absence of internal dynam-
ics. Comparisons of methods that ignore this issue as well as issues
concerning the distinction between continuous and discrete time
can lead to false conclusions (cf. Smith et al., 2011a). In addition,
simulation studies that fail to consider signal processing realities
relevant to fMRI (for example by simulating then attempting to
recover directionality of individual neural spikes separated by a
few tens of milliseconds) can also lead to incorrect conclusions.
For all simulations then, care must be taken to identify the nature
of the connectivity simulated by a model as well as the extent
to which that type of connectivity is present in the actual data
simulated.

Based on the results presented here, we make the following rec-
ommendations for fMRI connectivity analyses. For exploratory
analyses, unless non-linearities in the hIRFs are expected to be rel-
evant, sDCMf is over-parameterized, slow, and less accurate and
is thus not recommended. SLDSf outperformed MAR models but
at a cost of additional parameters. For small models (i.e., less than
10 regions) the additional parameters of SLDSf relative to MAR
may not be of concern and SLDSf is recommended. However, for
larger models where the number of parameters would approach
the degrees of freedom of the data, MAR with appropriate priors
may be preferred. Because of the speed of estimating parame-
ters in MAR models, this preference extends to full brain, seed
region analyses where hundreds of thousands of models are

identified such as Granger Causal Mapping (Roebroeck et al.,
2005). For confirmatory models where certain connections are
assumed to take known values (e.g., 0), estimating a model in
continuous time may be preferable. The conversion from con-
tinuous to discrete time using Equation 17 for models with
extensive feedback can cause connections “known” to be zero
in continuous time to be non-zero when considered in dis-
crete time. In such cases, there will be multiple continuous time
models that are all equally compatible with the discrete time
data and a priori knowledge must be used to select one over
the others. To account for known parameter values defined in
continuous time, the models can be identified in continuous
time (as in sDCMf) or identified in discrete time and a sec-
ond optimization applied to convert this model to continuous
time appropriate known zeros (Ljung and Wills, 2010). It remains
to be seen if there is a preference for either of these methods
in fMRI.

CONCLUSION
Connectivity, though widely used, has not always been
well-defined. Comparing methods that use divergent underlying
connectivity equations using a single simulated data set can be
problematic. Here we compared the performance of three meth-
ods with a single common connectivity equation. Performance of
all methods was better than chance though no method could
capture high frequency components of the data. The results
here, as well as basic signal processing theory, suggest that fMRI
researchers should avoid searching for interregional interactions
at frequencies higher than those passed by the hemodynamic fil-
ter. Researchers should also avoid interpreting fMRI connectivity
results in terms of single event communications between regions
on timescales of tens or even hundreds of milliseconds.
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APPENDIX
The discrete time dynamic system can be described using the
temporal shift-operator, q as in A1:

qxt = Axt + But + εt (A1)

where,

qxt ≡ xt + 1 (A2)

The delta-operator, δ can be defined in terms of the shift-
operator:

δ � q − 1

�

δxt = (q − 1)xt

�
(A3)

δxt = xt + 1 − xt

�

where � is the step size. The same discrete time dynamic system
can also be described using the delta operator:

δxt = Ext + Fut + ξ (A4)

Collecting terms of xt yields:

δxt − Ext = Fut + ξ (A5)

Using the definition of the delta-operator and the shift-operator
yields,

(q − 1)xt

�
− Ext = Fut + ξ

qxt − xt

�
− Ext = Fut + ξ

�−1xt + 1 − �−1xt − Ext = Fut + ξ (A6)

xt + 1 − (I + E�)xt = �(Fut + ξ)

xt + 1 = (I + E�)xt + �Fut + �ξ

Thus,

A = (I + E�)

B = F�
(A7)

Equation A6 shows the utility of the delta-operator form. If the
sampling rate is very fast relative to the dynamics of the system,
E� approaches zero and A approaches I.
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