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Abstract

Secreted ligands in the Dpp/BMP family drive dorsal-ventral (D/V) axis formation in all Bilaterian species. However,
maternal factors regulating Dpp/BMP transcription in this process are largely unknown. We identified the BTB domain
protein longitudinals lacking-like (lolal) as a modifier of decapentaplegic (dpp) mutations. We show that Lolal is evolu-
tionarily related to the Trithorax group of chromatin regulators and that lolal interacts genetically with the epigenetic
factor Trithorax-like during Dpp D/V signaling. Maternally driven Lolal™* is found in oocytes and translocates to zygotic
nuclei prior to the point at which dpp transcription begins. lolal maternal and zygotic mutant embryos display significant
reductions in dpp, pMad, and zerknullt expression, but they are never absent. The data suggest that lolal is required to
maintain dpp transcription during D/V patterning. Phylogenetic data revealed that lolal is an evolutionarily new gene
present only in insects and crustaceans. We conclude that Lolal is the first maternal protein identified with a role in dpp
D/V transcriptional maintenance, that Lolal and the epigenetic protein Trithorax-like are essential for Dpp D/V signaling
and that the architecture of the Dpp D/V pathway evolved in the arthropod lineage after the separation from vertebrates

via the incorporation of new genes such as lolal.
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Introduction

Genetic screens for modifiers of decapentaplegic (dpp) muta-
tions have identified many highly conserved signal transduc-
tion pathway components essential for Drosophila dorsal—
ventral axis formation (e.g, the prototype Smad protein
Mad; Sekelsky et al. 1995). Each of these factors is maternally
supplied as either RNA or protein, in effect “priming” embry-
onic cells for a rapid response to the earliest zygotic genes. In
Drosophila melanogaster, the maternal to zygotic transition
begins with a small number of transcribed genes during nu-
clear cycle 8 in the syncytial embryo (Pritchard and Schubiger
1996). Zygotic transcription ramps up slowly with dorsally
restricted dpp expression first visible during nuclear cycle 10
(Jackson and Hoffmann 1994). Two maternal proteins re-
quired for the global activation of early zygotic genes, includ-
ing dpp, are the ubiquitous transcription factors Zelda and
Stat92E (Liang et al. 2008; Tsurumi et al. 2011).

Extracellular interactions generate the highest levels of
Dpp activity in dorsal-most regions. Dpp signal transduction
is stimulated when the ligand binds the type | receptors
Thickveins (Tkv) and Saxophone (Sax) together with the
type Il receptor Punt. These transmembrane kinases then

phosphorylate the signal transducer Mad. Phosphorylated
Mad (pMad) translocates to the nucleus where it joins its
sister Smad protein Medea to regulate target genes.
Maximum Dpp activity stimulates genes such as zerknullt
(zen) that drive dorsal-most cells to become amnioserosa.
Repression of dpp transcription in ventral-most cells by
Dorsal permits the activation of Twist and propels these cells
to become mesoderm. One mechanism of Dpp pathway ter-
mination is monoubiquitylation of Medea by Nedds4.
Subsequently, the pathway is reset by Medea activation via
deubiquitylation by Fat Facets (Shimmi and Newfeld 2013).

Notwithstanding the reversal of D/V polarity between
insect and vertebrate embryos (insect “nerve cords” de-
velop on the ventral side) the signaling pathway dictating
D/V polarity in both phyla is extraordinarily conserved. In
vertebrates, a  ventralizing gradient of Bone
Morphogenetic Protein (BMP) employs homologous ex-
tracellular and signal transducing proteins in the same
manner as the insect Dpp dorsalizing gradient (Bier and
De Robertis 2015). An exception to universal conservation
in the pathway was recently reported with the Medea
ubiquitylase Nedd4 (an HECT class enzyme) replaced in
the vertebrate lineage by the vertebrate-specific Smad4
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ubiquitylase TIF1-y/TRIM33 (a RING class enzyme;
Wisotzkey et al. 2014).

Building upon a prior genetic screen, we found that longi-
tudinals lacking-like (lolal), which encodes a BR-C, Ttk and Bab
(BTB) domain protein related to the Trithorax group of epi-
genetic markers, has a role in Dpp D/V signaling. In the ab-
sence of maternal and zygotic lolal, transcription of dpp is
significantly reduced. This leads to abnormal pMad, reduced
zen expression, and ventralization of the embryo.
Phylogenetic studies revealed that lolal is an evolutionarily
new gene present only in insects and crustaceans. Overall
the data reveals three new insights: that Lolal is the first ma-
ternal protein identified with a role in dpp D/V transcriptional
maintenance, that Lolal and the epigenetic protein Trl are
essential for Dpp D/V signaling and that the architecture of
the Dpp D/V pathway evolved in the arthropod lineage after
the separation from vertebrates via the incorporation of new
genes such as lolal.

Results

Lolal Is a Dominant Maternal Enhancer of dpp in D/V
Patterning

The deletion Df(2R)Pcl-11B was identified as a dominant ma-
ternal enhancer of the recessive allele dpphm but the respon-
sible gene was not shown (Nicholls and Gelbart 1998). We
examined ten lethal P-element insertions within the deleted
region for maternal enhancement of dppm. P{lacW}ko?512 an
insertion in the 5 UTR of lolal (CG5738; also known as bat-
man) displayed strong dominant maternal enhancement
(fig. 1; supplementary table S1, Supplementary Material on-
line). We generated two new lolal mutations via P element
excision (lolal''?* and lolal’’??) and confirmed that these did
not affect the adjacent gene adipose via obesity tests
(Wisotzkey et al. 2003). The two excision alleles and the lolal
insertion allele P{EP}**** failed to complement each other or
Df(2R)Pcl-11B  (supplementary table S2, Supplementary
Material online). Repeating the dominant maternal enhance-
ment assay revealed that Df(2R)Pcl-11B and the lolal alleles
phenocopied the effect of mutations in Mad and Medea. The
reverse cross with maternal dpph'4 had no effect (supplemen
tary table S1, Supplementary Material online).

To extend these results, we performed dominant maternal
enhancement rescue experiments with UASP transgenes of
Lolal, activated Tkv, activated Sax, activated Medea, and
Trithorax-like (Trl) under the control of the maternal driver
nos.Gal4. In every case, a substantive rescue was observed.
Lolal and Lolal™ rescue of lolal'"*> enhancement generated
roughly 75% of expected progeny versus 6% without Lolal.
Rescue of lolal'"? enhancement by activated Tkv, activated
Medea and Trl was 100% of expected. Significant rescue in all
cases was also achieved in maternal enhancement assays with
the more severe allele dpphm (fig. 2, supplementary fig. S1,
and supplementary tables S2 and S3, Supplementary Material
online). It appears that the presence of activated receptors or
signal transducers can supplement the attenuated Dpp signal
in enhanced embryos to the point at which feedback mech-
anisms (Wang and Ferguson 2005) are able to restore the
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Fic. 1. lolal dominant maternal enhancement of dpp. Cuticles from
the progeny of crosses between the indicated heterozygous females
(except Med'® females were homozygous) and males heterozygous
for dppm are shown. Anterior is to the left and dorsal up with the
maternal genotype listed first. (A) Wild-type with the head skeleton
(left), ventral denticle belts (bottom), and Filzkorper (top right) vis-
ible. (B) Mad'? progeny with a ventralized phenotype containing a
curved body, dorsally extended denticles, herniated head, and defec-
tive Filzkorper. (C) Med'® progeny shows a more pronounced ven-
tralized phenotype. (D) Df(2R)Pcl-11B progeny are similar to those of
Mad". (E) lolal“®*", (F) lolal""?2, (G) lolal’”?%, and (H) lolal“**® prog-
eny are also ventralized. () Graph of progeny adult viability from the
crosses shown above. Bars are connected to panels by letters and
numerical data is shown in supplementary table S1, Supplementary
Material online.

pathway. From this perspective, the rescue data suggest
that lolal enhancement of dpp occurs upstream of Dpp re-
ceptors and signal transducers.

Consistent with the rescue data, in two Drosophila S2 cell
assays ds-lolal did not prevent pMad activation or Dpp-
dependent reporter gene activation. These cell-based assays
indicate no role for lolal in Dpp signal transduction (supple
mentary fig. S2, Supplementary Material online). Analysis of
lolal mutant embryos did not reveal any Dpp-dependent
phenotypes and stage of lethality assays showed that lolal
mutants die as pupae rather than as larva, like mutants for
Mad and Medea (supplementary figs. S3 and S4 and supple
mentary tables S5 and S6, Supplementary Material online).
These mutant studies suggest there is no role for lolal in
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Fic. 2. Maternal expression of Lolal, Dpp pathway components or Trl
rescues lolal dominant maternal enhancement of dpp. Stage 10 em-
bryos with anterior to the left and dorsal up displaying Dpp-depen-
dent Hindsight (green) in amnioserosa cells. The maternal genotype is
listed first as a heterozygous female or a heterozygous female carrying
a UASP transgene driven maternally by nos.Gal4. The paternal geno-
type is dpp™. (A) Wild type. (B) Maternal lolal''? yields little
Hindsight. (C) Maternal Df(2R)Pcl-11B vyields no Hindsight. (D)
Maternal Df(2R)Pcl-11B with Lolal partially rescues Hindsight. (E)
Maternal lolal’"?* with Lolal fully rescues Hindsight. (F) Lolal™ (G)
Tkv*, (H) Sax*, (I) Med"", and (J) Med”*® also fully rescue Hindsight.
(K) Graph of progeny adult viability from the crosses above. Bars are
connected to panels by letters and numerical data is shown in sup
plementary table S3, Supplementary Material online. The bar at the
far right shows complete rescue of lolal’’?*> dominant maternal en-
hancement of dpp™ by maternal expression of Trl.

embryonic development beyond D/V patterning. Analysis of
lolal somatic clones in larval and pupal wing disks indicated
that loss of lolal had no effect on dpp transcription, pMad
expression, or Dpp target gene activation (e.g, brinker-lacZ;
supplementary fig. S5, Supplementary Material online).
Collectively the S2 cell assays, zygotic mutant data, and

wing disk clone results imply that lolal only plays a role in
Dpp signaling during D/V patterning,

Maternal Lolal™ Translocates to the Nucleus Prior to
dpp Transcription

lolal dominant maternal enhancement of dpp suggests that
lolal RNA and protein are generated during oogenesis and
deposited in unfertilized eggs as are Mad and Medea. We
found lolal RNA in ovarioles plus lolal maternal RNA and
protein ubiquitously distributed in unfertilized eggs (detected
as translated Lolal™ expressed via nos.Gal4; fig. 3 and supple
mentary fig. S6, Supplementary Material online). This is con-
sistent with a study reporting that lolal RNA is present in the
embryo prior to the maternal to zygotic transition (Fisher
et al. 2012). At stage 5, lolal zygotic RNA is ubiquitously pre-
sent, a spatial distribution indicating that lolal is not a target
of Dpp signaling.

We then examined Lolal™* expression during the ma-
ternal to zygotic transition (fig. 3 and supplementary fig.
$6, Supplementary Material online). Lolal"™ rescues lolal
enhancement of dpp™“ providing confidence that
Lolal™ mimics the activity of endogenous Lolal. In these
assays, we employed Bonus as a marker for developmen-
tal timing. Bonus migrates into nuclei at the maternal to
zygotic transition (Wisotzkey et al. 2014). If Lolal mi-
grates into nuclei coincidently with Bonus, then it will
be in place to modulate dpp transcription. At nuclear
cycle 8 prior to the initiation of zygotic transcription
(Pritchard and Schubiger 1996), Lolal™, and Bonus are
ubiquitous in the cytoplasm and absent from nuclei. At
cycle 9, the initiation of the transition, Lolal™, and
Bonus are present in both the cytoplasm and nuclei in-
dicating that at least a fraction of each protein has trans-
located into nuclei. This is prior to the initiation of dpp
transcription in cycle 10 (Jackson and Hoffmann 1994).
By cycle 12, Lolal™ and Bonus are further concentrated
in nuclei and nuclear localization is complete by cycle 14.
The RNA and protein expression data suggested the hy-
pothesis that lolal dominant maternal enhancement of
dpp mutations is due to Lolal regulation of dpp tran-
scription, an unprecedented result for a dominant ma-
ternal enhancement screen.

Lolal Is Required to Maintain Normal Levels of dpp
Transcription

To test the hypothesis that lolal is necessary for dpp tran-
scription, we generated lolal'’*> maternally mutant eggs
via germline clone bearing females (lolal GLC). These fe-
males were mated to heterozygous lolal’’*> males. The
enhancement and expression data suggests that expres-
sion of dpp will be reduced during D/V patterning in the
half of progeny that are lolal GLC homozygous mutant
embryos. These have neither a maternal nor a paternal
source of functional lolal and will display D/V defects.
The other half, the lolal GLC heterozygous mutant em-
bryos, will have a paternal copy of lolal, and the zygotic
mutant data suggests that they will appear wild type.
Analysis of GLC cuticles (supplementary table S7,
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wildtype B

lolal in situ

stage 10 C unfertilized egg

lolal** nos ' - -
3 - - .

Fic. 3. lolal is expressed during oogenesis, is maternally supplied as RNA and protein, and enters nuclei prior to dpp transcription. lolal maternal
RNA expression in wild type revealed via alkaline phosphatase (blue). (A) Ovariole, (B) Stage 10 egg chamber, and (C) Unfertilized egg contain
ubiquitous lolal RNA. Opposite strand controls are in supplementary fig. $6, Supplementary Material online. (D-K) Lolal™® maternal protein
expression in embryos shown anterior to the left and dorsal up displaying HA (green) and Bonus (Bon; red) at 20 x (stack) or 100 X (single slices
shown as two colors and individual channels). Bonus migrates into nuclei at the maternal to zygotic transition (Wisotzkey et al. 2014) and is
employed here as a marker for developmental timing. Unfertilized egg, wild type, and DAPI controls are in supplementary fig. S6, Supplementary
Material online. Each row is from the same embryo. (D, E) Nuclear cycle 8 (Stage 2) embryo has ubiquitously cytoplasmic HA and Bonus. (F, G)
Nuclear cycle 9 (Stage 3) embryo revealing Bonus has begun to concentrate in nuclei whereas HA displays roughly equal concentrations in the
cytoplasm and nuclei. (H, I) Nuclear cycle 12 (latter part of Stage 4) embryo with Bonus completely nuclear whereas HA is still equally present in the

cytoplasm and nuclei. (J, K) Nuclear cycle 14 (Stage 5) embryo with Bonus and HA both completely nuclear.

Supplementary Material online) revealed that half had D/V
defects and assays of GLC adult viability did not identify
any lolal homozygous mutants suggesting the two classes
of progeny are as predicted.

dpp transcription in the progeny was then analyzed by
fluorescent RNA in situ hybridization assays that included
DAPI to identify nuclei for staging. Given reports of stochastic
variation in dpp expression at this stage (Karim et al. 2012), we
employed an unbiased empirical standard of dpp pixel inten-
sity to distinguish between the “bottom” and “top” dpp ex-
pressing groups of embryos corresponding to the two classes
of predicted progeny—Ilolal GLC homozygous mutant
and lolal GLC heterozygous embryos (i.e, computational ap-
plication of Mendelian ratios to progeny to determine an
embryo’s genotype). Employing wild-type embryos that
were analyzed in parallel and with common reagents as con-
trols, statistical tests were applied to identify differences be-
tween the bottom and top classes within lolal GLC progeny

2624

and within wild-type progeny, as well as differences between
the bottom and top lolal GLC class and pooled wild-type
embryos.

The pixel intensity method easily distinguished two classes
of dpp expressing embryos with nonoverlapping distributions
among lolal GLC progeny at early stage 6 (fig. 4, quantitation
in supplementary fig. S7, Supplementary Material online). dpp
was always present in the bottom group, but expression was
significantly below the top group (P = 0.003). There was no
significant difference between the top and bottom groups of
wild-type progeny (P =0.151). The lolal GLC bottom group
was also significantly below wild type (P=0.001), whereas
dpp expression in the top group of lolal GLC progeny was
indistinguishable from wild type (P = 0.785). Our interpreta-
tion is that lolal GLC homozygous mutant embryos are the
bottom group with reduced expression and heterozygous
mutants are the top group since the top group’s expression
matches wild type. The data show a statistically significant
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lolal GLC / +

lolal GLC / lolal

Fic. 4. Loss of maternal and zygotic lolal significantly reduces dpp and zen transcription as well as a pMad expression at stage 6. Stage 6 embryos
with anterior to the left and dorsal up. Left column shows wild type embryos stained side-by-side with lolal embryos. Middle column shows
heterozygous lolal’'** germline clone (GLC) embryos with paternal rescue via wild-type lolal on the balancer chromosome (lolal GLC/4-). Right
column shows homozygous lolal mutant GLC embryos with lolal’’?? on the paternal chromosome (lolal GLC/lolal). Detailed methods and
quantitative data in supplementary fig. S7, Supplementary Material online. (A-C) Embryos in dorsal view analyzed by confocal microscopy for dpp
RNA (green) and DAPI (nuclei; blue). The homozygous GLC embryo contains significantly reduced dpp transcription. (D—F) Embryos in dorsal view
analyzed by confocal microscopy for pMad expression (green). The homozygous GLC embryo contains significantly reduced pMad expression. (G-
1) Embryos in dorsal view displaying the narrow dpp-dependent stripe of zen RNA analyzed by light microscopy and alkaline phosphatase staining

(blue). The homozygous GLC embryo contains significantly reduced zen transcription.

reduction in dpp transcription intensity in lolal GLC homo-
zygous mutants. We conclude that maternal and zygotic lolal
are each necessary and sufficient for proper dpp transcription
since the phenotype is visible only in the absence of both.

Consistent with the reduction in dpp transcription, the
pixel intensity method easily distinguished two classes of
pMad expressing embryos with nonoverlapping distributions
among lolal GLC progeny at early stage 6 (fig. 4, quantitation
in supplementary fig. S7, Supplementary Material online).
pMad was always present in the bottom group but expres-
sion intensity was significantly below the top group (P=0.
002). There was no significant difference between the top and
bottom groups of wild-type progeny (P = 0.220). The lolal
GLC bottom group was also significantly below wild type
(P=10.004), whereas pMad expression in the top group of
lolal GLC progeny was indistinguishable from wild type
(P=10.992). The data show a statistically significant reduction
in pMad expression intensity in lolal GLC homozygous mu-
tant embryos.

Although frequently employed as an on/off measure,
pMad is known to be temporally highly dynamic and mod-
erately variable between embryos of the same age. This makes
it less reliable as a quantitative readout (Umulis et al. 2010). A
more sensitive indicator of Dpp D/V signaling is the narrow
dorsal stripe of zen expression at stage 6, a direct transcrip-
tional target of pMad (Rushlow et al. 1987). We applied the
quantitative approach to examine the pixel area of zen tran-
scription (fig. 4, quantitation in supplementary fig. S7,
Supplementary Material online). For zen, the pixel area is

more relevant than pixel intensity because zen expressing cells
become the amnioserosa whereas the adjacent non-
expressing cells become the dorsal ectoderm (Rusch and
Levine 1997).

Consistent with the reduction in dpp transcription and
pMad expression, the pixel intensity method easily distin-
guished two classes of zen expressing embryos with non-
overlapping distributions among lolal GLC progeny at early
stage 6 (fig. 4 quantitation in supplementary fig. S7,
Supplementary Material online). zen was always present in
the bottom group but expression was significantly below the
top group (P = 0.005). There was no significant difference be-
tween the top and bottom groups of wild-type progeny (P = 0.
083). The lolal GLC bottom group was also below wild type
(P=10.001), whereas zen transcription in the top group was
indistinguishable from wild type (P =0.131). The data show a
statistically significant reduction in zen expression area in lolal
GLC homozygous mutants. The reduction in dpp transcription
leading to decreased pMad and zen expression in lolal homo-
zygous GLC mutant embryos provides a mechanistic explana-
tion for lolal dominant maternal enhancement of dpp.

The fact that dpp, pMad, and zen were always present but
at significantly reduced levels in lolal GLC homozygous mu-
tants at stage 6 suggested a defect in maintenance of dpp
transcription rather than initiation. To determine if lolal GLC
homozygous mutants display a defect in the initiation of dpp
transcription at stage 5, we examined lolal GLC embryos at
mid and late-stage 5. This is when the dpp-dependent pMad
dorsal stripe first becomes visible and then strengthens. The
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late Stage §

mid Stage 5 D

lolal GLC [ +

lolal GLC [ lolal

Fic. 5. Loss of maternal and zygotic lolal significantly increases pMad
expression at stage 5. Mid and late-stage 5 embryos, in the left and
right column respectfully, with anterior to the left and dorsal up. Top
row contains wild type embryos stained side-by-side with lolal em-
bryos. Middle row shows heterozygous lolal'’?> GLC embryos with
paternal rescue via wild type lolal on the balancer chromosome (lolal
GLC/+). Bottom row shows homozygous lolal’?? GLC embryos with
lolal'’? on the paternal chromosome (lolal GLC/lolal). Detailed
methods and quantitative data in supplementary fig. S8,
Supplementary Material online. (A-C) Midstage 5 embryos in dorsal
view analyzed by confocal microscopy for pMad expression (red). The
homozygous GLC embryo (lolal GLC/lolal) contains significantly in-
creased pMad expression. (D—F) Late stage 5 embryos analyzed sim-
ilarly. The homozygous GLC embryo (lolal GLC/lolal) also contains
significantly increased pMad expression.

pixel intensity method easily distinguished two classes of
pMad expressing embryos with nonoverlapping distributions
among lolal GLC progeny at both time points (fig. 5, quanti-
tation in supplementary fig. S8, Supplementary Material on-
line). pMad was always present in the bottom group at both
times but expression was significantly below the top group
(midstage P = 0.002; late-stage P = 0.031). There was no sig-
nificant difference at either time between the top and bottom
groups of wild type progeny (midstage P = 0.258; late-stage
P=0.175). The lolal top group was significantly above wild
type (midstage P =0.002; late-stage P=0.007), whereas
pMad expression in the bottom group was indistinguishable
from wild type (midstage P = 0.566; late-stage P = 0.809). Our
interpretation is that lolal GLC homozygous mutant embryos
are the top group with increased pMad expression and lolal
heterozygous mutants are the bottom group since the bot-
tom group’s expression matches wild type. The mid and late-
stage 5 stage data show a statistically significant increase in
pMad expression intensity in lolal GLC homozygous mutants.

The initial increase in Dpp signaling revealed by the mid
and late-stage 5 pMad data together with the subsequent
decrease in dpp transcription, pMad, and zen expression at
stage 6 strongly supports our initial thought that lolal GLC
homozygous mutants have a defect in dpp transcription
maintenance and not dpp transcription initiation. In a final
GLC assay, we tested the possibility that lolal influences the
transcription of other genes in D/V patterning by examining
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Twist (stage 6), short gastrulation (late stage 5), and zen (early
stage 5—the wide dorsal stripe that is independent of Dpp
signaling). For each gene, the two classes of lolal GLC progeny
were not significantly different from each other nor was either
class significantly different from wild type (supplementary fig.
S9, Supplementary Material online). This implies that lolal
function in D/V patterning may be specific to dpp transcrip-
tion, though this conclusion requires additional verification.
Overall, from the GLC data, we conclude that lolal does not
affect dpp transcript initiation but instead is required for
maintenance of proper dpp transcription levels.

Lolal Is a New BTB Domain Protein

Lolal is a small protein of 123 amino acids. Eighty-six residues
are devoted to a BTB domain. BTB (also known as POZ) is a
well-established homo- and hetero-multimerization domain
(Bonchuk et al. 2011). The BTB domain is present in a very
large family of proteins, with members in eukaryotes and
prokaryotes characterized by rapid birth-and-death evolution
(Domman et al. 2014). BTB proteins are highly diverse with N-
and C-terminal extensions containing other domains (Stogios
et al. 2005). In eukaryotes, BTB domains are often found in
chromatin proteins (Bonchuk et al. 2011). Upstream of the
BTB domain 27 residues form a Pipsqueak (Psq) domain
found in Lolal’s closest relatives but that has no known func-
tion (Siegmund and Lehmann 2002). To better understand
Lolal origins, a phylogenetic tree containing fly, nematode,
and human proteins with BTB domains similar to Lolal was
constructed (fig. 6).

The Lolal family tree has two subfamilies and the Lolal
subfamily has two branches. The Lolal branch contains 11
fly proteins, including the well-known chromatin/epigenetic
protein Trithorax-like (Trl; a Zinc-finger protein also known as
GAGA factor) as part of the Lolal group. The Lolal branch
contains a single human protein, BTBD18 (hCG1730474;
Alonso et al. 2010) that does not contain a Zinc-finger but
has a recognizable Psq domain. BTBD18 was identified in a
single patient as a fusion with the myeloid/lymphoid leukemia
gene but has no known function. The sister to the Lolal
branch contains 11 human proteins and a single fly protein.
The asymmetric topology of these branches is consistent with
previously noted lineage-specific expansions in the BTB family
(Aravind and Koonin 1999). Of the 24 proteins in the Lolal
subfamily, 19 contain a DNA-binding Zinc finger domain
whereas the other primary subfamily is composed of non-
DNA-binding Math/Bath and Kelch domain proteins.

Overall, the tree topology suggests that the common an-
cestor of the Lolal subfamily contained Zinc-finger, Psq, and
BTB domains. Then, in the Lolal branch the arthropod, but
not the vertebrate lineage, experienced multiple gene dupli-
cations with the Zinc-finger lost in a few instances including
Lolal. The Lolal cluster, consisting of Lolal and its closest rel-
atives Tramtrack (Ttk), Lola, and Modifier of mdg4 (Mmda4), is
the most distant from HsBTBD18 indicating that it resulted
from the most recent arthropod duplications. This inference
that Lolal is arthropod-specific is supported by unsuccessful
searches for Lolal cluster sequences in other vertebrate
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Fic. 6. Lolal is a new arthropod-specific BTB protein. Bayesian tree displaying 45 human (Hs), fly (Dm), and nematode (Ce) BTB domain proteins.
Twenty-three proteins (Lolal subfamily) were selected due to the similarity of their BTB domain to Lolal. The other 21 proteins (bottom subfamily)
contain Math/Bath or Kelch domains in addition to a BTB domain to provide a robust outgroup and allow the tree to be midpoint rooted. Lolal has
no close vertebrate relatives indicating it is a new family member born after the arthropod-vertebrate divergence. Accession numbers are in
supplementary table S8a, Supplementary Material online. Nodes defining tree features associated with Lolal are named. A scale bar showing amino
acid substitutions per site is present. Colors of branches indicate the presence of additional functional domains as described. Posterior probabilities
above 0.5 are shown. The alignment contained 77 informative positions. As described in the Materials and Methods, for alignments between 50
and 100 informative characters posterior probabilities >0.75 should be considered statistically significant.

genomes and the genomes of vertebrate siblings the sea ur-
chin and tunicate.

The phyla Arthropoda consists of four subphyla—insects,
crustaceans, chelicerates (mites/spiders), and myriapods (cen-
tipedes/millipedes). Phylogenetic studies indicate that the
first to diverge were the chelicerates (543 million years ago
[Mya]) then the myriapods (539 Mya) with insects and crus-
taceans separating 470 Mya (Rota-Stabelli et al. 2013).
Utilizing this information as a scaffold, additional analyses
such as reciprocal BLASTs, amino acid conservation fre-
quency, and intron—exon structure comparisons suggested
a serial duplication scenario that matches the topology for
the Lolal subgroup: 1) Bab is oldest (present in all four sub-
phyla), 2) Bab generated Ttk (present in insects and chelicer-
ates but lost in crustaceans), 3) Ttk generated Lolal (present in
insects and crustaceans), 4) Bab later generated Psq (present
in insects and crustaceans), 5) Ttk later generated Mmd4
(only present in insects but has a longer branch than Lola),
and 6) Mmdé4 generated Lola (only present in insects).

The specificity of Lolal to insects and crustaceans is
shown in a representative tree of Lolal homologs (four
insect and five crustacean species; fig. 7). Overall the
phylogenetic data shows that Lolal was generated in
the arthropod lineage 230 Mya after the arthropod-
vertebrate split (700 Mya; Parfrey et al. 2011).
Although not the newest gene in its subgroup, it is newer

than any known Drosophila gene in D/V axis formation
as all of the others have vertebrate homologs (e.g.,
Dorsal, Sog, Twist, Dpp, Mad, and Medea).

Discussion

dpp Transcription in D/V Patterning
The genetic screen that pointed us to lolal also identified a
second deletion, Df(3L)66C-G28, displaying dominant mater-
nal enhancement. Employing the same candidate gene ap-
proach, we determined that moleskin is the dominant
maternal enhancer of dpp in that deletion (supplementary
fig. S10, Supplementary Material online). moleskin is a nuclear
importer for Mad that was not previously implicated in D/V
patterning (Xu et al. 2007). These two discoveries, 20 years
after the identification of Mad and Medea utilizing the same
enhancement screen, reinforce the value of genetic analyses
in Drosophila as the premier method for gene discovery.
Genetic screens have also identified the maternal tran-
scription factors Zelda and Stat92E as general activators of
early zygotic genes including dpp, sog, zen, and twist (Liang
et al. 2008; Tsurumi et al. 2011). Lolal differs from Zelda/
Stat92E in three ways: 1) lolal displays dominant maternal
enhancement of dpp mutants whereas Stat92E does not, 2)
dpp transcription initiates but goes awry in lolal GLC homo-
zygous embryos whereas it does not initiate in Zelda or

2627


Deleted Text:  - 
Deleted Text: y
Deleted Text: -
Deleted Text: Fig
Deleted Text: While
Deleted Text: t
Deleted Text: p
Deleted Text: 
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw132/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw132/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw132/-/DC1
Deleted Text: twenty 
Deleted Text: , 
Deleted Text: while
Deleted Text: while
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw132/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw132/-/DC1

Quijano et al. - doi:10.1093/molbev/msw132

MBE

e ———
0.2

s No known domains in short C-term

e InF C2H2 domain

“ DmLOLAL
=== DanausLOLAL
. [ CrloLAL
] — 1 CclOLAL
1 LsLOLAL

DaphnialOLAL

Flywch Zinc finger domain 18 | - = ENCABRUFT
——— 08491 = AelOLAL
[— P50 or potential PSQ domain
“es ALOLAL
e BACK domain 0.8958 |
* SiLOLAL
s KELCH domains
0.5283 0.8085 DmMMD4
0.7575 DmLOLA
DmTTK
0.7886 0.7913 DmTRL
W DmBRCL
1 DmABRUPT
S ——
DmBAB2
i 0.9095 HsKLH21
0so2f I HsKLHL2
1 I HsBTBD2
HsBTBD18
HsZBTBE14

Fic. 7. Lolal is only present in insects and crustaceans. Bayesian tree of 24 proteins containing BTB domains similar to the Lolal BTB domain. These
include the nine fly (Dm) proteins in the Lolal group of Fig. 6 (blue and green branches), plus nine insect, and crustacean Lolal homologs identified
by BLAST (orange branches) The others are human (Hs) proteins, one from each of the five branches from Fig. 6. Pairwise alignments revealed that
PhcABRUPT is misnamed as its BTB domain is 93% identical to Lolal’s and it does not contain a Zinc-finger like DmABRUPT (green branch).
Accession numbers are in supplementary table S8b, Supplementary Material online. The scale bar shows the number of amino acid substitutions
per site. Colors of branches indicate the presence of additional functional domains as described. Posterior probabilities above 0.5 are shown. The
alignment contained 89 informative positions. As described in the Materials and Methods, for alignments of between 50 and 100 informative
characters posterior probabilities >0.75 should be considered statistically significant.

Stat92E GLC homozygous embryos, and 3) sog, early zen, and
Twist expression are unaffected in lolal GLC homozygous
embryos whereas they do not initiate in Zelda or Stat92E
GLC homozygous embryos.

Mechanistically, Lolal may be needed to regulate dpp tran-
scription because activation of early zygotic genes in
Drosophila requires the combinatorial activity of transcription
factors and chromatin proteins (Darbo et al. 2013; Sandler
and Stathopoulos 2016). Chromatin proteins have been gen-
erally separated into the Polycomb group of repressors and
the Trithorax group of activators though there are several
that can perform both roles such as the Lolal group member
Trl (Schuettengruber et al. 2007). Trl functions by influencing
the placement of a methyl group on Histone H3 Lysine 9
(closed chromatin) or Lysine 4 (open chromatin) thereby
modulating chromatin accessibility [reviewed in Kim and
Kim (2012)].

The most prominent chromatin proteins active during the
maternal to zygotic transition are Trl and the Lolal cluster
member Ttk. Lolal has been shown to physically interact with
Trl, to co-localize with Trl on larval salivary gland chromo-
somes and to co-localize with Trl in regions of actively
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transcribing chromatin in an embryo-derived cell line
(Faucheux et al. 2003; Mishra et al. 2003; Filion et al. 2010).
In vitro Lolal forms heteromeric complexes with its subgroup
relatives Ttk, Mmd4, and Psq (Bonchuk et al. 2011).
Functionally, these four proteins form a genetic network
that regulates ovariole number in Drosophila (Bartoletti
et al. 2012).

Our hypothesis is that Lolal, with its epigenetic partner Trl,
modifies chromatin near the cycle 10 dpp enhancers follow-
ing Zelda/State92E activation of transcription. Lolal’s epige-
netic role is to maintain proper levels of dpp transcription
over the next four nuclear cycles as the extracellular Dpp D/V
morphogen gradient is established. Two pieces of additional
evidence support this idea. First, dominant maternal en-
hancement assays with mutations in Lolal’s closest relatives
revealed a strong effect (supplementary table S1,
Supplementary Material online) of a deletion allele of pip-
squeak that removes Exon1A (Df(2R)12; Weber et al. 1995).
pipsqueak has a maternal contribution and its earliest embry-
onic expression is dorsal-specific (Weber et al. 1995) putting it
in a position to partner with Lolal in the regulation of dpp.
Further, Pipsqueak functions are essential for sequence-
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specific targeting of epigenetic complexes (Huang et al. 2002).
Second, sequences in the dpp second intron are responsible
for the cycle 10 initiation of dpp transcription (Huang et al.
1993; Jackson and Hoffmann 1994). An alignment of four
Drosophila species revealed numerous conserved Zelda,
Stat92E, and Trl binding sites in this intron supporting a
role for epigenetic complexes in the modulation of dpp
transcription.

New Gene Evolution in D/V Patterning

Studies of new genes in Drosophila showed that these could
quickly become essential for viability, fertility, and behavior
(Chen etal. 2013; Long et al. 2013). Indispensability for fertility
and behavior results from the incorporation of new genes
into existing pathways. A prediction of these studies is that
the assimilation of new genes into developmental pathways
underlies their requirement for viability. To gain insight into
the evolutionary mechanisms behind the generation of new
genes, we are currently comparing the expression patterns
and upstream sequences of Lolal group proteins with the goal
of correlating changes in expression with changes in transcrip-
tion factor binding sites.

The architecture of D/V patterning, and the Dpp/BMP path-
way at its center, is among the most highly conserved processes in
Bilaterian development. This taxon is also called Eumetazoa and it
originated roughly one billion years ago (bya; Kumar and Hedges
2011). Organisms as diverse as planarians and humans employ a
common set of signaling molecules in a common format, albeit
inverted in some cases (De Robertis and Sasai 1996). The Dpp/
BMP pathway has other functions in development and is older
than Bilateria. A complete Dpp/BMP pathway is present in
Nematostella vectensis (a diploblast with two germ layers that
originated 1.1 bya; Putnam et al. 2007). Individual members of
families in the Dpp/BMP pathway including ligands, receptors, and
Smads are found in all Metazoans including sponges
[Amphimedon queenslandica originated 1.3 bya; reviewed in
Konikoff et al. (2008)].

Although D/V patterning is conserved, its individual pro-
teins are always under selective pressure. We recently showed
in the vertebrate D/V program that a new gene can provide a
selective advantage and become incorporated into this pro-
cess. Our analysis of the ubiquitin ligases targeting vertebrate
Smad4 and its fly homolog Medea revealed that a new ver-
tebrate protein belonging to the RING class of ligases (TIF1-y/
TRIM33) replaced an older HECT class ligase (Nedd4) that
performs this job in flies and presumably in the arthropod-
vertebrate common ancestor. That data demonstrated that
the vertebrate D/V program was not simply conserved since
its divergence from flies, but has evolved by incorporating
new genes (Wisotzkey et al. 2014).

The results for Lolal strongly complement that for TIF1-y/
TRIM33 with this new gene incorporated into the arthropod
D/V program. Although certainly possible that Lolal replaced
an older gene that performs epigenetic functions in D/V pat-
terning upstream of dpp transcription in the common ances-
tor of arthropods and vertebrates, there are no known genes
upstream of BMP in vertebrate D/V axis formation to guide
us. Nevertheless, employing the Nedd4 and TIF1-)/TRIM33

replacement scenario as a reference, data reported here sug-
gest that the function performed by Lolal (epigenetic marker)
is essential to vertebrate D/V patterning and that a complex
containing proteins similar to Lolal and Trl fulfill this role.
Among the Trl top BLAST hits in mammals is MIZ-1, which
we propose as a candidate BMP transcription regulator in D/
V axis formation. MIZ-1 forms multimers with the proto-
oncogene BCL6 and the complex regulates the transcription
of cyclin-dependent kinase inhibitor p21 to promote cell pro-
liferation in adult B cells (Phan et al. 2005). Taken together,
the phylogenetic data for Lolal and TIF1-y/TRIM33 shows
that the D/V patterning program shared by all Bilateria con-
tains highly conserved features such as Dpp/BMP ligands,
receptors, and Smads as well as dynamic features such ubig-
uitin ligases and chromatin proteins that are influenced by
the assimilation of new genes.

Overall, we report that Lolal is the first maternal protein
identified with a role in dpp D/V transcriptional maintenance.
Equally important corollaries are that Lolal and the epigenetic
protein Trl are essential for Dpp D/V signaling and that the
architecture of the Dpp D/V pathway evolved in the arthro-
pod lineage after the separation from vertebrates via the in-
corporation of new genes such as lolal.

Materials and Methods

Flies

Mutants are Df(2R)Pcl-11B (Nicholls and Gelbart 1998),
Df(2R)12 (psq; Weber et al. 1995), Df(3L)bab™"*” (deletion
of babl and bab2; Couderc et al. 2002), dpp®®’, dpp™”,
dpp"™?, dpp™° (St. Johnston et al. 1990), lola®R¢®
(Horiuchi et al. 2003), P{EP}lolal®®*® (Bellen et al. 2004),
P{lacW}lolal“*>" (Térok et al. 1993), lolal''?, and lolal’”*
(this work), Mad'? and Med"* (Stinchfield et al. 2012), mod-
ifier of mdg4"™ (mmd4; Soltani-Bejnood et al. 2007), Tr*®
(Farkas et al. 1994), and ttk""" (Xiong and Montell 1993).
Transgenic strains are dpp-lacZ-BS3.0 (Blackman et al. 1991),
P{lacW}brk®® (brinker-lacZ; Minami et al. 1999), TrlfY0%24
(Bellen et al. 2011), nos.Gal4:VP16-MVD1, UASP.GFP-
aTub84B, UASP.Med", and UASP.Med“**® (Stinchfield
et al. 2012), UASP.Sax* (Xie and Spradling 1998) and
UASP.Tkv* (Casanueva and Ferguson 2004). Balancers and
GLC strains are in Flybase (Marygold et al. 2013).

Genetics

Assays for adult viability, dominant maternal enhancement,
stage of lethality, transgenic rescue, and zygotic lethality were
conducted as described (Stinchfield et al. 2012). Germline
clone (GLC) females were generated with FRTG13 lolal''*
as described (Wisotzkey et al. 2014). GLC females were mated
to lolal”’?* heterozygous males to assay lolal homozygous
embryos (lolal''*/lolal’’**) and paternally rescued heterozy-
gous embryos. Homozygous GLC embryos were identified by
quantitative comparison with wild type. Pixel intensity plots
reflecting dpp, sog zen (stage 5), pMad, or Twist expression
were created from single channel images in Image) (Schneider
et al. 2012). Mean pixel intensity was obtained from areas of
interest drawn on the embryo. The relative mean pixel
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intensity was calculated by subtracting the mean pixel inten-
sity of background (lateral region) from that of the expression
domain, thus normalizing expression for each embryo prior
to statistical analysis. For zen at stage 6, the pixel area was
obtained by calculating the number of pixels within a domain
encompassing all cells expressing zen. Pixel intensity and area
values were imported into Excel and graphed. Extensive ef-
forts were employed to minimize variation in technique with
wild-type and lolal GLC embryos stained side-by-side, on the
same day, using a similar number of embryos, the same probe,
the same antibody, the same wash solutions, and imaged on
the same day with the same settings on our only confocal.
In the image analysis, only wild type and lolal GLC em-
bryos from the same date were compared. Wing disk
clones of FRTG13 lolal'’** were generated by standard
methods, marked by the absence of GFP and analyzed
as described (Quijano et al. 2011).

Embryos

Cuticle preparations were as described and cuticle scoring
employed standard criteria (e.g, Stinchfield et al. 2012).
Fluorescent RNA in situ hybridization followed by TSA-488
(Molecular Probes) was utilized to visualize dpp as described
(Ray et al. 1991; Nagaso et al. 2001). Alkaline phosphatase
RNA in situ hybridization for sog zen, and lolal were con-
ducted as described (Kiinnapuu et al. 2014). Nuclei were vi-
sualized directly with DAPI (Sigma). Primary antibodies were:
Bonus-GP37 (Beckstead et al. 2001), Digoxigenin (Zymed),
Dorsal (DSHB-7A4), HA-3F10 (Roche), Hindsight (DSHB-
1G9), LacZ (Organon Teknika), pSmad (Epitomics), dSRF
(Marenda et al. 2004), and Twist (Roth et al. 1989).
Secondary antibodies were: donkey o-sheep-HRP (for TSA;
Life Technologies), or AlexaFluor 488, 546 or 633 goat
o-mouse, o-rabbit, a-rat or o-guinea pig (Life Technologies).
Embryos were fixed after 4-6 h, antibody labeled and imaged
as described (Quijano et al. 2011).

Molecular Biology

UAST.Lolal was generated by cloning a Spel—Xhol fragment
from ¢cDNA pOT2-LD14505 (Berkeley Drosophila Genome
Project) into the Nhel—Xhol sites of pUAST2. PCR products
of the coding region from this clone were inserted into two
Drosophila Gateway vectors: pPW to create UASP.Lolal or
pPWH to create UASP.Lolal™ (Drosophila Genomics
Resource Center) followed by recombination into UASP.
Primers for Gateway cloning were:

UASPLolal: Forward 5'-CACCATGATGTCGTCGGATCAACAG-3'
Reverse 5'-TCAACCTTCCCGCTTTATCG-3’
UASP.Lolal™: Forward 5-CACCATGATGTCGTCGGATCAACAG-3'
Reverse 5-~ACCTTCCCGCTTTATCGAAC-3’

A lolal RNA in situ probe was generated by PCR via a primer
bearing a T7 sequence overhang. Antisense RNA was then
synthesized with T7 polymerase. Primers for PCR were:

Forward 5'-TAATACGACTCACTATAGGGCGAACTGGGTGTCTCTGCGAGG-3'
T7promoter
Reverse 5'-GACCTCGTTCCGTCACCTGCG-3'
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For dsRNA, pairs of primers containing T7 sequence over-
hangs were designed for PCR. These products were templates
for dsRNA synthesis via the MEGAscript T7 kit (Applied
Biosystems). ds-punt and ds-lacl are as described (Zeng
et al. 2014). Primers for two distinct ds-lolal RNAs:

1-F: 5-TAATACGACTCACTATAGGGAGAAGC

GCTACTGGAGGAGAACCC-3
1-R: 5-TAATACGACTCACTATAGGGAGAACCTTCCCGCTTTATCGA
ACTGGG-3'
3-F:. STAATACGACTCACTATAGGGAGAAAATACATAATAAATAAC
AACAACCAA-3
3-R: 5-TAATACGACTCACTATAGGGAGATGGCCTCCACCTCTACTTT
ACAGGC-3’

One assay for Dpp signal transduction employed Drosophila
S2 cells that were transfected with Flag-Mad and incubated
with dsRNA (Ross et al. 2001). After 3 days, these cells were
incubated with Dpp for 3 h. Dpp signaling in these cells was
measured by western blots with the mouse o-Flag M2
(Sigma) and rabbit a-pMad. These antibodies were detected
with o-mouse-680 and o-rabbit-800 (LI-COR) and analyzed
with an Odyssey Infrared Imaging System as described
(Kiinnapuu et al. 2014). A second Dpp signaling assay utilized
S2 cells transfected with dsRNA, Dad13-firefly plasmid, and
Renilla luciferase plasmid. Five days after transfection, the cells
were incubated with Dpp for 26 h. Cells were lysed and ana-
lyzed using a dual luciferase reporter assay system (Promega)
with reporters as described (Weiss et al. 2010; Matsuda et al.
2013).

Phylogenetics

For figure 6, sequences most similar to Lolal were identified
by BLAST from among the 83 BTB proteins in D. mela-
nogaster, 181 in Caenorhabditis elegans and 183 in Homo
sapiens (BTB domain database; btb.uhnres.utoronto.ca).
For figure 7, a second set of sequences most similar to
Lolal regardless of species was constructed. Analyses in ar-
thropod subphyla employed these databases: Daphnia
pulex, Strigamia maritime, Tetranychus urticae (Ensembl
Genomes), Metaseiulus occidentalis (NCBI Refseq), and
Ixodes scapularis (Vectorbase). Alignments were created
with default settings in Clustal Omega at the EMBL-EBI
website (ebi.ac.uk/Tools/msa/clustalo) and trees were cre-
ated in MrBayes 3.2 as described (Wisotzkey et al. 2014).
The mixed amino acid model was selected and in both
cases the WAG model was employed (Whelan and
Goldman 2001). Generations were 100,000 for figure 6
and 600,000 for figure 7 with a sample frequency of 100
and burn-in of 0.25. For trees with more than 150 informa-
tive positions a posterior probability of 0.95 is considered
statistically significant but simulation studies (Alfaro et al.
2003) of alignments with 50-100 positions revealed that
the true tree contained branches with posterior probabil-
ities of 0.65 (50 positions) and 0.85 (100 positions). Thus,
for our trees of 77 (fig. 6) and 89 (fig. 7) informative posi-
tions, we consider probabilities >0.75 to be statistically
significant.
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Supplementary Material

Supplementary figures S1-S10 and tables S1-S8 are available
at Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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