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ABSTRACT 

Semiconductor manufacturing is one of the most complex manufacturing systems 

in today’s times. Since semiconductor industry is extremely consumer driven, market 

demands within this industry change rapidly. It is therefore very crucial for these 

industries to be able to predict cycle time very accurately in order to quote accurate 

delivery dates. Discrete Event Simulation (DES) models are often used to model these 

complex manufacturing systems in order to generate estimates of the cycle time 

distribution. However, building models and executing them consumes sufficient time and 

resources. The objective of this research is to determine the influence of input parameters 

on the cycle time distribution of a semiconductor or high volume electronics 

manufacturing system. This will help the decision makers to implement system changes 

to improve the predictability of their cycle time distribution without having to run 

simulation models. In order to understand how input parameters impact the cycle time, 

Design of Experiments (DOE) is performed. The response variables considered are the 

attributes of cycle time distribution which include the four moments and percentiles. The 

input to this DOE is the output from the simulation runs. Main effects, two-way and 

three-way interactions for these input variables are analyzed. The implications of these 

results to real world scenarios are explained which would help manufactures understand 

the effects of the interactions between the input factors on the estimates of cycle time 

distribution. The shape of the cycle time distributions is different for different types of 

systems. Also, DES requires substantial resources and time to run. In an effort to 
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generalize the results obtained in semiconductor manufacturing analysis, a non- complex 

system is considered. 
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1. Introduction 

Semiconductor fabrication is one of the most complex manufacturing industries in 

today’s global economy; manufacturers concentrate on producing high quality products at 

comparatively lower prices and at faster speeds. The industry is highly dynamic and 

competitive (Chang and Huang, 2002) and is largely driven by consumer satisfaction and 

rapidly changing consumer demand patterns. Cost and service are key influencers for 

customer satisfaction, and the on time delivery of finished products is considered to be an 

important factor in predicting service levels (Boyaci and Ray, 2006). Furthermore, given 

the rapid changes in customer demand patterns, effective planning in semiconductor 

manufacturing industry requires being able to not only predict customer delivery dates for 

current operating conditions but also to be able to accurately predict delivery times for 

future operating conditions (Yang et al., 2008). 

The estimation of customer delivery dates, in turn, relies on having accurate 

estimates of cycle time, or the time required for a job to traverse a given routing in a 

production system (Hopp and Spearman, 2001). Typically, industries would like their 

cycle time to be as small as possible so that product can get to their customers as quickly 

as possible. Since not all parts that enter the system finish processing in the same amount 

of time, cycle time is also a random variable (Hopp and Spearman, 2001). Consequently, 

the cycle time for a particular product within a particular manufacturing facility can be 

described with the help of a cycle time distribution. There are many factors that influence 

the shape of the cycle time distribution. When the influencing controllable factors 

change, the shape of the cycle time distribution changes, in turn potentially influencing 
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delivery date estimates provided to customers. The following section discusses the 

controllable factors that influence the cycle time in detail. 

1. Controllable factors that influence the cycle time 

The literature has called out a number of factors that affect the cycle time distribution of 

manufacturing system. Akcali et al., (2001), for example, point out that queuing time for 

equipment, waiting times due to preventive or breakdown maintenance, processing time, 

inspection time and transportation time all contribute to cycle time. Meidan et al. (2011) 

argue that the most common factors that influence cycle time are work in progress levels, 

bottlenecks in the system, rework rates, equipment down time, mean time between 

failures, mean times to repair, machine setup times, tool capacities, dispatching and 

scheduling policies. Sivakumar and Chong (2001) state that batch size, dispatching 

policies, material handling time, setup time and machine up time are some of the 

controllable factors that affect the cycle time and cycle time distribution. Factors such as 

work in progress (WIP) levels, queue length, product mix are not controllable whereas 

factors such as rework rates, mean time between failures, machine setup times etc. are 

controllable. The objective of this work is to determine the controllable factors that affect 

the cycle time.  

Qi et al., (2002) and Chung and Huang (2002), both discuss how cycle time 

depends on batch processing. Qi et al., (2002) support their claims through an example in 

which a 50% reduction in the batch size created a nearly 10% reduction in cycle time. 

Siavkumar and Chong (2001) conducted studies to understand the relationship between 

cycle time spread and some controllable variables of the manufacturing system. They 
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concluded that batching has the greatest impact on cycle time distribution in 

semiconductor backend manufacturing. A backend in semiconductor manufacturing is 

integrated circuit (IC) assembly and testing. According to their studies, and in-line with 

findings of Qi et al., (2002) the average cycle time increases with increasing batch size. 

They also studied the impact of machine setup time and time required to repair machine 

failures on the cycle time. Not surprisingly, they observed that reduction in time required 

to setup or time required to repair equipment failures reduces the cycle time. 

Meidan et al. (2011) found that the number of operations that are carried by the 

bottleneck tool group in a semiconductor manufacturing fab is one of the key factors in 

estimating cycle time of the system. In a semiconductor manufacturing system, the 

quality of the products needs to be very high. In order to achieve the quality desired, a 

certain percentage of the processed parts undergo rework. Rework adds to the number of 

operations that are carried by a bottleneck tool group. Meidan et al. (2011) and Qi et al., 

(2002) concluded that re-entry of the part varies the queue length. Also, the processing 

time for rework is lesser than the initial processing time for the tool group. This variation 

in the processing time is an important factor in determining the cycle time. 

Meidan et al. (2011) also stated that frequency of tool idleness increases the 

waiting time for operator or material. Cycle time consists of processing time, waiting 

time and transportation time. When the waiting time changes (increases or decreases), the 

cycle time changes. Hedman et al. (2013) and Meidan et al., (2011) observed that 

standard deviation of idle time of the tool affects the processing time. Operators may not 

readily take a lot off of a tool immediately after processing concludes. During this time, 
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the tool is idle and the idle time cannot be recovered. Depending on the time the tool is 

idle, processing time can vary. Akcali et al. (2001) and Meidan et al. (2011) confirmed 

that waiting time for the parts in a semiconductor manufacturing system is dependent on 

tool availability. 

Dispatching policies are job scheduling policies according to which jobs are 

prioritized for processing in a system. Ankenman (2011) and Akcali et al. (2001) 

concluded that dispatching policies are an important factor for determining the 

scheduling policies for the semiconductor fabrication. Akcali et al., (2001) also 

concluded that dispatching policies affect the cycle time of photolithography station in 

semiconductor manufacturing which is known to be a bottleneck tool. Dispatching 

policies are job scheduling policies according to which jobs are prioritized for processing 

in a system. Dispatching rules are useful for finding a reasonably good schedule with 

regard to a single objective such as the makespan, the total completion time, or the 

maximum lateness (Pinedo, 1995). Sivakumar and Chong (2001) concluded in their work 

that the change in dispatching policies affect the cycle time distribution. They found that 

FIFO (First in First Out) increased the 98
th

 percentile as compared to ESD (Earliest Start 

Date).  

Based on the literature reviewed in this section, the controllable factors that affect 

the cycle time considered in this work are listed in Table 1. 

In order to have the complete understanding of the impact of change in 

controllable factors on the cycle time and its distribution, it is necessary to have a clear 
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plan for how to describe the cycle time distribution. Section 2 describes the parameters of 

the cycle time distribution that are as a surrogate to describe it. 

Table 1. Controllable factors influencing cycle time  

# Controllable factors influencing cycle time 

1 Time Between Arrival (TBA) 

2 Percentage of Rework 

3 Mean Processing Time (MPT) 

4 Coefficient of Variation (COV) at Unloading 

Operations 

5 Mean Time Between Failures in Emergency Failures 

6 Mean Time to Repair in Emergency Failures (EM) 

7 Batch Size 

8 Dispatching Policies 

  

2. Describing the cycle time distribution 

Often, an estimate of a distribution’s mean or a combination of the mean and variance 

estimates are used to describe a distribution.  However, these estimates alone are not 

sufficient for truly capturing the shape of a distribution.  One approach to more 

accurately describing the complete shape of a distribution is to obtain estimates of the 

first four moments of the distribution. Mean, variance, skewness and kurtosis are these 

first, second, third and fourth moments respectively. As is widely known, the mean of a 

probability distribution is a measure of central tendency (Montgomery, 2014), while the 

variance is a measure of how tightly the data is clustered around the mean (Montgomery, 

2014).  Often, an estimate of standard deviation, which is the square root of variance, is 

used in place of the variance estimate.  Skewness, the third moment of a distribution, 

measures the degree of asymmetry in a distribution around its mean (Green and Salkind, 

2014).  A symmetrical distribution, such as the normal distribution, has a skewness equal 

to 0, while a less symmetrical distribution, such as the exponential distribution, has a 
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positive skewness. Kurtosis is a measure of the combined sizes of the two tails (Green 

and Salkind, 2014); distributions with greater probabilities associated with values that 

occur in the lower and/or higher extremes of the distribution have greater kurtosis. 

Kurtosis values are often compared to the kurtosis of the normal distribution, which is 

equal to 3.  If the kurtosis of a particular distribution is greater than 3, then it is said to 

have “heavier tails” than a normal distribution. 

 Along with estimates of the first four moments, a set of percentile estimates are 

also able to provide a more complete picture of a distribution when compared to 

estimates of only the first two moments.  Percentiles represent the percentage of 

observations that fall at or below the score of interest (Green and Salkind, 2014). A well 

selected set of percentile estimates can give a nearly complete picture of a distribution.  

For example, 90% of the products manufactured in a given facility have a cycle time that 

is equal to or less than the 90
th

 percentile of the cycle time distribution for that facility. In 

turn, quoting the 90
th

 percentile of cycle time as the delivery time would give the decision 

maker confidence that only 10% of the orders would be delivered later than the promised 

delivery date.   Quoting smaller percentiles (i.e., 60
th

 percentile) as delivery dates yields 

shorter (and perhaps more desirable to the customer) delivery time estimates, but also is 

associated with greater risk (i.e., 40% of the orders would be expected to arrive after the 

promised delivery date). In the work here, estimates of the 25
th

, 50
th

, 75
th

 and 95
th

 

percentiles are considered along with estimates of the first four sample moments 

describing the cycle time distribution. 
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In order to obtain the estimates of cycle time, semiconductor manufacturing 

companies typically develop models. Chang and Huang (2002) classified cycle time 

estimation into four categories: simulation, statistical analysis, analytical method and 

hybrid method. A simulation is the imitation of the operation of a real world process or 

system over time (Banks et al., 1996). Simulation models have been developed for 

capacity planning and cycle time reduction. For example, Wang and Wang (2007) 

developed a simulation model which can acquire optimal batch size to reduce cycle time 

under different bottleneck loading conditions. Chung et al. (2015) used simulations to 

show the advantages of a particular dispatching rule. Even before new system is deployed 

or changes to an existing system is made, simulation models can be created to predict the 

system’s performance. It is faster and more cost effective than conducting experiments 

with the physical system (Yang et al., 2008). However, running simulation experiments 

requires extensive input data and substantial resources. 

Statistical analysis can also be applied to determine the relationship between cycle 

time and other related parameters. Pearn et al., (2009), for example, considered a 

statistical approach for cycle time estimation incorporating the upper confidence bounds 

of estimated cycle times at various confidence coefficients in semiconductor plastic ball 

grid array packaging factories. Backus et al., (2006) applied a data mining approach to 

provide nonlinear predictor variables to estimate factory cycle time. They also pointed 

out a benefit of statistical methods in that the models themselves can be updated quickly 

(i.e., executing a statistical model is much less time-intensive than executing a simulation 

model). 
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Analytical methods for modeling cycle time are often based on queuing theory. 

Chung and Huang (2002), for example, provided an analytical approach to estimate cycle 

times for wafer fab with engineering lots. More recently, Shanthikumar et al. (2007) 

presented a survey for the application of queuing theory in semiconductor manufacturing 

systems. Analytical methods have shorter computational time and can be easily done 

when all the parameters of the system are known. However, analytical methods are often 

not as accurate as simulation for modeling high volume electronics manufacturing 

because the complex operational behaviors of these facilities cannot be represented 

adequately in a single analytical model.  

Finally, the hybrid method combines different methods to produce a cycle time 

estimation. For example, the application of analytical methods and simulations in 

combination could be used to develop a dynamic cycle time estimation. Chang and Liao 

(2006) presented a flow-time prediction method which incorporates fuzzy rule bases with 

the aid of self-organizing map and genetic algorithm. In addition, Chen (2006) and Chen 

(2007) applied hybrid fuzzy c-mean and fuzzy back propagation network approaches to 

estimate cycle time in semiconductor manufacturing process. 

 Yang et al., (2008) argue that simulation is an essential tool for design and 

analysis of a complex manufacturing system such as a semiconductor fab. Moreover, 

Chung and Huang (2002) point out that simulation is an effective tool for analyzing and 

predicting the dynamic behavior of complex systems. Potential changes to the system can 

be first simulated in order to predict their impact on system performance. Simulation can 

also be used both as an analysis tool for predicting the effect of changes to existing 
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systems, and as a design tool to predict the performance of new systems under varying set 

of circumstances. 

3. Discrete Event Simulation (DES) modelling 

Discrete event simulation is a particular type of simulation model in which the state 

variable changes only at a discrete set of points in time (vs continuously). DES models 

represent the stochastic and temporal behavior of a system and are a commonly used tool 

for modeling the operations of queueing based manufacturing systems. An advantage of 

DES is that it can be used to handle almost any level of system detail (Banks et al., 1996). 

Also of note is that the nature of DES is stochastic; since the input variables to the model 

are random variables, the output variables are also random variables. 

A simple queueing system is portrayed in Figure 1. This system consists of a 

single machine. Parts arrive into the system with a particular arrival time. The job is then 

loaded to the machine with the help of an operator and is then processed. While a part is 

being processed, more parts arrive and a queue is built. When processing is finished, the 

part is unloaded and a new part from the queue is loaded on the machine for processing. 

This continues until all the parts are processed. A system such as this is typical for 

simulation in DES. 

Semiconductor manufacturing systems are complex because of fluctuating 

demands, lot sizes, types of products flowing through the system, reentrant flow into the 

bottleneck tool, sequence dependent set up times, etc. (Meidan et al., 2011). Using DES 

the relationship between the controllable factors known to influence the cycle time 
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distribution (described previously in this chapter) and the estimates of the parameters 

describing cycle time distribution (i.e. sample moments and percentiles) can be 

established. 

 

Figure 1. Simple queuing system 

  The effectiveness of DES modelling has also been shown to improve when 

combined with experimental design techniques. In this research, factorial experiments are 

used to analyze the effect of change in the controllable factors on a semiconductor 

manufacturing system. Section 4 elaborates on factorial experiments and highlights some 

literature in which DES and factorial designs are combined to analyze systems.  

4. Factorial Experimental Design   

Montgomery (2014) defines an experiment as a test or series of runs in which purposeful 

changes are made to the input variables of a system to observe and identify the reasons 

for changes in the output response. To do so, one needs to determine which input 

variables are responsible for the observed changes in the response, then develop a model 

relating the response to the important input variables and then use this model for system 

improvement or decision making.  
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In general, experiments are used to study the performance of processes and 

systems. The process or system can be represented by the model shown in Figure 2. The 

inputs to the system can be controllable factors or uncontrollable factors (noise). There 

may be a number of factors that affect a system. Montgomery (2014) states that factorial 

experiments are the best approach to deal with systems influenced by several factors. 

Also, Kumar and Nottestand (2006) stated that full factorial designs with simulations are 

preferred to analyze what-if questions since these designs provide the most information 

that is not aliased with main effects or two factor interactions. Answering what-if 

questions is a process of determining the effects on outcomes through systematic changes 

in the input. In manufacturing what-if questions involve answering questions for product 

mix, production targets and capital expansion (Yang et al., 2008). 

In this research, DES is considered to be a process. The controllable factors 

mentioned earlier in section 1 are used as inputs to the simulations. The response 

variables or output measures are the estimates of the cycle time distribution. 

 

Figure 2. A process in DOE 

 A factorial experiment is an experimental strategy in which factors are varied 

together, instead of one at a time. A two level factorial design consists of two levels of 
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each of the factor. If there are two factors say A and B, a two factor factorial experiment 

for studying the joint effects of these two factors on a response variable can be 

represented as shown in Figure 3. In this factorial experiment, both A and B have two 

levels (1 and 2) and all possible combinations of the two factors across their levels are 

used in the design. Geometrically, the four runs form the corners of the square in Figure 

3. This particular type of factorial experiment is called 2X2 or 2
2 

factorial design (two 

factors, each at two levels). Observations of the response variable are usually subjected to 

variation and uncertainty. Hence, replications are done for the factorial experiments to 

reduce the variability of the observations. This experimental design would enable the 

experimenter to investigate the individual effects of each factor and to determine whether 

the factors interact. Generally, if there are k factors, each at two levels, the factorial 

design would require 2
k
 runs.  

 

Figure 3. A two factor factorial experiment 

Kumar and Nottestand (2006) stated that use of DOE with simulation allows a 

detailed understanding of a process to be obtained in a relatively short time. Furthermore, 
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they concluded that the combination of simulation and designed experiments can bring 

projects to completion faster, with an improved outcome at a lower cost.  

Also, Montevechi et al. (2010) presented a sensitivity analysis in DES models 

using factorial designs. They stressed that DOE approach (combination of simulation 

with factorial experimental design) improves understanding of the manufacturing system, 

generating further knowledge about the importance and significance of each resource 

used. They argued that despite of the relative time spent in the construction of the 

models, the twofold approach of DOE and simulation elucidates how the resource can be 

efficiently changed and employed. Finally, Yang et al., (2008) proposed a method for 

estimating multiple cycle time percentiles using DES and DOE.  

As mentioned earlier, semiconductor manufacturing systems are dynamic and 

largely dependent on customer satisfaction making the simulation models to also alter 

dynamically. Rapid changes in demand make previously built simulations models 

outdated and irrelevant. Also, building simulation models and obtaining the necessary 

input data can consume a large amount of time and resources. Yang et al. (2008) argued 

that it may take several minutes or even several hours to complete simulation run for a 

given scenario of a semiconductor manufacturing facility. In order to conduct successful 

what-if analyses, simulation models should be run under all kinds of alternate 

configuration, making the time and effort required for the simulation analysis even more 

extreme. 

The purpose of this research is to determine the influence of controllable input 

parameters on the cycle time distribution of a semiconductor or high volume electronics 
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fabrication facility. This experimentation will provide important insights to decision 

makers about how the distribution changes. This will help manufactures to implement 

system changes to improve the predictability of parameters of the cycle time distribution 

(and, therefore, customer delivery dates) without having to actually utilize the resources 

required to execute simulation models. Rather than having to run multiple models to 

understand how change in factors changes the cycle time distribution, this work will help 

decision makers make similar inferences without having to build models and execute 

them.  

 This research will investigate the effects of the input factors of a semiconductor 

manufacturing systems, which were described earlier in this chapter, on the parameters 

describing the cycle time distribution (i.e., the first four sample moments and the 25
th

, 

50
th

, 75
th

, and 95
th

 percentiles). Worth noting is that the shape of the cycle time 

distribution is different for different systems. In an effort to understand the 

generalizability of the findings from the work in this thesis two types of system, one of 

significantly less complexity than the other, are examined. Mittler et al., (1995) present in 

their findings that normal distribution is a good approximation of the cycle time 

distribution for semiconductor fabrication facilities. However, this may not be true for 

manufacturing facilities that are not as complex as semiconductor manufacturing. If the 

results obtained from a complex system are valid to a system of less complexity, the 

results might hold across other systems bounded by the cycle time distribution of these 

two systems.  
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The remainder of this thesis will provide details about the two manufacturing 

systems used to conduct experiments, the methodology of the experiments (Chapter 2) 

and the results obtained (Chapter 3). Finally, discussions, conclusions and future work 

are presented in Chapter 4.  
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2. Experimental Plan and Methodology 

 
The purpose of this research is to determine the influence of input parameters on the 

cycle time distribution of a semiconductor or high volume electronics fabrication. This 

experimentation will provide insights about how the distribution changes. This will help 

manufactures to implement system changes to improve the predictability of their cycle 

time distribution without having to run simulation models. With this understanding, they 

can make informed decisions about how changes to the production flow might influence 

the distribution and, relatedly, how delivery dates are quoted.  In industries such as high 

volume electronics, where competition is heavily based on customer service where 

meeting delivery times is very crucial, this information will help decision makers in 

rapidly understanding how specific, potential changes to their production system might 

influence the delivery times that are quoted to customers. 

The shape of the cycle time distributions is different for different types of 

systems. The presence of batching, the number of operations included in the production 

and the choice of dispatching policies (Sivakumar and Chong, 2001) all have an impact 

on the shape of the cycle time distribution. In general, with increasing complexity of the 

production environment, cycle time distributions tend to become closer to normal (Rose, 

1999; Mittler, et al., 1995). Given the variety of potential distributional shapes and the 

interest in determining how generalizable conclusions from this research are, 

experimentation was done on two systems, one of significantly greater complexity than 

the other.  For each system, the following overall process was followed during the course 

of this research: 
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1. A discrete event simulation model of the system was created and validated.  Output 

from the model includes parameters describing the cycle time distribution.   

2. Factors known to influence the cycle time distribution (and controllable on an actual 

production floor) were modified, and the DES model was executing under these 

varying conditions.   

3. Analysis was conducted to understand how the changes to the identified factors relate 

to the recorded parameters of the cycle time distribution.   

This chapter provides greater detail about each of these three steps.  First, the 

systems themselves are described.  The parameters selected to describe the cycle time 

distribution are then detailed, and the experimental plan for varying controllable factors 

in the models and then recording these parameters is detailed.  

1. Description of the system 

The two production facilities selected for experimentation in this work are a model of a 

simple job shop facility and a model of a more complex semiconductor manufacturing 

facility.  The discrete event simulation models were built in a simulation software called 

ARENA, created by Rockwell Automation.  A description of each of the two systems 

follows.   

1.1 Mini-Fab Model 

The Mini-Fab model is designed to capture in a simple format the key characteristics that 

make the modeling and scheduling of semiconductor manufacturing facilities particularly 

difficult: re-entrant flow, batching, set-ups, preventive maintenance, emergency 

maintenance and multiple part types. The model was designed by Intel and ASU (led by 
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Dr. Karl Kempf). This mini-fab model has also been used by other researchers (Chen et 

al., 2012).  

 
Figure 4. Product flow through mini-fab model. 

 

  There are two products that flow through the mini-fab model: Part X and Part Y. 

The distribution surrounding the time between arrivals for both part types follow an 

exponential distribution. For experimentation purposes, the time between arrivals (TBA) 

value for part type X can be changed. For part type Y it was set to EXPO (333.33) 

minutes. Figure 4 shows the product flow through Mini-Fab model. 

Tool group 1 and 2 consist of two identical and parallel processing machines 

(Machine A and B for tool group 1 and Machine C and D with Tool group 2). Tool group 

3 has just one machine (Machine E). There is one operator for each tool group and are 

utilized for loading, unloading and set-ups which serve as a secondary resource. The 

processing times at each station follow a normal distribution with a coefficient of 

variation (CoV) of 5% as shown in d for experimentation purposes. 

 

 

Table 2 Machines in tool group 1 (similar to a diffusion oven in a semiconductor 

manufacturing system) perform batch processing similar to a diffusion oven in a 
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semiconductor manufacturing system. After leaving the tool group, the batches are 

separated back into their original parts for the next processing step. Batches processed in 

step 1 can include part type X and part type Y but batches processed in step 5 cannot 

include different part types. Also, parts waiting for step 1 and 5 cannot be batched 

together. Of the parts completing processing at tool group 2 (similar to a 

photolithography stepper), 2% require rework. There is a single work station for rework 

and each rework operation takes 50% of the most recent processing time that the same 

job had at tool group 2.  

Tool group 3 (e.g., an ion implanter) requires set-ups when changing between part 

types or between steps. Different sequences of parts require different lengths of set-ups. 

The set-ups are modeled with a normal distribution with CoV of 50%. When two 

sequential parts are to be processed on the same type, but are for different processing 

steps, the mean of setup time is 10 minutes. When two sequential parts are to be 

processed are of different type, but are for the same processing step, the mean of setup 

time is 5 minutes. Lastly, when the sequential parts are of different types and are to be 

processed are for different steps, the mean of setup time is 12 minutes. Tool group 3 also 

requires emergency maintenance. The time between failures is exponentially distributed 

with mean of 25 days and time to repair can be modeled with a gamma distribution with a 

scale parameter of 216 minutes and a shape parameter of 0.25. All the tool groups require 

preventive maintenance every 7 days and each session takes 1 hour of time. Also, all tool 

groups require condition checks every 30 days. Each condition check takes 6 hours of 
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time. The dispatching policies in front of each machine is determined as FIFO (First In 

First Out) but can be changed for experimentation purposes. 

 

 

Table 2. Characteristics of process steps in the mini- fab model 

Process 

Steps 

Tool 

Group 

(Machine) 

Processing 

Time (minutes) 

Batch 

Size 

Load Time 

(minutes) 

Unload Time 

(minutes) 

1 1 (A, B) NORM(225, 

11.25) 

3 NORM(20, 2) NORM (40, 4) 

2 2 (C, D) NORM(30, 1.5) 1 NORM(15,1.5) NORM(15,1.5) 

3 3 (E) NORM(55, 

2.75) 

1 NORM(10, 1) NORM(10, 1) 

4 2 (C, D) NORM(50, 2.5) 1 NORM(15,1.5) NORM(15,1.5) 

5 1 (A, B) NORM(225, 

12.75) 

3 NORM(20, 2) NORM(40, 4) 

6 3 (E) NORM(10, 0.5) 1 NORM(10, 1) NORM(10, 1) 

 

1.2 Job shop Model 

The second of the two systems that were modeled as an experimental vehicle for this 

research is a simple job shop. In job shop with m machines, each job has its own route to 

follow. The job shop is a model created by using model examples from Pinedo, 1995. 

There are three products that flow through the job shop, Type X, Type Y and Type Z. 

The distribution surrounding the time between arrivals for all the part types follows an 

exponential distribution, but the expected value of that distribution for part type X can be 

modified to control bottleneck tool utilization. For Part Type Y, Time between arrival 

(TBA) is set to EXPO (60) minutes and that for Part Type Z is EXPO (30) minutes. There 

are four tool groups in the model. Each tool group is made up of one identical, parallel 

machine and there is one operator for each tool group which serve as a resource. Figure 5 
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shows the product flow for Part Type X, Y and Z respectively through job shop model. 

Within the model, the dispatching policy can be changed to FIFO or SPT cat each of the 

stations. 

 

Figure 5. Product flow through job shop model.  

Table 3, Table 4 and Table 5 shows the processing times for Part Type X, Y and Z 

respectively for job shop model. 

Table 3. Processing times for Part Type X for the job shop model. 

Process Step Tool Group Processing Time (minutes) 

1 1 NORM (10, 0.5) 

2 2 NORM (8, 0.4) 

3 3 NORM (4, 0.2) 

 

Table 4. Processing times for Part Type Y for the job shop model. 
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Process Step Tool Group Processing Time (minutes) 

1 2 NORM (8, 0.4) 

2 1 NORM (3, 0.15) 

3 4 NORM (5, 0.25) 

4 3 NORM (6, 0.3) 

 

Table 5. Processing times for Part Type Z for the job shop model. 

Process Step Tool Group Processing Time (minutes) 

1 1 NORM (4, 0.2) 

2 2 NORM (7, 0.35) 

3 4 NORM (3, 0.15) 

 

2. Special Considerations for Discrete Simulation Output Analysis 

Due to the stochastic nature of discrete event simulation models, two executions of the 

same model with the same input parameter specifications will yield two different results.  

As a result, output measures (e.g., sample moment estimates and percentile estimates) 

from both the mini-fab and job shop models are also stochastic, random variables.  

Correspondingly, most statistical tests, including those that are conducted in this research, 

assume that these random variables are independent, identically distributed.  However, 

these assumptions are not guaranteed to hold for random variables created as output 

measures from discrete event simulation models.   

It is common to begin the execution of a discrete event simulation models using 

“empty and idle” conditions, in which all resources (i.e., tools, operators, etc.) are 

available, and all queues are empty.  Such starting conditions make it so that jobs flowing 

through the model early in the simulation progress through the system more quickly than 

they would when the system is operating at steady state.  As a result, estimates of 

parameters of the cycle time distribution from systems in which empty and idle starting 

conditions were employed can be biased (i.e., they can show that jobs progress through 
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the system faster than they really should), violating the underlying statistical assumption 

that output measures as identically distributed.  Such bias is referred to as initialization 

bias and is often addressed through the truncation of data acquired before the system 

reaches steady state operating conditions (Kelton, Sadowski R, Sadowski D, 2002).   In 

the case of the two systems under investigation here, 250,000 time units of data and 

30,000 time units of data at the beginning of every simulation run of the mini-fab model 

and job shop model respectively was truncated to remove initialization bias.  These 

determinations were made based on a plot of time in system vs simulation run time from 

the most heavily utilized system configuration in each system. 

The assumption of independence is also in question for discrete event simulation 

models of manufacturing systems.  In such systems, the cycle time for a particular job is 

influenced by cycle times of jobs ahead of it. The cycle times are therefore not 

independent of each other. This is called auto-correlation (Kelton, Sadowski R, Sadowski 

D, 2002), and if not addressed, can cause variance estimates of parameter estimates to be 

artificially narrow.  A common approach for dealing with this is to implement a lag 

between observations that are used in estimating parameters.  If the lag value is large 

enough, then the values used in estimating parameters are approximately independent and 

not auto correlated. A lag of 2,000 and 25 between data points was utilized to generate 

pseudo independent and identically distributed (iid) observations for the mini-fab and job 

shop model respectively. The lag values for each system was determined based on a plot 

of auto-correlation vs. lag from the most heavily utilized system configuration. 

3. Experimental Plan 
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A two level factorial design of experiments (DOE) was conducted to determine the 

impact of controllable factors on the parameters of interest that describe the cycle time 

distribution (i.e., estimates of the first four sample moments along with the selected 

percentile estimates).  In the models of both the mini-fab and the job shop, each of the 

parameters describing the cycle time distribution was considered to be an independent 

response variable.  As such, a separate experiment was conducted for each system on 

each of the response variables.  The process for selecting the predictor variables, or those 

that are manipulated to investigate potential relationship to the response variables, for 

each system is described next.   

3.1  Mini-fab Predictor Variables 

Based on findings as described in Chapter 1, eight factors were considered for the mini-

fab model. The factors, or predictor variables, are listed in the Table 66, along with their 

“baseline” value. 

Table 6. Factors affecting cycle time of semiconductor fabrication. 

# Factors Baseline values 

1 Time Between Arrival (TBA) for Part X EXPO (200) mins 

2 Percentage of Rework 2% 

3 Mean Processing Time (MPT) Mean (Processing times 

from d for experimentation 

purposes. 

 

 

Table 2) 

4 Coefficient of Variation (COV) at Unloading 

Operations 

Mean (Unload time from d 

for experimentation 

purposes. 

 

 

Table 2) 

5 Mean Time Between Failures in Emergency Failures EXPO (25) days 



 

25 
 

  

6 Mean Time to Repair in Emergency Failures (EM) GAMM (216, 0.25) mins 

7 Batch Size 3 

8 Dispatching Policies FIFO 

 

While each of these factors has been shown in the literature to generally influence 

the cycle time distribution, a pilot set of experiments was conducted to determine which 

had an impact on the cycle time distribution of the mini-fab system in particular.   During 

these experiments, the mini-fab model was executed first with the predictor variables set 

to their “baseline” level.  Then, the model was executed again, varying a single factor 

first increasing it by 10% and then decreasing it by 10%.  The same factor was then 

increased by 30% and then decreased by 30%.  Following the execution of each model, 

the percent change (from the baseline values) in the sample moment and percentile 

estimates of the cycle time distribution were recorded.  The process was then repeated for 

each of the 8 candidate factors.   Based on these pilot runs, factors that produced changes 

in at least two of the outcome measures (i.e., at least two sample moment and/or 

percentile estimates) by 10% were considered to be “sensitive” to the cycle time 

distribution. 

 Table 7 displays the final factors used in the factorial experiment, along with each 

of their levels.  High and low levels for each factor were determined by the pilot runs. 

The goal was to test the mini-fab model for the most extreme utilization of the system. It 

was assumed that the extreme utilization for the mini-fab model would be if the levels of 

the factors were first increased by 30% from the baseline level (high level) and then 

decreased by 30% from the baseline level (low level). As an alternative to FIFO, SPT 

was considered to be as a high level for dispatching policies. The impact that changes to 
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these factors visually on the cycle time distribution from the mini-fab model can be seen 

in Figure 6 to Figure 8.  In each of these figures, the caption provides the levels for each 

of the factors in Table7.  As illustrated, changes to these factors resulted in a cycle time 

distribution that looks approximately normal (i.e., Figure 6) to one that has much greater 

skewness (i.e., Figure 8).  Quantifying the impact of these changes is a goal of the 

experimental design. 

 

 

Table 7. Levels of factors considered in mini-fab model. 

Factor # Factor Name High Level Low Level 

1 TBA for Part X (TBA) EXPO (260) mins EXPO (225) mins 

2 Batch Size 10 3  

3 Mean Processing Time (MPT) +30% of mean -30% of mean 

4 Dispatching Policies(DP) SPT FIFO 

5 COV of Unloading 50% of mean 10 % of mean 

6 Mean time to Repair in EM 

(mean time to repair in EM) 

280 150 

 

 
Figure 6. Histogram for run setting #2 for mini-fab model (TBA: high value, all other 

factors low level. Bottle neck utilization: 63.68%) 
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Figure 7. Histogram for run setting #39 for mini-fab model. (TBA, Dispatching Policies, 

COV: low value; batch size, MPT, Mean time to repair in EM: high value. Bottle neck 

utilization: 95.77%) 

 

Figure 8. Histogram for run setting #55 for mini-fab model (TBA, dispatching policies: 

low value, batch size, MPT, COV, mean time to repair in EM: high value. Bottle neck 

utilization: 95.84%). 
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3.2 Job shop Predictor Variables 

Of the 8 factors originally identified in the literature as influencing the cycle time 

distribution (see Table 6), only three were applicable to the job shop model:  TBA for 

Part X, MPT and Dispatching policies.  As a result, pilot runs were not conducted for job 

shop model.  Instead, all three of the factors were simply included as factors in the 

experimental design. The factors and their levels are given in Table 8.  The high and low 

levels for each factor were obtained by first increasing the levels of the factors by 30% 

from the baseline values (high level) and then decreasing the levels of the factors by 30% 

from the baseline values (low level). then decreasing the levels of the factors by 30% 

from the baseline values (low level). SPT was considered as a high level for dispatching 

policies against FIFO as a low level for dispatching policies. 

Table 8. Levels of factors considered in job shop model. 

Factor # Factor Name High Level Low Level 

1 TBA for Part X EXPO (25.5) EXPO (19.5) 

2 Mean Processing Time +30% of mean  -30% of mean 

3 Dispatching Policies (DP) SPT FIFO 

 

The impact that changes to these factors has visually on the cycle time 

distribution from the job shop model can be seen in Figure 9 to Figure 11.  In each of 

these figures, the caption provides the levels for each of the factors in Table 8.  As 

illustrated, and similar to what was observed with the mini-fab model, changes to these 

factors resulted in a cycle time distribution that looks closer to the normal distribution 

(i.e., Figure 9) to one that has much greater skewness (i.e., Figure 11).  Quantifying the 

impact of these changes is a goal of the experimental design. 
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Figure 9. Histogram for sun setting # 2 for job shop model (TBA: high value, MPT, 

dispatching policies: low value. Bottle neck utilization: 47.63%). 

 

Figure 10. Histogram for sun setting # 4 for job-shop model (TBA: high value, MPT: 

low value, dispatching policies: high value. Bottle neck utilization: 88.43%). 
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Figure 11. Histogram for sun setting # 6 for job shop model (TBA: high value, MPT: low 

value, dispatching policy: high value. Bottle neck utilization: 47.63%). 

 

The underlying assumptions of factorial DOE are: 1) that the observations must 

be independent 2) that each factor used in DOE are chosen by the experimenter 3) that 

the design is completely randomized, 4) that the response variable follows a normal 

distribution, and 5) that the variance of the data points should be equal (Montgomery, 

2014). While the assumption regarding iid data is met through the adjustments to the 

simulation output data describe previously, the assumption regarding the normality of the 

output measures is not.  Specifically, with the exception of the sample mean estimates, 

the distributions describing the sample moments and percentiles obtained from simulation 

models are not normal. In order to satisfy the normality assumption, inferences from the 

central limit theorem were first employed used. The central limit theorem (CLT) states 

that, given certain conditions, the arithmetic mean of a sufficiently large number of 

observations of an independent random variable (i.e., in our case the sample moment and 

https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Random_variables
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percentile estimates), will be approximately normally distributed, regardless of the 

underlying distribution (Montgomery, 2014). Carrying this idea forward to the output 

from the job-shop and mini-fab models implies that, while the distributions of the sample 

moments and percentile estimates themselves may not be normally distributed, the 

distribution surrounding sample means of these same variables do follow a normal 

distribution.  Thus, for mini-fab model, 12 simulation runs were made to obtain 2 

independent replications at each design point (i.e., the sample mean of six observations of 

each output measure were used as the response variable).  

To evaluate the effectiveness of this approach in inducing normality in the output 

variables, a normal quantile plot was generated. In such a plot, if the underlying 

distribution is normal, the points on the plot will approximately follow a straight line.  

However, as illustrated in Figure 12, even after employing inferences from the CLT, the 

points were still not normally distributed. The CLT is known to be most effective when it 

is based on the average of a large sample of data (vs. the 6 data points that were averaged 

for this work).  As such, additional effort was required to meet the normality assumption 

of factorial DOE. 

https://en.wikipedia.org/wiki/Normal_distribution
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Figure 12. Normal quantile plot of residual of non- transformed data for 25

th
 percentile 

of cycle time distribution for mini-fab model. 

 

Transforming the data is often helpful in bringing a distribution closer to the 

normal distribution (Montgomery, 2014). The most common transformations used are a 

square root transformation, a logarithmic transformation and an inverse transformation. 

Each of these transformation was attempted, and the logarithmic transformation was 

found to have the best fit across all the output variables. Figure 13 illustrates the normal 

quantile plot the logarithmic transformed data for 25
th

 percentile of cycle time 

distribution for mini-fab model. Compared to Figure 12, all the data now was within the 

95% confidence interval of the straight line, hence making the data normal. 
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Figure 13. Normal quantile plot of residual of logarithmic transformed data for 25

th
 

percentile of cycle time distribution for mini-fab model. 

 

Similar to the mini-fab model, for job shop model, the data was transformed using 

logarithmic transformation, square root transformation and inverse transformation. 

Among these transformations, the logarithmic transformation was again considered to be 

the most effective. Figure 4 and Figure 5 illustrate the normal quantile plot of non- 

transformed data and of logarithmic transformed data for the skewness of cycle time 

distribution for job shop model.  It is notable that the same transformation worked for 

both systems.  As seen from Figures 6 and 11, which illustrate the cycle time distribution 

for approximately the same utilization levels in each of the two systems, the shape of the 

cycle time distribution across both systems is not the same.  The fact that the same 

transformation worked for both systems gives an indication of the robustness of the 

procedure. 
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Figure 14. Normal quantile plot of residual of non-transformed data for skewness of 

cycle time distribution for job shop model. 

 

 
Figure 15. Normal quantile plot of residual of logarithmic transformed data for skewness 

of cycle time distribution for job shop model. 

 

Based on the discussion above, Table 9 shows the summary of methodology for 

conducting experiments on mini-fab model and job shop model. 
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4. Experimental Plan Summary 

The systems used are mini-fab model and job shop model. The factors sensitive to the 

mini-fab model were identified by pilot runs for analyzing sensitivity. Assuming extreme 

utilizations of the system, the levels of the factors were chosen. All the factors in the job 

shop model were considered and the levels for these factors were chosen in a similar way 

as for the mini-fab model. The simulation run length was 5,000 pseudo i.i.d. observations 

for mini-fab model and 50,000 pseudo iid observations for job-shop model. For 

conducting experiments, six independent simulations were run for the mini-fab model 

and three independent simulations were run for the job shop model. Two complete 

experimental replications were obtained for the mini-fab model, and three complete 

experimental replications were obtained for the job-shop model. The output from the 

simulation model (i.e. the cycle times) where the input to a MATLAB code to generate 

the estimates of the cycle time distribution (i.e. mean, standard deviation, etc.). A 2- level 

full factor DOE was conducted to see the impact of changes made to the factors on the 

shape of the cycle time distribution. To meet the normality assumption for DOE, the data 

points were transformed using a logarithmic transformation. All the analyzes for the 

mini-fab model and the job shop model explained in the following chapter were 

conducted using the transformed data. Figure 16 illustrates the summary of experimental 

plan conducted in this research. Table 9 shows the summary of the characteristics of DES 

output analysis for both models. 

 



 

 
 

3
6
  

 

Figure 16. Summary of experimental plan 
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Table 9. Summary of characteristics of DES output analysis 

Parameters Mini-Fab Model Job Shop Model 

Simulation Run Length 5000 pseudo iid 50000 pseudo iid 

Number of replications for DOE 2 3 

Number of replications for simulation 12 9 

Truncation of initial data 250000 time units 30000 time units 

Lag Value 2000 25 
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3. Results 

The objective of this research is to understand how changes to controllable factors on a 

production floor affect specific attributes of the cycle time distribution. This analysis will 

enable decision makers to have an increased understanding of how changes under 

consideration for the manufacturing system can be expected to change the cycle time 

distribution, in turn allowing improved delivery date quotations to be made without 

incurring the burden of additional simulation modeling and analysis. As mentioned in 

Chapter 2, a 2
6 

full factorial DOE was conducted. In the DOE, factors included 

controllable aspects of the production system for which the cycle time distribution was 

found to be sensitive, and the response variables are attributes of the cycle time 

distribution (mean, standard deviation, skewness, kurtosis and percentiles). The levels of 

factors are shown in Table 7. In the interest in determining how generalizable the 

conclusions from the mini-fab model are, a 2
3
 full factorial DOE of job shop model was 

also conducted to analyze if the results in the mini-fab model are also valid to the job 

shop model.  

This chapter provides the results from conducting the experiments described in 

Chapter 2. Results for the mini-fab system are presented first, and results for the job shop 

model follow. For each system, main effects, along with two and three way interactions 

between factors that were found to be statistically significant are identified and described 

using p-values and effect sizes. Interactions between factors are further investigated to 

understand the nature of the interactions and their impact on the response variable(s). For 

each system (i.e., mini-fab and job shop), some main effects and interactions were found 
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to be statistically significant in influencing all eight of the response variables (sample 

moment estimates and percentiles), while some factors were only influential to a subset 

of the response variables. Within the results for each model, factors that influenced all 

response variables are described first, as their cross-cutting influence is significant to 

understanding the cycle time distribution; a description of factors that influence only a 

subset of the response variables then follows. 

1. Results for mini-fab model 

The first objective was to determine which main effects, two- way and three-way 

interactions are significant in predicting each response variable in the mini-fab model. 

Table 10 shows the main effects, two and three way interactions of factors that were 

statistically significant (p< 0.05) across all response variables (the two-way interaction, 

for example, TBA*MPT is read as the interaction between TBA and MPT. The three-way 

interaction, for example, TBA*MPT*dispatching policies is read as the interaction 

between TBA, MPT and dispatching policies). In other words, these factors were found 

to statistically impact all of the eight response variables that describe the cycle time 

distribution:  mean, standard deviation, skewness, kurtosis, along with the 25
th

, 50
th

, 75
th

, 

and 95
th

 percentiles. 

The first step in understanding the impact of the main effects and interactions on 

the response variable is to determine statistical significance of the factor(s) and to look at 

the magnitude and direction of the effect sizes. The magnitude of an effect size measures 

the expected change in the response variable per unit change in the factor(s). The 

direction of the effect size is an indication of whether the response variable increases or 
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decreases with respect to the factors and their interactions. For example, if the effect size 

is -3 for an input factor with two levels, it means that the response variable decreases by a 

value of 3 per unit change in the input factor. For ease in analyzing the results, coded 

effect sizes are used. The coding of effect sizes positions them all on common scale, 

making it easier to compare the relative sizes and corresponding impacts on a response 

variable.  

The effect size and p-values for each significant main effects and interactions are 

shown in Table 10 and Table 11 respectively. The effect sizes range in magnitude from 

0.02 to 0.6. Following these tables, results are provided first for the main effects found to 

be statistically significant across all the response variables and then for the interactions 

that were found to be statistically significant across all response variables.  

Section 1.1 explains the main effects common across all the response variables, 

including how each of the main effect affects the response variables.  

1.1 Main Effects for Mini-fab model common across all response variables 

Three main effects were found to be statistically significant in predicting all the response 

variables:  TBA, MPT, and DP. Figure 17 summarizes these main effects for each of the 

response variables. It shows that the TBA factor affects the standard deviation of the 

cycle time distribution the most and the skewness of the cycle time distribution the least. 

Changing MPT has a strong influence on the standard deviation of the cycle time 

distribution and a weaker influence the on 25
th

 percentile of the cycle time distribution.  

Finally, changes in dispatching policies have the most effect on kurtosis and have the 

least effect on the standard deviation of the cycle time distribution. 
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Table 10. Effect size values for all significant main effects and interactions for all performance measure for mini-fab model. 
 Effect Size 

 Mean Standard 

Deviation 

Skewness Kurtosis 25
th

 

Percentile 

50
th

 

Percentile 

75
th

 

Percentile 

95
th

 

Percentile 

Main Effects and 

interactions 

        

TBA -0.199 -0.346 -0.053 -0.103 -0.121 -0.141 -0.160 -0.219 

MPT 0.320 0.606 0.299 0.440 0.220 0.245 0.276 0.378 

Dispatching Policies -0.098 0.032 0.252 0.420 -0.129 -0.151 -0.162 -0.108 

TBA* MPT -0.210 -0.367 -0.025 -0.055 -0.129 -0.152 -0.174 -0.234 

Batch Size* MPT -0.198 -0.320 0.049 0.026 -0.129 -0.152 -0.173 -0.217 

Batch Size* Dispatching 

Policies 

-0.102 0.025 0.231 0.370 -0.133 -0.154 -0.165 -0.111 

MPT* Dispatching Policies 0.082 0.034 -0.075 -0.105 0.108 0.122 0.123 0.093 

TBA* Batch Size* MPT 0.160 0.176 -0.055 -0.042 0.114 0.127 0.133 0.141 

TBA* Batch Size* 

Dispatching Policies 

-0.084 -0.052 0.071 0.084 -0.111 0.123 -0.119 -0.098 

Batch Size* MPT* 

Dispatching Policies 

0.084 0.046 -0.029 -0.047 0.110 -0.125 0.127 0.099 

 

Table 11. p- values for all significant main effects and interactions for all performance measure for mini-fab model. 
 p- values 

 Mean Standard 

Deviation 

Skewness Kurtosis 25
th

 

Percentile 

50
th

 

Percentile 

75
th

 

Percentile 

95
th

 

Percentile 

Main Effects and interactions         

TBA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

MPT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Dispatching Policies 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

TBA* MPT 0.000 0.000 0.027 0.000 0.000 0.000 0.000 0.000 

Batch Size* MPT 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 

Batch Size* Dispatching 

Policies 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

MPT* Dispatching Policies 0.000 0.03 0.000 0.000 0.000 0.000 0.000 0.000 

TBA* Batch Size* MPT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

TBA* Batch Size* Dispatching 

Policies 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Batch Size* MPT* Dispatching 

Policies 

0.000 0.000 0.010 0.000 0.000 0.000 0.000 0.000 



 

42 
 

 
 

Figure 17. Main effects of TBA, MPT and dispatching policies on all response variables 

for the mini-fab model.  

 

Table 10 illustrates that the effect size of the TBA factor for all response variables 

is negative. This implies that when the TBA increases from a lower value to a higher 

value the magnitude of each response variable decreases. This is not surprising given that 

as the time between entity arrivals to the system increases, fewer entities overall are 

present in the system, making the queue shorter. Figure 18 and Figure 19 show the main 

effects plot of TBA on mean and kurtosis of cycle time distribution respectively. The 

main effects plot examines differences between level means for the factor graphing the 

response mean for each factor level and connecting these values with a line. Figures 18 

and 19 illustrate that the slope of the line connecting the two levels of TBA for mean of 

the cycle time distribution is greater than the slope of the line connecting the two levels 

of TBA for the response variable of kurtosis. This is also illustrated by the effect sizes for 

the TBA factor in Table 10.  
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Skewness Kurtosis
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TBA -0.199 -0.346 -0.053 -0.103 -0.121 -0.141 -0.160 -0.219

MPT 0.320 0.606 0.300 0.440 0.220 0.245 0.276 0.378

DP -0.098 0.032 0.252 0.420 -0.129 -0.151 -0.162 -0.108
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Figure 18. Main Effects plot of TBA on mean of cycle time distribution for the mini-fab 

model. 

 

 
Figure 19. Main Effects plot of TBA on kurtosis of cycle time distribution for the mini-

fab model. 

 Table 10 shows that the effect size of MPT for all response variables is positive, 

indicating that as MPT increases from a lower value to a higher value, the value of each 
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of the response variable of the cycle time distribution increases. As the MPT increases, it 

follows directly that each station takes longer to process a job, thus increasing the mean 

and percentiles of cycle time distribution. As each entity takes a longer time to process at 

a station, the time between arrivals to each subsequent station also increases, in turn 

increasing the standard deviation of the cycle time distribution. Figure 20 and Figure 21 

show the main effects plot of MPT on standard deviation and the 25
th

 percentile of cycle 

time distribution respectively. As seen from Figure 20 and Figure 21, the slope of line 

connecting the levels the levels of MPT for standard deviation of cycle time distribution 

(0.608) is greater than that for the 25
th

 percentile of cycle time distribution (0.220). This 

indicates that MPT has a greater impact on standard deviation than 25
th

 percentile of 

cycle time distribution. 

Dispatching policies were found to affect the mean and the percentiles of cycle 

time distribution in the mini-fab model differently than the standard deviation, skewness 

and kurtosis of cycle time distribution. Figure 22 and Figure 23 illustrate the main effects 

plot of dispatching policies on mean and skewness of the cycle time distribution. As the 

dispatching policies change from FIFO to SPT, the mean and percentiles of the cycle 

time distribution decreases. On the contrary, as the dispatching policies change from 

FIFO to SPT, the standard deviation, skewness and kurtosis of the cycle time distribution 

increases. When the SPT dispatching rule is employed, the queue is ordered to prioritize 

jobs with shorter processing times of the tool. So, whenever a machine is freed, the entity 

in the queue with shortest processing time begins processing next. This in turn, means 

that entities with longer processing times are disadvantaged compared to FIFO 
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dispatching policies, and may take a very long time to exit the system (Pinedo,1995).  

The result of this is that the mean and the percentiles of the cycle time distribution 

decrease but the skewness and kurtosis of the cycle time distribution increases. Section 

1.2 explains how the two-way interactions that are common across all the response 

variables affect the response variables. 

 

Figure 20. Main Effects plot of MPT on standard deviation of cycle time distribution for 

the mini-fab model. 



 

46 
 

 

Figure 21. Main Effects plot of MPT on 25
th

 percentile of cycle time distribution for the 

mini-fab model. 

 

Figure 22. Main Effects plot of dispatching policies on mean of cycle time distribution 

for the mini-fab model. 
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Figure 23. Main Effects plot of dispatching policies on skewness of cycle time 

distribution for the mini-fab model. 

 

 

1.2 Two-way interactions for mini-fab model common across all response variables: 

The two-way interactions help understand how the level of one variable impacts the 

influence of the other variable on a response. Figure 24 summarizes the significant two 

way interactions common across all the response variables. The figure illustrates that the 

two-way interaction with the largest magnitude is the interaction between MPT and 

dispatching policies on the kurtosis of the cycle time distribution. The two-way 

interaction with the smallest magnitude of two-way interaction is the interaction between 

MPT and dispatching policies on the standard deviation of the cycle time distribution. 
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Figure 24. Interaction effects of TBA, MPT, batch size and dispatching policies on all 

response variables for the mini-fab model. 

 

Figure 22 illustrates the effect of the interaction of TBA and MPT on the standard 

deviation of the cycle time distribution. The interaction demonstrates that the effect of 

increasing MPT on the standard deviation of the cycle time distribution is more 

pronounced when the TBA in the system is shorter. A corresponding impact (greater 

increase when TBA is shorter than when TBA is longer) can be seen for the mean, 

skewness, kurtosis and percentiles of the cycle time distribution. Based on inferences 

from factory physics (Hopp and Spearman, 2001), these effects are not surprising.  As 

jobs arrive more frequently to a production system (i.e., when TBA is at a lower value), 

the overall utilization of the bottleneck within the system increases.  Correspondingly, the 

theory of constraints (Hopp and Spearman, 2001) underscores the idea that reducing the 
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Batch Size* MPT -0.198 -0.320 0.049 0.026 -0.130 -0.152 -0.173 -0.217
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impact of these bottlenecks has a direct increase on the system throughput and that this 

impact is more pronounced when the bottleneck is more severe, as would be the case 

when the MPT increases. 

 

Figure 22. Interaction plot of TBA and MPT on standard deviation of cycle time 

distribution for mini-fab model.  

 

The interaction between batch size and MPT has the greatest effect on standard 

deviation and the least effect on kurtosis (effect size for standard deviation is 0.319 and 

that for kurtosis is 0.026). Figure 23 shows the effect of this interaction on the skewness 

of cycle time distribution. This interaction demonstrates that the effect on the skewness of 

the cycle time distribution of changing MPT is more pronounced when the batch size is 

smaller. This is also true for the mean, standard deviation, kurtosis and percentiles of the 

cycle time distribution. When the batch size is smaller, the queue in front of the batching 
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tool is longer; correspondingly, the effect of increasing MPT, is to increase the cycle time 

of the system (Hopp and Spearman, 2001). 

 

Figure 23. Interaction plot of batch size and MPT on skewness of cycle time of 

distribution for the mini-fab model. 

 

The effect of interaction between batch size and dispatching polices is greatest on 

the kurtosis (effect size= 0.370) of the cycle time distribution and is the least on the mean 

(effect size= 0.102) of the cycle time distribution. Figure 24, Figure 25 and Figure 26 

visually display the impact of this on interaction on standard deviation, skewness and 25
th

 

percentile of cycle time distribution respectively. The effect of changing the dispatching 

policies on the standard deviation of the cycle time distribution is more pronounced when 

the batch size is smaller. This is also the case for mean, skewness, kurtosis and 

percentiles of the cycle time distribution. Figures 27 to 29 also illustrate that the slope of 

the line connecting the two types of dispatching policies when batch size is smaller is 
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smaller for the standard deviation of the cycle time distribution than skewness and the 

25
th

 percentile. Furthermore, the slopes for skewness and 25
th

 percentile are opposite in 

direction. When the batch size is smaller, more jobs are waiting to get batched because 

the machine is processing batches more frequently.  

 

Figure 24. Interaction plot of batch size and dispatching policies on standard deviation of 

cycle time of distribution for the mini-fab model. 

The interaction between MPT and dispatching policies has the greatest impact on 

the kurtosis of the cycle time distribution and the smallest impact on the standard 

deviation of the cycle time distribution. Figure 30 illustrates the interaction of MPT and 

dispatching policies on mean of the cycle time distribution. The effect of changing the 

dispatching policies on all the response variables is more pronounced when the MPT is at 

a higher value. One explanation for this is that the queues are longer when the jobs take 

longer to get processed (i.e., when MPT is at a higher value). In such case, the effect of 

changing the dispatching policies is more significant. 
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Figure 25. Interaction plot of batch size and dispatching policies on skewness of cycle 

time of distribution for the mini-fab model. 

 

Figure 26. Interaction plot of batch size and dispatching policies on 25
th

 percentile of 

cycle time of distribution for the mini-fab model. 
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Figure 30. Interaction plot of MPT and dispatching policies on mean of cycle time 

distribution for the mini-fab model. 

After analyzing the significant two-way interactions, the significant three-way 

interactions that are common across all the response variables were analyzed. These are 

described next. 

1.3. Three- way interactions for mini-fab model common across all response variables: 

There were three three-way interactions that were found to be significant across all 

response variables. 1) TBA, batch size and MPT, 2) TBA, batch size and dispatching 

policies, and 3) batch size, MPT and dispatching policies. Figure 31 shows the summary 

of these interactions. The interaction between TBA, batch size and MPT affect the mean 

of cycle time distribution the most and kurtosis of the cycle time distribution the least. 

Secondly, the three-way interaction between TBA, batch size and dispatching policies 

has a greater effect the percentiles of the cycle time distribution and a weaker effect on 

the standard deviation of the cycle time distribution. Finally, the three-way interaction 
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between batch size, MPT and dispatching policies has a strong influence on percentiles of 

the cycle time distribution and a weaker influence on skewness of the cycle time 

distribution.  

An approach suggested by Green and Salkind (2014) in examining three- way 

interactions was adopted. The analyses suggest examining simple two- way interactions 

first and then wherever relevant, examining simple main effects. Simple two-way 

interactions are the significant two- way interaction that differ across various levels of a 

factor. Simple main effect is the effect of one variable of the significant simple two-way 

interaction across the levels of another variable. Three-way analyses are done in an effort 

to understand where the effect of the factors within the interaction produce responses that 

differ significantly from zero. For every level of the factors involved in a three-way 

interaction, a significant two-way interaction was identified. For that significant 

interaction, test of simple main effects was conducted. Simple main effects evaluate the 

effect of levels of one factor for each level of another factor. The significance level was 

considered as α ≤ 0.025 for examining the simple main effects. 
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Figure 31. Three- way interaction effects on all response variables for mini-fab model. 

 

First, the simple two-way interaction between batch size and MPT at the two 

levels of TBA was examined. The interaction was found to be significant at both levels of 

TBA for mean, standard deviation and the percentiles of the cycle time distribution and 

non-significant at both levels of TBA for skewness and kurtosis of the cycle time 

distribution. The p-values for the interaction between batch size and MPT at both levels 

of TBA are shown in Table 12. Second, the two-way interaction between TBA and MPT 

at the two levels of batch size were tested. This interaction was also found to be 

significant at both levels of batch size for mean, standard deviation and the percentiles of 

the cycle time distribution and non-significant at both levels of batch size for skewness 

and kurtosis of the cycle time distribution. The p- values for interaction between TBA 

and MPT at the two levels of batch size are shown in  
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Table13. Lastly, the simple two-way interaction between TBA and batch size 

were examined at the two levels of MPT. The interaction was found to be significant at 

the higher value of MPT and not significant at the lower value of MPT for the mean and 

percentiles of the cycle time distribution. In contrast, for skewness and kurtosis, the 

interaction was found to be significant for the lower value of MPT and non-significant for 

the higher value of MPT. However, for both levels of MPT the interaction is significant 

for both levels of MPT. The p-values for the interaction between TBA and batch size at 

different levels of MPT are listed in Table14. 

Table 12. Simple two- way interaction between batch size and MPT at levels of TBA for 

all response variables for the mini-fab model. 

Response Variables Levels of TBA p- value 

Mean EXPO (225) mins 0.000 

  EXPO (260) mins 0.000 

Standard Deviation EXPO (225) mins 0.000 

  EXPO (260) mins 0.000 

Skewness EXPO (225) mins 0.199 

  EXPO (260) mins 0.846 

Kurtosis EXPO (225) mins 0.490 

  EXPO (260) mins 0.759 

25th Percentile EXPO (225) mins 0.001 

  EXPO (260) mins 0.000 

50th Percentile EXPO (225) mins 0.000 

  EXPO (260) mins 0.000 

75th Percentile EXPO (225) mins 0.000 

  EXPO (260) mins 0.000 

95th Percentile EXPO (225) mins 0.000 

  EXPO (260) mins 0.000 
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Table 13. Simple two- way interaction between TBA and MPT at levels of batch size for 

all response variables for the mini-fab model. 

Response Variables Levels of batch 

size 

p- value 

Mean 3 0.000 

  10 0.000 

Standard Deviation 3 0.000 

  10 0.000 

Skewness 3 0.882 

  10 0.027 

Kurtosis 3 0.886 

  10 0.107 

25th Percentile 3 0.001 

  10 0.001 

50th Percentile 3 0.000 

  10 0.000 

75th Percentile 3 0.000 

  10 0.000 

95th Percentile 3 0.000 

  10 0.000 

Table 14. Simple two- way interaction between TBA and batch size at levels of MPT for 

all response variables for the mini-fab model. 

Response Variables Levels of MPT p- value 

Mean -30% of mean 0.596 

  +30% of mean 0.000 

Standard Deviation -30% of mean 0.090 

  +30% of mean 0.000 

Skewness -30% of mean 0.003 

  +30% of mean 0.391 
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Kurtosis -30% of mean 0.004 

  +30% of mean 0.791 

25th Percentile -30% of mean 0.730 

  +30% of mean 0.010 

50th Percentile -30% of mean 0.500 

  +30% of mean 0.010 

75th Percentile -30% of mean 0.376 

  +30% of mean 0.010 

95th Percentile -30% of mean 0.257 

  +30% of mean 0.000 

 

Figure 32 illustrates the significant simple two-way interaction between TBA and 

batch size for the mean of the cycle time distribution when MPT is held at its higher 

value. Figure 33 shows the same interaction for skewness when MPT is held at its lower 

value. Although these interactions are significant at different values of MPT, the impact 

of change in the batch size is more pronounced when TBA is at a lower value. 

 

Figure 32. Interaction plot between TBA and batch size on the mean of the cycle time 

distribution when MPT is held at its higher value for the mini-fab model. 
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Figure 33. Interaction plot between TBA and batch size on the skewness of the cycle 

time distribution when MPT is held at its lower value for the mini-fab model. 

 

Once the significant simple two-way interactions were found, further analyses of 

simple main effects were conducted to investigate the significant interaction between 

TBA and batch size. The results for this analyses are shown in Table 15. At every level of 

MPT (for which the simple two-way interaction is significant), Table 15 shows the p-

values for the simple main effects of batch size at different levels of TBA. Also, further 

Table 15 shows the p-values for the simple main effects of TBA at different levels of 

batch size. The results show that when MPT and TBA are at higher value, the simple 

main effect of changing batch size for mean and percentiles of cycle time distribution is 

not statistically significant and when TBA is at a lower value the simple main effect of 

change in batch size is significant. When MPT is at higher value, the main effect of 

change in TBA is significant for both levels of batch size. When MPT is at a lower value, 
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the main effect of change in batch size for skewness and kurtosis of cycle time 

distribution is not significant at both levels of TBA and main effect of TBA is not 

significant at higher value of batch size. The main effect of change in TBA is however 

significant when MPT and batch size are at lower values for skewness and kurtosis of 

cycle time distribution. This is illustrated in Figure 32 and Figure 33. 

Table 15. Simple main effects analyses for the interaction between TBA and batch size 

for three- way interaction between TBA, batch size and MPT for the mini-fab model. 

MPT value: +30% of mean (Higher value) 

Simple main effects for batch size 

TBA: EXPO (260) mins (Higher value) TBA: EXPO (225) mins (Lower value) 

Response Variables p- value Response Variables p- value 

Mean 0.272 Mean 0.006 

25
th

 percentile 0.374 25
th

 percentile 0.000 

50
th

 percentile 0.209 50
th

 percentile 0.000 

75
th

 percentile 0.048 75
th

 percentile 0.000 

95
th

 percentile 0.071 95
th

 percentile 0.002 

Simple main effects for TBA 

Batch size: 10 (Higher value) Batch size:3 (Lower value) 

Response Variables p- value Response 

Variables 

p- value 

Mean 0.000 Mean 0.000 

25
th

 percentile 0.021 25
th

 percentile 0.001 

50
th

 percentile 0.006 50
th

 percentile 0.001 

75
th

 percentile 0.001 75
th

 percentile 0.000 

95
th

 percentile 0.000 95
th

 percentile 0.000 

MPT value: -30% of mean (Lower value) 

Simple main effects for batch size 

TBA: EXPO (260) mins (Higher value) TBA: EXPO (225) mins (Lower value) 

Response Variables p- value Response 

Variables 

p- value 

Skewness 0.907 Skewness 0.171 

Kurtosis 0.785 Kurtosis 0.027 

Simple main effects for TBA 

Batch size: 10 (Higher value) Batch size:3 (Lower value) 

Response Variables p- value Response 

Variables 

p- value 

Skewness 0.952 Skewness 0.003 
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Kurtosis 0.171 Kurtosis 0.004 

     

The same approach for analyzing the three-way interaction is taken to analyze the 

interaction between TBA, batch size and dispatching policies and the three-way 

interaction between batch size, MPT and dispatching policies. For the three-way 

interaction between TBA, batch size and dispatching policies, the simple two-way 

interaction between TBA and batch size were found to be significant. The p-values to 

find the significant simple two-way interaction are shown in Table 16, 17 and 18. The 

simple two-way interaction between TBA and batch size significant for the mean when 

the dispatching policies are held at SPT is illustrated in Figure 34. The same interaction 

significant for the skewness when the dispatching policies are held at FIFO is shown in 

Figure 35. Further, simple main effects for the interaction between TBA and batch size 

were examined. The p-values are shown in Table 19. 

Now, for the three-way interaction between batch size, MPT and dispatching 

policies, the simple two-way interaction between batch size and MPT; and the simple 

two-way interaction between batch size and dispatching policies were found to be 

significant. The p-values to find the significant two-way interactions for the interactions 

between batch size, MPT and dispatching policies are listed in Table 20, 21 and 22. The 

p-values for the analyzes of simple main effects for these interactions are shown in Table 

23 and Table 24. Figure 36 illustrates the interaction between batch size and dispatching 

policies on the skewness of the cycle time distribution when MPT is held at its lower 

value. The figure demonstrates that the impact of change in dispatching policies is more 

pronounced when batch size is smaller. 
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Table 16. Simple two- way interaction between batch size and dispatching policies at 

levels of TBA for all response variables for the mini-fab model. 

Response Variables Levels of TBA p- value 

Mean EXPO (225) mins 0.000 

  EXPO (260) mins 0.000 

Standard Deviation EXPO (225) mins 0.000 

  EXPO (260) mins 0.000 

Skewness EXPO (225) mins 0.199 

  EXPO (260) mins 0.846 

Kurtosis EXPO (225) mins 0.490 

  EXPO (260) mins 0.759 

25th Percentile EXPO (225) mins 0.001 

  EXPO (260) mins 0.000 

50th Percentile EXPO (225) mins 0.000 

  EXPO (260) mins 0.000 

75th Percentile EXPO (225) mins 0.000 

  EXPO (260) mins 0.000 

95th Percentile EXPO (225) mins 0.000 

  EXPO (260) mins 0.000 

 

Table 17. Simple two- way interaction between TBA and dispatching policies at levels of 

batch size for all response variables for the mini-fab model. 

Response Variables Levels of batch size p- value 

Mean 3 0.000 

  10 0.000 

Standard Deviation 3 0.000 

  10 0.000 

Skewness 3 0.882 

  10 0.027 

Kurtosis 3 0.886 

  10 0.107 

25th Percentile 3 0.001 

  10 0.001 

50th Percentile 3 0.000 

  10 0.000 

75th Percentile 3 0.000 

  10 0.000 

95th Percentile 3 0.000 

  10 0.000 
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Table 18. Simple two- way interaction between TBA and batch size at levels of 

dispatching policies for all response variables for the mini-fab model. 

Response Variables Levels of dispatching policies p- value 

Mean FIFO 0.06 

  SPT 0.039 

Standard Deviation FIFO 0.032 

  SPT 0.202 

Skewness FIFO 0.003 

  SPT 0.530 

Kurtosis FIFO 0.004 

  SPT 0.762 

25th Percentile FIFO 0.004 

  SPT 0.762 

50th Percentile FIFO 0.004 

  SPT 0.633 

75th Percentile FIFO 0.006 

  SPT 0.321 

95th Percentile FIFO 0.013 

  SPT 0.278 
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Figure 34. Interaction plot between TBA and batch size on mean of cycle time 

distribution when dispatching policies are held at SPT for the mini-fab model. 

Table 19. Simple main effects analyses for the interaction between TBA and batch size 

for three- way interaction between TBA, batch size and dispatching policies for the mini-

fab model. 

Dispatching policy: SPT (Higher value) 

Simple main effects for batch size 

TBA: EXPO (260) mins (Higher value) TBA: EXPO (225) mins (Lower value) 

Response Variables p- value Response Variables p- value 

Mean 0.001 Mean 0.000 

Simple main effects for TBA 

Batch size: 10 (Higher value) Batch size:3 (Lower value) 

Response Variables p- value Response 

Variables 

p- value 

Mean 0.186 Mean 0.015 

Dispatching policy: FIFO (Lower value) 

Simple main effects for batch size 

TBA: EXPO (260) mins (Higher value) TBA: EXPO (225) mins (Lower value) 

Response Variables p- value Response 

Variables 

p- value 

Standard Deviation 0.000 Standard Deviation 0.000 

Skewness 0.000 Skewness 0.357 

Kurtosis 0.000 Kurtosis 0.279 

25
th

 Percentile 0.000 25
th

 Percentile 0.000 
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50
th

 Percentile 0.000 50
th

 Percentile 0.000 

75
th

 Percentile 0.000 75
th

 Percentile 0.000 

95
th

 Percentile 0.000 95
th

 Percentile 0.000 

Simple main effects for TBA 

Batch size: 10 (Higher value) Batch size:3 (Lower value) 

Response Variables p- value Response 

Variables 

p- value 

Standard Deviation 0.015 Standard Deviation 0.008 

Skewness 0.039 Skewness 0.029 

Kurtosis 0.070 Kurtosis 0.000 

25
th

 Percentile 0.413 25
th

 Percentile 0.004 

50
th

 Percentile 0.218 50
th

 Percentile 0.003 

75
th

 Percentile 0.084 75
th

 Percentile 0.003 

95
th

 Percentile 0.033 95
th

 Percentile 0.005 

 

 

 

 

 

 

 

Figure 35. Interaction plot between TBA and batch size on skewness of cycle time 

distribution when dispatching policies are held at FIFO for the mini-fab model. 

 

Table 20. Simple two- way interaction between MPT and dispatching policies at levels of 

batch size for all response variables for the mini-fab model. 
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Response Variables Levels of batch size p- value 

Mean 3 0.000 

  10 0.000 

Standard Deviation 3 0.000 

  10 0.000 

Skewness 3 0.882 

  10 0.027 

Kurtosis 3 0.886 

  10 0.107 

25th Percentile 3 0.001 

  10 0.001 

50th Percentile 3 0.000 

  10 0.000 

75th Percentile 3 0.000 

  10 0.000 

95th Percentile 3 0.000 

  10 0.000 

 

Table 21. Simple two- way interaction between batch size and dispatching policies at 

levels of MPT for all response variables for the mini-fab model. 

Response Variables Levels of MPT p- value 

Mean -30% of mean 0.596 

  +30% of mean 0.000 

Standard Deviation -30% of mean 0.090 

  +30% of mean 0.000 

Skewness -30% of mean 0.003 

  +30% of mean 0.391 

Kurtosis -30% of mean 0.004 

  +30% of mean 0.791 

25th Percentile -30% of mean 0.730 

  +30% of mean 0.010 

50th Percentile -30% of mean 0.500 

  +30% of mean 0.010 

75th Percentile -30% of mean 0.376 

  +30% of mean 0.010 

95th Percentile -30% of mean 0.257 

  +30% of mean 0.000 
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Table 22. Simple two- way interaction between batch size and MPT at levels of 

dispatching policies for all response variables for the mini-fab model.  

Response Variables Levels of dispatching policies p- value 

Mean FIFO 0.060 

  SPT 0.039 

Standard Deviation FIFO 0.032 

  SPT 0.202 

Skewness FIFO 0.003 

  SPT 0.530 

Kurtosis FIFO 0.000 

  SPT 0.424 

25th Percentile FIFO 0.004 

  SPT 0.762 

50th Percentile FIFO 0.004 

  SPT 0.633 

75th Percentile FIFO 0.006 

  SPT 0.321 

95th Percentile FIFO 0.013 

  SPT 0.278 

Table 23. Simple main effects for the interaction between batch size and dispatching 

policies for three-way interaction between batch size, MPT and dispatching policies for 

the mini-fab model. 

MPT value: +30% of mean (Higher value) 

Simple main effects for dispatching policies 

Batch size: 10 (Higher value) Batch size: 3 (Lower value) 

Response Variables p- value Response Variables p- value 

Mean 0.048 Mean 0.026 

25
th

 percentile 0.000 25
th

 percentile 0.001 

50
th

 percentile 0.000 50
th

 percentile 0.001 

75
th

 percentile 0.000 75
th

 percentile 0.001 

95
th

 percentile 0.387 95
th

 percentile 0.015 

Simple main effects for batch size 

Dispatching policy: SPT (Higher value) Dispatching policy: FIFO (Higher value) 

Response Variables p- value Response Variables p- value 

Mean 0.228 Mean 0.012 

25
th

 percentile 0.000 25
th

 percentile 0.024 

50
th

 percentile 0.000 50
th

 percentile 0.015 

75
th

 percentile 0.000 75
th

 percentile 0.011 

95
th

 percentile 0.231 95
th

 percentile 0.008 

MPT value: -30% of mean (Lower value) 
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Simple main effects for dispatching policies 

Batch size: 10 (Higher value) Batch size: 3 (Lower value) 

Response Variables p- value Response Variables p- value 

Skewness 0.000 Skewness 0.000 

Kurtosis 0.000 Kurtosis 0.000 

Simple main effects for batch size 

Dispatching policy: SPT (Higher value) Dispatching policy: FIFO (Higher value) 

Response Variables p- value Response Variables p- value 

Skewness 0.000 Skewness 0.000 

Kurtosis 0.000 Kurtosis 0.000 

 

 

 

Table 24. Simple main effects for the interaction between batch size and MPT for three-

way interaction between batch size, MPT and dispatching policies for the mini-fab 

model. 

Dispatching policy: SPT (Higher value) 

Simple main effects for MPT 

Batch size: 10 (Higher value) Batch size: 3 (Lower value) 

Response Variables p- value Response Variables p- value 

Mean 0.000 Mean 0.000 

Simple main effects for batch size 

MPT: +30% of mean (Higher value) MPT: -30% of mean (Lower value) 

Response Variables p- value Response 

Variables 

p- value 

Mean 0.228 Mean 0.000 

Dispatching policy: FIFO (Lower value) 

Simple main effects for MPT 

Batch size: 10 (Higher value) Batch size: 3 (Lower value) 

Response Variables p- value Response 

Variables 

p- value 

Standard Deviation 0.000 Standard Deviation 0.000 

Skewness 0.000 Skewness 0.801 

Kurtosis 0.000 Kurtosis 0.936 

25
th

 Percentile 0.000 25
th

 Percentile 0.000 

50
th

 Percentile 0.000 50
th

 Percentile 0.000 

75
th

 Percentile 0.000 75
th

 Percentile 0.000 

95
th

 Percentile 0.000 95
th

 Percentile 0.000 

Simple main effects for TBA 

Batch size: 10 (Higher value) Batch size:3 (Lower value) 

Response Variables p- value Response 

Variables 

p- value 
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Standard Deviation 0.018 Standard Deviation 0.000 

Skewness 0.003 Skewness 0.000 

Kurtosis 0.002 Kurtosis 0.000 

25
th

 Percentile 0.000 25
th

 Percentile 0.000 

50
th

 Percentile 0.000 50
th

 Percentile 0.000 

75
th

 Percentile 0.000 75
th

 Percentile 0.000 

95
th

 Percentile 0.231 95
th

 Percentile 0.000 

 

 

 

 

 

 

Figure 36. Interaction plot between batch size and dispatching policies on the skewness 

of the cycle time distribution when MPT is held at its lower value for the mini-fab model. 

 

This completes the analyzes of the three-way interactions for the mini-fab model 

common across all response variables. There are some factors and interactions that are 

statistically significant (p ≤ 0.05) specifically to a response variable for the mini-fab 

model. Section 1.4 lists and describes the main effects and interactions significant to each 

of the response variables considered in this research. 
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1.4 Main effects and two-interactions significant only for a subset of the response 

variables for the mini-fab model: 

For the response variable describing the mean of the cycle time distribution, the main 

effects found to be significant, apart from those described in section 1.1, are batch size, 

COV and mean time to repair in EM. The effect of batch size is to decrease the mean of 

the cycle time distribution and that of COV and mean time to repair in EM is to increase 

the mean of the cycle time distribution. 

    Apart from the ones mentioned in section 1.2, the significant two-way interactions for 

the mean of the cycle time distribution are listed in Table 25. The effect sizes and p-

values are also listed in Table . 

Table 25. Two-way interactions significant specifically to mean of cycle time 

distribution for the mini-fab model. 

Two-way interactions Effect sizes p-values 

TBA* batch size 0.1619 0.000 

TBA* dispatching policies 0.0928 0.000 

TBA* COV -0.0265 0.028 

TBA* repair_EM -0.0320 0.008 

Batch size* repair_EM -0.0270 0.025 

MPT* COV 0.0267 0.027 

MPT* repair_EM 0.0321 0.008 

Dispatching policies* repair_EM -0.0255 0.034 

 

Figure  37 to 44 illustrate the interaction between TBA and batch size, TBA and 

dispatching policies, TBA and COV for unloading and repair time in emergency failures; 

and; TBA and mean time to repair in emergency failures respectively. All the interactions 

demonstrate that the effect of changing batch size, dispatching policies, COV for 

unloading and repair in EM from lower value to higher value on the mean of cycle time 

distribution is more pronounced when the TBA is at lower value. 
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Figure 37. Two-way interaction between TBA and batch size for the mean of the cycle 

time distribution for the mini-fab model. 

 

 

Figure 78. Two-way interaction between TBA and dispatching policies for the mean of 

the cycle time distribution for the mini-fab model. 
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Figure 39. Two-way interaction between TBA and COV for the mean of the cycle time 

distribution for the mini-fab model. 

 

 

Figure 40. Two-way interaction between TBA and mean time to repair in EM for the 

mean of the cycle time distribution for the mini-fab model. 

 

Figure 41 demonstrates the interaction between batch size and mean time to repair 

in EM. The effect of changing the mean of repair time at EM from a lower value of the 
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higher value on the mean of cycle time distribution in greater when the batch size is at 

lower value. 

 

Figure 41. Two-way interaction between batch size and mean time to repair in EM for 

the mean of the cycle time distribution for the mini-fab model. 

 

Figure 42 and 43 illustrate the interaction between MPT and COV for unloading 

and MPT and mean time to repair in EM respectively. The interactions demonstrate that 

the effect of changing the COV and mean time to repair in EM from lower value to 

higher value on the mean of the cycle time distribution is more prominent when MPT is 

at a higher value. 

Figure 44 illustrates the interaction between dispatching policies and mean time to 

repair in EM showing that the change in the mean time to repair in EM from lower value 

to higher on the mean of cycle time distribution is greater when the dispatching policies 

are set to FIFO. 
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Figure 42. Two-way interaction between MPT and COV for the mean of the cycle time 

distribution for the mini-fab model. 

 

 

Figure 43. Two-way interaction between MPT and mean time to repair in EM for the 

mean of the cycle time distribution for the mini-fab model. 
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Figure 44. Two-way interaction between dispatching policies and mean time to repair in 

EM for the mean of the cycle time distribution for the mini-fab model. 

 

Now, moving forward to standard deviation of the cycle time distribution, the 

main effects significant specifically to standard deviation are batch size, COV and mean 

time to repair in EM. The effect of batch size is to decrease the standard deviation of the 

cycle time distribution and the effect of COV and mean time to repair in EM is to 

increase the standard deviation of the cycle time distribution. Table 26 shows the two-

way interactions that are significant to standard deviation of the cycle time distribution 

only. 

Table 26. Two-way interactions significant specifically to standard deviation of cycle 

time distribution for the mini-fab model. 

Two-way interactions Effect 

sizes 

p-values 

TBA* batch size 0.18363 0.000 

TBA* COV -0.02881 0.001 

TBA* repair_EM -0.03339 0.000 

Batch size* COV -0.01919 0.020 
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Batch size* repair_EM -0.02550 0.002 

MPT* COV 0.02907 0.001 

MPT* repair_EM 0.03172 0.000 

Dispatching policies* repair_EM -0.01971 0.017 

 

Figure 845, Figure 946 and Figure 1047 illustrate the interactions between TBA 

and batch size, TBA and COV and TBA and mean time to repair in EM respectively. The 

interactions demonstrate that when batch size, COV and mean time to repair in EM 

change from lower value to higher value, the effect on the standard deviation of cycle 

time distribution is greater when TBA is at a lower value. 

 

Figure 8. Two-way interaction between TBA and batch size for the standard deviation of 

the cycle time distribution for the mini-fab model. 
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Figure 9. Two-way interaction between TBA and COV for the standard deviation of the 

cycle time distribution for the mini-fab model. 

 

 

Figure 10. Two-way interaction between TBA and mean time to repair in EM for the 

standard deviation of the cycle time distribution for the mini-fab model. 

  Figure 1148 and Figure 1249 illustrate the interaction between batch size and 

COV; and batch size and mean time to repair in EM respectively. The interactions show 
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that the effect of change in COV and mean time to repair in EM on the standard deviation 

of the cycle time distribution is greater when batch size is at a lower value. 

 

Figure 11. Two-way interaction between batch size and COV for the standard deviation 

of the cycle time distribution for the mini-fab model. 

 

Figure 12. Two-way interaction between batch size and mean time to repair in EM for 

the standard deviation of the cycle time distribution for the mini-fab model. 
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For the interactions between MPT and COV; and MPT and Mean time to repair in 

EM as illustrated in Figure 50 and Figure 51 respectively, it is seen that the effect of 

changing the COV and mean time to repair in EM on the standard deviation of the cycle 

time distribution is more when MPT is at a higher value. Figure 52 demonstrates that in 

the interaction between dispatching policies and mean time to repair in EM, the effect of 

change in the value of mean time to repair in EM from lower value to higher value on 

standard deviation of cycle time distribution is more pronounced when the dispatching 

policies are set to SPT. 

 

Figure 50. Two-way interaction between MPT and COV for the standard deviation of the 

cycle time distribution for the mini-fab model. 
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Figure 51. Two-way interaction between MPT and mean time to repair in EM for the 

standard deviation of the cycle time distribution for the mini-fab model. 

 

 

Figure 52. Two-way interaction between dispatching policies and mean time to repair in 

EM for the standard deviation of the cycle time distribution for the mini-fab model. 

 

Further, for the skewness of the cycle time distribution, apart from the main 

effects explained in section 1.1, only batch size is significant. 
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Table 27. Two-way interactions significant specifically to skewness of cycle time 

distribution for the mini-fab model. 

Two-way interactions Effect sizes p-values 

TBA* batch size -0.0270 0.015 

TBA* dispatching policies -0.0880 0.000 

MPT* repair_EM -0.0248 0.025 

Dispatching policies* COV 0.0243 0.028 

Dispatching policies* repair_EM 0.0252 0.023 

 

Figure 53 to Figure 7 illustrate the interactions mentioned in Table 26. Two-way 

interactions significant specifically to standard deviation of cycle time distribution for the 

mini-fab model. The interaction between TBA and batch size; and TBA and dispatching 

policies demonstrate that the changes in batch size and dispatching policies from FIFO to 

SPT affects the skewness of cycle time distribution more when batch size is at a lower 

value. The interaction between MPT and mean time to repair in EM shows that the effect 

of change in mean time to repair in EM is greater on skewness of cycle time distribution 

when MPT are at a higher value. Lastly, the interactions between dispatching polices and 

COV; and dispatching polices and mean time to repair in EM indicate that the effect of 

changes in COV and mean time to repair in EM are greater when dispatching policies are 

SPT. 
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Figure 53. Two-way interaction between TBA and batch size for the skewness of the 

cycle time distribution for the mini-fab model. 

 

 

Figure 54. Two-way interaction between TBA and dispatching policies for the skewness 

of the cycle time distribution for the mini-fab model. 
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Figure 55. Two-way interaction between MPT and mean time to repair in EM for the 

skewness of the cycle time distribution for the mini-fab model. 

 

 

Figure 56. Two-way interaction between dispatching policies and COV for the skewness 

of the cycle time distribution for the mini-fab model. 
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Figure 57. Two-way interaction between dispatching policies and mean time to repair in 

EM for the skewness of the cycle time distribution for the mini-fab model. 

 

Considering the response variable of kurtosis, the main effect significant 

specifically to this is batch size. Table 28 lists the significant two-way interactions to 

kurtosis of cycle time distribution and the interactions are illustrated in Figures 58, 59 

and 60 respectively.  

Table 28. Two-way interactions significant specifically to kurtosis of cycle time 

distribution for the mini-fab model. 

Two-way interactions Effect sizes p-values 

TBA* dispatching policies -0.13304 0.000 

MPT* repair_EM -0.1569 0.035 

Dispatching policies* COV 0.01797 0.016 

 

The interaction between TBA and dispatching policies as illustrated in Figure 

1358 indicate that when the dispatching policies change from FIFO to SPT, the effect on 

kurtosis of cycle time distribution is more when TBA is at a lower value. The effect of 

change in the value of mean time to repair in EM on kurtosis of cycle time distribution is 
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greater when MPT is at a higher value. This is demonstrated in Figure 59. Lastly, for the 

interaction between dispatching policies and COV as shown in Figure 60 shows that the 

effect of change of COV on kurtosis of cycle time distribution is greater when the 

dispatching policies are SPT. 

 

Figure 138. Two-way interaction between TBA and dispatching policies for kurtosis of 

the cycle time distribution for the mini-fab model. 
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Figure 59. Two-way interaction between MPT and mean time to repair in EM for 

kurtosis of the cycle time distribution for the mini-fab model. 

 

Figure 60. Two-way interaction between dispatching policies and COV for kurtosis of 

the cycle time distribution for the mini-fab model. 
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Moving ahead with the 25
th

 percentile, the significant main effects are discussed 

in section 1.1. Table 29 lists the significant two-way interactions specific to the 25th 

percentile.  

Table 29. Two-way interactions significant specifically to 25
th

 percentile of cycle time 

distribution for the mini-fab model. 

Two-way interactions Effect sizes p-values 

TBA* batch size 0.1150 0.000 

TBA* dispatching policies 0.1229 0.000 

TBA* repair_EM -0.0330 0.036 

MPT* repair_EM 0.0333 0.035 

Dispatching policies* repair_EM -0.0330 0.036 

 

The interactions between TBA and batch size, TBA and dispatching policies; and 

TBA and mean time to repair in EM are illustrated in Figure 61, Figure 62 and Figure 63 

respectively. As seen in these plots, the effect of change of batch size, dispatching 

policies and mean time to repair in EM on the 25
th

 percentile of the cycle time 

distribution is more noticeable when TBA is at a lower value. Second, the interaction 

between MPT and mean time to repair in EM illustrates that the change in mean time to 

repair in EM affects the 25
th

 percentile of the cycle time distribution is greater at higher 

value of MPT. This is illustrated in Figure 64. Also, the change in mean time to repair in 

EM affects the 25
th

 percentile of the cycle time distribution is more pronounced at 

dispatching policies FIFO as seen in Figure .  
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Figure 61. Two-way interaction between TBA and batch size for 25
th

 percentile of the 

cycle time distribution for the mini-fab model. 

 

Figure 62. Two-way interaction between TBA and dispatching policies for 25
th

 

percentile of the cycle time distribution for the mini-fab model. 
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Figure 63. Two-way interaction between TBA and mean time to repair in EM for 25
th

 

percentile of the cycle time distribution for the mini-fab model. 

 

 

Figure 64. Two-way interaction between MPT and mean time to repair in EM for 25
th

 

percentile of the cycle time distribution for the mini-fab model. 
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Figure 65. Two-way interaction between dispatching policies and mean time to repair in 

EM for 25
th

 percentile of the cycle time distribution for the mini-fab model. 

 

For the 50
th

 percentile response variable, the interactions between TBA and batch 

size; and TBA and dispatching policies are statistically significant. Table 30 shows the 

effect sizes and p-values for these significant two-way interactions. 

Table 30. Two-way interactions significant specifically to 50
th

 percentile of cycle time 

distribution for the mini-fab model. 

Two-way interactions Effect sizes p-values 

TBA* batch size 0.1288 0.000 

TBA* dispatching policies 0.1406 0.000 

 

The two-way interaction between TBA and batch size; and TBA and dispatching 

policies are illustrated in Figure 66 and Figure 67 respectively. The interactions 

demonstrate that the effect of change in the levels of batch size and dispatching policies 

on 50
th

 percentile of cycle time distribution is more pronounced when TBA is at a higher 

value. 
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Figure 66. Two-way interaction between TBA and batch size for 50th percentile of the 

cycle time distribution for the mini-fab model. 

 

 

Figure 67. Two-way interaction between TBA and dispatching policies for 50
th

 

percentile of the cycle time distribution for the mini-fab model. 

 

Similar to the 50
th

 percentile of cycle time distribution, for the 75
th

 percentile of 

cycle time distribution, the interactions between TBA and batch size; and TBA and 
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dispatching policies are significant. The effect size and p-values are listed in Table 31. 

The effect of the interaction plots for 75
th

 percentile is similar as the 50
th

 percentile of the 

cycle time distribution. 

Table 31. Two-way interactions significant specifically to 75
th

 percentile of cycle time 

distribution for the mini-fab model. 

Two-way interactions Effect sizes p-values 

TBA* batch size 0.1360 0.000 

TBA* dispatching policies 0.1461 0.000 

 

Finally, for the 95
th

 percentile of cycle time distribution, the main effect of batch 

size is significant apart from the main effects mentioned in section 1.1. The significant 

two-way interactions are similar to that of 25
th

 percentile. The effect sizes and p-values 

for these interactions are listed in Table 32. 

Table 32. Two-way interactions significant specifically to 95
th

 percentile of cycle time 

distribution for the mini-fab model. 

Two-way interactions Effect sizes p-values 

TBA* batch size 0.1444 0.000 

TBA* dispatching policies 0.1059 0.000 

TBA* repair_EM -0.0257 0.041 

MPT* repair_EM 0.0260 0.039 

Dispatching policies* repair_EM -0.0252 0.045 

 

In order to determine if the results obtained from the analysis of the mini-fab 

model are also valid for the job-shop model, similar analysis of the results obtained from 

the DOE conducted using the job-shop was performed. The results are discussed next. 

2. Results for job shop model 

From the DOE conducted on the job shop model, the significant main effects, two-way 

and three-way interactions that were common across all the response variables at a 
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significance of α ≤ 0.05 are listed in Table 33. The effect sizes and p-values for these 

significant main effects and interaction are listed in Table 33 and Table 34 respectively. 

2.1 Main Effects for job shop model common across all response variables: 

All the factors considered for the job shop model were found to be significant. Figure 68 

summarizes the main effects for the job shop model.  

 

Figure 68. Main effects of TBA, MPT and dispatching policies on all response variables 

for the job shop model. 

Mean
Standard
Deviation

Skewness Kurtosis
25th

Percentile
50th

Percentile
75th

Percentile
95th

Percentile

TBA -0.607 -0.750 0.088 -0.063 -0.377 -0.392 -0.408 -0.463

MPT 0.888 1.256 0.068 0.309 0.553 0.617 0.668 0.826

DP -0.148 0.126 0.552 0.733 -0.387 -0.415 -0.411 -0.259
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Table 33. Effect sizes for significant main effects and interactions for all the response variables for the job shop model. 
 Effect Size 

 Mean Standard 

Deviation 

Skewness Kurtosis 25
th

 

Percentile 

50
th

 

Percentile 

75
th

 

Percentile 

95
th

 

Percentile 

Main Effects and 

interactions 

        

TBA 

 

-0.607 -0.750 0.088 -0.063 -0.377 -0.392 -0.408 -0.463 

MPT 

 

0.888 1.256 0.068 0.309 0.553 0.617 0.668 0.826 

Dispatching Policies 

 

-0.148 0.0321 0.552 0.733 -0.387 -0.415 -0.411 -0.259 

MPT* Dispatching 

Policies 

-0.144 0.099 0.352 0.411 -0.381 -0.409 -0.399 -0.255 

TBA* MPT* 

Dispatching Policies 

0.137 0.000 -0.242 -0.184 0.356 0.366 0.352 0.268 

 

Table 34. p- values for significant main effects and interactions for all the response variables for the job shop model. 
 p- values 

 Mean Standard 

Deviation 

Skewness Kurtosis 25
th

 

Percentile 

50
th

 

Percentile 

75
th

 

Percentile 

95
th

 

Percentile 

Main Effects and 

interactions 

        

TBA 

 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

MPT 

 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Dispatching Policies 

 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

MPT* Dispatching 

Policies 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

TBA* MPT* 

Dispatching Policies 

0.000 0.953 0.000 0.000 0.000 0.000 0.000 0.000 
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The effect of changing TBA is found to reduce the mean, standard deviation, 

kurtosis and the percentiles of the cycle time distribution. However, the skewness of the 

cycle time distribution increases as the TBA changes from a lower value to a higher 

value. The factor TBA affects the standard deviation of the cycle time distribution the 

most (effect size= 0.6065) and kurtosis of the cycle time distribution the least (effect 

size= 00632). Figure 69 and Figure 70 illustrate that the main effects of TBA on mean is 

more pronounced than skewness of the cycle time distribution indicted by the slope of the 

lines connecting the two levels of TBA. 

 

Figure 69. Main effects plot for TBA on mean of cycle time distribution for the job shop 

model. 
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Figure 70. Main effects plot for TBA on skewness of cycle time distribution for the job 

shop model. 

 

Figure 71 and Figure 72 illustrate the main effects of the factor MPT on both the 

standard deviation and 50
th

 percentile of the cycle time distribution. These figures show 

that changes in MPT affects standard deviation the most and 50
th

 percentiles the least. For 

both these responses, when MPT changes from a lower value to a higher value, the 

estimates of the cycle time distribution increase. 

The change in dispatching policies affect the kurtosis of the cycle time 

distribution the most with effect size 0.733 and affect the standard deviation of the cycle 

time distribution the least with effect size of 0.126. Changing the dispatching policies 

from FIFO to SPT increases the standard deviation, skewness and kurtosis of the cycle 

time distribution but decrease the mean and the percentiles. As described earlier, this is 

because when the SPT dispatching rule is employed, the queue is ordered to prioritize 

jobs with shorter processing times of the tool. So, whenever a machine is freed, the entity 
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in the queue with shortest processing time begins processing next. This in turn, means 

that entities with longer processing times are disadvantaged compared to FIFO 

dispatching policies, and may take a very long time to exit the system (Pinedo,1995). 

Figure 71473 and Figure 74 illustrate the main effects of dispatching policies on mean 

and skewness of the cycle time distribution respectively. 

 

Figure 71. Main effects plot for MPT on standard deviation of cycle time distribution for 

the job shop model. 
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Figure 72. Main effects plot of MPT on 50th percentile of cycle time distribution for the 

job shop model. 

 

Figure 714. Main effects plot of dispatching policies on mean of cycle time distribution 

for the job shop model. 
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Figure 74. Main effects plot of dispatching policies on skewness of cycle time 

distribution for the job shop model. 

 

2.2 Two-way interactions for job shop model common across all response variables: 

The only significant two-way interaction for the job shop model is between MPT and 

dispatching policies. Figures 75 and 76 illustrate this interaction for mean and skewness 

of cycle time distribution respectively. 

The interaction between MPT and the dispatching policies demonstrates that the 

influence of changing the dispatching policies from FIFO to SPT is more pronounced 

when MPT is at a higher value. This is true for all the response variables. When 

dispatching policies are changed from FIFO to SPT, the system gets congested. In such a 

scenario, the effect of MPT at a higher value will increase the pressure on system and is 

hence more significant than when MPT is at a lower value.  
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Figure 75. Interaction plot of MPT and dispatching policies on mean of cycle time 

distribution for the job shop model. 

 

 

Figure 76. Interaction plot of MPT and dispatching policies on skewness of cycle time 

distribution for the job shop model. 
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2.3 Three-way interactions for Job shop model common across all response variables: 

The three-way interaction between TBA, MPT and dispatching policies are significant for 

mean, skewness, kurtosis and the percentiles of cycle time distribution. As discussed 

earlier in this chapter, first, the simple two-way interactions between MPT and 

dispatching policies were tested at the two levels of TBA. The p-values are listed in Table 

35. The interaction is found to be significant for all the significant response variables of 

the cycle time distribution for both the levels of TBA. Second, the interaction between 

TBA and dispatching policies were tested at the two levels of MPT. The p-values for this 

interaction are listed in Table 36. The interaction is found to be significant for all the 

significant response variables of the cycle time distribution for both the levels of MPT. 

Finally, when the interaction between TBA and MPT was tested at the two levels of 

dispatching policies, it is found to be significant for all the significant response variables 

of the cycle time distribution. The p-values are listed in Table 37. 

Table 35. Simple two- way interaction between MPT and dispatching policies at levels of 

TBA for all response variables for the job shop model. 

Response Variables Levels of TBA p- value 

Mean EXPO (225) mins 0.000 

  EXPO (260) mins 0.000 

Skewness EXPO (225) mins 0.000 

  EXPO (260) mins 0.000 

Kurtosis EXPO (225) mins 0.000 

  EXPO (260) mins 0.000 

25th Percentile EXPO (225) mins 0.000 

  EXPO (260) mins 0.000 

50th Percentile EXPO (225) mins 0.000 

  EXPO (260) mins 0.000 

75th Percentile EXPO (225) mins 0.000 
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  EXPO (260) mins 0.000 

95th Percentile EXPO (225) mins 0.000 

  EXPO (260) mins 0.000 

 

Table 36. Simple two- way interaction between TBA and dispatching policies at levels of 

MPT for all response variables for the job shop model. 

Response Variables Levels of MPT p- value 

Mean -30% of mean 0.000 

  +30% of mean 0.000 

Skewness -30% of mean 0.000 

  +30% of mean 0.000 

Kurtosis -30% of mean 0.000 

  +30% of mean 0.000 

25th Percentile -30% of mean 0.000 

  +30% of mean 0.000 

50th Percentile -30% of mean 0.000 

  +30% of mean 0.000 

75th Percentile -30% of mean 0.000 

  +30% of mean 0.000 

95th Percentile -30% of mean 0.000 

  +30% of mean 0.000 

 

Table 37. Simple two- way interaction between TBA and MPT at levels of dispatching 

policies for all response variables for the job shop model. 

Response Variables Levels of dispatching policies p- value 

Mean FIFO 0.000 

  SPT 0.000 

Skewness FIFO 0.000 

  SPT 0.000 

Kurtosis FIFO 0.000 

  SPT 0.000 

25th Percentile FIFO 0.000 

  SPT 0.000 

50th Percentile FIFO 0.000 

  SPT 0.000 

75th Percentile FIFO 0.000 

  SPT 0.000 

95th Percentile FIFO 0.000 
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  SPT 0.000 

 

Some other two-way interactions were also found to be significant for specific 

response variables.  These interactions are discussed next. 

2.4 Two-way interactions significant to a subset of the responses variable for the job 

shop model: 

First, the interaction between TBA and MPT; and between TBA and dispatching policies 

are significant for mean, skewness and the percentiles of the cycle time distribution. The 

effect sizes and p-values are listed in Table 38 and Table 39 respectively. 

Table 38. Effect sizes of two-way interaction between TBA and MPT and between TBA 

and dispatching policies for the job shop model. 

Two-way 

interactions 

Mean Skewness 25
th

 

percentile 

50
th

 

percentile 

75
th

 

percentile 

95
th

 

percentile 

TBA* MPT -0.590 0.133 -0.366 -0.383 -0.393 -0.437 

TBA* 

dispatching 

policies 

0.138 -0.255 0.354 0.368 0.354 0.268 

  

Table 39. p- values of two-way interaction between TBA and MPT and between TBA 

and dispatching policies for the job shop model. 

Two-way 

interactions 

Mean Skewness 25
th

 

percentile 

50
th

 

percentile 

75
th

 

percentile 

95
th

 

percentile 

TBA* MPT 0.000 0.000 0.000 0.000 0.000 0.000 

TBA* 

dispatching 

policies 

0.000 0.000 0.000 0.000 0.000 0.000 

 

The interaction plots of two-way interactions between TBA and MPT and 

between TBA and dispatching policies for the mean of the cycle time distribution are 

illustrated in Figure 77 and Figure 78. These interactions illustrate that the effect of 

changing TBA from a lower value to a higher value is more pronounced when MPT is at 
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a higher value and when dispatching policies are set to FIFO. This is also true for the 

percentiles of the cycle time distribution. 

 

Figure 77. Interaction plot between TBA and MPT for the mean of cycle time 

distribution for the job shop model. 

 

Figure 78. Interaction plot between TBA and dispatching policies for the mean of cycle 

time distribution for the job shop model. 
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 Figure 79 and Figure 80 illustrate the two-way interaction between TBA and 

MPT; and between TBA and dispatching policies for standard deviation of cycle time 

distribution. These interactions show that the effect of increasing TBA from a lower 

value to a higher value is more prominent when MPT is at a higher value and dispatching 

policies are at SPT. This is also true for skewness and kurtosis of the cycle time 

distribution.  

 

Figure 79. Interaction plot between TBA and MPT for standard deviation of cycle time 

distribution for the job shop model. 
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Figure 80. Interaction plot between TBA and dispatching policies for standard deviation 

of the cycle time distribution for the job shop model. 

 

 The next chapter discusses the implications of the results discussed in this 

chapter. Chapter 4 also discusses the limitations and future work to this research work.  
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4. Discussions and Conclusions 

This chapter is divided into four sections. In the first section, the key points from the 

results are discussed. In the second section, the similarities between the mini-fab model 

and the job shop model are discussed. The third section gives three example scenarios, 

each of which describes potential changes to a production line. Incorporating the findings 

from Chapter 3, the scenarios illustrate how the findings from this work could be utilized 

by a decision maker to understand how potential changes to the production line would 

influence the cycle time distribution and associated delivery date quotations. Finally, the 

limitations of the work and directions for future work are described. 

1. Summary of key findings from mini-fab and job shop models 

Some of the key findings and intuitions from the experimentation conducted using both 

the mini-fab and job shop simulation models are provided next: 

 If all other things in the production facility remain approximately the same, when the 

start rate (i.e., the rate at which new jobs are started in the production facility) 

increases, the mean time as well as the 25
th

, 50
th

, 75
th

, and 95
th

 percentile of the 

distribution increases.  Start rate is the inverse of TBA. Jobs are generally taking 

longer to get through the production facility.  Additionally, both the variability and 

the kurtosis of the distribution surrounding the cycle time have shown to increase.  

Together, these results imply that, compared to systems in which the start rate is 

lower, a greater percentage of jobs take a comparatively small or large amount of 

time to complete.  The skewness of the cycle time distribution reduces when the start 
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rate increases for the job shop model. The reason for reduction of skewness can be 

assumed to be because of the absence of batching in the job shop model. 

 In two-way interactions involving start rate, the effect of changing the other factor is 

more pronounced at higher start rates.  This is explained by the fact that when start 

rate is more, the system is more congested, making the queue longer thus increasing 

the utilization of the bottleneck tool group (Akcali et al., 2001; Meidan et al., 2011). 

 When the mean processing time of the tool groups increases, as expected, the mean 

and the 25
th

, 50
th

, 75
th

 and 95
th

 percentiles of the cycle time distribution increases. 

Also, the variability, skewness and kurtosis of the cycle time distribution have shown 

to increase.  

 In two-way interactions involving mean processing times of all tool groups, the effect 

of changing another factor is more pronounced when mean processing time is higher. 

This is observed in both mini-fab and job shop model. When the machines take 

longer time to process, the queue is longer. Mean processing time is an important 

factor in determining the cycle time (Meidan et al., 2011). 

 Changing the dispatching policies from FIFO to SPT have shown to decrease the 

mean and the 25
th

, 50
th

, 75
th

 and 95
th

 percentile. However, the variation, skewness and 

kurtosis of the distribution surrounding the cycle time increases. 

 When one of the factors in a significant two-way interaction is batch size, the effect 

of the change of the other factor is more noticeable when batch size is smaller. When 

processing of parts is done in smaller batches, more parts wait to be batched thus 

increasing the queue of the system (Qi et al., 2002). 
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2. Similarities between the two systems 

The mini-fab model is a semiconductor system that includes complexities such as 

batching, loading, and sequence dependent set ups. The job shop model on the other hand 

is a much simpler system that does not include these same complications. The impact of 

these differences can be seen on the resulting cycle time distributions, as shown in 

Figures 6 and 9. A goal of this research was to understand whether the findings about the 

relationship between controllable factors in the production system and parameters 

describing the cycle time distribution are generalizable across the two systems. If they 

are, it lends support to the findings as being transferable outside the constraints of just a 

single model. The findings in Chapter 3 demonstrate that, despite substantial differences 

in the complexities between these system, there are similarities in the way the 

controllable factors influence the cycle time distribution. These similarities are detailed 

next. 

 In both systems, changing the start rate affects the standard deviation of the cycle 

time distribution more than any of the parameters describing the cycle time distribution. 

As the start rate decreases, the parts begin manufacture in the system at a slower rate. 

Since the inter arrival rate is larger, the rate at which the parts exit the system will also be 

larger. Correspondingly, the variation in the distribution of the cycle time also increases. 

Tables 10 and 33 demonstrate that the impact of change in start rate on the outcome 

variables in mini-fab model are relative to that of the job shop model. The effect of 
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increased start rate is more pronounced for the upper tails of the distribution. For 

example, in both the systems, from Chapter 3, the effect size of change in start rate on 

50
th

 percentile is more than that on the 25
th

 percentile and so on. 

 The effect of change in mean time for processing is the same on all the outcome 

measures for the mini-fab and the job shop model. In both the systems, the influence of 

change of mean processing time is the greatest on the standard deviation of cycle time 

distribution. As with the previous example related to start rate, the effect of increasing 

mean processing time is more pronounced for the upper tails of the cycle time 

distribution. furthermore, the magnitude of the effect sizes of increasing mean processing 

time on the percentiles of the cycle time distribution for the mini-fab model are relative to 

that of the job shop model. Also, the effect of changing dispatching policies from FIFO to 

SPT on the response variables for the job shop model are similar to that for the mini-fab 

model. 

 The two-way interaction between mean processing time and dispatching policies 

is significant to both the mini-fab model and the job shop model. The impacts of the 

change in the dispatching policies from FIFO to SPT is more pronounced when the time 

taken by the tool groups to process is more. As illustrated in Figures 17 and 68, the effect 

of this interaction on the response variables in the mini-fab model and the job shop model 

are similar. 

 Based on these similarities in findings between the two systems, we argue that for 

systems bounded by the distributions of the cycle time of the mini-fab model and the job 
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shop model, the described effects can be predicted to be similar. These similarities make 

the findings from mini-fab transferable to other systems and, correspondingly, can save a 

considerable amount of time and resources that, without the findings presented here, 

would be necessary for delivery date estimation.   

3. Implications of the findings to practitioners 

One of the goals of any semiconductor or high volume electronics manufacturing facility 

is to predict cycle time (and so customer delivery times) more accurately. The work in 

this thesis is intended to aid decision makers with this task.  To illustrate this in a context 

relevant to practitioners, three scenarios are presented. In each scenario, a hypothetical 

change to a controllable aspect of a semiconductor manufacturing system is given.  

Incorporating the findings from Chapter 3, the expected implications to the production 

system and to the quotation of delivery dates of the potential change to the system are 

discussed and explained. 

Case 1. A new parallel machine for the bottleneck tool group is purchased. 

In a production facility, the bottleneck tool group is the most heavily utilized tool group 

and, therefore, the tool group that controls and limits the throughput. Also, the bottleneck 

tool group is typically the most expensive piece of equipment in the facility (Akcali et al., 

2001). Assume that a production facility is considering the purchase of a new tool to 

replace the bottleneck station in their facility.  It is expected that the new tool would have 

a mean processing time 10% faster than the current tool.  While the decision makers 

know that an increase in the production rate at the bottleneck tool is expected to have a 



 

112 
 

positive influence on the mean time in system for jobs in the facility, in an effort to 

determine whether the cost of the new tool is warranted, he is also interested in 

understanding the other expected implications to the cycle time distribution. 

Common across all response variables, mean processing time interacts with start 

rate, batch size and dispatching policies. Drawing from the findings from Chapter 3, the 

effect of reduction in mean processing time is more noticeable when the start rate is 

higher. The interaction between mean processing time and start rate has a larger impact 

on the standard deviation of the cycle time distribution and a smaller impact on the 

skewness of the cycle time distribution. This is illustrated in Figure 25. This means that 

when the mean time to process is reduced, by having a start rate higher, the due date will 

be lesser. This also means that for the same cycle time, the manufacturer can now 

produce more products. However, since the standard deviation increases, the variation in 

predicting the cycle time will be more. 

From the findings in Chapter 3, a decrease in mean processing time is more 

pronounced when the batch size is smaller. This interaction influences the standard 

deviation of the cycle time distribution the most and the kurtosis of the cycle time 

distribution the least. This implies that the practitioner will have more confidence in 

quoting the delivery dates. Figure 30 shows that the effect of reducing mean processing 

time in the interaction between mean processing time and dispatching policies is more 

evident when dispatching policies are FIFO for the mean and the percentiles of cycle time 

distribution. However, the impact of reducing mean processing time is more evident 

when dispatching policies are SPT for standard deviation, skewness and kurtosis of cycle 

file:///T:/Thesis/Documentation/Results-draft3.docx
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time distribution. This implies that when dispatching policies are set at FIFO, delivery 

dates estimates will be smaller when the percentiles are smaller due to installation of the 

new machine. Also, the variability in delivery dates will be lesser when the dispatching 

policies are set at SPT by which the practitioner will now have more confidence in 

quoting delivery dates. 

The two-way interaction between mean processing time and coefficient of 

variance of unloading is significant for mean and standard deviation of the cycle time 

distribution. Figures 42 and 50 demonstrate that the effect of lowering mean processing 

time is more pronounced when coefficient of variance of unloading is a higher percentage 

of mean. From these figures, it can be said that reduction in mean processing time when 

the coefficient of variance at unloading is higher, the time taken to complete the products 

will be lesser as the means and standard deviation reduces. The two-way interaction 

between mean processing time and mean time to repair in emergency failures is 

significant for mean, standard deviation, skewness, kurtosis, 25
th

 percentile and 95
th

 

percentile of the cycle time distribution. The effect of installing a new machine will be 

more prominent on the mean, standard deviation and the percentiles when the mean time 

to repair in emergency failures is high and more prominent on skewness and kurtosis of 

the cycle time distribution when the mean time to repair in emergency failures is low. 

This means that when the mean time to repair in EM is lesser, the delivery dates is 

higher. 

Case 2. Dispatching policies are changed from FIFO to SPT. 

file:///C:/Users/Tanushree/AppData/Roaming/Microsoft/Word/Results-draft3.docx
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By changing the dispatching policies from FIFO to SPT, the parts that have higher 

processing times take a very long time to exist the system. The two-way interactions that 

are significant across all the response variables when dispatching policies are changed are 

between dispatching policies and batch size; and dispatching policies and mean 

processing time.  

For all the response variables the effect of changing dispatching policies from 

FIFO to SPT is more pronounced when batch size small and when mean processing time 

is high. This is indicated in Figures 24 to 26. From Table 10, this interaction is shown to 

influence the 75
th

 percentile the most and standard deviation the least. The increase in the 

percentiles would make delivery dates to be longer since the distribution now has longer 

tails. 

Figure 24 illustrates that the interaction between dispatching policies and mean 

processing time influences kurtosis the most and standard deviation the least. When mean 

processing time is at a higher value and when the dispatching policies are changed to SPT 

from FIFO, the 75
th

 percentile reduces making the delivery date quotations to be shorter. 

The two-way interaction between dispatching policies and start rate is significant 

for the mean, skewness, kurtosis and the percentiles of cycle time distribution. For this 

interaction, the effect of change in dispatching policies from FIFO to SPT will be evident 

when the start rate of the parts is more.  By changing the dispatching policies, the effect 

of start rate reduces, and this reduces the estimates of the cycle time. Also, the two-way 

interaction between dispatching policies and coefficient of variance of unloading is 
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significant for skewness and kurtosis of cycle time distribution and the effect is 

noticeable when coefficient of variance of unloading is high. So, when %COV is higher, 

for the same cycle time, more products can be manufactured. Finally, the two-way 

interaction between dispatching policies and mean time to repair in emergency failures is 

significant for mean, standard deviation, skewness, 25
th

 percentile and 95
th

 percentile of 

cycle time distribution. When the dispatching policies are changed from FIFO to SPT, at 

higher values of mean time to repair, the delivery dates would get shorter. 

Case 3. Implementing robots for loading, unloading and machine set ups. 

When robots are implemented, the variation in time for loading, unloading and machine 

setups is smaller.   In such a case, the two-way interaction between start rate and 

coefficient of variance of unloading; and between mean processing time and coefficient 

of variance of unloading should be examined (i.e., those are the statistically significant 

interactions related to the coefficient of variance at setups). The impact of reducing the 

coefficient of variation of unloading will be more pronounced when the start rate of the 

parts is high and when the mean processing time is high. The two-way interaction 

between batch size and coefficient of variance of unloading significant for standard 

deviation of cycle time distribution demonstrates that by reducing the coefficient of 

variance of unloading will be more noticeable when the batch size is smaller. Also, the 

two-way interaction between dispatching policies and coefficient of variance of 

unloading is significant for skewness and kurtosis of the cycle time distribution and it 

indicates that when the coefficient of variance of unloading reduces, the effect is more 

prominent when dispatching policies are at SPT. When the coefficient of variance at 
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unloading is reduced, the estimates of the cycle time distribution are reduced when start 

rate is higher, mean processing time is higher and when batch size is smaller. In such 

cases, the due dates will be smaller (vs when the coefficient of variance at unloading is 

higher). Hence, quoting delivery dates will also be more accurate. 

4. Limitations and Future work 

Future work in this area will include several important topics. In order to understand the 

future work, the limitations of this work is discussed first. One of the limitations for this 

work is that the job shop model does not include batch processing, loading, unloading 

etc. The factors common to the mini-fab and the job shop model include start rate, mean 

processing time and dispatching policies. A generalization of the effects of change in 

these factors is done on the basis of comparison. However, no such generalization for 

other factors significant to the mini-fab model which include batch size, coefficient of 

variance of unloading and mean time to repair in emergency failures can be done. A 

second limitation of this work includes that the sensitivity analyses done in the early 

stages of this work eliminated many factors that affect the cycle time distribution. As 

mentioned in Chapter 2, from the pilot runs, if the values of the outcome measures 

changed by 10% from the baseline values, the cycle time distribution was considered to 

be sensitive to the factor. However, there is no rule of thumb for selecting the value of the 

percent change for the outcome measures from the baseline values. As a result, it is 

possible that factors that really do impact the cycle time distribution were excluded from 

this analysis. 
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Future work will include in building a job shop model that consists of these 

factors. A similar DOE can be run in order to analyze the effects of these factors for the 

job shop model. Similar to the comparison explained in this chapter, generalization for 

these factors can also be done. Based on this work, a generic function can be developed 

to predict the cycle time of the systems so that estimating delivery dates is simpler. Also, 

different type of manufacturing systems with different cycle time distributions should be 

considered to have a better understand the generalization of the findings.  

 Another future work will include in considering all the factors including the ones 

found not sensitive in this work (for example, percentage of rework done) and conducting 

similar analyses. The impact of change of these factors can be understood. The 

simulation runs give accurate results but are time consuming. Another future work will 

include using other models to predict the cycle time and compare the results obtained in 

this work. 

Finally, for the interactions found to be significant, in order to know the levels of 

the factors for which the interaction impacts the outcome measures, a pairwise 

comparison can be done. This would allow a decision maker to have a better 

understanding of the interactions. For example, while examining the interaction between 

start rate and mean processing time, from the findings from Chapter 3, it is clear that an 

increase in start rate is more pronounced when the mean processing time is higher. By 

conducting a pairwise comparison, a researcher could understand whether there is a 

statistical difference between the case where mean processing time is high with high start 

rates and the case where mean processing time is low with high start rates.   
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APPENDIX A 

“.MOD; AND “.EXP” FILES OF MINI-FAB SIMULATION MODEL  
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A. “.mod” and “.exp” files of mini-fab simulation model. 

.mod file: 

 

; 

; 

;     Model statements for module:  BasicProcess.Create 1 (Simulation Start) 

; 

 

63$           CREATE,        1,HoursToBaseTime(0.0),Type 

A:HoursToBaseTime(EXPO(1)),1:NEXT(64$); 

 

64$           ASSIGN:        Simulation Start.NumberOut=Simulation 

Start.NumberOut + 1:NEXT(0$); 

 

 

; 

; 

;     Model statements for module:  AdvancedProcess.ReadWrite 1 (Read TBA) 

; 

0$            READ,          MeanTBA: 

                             ArrivalRate:NEXT(1$); 

 

 

; 

; 

;     Model statements for module:  AdvancedProcess.ReadWrite 2 (Read MTBF) 

; 

1$            READ,          MeanTimeBetweenFailure: 

                             MTBF:NEXT(2$); 

 

 

; 

; 

;     Model statements for module:  AdvancedProcess.ReadWrite 3 (Read Unloading 

Variance) 

; 

2$            READ,          Variance_Unloading: 

                             UnloadVar:NEXT(3$); 

 

 

; 

; 

;     Model statements for module:  AdvancedProcess.ReadWrite 4 (Read MTTR) 

; 

3$            READ,          RepairMeanTime: 

                             MTTR:NEXT(4$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 1 (Variables) 

; 

4$            ASSIGN:        LagTally=LagValue: 

                             N_Exists=0: 

                             BatchN=0: 

                             BatchSize=0: 

                             BatchCT=0: 



 

123 
 

                             DesiredTotal=5000: 

                             LagValue=2000: 

                             TruncationPoint=250000: 

                             Machine3UpTime=EXPO(MTBF): 

                             Machine3DownTime=GAMM(MTTR,0.25):NEXT(5$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Dispose 1 (Dispose Simulation 

Start) 

; 

5$            ASSIGN:        Dispose Simulation Start.NumberOut=Dispose 

Simulation Start.NumberOut + 1; 

67$           DISPOSE:       Yes; 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Create 2 (Part X Arrival) 

; 

 

68$           CREATE,        1,MinutesToBaseTime(0.01),Part 

X:MinutesToBaseTime(EXPO(1/ArrivalRate)):NEXT(69$); 

 

69$           ASSIGN:        Part X Arrival.NumberOut=Part X Arrival.NumberOut 

+ 1:NEXT(6$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 2 (Part X Attributes) 

; 

6$            ASSIGN:        EntityType=1: 

                             CreationTime=TNOW: 

                             Entity.Sequence=PartFlow:NEXT(8$); 

 

 

; 

; 

;     Model statements for module:  AdvancedTransfer.Station 1 (Order Release) 

; 

 

8$            STATION,       Order Release; 

74$           DELAY:         0.0,,VA:NEXT(9$); 

 

 

; 

; 

;     Model statements for module:  AdvancedTransfer.Route 1 (Route to Tool 

Group 1) 

; 

9$            ROUTE:         0.,SEQ; 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Create 3 (Part Y Arrival) 

; 
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75$           CREATE,        1,MinutesToBaseTime(0.01),Part 

Y:MinutesToBaseTime(EXPO(1/0.003)):NEXT(76$); 

 

76$           ASSIGN:        Part Y Arrival.NumberOut=Part Y Arrival.NumberOut 

+ 1:NEXT(7$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 3 (Paart Y Attribute) 

; 

7$            ASSIGN:        EntityType=2: 

                             Entity.Sequence=PartFlow:NEXT(8$); 

 

 

; 

; 

;     Model statements for module:  AdvancedTransfer.Station 2 (Station for 

Tool Group 1) 

; 

 

10$           STATION,       TG 1; 

81$           DELAY:         0.0,,VA:NEXT(11$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 1 (Type of Batching) 

; 

11$           BRANCH,        1: 

                             If,Entity.JobStep==1,82$,Yes: 

                             Else,83$,Yes; 

82$           ASSIGN:        Type of Batching.NumberOut True=Type of 

Batching.NumberOut True + 1:NEXT(12$); 

 

83$           ASSIGN:        Type of Batching.NumberOut False=Type of 

Batching.NumberOut False + 1:NEXT(13$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Batch 1 (Batching Process 1) 

; 

12$           QUEUE,         Batching Process 1.Queue; 

84$           GROUP,         ,Temporary:3,Last,Part X:NEXT(85$); 

 

85$           ASSIGN:        Batching Process 1.NumberOut=Batching Process 

1.NumberOut + 1:NEXT(16$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 1 (Loading for tool 

group 1) 

; 

16$           ASSIGN:        Loading for tool group 1.NumberIn=Loading for tool 

group 1.NumberIn + 1: 

                             Loading for tool group 1.WIP=Loading for tool 

group 1.WIP+1; 

89$           QUEUE,         Loading for tool group 1.Queue; 
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88$           SEIZE,         2,NVA: 

                             Machine 1,1: 

                             Operator 1,1:NEXT(87$); 

 

87$           DELAY:         NORM(20,2),,NVA; 

134$          ASSIGN:        Loading for tool group 1.NumberOut=Loading for 

tool group 1.NumberOut + 1: 

                             Loading for tool group 1.WIP=Loading for tool 

group 1.WIP-1:NEXT(17$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 2 (Release the 

Operator 1) 

; 

17$           ASSIGN:        Release the Operator 1.NumberIn=Release the 

Operator 1.NumberIn + 1: 

                             Release the Operator 1.WIP=Release the Operator 

1.WIP+1; 

138$          DELAY:         0,,VA; 

137$          RELEASE:       Operator 1,1; 

185$          ASSIGN:        Release the Operator 1.NumberOut=Release the 

Operator 1.NumberOut + 1: 

                             Release the Operator 1.WIP=Release the Operator 

1.WIP-1:NEXT(18$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 3 (Process for Tool 

Group 1) 

; 

18$           ASSIGN:        Process for Tool Group 1.NumberIn=Process for Tool 

Group 1.NumberIn + 1: 

                             Process for Tool Group 1.WIP=Process for Tool 

Group 1.WIP+1; 

189$          DELAY:         ProcessingTime,,VA; 

236$          ASSIGN:        Process for Tool Group 1.NumberOut=Process for 

Tool Group 1.NumberOut + 1: 

                             Process for Tool Group 1.WIP=Process for Tool 

Group 1.WIP-1:NEXT(19$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 4 (Unloading for Tool 

Group 1) 

; 

19$           ASSIGN:        Unloading for Tool Group 1.NumberIn=Unloading for 

Tool Group 1.NumberIn + 1: 

                             Unloading for Tool Group 1.WIP=Unloading for Tool 

Group 1.WIP+1; 

242$          QUEUE,         Unloading for Tool Group 1.Queue; 

241$          SEIZE,         2,NVA: 

                             Operator 1,1:NEXT(240$); 

 

240$          DELAY:         NORM(40,40*UnloadVar),,NVA; 

287$          ASSIGN:        Unloading for Tool Group 1.NumberOut=Unloading for 

Tool Group 1.NumberOut + 1: 
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                             Unloading for Tool Group 1.WIP=Unloading for Tool 

Group 1.WIP-1:NEXT(20$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 5 (Rlease Tool Group 1 

Resources) 

; 

20$           ASSIGN:        Rlease Tool Group 1 Resources.NumberIn=Rlease Tool 

Group 1 Resources.NumberIn + 1: 

                             Rlease Tool Group 1 Resources.WIP=Rlease Tool 

Group 1 Resources.WIP+1; 

291$          DELAY:         0,,VA; 

290$          RELEASE:       Machine 1,1: 

                             Operator 1,1; 

338$          ASSIGN:        Rlease Tool Group 1 Resources.NumberOut=Rlease 

Tool Group 1 Resources.NumberOut + 1: 

                             Rlease Tool Group 1 Resources.WIP=Rlease Tool 

Group 1 Resources.WIP-1:NEXT(62$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Separate 1 (Unbatching for 

Tool Group 1) 

; 

62$           SPLIT:         Entity.BatchN:NEXT(341$); 

 

341$          ASSIGN:        Unbatching for Tool Group 1.NumberOut 

Orig=Unbatching for Tool Group 1.NumberOut Orig + 1:NEXT(21$); 

 

 

; 

; 

;     Model statements for module:  AdvancedTransfer.Route 2 (Route to Tool 

Group 2) 

; 

21$           ROUTE:         0.,SEQ; 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Batch 2 (Batching Process 5) 

; 

13$           QUEUE,         Batching Process 5.Queue; 

344$          GROUP,         EntityType,Temporary:3,Last,Part Y:NEXT(345$); 

 

345$          ASSIGN:        Batching Process 5.NumberOut=Batching Process 

5.NumberOut + 1:NEXT(14$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 4 (Count Batches) 

; 

14$           ASSIGN:        BatchN=BatchN+1:NEXT(15$); 

 

 

; 
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; 

;     Model statements for module:  BasicProcess.Assign 5 (Batch Number) 

; 

15$           ASSIGN:        Entity.BatchN=BatchN:NEXT(16$); 

 

 

; 

; 

;     Model statements for module:  AdvancedTransfer.Station 3 (Station for 

Tool Group 2) 

; 

 

27$           STATION,       TG 2; 

348$          DELAY:         0.0,,VA:NEXT(22$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 6 (Loading for Tool 

Group 2) 

; 

22$           ASSIGN:        Loading for Tool Group 2.NumberIn=Loading for Tool 

Group 2.NumberIn + 1: 

                             Loading for Tool Group 2.WIP=Loading for Tool 

Group 2.WIP+1; 

352$          QUEUE,         Loading for Tool Group 2.Queue; 

351$          SEIZE,         2,NVA: 

                             Machine 2,1: 

                             Operator 2,1:NEXT(350$); 

 

350$          DELAY:         NORM(15,1.5),,NVA; 

397$          ASSIGN:        Loading for Tool Group 2.NumberOut=Loading for 

Tool Group 2.NumberOut + 1: 

                             Loading for Tool Group 2.WIP=Loading for Tool 

Group 2.WIP-1:NEXT(23$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 7 (Release Operator 2) 

; 

23$           ASSIGN:        Release Operator 2.NumberIn=Release Operator 

2.NumberIn + 1: 

                             Release Operator 2.WIP=Release Operator 2.WIP+1; 

401$          DELAY:         0,,VA; 

400$          RELEASE:       Operator 2,1; 

448$          ASSIGN:        Release Operator 2.NumberOut=Release Operator 

2.NumberOut + 1: 

                             Release Operator 2.WIP=Release Operator 2.WIP-

1:NEXT(24$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 8 (Process for Tool 

Group 2) 

; 

24$           ASSIGN:        Process for Tool Group 2.NumberIn=Process for Tool 

Group 2.NumberIn + 1: 
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                             Process for Tool Group 2.WIP=Process for Tool 

Group 2.WIP+1; 

452$          DELAY:         ProcessingTime,,VA; 

499$          ASSIGN:        Process for Tool Group 2.NumberOut=Process for 

Tool Group 2.NumberOut + 1: 

                             Process for Tool Group 2.WIP=Process for Tool 

Group 2.WIP-1:NEXT(29$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 2 (pass or fail) 

; 

29$           BRANCH,        1: 

                             With,(2)/100,502$,Yes: 

                             Else,503$,Yes; 

502$          ASSIGN:        pass or fail.NumberOut True=pass or fail.NumberOut 

True + 1:NEXT(30$); 

 

503$          ASSIGN:        pass or fail.NumberOut False=pass or 

fail.NumberOut False + 1:NEXT(25$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 11 (Rework) 

; 

30$           ASSIGN:        Rework.NumberIn=Rework.NumberIn + 1: 

                             Rework.WIP=Rework.WIP+1; 

507$          QUEUE,         Rework.Queue; 

506$          SEIZE,         2,VA: 

                             Machine R,1: 

                             Operator R,1:NEXT(505$); 

 

505$          DELAY:         ProcessingTime/2,,VA; 

504$          RELEASE:       Machine R,1: 

                             Operator R,1; 

552$          ASSIGN:        Rework.NumberOut=Rework.NumberOut + 1: 

                             Rework.WIP=Rework.WIP-1:NEXT(25$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 9 (Unloading for Tool 

Group 2) 

; 

25$           ASSIGN:        Unloading for Tool Group 2.NumberIn=Unloading for 

Tool Group 2.NumberIn + 1: 

                             Unloading for Tool Group 2.WIP=Unloading for Tool 

Group 2.WIP+1; 

558$          QUEUE,         Unloading for Tool Group 2.Queue; 

557$          SEIZE,         2,VA: 

                             Operator 2,1:NEXT(556$); 

 

556$          DELAY:         NORM(15,15*UnloadVar),,VA; 

603$          ASSIGN:        Unloading for Tool Group 2.NumberOut=Unloading for 

Tool Group 2.NumberOut + 1: 

                             Unloading for Tool Group 2.WIP=Unloading for Tool 

Group 2.WIP-1:NEXT(26$); 
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; 

; 

;     Model statements for module:  BasicProcess.Process 10 (Release Tool Group 

2 Resources) 

; 

26$           ASSIGN:        Release Tool Group 2 Resources.NumberIn=Release 

Tool Group 2 Resources.NumberIn + 1: 

                             Release Tool Group 2 Resources.WIP=Release Tool 

Group 2 Resources.WIP+1; 

607$          DELAY:         0,,VA; 

606$          RELEASE:       Machine 2,1: 

                             Operator 2,1; 

654$          ASSIGN:        Release Tool Group 2 Resources.NumberOut=Release 

Tool Group 2 Resources.NumberOut + 1: 

                             Release Tool Group 2 Resources.WIP=Release Tool 

Group 2 Resources.WIP-1:NEXT(28$); 

 

 

; 

; 

;     Model statements for module:  AdvancedTransfer.Route 3 (Route to Tool 

Group 3) 

; 

28$           ROUTE:         0.,SEQ; 

 

 

; 

; 

;     Model statements for module:  AdvancedTransfer.Station 5 (Station for 

Tool Group 3) 

; 

 

36$           STATION,       TG 3; 

659$          DELAY:         0.0,,VA:NEXT(38$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 4 (Setup?) 

; 

38$           BRANCH,        1: 

                             If,PartsSetup == EntityType && Step == 

Entity.JobStep,39$,Yes: 

                             If,PartsSetup==EntityType,40$,Yes: 

                             If,Step==Entity.JobStep,41$,Yes: 

                             Else,42$,Yes; 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 13 (Different Step 

Different Type) 

; 

42$           ASSIGN:        Step=Entity.JobStep: 

                             PartsSetup=Entity.Type: 

                             SetupTime=NORM(12,6):NEXT(31$); 

 

 

; 

; 
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;     Model statements for module:  BasicProcess.Process 17 (SetUp and Loading 

for Tool Group 3) 

; 

31$           ASSIGN:        SetUp and Loading for Tool Group 3.NumberIn=SetUp 

and Loading for Tool Group 3.NumberIn + 1: 

                             SetUp and Loading for Tool Group 3.WIP=SetUp and 

Loading for Tool Group 3.WIP+1; 

665$          QUEUE,         SetUp and Loading for Tool Group 3.Queue; 

664$          SEIZE,         2,VA: 

                             Machine 3,1: 

                             Operator 3,1:NEXT(663$); 

 

663$          DELAY:         SetupTime+NORM(10,1),,VA; 

710$          ASSIGN:        SetUp and Loading for Tool Group 3.NumberOut=SetUp 

and Loading for Tool Group 3.NumberOut + 1: 

                             SetUp and Loading for Tool Group 3.WIP=SetUp and 

Loading for Tool Group 3.WIP-1:NEXT(32$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 18 (Release Operator 

3) 

; 

32$           ASSIGN:        Release Operator 3.NumberIn=Release Operator 

3.NumberIn + 1: 

                             Release Operator 3.WIP=Release Operator 3.WIP+1; 

714$          DELAY:         0,,VA; 

713$          RELEASE:       Operator 3,1; 

761$          ASSIGN:        Release Operator 3.NumberOut=Release Operator 

3.NumberOut + 1: 

                             Release Operator 3.WIP=Release Operator 3.WIP-

1:NEXT(33$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 19 (Process for Tool 

Group 3) 

; 

33$           ASSIGN:        Process for Tool Group 3.NumberIn=Process for Tool 

Group 3.NumberIn + 1: 

                             Process for Tool Group 3.WIP=Process for Tool 

Group 3.WIP+1; 

765$          DELAY:         ProcessingTime,,VA; 

812$          ASSIGN:        Process for Tool Group 3.NumberOut=Process for 

Tool Group 3.NumberOut + 1: 

                             Process for Tool Group 3.WIP=Process for Tool 

Group 3.WIP-1:NEXT(34$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 20 (Unloading for Tool 

Group 3) 

; 

34$           ASSIGN:        Unloading for Tool Group 3.NumberIn=Unloading for 

Tool Group 3.NumberIn + 1: 

                             Unloading for Tool Group 3.WIP=Unloading for Tool 

Group 3.WIP+1; 
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818$          QUEUE,         Unloading for Tool Group 3.Queue; 

817$          SEIZE,         2,NVA: 

                             Operator 3,1:NEXT(816$); 

 

816$          DELAY:         NORM(10,UnloadVar*10),,NVA; 

863$          ASSIGN:        Unloading for Tool Group 3.NumberOut=Unloading for 

Tool Group 3.NumberOut + 1: 

                             Unloading for Tool Group 3.WIP=Unloading for Tool 

Group 3.WIP-1:NEXT(35$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 21 (Release Tool Group 

3 Resources) 

; 

35$           ASSIGN:        Release Tool Group 3 Resources.NumberIn=Release 

Tool Group 3 Resources.NumberIn + 1: 

                             Release Tool Group 3 Resources.WIP=Release Tool 

Group 3 Resources.WIP+1; 

867$          DELAY:         0,,VA; 

866$          RELEASE:       Machine 3,1: 

                             Operator 3,1; 

914$          ASSIGN:        Release Tool Group 3 Resources.NumberOut=Release 

Tool Group 3 Resources.NumberOut + 1: 

                             Release Tool Group 3 Resources.WIP=Release Tool 

Group 3 Resources.WIP-1:NEXT(37$); 

 

 

; 

; 

;     Model statements for module:  AdvancedTransfer.Route 5 (Route to Collect 

Statistics) 

; 

37$           ROUTE:         0.,SEQ; 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 10 (Same Step Same 

Type) 

; 

39$           ASSIGN:        Step=Entity.JobStep: 

                             PartsSetup=EntityType: 

                             SetupTime=0:NEXT(31$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 11 (Different Step Same 

Type) 

; 

40$           ASSIGN:        Step=Entity.JobStep: 

                             PartsSetup=Entity.Type: 

                             SetupTime=NORM(10,5):NEXT(31$); 

 

 

; 

; 
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;     Model statements for module:  BasicProcess.Assign 12 (Same Step Different 

Type) 

; 

41$           ASSIGN:        Step=Entity.JobStep: 

                             PartsSetup=Entity.Type: 

                             SetupTime=NORM(5,2.5):NEXT(31$); 

 

 

; 

; 

;     Model statements for module:  AdvancedTransfer.Station 6 (Exit System 

Station) 

; 

 

44$           STATION,       Exit System; 

919$          DELAY:         0.0,,VA:NEXT(45$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 6 (Part Type X?) 

; 

45$           BRANCH,        1: 

                             If,Entity.Type==Part X,920$,Yes: 

                             Else,921$,Yes; 

920$          ASSIGN:        Part Type X?.NumberOut True=Part Type X?.NumberOut 

True + 1:NEXT(54$); 

 

921$          ASSIGN:        Part Type X?.NumberOut False=Part Type 

X?.NumberOut False + 1:NEXT(51$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 8 (At Truncation 

Point?) 

; 

54$           BRANCH,        1: 

                             If,TNOW<TruncationPoint,922$,Yes: 

                             Else,923$,Yes; 

922$          ASSIGN:        At Truncation Point?.NumberOut True=At Truncation 

Point?.NumberOut True + 1:NEXT(46$); 

 

923$          ASSIGN:        At Truncation Point?.NumberOut False=At Truncation 

Point?.NumberOut False + 1:NEXT(59$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Dispose 3 (Dispose 

PreTruncation Values) 

; 

46$           ASSIGN:        Dispose PreTruncation Values.NumberOut=Dispose 

PreTruncation Values.NumberOut + 1; 

924$          DISPOSE:       Yes; 

 

 

; 

; 
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;     Model statements for module:  BasicProcess.Assign 23 (Cycle Time 

Calculation X) 

; 

59$           ASSIGN:        CycleTime=TNOW - CreationTime:NEXT(55$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 20 (Update batch CT) 

; 

55$           ASSIGN:        BatchCT=BatchCT + CycleTime:NEXT(58$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 22 (Update batch size) 

; 

58$           ASSIGN:        BatchSize=BatchSize+1:NEXT(56$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 9 (Is Batch Complete?) 

; 

56$           BRANCH,        1: 

                             If,BatchSize==3,925$,Yes: 

                             Else,926$,Yes; 

925$          ASSIGN:        Is Batch Complete?.NumberOut True=Is Batch 

Complete?.NumberOut True + 1:NEXT(57$); 

 

926$          ASSIGN:        Is Batch Complete?.NumberOut False=Is Batch 

Complete?.NumberOut False + 1:NEXT(60$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 21 (Average batch CT) 

; 

57$           ASSIGN:        BatchCT=BatchCT/3:NEXT(61$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 24 (Assign Batch CT to 

Attribute) 

; 

61$           ASSIGN:        BatchedCT=BatchCT:NEXT(48$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 18 (Increment LagTally 

and Reset Batch Variables) 

; 

48$           ASSIGN:        LagTally=LagTally+1: 

                             BatchCT=0: 

                             BatchSize=0:NEXT(47$); 

 

 

; 
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; 

;     Model statements for module:  BasicProcess.Decide 7 (Long Enough Lag X?) 

; 

47$           BRANCH,        1: 

                             If,LagTally>LagValue,927$,Yes: 

                             Else,928$,Yes; 

927$          ASSIGN:        Long Enough Lag X?.NumberOut True=Long Enough Lag 

X?.NumberOut True + 1:NEXT(50$); 

 

928$          ASSIGN:        Long Enough Lag X?.NumberOut False=Long Enough Lag 

X?.NumberOut False + 1:NEXT(49$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 19 (Reset_Lag_X) 

; 

50$           ASSIGN:        LagTally=0:NEXT(52$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Record 1 (Number of  Exits) 

; 

52$           COUNT:         Exits,1:NEXT(53$); 

 

 

; 

; 

;     Model statements for module:  AdvancedProcess.ReadWrite 5 (Export Product 

X Data) 

; 

53$           WRITE,         XData: 

                             BatchedCT:NEXT(43$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Dispose 2 (Dispose) 

; 

43$           ASSIGN:        Dispose.NumberOut=Dispose.NumberOut + 1; 

929$          DISPOSE:       Yes; 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Dispose 4 (Dispose Between 

Lags) 

; 

49$           ASSIGN:        Dispose Between Lags.NumberOut=Dispose Between 

Lags.NumberOut + 1; 

930$          DISPOSE:       Yes; 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Dispose 6 (Dispose Between 

Complete Batches) 

; 
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60$           ASSIGN:        Dispose Between Complete Batches.NumberOut=Dispose 

Between Complete Batches.NumberOut + 1; 

931$          DISPOSE:       Yes; 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Dispose 5 (Dispose Part Y) 

; 

51$           ASSIGN:        Dispose Part Y.NumberOut=Dispose Part Y.NumberOut 

+ 1; 

932$          DISPOSE:       Yes; 
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.exp file: 

PROJECT,      "Unnamed 

Project","tanushree.salvi@gmail.com",,,No,Yes,Yes,Yes,No,No,No,No,No,No; 

 

ATTRIBUTES:   EntityType,DATATYPE(Real): 

              Entity.BatchN,DATATYPE(Real): 

              ProcessingTime,DATATYPE(Real): 

              SetupTime,DATATYPE(Real): 

              BatchedCT,DATATYPE(Real): 

              CreationTime,DATATYPE(Real): 

              CycleTime,DATATYPE(Real); 

 

FILES:        XData,"T:\Thesis\Model\XData.txt",Sequential,Free 

Format,Dispose,,Hold: 

              

MeanTimeBetweenFailure,"T:\Thesis\Model\MeanTimeBetweenFailure.txt",Sequential,

Free Format,Dispose,,Hold: 

              

RepairMeanTime,"T:\Thesis\Model\RepairMeanTime.txt",Sequential,Free 

Format,Dispose,,Hold: 

              MeanTBA,"T:\Thesis\Model\MeanTBA.txt",Sequential,Free 

Format,Dispose,,Hold: 

              

Variance_Unloading,"T:\Thesis\Model\Variance_Unloading.txt",Sequential,Free 

Format,Dispose,,Hold; 

 

VARIABLES:    At Truncation Point?.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              Machine3UpTime,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Release Operator 

3.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Rlease Tool Group 1 

Resources.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Rework.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Release the Operator 

1.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Process for Tool Group 

3.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Loading for tool group 1.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              UnloadVar,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Dispose PreTruncation 

Values.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              SetUp and Loading for Tool Group 

3.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              MTBF,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Unloading for Tool Group 

1.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Release Operator 2.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              Type of Batching.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              Dispose Simulation 

Start.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              pass or fail.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 
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              Unloading for Tool Group 

2.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Dispose.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              At Truncation Point?.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 

              Is Batch Complete?.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              Process for Tool Group 

1.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Process for Tool Group 

3.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Release Tool Group 3 

Resources.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Release Tool Group 3 

Resources.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Loading for Tool Group 

2.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Dispose Between Complete 

Batches.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              SetUp and Loading for Tool Group 

3.WIP,CLEAR(System),CATEGORY("Exclude-Exclude"),DATATYPE(Real): 

              Unloading for Tool Group 2.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              Release Operator 

3.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Process for Tool Group 1.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              Loading for Tool Group 

2.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Part Y Arrival.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              BatchSize,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Release Operator 

2.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              MTTR,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Process for Tool Group 

2.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              LagValue,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Batching Process 

5.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Unloading for Tool Group 

3.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Part Type X?.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              Is Batch Complete?.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 

              Machine3DownTime,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              BatchCT,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Step,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              N_Exists,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Process for Tool Group 3.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              Rework.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 
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              ArrivalRate,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Release Tool Group 2 

Resources.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Release Tool Group 2 

Resources.WIP,CLEAR(System),CATEGORY("Exclude-Exclude"),DATATYPE(Real): 

              SetUp and Loading for Tool Group 

3.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Release the Operator 

1.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Rlease Tool Group 1 

Resources.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Type of Batching.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 

              Loading for tool group 

1.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              pass or fail.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              BatchN,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Rlease Tool Group 1 

Resources.WIP,CLEAR(System),CATEGORY("Exclude-Exclude"),DATATYPE(Real): 

              Release the Operator 1.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              Simulation Start.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Unloading for Tool Group 

1.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Unloading for Tool Group 

3.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              LagTally,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Long Enough Lag X?.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              Unloading for Tool Group 1.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              Loading for Tool Group 2.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              Process for Tool Group 

2.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Release Operator 3.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              Unloading for Tool Group 

2.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Loading for tool group 

1.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Rework.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Process for Tool Group 

1.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Release Operator 

2.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              PartsSetup,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Release Tool Group 3 

Resources.WIP,CLEAR(System),CATEGORY("Exclude-Exclude"),DATATYPE(Real): 

              Batching Process 

1.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Long Enough Lag X?.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 

              TruncationPoint,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 
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              DesiredTotal,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Dispose Between 

Lags.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Part Type X?.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 

              Unloading for Tool Group 3.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              Process for Tool Group 2.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              Release Tool Group 2 

Resources.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Dispose Part Y.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Unbatching for Tool Group 1.NumberOut 

Orig,CLEAR(Statistics),CATEGORY("Exclude"): 

              Part X Arrival.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"); 

 

QUEUES:       Unloading for Tool Group 1.Queue,FIFO,,AUTOSTATS(Yes,,): 

              Batching Process 5.Queue,FIFO,,AUTOSTATS(Yes,,): 

              Unloading for Tool Group 2.Queue,FIFO,,AUTOSTATS(Yes,,): 

              Batching Process 1.Queue,FIFO,,AUTOSTATS(Yes,,): 

              Loading for tool group 1.Queue,FIFO,,AUTOSTATS(Yes,,): 

              Rework.Queue,FIFO,,AUTOSTATS(Yes,,): 

              Loading for Tool Group 2.Queue,FIFO,,AUTOSTATS(Yes,,): 

              Unloading for Tool Group 3.Queue,FIFO,,AUTOSTATS(Yes,,): 

              SetUp and Loading for Tool Group 3.Queue,FIFO,,AUTOSTATS(Yes,,); 

 

PICTURES:     Picture.Airplane: 

              Picture.Green Ball: 

              Picture.Blue Page: 

              Picture.Telephone: 

              Picture.Blue Ball: 

              Picture.Yellow Page: 

              Picture.EMail: 

              Picture.Yellow Ball: 

              Picture.Bike: 

              Picture.Report: 

              Picture.Van: 

              Picture.Widgets: 

              Picture.Envelope: 

              Picture.Fax: 

              Picture.Truck: 

              Picture.Person: 

              Picture.Letter: 

              Picture.Box: 

              Picture.Woman: 

              Picture.Package: 

              Picture.Man: 

              Picture.Diskette: 

              Picture.Boat: 

              Picture.Red Page: 

              Picture.Ball: 

              Picture.Green Page: 

              Picture.Red Ball; 

 

FAILURES:     PM,Time(10080.000000000000000,60.000000000000000,): 

              Condition 

Checks,Time(43200.000000000000000,360.000000000000000,): 

              EM,Time(DaysToBaseTime(Machine3UpTime),Machine3DownTime,); 
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RESOURCES:    Operator 

1,Capacity(1),,,COST(0.0,0.0,0.0),CATEGORY(Resources),,AUTOSTATS(Yes,,): 

              Operator 

2,Capacity(1),,,COST(0.0,0.0,0.0),CATEGORY(Resources),,AUTOSTATS(Yes,,): 

              Operator 

3,Capacity(1),,,COST(0.0,0.0,0.0),CATEGORY(Resources),,AUTOSTATS(Yes,,): 

              Operator 

R,Capacity(1),,,COST(0.0,0.0,0.0),CATEGORY(Resources),,AUTOSTATS(Yes,,): 

              Machine 

1,Capacity(2),,,COST(0.0,0.0,0.0),CATEGORY(Resources),FAILURE(Condition 

Checks,Wait),FAILURE(PM,Wait), 

              AUTOSTATS(Yes,,): 

              Machine 

2,Capacity(2),,,COST(0.0,0.0,0.0),CATEGORY(Resources),FAILURE(Condition 

Checks,Wait),FAILURE(PM,Wait), 

              AUTOSTATS(Yes,,): 

              Machine 

3,Capacity(1),,,COST(0.0,0.0,0.0),CATEGORY(Resources),FAILURE(Condition 

Checks,Wait),FAILURE(PM,Wait), 

              FAILURE(EM,Preempt),AUTOSTATS(Yes,,): 

              Machine 

R,Capacity(1),,,COST(0.0,0.0,0.0),CATEGORY(Resources),FAILURE(Condition 

Checks,Wait),FAILURE(PM,Wait), 

              AUTOSTATS(Yes,,); 

 

STATIONS:     Order Release,,,Order Release,AUTOSTATS(Yes,,): 

              Exit System,,,Exit System,AUTOSTATS(Yes,,): 

              TG 1,,,TG 1,AUTOSTATS(Yes,,): 

              TG 2,,,TG 2,AUTOSTATS(Yes,,): 

              TG 3,,,TG 3,AUTOSTATS(Yes,,); 

 

SEQUENCES:    PartFLow,TG 1,STEPNAME=Process 

1,,,ProcessingTime=NORM(292.5,11.25)&TG 2,STEPNAME=Process 2,,,ProcessingTime= 

              NORM(39,1.5)&TG 3,STEPNAME=Process 

3,,,ProcessingTime=NORM(71.5,2.75)&TG 2,STEPNAME=Process 4,,,ProcessingTime= 

              NORM(65,2.5)&TG 1,STEPNAME=Process 

5,,,ProcessingTime=NORM(331.5,12.75)&TG 3,STEPNAME=Process 6,,,ProcessingTime= 

              NORM(13,0.5)&Exit System,STEPNAME=Process 7; 

 

COUNTERS:     Exits,,,,DATABASE(,"Count","User Specified","Exits"); 

 

REPLICATE,    1,,,Yes,Yes,,NC(Exits)>DesiredTotal,,24,Minutes,No,No,,,Yes,No; 

 

ENTITIES:     Part X,Picture.Report,0.0,0.0,0.0,0.0,0.0,0.0,AUTOSTATS(Yes,,): 

              Part Y,Picture.Report,0.0,0.0,0.0,0.0,0.0,0.0,AUTOSTATS(Yes,,): 

              Type A,Picture.Report,0.0,0.0,0.0,0.0,0.0,0.0,AUTOSTATS(Yes,,); 

 

ACTIVITYAREAS: Order Release,0,,AUTOSTATS(Yes,,): 

              Exit System,0,,AUTOSTATS(Yes,,): 

              TG 1,0,,AUTOSTATS(Yes,,): 

              TG 2,0,,AUTOSTATS(Yes,,): 

              TG 3,0,,AUTOSTATS(Yes,,); 
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APPENDIX B 

“.MOD” AND “. EXP” FILE OF JOB SHOP MODEL 
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B. “.mod” and “.exp” files of mini-fab simulation model. 

.mod file: 

 

; 

; 

;     Model statements for module:  BasicProcess.Create 1 (Part X Arrival) 

; 

 

48$           CREATE,        1,MinutesToBaseTime(0.01),Entity 

1:MinutesToBaseTime(EXPO(ArrivalRate)):NEXT(49$); 

 

49$           ASSIGN:        Part X Arrival.NumberOut=Part X Arrival.NumberOut 

+ 1:NEXT(0$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 1 (Attributes for Part 

X) 

; 

0$            ASSIGN:        ArrivalTime=TNOW: 

                             Type=1: 

                             Entity.Sequence=Sequence for Part X:NEXT(3$); 

 

 

; 

; 

;     Model statements for module:  AdvancedTransfer.Route 1 (Route to Tool 

Groups) 

; 

3$            ROUTE:         0,SEQ; 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Create 2 (Part Y Arrival) 

; 

 

52$           CREATE,        1,MinutesToBaseTime(0.01),Entity 

1:MinutesToBaseTime(EXPO(ArrivalRate_Y)):NEXT(53$); 

 

53$           ASSIGN:        Part Y Arrival.NumberOut=Part Y Arrival.NumberOut 

+ 1:NEXT(1$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 2 (Attributes for Part 

Y) 

; 

1$            ASSIGN:        ArrivalTime=TNOW: 

                             Type=2: 

                             Entity.Sequence=Sequence for Part Y:NEXT(3$); 
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; 

; 

;     Model statements for module:  BasicProcess.Create 3 (Part Z Arrival) 

; 

 

56$           CREATE,        1,MinutesToBaseTime(0.01),Entity 

1:MinutesToBaseTime(EXPO(ArrivalRate_Z)):NEXT(57$); 

 

57$           ASSIGN:        Part Z Arrival.NumberOut=Part Z Arrival.NumberOut 

+ 1:NEXT(2$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 3 (Attributes for Part 

Z) 

; 

2$            ASSIGN:        Type=3: 

                             ArrivalTime=TNOW: 

                             Entity.Sequence=Sequence for Part Z:NEXT(3$); 

 

 

; 

; 

;     Model statements for module:  AdvancedTransfer.Station 1 (Station for 

Tool Group 1) 

; 

 

8$            STATION,       TG 1; 

62$           DELAY:         0.0,,VA:NEXT(4$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 1 (Tool Group 1) 

; 

4$            ASSIGN:        Tool Group 1.NumberIn=Tool Group 1.NumberIn + 1: 

                             Tool Group 1.WIP=Tool Group 1.WIP+1; 

66$           QUEUE,         Tool Group 1.Queue; 

65$           SEIZE,         2,VA: 

                             Machine 1,1: 

                             Operator 1,1:NEXT(64$); 

 

64$           DELAY:         ProcessTime,,VA; 

63$           RELEASE:       Machine 1,1: 

                             Operator 1,1; 

111$          ASSIGN:        Tool Group 1.NumberOut=Tool Group 1.NumberOut + 1: 

                             Tool Group 1.WIP=Tool Group 1.WIP-1:NEXT(12$); 

 

 

; 

; 

;     Model statements for module:  AdvancedTransfer.Route 2 (Route for Tool 

Group 1) 

; 

12$           ROUTE:         0.,SEQ; 

 

 

; 
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; 

;     Model statements for module:  AdvancedTransfer.Station 2 (Station for 

Tool Group 2) 

; 

 

9$            STATION,       TG 2; 

116$          DELAY:         0.0,,VA:NEXT(5$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 2 (Tool Group 2) 

; 

5$            ASSIGN:        Tool Group 2.NumberIn=Tool Group 2.NumberIn + 1: 

                             Tool Group 2.WIP=Tool Group 2.WIP+1; 

120$          QUEUE,         Tool Group 2.Queue; 

119$          SEIZE,         2,VA: 

                             Machine 2,1: 

                             Operator 2,1:NEXT(118$); 

 

118$          DELAY:         ProcessTime,,VA; 

117$          RELEASE:       Machine 2,1: 

                             Operator 2,1; 

165$          ASSIGN:        Tool Group 2.NumberOut=Tool Group 2.NumberOut + 1: 

                             Tool Group 2.WIP=Tool Group 2.WIP-1:NEXT(13$); 

 

 

; 

; 

;     Model statements for module:  AdvancedTransfer.Route 3 (Route for Tool 

Group 2) 

; 

13$           ROUTE:         0.,SEQ; 

 

 

; 

; 

;     Model statements for module:  AdvancedTransfer.Station 3 (Station for 

Tool Group 3) 

; 

 

10$           STATION,       TG 3; 

170$          DELAY:         0.0,,VA:NEXT(6$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 3 (Tool Group 3) 

; 

6$            ASSIGN:        Tool Group 3.NumberIn=Tool Group 3.NumberIn + 1: 

                             Tool Group 3.WIP=Tool Group 3.WIP+1; 

174$          QUEUE,         Tool Group 3.Queue; 

173$          SEIZE,         2,VA: 

                             Machine 3,1: 

                             Operator 3,1:NEXT(172$); 

 

172$          DELAY:         ProcessTime,,VA; 

171$          RELEASE:       Machine 3,1: 

                             Operator 3,1; 

219$          ASSIGN:        Tool Group 3.NumberOut=Tool Group 3.NumberOut + 1: 
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                             Tool Group 3.WIP=Tool Group 3.WIP-1:NEXT(14$); 

 

 

; 

; 

;     Model statements for module:  AdvancedTransfer.Route 4 (Route for Tool 

Group 3) 

; 

14$           ROUTE:         0.,SEQ; 

 

 

; 

; 

;     Model statements for module:  AdvancedTransfer.Station 4 (Station for 

Tool Group 4) 

; 

 

11$           STATION,       TG 4; 

224$          DELAY:         0.0,,VA:NEXT(7$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Process 4 (Tool Group 4) 

; 

7$            ASSIGN:        Tool Group 4.NumberIn=Tool Group 4.NumberIn + 1: 

                             Tool Group 4.WIP=Tool Group 4.WIP+1; 

228$          QUEUE,         Tool Group 4.Queue; 

227$          SEIZE,         2,VA: 

                             Machine 4,1: 

                             Operator 4,1:NEXT(226$); 

 

226$          DELAY:         ProcessTime,,VA; 

225$          RELEASE:       Machine 4,1: 

                             Operator 4,1; 

273$          ASSIGN:        Tool Group 4.NumberOut=Tool Group 4.NumberOut + 1: 

                             Tool Group 4.WIP=Tool Group 4.WIP-1:NEXT(15$); 

 

 

; 

; 

;     Model statements for module:  AdvancedTransfer.Route 5 (Route for Tool 

Group 4) 

; 

15$           ROUTE:         0.,SEQ; 

 

 

; 

; 

;     Model statements for module:  AdvancedTransfer.Station 5 (System Exit) 

; 

 

16$           STATION,       Collect Stats; 

278$          DELAY:         0.0,,VA:NEXT(21$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 3 (At Truncation Point) 

; 
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21$           BRANCH,        1: 

                             If,TNOW<TruncationPoint,279$,Yes: 

                             Else,280$,Yes; 

279$          ASSIGN:        At Truncation Point.NumberOut True=At Truncation 

Point.NumberOut True + 1:NEXT(22$); 

 

280$          ASSIGN:        At Truncation Point.NumberOut False=At Truncation 

Point.NumberOut False + 1:NEXT(23$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Dispose 3 (Dispose rest) 

; 

22$           ASSIGN:        Dispose rest.NumberOut=Dispose rest.NumberOut + 1; 

281$          DISPOSE:       Yes; 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 8 (Increament Lag_X) 

; 

23$           ASSIGN:        LagX=LagX+1:NEXT(24$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 5 (Lag Long enough?) 

; 

24$           BRANCH,        1: 

                             If,LagX>LagValue,282$,Yes: 

                             Else,283$,Yes; 

282$          ASSIGN:        Lag Long enough?.NumberOut True=Lag Long 

enough?.NumberOut True + 1:NEXT(26$); 

 

283$          ASSIGN:        Lag Long enough?.NumberOut False=Lag Long 

enough?.NumberOut False + 1:NEXT(25$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 9 (Reset Lag) 

; 

26$           ASSIGN:        CT=TNOW- ArrivalTime: 

                             LagX=0:NEXT(17$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Record 1 (Exists) 

; 

17$           COUNT:         Exists,1:NEXT(31$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 8 (Number Replication 

1) 

; 

31$           BRANCH,        1: 
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                             If,RepNo==1,284$,Yes: 

                             Else,285$,Yes; 

284$          ASSIGN:        Number Replication 1.NumberOut True=Number 

Replication 1.NumberOut True + 1:NEXT(27$); 

 

285$          ASSIGN:        Number Replication 1.NumberOut False=Number 

Replication 1.NumberOut False + 1:NEXT(32$); 

 

 

; 

; 

;     Model statements for module:  AdvancedProcess.ReadWrite 2 (Export Data1) 

; 

27$           WRITE,         Output: 

                             CT:NEXT(28$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Dispose 5 (Dispose 5) 

; 

28$           ASSIGN:        Dispose 5.NumberOut=Dispose 5.NumberOut + 1; 

286$          DISPOSE:       Yes; 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 9 (Number Replication 

2) 

; 

32$           BRANCH,        1: 

                             If,RepNo==2,287$,Yes: 

                             Else,288$,Yes; 

287$          ASSIGN:        Number Replication 2.NumberOut True=Number 

Replication 2.NumberOut True + 1:NEXT(33$); 

 

288$          ASSIGN:        Number Replication 2.NumberOut False=Number 

Replication 2.NumberOut False + 1:NEXT(34$); 

 

 

; 

; 

;     Model statements for module:  AdvancedProcess.ReadWrite 6 (Export Data2) 

; 

33$           WRITE,         Output: 

                             CT:NEXT(28$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 10 (Number Replication 

3) 

; 

34$           BRANCH,        1: 

                             If,RepNo==3,289$,Yes: 

                             Else,290$,Yes; 

289$          ASSIGN:        Number Replication 3.NumberOut True=Number 

Replication 3.NumberOut True + 1:NEXT(37$); 
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290$          ASSIGN:        Number Replication 3.NumberOut False=Number 

Replication 3.NumberOut False + 1:NEXT(35$); 

 

 

; 

; 

;     Model statements for module:  AdvancedProcess.ReadWrite 7 (Export Data3) 

; 

37$           WRITE,         Output: 

                             CT:NEXT(28$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 11 (Number Replication 

4) 

; 

35$           BRANCH,        1: 

                             If,RepNo==4,291$,Yes: 

                             Else,292$,Yes; 

291$          ASSIGN:        Number Replication 4.NumberOut True=Number 

Replication 4.NumberOut True + 1:NEXT(38$); 

 

292$          ASSIGN:        Number Replication 4.NumberOut False=Number 

Replication 4.NumberOut False + 1:NEXT(36$); 

 

 

; 

; 

;     Model statements for module:  AdvancedProcess.ReadWrite 8 (Export Data4) 

; 

38$           WRITE,         Output: 

                             CT:NEXT(28$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 12 (Number Replication 

5) 

; 

36$           BRANCH,        1: 

                             If,RepNo==5,293$,Yes: 

                             Else,294$,Yes; 

293$          ASSIGN:        Number Replication 5.NumberOut True=Number 

Replication 5.NumberOut True + 1:NEXT(39$); 

 

294$          ASSIGN:        Number Replication 5.NumberOut False=Number 

Replication 5.NumberOut False + 1:NEXT(40$); 

 

 

; 

; 

;     Model statements for module:  AdvancedProcess.ReadWrite 9 (Export Data5) 

; 

39$           WRITE,         Output: 

                             CT:NEXT(28$); 

 

 

; 

; 
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;     Model statements for module:  BasicProcess.Decide 13 (Number Replication 

6) 

; 

40$           BRANCH,        1: 

                             If,RepNo==6,295$,Yes: 

                             Else,296$,Yes; 

295$          ASSIGN:        Number Replication 6.NumberOut True=Number 

Replication 6.NumberOut True + 1:NEXT(41$); 

 

296$          ASSIGN:        Number Replication 6.NumberOut False=Number 

Replication 6.NumberOut False + 1:NEXT(42$); 

 

 

; 

; 

;     Model statements for module:  AdvancedProcess.ReadWrite 10 (Export Data6) 

; 

41$           WRITE,         Output: 

                             CT:NEXT(28$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 14 (Number Replication 

7) 

; 

42$           BRANCH,        1: 

                             If,RepNo==7,297$,Yes: 

                             Else,298$,Yes; 

297$          ASSIGN:        Number Replication 7.NumberOut True=Number 

Replication 7.NumberOut True + 1:NEXT(45$); 

 

298$          ASSIGN:        Number Replication 7.NumberOut False=Number 

Replication 7.NumberOut False + 1:NEXT(43$); 

 

 

; 

; 

;     Model statements for module:  AdvancedProcess.ReadWrite 11 (Export Data7) 

; 

45$           WRITE,         Output: 

                             CT:NEXT(28$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 15 (Number Replication 

8) 

; 

43$           BRANCH,        1: 

                             If,RepNo==8,299$,Yes: 

                             Else,300$,Yes; 

299$          ASSIGN:        Number Replication 8.NumberOut True=Number 

Replication 8.NumberOut True + 1:NEXT(46$); 

 

300$          ASSIGN:        Number Replication 8.NumberOut False=Number 

Replication 8.NumberOut False + 1:NEXT(44$); 

 

 

; 
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; 

;     Model statements for module:  AdvancedProcess.ReadWrite 12 (Export Data8) 

; 

46$           WRITE,         Output: 

                             CT:NEXT(28$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Decide 16 (Number Replication 

9) 

; 

44$           BRANCH,        1: 

                             If,RepNo==9,301$,Yes: 

                             Else,302$,Yes; 

301$          ASSIGN:        Number Replication 9.NumberOut True=Number 

Replication 9.NumberOut True + 1:NEXT(47$); 

 

302$          ASSIGN:        Number Replication 9.NumberOut False=Number 

Replication 9.NumberOut False + 1:NEXT(28$); 

 

 

; 

; 

;     Model statements for module:  AdvancedProcess.ReadWrite 13 (Export Data9) 

; 

47$           WRITE,         Output: 

                             CT:NEXT(28$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Dispose 4 (Dispose 4) 

; 

25$           ASSIGN:        Dispose 4.NumberOut=Dispose 4.NumberOut + 1; 

303$          DISPOSE:       Yes; 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Create 4 (Simulation Start Up) 

; 

 

304$          CREATE,        1,MinutesToBaseTime(0.0),Entity 

1:MinutesToBaseTime(EXPO(1)),1:NEXT(305$); 

 

305$          ASSIGN:        Simulation Start Up.NumberOut=Simulation Start 

Up.NumberOut + 1:NEXT(18$); 

 

 

; 

; 

;     Model statements for module:  AdvancedProcess.ReadWrite 1 (Read TBA_X) 

; 

18$           READ,          MeanTBA_X: 

                             ArrivalRate:NEXT(29$); 

 

 

; 

; 
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;     Model statements for module:  AdvancedProcess.ReadWrite 3 (Read Part Y) 

; 

29$           READ,          MeanTBA_Y: 

                             ArrivalRate_Y:NEXT(30$); 

 

 

; 

; 

;     Model statements for module:  AdvancedProcess.ReadWrite 5 (Read  Z) 

; 

30$           READ,          MeanTBA_Z: 

                             ArrivalRate_Z:NEXT(19$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Assign 4 (Variables) 

; 

19$           ASSIGN:        RepNo=NREP: 

                             LagY=LagValue: 

                             LagZ=LagValue: 

                             LagX=LagValue: 

                             NoOfExists=0: 

                             BatchNo=0: 

                             BatchSize=0: 

                             BatchCT=0: 

                             DesiredTotalPartType=50000: 

                             LagValue=25: 

                             TruncationPoint=30000:NEXT(20$); 

 

 

; 

; 

;     Model statements for module:  BasicProcess.Dispose 2 (Dispose 2) 

; 

20$           ASSIGN:        Dispose 2.NumberOut=Dispose 2.NumberOut + 1; 

308$          DISPOSE:       Yes; 
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.exp file: 

PROJECT,      "Unnamed 

Project","tanushree.salvi@gmail.com",,,No,Yes,Yes,Yes,No,No,No,No,No,No; 

 

ATTRIBUTES:   Type,DATATYPE(Real): 

              ProcessTime,DATATYPE(Real): 

              CT,DATATYPE(Real): 

              ArrivalTime,DATATYPE(Real); 

 

FILES:        Output,"T:\Thesis\Job Shop\Output.txt",Sequential,Free 

Format,Dispose,,Hold: 

              MeanTBA_X,"T:\Thesis\Job Shop\MeanTBA_X.txt",Sequential,Free 

Format,Dispose,,Hold: 

              MeanTBA_Y,"T:\Thesis\Job Shop\MeanTBA_Y.txt",Sequential,Free 

Format,Dispose,,Hold: 

              MeanTBA_Z,"T:\Thesis\Job Shop\MeanTBA_Z.txt",Sequential,Free 

Format,Dispose,,Hold; 

 

VARIABLES:    Tool Group 4.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Dispose 2.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Number Replication 1.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              Dispose 5.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              LagX,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              LagY,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              LagZ,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Number Replication 3.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 

              Number Replication 6.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              DesiredTotalPartType,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              BatchNo,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Number Replication 7.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 

              Tool Group 2.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              Tool Group 3.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Number Replication 2.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              Dispose 4.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Dispose rest.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Number Replication 7.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              Part Y Arrival.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              BatchSize,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Number Replication 4.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 

              ArrivalRate_Y,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              ArrivalRate_Z,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Tool Group 4.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 
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              At Truncation Point.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 

              Tool Group 1.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Number Replication 3.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              Tool Group 3.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              LagValue,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Number Replication 8.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 

              BatchCT,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              ArrivalRate,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Number Replication 1.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 

              NoOfExists,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Number Replication 8.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              Part Z Arrival.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Tool Group 1.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              Tool Group 2.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Number Replication 5.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 

              Number Replication 4.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              Simulation Start 

Up.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Lag Long enough?.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 

              Tool Group 3.WIP,CLEAR(System),CATEGORY("Exclude-

Exclude"),DATATYPE(Real): 

              At Truncation Point.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              Number Replication 2.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 

              Number Replication 9.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 

              Number Replication 5.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              Lag Long enough?.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              TruncationPoint,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Number Replication 9.NumberOut 

False,CLEAR(Statistics),CATEGORY("Exclude"): 

              RepNo,CLEAR(System),CATEGORY("User Specified-User 

Specified"),DATATYPE(Real): 

              Tool Group 2.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Number Replication 6.NumberOut 

True,CLEAR(Statistics),CATEGORY("Exclude"): 

              Tool Group 4.NumberIn,CLEAR(Statistics),CATEGORY("Exclude"): 

              Tool Group 1.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"): 

              Part X Arrival.NumberOut,CLEAR(Statistics),CATEGORY("Exclude"); 

 

QUEUES:       Tool Group 1.Queue,FIFO,,AUTOSTATS(Yes,,): 

              Tool Group 2.Queue,FIFO,,AUTOSTATS(Yes,,): 

              Tool Group 3.Queue,FIFO,,AUTOSTATS(Yes,,): 
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              Tool Group 4.Queue,FIFO,,AUTOSTATS(Yes,,); 

 

PICTURES:     Picture.Airplane: 

              Picture.Green Ball: 

              Picture.Blue Page: 

              Picture.Telephone: 

              Picture.Blue Ball: 

              Picture.Yellow Page: 

              Picture.EMail: 

              Picture.Yellow Ball: 

              Picture.Bike: 

              Picture.Report: 

              Picture.Van: 

              Picture.Widgets: 

              Picture.Envelope: 

              Picture.Fax: 

              Picture.Truck: 

              Picture.Person: 

              Picture.Letter: 

              Picture.Box: 

              Picture.Woman: 

              Picture.Package: 

              Picture.Man: 

              Picture.Diskette: 

              Picture.Boat: 

              Picture.Red Page: 

              Picture.Ball: 

              Picture.Green Page: 

              Picture.Red Ball; 

 

RESOURCES:    Operator 

1,Capacity(1),,,COST(0.0,0.0,0.0),CATEGORY(Resources),,AUTOSTATS(Yes,,): 

              Operator 

2,Capacity(1),,,COST(0.0,0.0,0.0),CATEGORY(Resources),,AUTOSTATS(Yes,,): 

              Operator 

3,Capacity(1),,,COST(0.0,0.0,0.0),CATEGORY(Resources),,AUTOSTATS(Yes,,): 

              Operator 

4,Capacity(1),,,COST(0.0,0.0,0.0),CATEGORY(Resources),,AUTOSTATS(Yes,,): 

              Machine 

1,Capacity(1),,,COST(0.0,0.0,0.0),CATEGORY(Resources),,AUTOSTATS(Yes,,): 

              Machine 

2,Capacity(1),,,COST(0.0,0.0,0.0),CATEGORY(Resources),,AUTOSTATS(Yes,,): 

              Machine 

3,Capacity(1),,,COST(0.0,0.0,0.0),CATEGORY(Resources),,AUTOSTATS(Yes,,): 

              Machine 

4,Capacity(1),,,COST(0.0,0.0,0.0),CATEGORY(Resources),,AUTOSTATS(Yes,,); 

 

STATIONS:     Collect Stats,,,Collect Stats,AUTOSTATS(Yes,,): 

              TG 1,,,TG 1,AUTOSTATS(Yes,,): 

              TG 2,,,TG 2,AUTOSTATS(Yes,,): 

              TG 3,,,TG 3,AUTOSTATS(Yes,,): 

              TG 4,,,TG 4,AUTOSTATS(Yes,,); 

 

SEQUENCES:    Sequence for Part X,TG 1,,,,ProcessTime=NORM(13,0.5)&TG 

2,,,,ProcessTime=NORM(10.4,0.4)&TG 3,,,,ProcessTime= 

              NORM(5.2,0.2)&Collect Stats: 

              Sequence for Part Y,TG 2,,,,ProcessTime=NORM(10.4,0.4)&TG 

1,,,,ProcessTime=NORM(3.9,0.15)&TG 4,,,,ProcessTime= 

              NORM(6.5,0.25)&TG 3,,,,ProcessTime=NORM(7.8,0.3)&Collect Stats: 
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              Sequence for Part Z,TG 1,,,,ProcessTime=NORM(5.2,0.2)&TG 

2,,,,ProcessTime=NORM(9.1,0.35)&TG 4,,,,ProcessTime= 

              NORM(3.9,0.5)&Collect Stats; 

 

COUNTERS:     Exists,,,,DATABASE(,"Count","User Specified","Exists"); 

 

REPLICATE,    

1,,,Yes,Yes,,NC(Exists)>DesiredTotalPartType,,24,Minutes,No,No,,,Yes,No; 

 

ENTITIES:     Entity 1,Picture.Report,0.0,0.0,0.0,0.0,0.0,0.0,AUTOSTATS(Yes,,); 

 

ACTIVITYAREAS: Collect Stats,0,,AUTOSTATS(Yes,,): 

              TG 1,0,,AUTOSTATS(Yes,,): 

              TG 2,0,,AUTOSTATS(Yes,,): 

              TG 3,0,,AUTOSTATS(Yes,,): 

              TG 4,0,,AUTOSTATS(Yes,,); 
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APPENDIX C 

MATLAB PROGRAMMING CODE FOR MINI-FAB MODEL 
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C. MATLAB programming code for mini-fab model: 

function [] = Code_M () 
data= dlmread ('XData.txt'); 
hist(data); 
%REPLICATION 1----------------------------------------------------- 
%Reading output from Arena in Excel Sheet 
output = dlmread('XData.txt','\t','A1..A5001'); 
xlswrite ('T:\Thesis\Model\Experiments\Individual Cycle 

Time_M',output,1,'B2'); 
%Calculating the moments 
Mean = mean(output); 
Stddev = std(output); 
Skewness = skewness(output); 
Kurtosis = kurtosis(output); 
C = sort(output);%sorting the numbers in ascending order 
count = numel(output);%counting number of elements in the output 
percentile = prctile(output, [5:5:95]); 
Cell= 'B7'; 
xlswrite('T:\Thesis\Model\Experiments\Matlab_Output_M1.xlsx',percentile

',1,Cell); 
% hist(output); 
A= {Mean; Stddev; Skewness; Kurtosis}; 
x1Range = 'B2'; 
xlswrite 

('T:\Thesis\Model\Experiments\Matlab_Output_M1.xlsx',A,1,x1Range); 
%REPLICATION 2----------------------------------------------------- 
%Reading output from Arena in Excel Sheet 
output = dlmread('XData.txt','\t','A50002..A10002'); 
xlswrite ('T:\Thesis\Model\Experiments\Individual Cycle 

Time_M',output,1,'C2'); 
%Calculating the moments 
Mean = mean(output); 
Stddev = std(output); 
Skewness = skewness(output); 
Kurtosis = kurtosis(output); 
C = sort(output);%sorting the numbers in ascending order 
count = numel(output); %counting number of elements in the output 
 percentile = prctile(output, [5:5:95]); 
 Cell= 'C7'; 
xlswrite('T:\Thesis\Model\Experiments\Matlab_Output_M.xlsx',percentile'

,1,Cell); 
% hist(output); 
A= {Mean; Stddev; Skewness; Kurtosis}; 
x1Range = 'C2'; 
xlswrite 

('T:\Thesis\Model\Experiments\Matlab_Output_M.xlsx',A,1,x1Range); 
%REPLICATION 3--------------------------------------------------------- 
%Reading output from Arena in Excel Sheet 
output = dlmread('XData.txt','\t','A10003..A15003'); 
xlswrite ('T:\Thesis\Model\Experiments\Individual Cycle 

Time_M',output,1,'D2'); 
%Calculating the moments 
Mean = mean(output); 
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Stddev = std(output); 
Skewness = skewness(output); 
Kurtosis = kurtosis(output); 
C = sort(output);%sorting the numbers in ascending order 
count = numel(output); %counting number of elements in the output 
 percentile = prctile(output, [5:5:95]); 
 Cell= 'D7'; 
xlswrite('T:\Thesis\Model\Experiments\Matlab_Output_M.xlsx',percentile'

,1,Cell); 
% hist(output); 
A= {Mean; Stddev; Skewness; Kurtosis}; 
x1Range = 'D2'; 
xlswrite 

('T:\Thesis\Model\Experiments\Matlab_Output_M.xlsx',A,1,x1Range); 
%REPLICATION 4---------------------------------------------------------

- 
%Reading output from Arena in Excel Sheet 
output = dlmread('XData.txt','\t','A15004..A20004'); 
xlswrite ('T:\Thesis\Model\Experiments\Individual Cycle 

Time_M',output,1,'E2'); 
%Calculating the moments 
Mean = mean(output); 
Stddev = std(output); 
Skewness = skewness(output); 
Kurtosis = kurtosis(output); 
C = sort(output);%sorting the numbers in ascending order 
count = numel(output); %counting number of elements in the output 
 percentile = prctile(output, [5:5:95]); 
 Cell= 'E7'; 
xlswrite('T:\Thesis\Model\Experiments\Matlab_Output_M.xlsx',percentile'

,1,Cell); 
% hist(output); 
A= {Mean; Stddev; Skewness; Kurtosis}; 
x1Range = 'E2'; 
xlswrite 

('T:\Thesis\Model\Experiments\Matlab_Output_M.xlsx',A,1,x1Range); 
%REPLICATION 5---------------------------------------------------------

- 
%Reading output from Arena in Excel Sheet 
output = dlmread('XData.txt','\t','A20005..A25005'); 
xlswrite ('T:\Thesis\Model\Experiments\Individual Cycle 

Time_M',output,1,'F2'); 
%Calculating the moments 
Mean = mean(output); 
Stddev = std(output); 
Skewness = skewness(output); 
Kurtosis = kurtosis(output); 
C = sort(output);%sorting the numbers in ascending order 
count = numel(output); %counting number of elements in the output 
 percentile = prctile(output, [5:5:95]); 
 Cell= 'F7'; 
xlswrite('T:\Thesis\Model\Experiments\Matlab_Output_M.xlsx',percentile'

,1,Cell); 
% hist(output); 
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A= {Mean; Stddev; Skewness; Kurtosis}; 
x1Range = 'F2'; 
xlswrite 

('T:\Thesis\Model\Experiments\Matlab_Output_M.xlsx',A,1,x1Range); 
%REPLICATION 6---------------------------------------------------------

- 
%Reading output from Arena in Excel Sheet 
output = dlmread('XData.txt','\t','A25006..A30006'); 
xlswrite ('T:\Thesis\Model\Experiments\Individual Cycle 

Time_M',output,1,'G2'); 
%Calculating the moments 
Mean = mean(output); 
Stddev = std(output); 
Skewness = skewness(output); 
Kurtosis = kurtosis(output); 
C = sort(output);%sorting the numbers in ascending order 
count = numel(output); %counting number of elements in the output 
 percentile = prctile(output, [5:5:95]); 
 Cell= 'G7'; 
xlswrite('T:\Thesis\Model\Experiments\Matlab_Output_M.xlsx',percentile'

,1,Cell); 
% hist(output); 
A= {Mean; Stddev; Skewness; Kurtosis}; 
x1Range = 'G2'; 
xlswrite 

('T:\Thesis\Model\Experiments\Matlab_Output_M.xlsx',A,1,x1Range); 
%REPLICATION 7---------------------------------------------------------

- 
%Reading output from Arena in Excel Sheet 
output = dlmread('XData.txt','\t','A30007..A35007'); 
xlswrite ('T:\Thesis\Model\Experiments\Individual Cycle 

Time_M',output,1,'H2'); 
%Calculating the moments 
Mean = mean(output); 
Stddev = std(output); 
Skewness = skewness(output); 
Kurtosis = kurtosis(output); 
C = sort(output);%sorting the numbers in ascending order 
count = numel(output); %counting number of elements in the output 
 percentile = prctile(output, [5:5:95]); 
 Cell= 'H7'; 
xlswrite('T:\Thesis\Model\Experiments\Matlab_Output_M.xlsx',percentile'

,1,Cell); 
% hist(output); 
A= {Mean; Stddev; Skewness; Kurtosis}; 
x1Range = 'H2'; 
xlswrite 

('T:\Thesis\Model\Experiments\Matlab_Output_M.xlsx',A,1,x1Range); 
%REPLICATION 8---------------------------------------------------------

- 
%Reading output from Arena in Excel Sheet 
output = dlmread('XData.txt','\t','A35008..A40008'); 
xlswrite ('T:\Thesis\Model\Experiments\Individual Cycle 

Time_M',output,1,'I2'); 
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%Calculating the moments 
Mean = mean(output); 
Stddev = std(output); 
Skewness = skewness(output); 
Kurtosis = kurtosis(output); 
C = sort(output);%sorting the numbers in ascending order 
count = numel(output); %counting number of elements in the output 
 percentile = prctile(output, [5:5:95]); 
 Cell= 'I7'; 
xlswrite('T:\Thesis\Model\Experiments\Matlab_Output_M.xlsx',percentile'

,1,Cell); 
% hist(output); 
A= {Mean; Stddev; Skewness; Kurtosis}; 
x1Range = 'I2'; 
xlswrite 

('T:\Thesis\Model\Experiments\Matlab_Output_M.xlsx',A,1,x1Range); 
%REPLICATION 9---------------------------------------------------------

- 
%Reading output from Arena in Excel Sheet 
output = dlmread('XData.txt','\t','A40009..A45009'); 
xlswrite ('T:\Thesis\Model\Experiments\Individual Cycle 

Time_M',output,1,'J2'); 
%Calculating the moments 
Mean = mean(output); 
Stddev = std(output); 
Skewness = skewness(output); 
Kurtosis = kurtosis(output); 
C = sort(output);%sorting the numbers in ascending order 
count = numel(output); %counting number of elements in the output 
 percentile = prctile(output, [5:5:95]); 
 Cell= 'J7'; 
xlswrite('T:\Thesis\Model\Experiments\Matlab_Output_M.xlsx',percentile'

,1,Cell); 
% hist(output); 
A= {Mean; Stddev; Skewness; Kurtosis}; 
x1Range = 'J2'; 
xlswrite 

('T:\Thesis\Model\Experiments\Matlab_Output_M.xlsx',A,1,x1Range); 
%REPLICATION 10--------------------------------------------------------

-- 
%Reading output from Arena in Excel Sheet 
output = dlmread('XData.txt','\t','A45010..A50010'); 
xlswrite ('T:\Thesis\Model\Experiments\Individual Cycle 

Time_M',output,1,'K2'); 
%Calculating the moments 
Mean = mean(output); 
Stddev = std(output); 
Skewness = skewness(output); 
Kurtosis = kurtosis(output); 
C = sort(output);%sorting the numbers in ascending order 
count = numel(output); %counting number of elements in the output 
 percentile = prctile(output, [5:5:95]); 
 Cell= 'K7'; 
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xlswrite('T:\Thesis\Model\Experiments\Matlab_Output_M.xlsx',percentile'

,1,Cell); 
% hist(output); 
A= {Mean; Stddev; Skewness; Kurtosis}; 
x1Range = 'K2'; 
xlswrite 

('T:\Thesis\Model\Experiments\Matlab_Output_M.xlsx',A,1,x1Range); 
%REPLICATION 11--------------------------------------------------------

-- 
%Reading output from Arena in Excel Sheet 
output = dlmread('XData.txt','\t','A50011..A55011'); 
xlswrite ('T:\Thesis\Model\Experiments\Individual Cycle 

Time_M',output,1,'L2'); 
%Calculating the moments 
Mean = mean(output); 
Stddev = std(output); 
Skewness = skewness(output); 
Kurtosis = kurtosis(output); 
C = sort(output);%sorting the numbers in ascending order 
count = numel(output); %counting number of elements in the output 
 percentile = prctile(output, [5:5:95]); 
 Cell= 'L7'; 
xlswrite('T:\Thesis\Model\Experiments\Matlab_Output_M.xlsx',percentile'

,1,Cell); 
% hist(output); 
A= {Mean; Stddev; Skewness; Kurtosis}; 
x1Range = 'L2'; 
xlswrite 

('T:\Thesis\Model\Experiments\Matlab_Output_M.xlsx',A,1,x1Range); 
%REPLICATION 12--------------------------------------------------------

-- 
%Reading output from Arena in Excel Sheet 
output = dlmread('XData.txt','\t','A55012..A60012'); 
xlswrite ('T:\Thesis\Model\Experiments\Individual Cycle 

Time_M',output,1,'M2'); 
%Calculating the moments 
Mean = mean(output); 
Stddev = std(output); 
Skewness = skewness(output); 
Kurtosis = kurtosis(output); 
C = sort(output);%sorting the numbers in ascending order 
count = numel(output); %counting number of elements in the output 
 percentile = prctile(output, [5:5:95]); 
 Cell= 'M7'; 
xlswrite('T:\Thesis\Model\Experiments\Matlab_Output_M.xlsx',percentile'

,1,Cell); 
% hist(output); 
A= {Mean; Stddev; Skewness; Kurtosis}; 
x1Range = 'M2'; 
xlswrite 

('T:\Thesis\Model\Experiments\Matlab_Output_M.xlsx',A,1,x1Range); 
end 
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APPENDIX D 

MATLAB PROGRAMMING CODE FOR JOB SHOP MODEL 
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D. MATLAB programming code for job shop model: 

function [] = Code_JS () 
data= dlmread ('Output.txt'); 
hist(data); 
%REPLICATION 1----------------------------------------------------- 
%Reading output from Arena in Excel Sheet 
output = dlmread('Output.txt','\t','A1..A50001'); 
xlswrite ('Individual Cycle Time',output,1,'B2'); 
%Calculating the moments 
Mean = mean(output); 
Stddev = std(output); 
Skewness = skewness(output); 
Kurtosis = kurtosis(output); 
C = sort(output);%sorting the numbers in ascending order 
count = numel(output);%counting number of elements in the output 
percentile = prctile(output, [5:5:95]); 
Cell= 'B7'; 
xlswrite('T:\Thesis\Job 

Shop\Experiments\Matlab_Output_JS.xlsx',percentile',1,Cell); 
% hist(output); 
A= {Mean; Stddev; Skewness; Kurtosis}; 
x1Range = 'B2'; 
xlswrite ('T:\Thesis\Job 

Shop\Experiments\Matlab_Output_JS.xlsx',A,1,x1Range); 
%REPLICATION 2----------------------------------------------------- 
%Reading output from Arena in Excel Sheet 
output = dlmread('Output.txt','\t','A50002..A100002'); 
xlswrite ('Individual Cycle Time',output,1,'C2'); 
%Calculating the moments 
Mean = mean(output); 
Stddev = std(output); 
Skewness = skewness(output); 
Kurtosis = kurtosis(output); 
C = sort(output);%sorting the numbers in ascending order 
count = numel(output); %counting number of elements in the output 
 percentile = prctile(output, [5:5:95]); 
 Cell= 'C7'; 
xlswrite('T:\Thesis\Job 

Shop\Experiments\Matlab_Output_JS.xlsx',percentile',1,Cell); 
% hist(output); 
A= {Mean; Stddev; Skewness; Kurtosis}; 
x1Range = 'C2'; 
xlswrite ('T:\Thesis\Job 

Shop\Experiments\Matlab_Output_JS.xlsx',A,1,x1Range); 
%REPLICATION 3--------------------------------------------------------- 
%Reading output from Arena in Excel Sheet 
output = dlmread('Output.txt','\t','A100003..A150003'); 
xlswrite ('Individual Cycle Time',output,1,'D2'); 
%Calculating the moments 
Mean = mean(output); 
Stddev = std(output); 
Skewness = skewness(output); 
Kurtosis = kurtosis(output); 
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C = sort(output);%sorting the numbers in ascending order 
count = numel(output); %counting number of elements in the output 
 percentile = prctile(output, [5:5:95]); 
 Cell= 'D7'; 
xlswrite('T:\Thesis\Job 

Shop\Experiments\Matlab_Output_JS.xlsx',percentile',1,Cell); 
% hist(output); 
A= {Mean; Stddev; Skewness; Kurtosis}; 
x1Range = 'D2'; 
xlswrite ('T:\Thesis\Job 

Shop\Experiments\Matlab_Output_JS.xlsx',A,1,x1Range); 
%REPLICATION 4---------------------------------------------------------

- 
%Reading output from Arena in Excel Sheet 
output = dlmread('Output.txt','\t','A150004..A200004'); 
xlswrite ('Individual Cycle Time',output,1,'E2'); 
%Calculating the moments 
Mean = mean(output); 
Stddev = std(output); 
Skewness = skewness(output); 
Kurtosis = kurtosis(output); 
C = sort(output);%sorting the numbers in ascending order 
count = numel(output); %counting number of elements in the output 
 percentile = prctile(output, [5:5:95]); 
 Cell= 'E7'; 
xlswrite('T:\Thesis\Job 

Shop\Experiments\Matlab_Output_JS.xlsx',percentile',1,Cell); 
% hist(output); 
A= {Mean; Stddev; Skewness; Kurtosis}; 
x1Range = 'E2'; 
xlswrite ('T:\Thesis\Job 

Shop\Experiments\Matlab_Output_JS.xlsx',A,1,x1Range); 
%REPLICATION 5---------------------------------------------------------

- 
%Reading output from Arena in Excel Sheet 
output = dlmread('Output.txt','\t','A200005..A250005'); 
xlswrite ('Individual Cycle Time',output,1,'F2'); 
%Calculating the moments 
Mean = mean(output); 
Stddev = std(output); 
Skewness = skewness(output); 
Kurtosis = kurtosis(output); 
C = sort(output);%sorting the numbers in ascending order 
count = numel(output); %counting number of elements in the output 
 percentile = prctile(output, [5:5:95]); 
 Cell= 'F7'; 
xlswrite('T:\Thesis\Job 

Shop\Experiments\Matlab_Output_JS.xlsx',percentile',1,Cell); 
% hist(output); 
A= {Mean; Stddev; Skewness; Kurtosis}; 
x1Range = 'F2'; 
xlswrite ('T:\Thesis\Job 

Shop\Experiments\Matlab_Output_JS.xlsx',A,1,x1Range); 
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%REPLICATION 6---------------------------------------------------------

- 
%Reading output from Arena in Excel Sheet 
output = dlmread('Output.txt','\t','A250006..A300006'); 
xlswrite ('Individual Cycle Time',output,1,'G2'); 
%Calculating the moments 
Mean = mean(output); 
Stddev = std(output); 
Skewness = skewness(output); 
Kurtosis = kurtosis(output); 
C = sort(output);%sorting the numbers in ascending order 
count = numel(output); %counting number of elements in the output 
 percentile = prctile(output, [5:5:95]); 
 Cell= 'G7'; 
xlswrite('T:\Thesis\Job 

Shop\Experiments\Matlab_Output_JS.xlsx',percentile',1,Cell); 
% hist(output); 
A= {Mean; Stddev; Skewness; Kurtosis}; 
x1Range = 'G2'; 
xlswrite ('T:\Thesis\Job 

Shop\Experiments\Matlab_Output_JS.xlsx',A,1,x1Range); 
%REPLICATION 7---------------------------------------------------------

- 
%Reading output from Arena in Excel Sheet 
output = dlmread('Output.txt','\t','A300007..A350007'); 
xlswrite ('Individual Cycle Time',output,1,'H2'); 
%Calculating the moments 
Mean = mean(output); 
Stddev = std(output); 
Skewness = skewness(output); 
Kurtosis = kurtosis(output); 
C = sort(output);%sorting the numbers in ascending order 
count = numel(output); %counting number of elements in the output 
 percentile = prctile(output, [5:5:95]); 
 Cell= 'H7'; 
xlswrite('T:\Thesis\Job 

Shop\Experiments\Matlab_Output_JS.xlsx',percentile',1,Cell); 
% hist(output); 
A= {Mean; Stddev; Skewness; Kurtosis}; 
x1Range = 'H2'; 
xlswrite ('T:\Thesis\Job 

Shop\Experiments\Matlab_Output_JS.xlsx',A,1,x1Range); 
%REPLICATION 8---------------------------------------------------------

- 
%Reading output from Arena in Excel Sheet 
output = dlmread('Output.txt','\t','A350008..A400008'); 
xlswrite ('Individual Cycle Time',output,1,'I2'); 
%Calculating the moments 
Mean = mean(output); 
Stddev = std(output); 
Skewness = skewness(output); 
Kurtosis = kurtosis(output); 
C = sort(output);%sorting the numbers in ascending order 
count = numel(output); %counting number of elements in the output 
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 percentile = prctile(output, [5:5:95]); 
 Cell= 'I7'; 
xlswrite('T:\Thesis\Job 

Shop\Experiments\Matlab_Output_JS.xlsx',percentile',1,Cell); 
% hist(output); 
A= {Mean; Stddev; Skewness; Kurtosis}; 
x1Range = 'I2'; 
xlswrite ('T:\Thesis\Job 

Shop\Experiments\Matlab_Output_JS.xlsx',A,1,x1Range); 
%REPLICATION 9---------------------------------------------------------

- 
%Reading output from Arena in Excel Sheet 
output = dlmread('Output.txt','\t','A400009..A450009'); 
xlswrite ('Individual Cycle Time',output,1,'J2'); 
%Calculating the moments 
Mean = mean(output); 
Stddev = std(output); 
Skewness = skewness(output); 
Kurtosis = kurtosis(output); 
C = sort(output);%sorting the numbers in ascending order 
count = numel(output); %counting number of elements in the output 
 percentile = prctile(output, [5:5:95]); 
 Cell= 'J7'; 
xlswrite('T:\Thesis\Job 

Shop\Experiments\Matlab_Output_JS.xlsx',percentile',1,Cell); 
% hist(output); 
A= {Mean; Stddev; Skewness; Kurtosis}; 
x1Range = 'J2'; 
xlswrite ('T:\Thesis\Job 

Shop\Experiments\Matlab_Output_JS.xlsx',A,1,x1Range); 
end  

 

 


