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ABSTRACT  

   

Ensemble learning methods like bagging, boosting, adaptive boosting, stacking 

have traditionally shown promising results in improving the predictive accuracy in 

classification. These techniques have recently been widely used in various domains and 

applications owing to the improvements in computational efficiency and distributed 

computing advances. However, with the advent of wide variety of applications of 

machine learning techniques to class imbalance problems, further focus is needed to 

evaluate, improve and optimize other performance measures such as sensitivity (true 

positive rate) and specificity (true negative rate) in classification. This thesis 

demonstrates a novel approach to evaluate and optimize the performance measures 

(specifically sensitivity and specificity) using ensemble learning methods for 

classification that can be especially useful in class imbalanced datasets. In this thesis, 

ensemble learning methods (specifically bagging and boosting) are used to optimize the 

performance measures (sensitivity and specificity) on a UC Irvine (UCI) 130 hospital 

diabetes dataset to predict if a patient will be readmitted to the hospital based on various 

feature vectors. From the experiments conducted, it can be empirically concluded that, by 

using ensemble learning methods, although accuracy does improve to some margin, both 

sensitivity and specificity are optimized significantly and consistently over different cross 

validation approaches. The implementation and evaluation has been done on a subset of 

the large UCI 130 hospital diabetes dataset. The performance measures of ensemble 

learners are compared to the base machine learning classification algorithms such as 

Naive Bayes, Logistic Regression, k Nearest Neighbor, Decision Trees and Support 

Vector Machines. 



  ii 

DEDICATION  

   

Dedicated to my Mother, Father and my two elder Brothers 



  iii 

ACKNOWLEDGMENTS  

   

 I would like to first express my sincere gratitude and thanks to my thesis advisor 

Dr. Ajay Bansal, whose help, support and guidance was the cornerstone of this thesis. 

Without his guidance, this thesis would not have been possible.  His guidance was 

invaluable to me at every stage of the thesis. Whenever I was stuck or I stumbled, Dr. 

Bansal helped me nudge and guide to the goal of completion of the thesis while learning 

the most from it. 

 Further, I would like to thank the R Foundation and the R community. The 

support of R community in providing the open source packages and software to 

implement and run the machine learning algorithms were integral to this research. Also, I 

would like to thank Arizona State University Libraries for the incredible resources 

provided to me for this thesis and in general for the facilities. 

 I would like to express my sincere gratitude and thanks to the thesis committee 

members, Dr. Srividya Bansal and Dr. Ashish Amresh for the constructive feedback, time 

and support they have given throughout my thesis research, defense and during the 

revisions of this thesis paper. Finally, I would like to thank my family and friends who 

gave me persistent encouragement and support while I was working on my thesis.



  iv 

TABLE OF CONTENTS 

          Page 

LIST OF TABLES ..............................................................................................................vi  

LIST OF FIGURES ............................................................................................................vii  

CHAPTER 

1     INTRODUCTION ................. .................................................................................. 1  

Motivation ..............................................................................................1 

Introduction To Performance Measures ..................................................4 

Introduction To Ensemble Learning........................................................7 

Scope ....................................................................................................10  

2     LITERATURE REVIEW  .....................................................................................  11  

3     METHODOLOGY .................. ..............................................................................  17  

High Level Implementation ..................................................................17  

Software Used .......................................................................................18  

Dataset ..................................................................................................19  

Data Pre-Processing ..............................................................................20  

Implementation & Experimental Setup...................................................21 

Evaluation Measures .............................................................................23  

4     RESULTS ... ..........................................................................................................  24  

Analysis Of Results............................................................................... 24 

Standard Deviation for Sensitivity & Specificity .................................. 33 

5     CONCLUSION .....................................................................................................  36  

6     FUTURE SCOPE ................. .................................................................................  38  



  v 

Page 

REFERENCES ..................................................................................................................  40 

APPENDIX 

A      IMPLEMENTATION CODE SAMPLE .............................................................  42  



  vi 

LIST OF TABLES 

Table Page 

   1.    Confusion Matrix  ...............................................................................................  4    

   2.    Algorithms and Corresponding R Methods/Packages ..................................... ...22 

   3.    Performance Measures for 80-20 Cross Validation ...........................................  25 

   4.    Performance Measures for 50-50 Cross Validation ...........................................  28 

   5.    Performance Measures for 70-30 Cross Validation ...........................................  30 

   6.    Performance Measures for 90-10 Cross Validation ...........................................  32 

 

 

 

 

 



  vii 

LIST OF FIGURES 

Figure Page 

1. Class Imbalance Dataset Example 1.....................................................................2  

2. Class Imbalance Dataset Example 2.....................................................................3  

3. ROC Space Details...............................................................................................6 

4. Parallel and Serial Topology of Multi-Classifier System.....................................7 

5. Common Architecture of Ensemble Learning Methods.......................................8 

6. Statistical Reason of Better Performance...........................................................11 

7. Computational Reason of Better Performance...................................................12 

8. Representational Reason of Better Performance................................................13 

9. High Level Implementation Flowchart...............................................................18  

10. Plot to Visualize Optimization of 80-20 Cross Validation.................................26  

11. Bar Plot for 80-20 Cross Validation...................................................................27 

12. Plot to Visualize Optimization of 50-50 Cross Validation.................................28 

13. Bar Plot for 50-50 Cross Validation...................................................................29 

14. Plot to Visualize Optimization of 70-30 Cross Validation.................................30 

15. Bar Plot for 70-30 Cross Validation...................................................................31 

16. Plot to Visualize Optimization of 90-10 Cross Validation.................................32 

17. Bar Plot for 90-10 Cross Validation...................................................................33 

18. SD for 80-20.......................................................................................................34 

19. SD for 50-50.......................................................................................................34 

20. SD for 70-30.......................................................................................................35 

21. SD for 90-10.......................................................................................................35 



  1 

CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

 There are wide variety of applications for machine learning algorithms. Also, 

there are various performance measures that needs to be evaluated when an algorithm is 

applied to a specific problem. We know that accuracy is one of the most common 

performance measure to evaluate any algorithm or model. However, we also know that 

higher accuracy does not necessarily means good performance of the algorithm. The 

other common performance measures used to evaluate the machine learning algorithms 

are specificity, sensitivity, precision, F1 score, ROC curve, etc. The type of dataset 

governs the need to evaluate these performance measures. For example, in the application 

of machine learning to medical diagnostics or medical domain in general, failing to 

predict positive individuals may result in fatal cost, however, failing to predict negative 

instances is also serious in some applications, for example, information retrieval, email 

spam filtering and facial recognition [Hsiao et.al 2014]. Hence, it is imperative to 

optimize sensitivity (which is a measure of the classification algorithm in avoiding false 

negative) and specificity (which is a measure of the classification algorithm in avoiding 

false positive). For example, in the case of email spam filtering, false positive can lead to 

an important email to land up in the spam mailbox.  

 There has been research done on optimizing the F1 measure or the F1 score to 

achieve a compromise between the performance measures of precision and recall by 

tuning the parameters in the algorithms especially by tuning the parameters in Support 

Vector Machines. However, in this thesis, a novel approach is used to evaluate and 
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optimize the sensitivity (recall) and specificity by using ensemble learning methods. It 

can be observed from the results that the optimization of the performance measures 

(sensitivity and specificity) with respect to each other is achieved by simply running the 

data over ensemble learners. The comparison of the performance measures is made with 

the base machine learning algorithms like the Logistic Regression, Naïve Bayes 

Classifier, k Nearest Neighbor, Decision Trees and Support Vector Machines. 

 The need for evaluation of these performance measures apart from accuracy and 

the need to optimize these performance measures with respect to each other becomes 

imperative especially when we have class imbalanced datasets. Class imbalance data 

leads to class imbalance problem. When the data has imbalanced amount of two class 

labels, it is called as class imbalanced data. For example, in Figure 1 below, we observe 

that the 80% of the actual target values are of class 0 (red color represents class 0) and 

20% of the actual target values are of class 1 (green color represents class 1).  

 

 

Figure 1: Class Imbalance Dataset Example 1 

 

Similarly, in Figure 2 below, we observe that the 80% of the actual target values are of 

class 1 (green color represents class 1) and 20% of the actual target values are of class 0 

(red color represents class 0). This is a classic example of a medical diagnostics data. 



  3 

 

Figure 2: Class Imbalance Dataset Example 2 

 

 Most of the datasets these days are class imbalanced datasets and hence the 

need to evaluate and optimize the performance measures such as sensitivity, specificity, 

precision, F1 score, etc. are imperative for most of the datasets. Let us take an example of 

Figure 2 above, for instance, this is a medical diagnostics dataset and we are predicting 

whether unhealthy patients need to be readmitted to the hospital. In a scenario where only 

accuracy is considered for performance valuation of the algorithm/model applied to the 

dataset. Suppose, if we are training a model on this dataset to predict if a patient should 

be admitted to the hospital or discharged from the hospital based on diagnostic feature 

vectors, where the actual class 0 (in red) represents unhealthy patients and actual class 1 

(in green) represents healthy patients, it is possible that with an algorithm or model that 

gives us 80% accuracy, we may still have all the 20% of unhealthy patients discharged 

from the hospital, which can be fatal. Hence, with this example, we underscore our claim 

that the performance measures such as sensitivity and specificity needs to be evaluated 

and optimized. 
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1.2 Introduction to Performance Measures 

 The emphasis of this thesis is on evaluating and optimizing the performance 

measures using different base machine learning algorithms and the ensemble learning 

algorithms. Hence, let us discuss the performance measures in detail. 

Confusion Matrix: Confusion matrix is a table of 2 * 2 which gives us the number of true 

positives, true negatives, false positives and false negatives. This table helps us to find 

the performance measures required to evaluate the machine learning algorithms in 

question [Confusion Matrix Wikipedia Page].  

 

 Predicted as 1 Predicated as 0 

Actual 1 True Positive False Negative 

Actual 0 False Positive True Negative 

 

Table 1: Confusion Matrix 

 Sensitivity (or Recall) is the ratio of number of True Positive instances divided by 

the sum of number of True Positive and False Negative instances. Hence, higher the 

sensitivity, higher is the amount of class label predicted as 1 correctly. This performance 

measure is important in applications where we cannot afford to have any positive class 

label misclassified [Sensitivity and Specificity Wikipedia Page].  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
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 Specificity is the ratio of number of True Negative instances divided by the sum of 

number of True Negative and False Positive instances. Hence, higher the specificity, 

higher is the amount of class label predicted as 0 correctly. This performance measure is 

important in applications where we cannot afford to have any negative class label 

classified as 1 [Sensitivity and Specificity Wikipedia Page]. For example, for information 

retrieval, in a search engine, having a false positive can be costly to the functionality and 

business of the search engine. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 Precision (or Positive Predictive value) is the ratio of number of True Positive 

instances divided by the sum of number of True positive and False positive instances. 

Here, higher the precision, higher is the amount of fraction of positive class labels 

predicted from the total positive class labels predicted [Sensitivity and Specificity 

Wikipedia Page].  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 F1 score is a measure of the classification test’s accuracy. It considers both 

Sensitivity (Recall) and Precision. F1 score is the weighted harmonic mean of precision 

and recall (sensitivity) [Sensitivity and Specificity Wikipedia Page]. 

 ROC Curve illustrates the performance of a binary classifier. ROC stands for 

Receiver Operating Characteristics. ROC curve is the most common method to select an 

optimal model. ROC curve is created by plotting the true positive rate (which is same as 

Sensitivity) against the false positive rate (which is same as 1-specificity) at different 

threshold settings. [ROC Wikipedia Page] 
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Figure 3: ROC Space Details [Kai walz ROC Curve Wikimedia] 

 By analyzing the ROC curve, we can find the optimal algorithm/model. As we 

can see in Figure 3, the best classifier would hug the whole ROC space at the upper left 

hand corner. The random guess is a diagonal line drawn at 45 degrees from the x-axis. 

The area above this line is better as it approaches the point However, in this thesis, ROC 

curve is not used to compare the ensemble learning models with the base learning models 

as this thesis does not evaluates and delves into the threshold settings of the various 

classifiers but only the absolute values. Also, this thesis specifically evaluates the 

specificity and sensitivity. Hence, the comparison is made using different graphs as seen 

in the Results section below using sensitivity and specificity. 
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1.3 Introduction to Ensemble Learning 

 In this thesis, ensemble learning algorithms were used to evaluate, compare and 

optimize the performance measures (specifically specificity and sensitivity). Here, let us 

discuss the ensemble learning methods. There are various types of ensemble learning 

methods which are considered a sub-category of hybrid intelligent systems [Woźniak 

et.al 2014]. Some of the types of ensemble learning methods are Bagging, Boosting, 

Adaptive Boosting, Stacked Generalization, Mixture of Experts, etc. [Robi Polikar, 

Ensemble Learning, 2009].  Ensemble learning is a method to combine multiple models 

such as classifiers to solve and predict a machine learning problem. It is typically used to 

improve predictive performance of a model, reduce the likelihood of selecting a poor 

learner and to assign to confidence to the decision made by the model. [Robi Polikar, 

Ensemble Learning, 2009]. In general, ensemble learning methods are also divided into 

the same category of topologies as multi-classifier system. The categories of multi-

classifier systems are parallel and serial multi-classifier system as shown in the Figure 4 

below. 

 

Figure 4: Parallel and Serial Topology of Multi-Classifier System [Woźniak et.al 2014] 
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 As this thesis is limited to classification, let us see the various types of 

ensemble learning methods available for usage in classification. Figure 5 below shows a 

common architecture of the ensemble learning methods. Although the specific techniques 

to divide the data and the data fusion technique differs for bagging, boosting, adaptive 

boosting, however, Figure 5 shows the common components and the architecture of an 

ensemble learning method. Here, the input space (or sometimes input features) are 

divided into different subspaces and fed to the base classifier. After the classification is 

done by each weak classifier, the results are fused together using various fusion 

techniques like majority voting, weighted majority voting, etc. [Asmita, Shukla, 2014].  

 

Figure 5: Common architecture of Ensemble Learning Methods [Asmita, Shukla, 2014] 
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Commonly used ensemble learning algorithms are [Robi Polikar, Ensemble Learning, 

2009]: 

1) Bagging: Bagging which stands for Bootstrap aggregation obtains diversity in 

classification by randomly sampling the data – with replacement – from the entire 

training dataset. Each training dataset is used to train a different classifier of the 

same type or different types. Simple majority vote is used to fuse the resultant 

models.  

2) Boosting: Boosting is similar to the ensemble learning method of bagging in that 

it resamples the data, however, it strategically samples the subset of the training 

data to create several weak classifiers. The classifiers are combined through a n-

way majority vote. For example, if there are three classifiers, the first subset of 

the training data is selected randomly, the second subset is selected in an 

informative way as per the boosting algorithm. The third subset is sampled based 

on the instances where both the first and second classifier disagrees with each 

other. Hence, during fusion of data, a strong classifier is created. 

3) Adaptive boosting: This is considered as the best-known ensemble learning 

algorithm. In this method, the sampling of data is done in the same way as 

boosting, however, the samples are iteratively updated to focus on increasingly 

difficult instances. It essentially adapts to the difficult instances from the previous 

weak learners. Adaptive boosting in turn has many types. 

4) Stacked Generalization: This method employs multi-tier architecture to train the 

bootstrap sample of training data creating Tier-1 models, whose output is then 
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used to train the Tier-2 models and so on. Thus, in the last Tier, we get the best 

model. 

5) Mixture of experts: Mixture of experts method of ensemble learning generates 

several experts (classifiers) whose output are combined through a linear rule. 

Expectation maximization (EM) algorithm is used to assign weights to the 

combination of classifiers. This is typically used when heterogeneous set of 

feature space exists. 

Apart from the above methods, various types of other ensemble learning algorithms are 

available which primarily focus on using the diversity of the classifiers and combining 

the classifiers to achieve stronger prediction in classification.  

 

1.4 Scope 

The scope of this thesis is to evaluate and optimize the performance measures of 

sensitivity and specificity for at least two of the ensemble learning methods (i.e. bagging 

and boosting) and compare them with the base machine learning algorithms. The 

optimization is achieved with respect to the values of sensitivity and specificity with each 

other. While doing so, this thesis achieves optimized sensitivity and specificity using 

ensemble learning methods as opposed to the previous methods that have focused on 

tuning the parameters of the base learners or creating framework. This thesis focuses on 

sensitivity and specificity for the analysis of the performance measures, using one 

dataset. However, this dataset is divided into various sub-sets of data and four types of 

cross validation methods are employed to divide the data into test and training. The hold-

out cross-validation methods employed are 80-20, 50-50, 70-30, 90-10. 
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CHAPTER 2 

LITERATURE REVIEW 

 As we know from Chapter 1, that, ensemble learning is the process by which 

multiple models, such as classifiers or experts, are “strategically generated and 

combined” to solve a machine learning problem. [Robi Polikar, Ensemble Learning, 

2009]. We also need to understand why ensemble learners often perform better than any 

single classifier. The three reasons for which using an ensemble based system works 

better than a single classifier are statistical, computational and representational 

[Dietterich 2000]. First, the author notes that statistically, a learning algorithm can be 

considered searching a space of Hypothesis. For a single classifier, the statistical problem 

arises when the amount of training data is very less. If we look at the Figure 6 below, we 

see that we can find a good approximation to the true hypothesis f if the ensemble 

learning algorithm “can “average” their votes and reduce the risk of choosing the wrong 

classifier” [Dietterich, 2000].  

 

 

Figure 6: Statistical reason of better performance by ensemble learners [Dietterich, 2000] 
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 Even if we have large amount of training data, the second reason why a single 

classifier can be weak in approximating to or determining the true hypothesis is 

computational reason. The greedy approach employed by the single classifiers in finding 

the local optima would result in finding the local optima as opposed to global optima 

[Dietterich, 2000]. As per this paper, Ensemble learners would do the “local search from 

many different starting points” and hence they would provide a better approximation to 

the true hypothesis as explained in the Figure 7 below. 

 

 

Figure 7: Computational reason of better performance by ensemble learners [Dietterich, 

2000] 

 Further, as per the author, the third reason is representational which is “somewhat 

subtle”. The hypothesis space for a single classifier is limited to the classifier, although 

decision tree and neural networks are both flexible algorithms. Given enough training 

data, they will “explore the space of all possible classifiers” [Dietterich, 2000]. 

Nevertheless, as the hypothesis space for these single classifiers is limited, using 
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“weighted sum of hypothesis”, the hypothesis space can be expanded by the ensemble 

learners [Dietterich, 2000]. This is very accurately described in the Figure 8 below. The 

true hypothesis f can be explored outside the limited space of single classifiers. 

 

 

Figure 8: Representational reason of better performance by ensemble learners 

[Dietterich, 2000] 

 By studying the literature, we can observe that researchers have used different 

performance measures for optimization, depending on the application and domain. 

Typically, we can see that the various performance measures such as F1 score, 

Sensitivity, Specificity, Precision, Recall, ROC, Area Under the Curve (AUC) etc. are 

based on the confusion matrix which helps us better analyze and evaluate the 

performance of the classifiers. These measures are very important, which directly and 

indirectly puts emphasis on approximating to correct prediction for each instance in the 

dataset in an ideal case. In this thesis, however, the visualization and analysis of the 

results is done using sensitivity and specificity, by finding the relation with each other, 

and by visualizing the standard deviation for sensitivity, specificity and accuracy. 
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 Now, we will study the literature for the research done attempting to optimize the 

performance measures using various methods that include base machine learning tuning, 

usage of ensemble learning and other methods to form a framework, etc. [Hsiao et.al, 

2014] proposed a two-stage framework and a novel evaluation criterion, namely optimal 

specificity under perfect sensitivity (OSPS). They argued that for medical data 

classification, this criterion is more suitable than other conventional measures such as 

accuracy, f-score, or area-under-ROC curve. Here, they employ instance ranking strategy 

to optimize the specificity given perfect sensitivity using threshold for the perfect 

sensitivity. They used two toolkits to experiment on their dataset, one of which included 

Adaboost which is one of the ensemble learning methods. The Adaboost used 

Classification and Regression Trees (CART) as the base learner. 

 Further, Support Vector Machine (SVM) parameter tuning has also shown to 

optimize F1 score in unbalanced data.  F measure, which is the harmonic mean of 

precision and recall, is considered the relevant performance measure to be achieved 

especially when we have unbalanced data. SVMs have been traditionally used for 

classification of unbalanced data by “weighting more heavily the error contribution from 

the rare class” [Musicant, et.al 2003]. In this paper, the authors provided significant and 

new theoretical results that support this popular heuristic. Specifically, they demonstrated 

that with the right parameter settings SVMs approximately optimize F-measure in the 

same way that SVMs have already been known to approximately optimize accuracy. 

They argue that this finding has numerous theoretical and practical implications for using 

SVMs in F-measure optimization. 
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 Moreover, [Chai et. al 2012] investigated the connections and theoretical 

justification of the two methods commonly used to optimize F score. The two algorithms 

for learning discussed to maximize F-measures are: the empirical utility maximization 

(EUM) approach that learns a classifier having optimal performance on training data, and 

the decision-theoretic approach (DTA) approach that “learns a probabilistic model and 

then predicts labels with maximum expected F-measure.” [Chai et. al 2012].  In the 

paper, the authors further studied the conditions under which one approach is preferable 

to the other using synthetic and real datasets. They claim that their results suggested that 

the two approaches are asymptotically equivalent given large training and test sets. 

Empirically they also prove that the EUM approach appeared to be more robust against 

model misspecification and the decision-theoretic approach appears to be better for 

handling rare classes and a common domain adaptation scenario. 

 Now, this thesis proposes to optimize performance measures using ensemble 

learning methods. We know that the diversity in the ensemble learning methods help 

achieve better accuracy and other performance measures. Hence, we also need to 

understand if there is any relation between accuracy and diversity in ensemble learning 

methods. [Zeng et. al, 2014] proposed a novel method to evaluate the quality of a 

classifier ensemble which is inspired by the F measure used in information retrieval. 

They proposed a Weight Accuracy Diversity (WAD) measure to assess the quality of the 

classifier ensemble. They claim that WAD would help find a balance between accuracy 

and diversity which is needed for enhancing the predictive ability of an ensemble learner 

over unknown data as higher diversity not necessarily means better performance by the 

ensemble learning algorithm. This research would not only help us understand the 
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relation between accuracy and diversity in classifying ensemble learning methods but 

would also help us qualitatively assess and compare the various ensemble learning 

methods using classification. 

 The literature helps us understand that past research is focused on tuning the 

existing base learning algorithms, developing frameworks based on the domain of the 

application, developing methods to optimize the F score, providing theoretical 

justification and empirical evidence for the methods already developed, providing 

reasons to use ensemble learning methods and to qualitatively assess and balance the 

ensemble learning methods with respect to accuracy and diversity to find a balance. The 

work done by these researchers have significantly helped discuss and achieve significant 

success in performance measures and ensemble learning methods. However, no apparent 

focus has been made in direct usage of ensemble learning methods for improving or 

optimizing the performance measures i.e. sensitivity (recall) and specificity. In this thesis, 

in the further chapters we will see how the ensemble learning methods are empirically 

proven to improve, optimize and balance the performance measures of sensitivity and 

specificity. 
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CHAPTER 3 

METHODOLOGY 

3.1 High Level Implementation 

 

 The Figure 9 below shows the high-level flowchart of the experimental 

implementation set up. These six high-level steps are consistent with the details provided 

below. These steps were implemented and were common to all the learners (base and 

ensemble learners). First for each learner, the libraries from the R Comprehensive R 

Archive Network (CRAN) Package were imported. Then, the data was pre-preprocessed. 

This step of preprocessing included various important and critical sub-steps. Once the 

data pre-processing was completed which includes factoring, normalization, making the 

feature vectors binary wherever necessary, the data was split using hold out cross 

validation methods into training and test datasets. The respective base machine learning 

or ensemble learning model were then trained using the training data over these cross 

validation methods. The test data is tested on the generated model using the predict 

methods. Finally, the predicted feature vector thus created is compared to the actual 

target feature vector with the help of confusion matrix.  

 The base learning classifiers and ensemble learning methods were implemented 

using the R CRAN packages library. To generate the confusion matrix or the cross table 

and the performance measures, the respective R library methods were used. The large 

dataset was divided into 10 subsets of 10000 instances. 
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Figure 9: High Level Implementation Flowchart 

 

 

3.2 Software Used 

The following software have been used to implement and experiment this thesis: 

• R version 3.2.3: R and the associated R CRAN packages [R CRAN Packages, 

2017] was used for implementing the machine learning algorithms and evaluate 

the performance measures. R is free and open source. 

• R Studio 1.0.136: R Studio which is a free and open source integrated 

development environment for R was used for the ease of implementation. 

• Microsoft Excel 2016: Excel 2016 was used to generate the tables and plot the 

graphs. Excel 2016 was licensed through Arizona State University student license. 

• Lucidchart: Lucidchart was used to create the flowchart. Lucidchart is free and 

available with Google account. 
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3.3 Dataset 

 In this thesis, the UC Irvine (UCI) Diabetes 130-US hospitals for the years 1999-

2008 dataset [Strack et al. 2014] has been used. This dataset is multi-variate dataset, 

contains 100,000 instances and 55 features. “The dataset represents 10 years (1999-2008) 

of clinical care at 130 US hospitals and integrated delivery networks. It includes over 50 

features representing patient and hospital outcomes. Information was extracted from the 

database for encounters that satisfied the following criteria:  

(1) It is an inpatient encounter (a hospital admission). 

(2) It is a diabetic encounter, that is, one during which any kind of diabetes was entered 

to the system as a diagnosis. 

(3) The length of stay was at least 1 day and at most 14 days. 

(4) Laboratory tests were performed during the encounter. 

(5) Medications were administered during the encounter. 

The data contains such attributes as patient number, race, gender, age, admission type, 

time in hospital, medical specialty of admitting physician, number of lab test performed, 

HbA1c test result, diagnosis, number of medication, diabetic medications, number of 

outpatient, inpatient, and emergency visits in the year before the hospitalization, etc.” 

[Strack et al. 2014]. 

 It is a three-class label dataset with the values being NO, <30, >30. Here, NO 

means that the patient was not readmitted after the discharge. <30 means that the patient 

was readmitted within 30 days of discharge. >30 means that the patient was readmitted 

after 30 days of discharge. 

 



  20 

 

3.4 Data pre-processing 

 Before using this data in the implementation of machine learning algorithms to 

evaluate and compare the performance measures of ensemble learning methods to the 

base machine learning algorithms, the data is pre-processed. This was needed to ensure 

that all the classification algorithms and ensemble learners can be equally and fairly 

implemented on the dataset. First, the missing values in the dataset are converted into NA 

and in turn into 0. The following eight feature vectors were dropped from dataset as they 

do not actively represent the classification problem and do no contribute to the target 

class label values for classification: Encounter ID, Patient Number, Weight (this feature 

vector was dropped as 97% values are missing), Payer Code, Medical Specialty, 

Diagnosis 1, Diagnosis 2, Diagnosis 3. Then, the target feature vector “readmitted” was 

changed to a binary feature vector as 0 or 1 by converting the three class label dataset 

into two class label classification dataset as follows: If the target feature vector value is 

<30 or >30, it was changed to 1. If the target feature vector is NO, the target feature 

vector value was changed to 0. 

 To ensure consistency for the implementation, the nominal feature vectors were 

changed to binary feature vectors. After changing the feature vectors, the dataset now 

contained 98 feature vectors. Further, the numeric data which is now contained in the first 

eight feature vectors is normalized to ensure that the evaluation and comparison is fairly 

made when using these feature vectors for classification. After the normalization, the data 

in these 8 numeric feature vectors lied in the range of 0 to 100. The normalization range 

was chosen to be from 0 to 100 to ensure that the wide variety of the values in the dataset 
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are included without having any common values. For example, it would be statistically 

incorrect to bring 100000 instances with different nominal features in a range of 0 to 10 

as most of the instances in that case would have common values. This would lose the 

consistency and integrity of data in the dataset. Now the dataset was made ready to be 

implemented for all the algorithms. 

 Now, the instances were separated in 10 blocks of 10000 instances of dataset to 

implement as individual separate datasets. This would give us wide range of results for 

effective comparison. The hold out cross-validation method used were 90-10, 80-20, 70-

30 and 50-50 cross validation method. These different methods of cross validation helped 

to demonstrate whether any changes in the cross-validation affects the performance 

measures, especially, the measures that are critical to the application domain i.e. 

accuracy, sensitivity and specificity. In this thesis, only one subset of 10000 instances of 

the dataset was used. 

 

3.5 Implementation & Experimental Setup 

 The base machine learning algorithms and the ensemble learning algorithms were 

implemented in the R version 3.2.3. As seen in the Table 2 below, the following 

algorithms were implemented and following are the corresponding R methods and 

packages used for the implementation. The training data was separated according to the 

hold out cross-validation methods described above and the model was trained on the 

training dataset. Once the model was trained, the test data was fed to the model using the 

respective prediction methods to determine the performance measures. In case of logistic 

regression, the threshold probabilities generated are converted into binary target values. 
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When the probability is greater than 0.5, the binary target value is changed to 1 else 0. In 

the case of k Nearest Neighbor (kNN), the k value is selected as the optimal value which 

is the square root of the number of training examples. This is dynamically calculated for 

each dataset and encoded in the code. The target value is converted into a factor wherever 

required. The Support Vector Machine (SVM) algorithm is implemented for both the 

radial basis function and the sigmoid basis function. For bagging, the treebag method 

(algorithm) is used which means the base learning algorithm for bagging was decision 

tree. Similarly, the boosting algorithm is implemented using Decision Trees and Gradient 

Boosting Model using Decision Trees.  

Algorithm R Methods R Packages 

Logistic Regression Glm Multiple 

Naïve Bayes Classifier naiveBayes Multiple 

K Nearest Neighbor (kNN) knn Multiple 

Decision Trees C5.0 C50/Multiple 

Support Vector Machine (sigmoid) svm e1071/Multiple 

Support Vector Machine (radial) svm e1071/Multiple 

Bagging (CART) treebag caretEnsemble/Multiple 

Boosting (Decision Trees) C5.0 caretEnsemble/Multiple 

Boosting (Gradient Boosting Machine) gbm caretEnsemble/Multiple 

 

Table 2: Algorithms and corresponding R methods/packages 

 

The bagging and both the boosting ensemble methods were resampled over 30 iterations. 

This value was referred in the article by [Brownlee, 2016]. As part of future work, more 
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experiments can be conducted by fine tuning the number of classifiers/iterations for each 

ensemble learning method that is implemented. For bagging, boosting and boosting using 

gradient boosting model, decision tree was used as a base machine learning algorithm. 

Decision tree was chosen as a base learning algorithm for the ensemble learners as it did 

not optimize both the performance measures as good as the other base learning 

algorithms on the same dataset, so to compare and evaluate if the ensemble learning 

algorithms perform better than the base learning algorithm, decision trees were used. 

 

3.6 Evaluation Measures 

 The evaluation measures are generated and demonstrated by plotting the 

confusion matrix and by using the summary of the results using R packages. These 

results include various performance measures including the ones that are integral to this 

thesis i.e. accuracy, sensitivity and specificity.  The two R methods that were used to 

generate the evaluation measures are CrossTable() and confusionMatrix(). CrossTable 

generates a 2*2 confusion matrix of the True Positives, True Negatives, False Positives 

and False Negatives. confusionMatrix() provides a detailed summary including the 

confusion matrix and the associated performance measure values.
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CHAPTER 4 

RESULTS 

4.1 Analysis of Results 

Here, the below tables give the summary of the results obtained for the first 10000 

instances of the dataset. The below four tables are populated with the results of the four 

cross validation methods employed to test the model. After each table, the corresponding 

graphs are plotted to analyze the results. It can be clearly seen that the ensemble learning 

methods of Bagging using Decision Trees, Boosting using Decision Trees and Boosting 

using Gradient Boosting Model shows consistent improvement in the optimization of 

both sensitivity and specificity. It is also observed from the plots and the graphs that 

optimization is achieved without compromising the accuracy of the prediction. For 

example, the Sensitivity and Specificity are balanced and optimum consistently when 

bagging and both the boosting methods are used with 80-20 cross validation method. 

Further for the same dataset, in the column (bar) graph we can observe that both 

sensitivity and specificity almost have equal height. From the tables and figures followed 

below, we can see that the same results are consistently achieved across the different 

cross-validation methods that are experimented. Although, Logistic regression, kNN and 

SVM with radial basis function also demonstrates optimization as proved by the graphs 

below, we can see consistent optimized results are achieved with the help of ensemble 

learning algorithms such as Bagging, Boosting using CART (Decision Trees) and 

Boosting using Gradient Boosting Machine (GBM) using Decision Trees. 
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 Now let us analyze the results in detail that are presented below based on the 

experimental set up discussed above. The results are arranged in the following order. 

First, the table of the results for each hold-out cross validation method is seen, Then, a 

graph of absolute values of sensitivity, specificity and accuracy are plotted as points that 

are connected with dotted lines. This graph is very helpful in visualizing whether a 

specific learner was able to achieve optimization/balancing of the performance measures. 

The x axis on this graph has the absolute names of the algorithms and y axis has the value 

of the specific learner. Further, a bar plot graph is plotted to compare only the height of 

sensitivity and specificity to better visualize the performance measures. Finally, in the 

end the standard deviation of each learner is calculated for accuracy, sensitivity and 

specificity. The lower the standard deviation, the more the algorithm is optimized with 

respect to the performance measure of sensitivity and specificity. 

 

Algorithm Sensitivity Specificity Accuracy 

Logistic Regression 0.6683 0.5068 0.6125 

Naive Bayes Classifier 0.9315 0.2632 0.584 

K Nearest Neighbor (KNN) 0.6091 0.5631 0.591 

Decision Trees 0.7759 0.4221 0.5975 

SVM (kernel = sigmoid) 0.91692 0.04496 0.489 

SVM (kernel = radial) 0.6076 0.5491 0.5775 

Bagging Decision Tree 0.5873 0.5867 0.587 

Boosting Decision Tree 0.6631 0.5338 0.601 

Boosting GBM 0.6781 0.56 0.62 

 

Table 3: Performance measures for 80-20 cross validation 
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First, for the 80-20 holdout cross validation method, we can observe from Table 3, that 

the performance measure values are diverse and lie in the range from 0.04 to 0.91. We 

have achieved wide variety of optimization of sensitivity and specificty with respect to 

each other. Hence, to visualize we observe from Figure 10, that the bagging, boosting and 

boosting using GBM have considently performed better in optimizing both sensitvity and 

specificity. Although, we can observe that Logistic Regression, k Nearest Neighbor 

(kNN) and Support Vector Machine using Radial basis function has also performed better 

in optimizing both sensitvity and specificity. However, we also need to ascertain whether 

the results hold consistency and confidence across all the hold-out cross validation 

methods. The worst performance has been shown by Support Vector Machine (SVM) 

using Sigmoid basis function. 

 

 

Figure 10: Plot to visualize optimization of 80-20 cross validation 
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In SVM using sigmoid, we see that Sensitvity is very high but specificity is very low. 

This performance may be accepted in medical domain but not in information retrieval 

where a higher specificity is accepted. This can be visualized from Figure 11 as well. 

 

Figure 11: Bar Plot for 80-20 cross validation 

Now, for the 50-50 holdout cross validation method, we can observe from Table 4, 

largely most of the values are consistent with 80-20 cross validation method. Here as 

well, we have achieved wide variety of optimization of sensitivity and specificty with 

respect to each other As per Figure 12, we can observe that again the bagging, boosting 

and boosting using GBM methods have consistently performed better in optimizing both 

sensitvity and specificity. Here too, we observe that Logistic Regression, k Nearest 

Neighbor (kNN) and Support Vector Machine using Radial basis function has performed 

better in optimizing both sensitvity and specificity.  
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Algorithm Sensitivity Specificity Accuracy 

Logistic Regression 0.6442 0.5515 0.5992 

Naive Bayes Classifier 0.9473 0.1077 0.5312 

K Nearest Neighbor (KNN) 0.6144 0.5628 0.589 

Decision Trees 0.7382 0.4524 0.5978 

SVM (kernel = sigmoid) 0.96855 0.01018 0.4978 

SVM (kernel = radial) 0.5479 0.6277 0.5866 

Bagging Decision Tree 0.606 0.5533 0.5798 

Boosting Decision Tree 0.6022 0.7318 0.4645 

Boosting GBM 0.6312 0.5928 0.6126 

 

Table 4: Performance measures for 50-50 cross validation 

There has been a subtle change though, in the observation of boosting using GBM, as per 

Figure 12 and Figure 13, the performance of Boosting using GBM has improved further. 

 

Figure 12: Plot to visualize optimization of 50-50 cross validation 
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Figure 13: Bar Plot for 50-50 cross validation 

 

Further, we can observe from Table 5, Figure 14 and Figure 15 for 70-30 hold out cross 

validation method, largely most of the values are consistent with 80-20 and 50-50, 

however, there has been a visible change in perfomrance of Logistic Regression, Naïve 

Bayes and Boosting using GBM. As per Figure 14, we can observe that again the 

bagging, boosting and boosting using GBM methods have consistently performed better 

in optimizing both sensitvity and specificity. In this case, we observe that only k Nearest 

Neighbor (kNN) and Support Vector Machine using Radial basis function has performed 

better in optimizing both sensitvity and specificity as compared to other base learners. 

The same observation is made through the bar plot of the 70-30 cross valudation method. 

The height of most of the bars for ensemble learning algorithms for both sensitvity and 

specificity are of mostly equal size. 
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Algorithm Sensitivity Specificity Accuracy 

Logistic Regression 0.7562 0.4156 0.5907 

Naive Bayes Classifier 0.4514 0.6994 0.5743 

K Nearest Neighbor (KNN) 0.6286 0.5425 0.585 

Decision Trees 0.7886 0.4253 0.6087 

SVM (kernel = sigmoid) 0.94184 0.02623 0.488 

SVM (kernel = radial) 0.5435 0.5967 0.5693 

Bagging Decision Tree 0.6077 0.5622 0.5847 

Boosting Decision Tree 0.5878 0.5968 0.5922 

Boosting GBM 0.6775 0.5331 0.6068 

 

Table 5: Performance measures for 70-30 cross validation 

In this case, for Logistic Regression, we observe that although sensitvity has increased, 

however, specificity has reduced as compared to the 80-20 and the 50-50 hold out cross 

validation method. 

 

Figure 14: Plot to visualize optimization of 70-30 cross validation 
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Figure 15: Bar Plot for 70-30 cross validation 

 

Finally, for 90-10 hold out cross validation method, most of the results are consistent 

with 80-20 and 50-50. As per Table 6 and Figure 16, we can observe that again the 

bagging, boosting and boosting using GBM methods have considently performed better 

in optimizing both sensitvity and specificity. In this case, the specificity for Logistic 

Regression has been regained and both the performance measures are similarly optimized 

as in 80-20 and 50-50. The height of most of the bars for ensemble learning algorithms 

for both sensitvity and specificity are of mostly equal size. 
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Algorithm Sensitivity Specificity Accuracy 

Logistic Regression 0.6941 0.5266 0.606 

Naive Bayes Classifier 0.856 0.212 0.534 

K Nearest Neighbor (KNN) 0.6085 0.5542 0.581 

Decision Trees 0.7536 0.4617 0.605 

SVM (kernel = sigmoid) 0.93023 0.03926 0.499 

SVM (kernel = radial) 0.5578 0.6031 0.578 

Bagging Decision Tree 0.6 0.534 0.568 

Boosting Decision Tree 0.6965 0.4938 0.598 

Boosting GBM 0.6498 0.5494 0.601 

 

Table 6: Performance measures for 90-10 cross validation 

From Figure 16 and Figure 17, we see that for all the hold out cross validation methods, 

sensitvity always have been inheriently high, which is a good observation as the number 

of false negatives can be reduced. 

 

Figure 16: Plot to visualize optimization of 90-10 cross validation 
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Figure 17: Bar Plot for 90-10 cross validation 

 

4.2 Standard Deviation for Sensitivity and Specificity 

 Now, let us observe how spread out sensitivity and specificity across the four 

cross-validation approaches are for the ensemble learning and base machine learning 

algorithms. These standard deviations are calculated using values of accuracy, specificity 

and sensitivity. As accuracy is approximately same or better across all experiments 

conducted, higher standard deviation would mean, more the sensitivity and specificity are 

spread out and lower the standard deviation would mean, more the two measures are 

optimized and close to each other. This measure helps us understand the optimization 

process if the above graphs are hard to visualize. 
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Figure 18: SD for 80-20 

 Here, in Figure 18 and Figure 19, as we have observed in earlier graphs, we can 

observe that the ensemble learning methods and three of the single classifier system viz., 

Logistic Regression, k Nearest Neighbor and SVM using Radial basis function has lower 

Standard Deviation.  

 

Figure 19: SD for 50-50 
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Figure 20: SD for 70-30 

However, for 70-30 hold out cross validation method, as seen in Figure 20, the standard 

deviation for Logistic Regression is seen to be increased and hence the Sensitivity and 

Specificity are spread out from each other. Similarly, Figure 21 corresponds to the graphs 

and tables for 90-10. 

 

Figure 21: SD for 90-10 



  36 

CHAPTER 5 

CONCLUSION 

 Given the evaluation and analysis done on the results for the experiments 

conducted on this dataset over different cross validation approaches, in this thesis, it can 

be empirically concluded that by using ensemble learning methods such as bagging, 

boosting using decision trees and boosting -- Gradient Boosting Modeling (GBM) using 

decision tress, sensitivity and specificity can be optimized with respect to each other 

without compromising accuracy. This usage of ensemble learning methods for optimizing 

sensitivity and specificity would help apply this technique to various domain of 

applications. Although depending on the application and domain, the need for sensitivity 

and specificity differs, however, given this method, the avenues of balancing and nearly 

approximating the performance measures of sensitivity and specificity to 1 using 

ensemble learning methods are opened. The comparison made with the base machine 

learning algorithms helped underscore the claim. 

 Although, in some cases, it was observed that the base machine learning 

algorithms also optimized sensitivity and specificity with respect to each other, for 

example, Logistic Regression, Support Vector Machines using radial basis function and 

K Nearest Neighbor, however, over different cross validation methods, the optimization 

may not be consistent as can be seen with Logistic Regression which achieved a poor 

performance over 70-30 hold-out cross validation method. This work can be used in 

applications where equal values of sensitivity and specificity are expected to be achieved. 

With the help of future work and research on tuning of ensemble learning methods, 
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developing comprehensive frameworks, it is shown that indeed, we have possibility to 

achieve better performance for Sensitivity and Specificity.  

 Hence, as evident from the results, it is empirically concluded that the ensemble 

learning methods additionally provide the confidence of model selection with respect to 

the optimization of performance measures of sensitivity and specificity. 
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CHAPTER 6 

FUTURE SCOPE 

The significant and consistent improvement in optimization of the performance 

measures using ensemble learning demonstrated in this thesis provides a benchmark to 

further evaluate these performance measures for optimization by fine tuning the base 

machine learning algorithms and especially fine tuning the ensemble learners for detailed 

optimization research. For example, fine tuning the number of classifiers, type of 

classifiers and the configuration parameters. Further specific experiments can be 

conducted to assess and evaluate the results specifically for class imbalance classification 

problems. Moreover, apart from bagging, boosting and boosting -- Gradient Boosting 

Model (GBM), other ensemble learning methods like stacked generalization and mixture 

of experts can be experimented and studied in future. Further, the ensemble learning 

methods using different classifiers can be experimented as well. 

As optimization in detail includes fine tuning the parameters and configuration of 

the ensemble learning algorithms as opposed to trying different ensemble learning 

algorithms, it would be beneficial to experiment and evaluate the ensemble learners at the 

configuration level. There is a scope to continue the experimentation over different 

datasets to underscore the claim that ensemble learners can optimize the sensitivity and 

specificity. Bagging and both the boosting ensemble methods were resampled over 30 

iterations in this thesis. As part of future work, more experiments can be conducted by 

fine tuning the number of classifiers/iterations and experimenting the other subsets of the 

same dataset.  
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As the results showed that the base learning algorithms such as the kNN, Logistic 

Regression and SVM using radial basis function performed as better as the ensemble 

learning methods, further research can be conducted to investigate the cause of the same. 

Also, the ensemble of these base learners as opposed to only Decision Trees can be 

implemented to study if there are any further improvements in the performance measures. 

Further, theoretical research can be done to assess, evaluate and validate these 

improvements in performance measures by ensemble learning methods.  

Finally, there is a scope to improve the computational efficiency of the ensemble 

learning methods as these take more computational resources as compared to the base 

learning algorithms. 
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APPENDIX A  

IMPLEMENTATION CODE SAMPLE 
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The following R code provides an example of implementation of two of the learners 

(Boosting using Decision Trees and Stochastic Gradient Boosting Model) for 80-20 cross 

validation method of the first 10,000 instances of the total dataset for this thesis. The 

implementation for all the other learners is similar. The implementation includes data 

pre-processing, normalizing, training the model using training data, using the model to 

predict on the test data and generating/evaluating the performance measures: 

######################################################################## 

# Boosting using Decision Trees (C5.0) and GBM (Stochastic Gradient Boosting Models) 

# Reference: http://machinelearningmastery.com/machine-learning-ensembles-with-r/ 

# Reference: http://amunategui.github.io/bagging-in-R/ 

######################################################################## 

# importing the libraries 

# Hold out Cross validation 80-20 

library(caret) 

library(e1071) 

library(class) 

# package to print the cross table 

library(gmodels) 

# this library for the ksvm method 

library(kernlab) 

# importing the dplyr library 

library(dplyr) 

# for ensemble learning 
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library (caretEnsemble) 

######################################################################## 

# Preprocessing the data 

 

# We will be working on the first 10000 values from the top 

diabDataBoosting <- head(diabData,10000) 

 

# view the summary and the properties of the data 

str(diabDataBoosting) 

head(diabDataBoosting, 100) 

View(diabDataBoosting) 

names(diabDataBoosting) 

dim(diabDataBoosting) 

summary(diabDataBoosting) 

 

# Removing useless variables 

# Removing weight as it has 97% missing values 

diabDataBoosting <- subset(diabDataBoosting,select=-c(encounter_id, patient_nbr, 

weight)) 

 

# drop large factors 

diabDataBoosting <- subset(diabDataBoosting, select=-c(diag_1, diag_2, diag_3)) 
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# Removing "?" 

diabDataBoosting[diabDataBoosting == "?"] <- NA 

 

# convert all NAs into 0  

diabDataBoosting[is.na(diabDataBoosting)] <- 0 

 

# dropping payer_code and medical_specialty as 52% and 53% respectively of the values 

are missing 

diabDataBoosting <- subset(diabDataBoosting, select=-c(payer_code, 

medical_specialty)) 

 

# dropping admission_type_id, discharge_disposition_id and admission_source_id 

diabDataBoosting <- subset(diabDataBoosting,select=-c(admission_type_id, 

discharge_disposition_id, admission_source_id)) 

 

# binarise target value -- data for those admitted <30 days  

diabDataBoosting$readmitted <- ifelse(diabDataBoosting$readmitted == "NO", 0, 1) 

 

# Determining factor values 

#factor_values<-sapply(diabDataBoosting,function(x)is.factor(x)) 

#names(factor_values) 

#non_factor_values<-diabDataBoosting[,names(which(factor_values=="TRUE"))] 
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#names(non_factor_values) 

 

######################################################################## 

# Reference: http://amunategui.github.io/bagging-in-R/ 

# binarize data 

charcolumns <- names(diabDataBoosting[sapply(diabDataBoosting, is.character)]) 

for (colname in charcolumns) { 

  print(paste(colname,length(unique(diabDataBoosting[,colname])))) 

  for (newcol in unique(diabDataBoosting[,colname])) { 

    if (!is.na(newcol)) 

      diabDataBoosting[,paste0(colname,"_",newcol)] <- 

ifelse(diabDataBoosting[,colname]==newcol,1,0) 

  } 

  diabDataBoosting <- diabDataBoosting[,setdiff(names(diabDataBoosting),colname)] 

} 

######################################################################## 

# As we have binarized the nominal data, we need not normalize the data 

# as nominal data cannot be normalized. No further transformation is required for other 

columns 

# however, we require normalization for columns 1 to 8 

 

# normalize function 

normalize <- function(x) { 
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  return (((x - min(x)) / (max(x) - min(x)))*100) 

} 

 

# testing normalize function 

normalize(c(1, 2, 3, 4, 5)) 

 

# testing normalize function 

normalize(c(10, 20, 30, 40, 50)) 

 

# normalization on column 1 to column 8 -- TODO 

diabDataBoosting[,1:8] <- data.frame(lapply(diabDataBoosting[,1:8], normalize)) 

######################################################################## 

# incorporate cross validation to create the training and testing data subsets 

# change this value to change the cross validation approach 

split=0.80 

trainIndex <- createDataPartition(diabDataBoosting$readmitted, p=split, list=FALSE) 

trainBoosting <- diabDataBoosting[ trainIndex,] 

testBoosting <- diabDataBoosting[-trainIndex,] 

######################################################################## 

library(plyr) 

library(dplyr) 

# Changing to as.factor because of the following error: 
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# http://stackoverflow.com/questions/23357855/wrong-model-type-for-regression-error-

in-10-fold-cross-validation-for-naive-baye 

 

# checking if the target value is a factor 

str(trainBoosting$readmitted) 

 

# convert the target value into a factor 

trainBoosting$readmitted<-as.factor(trainBoosting$readmitted) 

 

# checking if the target value is a factor 

str(trainBoosting$readmitted) 

######################################################################## 

# Implementing boosting algorithms 

 

# this will create 30 models using trainControl method 

control <- trainControl(method="repeatedcv", number=10, repeats=3) 

seed <- 7 

metric <- "Accuracy" 

 

# C5.0 (Decision Tree) 

set.seed(seed) 

fit.c50 <- train(readmitted~., data=trainBoosting, method="C5.0", metric=metric, 

trControl=control) 
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# Stochastic Gradient Boosting 

set.seed(seed) 

fit.gbm <- train(readmitted~., data=trainBoosting, method="gbm", metric=metric, 

trControl=control, verbose=FALSE) 

 

# summarize results 

boosting_results <- resamples(list(c5.0=fit.c50, gbm=fit.gbm)) 

# accuracy min, max, meadian and mean 

summary(boosting_results) 

 

# plot results 

dotplot(boosting_results) 

 

# plots the summary of the model and the relevant features 

summary(fit.gbm) 

 

# Reference: Determining the predicted values for the test dataset 

preds <- predict(object=fit.gbm, testBoosting) 

 

# to calculate the accuracy 
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CrossTable(preds, testBoosting$readmitted, 

           prop.chisq = FALSE, prop.t = FALSE, 

           dnn = c('predicted', 'actual')) 

 

# Accuracy using confusion matrix 

confusionMatrix(preds, testBoosting$readmitted) 

 

# plots the summary of the model and the relevant features 

summary(fit.c50) 

 

# Reference: Determining the predicted values for the test dataset 

preds <- predict(object=fit.c50, testBoosting) 

 

# to calculate the accuracy 

CrossTable(preds, testBoosting$readmitted, 

           prop.chisq = FALSE, prop.t = FALSE, 

           dnn = c('predicted', 'actual')) 

 

# Accuracy using confusion matrix 

confusionMatrix(preds, testBoosting$readmitted) 

######################################################################## 
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