

Low Complexity Optical Flow Using Neighbor-Guided Semi-Global Matching

by

Jiang Xiang

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2017 by the
Graduate Supervisory Committee:

Chaitali Chakrabarti, Chair
Lina Karam

Hun Seok Kim

ARIZONA STATE UNIVERSITY

May 2017

i

ABSTRACT

Many real-time vision applications require accurate estimation of optical flow. This

problem is quite challenging due to extremely high computation and memory requirements.

This thesis focuses on designing low complexity dense optical flow algorithms.

First, a new method for optical flow that is based on Semi-Global Matching (SGM), a

popular dynamic programming algorithm for stereo vision, is presented. In SGM, the

disparity of each pixel is calculated by aggregating local matching costs over the entire

image to resolve local ambiguity in texture-less and occluded regions. The proposed

method, Neighbor-Guided Semi-Global Matching (NG-fSGM) achieves significantly less

complexity compared to SGM, by 1) operating on a subset of the search space that has been

aggressively pruned based on neighboring pixels’ information, 2) using a simple cost

aggregation function, 3) approximating aggregated cost array and embedding pixel-wise

matching cost computation and flow computation in aggregation. Evaluation on the

Middlebury benchmark suite showed that, compared to a prior SGM extension for optical

flow, the proposed basic NG-fSGM provides robust optical flow with 0.53% accuracy

improvement, 40x reduction in number of operations and 6x reduction in memory size. To

further reduce the complexity, sparse-to-dense flow estimation method is proposed. The

number of operations and memory size are reduced by 68% and 47%, respectively, with

only 0.42% accuracy degradation, compared to the basic NG-fSGM.

A parallel block-based version of NG-fSGM is also proposed. The image is divided into

overlapping blocks and the blocks are processed in parallel to improve throughput, latency

ii

and power efficiency. To minimize the amount of overlap among blocks with minimal

effect on the accuracy, temporal information is used to estimate a flow map that guides

flow vector selections for pixels along block boundaries. The proposed block-based NG-

fSGM achieves significant reduction in complexity with only 0.51% accuracy degradation

compared to the basic NG-fSGM.

iii

To my Mother and Father

iv

ACKNOWLEDGMENTS

I would first like to express my sincere gratitude to my thesis advisor Dr. Chaitali

Chakrabarti, for the continuous support of my master study and research, for her patience,

motivation, enthusiasm, and immense knowledge. The door to Prof. Chakrabarti office was

always open whenever I ran into a trouble spot or had a question about my research or

writing. I could not have imagined having a better advisor and mentor for my M.S. study.

Besides my advisor, I would like to express my gratitude to the rest of my thesis committee,

I would like to thank Dr. Lina Karam for her teaching in the Image Processing class, where

I developed my interests in computer vision, and referring me to the research opportunities

in Prof. Chakrabarti’s lab. I would like to thank Dr. Hun Seok Kim of the EECS department

at University of Michigan. I enjoyed the opportunity to work closely with him in the past

years. His valuable ideas and insightful comments have helped guide my research.

I would also like to thank Ziyun Li at University of Michigan. He has been a great team

mate in this work. As a member of the Low Power Systems Lab at Arizona State University,

I would like to thank my lab mates, Hsing-Min Chen, Siyuan Wei, Manqing Mao, Jian

Zhou and Shunyao Wu, for their excellent friendship.

Lastly but mostly importantly, I would like to thank my parents, for giving birth to me at

the first place, raising me with unconditionally love, providing me with unfailing support

during my master study.

v

TABLE OF CONTENTS

Page

LIST OF TABLES .. vii	

LIST OF FIGURES ... ix	

CHAPTER

 1 INTRODUCTION ... 1	

 1.1 Motivation ... 1	

 1.2 Contribution .. 3	

 1.3 Organization .. 5	

 2 BACKGROUND ... 7	

 2.1 Optical Flow .. 7	

 2.1.1	 Objective Functions ... 7	

 2.1.2	 Optimization Methods ... 8	

 2.2 Semi-Global Matching .. 9	

 3 OPTICAL FLOW USING NEIGHBOR-GUIED SEMI-GLOBAL MATCHING . 12	

 3.1 Flow Subset Selection ... 13	

 3.2 Pixel-wise Matching Cost ... 17	

 3.3 Cost Aggregation and Flow Computation .. 19	

 3.4 Post Processing ... 22	

 3.5 Complexity Analysis .. 23	

 3.6 Sparse-to-Dense Optical Flow Estimation ... 26	

 4 PARALLEL BLOCK-BASED NG-FSGM ... 30	

 4.1 Image Block Partitioning for Parallel Processing ... 30	

vi

CHAPTER Page

 4.2 Inertial Flow Vector Guidance using Multiple Frames 34	

 4.3 Complexity Analysis ... 36	

 5 EXPERIMENTAL RESULTS... 38	

 5.1 Benchmarks and Evaluation Methodology ... 38	

 5.1.1	 Middlebury .. 38	

 5.1.2	 Evaluation Methodology ... 39	

 5.2 NG-fSGM Results ... 41	

 5.2.1	 Impact of Algorithm Parameters in NG-fSGM ... 41	

 5.2.2	 Comparison between NG-fSGM and Other Methods 45	

 5.2.3	 Sparse-to-Dense NG-fSGM Results .. 48	

 5.3 Block-based NG-fSGM Results .. 49	

 5.3.1	 Impact of Parameters in Block-based NG-fSGM 49	

 5.3.2	 Block-based NG-fSGM using Inertial Guidance Results 51	

 5.3.3	 Sparse-to-Dense Block-based NG-fSGM Results 53	

 6 CONCLUSION .. 54	

 6.1 Contributions .. 54	

 6.2 Future Work .. 55	

REFERENCES ... 57	

vii

LIST OF TABLES

Table Page

3.1 Parameters in NG-fSGM and Block-based NG-fSGM ... 13	

3.2 Memory Size Analysis of NG-fSGM ... 25	

3.3 Computation Analysis of NG-fSGM .. 26	

4.1 Influence of Block Size n × n and Extension l on Accuracy, Latency and Architectural

Complexity .. 33	

4.2 Memory Size Analysis of Block-based NG-fSGM per Block 36	

4.3 Computation Analysis of Block-based NG-fSGM per Block 37	

5.1 Attributes of Middlebury Training Set ... 38	

5.2 Sensitivity of Algorithm Parameters of NG-fSGM .. 41	

5.3 Effect of Census Window Size C ´ C on the Accuracy, Memory Size and Number of

Operations .. 41	

5.4 Effect of Number of Paths P per Scan on the Accuracy, Memory Size and Number of

Operations .. 42	

5.5 Effect of Number of Best Flow Vectors N on the Accuracy, Memory Size and Number

of Operations ... 43	

5.6 Effect of Number of Random Flow Vectors M on the Accuracy, Memory Size and

Number of Operations ... 44	

5.7 Effect of Number of Flow Vectors in Search Window K on the Accuracy, Memory Size

and Number of Operations ... 44	

5.8 Comparison of NG-fSGM, fSGM and Lucas-Kanade .. 46	

5.9 Accuracy, Memory Size and Number of Operations of NG-fSGM+S 48	

viii

Table Page

5.10 Effect of Block Size n on the Accuracy, Memory Size and Number of Operations 50	

5.11 Effect of Overlap Size l on the Accuracy, Memory Size and Number of Operations

 ... 50	

5.12 Comparison Between NG-fSGM+B and NG-fSGM+BI .. 51	

5.13 Accuracy, Memory Size and Number of Operations of NG-fSGM+BIS 53	

ix

LIST OF FIGURES

Figure Page

1.1 Example of Three Frames Which Show the Movement of Letter “E”, and the

Corresponding Optical Flow Maps. 1st Row: Frame 1, Frame 2, Frame 3; 2nd Row:

Optical Flow Between Frame 1 And 2, Optical Flow Between Frame 2 And 3. 2	

2.1 Aggregation of Costs from All Directions R When Number of Paths is 8. 10	

3.1 Overview of Proposed Neighbor-Guided Semi-Global Matching 12	

3.2 Flow Subset Selection. For the Center Pixel p, The Thick Square Represents Flow

Range. The Solid Arrows Represent Path Directions in Forward Scan While Dash

Arrows Represent Path Directions in Backward Scan. The Selected Flow Vectors,

Guided By Neighbor p-r Along Path r, Is The Combination of Flow Vectors From B,

A And R. B Corresponds to the N = 2 Best Flow Vectors and a Corresponds to Their

Adjacent Flow Vectors (K = 9) and R Corresponds to M = 4 Random Flow Vectors.

 ... 15	

3.3 Sampling Pattern Examples Where Grey Pixels are Sampled. Left: F1 = ½, F2 = ½;

Middle: F1 = ½, F2 = 1; Right: F1 = 1, F2 = 1/3. ... 28	

4.1 Two Types of Blocks Extracted From the Images in Middlebury Dataset. (A), (E)

Grove3 And Urban3; (B), (F) Zoomed-In Blocks of Grove3 And Urban3; (C), (G)

Colored Flow Maps Obtained by Directly Applying Original NG-FSGM on the

Marked Block; (D), (H) Colored Flow Maps Using Original NG-Fsgm on The Entire

Image. .. 31	

4.2 An Example of an N × N Non-Overlapping Block in Previous Frame. The

Corresponding M × M Overlapping Block in Previous Frame is Obtained by Extending

x

Figure Page

 L Pixels Along Four Sides, and the Corresponding Overlapping Block in Current

Frame is Obtained by Further Extending D/2 Pixels Along Four Sides. 32	

5.1 Middlebury Training Set With Public Ground Truth ... 39	

5.2 Colored Flow Maps for 3 Types of Scenes Using Different Algorithms. 1st Column:

Rubberwhale; 2nd Column: Urban2; 3rd Column: Venus. 1st Row: Input Previous

Frame; 2nd Row: NG-Fsgm; 3rd Row: Fsgm; 4th Row: Lucas-Kanade. Color Legend is

at Bottom-Left Corner. .. 47	

5.3 Colored Flow Maps for Two Types of Scenes Using NG-Fsgm and Sparse-To-Dense

NG-Fsgm. 1st Row: Grove2, Small Flow Range and Unrefined Image Structures; 2nd

Row: Grove3, Large Flow Range and Refined Image Structures. 1st Column: Input

Previous Frame; 2nd Column: NG-FSGM; 3rd: Sparse-to-Dense NG-Fsgm Where F1 =

3 and F2 = 3. .. 49	

5.4 An Example of Inertial Guidance in Grove3. Top Left: Frame at Time T. Top Right:

Inertial Estimates from [T-1, T]. Bottom Left: Output Flow Using NG-Fsgm+BI.

Bottom Right: Groudtruth Flow. ... 52	

1

CHAPTER 1. INTRODUCTION

1.1 Motivation

Optical flow is a very popular algorithm in computer vision that is used to compute motion

vectors of image pixels from a sequence of images. It is used in the early stages of many

applications such as virtual reality, object detection/tracking, video compression and

autonomous driving. While several definitions of optical flow from the literature highlight

different properties of optical flow, a more recent and well-accepted one by Horn [1]

defines optical flow as “the apparent motion of brightness patterns observed when a camera

is moving relative to objects being imaged”.

In computer vision, information is obtained by spatially and temporally sampling the

incoming light to the camera. Changes of visual patterns in the scene are represented by a

series of image frames, where each image frame is represented by a 2D array of pixels.

Optical flow captures the changes between two frames through a 2D vector field, where

each vector (consisting of one vertical component and one horizontal component) defines

the point correspondence of a pixel. Figure 1.1 shows three frames of a video and the two

corresponding optical flow maps.

Dense optical flow computes a motion vector for each pixel of the image and can be

acquired in different ways. Most existing algorithms compute flow by optimizing a global

energy function in the form of weighted sum of a data term and a prior term, as stated in

2

the taxonomy of Baker et al. [2]. The data term measures consistency of optical flow in the

input images; the prior term refers to flow field’s preference such as flow smoothness.

The optimization strategies used by the global energy function can be categorized into two

different classes: continuous optimization and discrete optimization. Continuous

optimization algorithms, such as those by Baker and Matthews [3], Bruhn et al. [4], and

Zimmer et al. [5], typically require a large number of non-linear computations. In contrast,

discrete optimization algorithms, often used in stereo vision, enhance search efficiency but

sacrifice fidelity by approximating the solution space. See Lempitsky et al. [6], Cooke [7],

and Lei and Yang [8], for more details. Also, unlike discrete optimization methods in stereo,

2D flow fields make discrete optimization significantly more challenging. Therefore, for

large flow displacements, both continuous and discrete optimization algorithms are

Figure 1.1 Example of three frames which show the movement of letter “E”, and the
corresponding optical flow maps. 1st row: frame 1, frame 2, frame 3; 2nd row: optical

flow between frame 1 and 2, optical flow between frame 2 and 3.

3

typically embedded into a coarse-to-fine approach [9] to improve efficiency of

convergence and avoid local minima. However, the hierarchical approach incurs inevitable

accuracy degradation due to resolution loss at higher levels.

Estimating accurate optical flow is challenging in the following areas: occlusion,

transparent objects, low/uniform textures, perspective distortion and repeated patterns. In

recent years, for emerging real-time and power-critical mobile applications including

ADAS (advanced driving assistance system) and autonomous navigation of MAVs (micro

aerial vehicles), there is the added challenge of real-time processing with stringent memory

and computational resource constraints. However, for most existing optical flow

algorithms, memory space and complexity typically increase quadratically with flow

search range. Hence, for even a moderate search range (e.g. 64 ´ 64) and VGA 60fps, state

of the art methods require large memory (~100 MB), high memory bandwidth (~10 GB/s)

and very high computational complexity (~2T op/s). So, there is a need to develop new

schemes for accurate optical flow estimation with significantly reduced complexity.

1.2 Contribution

In this thesis, a novel optical flow algorithm NG-fSGM (Neighbor-Guided Semi-Global

Matching) is presented. This work was done in collaboration with Ziyun Li and Professor

Hun Seok Kim at the University of Michigan. An earlier version of this work appeared in

[10]. The algorithm is based on SGM [11], a popular concept in stereo matching, and fSGM

[9], a prior work that applies SGM to optical flow. Both SGM and fSGM first compute

pixel-wise matching costs for all disparities/flow vectors in the search space. Then a

4

smoothness constraint is added by aggregating costs from multiple directions in image. The

complexity of SGM and fSGM increases with the size of search space. Thus for optical

flow, the complexity increases quadratically with flow range, and is too high for

applications with extreme memory and computational constraints.

Our objective is to achieve performance comparable to fSGM with significantly higher

efficiency. Compared to conventional SGM, the proposed method, NG-fSGM, use the

following techniques to reduce complexity: 1) A subset of flow vectors is selected by

exploring flow similarity of neighboring pixels. This reduces the search space significantly

resulting in significant reduction in memory size and computational complexity. 2) A

simple cost aggregation function is used, which makes logic/arithmetic operations

hardware-friendly. 3) The aggregated cost data is approximated, and pixel-wise matching

cost computation and flow computation is embedded in cost aggregation. Since not all costs

need to be stored, the memory requirement is reduced. 4) Dense flow map is estimated

from sparse flow vectors using interpolation. Since flow estimates are computed for

sampled pixels, both memory size and number of operations are reduced. Of the 4

techniques, the baseline method presented in [10] uses technique 1, 2 and 3 to reduce

complexity.

The proposed method was evaluated on the Middlebury dataset [2]. The impact of

algorithm parameters such as Census size, number of best/random flow vectors and number

of paths, on performance metrics such as accuracy, memory footprint and number of

computations, was studied. This analysis was used to help find the best set of parameters.

5

We show that the proposed basic NG-fSGM provides robust optical flow accuracy with

0.53% accuracy improvement compared to fSGM. Furthermore, NG-fSGM achieves about

40x reduction in the number of operations and 6x reduction in the memory requirement.

We also show that with sparse-to-dense flow estimation, number of operations and memory

size are further reduced by 68% and 47% respectively with only 0.42% accuracy

degradation, compared to the basic NG-fSGM.

A parallel block-based version of NG-fSGM is also presented. An earlier version of the

work appeared in [12]. The image is divided into overlapping blocks and the blocks are

processed in parallel to improve throughput, latency and power efficiency. To minimize

the amount of overlap among blocks with minimal effect on the accuracy, temporal

information is used to estimate a flow map that guides flow vector selections for pixels

along block boundaries.

We show that the proposed block-based NG-fSGM achieves significantly gain in

complexity with only 0.51% accuracy degradation compared to the basic NG-fSGM when

evaluated on the Middlebury dataset. We also conduct a performance analysis by varying

the size of block and overlap, and show that using inertial guidance helps in reducing the

size of overlapped blocks while preserving the accuracy.

1.3 Organization

The rest of the thesis is organized as follows. Chapter 2 presents background information

that is related to the work in this thesis. Chapter 3 presents the proposed optical flow

6

method, NG-fSGM (Neighbor-Guided Semi-Global Matching). Chapter 4 presents its

parallel version, the block-based NG-fSGM. Chapter 5 presents the accuracy results on the

Middlebury optical flow dataset along with the accuracy, memory size requirement and

computational complexity. Chapter 6 summarizes the thesis.

7

CHAPTER 2. BACKGROUND

2.1 Optical Flow

Dense optical flow estimation has been studied for more than 30 years. There is a large

body of work and so here we first describe the popular objective functions used in optical

flow and the optimization procedures in Section 2.1. Next we describe Semi-Global

Matching, a discrete optimizing strategy, which forms the basis of our proposed method.

2.1.1 Objective Functions

Horn and Schunck introduced a global formulation for the optical flow model in 1981 [13].

It assumes that the brightness is constant and apparent motion varies smoothly everywhere

in the image. Following Horn and Schunck’s model, several other models have been

proposed and they are all referred to as Horn-Schunck models. Schulman and Herve [14]

applied the theory of robust statistics to obtain a convex regularization to address motion

discontinuities to compute robust optical flow. Black and Anandan [15] introduced a robust

framework to deal with violations of the brightness constancy and spatial smoothness

assumptions caused by multiple motions. Sun et al. [16] developed a statistical model that

takes into account both brightness constancy errors and spatial properties of optical flow.

There are also many models beyond the Horn-Schunck models. Zimmer et al. [5]

introduced the concept of complementarity between data and smoothness term to avoid

undesirable interference. Lei and Yang [8] estimated optical flow by representing the input

image as a tree of segmented regions and optimizing a region-based energy function.

Wedel et al. [17] used adaptive regularization which adoptively favor rigid motion and

8

motion discontinuities that coincide with discontinuities of the image structure. The

proposed optical method in this thesis follows the Horn-Schunck model.

2.1.2 Optimization Methods

Many methods are proposed to optimize the objective function. Some of the popular ones

with good performance are listed here. Recall that the optimization methods can be divided

into two groups, continuous optimization and discrete optimization. Continuous

optimization methods typically require non-linear computation and have extremely high

complexity. Baker and Matthews [3] used steepest descent which takes steps in the

direction of the negative gradient. Black and Anandan [15] used gradient descent with

modified step size. Bergen et al. [18] and Brox et al. [19] presented coarse-to-fine

approaches to improve convergence rate and avoid local minima. Compared to continuous

optimization methods, discrete optimization methods usually use approximations to

improve search efficiency. Lempitsky et al. [6] used binary graph-cut optimizations to

refine the current flow estimate. Glocker et al. [20] and Lei and Yang [8] sparsely allocate

states for possible flow at each location as a coarse version of the problem. Wedel et al.

[17] used a median filter to remove outliers after each incremental estimation step.

The method proposed in this thesis adopts the discrete optimization strategy and is based

on Semi-Global Matching (SGM) [11]. Next we briefly review SGM and one of its

extensions to optical flow, fSGM [9].

9

2.2 Semi-Global Matching

SGM (Semi-Global Matching) method for stereo vision was proposed by Hirschmuller

[11]. SGM performs a fast approximation of a global cost function optimization by path-

wise optimizations along all directions in the image. It first computes pixel-wise matching

costs of corresponding pixels in two frames for all disparities in the search space. This is

followed by cost aggregation along a finite number of paths in different directions which

penalizes abrupt disparity changes to support a smoothness constraint. Finally, it combines

costs in every direction and selects the disparity with the minimum cost as output.

Additionally, post processing is done to remove outliers.

An extension of SGM method for optical flow, fSGM, was proposed by Hermann and

Klette [9]. fSGM extends the search space from 1D stereo to 2D flow. It is probably the

closest approach to ours hence we review it here.

Step 1: Computation of pixel-wise matching cost C(p,o) between pixel p = (x,y) in the

previous image frame and pixel q = p + o in the current image frame, for all flow vectors

o = (u,v), where u is the horizontal component and v is the vertical component of the flow

vectors. The cost function can be based on many forms such as Rank, Census [21] and

mutual information [22].

Step 2: Application of an additional constraint on matching costs to get the smoothness of

flow image. This step approximates the 2D minimization of a global energy function by

aggregating matching costs in 1D from all directions equally as shown in Figure 1.2. These

10

paths through flow vector space are projected as straight lines into the base image (previous

frame). The smoothness constraint is achieved by penalizing abrupt changes of adjacent

pixels’ flow offsets. The cost Lr(p,o) of the pixel p for a flow vector o accumulated along

a path in the direction r is defined recursively as

 𝐿" 𝒑, 𝒐 = 𝐶 𝒑, 𝒐 + 𝑍 −min
𝒌
𝐿"(𝒑 − 𝑟, 𝒌) (2.1)

with the cost regularization summand

 𝑍 = min
𝒊

𝐿" 𝒑 − 𝑟, 𝒐 + 𝑃4 𝒊 − 𝒐 5 (2.2)

where Pl is the penalty factor and ||i-o||1 is the L1 norm of two flow vectors. Since the full

linear model may result in over-regularization, [9] also suggests optional truncation of the

linear model. The aggregated cost S(p,o) is the sum of Lr(p,o) over all paths.

 𝑆 𝒑, 𝒐 = 𝐿"(𝒑, 𝒐)
"

 (2.3)

Step 3: Flow computation. It uses winner-takes-all strategy by selecting o with the

minimum overall aggregated cost S(p,o) as the output flow vector for pixel p in the base

image.

Figure 2.1 Aggregation of costs from all directions r when number of paths is 8.

11

The complexity of typical SGM-based methods is O(WHD), where W is the width, H is the

height and D is the size of search space. Complexity of fSGM, therefore, increases

quadratically with the flow range (D = d2 where d is one dimensional search range), making

the algorithm rather inefficient for a relatively large search range (e.g., D = 10000 for ±50

pixel search range per dimension). Addressing this issue, fSGM is typically combined with

a hierarchical coarse-to-fine approach that incurs inevitable accuracy degradation due to

resolution loss at higher hierarchical levels. This motivates the necessity of designing lower

complexity alternatives which have comparable accuracy.

12

CHAPTER 3. OPTICAL FLOW USING NEIGHBOR-GUIDED SEMI-GLOBAL
MATCHING

Recall that fSGM consists of the following four steps including pixel-wise matching cost

computation, cost aggregation, flow computation and post-processing. The proposed

optical flow method performs a flow subset selection step before the four main steps of

fSGM [9]. The flow subset selection step reduces the computational and space complexity

by aggressively pruning the search space based on the information provided by neighbors.

We call this method Neighbor-Guided Semi-Global Matching, or NG-fSGM. Additional

methods to reduce the overall complexity include modification of cost aggregation function,

approximation of aggregated cost array, and embedding pixel-wise matching cost

computation and flow computation in aggregation. It was originally presented in [10]. A

block diagram of the proposed optical flow method is shown in Figure 3.1; the parameters

used in this work are listed in Table 3.1.

Figure 3.1 Overview of proposed Neighbor-Guided Semi-Global Matching

13

The rest of chapter is organized as follows. Details of each step of NG-fSGM are presented

in Section 3.1 – 3.4. Complexity analysis of NG-fSGM is presented in Section 3.5.

Additionally, an optimization method based on sparse-to-dense flow estimation that further

reduces complexity is introduced in Section 3.6.

3.1 Flow Subset Selection

Flow subset selection is the first step of optical flow estimation algorithms. Proper selection

reduces the search space size based on the information from neighboring pixels and is the

key to complexity reduction. Using neighborhood information to prune the search space

was used two decades ago in [23] and [24] in the context of block matching for motion

estimation. C. Stiller (1990) [23] introduced a motion-estimation coding algorithm that

combined contour coding of regions which have similar displacements with predictive

coding of the vectors inside each region. This allowed the estimator to work with decreased

block size, resulting in high efficiency. G. Haan et al. (1993) [24] used neighboring block

information in a block erosion post-processing method that effectively eliminated block

structures from the generated vector field. As a result, visible block structures and artifacts

in the motion results were reduced significantly. Recently, PatchMatch [25] used a similar

strategy for correspondence matching. It defined a nearest-neighbor field to quickly find

Table 3.1 Parameters in NG-fSGM and Block-based NG-fSGM
W Image width H Image height
N # best flow vectors M # random flow vectors
P # paths per scan K # flow vectors in search window
C Census window size T Search subset size
P1 Small penalty P2 Large penalty
n Non-overlapping block size d Flow range
m Overlapping block size l Overlap size

14

correspondences between small square regions of an image. Our proposed selection

strategy is inspired by [25].

Neighboring pixels in the natural image tend to have an identical or similar flow vector

since they typically belong to the same object or belong to adjacent objects with similar

motion. This property explains why most algorithms use a flow smoothness constraint as

the prior term. If two pixels belong to the same object in the scene and the object surface

is parallel to the image plane, their optical flow should be identical. Small flow variations

usually occur due to slanted surface of objects, spinning objects, camera position, etc. If

the image resolution is higher or if the number of frames per second is higher, the difference

between flow vectors of two neighboring pixels is smaller. Large flow variations can occur

in the edge of objects and are typically due to occlusion and motion discontinuity.

NG-fSGM exploits the property that neighboring pixels have similar flow vectors. It selects

a subset of search space, Op for each pixel p, where the selection is based on neighbor

pixels’ results of flow vectors and their corresponding cost. This step is done prior to the

computation of pixel-wise matching cost and is embedded into the dynamic programming

scheme of SGM.

The subset selection for each pixel p is guided by its neighboring pixels along every path

in SGM, as shown in Figure 3.2. Let Q denote a set of flow vectors. For pixel p, the best N

flow vectors Qp-r of the previous pixel along path r with minimum cost Lr(p-r,o), are added

into the search subset Op. We choose the best N vectors denoted by ‘B’ in Figure 3.2. N is

15

chosen to be greater than one for robustness to errors caused by accumulated cost variation

along a path and localized abnormality of pixel-wise matching cost. Since SGM applies a

low aggregation penalty when the flow varies smoothly, adjacent flow vectors denoted by

‘A’ in Figure 3.2 within a search window centered at each of the N best vectors, are selected

for cost evaluation as well. To enable the algorithm to adapt to rapid flow variation (e.g.,

occlusion and object discontinuity), M random flow vectors are added to the subset. Note

that for pixels along the boundary of the image, some of the neighboring pixels are not

available. The flow subset for these pixels are selected randomly to allow simple and fast

initialization.

Since SGM approaches are typically implemented in a dynamic programming scheme

which consists of two scans, forward scan and backward scan, paths are divided into two

Figure 3.2 Flow Subset Selection. For the center pixel p, the thick square represents
flow range. The solid arrows represent path directions in forward scan while dash

arrows represent path directions in backward scan. The selected flow vectors, guided
by neighbor p-r along path r, is the combination of flow vectors from B, A and R. B
corresponds to the N = 2 best flow vectors and A corresponds to their adjacent flow

vectors (K = 9) and R corresponds to M = 4 random flow vectors.

16

groups as well, as shown in Figure 3.2. The forward scan processes every pixel from top-

left to bottom-right of the image in raster scan order, while the backward scan processes

pixels in reverse order. In each scan (forward and backward), each pixel performs flow

subset selection, pixel-wise matching cost computation, cost aggregation and best flow

selection; the flow computation is only performed in the backward scan. As a result, each

pixel p has two different flow vector subsets, Op1 and Op2, and two different aggregated

costs, represented by S1(p,o) and S2(p,o), for each flow vector, one for each scan. The

overall subset Op is the union of Op1 and Op2, and the overall aggregated cost S(p,o) is the

sum of S1(p,o) and S2(p,o).

In case the aggregated cost from one scan is missing for a certain o, we propose in Section

3.4 an approximation strategy to estimate the missing cost and combine forward and

backward aggregation. Additionally, in the backward scan, N best flow vectors from the

forward scan with minimum cost S1(p,o) and their adjacent vectors (located in the search

window) are added to Op2 to increase algorithm accuracy. Basically this prevents wrong

selection in single scan since flow could be inconsistent in certain directions.

The flow vectors chosen by different aggregation paths may not be distinct since

neighboring pixels’ best vectors can be identical and the search windows (i.e., B’s and A’s

in Figure 3.2) can overlap. If redundancy is ignored (worst case), the total number of

vectors in the search subset is T = N × (P + 1) × K + M, where P is the number of

aggregation paths per scan and K is number of flow vectors in the search window. The

complexity of the steps after flow subset selection in NG-fSGM is O(WHT), which is

17

independent of flow search range (D = d2). Thus in order to reduce the overall complexity,

we need to select the smallest possible values for N, P, K and M while maintaining the

accuracy. In actual implementation, images with larger flow displacements have higher

percentage of selected flow vectors because of lower redundancy, while smaller flow

images have higher redundancy and thus lower complexity.

3.2 Pixel-wise Matching Cost

The pixel-wise matching cost computation is an important step, since it is the source of all

other types of aggregated cost. The cost value is a local dissimilarity measurement between

two corresponding pixels in the previous and current images. Let C(p,o) represent the pixel-

wise matching cost between pixel p = (x,y) in the previous image and pixel q = p + o in the

current image, where o = (u,v) is the flow vector whose horizontal component is u and

vertical component is v. Various pixel-wise matching cost measurements have been

proposed including BCA (brightness constancy assumption) [13], NCC (normalized cross

correlation) [26], Mutual information [11] and Census Transform [21]. A comprehensive

review of different cost measurements is presented in [27]. Using a combination of

different cost measures results in improved overall optical flow accuracy. In our proposed

method, we generate the pixel-wise matching cost by combining two measures: BCA and

Census Transform [21].

BCA [13] cost is probably the simplest and most common cost measure. It assumes that

when a pixel moves from the previous image to the current image, its intensity and color

18

does not change. The BCA cost penalizes the intensity changes of moving pixels in the

image. It is defined as

 𝐶789 𝒑, 𝒐 = 𝐼 𝒑, 𝑡 − 𝐼(𝒑 + 𝒐, 𝑡 + 1) (3.1)

Census Transform [21] has been proven to represent image structure well and to be robust

to environment of variations [28]. In the Census Transform of an image, a bit string is

assigned to every p, where each bit is 1 (or 0) if the intensity of p is larger (or smaller) than

p’s neighboring pixels pn within a pre-defined window Np. It can be expressed as

 𝐶𝑒𝑛𝑠𝑢𝑠 𝒑 = ⨂𝜉 𝒑, 𝒑C ,				𝒑C ∈ 𝑵𝑷 (3.2)

 𝜉 𝒑, 𝒑C = 1,					𝑖𝑓 𝐼 𝒑 < |𝐼 𝒑C |
0,																			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3.3)

where Ä is the concatenation operator. The Census Transform based matching cost

between p in the previous image and p+o in the current image in defined as the Hamming

Distance between two bit strings of Census Transform of p and p+o

 𝐶8PCQRQ 𝒑, 𝒐 = 𝐻𝑎𝑚𝑚𝑖𝑛𝑔(𝐶𝑒𝑛𝑠𝑢𝑠 𝒑 , 𝐶𝑒𝑛𝑠𝑢𝑠 𝒑 + 𝒐) (3.4)

We choose the final pixel-wise matching cost to be a weighted linear combination of the

BCA cost and Census Transform cost.

 𝐶 𝒑, 𝒐 = 𝛼 ∙ 𝐶789 𝒑, 𝒐 + 𝐶8PCQRQ 𝒑, 𝒐 (3.5)

where a is the weight for the BCA cost. We choose the value of a to be proportional to the

Census window size. For instance, through simulation results, we find that 0.06 for a 9 × 9

window and 0.1 for a 11 × 11 window gives the best performance.

19

In a typical implementation of SGM, the costs C(p,o) are pre-calculated and stored in an

integer array of size W × d × D. However, in the proposed NG-fSGM, since a subset of

flow vectors is selected, only a small number of pixel-wise matching costs need to be

calculated. Thus the calculation of C(p,o) is part of the cost aggregation step and is

performed only when o is selected.

There are typically two options to choose what data should be stored. One option is to store

two original images, and compute both BCA cost and Census Transform cost on the fly.

This option requires smaller memory (W × H × 2 bytes) but more computational cost since

Census Transform is performed twice for each C(p,o). Another option is to store two

original images and pre-calculate Census Transform of two images. This option requires

larger memory (W × H × 32 bytes for a 11 × 11 Census window) but has less computational

burden. We make a tradeoff between these two options to address both memory size and

number of operations. We store two original images and only a strip (W × d) of Census

Map. Thus for a 11 × 11 Census window, the storage requirement is W × d × 15 + W × H

× 2 bytes. However, the Census Transform is now computed twice for each pixel due to

two scans of the image.

3.3 Cost Aggregation and Flow Computation

Using pixel-wise matching cost to directly compute flow always results in large errors since

a wrong flow vector can easily have a lower cost than the correct one. This is especially

true in certain conditions such as non-texture, repeated pattern and occlusion regions. So

pixel-wise matching costs need to be modified based on an additional constraint. Flow

20

smoothness is a popular constraint used to penalize changes of neighboring flow vectors.

The proposed NG-fSGM use a single-step Potts model [29]. The pixel-wise matching cost

and the smoothness constraint are embedded in a global energy function E that depends on

the flow map F:

 𝐸 𝐹 = [𝐶 𝒑, 𝒐𝒑 + 𝑃5
𝒒∈]𝒑	^C_	 𝒐𝒑`𝒐𝒒

abc

+ 𝑃c
𝒒∈]𝒑	^C_	 𝒐𝒑`𝒐𝒒

adc

]
𝒑

 (3.6)

The first term in equation (3.6) is the sum of all pixel-wise matching costs for all pixels p

and their corresponding flow vectors o in F. The second and third terms map the

smoothness constraint onto the energy function. The second term adds a small penalty P1

to all pixels q in the neighborhood Np of p, if q’s flow vector oq is different from but

adjacent to p’s flow vector op. A smaller penalty allows smaller flow changes due to slanted

surface, spinning objects etc. The third term adds a large penalty P2 if there are any large

changes in the neighboring flow vector. A larger penalty enables the algorithm to adapt to

motion discontinuation. Penalties P1 and P2 are both external constant parameters.

To compute dense optical flow, we need to find the flow map that minimizes the global

energy function, which is an NP-complete problem. Fortunately, the Semi-Global

Matching method [11] can be used to aggregate matching costs in 1D from all directions

equally. Since 1D optimization can be performed efficiently in polynomial time, the

problem is tractable. Details of the SGM aggregation method was introduced in Section 2.

In the proposed NG-fSGM, the cost Lr(p,o) of the pixel p for a flow vector o accumulated

along a path in the direction r is defined recursively as

21

 𝐿" 𝒑, 𝒐 = 𝐶 𝒑, 𝒐 + 𝑍 −min
𝒋
𝐿"(𝒑 − 𝑟, 𝒋) (3.7)

with the cost regularization summand

 𝑍 = min	[𝐿" 𝒑 − 𝑟, 𝒐 , min
|𝒊`𝒐|abc

𝐿" 𝒑 − 𝑟, 𝒊 + 𝑃5 ,min𝒋 𝐿" 𝒑 − 𝑟, 𝒋 + 𝑃c] (3.8)

The cost regularization summand adds the smallest sum of cost of the previous pixel p-r of

the path r and the corresponding penalty.

Typical SGM-based methods store Lr(p,o) in an array of size W × P × D × 2 (for 8 paths)

in order to compute the cost regularization summand Z. NG-fSGM uses the best N flow

vectors Q for each path and their costs to approximate the original array so that the array

size can be reduced to W × P × N × 2. If the cost Lr(p-r,o) is not available in Qp-r along a

certain direction r, it is assigned the minimum value in Qp-r plus P2.

To compute flow, typical SGM-based methods store the overall aggregated cost S(p,o) for

all searched flow vectors Op in an array of size W × H × D, and update the values by

accumulating path-wise aggregated cost Lr(p,o). NG-fSGM avoids such a large memory

usage by storing only the N best flow vectors Bp and their corresponding aggregated cost

S1(p,o) from forward scan to approximate Op1 in backward scan. As a result, the array size

is reduced from W × H × D to W × H × N.

To avoid the storage of aggregated cost in the backward scan, for each pixel p, cost

aggregation is directly followed by flow computation. The total number of flow vectors is

22

the union of best N vectors, Bp, from forward scan and the neighbor-guided vectors from

backward scan, Op2. For the vectors whose cost has not been calculated in either the

forward or the backward scan, the following rules are applied to derive the missing costs.

Specifically, the missing costs in forward scan are assigned the maximum cost in Bp plus

P2, while the missing costs in backward scan are assigned the maximum cost in Op2. The

overall cost S(p,o) is the sum of cost from two scans.

 𝑆 𝒑, 𝒐 = 𝐿"(𝒑, 𝒐)
"

 (3.9)

Finally, the output flow vector o is the one corresponding to the minimum cost S(p,o).

3.4 Post Processing

The initial estimated optical flow maps have outliers due to mismatches and occlusions.

Additionally, semi-global methods are not robust to large areas with homogeneous,

textureless and repeated patterns. Thus a post-processing step is needed to refine the flow

map. Of the many post-processing methods that have been proposed in recent years, we

choose the median filter. Specifically, after the initial flow results are computed, a 3 ´ 3

median filter is applied on both channels (horizontal and vertical components) of the flow

map to remove errors and smoothen flow fields.

For higher accuracy, especially at object boundaries, a more complex method is used. A

consistency check between previous and current frame (similar to left-right check for stereo

[11]) can be applied to determine occlusions and false matches. If the current frame is at t

23

and the previous frame is at t-1, then a flow map Ft-1,t is calculated by treating frame at t-1

as the base image and a flow map Ft,t-1 is calculated by treating frame at t as the base image.

The invalid flow vectors are identified by comparing each flow vector in Ft-1,t to its

corresponding flow vector in Ft,t-1. If the flow vector at pixel (x,y) in Ft-1,t is (u,v) and the

flow vector at pixel (x+u,y+v) is not (-u,-v), then the flow vector in Ft-1, t is set to be invalid.

If the majority of the neighboring flow vectors of an invalid flow vector are valid, the flow

vector is flagged as a mismatch; otherwise, it is considered as occlusion. A 3 ´ 3 median

filtering operation is done around each mismatched flow vector to compute its value.

3.5 Complexity Analysis

We analyze the complexity of the proposed NG-fSGM with respect to memory size and

number of operations. The parameters are as follows: the image size is W ´ H, the number

of best flow vectors is N, the number of random flow vectors is M, the number of paths per

scan is P, the number of flow vectors in the search window is K, the maximum search space

subset size is T where T = KN(P+1) + M, the flow search range is d, and the Census

transform window size is C ´ C. Also see Table 3.1. We provide the formulas to calculate

both the memory size and the number of operations. We also provide numbers for a typical

scenario with W = 640, H = 480, N = 3, M = 3, P = 4, K = 9, d = 63 and C = 11.

To estimate the minimum memory size, we analyze different data types and their life span

in the algorithms. Let each step of the algorithm be denoted by a number: 1 – Flow subset

selection; 2 – Pixel-wise matching cost computation; 3 – Cost aggregation; 4 – Best flow

selection; 5 – Flow computation. The memory footprint is dominated by the second scan,

24

since the search space size in the second scan is larger. The larger search space is due to

extra KN flow vectors from the first scan. Thus here we provide the memory size analysis

for the second scan.

Table 3.2 presents the memory analysis. Two grayscale input images need to be stored all

the time in order to compute BCA costs and Census transform. Census map for one pixel

needs to be stored for the previous frame, while Census map for pixels within a W ´ d

sliding window needs to be stored for the current frame. The Census map for each pixel

requires (C2-1)/8 bytes. Each flow vector requires 4 bytes – 1 byte for the horizontal

component, 1 byte for the vertical component and 2 bytes for the cost. Thus all the memory

to store cost-related data is scaled by a factor of 4 (see rows 3-7 in Table 3.2). Pixel-wise

matching costs, aggregated costs along paths and overall aggregated costs need to be stored

only temporarily. Since the maximum number of flow vectors is T, the corresponding

memory size is proportional to T (see rows 4-6 in Table 3.2). For aggregated cost along

paths, memory size is also proportional to number of paths per scan P, making the memory

size 4PT. In order to guide flow selection, a row of best N flow vectors along paths needs

to be stored, thus the corresponding memory size is proportional to WPN. The overall best

N flow vectors for every pixel need to be stored all the time, so the memory size for this

step is proportional to WHN. The final flow map has 2 bytes per flow vector, one for the

horizontal component and one for the vertical component.

For a typical scenario, we see that the memory size is dominated by the memory required

to store overall best flow (3600 KB), followed by input images (600 KB), flow map (600

25

KB) and Census map (590.64 KB). Since the image size and flow range are fixed, the

overall memory size is dominated by number of best flow vectors N and Census window

size C.

Table 3.3 shows the computation analysis. Census transform requires 2C2 operations for

each pixel, and thus 4C2WH operations for each scan. The number of operations for flow

subset selection, pixel-wise matching cost, cost aggregation and best flow selection is

proportional to the flow subset size, which is T-KN in the first scan and T in the second

scan. The flow subset selection step first selects flow vectors using a hash set with

NP(2+3K)+5M operations in the first scan and NP(2+3K)+5(M+KN) in the second scan.

Then it initializes temporary cost arrays with (6+2P) operations for each selected flow

vector. The pixel-wise matching cost for each flow vector is computed by calculating the

Hamming distance with 2C2 operations and adding the BCA cost with 6 operations. The

cost aggregation step compares the current flow vector with the best N flow vectors from

Table 3.2 Memory Size Analysis of NG-fSGM

Data Type Life Span Memory Size / B Example/ KB

Input Images 1-5 2WH 600

Census Map 1-5 (Wd+1)(C2-1)/8 590.64

Pixel-wise Matching Cost 2-3 4T 0.54

Aggregated Cost along Paths 3-4 4PT 2.16

Overall Aggregated Cost 3-5 4T 0.54

Best Flow along Paths 1-5 4WPN 30

Overall Best Flow 1-5 4WHN 3600

Flow Map 1-5 2WH 600

26

every path, thus the number of operations is proportional to P and N. The best flow

selection step selects N(P+1) flow vectors in the first scan and NP flow vectors in the

second scan so the number of operations is proportional to N(P+1) and NP, respectively.

The flow computation first combines best N flow vectors in the first scan and T flow vectors

in the second scan using 4TN operations, and then selects the output flow vector using 3T

operations.

Based on this analysis, we see that the overall number of operations is dominated by pixel-

wise matching cost computation and cost aggregation steps. Since T = KN(P+1) + M, the

overall computation complexity is controlled by number of best flow vectors N, number of

paths P, Census window size C and number of flow vectors in search window K.

3.6 Sparse-to-Dense Optical Flow Estimation

The proposed baseline optical flow algorithm has high complexity as shown in the previous

section. Thus it is not applicable for some computer vision applications with extreme

Table 3.3 Computation Analysis of NG-fSGM
Algorithm Steps Number of Operations Example / 109

1st
Scan

Flow Subset Selection [(T-KN)(6+2P)+NP(2+3K)+5M]WH 0.59
Census Transform 4C2WH 0.15

Pixel-wise MC Computation (T-KN)(6+2C2)WH 8.46
Cost Aggregation (T-KN)P(6N+18)WH 4.91

Best Flow Selection (T-KN)(P+1)(4N+2)WH 2.39
2nd

Scan
Flow Subset Selection [T(6+2P)+NP(2+3K)+5(M+KN)]WH 0.71

Census Transform 4C2WH 0.15
Pixel-wise MC Computation T(6+2C2)WH 10.51

Cost Aggregation TP(6N+18)WH 6.10
Best Flow Selection TP(4N+2)WH 2.37
Flow Computation (4TN+3T)WH 0.64

27

computational, memory and power constraints. We address the complexity problem by

estimating dense optical flow from sparse optical flow using interpolation techniques,

where sparse flow vectors are computed by performing NG-fSGM on sampled pixels.

Since the algorithm complexity of NG-fSGM is proportional to number of pixels, dense

optical flow can be computed more efficiently using the proposed sparse-to-dense NG-

fSGM method.

The idea of sparse-to-dense estimation is not new. Previous works always estimated sparse

flow vectors based on tracked features [30]. Unfortunately, feature-based matching is not

hardware-friendly; it introduces irregularities and typically has higher cost for both

memory size and number of computations. Also, due to outliers in the sparse optical flow

and uneven covering of the images, generic interpolations techniques such as linear

interpolation and polynomial interpolation do not work well and more expensive learning-

based interpolators are needed [31]. In this work, we propose to use simple interpolation

of optical flow vectors of sampled pixels to address both complexity and accuracy concerns.

The sparse-to-dense NG-fSGM method starts by estimating sparse flow vectors for

sampled pixels. Sampled pixels must be able to form a new image while maintaining their

relative positions in the original image, so that cost aggregation can be done correctly. This

puts a restriction on the number of possible subsampling methods. Figure 3.3 shows some

examples of sampling patterns with different values of f1 and f2, where f1 is the horizontal

sampling rate and f2 is the vertical sampling rate. After the new image is generated from

sampled pixels, NG-fSGM computes a flow vector for each pixel in the new subsampled

28

image and then maps them to the previous location in the original image. Note that the

pixel-wise matching cost used for computing the sparse flow vectors is based on the Census

transform of the original image to avoid resolution loss.

Extending the sparse flow vectors to dense flow vectors is a regression problem.

Interpolation is a good method for approximating the value of an unknown point given the

values of its neighboring points. The proposed sparse-to-dense NG-fSGM method

performs interpolation in two steps. Assuming that neighboring pixels tend to have

identical or similar motion, to compute flow vector op at pixel p, the algorithm selects the

known flow vectors which have the minimum pixel distance as candidates. It is similar to

nearest-neighbor interpolation which locates the nearest point and assigns the same value

to the unknown point. This method is favored for high-dimensional interpolation because

of its speed and simplicity. Second, assuming that neighboring pixels with identical color

tend to belong to the same object and thus have similar motion, the proposed method selects

the pixel q with the smallest intensity difference from pixel p among the candidates in the

first step, and assigns the same flow vector oq to pixel p.

Figure 3.3 Sampling pattern examples where grey pixels are sampled. Left: f1 = ½, f2 =
½; Middle: f1 = ½, f2 = 1; Right: f1 = 1, f2 = 1/3.

29

The sparse-to-dense NG-fSGM method reduces memory size and number of operations.

According to Table 3.2, the memory size is dominated by the storage required for overall

best flow vectors. Through this method, that memory is reduced by a factor of f1 f2. Also,

the memory for best flow vectors along path which stores flow vectors and costs for a row

is reduced by a factor of f2. The memory size for other data types remain the same. For the

typical scenario, the total memory size is reduced from 5423 KB to 2708 KB, if f1 = 2 and

f2 = 2.

According to Table 3.3, the number of operations for all steps except Census transform for

the current frame is proportional to image size. Since the image size has effectively reduced

by f1 f2, and the number of additional operations for interpolation step is negligible, the

total number of operations is only f1 f2 of the original. For the typical scenario, the total

number of operations is reduced from 36.97´109 to 9.46´109, if f1 = 2 and f2 = 2.

30

CHAPTER 4. PARALLEL BLOCK-BASED NG-FSGM

In order to reduce memory space requirement and to improve latency, throughput and

power efficiency of NG-fSGM, we present a parallel block-based NG-fSGM method. An

earlier version of this work appeared in [12]. Recall that the memory size and number of

operations in NG-fSGM is a function of the image size. Thus for the block-based method,

the memory space requirement and latency are significantly smaller since they are

proportional to the block size. Also, the throughput linearly improves with the number of

parallel block processing cores. So for the same throughput, multiple parallel block

processing cores can operate at lower clock frequency and lower voltage, thereby achieving

lower power.

In the proposed block-based NG-fSGM method, input images are divided into overlapping

blocks and the blocks are processed in parallel. While larger overlap between blocks

improves the accuracy, it results in larger memory and higher computational complexity.

So we propose to minimize the amount of overlap among blocks and address the accuracy

issues by using a new method called inertial guidance. In this method, temporal information

is used to estimate a flow map and guide flow vector selections along the block boundary.

4.1 Image Block Partitioning for Parallel Processing

In the naive block-based implementation, the input frames are partitioned into non-

overlapping blocks and the NG-fSGM algorithm is applied to each block in parallel.

Unfortunately, this non-overlapping block approach reduces the algorithm accuracy. The

31

performance degradation is due to several factors. The first factor is due to the flow subset

selection step of NG-fSGM. For pixels at the image (block) boundary, NG-fSGM uses

random flow vectors to initialize the search subset so it takes some time (in term of pixel

propagation) until correct flow vectors appear in neighbor guided propagation. Second,

since the aggregating paths accumulate information from boundary to inner pixels, for

pixels at the boundary, not enough flow and cost information is accumulated from certain

directions making the cost aggregation relatively unreliable. The third factor applies to all

global optical flow algorithms using block partitioning for parallel processing. The flow

smoothness constraint is interrupted at the boundary between two blocks, which results in

wrong flow estimations especially for blocks with ambiguous texture.

Figure 4.1 Two types of blocks extracted from the images in Middlebury dataset. (a),
(e) Grove3 and Urban3; (b), (f) zoomed-in blocks of Grove3 and Urban3; (c), (g)

colored flow maps obtained by directly applying original NG-fSGM on the marked
block; (d), (h) colored flow maps using original NG-fSGM on the entire image.

32

Figure 4.1 shows two types of blocks with either low-texture or repeated-patterns extracted

from the images in the Middlebury dataset. When NG-fSGM is applied to the highlighted

block (Figure 4.1(b)) in Grove3 image (Figure 4.1(a)), errors appear near the boundary of

the block (Figure 4.1(c)). For comparison, Figure 4.1(d) shows the result with no errors

when the NG-fSGM is applied to the entire image without block segmentation. The block

with highly repeated patterns, Figure 4.1(f), captured from Urban3 (Figure 4.1(e)) suffers

from ambiguity during pixel-wise matching in non-overlapping block processing. Incorrect

flow estimates at block boundaries propagate over the block (Figure 4.1(g)) while the

original NG-fSGM over the entire image correctly estimates the flow for the same region

(Figure 4.1(h)).

Figure 4.2 An example of an n × n non-overlapping block in previous frame. The
corresponding m × m overlapping block in previous frame is obtained by extending l
pixels along four sides, and the corresponding overlapping block in current frame is

obtained by further extending d/2 pixels along four sides.

33

In order to improve the accuracy of block-based NG-fSGM, the three factors described

earlier need to be addressed. We propose an overlapping block partitioning scheme where

the previous frame is first divided into n × n non-overlapping blocks, and then each block

is extended by l pixels along four sides, resulting in m × m overlapping blocks, where m =

n + 2l. The current frame is divided into overlapping blocks as well, but with block size of

m + d - 1 per dimension, where d is the flow search range. The output flow map of the

entire image is built using the flow map of each n × n block. Figure 4.2 shows an example

of non-overlapping block and its extensions. Since the flow vectors of the boundary pixels

in each overlapping block are not considered in the final flow map, errors corresponding

to the first two factors, namely flow subset initialization and unreliable cost aggregation,

can be reduced. Additionally, flow smoothness constraints can be imposed across the block

boundary.

Generally, larger size of non-overlapping block and larger number of extended pixels result

in better flow accuracy, at the expense of higher latency, computational cost and memory

requirement. For a certain image size, the parameter n defines the number of blocks to be

processed, and together with l, n also defines the complexity that is a function of the

memory size, memory bandwidth and the number of operations. Table 4.1 summarizes the

effect of parameters n and l on flow accuracy, latency and complexity. The accuracy is

Table 4.1 Influence of Block Size n × n and Extension l on Accuracy, Latency and
Architectural Complexity

Parameters Accuracy Latency Complexity
n ¯
l

34

based on experimental evaluation on the Middlebury dataset. The latency is linear in the

size of overlapping block, m = n + 2l. Larger n and l both increase the memory and

computation requirements per block, though larger n reduces the number of blocks to be

processed.

While overlapping of the blocks can significantly improve the flow accuracy, it also

increases the algorithm complexity from O(n2) to O(m2), where m = n + 2l. In Section 4.2,

we describe a method to reduce the overlapping overhead by utilizing temporal information

from the previous frame to guide the flow vector selection at the block boundary.

If sparse-to-dense flow estimation is applied to the block-based NG-fSGM, the block size

will influence the overall accuracy. The smaller block size results in lower accuracy of

estimated sparse flow vectors and thus less reliable interpolation due to more outliers of

the sparse estimation. So the smaller block size can only support lower subsampling levels

(i.e. smaller f1 and f2). Since the complexity of the sparse-to-dense block-based NG-fSGM

is proportional to m, f1 and f2, we need to make a tradeoff between block size and

subsampling level.

4.2 Inertial Flow Vector Guidance using Multiple Frames

The overlapping region in the block-based NG-fSGM method can be reduced if good flow

vector candidates are included in the search space of the boundary pixels. We propose to

use temporal information from the previous pair of frames to provide good candidates.

Using information from multiple frames to compute optical flow has been introduced in

35

many methods. Irani [32] presented an approach for simultaneous estimation of optical

flow across multiple frames based on the observation that the set of all flow fields across

multiple frames reside in a low-dimensional linear subspace. Based on Irani’s method,

Chia-Ming et al. [33] introduced a feature-based algorithm based on the image flow

constraint equation in a local patch across multiple frames. Recently, Kennedy and Taylor

[34] proposed an optical flow estimation method of dealing with temporal information in

multiple frames by using ‘inertial estimates’ of the flow. They first used a base algorithm

to estimate flow for three pairs of frames, then combined these estimates using a classifier-

based fusion scheme, which significantly improves results. Our method is inspired by

‘inertial estimates’ in [34] but we use our base algorithm only once for each pair of frames.

Assuming that each object in the scene is carried by inertia and thus moves at a constant

velocity, and also moves parallel to the image plane, then the flow map Ft, t+1 between

frames [t, t+1] can be estimated from the flow map Ft-1, t between frames [t-1, t]. Let (i, j)

denote pixel index, and let (u, v)(I, j) and (u’, v’)(I, j) denote flow of pixel (i, j) between time

frames [t, t + 1] and [t – 1, t], respectively. Then the following relationship holds.

 (𝑢, 𝑣)(hiRj,kilj) = (𝑢m, 𝑣m)(h,k) (4.1)

We use the equation to provide the inertial guided flow estimates. For each pixel in the

extended region (grey area in Figure 4.2) in the m × m block, inertial guided flow estimates

are more reliable, in general, than neighbor guided flows especially when the neighbors are

closer to the block boundary where flow vectors are randomly initialized. Thus, we add the

inertial guided flow vector to the search subset. This approach helps in reducing the size of

36

the extended region for overlapped block processing with very little degradation in

algorithm accuracy.

4.3 Complexity Analysis

The complexity of the block-based NG-fSGM for each overlapping block is derived along

the same lines as the analysis in Section 3.5. However there are some minor differences.

First, if Census map within a strip is computed on the fly, the block boundary is extended

by C/2 pixels, where C × C is the Census window size. The block boundary in current

frame is further extended by d/2 pixels, where d is the flow search range. Thus the memory

size for input image blocks is increased to (m+C)2 in previous frame and (m+d+C)2 in

current frame. Second, in order to implement inertial flow vector guidance, the previous

flow map requires additional memory for the overlapping pixels. Third, since only one

additional inertial guided flow vector is considered for only boundary pixels, their

additional complexity is negligible.

Table 4.2 Memory Size Analysis of Block-based NG-fSGM per Block

Data Type Life Span Memory Size / B Example/ KB

Input Images 1-5 (m+C)2+(m+d+C)2 27.54

Census Map 1-5 [(m+d)d+1](C2-1)/8 124.60

Pixel-wise Matching Cost 2-3 4T 0.54

Aggregated Cost along Paths 3-4 4PT 2.16

Overall Aggregated Cost 3-5 4T 0.54

Best Flow along Paths 1-5 4mPN 3.38

Overall Best Flow 1-5 4m2N 60.75

Flow Map 1-5 2m2 10.13

Inertial Estimation 1-5 2(m2-n2) 2.13

37

Table 4.2 and 4.3 shows the analysis of memory size and number of operations respectively.

We also provide the numbers for a typical set of parameters: n = 64, m = 72, N = 3, M = 3,

P = 4, K = 9, d = 63 and C = 11. Like the basic NG-fSGM, the memory size is dominated

by the memory required to store Census map, overall best flow and input images. The

distribution is as follows: Census map 54%, overall best flow 26% and input images 12%.

The number of operations is dominated by pixel-wise matching cost computation (51%)

followed by cost aggregation (29%).

Table 4.3 Computation Analysis of Block-based NG-fSGM per Block

Algorithm Step Number of Operations Example / 106
1st

Scan
Flow Subset Selection [(T-KN)(6+2P)+NP(2+3K)+5M]m2 9.9

Census Transform 2C2m2+2C2(m+d)2 5.7
Pixel-wise MC Computation (T-KN)(6+2C2)m2 142.7

Cost Aggregation (T-KN)P(6N+18)m2 82.9
Best Flow Selection (T-KN)(P+1)(4N+2)m2 40.3

2nd
Scan

Flow Subset Selection [T(6+2P)+NP(2+3K)+5(M+KN)]m2 11.9
Census Transform 2C2m2+2C2(m+d)2 5.7

Pixel-wise MC Computation T(6+2C2)m2 177.4
Cost Aggregation TP(6N+18)m2 103.0

Best Flow Selection TP(4N+2)m2 40.1
Flow Computation (4TN+3T)n2 10.7

38

CHAPTER 5. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed algorithms on the Middlebury optical flow dataset

[2]. Our baseline optical flow method is denoted as NG-fSGM. When the proposed sparse-

to-dense flow estimation, basic block-based processing and inertial flow vector guidance

techniques are used, NG-fSGM is appended with “S” (sparse-to-dense), “B” (block) and

“I” (inertial), respectively.

5.1 Benchmarks and Evaluation Methodology

We evaluated the proposed algorithm with respect to accuracy and complexity on the

Middlebury optical flow benchmark [2]. Average endpoint error percentage was used as

the metric for accuracy. Here we briefly review the Middlebury benchmark and the

evaluation methodology.

5.1.1 Middlebury

Middlebury optical flow benchmark was introduced by S. Baker et al. in 2010 [2] for a new

generation of optical flow algorithms. It provided four types for data to test different

Table 5.1 Attributes of Middlebury Training Set
Scene Name Number of Frames Type Max Flow Range
Dimetrodon 2 Hidden Texture 11

Grove2 8 Synthetic 11
Grove3 8 Synthetic 31

Hydrangea 8 Hidden Texture 25
RubberWhale 8 Hidden Texture 11

Urban2 8 Synthetic 45
Urban3 8 Synthetic 37
Venus 2 Stereo 21

39

aspects of optical flow algorithms: (1) sequences with non-rigid motion where the ground-

truth flow is determined by tracking hidden fluorescent texture, (2) realistic synthetic

sequences, (3) high frame-rate video used to study interpolation error, and (4) modified

stereo sequences of static scenes.

There are eight scenes (shown in Figure 5.1) whose ground-truth flow is publicly available,

thus we used these scenes for the evaluation of the proposed algorithms. The scenes provide

dense and subpixel accurate ground truth with occlusion mask. Table 5.1 summarizes the

attributes of each scene.

5.1.2 Evaluation Methodology

The accuracy evaluation methodology proposed in [2], [35] has been used here. It includes

(1) the performance measure, (2) the statistics, (3) the sub-region of the images considered.

Figure 5.1 Middlebury training set with public ground truth

40

The Endpoint error (EE) between a flow vector (u, v) and the ground-truth flow (uGT, vGT)

is defined as

 𝐸𝐸 = (𝑢 − 𝑢no)c + (𝑣 − 𝑣no)c (5.1)

The statistics of the performance measure results, such as averages and standard deviations,

are computed for robustness of evaluation. The error percentage, RX, defined as the

percentage of pixels that have an error measure above X, is commonly used [2]. Also,

region masks are often used in evaluation since it is difficult to compute flow in certain

regions such as motion discontinuities and textureless regions.

In this thesis, we used endpoint error percentage (EEP) to evaluate the estimation accuracy

of optical flow [2]. We computed R2.0 (pixels) for the endpoint error for all pixels except

the occlusion region where flow vector is impossible to obtain, and pixels at image

boundary.

The complexity is measured in terms of the memory size and the number of

arithmetic/logic operations. The number of operations listed are not the worst-case values

that were presented in Table 3.2 but average values based on the simulations on different

images. Note that the number of operations depends on the percentage of selected flow

vectors over the entire search space.

41

5.2 NG-fSGM Results

5.2.1 Impact of Algorithm Parameters in NG-fSGM

We conducted comprehensive experiments to quantify the impact of various algorithm

parameters on accuracy, memory size and number of operations. A high-level summary of

our findings is given in Table 5.2.

The method to find the set of parameters with the best accuracy was as follows: 1) initialize

each parameter with a reasonable value (C = 11, P = 4, N = 3, M = 3, K = 9) [10]; 2) update

one parameter value at a time such that the accuracy improves; 3) repeat step 2 until

Table 5.2 Sensitivity of Algorithm Parameters of NG-fSGM
Parameters Impact on Accuracy Impact on Memory Impact on Operations
Census Size low low moderate

P moderate low high
N moderate high high
M high low moderate

Search Size moderate low high

Table 5.3 Effect of Census Window Size C ´ C on the Accuracy, Memory Size and
Number of Operations

C ´ C 7 ´ 7 9 ´ 9 11 ´ 11
Dimetrodon 0.00 0.00 0.00

Grove2 1.54 1.62 1.72
Grove3 6.97 7.21 7.39

Hydrangea 0.69 0.74 0.78
RubberWhale 0.63 0.71 0.87

Urban2 4.26 4.03 3.78
Urban3 11.02 10.15 11.48
Venus 2.07 2.18 2.34
Mean 3.40 3.33 3.54

Memory / MB 3.06 3.12 3.19
Operations / 109 0.71 0.91 1.16

42

parameter values have stabilized. We found that the following parameters gave the best

performance in terms of accuracy: C = 9, P = 4, N = 2, M = 4, K = 1, P1 = 12, P2 = 45,

a = 0.06. Next we provide results showing the impact of each parameter on the accuracy,

memory and computation. We vary the value of one parameter at a time; the rest of the

parameters are assigned values corresponding to the ones for best accuracy.

Table 5.3 shows the results for different Census window size. The Census window size that

provides the highest accuracy varies for different scenes due to different image structures.

The result showed that a 9 ´ 9 window provides the best average accuracy. As for

complexity, the Census window size has a low impact on memory size and a moderate

impact on number of operations.

In NG-fSGM, number of paths P, number of best flow vectors N, number of random flow

vectors M and number of flow vectors in the search window K are the key parameters that

Table 5.4 Effect of Number of Paths P per Scan on the Accuracy, Memory Size and
Number of Operations

P 2 4 8
Dimetrodon 0.00 0.00 0.00

Grove2 1.69 1.62 1.61
Grove3 7.36 7.21 7.37

Hydrangea 0.71 0.74 0.67
RubberWhale 0.99 0.71 0.68

Urban2 4.08 4.03 3.70
Urban3 11.48 10.15 10.48
Venus 2.14 2.18 2.21
Mean 3.56 3.33 3.34

Memory / MB 3.11 3.12 3.14
Operations / 109 0.64 0.91 1.53

43

control the algorithm accuracy and complexity by changing the number of selected flow

vectors in the search space. Table 5.4, 5.5, 5.6 and 5.7 show the effect of P, N, M and K on

the accuracy, memory size and number of operations, respectively.

Table 5.4 shows the results for different number of paths P. Recall that P decides the

number of neighboring pixels explored in the flow subset selection, and the number of

directions aggregated in the cost aggregation. We see that P has almost no impact on

memory size but the number of operations increases with P. The results showed that the

accuracy converges when P = 4 and thus 4 paths per scan provide a reasonable design point.

Table 5.5 shows the results for different values of N, the number of best flow vectors. We

see that the algorithm has the best performance when N = 2. However the mean accuracy

is dominated by scene Urban3 whose accuracy decreases when N becomes larger. For the

other scenes, the accuracy tends to converge when N = 3. As for complexity, N has a high

Table 5.5 Effect of Number of Best Flow Vectors N on the Accuracy, Memory Size and
Number of Operations

N 1 2 3 4
Dimetrodon 0.03 0.00 0.00 0.00

Grove2 2.10 1.62 1.49 1.44
Grove3 7.96 7.21 7.02 7.00

Hydrangea 1.40 0.74 0.65 0.57
RubberWhale 1.42 0.71 0.63 0.59

Urban2 4.65 4.03 3.77 3.86
Urban3 7.24 10.15 12.83 14.12
Venus 2.83 2.18 2.07 2.10
Mean 3.45 3.33 3.56 3.71

Memory / MB 2.13 3.12 4.11 5.10
Operations / 109 0.59 0.91 1.29 1.73

44

impact on number of selected flow vectors and thus a high impact on both memory size

and number of operations.

Table 5.6 shows the results for different values of M, the number of random flow vectors.

While there is a significant improvement in accuracy compared to when M = 0, the relative

improvement diminishes with increasing M. Unlike N, the value of M has almost no impact

on memory size. However it has a moderate impact on number of operations. This is

Table 5.6 Effect of Number of Random Flow Vectors M on the Accuracy, Memory Size
and Number of Operations

M 0 1 2 3 4 5
Dimetrodon 0.03 0.00 0.00 0.00 0.00 0.00

Grove2 1.75 1.67 1.61 1.65 1.62 1.65
Grove3 34.89 7.99 7.19 7.3 7.21 7.13

Hydrangea 5.32 0.88 0.72 0.76 0.74 0.69
RubberWhale 2.01 0.85 0.81 0.89 0.71 0.7

Urban2 28.16 4.35 3.95 4.08 4.03 3.94
Urban3 30.23 12.09 11.13 11.51 10.15 9.95
Venus 3.39 2.28 2.22 2.25 2.18 2.26
Mean 13.22 3.76 3.45 3.56 3.33 3.29

Memory / MB 3.12 3.12 3.12 3.12 3.12 3.12
Operations / 109 0.45 0.55 0.67 0.81 0.91 1.04

Table 5.7 Effect of Number of Flow Vectors in Search Window K on the Accuracy,
Memory Size and Number of Operations

K 1 5 9
Dimetrodon 0.00 0.01 0.04

Grove2 1.62 1.54 1.52
Grove3 7.21 7.8 7.91

Hydrangea 0.74 0.71 0.74
RubberWhale 0.71 0.64 0.64

Urban2 4.03 4.61 4.97
Urban3 10.15 12.3 13.18
Venus 2.18 2.72 1.98
Mean 3.33 3.79 3.99

Memory / MB 3.12 3.12 3.12
Operations / 109 0.91 2.78 4.22

45

because a random flow vector is less likely to be identical to other selected flow vectors

and thus a larger M results in an increase in the number of selected flow vectors.

Table 5.7 shows the result for different K, the number of selected flow vectors in the search

window. Since K is related to the search subset size, it has a high impact on both memory

size and number of operations. Surprisingly, the simulations show that K = 1 provides the

highest accuracy. There are two possible reasons for this. First, with a small search subset

and a simple cost aggregation function, small K adds a flow smoothness constraint. Second,

there is not a large amount of small motion variations in the Middlebury dataset.

In our previous evaluation [10], K, the number of flow vectors in the search window, was

fixed at 9. In that scenario, M was only 3 and had a low impact on both accuracy and

complexity. However, when K is smaller, M has a higher impact on accuracy and

complexity as shown here. Thus we conclude that in order to get the same accuracy, M

should be large when K is small, and M should be small when K is large. But since the

complexity is dominated by K, a combination of large M and small K is preferred.

5.2.2 Comparison between NG-fSGM and Other Methods

We compared NG-fSGM with Lucas-Kanade [36], probably the most popular optical flow

method, and fSGM [9], a prior work using Semi-Global Matching, both using a single-

level pyramid scheme and the same post-processing step (Section 3.4). Note that all three

methods can be embedded in a hierarchical scheme if necessary. For fSGM, the parameters

used were: 11 × 11 Census transform window, 8 aggregation paths, one-step cost

46

regularization summand, P1 = 40, and P2 = 200. Penalties in fSGM are chosen to be larger

since NG-fSGM is more likely to get larger values from other flow vectors.

Table 5.8 shows the comparison of NG-fSGM, fSGM and Lucas-Kanade with respect to

accuracy and complexity. Our algorithm achieves higher accuracy compared to fSGM

since neighbor-guided flow vector selection performs well with a simple cost aggregation

function. Neighbor-guided flow selection eliminates wrong flow vectors in the first place,

especially for scene Urban3, where large areas of repeated patterns results in mismatches

using pixel-wise matching cost. NG-fSGM also provides significant benefit in complexity

since the number of flow vectors in the search subset of NG-fSGM is only 14 for each pixel.

We also observe that NG-fSGM significantly outperforms Lucas-Kanade in accuracy and

number of operations at the cost of increased memory size.

To visualize the accuracy difference, Figure 5.2 shows the flow maps of three types of

scenes on Middlebury for each algorithm. NG-fSGM and fSGM both outperforms Lucas-

Kanade. The flow map output of NG-fSGM shows more noise, especially along object

Table 5.8 Comparison of NG-fSGM, fSGM and Lucas-Kanade
Algorithm NG-fSGM fSGM Lucas-Kanade
Dimetrodon 0.00 0.00 1.64

Grove2 1.62 1.56 4.67
Grove3 7.21 7.11 20.02

Hydrangea 0.74 0.62 6.84
RubberWhale 0.71 0.81 4.12

Urban2 4.03 4.51 16.14
Urban3 10.15 14.26 24.46
Venus 2.18 1.99 9.35
Mean 3.33 3.86 10.91

Memory / MB 3.12 20.68 1.47
Operations / 109 0.91 37.53 3.15

47

edges, but has fewer error patches compared to fSGM. The neighbor dependency in NG-

fSGM is less reliable at the object edges when we apply aggressive search space pruning.

However it suffers less from the problem of repeated patterns, such as in Urban2 and

Urban3. Table 5.8 confirms that the overall accuracy of NG-fSGM is higher than fSGM.

Figure 5.2 Colored flow maps for 3 types of scenes using different algorithms. 1st
column: RubberWhale; 2nd column: Urban2; 3rd column: Venus. 1st row: input

previous frame; 2nd row: NG-fSGM; 3rd row: fSGM; 4th row: Lucas-Kanade. Color
legend is at bottom-left corner.

48

5.2.3 Sparse-to-Dense NG-fSGM Results

We evaluated the sparse-to-dense NG-fSGM with different sampling rates f1 and f2, as

shown in Table 5.9. The memory size and number of operations are reduced significantly

at the expense of accuracy degradation. The sampling rates, f1 = 2 and f2 = 2, provides a

reasonable tradeoff between accuracy and complexity. The memory size is reduced by 47%

and number of operations is reduced by 68% with only 0.42% increment in error percentage.

Scenes with large flow displacements and refined image structures, such as Grove3 and

Urban2, suffer more from subsampling than scenes with small flow displacement and

unrefined image structures, such as Dimetrodon and Grove2. Figure 5.3 shows two

examples for good and bad performance of sparse-to-dense flow estimation when f1 = 3

and f2 = 3.

Table 5.9 Accuracy, Memory Size and Number of Operations of NG-fSGM+S
f1 1 2 1 2 3 2 3
f2 1 1 2 2 2 3 3

Dimetrodon 0.00 0.01 0.00 0.02 0.03 0.03 0.02
Grove2 1.62 1.77 1.76 2.01 2.02 2.16 2.08
Grove3 7.21 7.38 7.46 8.08 8.95 9.16 10.23

Hydrangea 0.74 0.89 0.79 0.99 1.47 1.39 1.59
RubberWhale 0.71 0.91 0.93 1.05 1.22 1.28 1.22

Urban2 4.03 3.95 4.27 4.68 6.59 10.95 8.04
Urban3 10.15 10.47 10.12 10.95 11.06 11.61 10.09
Venus 2.18 2.2 2.18 2.21 2.46 2.54 2.65
Mean 3.33 3.45 3.44 3.75 4.23 4.89 4.49

Memory / MB 3.12 2.13 2.13 1.64 1.48 1.48 1.37
Operations / 109 0.91 0.50 0.50 0.29 0.22 0.22 0.17

49

5.3 Block-based NG-fSGM Results

5.3.1 Impact of Parameters in Block-based NG-fSGM

We evaluate the effect of parameters of block-based NG-fSGM, n (block size) and l

(overlap size), on the algorithm performance in terms of accuracy, memory size and

number of operations. The other parameters are set to: C = 9, P = 4, N = 2, M = 4, K = 1,

P1 = 12, P2 = 45, a = 0.06. The parameter d is chosen based on the maximum flow range.

This set of parameters is found to give the best performance in Section 5.2.1.

Figure 5.3 Colored flow maps for two types of scenes using NG-fSGM and sparse-to-
dense NG-fSGM. 1st row: Grove2, small flow range and unrefined image structures;

2nd row: Grove3, large flow range and refined image structures. 1st column: input
previous frame; 2nd column: NG-fSGM; 3rd: sparse-to-dense NG-fSGM where f1 = 3

and f2 = 3.

50

First, we evaluate the basic block-based processing (NG-fSGM+B) with block size n

varying from 20 to 120, when overlap size l fixed to 8. The results of accuracy, memory

size and number of operations per block are shown in Table 5.10. We see that larger n

results in higher accuracy but also higher complexity. Scenes with large flow range (such

as Urban2 and Urban3) requires larger n for good accuracy. The accuracy of scenes with

small flow range (such as Grove2 and Hydrangea) did not change much with n. When n is

Table 5.10 Effect of Block Size n on the Accuracy, Memory Size and Number of
Operations

n 20 40 60 80 100 120
Dimetrodon 0.06 0.02 0.00 0.00 0.00 0

Grove2 1.66 1.66 1.61 1.61 1.58 1.61
Grove3 7.60 7.64 7.22 7.35 7.30 7.25

Hydrangea 0.78 0.75 0.75 0.75 0.71 0.7
RubberWhale 0.76 0.70 0.75 0.67 0.75 0.77

Urban2 9.38 5.92 4.60 5.14 5.17 4.47
Urban3 22.73 17.56 15.76 15.29 13.87 13.86
Venus 2.44 2.26 2.30 2.39 2.25 2.18
Mean 5.68 4.56 4.12 4.15 3.95 3.86

Memory / KB 41.97 72.12 111.65 160.56 218.84 286.50
Operations / 106 4.57 11.06 20.37 32.50 47.45 65.23

Table 5.11 Effect of Overlap Size l on the Accuracy, Memory Size and Number of
Operations

l 0 4 8 12 16 20
Dimetrodon 0.05 0.00 0.00 0.00 0.00 0.00

Grove2 1.80 1.62 1.64 1.63 1.64 1.64
Grove3 7.70 7.57 7.02 7.29 7.13 7.21

Hydrangea 0.85 0.81 0.73 0.77 0.73 0.73
RubberWhale 0.83 0.74 0.70 0.73 0.71 0.72

Urban2 7.39 5.75 5.21 4.74 5.01 4.29
Urban3 15.94 17.40 14.69 13.37 13.69 13.49
Venus 2.37 2.30 2.37 2.17 2.17 2.25
Mean 4.62 4.52 4.05 3.84 3.90 3.79

Memory / KB 86.81 103.00 120.68 139.87 160.56 182.75
Operations / 106 14.45 18.28 22.57 27.31 32.50 38.14

51

larger than 60, the mean accuracy improvement becomes smaller, thus n = 60 provides a

good balance between accuracy and complexity. Since the image size is typically a multiple

of 64, n is set to 64 for the rest of the evaluation.

Next we evaluate NG-fSGM+B with overlap size l varying from 0 to 20. The results are

shown in Table 5.11. We see that, similar to block size n, larger l results in higher accuracy

and higher complexity, especially for the scenes with large flow range. The accuracy tends

to converge when l = 12.

5.3.2 Block-based NG-fSGM using Inertial Guidance Results

We evaluate the effect of inertial guidance on 6 images that have multiple frames. Figure

5.4 shows an example of use of inertial guidance. Since the dataset has small motion and

small occlusion region, the performance of inertial estimates from [t – 1, t] is good except

for occlusion region, implying that the inertial estimates help guide flow vector selection

well.

Table 5.12 Comparison Between NG-fSGM+B and NG-fSGM+BI
Algorithm NG-fSGM+B NG-fSGM+BI

l 4 8 16 2 4 8
Grove2 1.66 1.61 1.58 1.59 1.60 1.62
Grove3 7.64 7.22 7.30 7.12 7.16 6.82

Hydrangea 0.75 0.75 0.71 0.72 0.73 0.72
RubberWhale 0.70 0.75 0.75 0.66 0.65 0.66

Urban2 5.92 4.60 5.17 5.53 4.64 4.33
Urban3 17.56 15.76 13.87 13.71 13.95 13.67
Mean 5.71 5.12 4.90 4.89 4.79 4.64

Memory / KB 103.00 120.68 160.56 95.75 105.12 125.18
Operations / 106 18.28 22.57 32.50 16.31 18.28 22.57

52

Table 5.12 shows the performance of NG-fSGM+BI, compared to NG-fSGM+B. The

initial guidance consistently improves the accuracy especially for images with large flow

range (Grove3, Urban2 and Urban3). With inertial guidance, l can be reduced from 16 to

2 with almost identical accuracy (see 4th and 5th columns of Table 5.12). This also helps

achieve lower complexity (memory size reduced by 40%, number of operations reduced

by 50%).

Figure 5.4 An example of inertial guidance in Grove3. Top left: Frame at time t. Top
right: Inertial estimates from [t-1, t]. Bottom left: Output flow using NG-fSGM+BI.

Bottom right: Groudtruth flow.

53

5.3.3 Sparse-to-Dense Block-based NG-fSGM Results

We evaluate the sparse-to-dense flow estimation method on the block-based NG-fSGM

with inertial guidance. The results are shown in Table 5.13. Unlike sparse-to-dense flow

estimation on the basic NG-fSGM, here the block size n plays an important role. We can

see without sampling, n = 64 and n = 128 provide similar accuracy. But when sampling

rates f1 and f2 increase, the accuracy degrades more dramatically when n = 64. Thus larger

n can support more aggressive sampling level (see columns 4 and 9 in Table 5.13).

For the same accuracy, a smaller block size has lower complexity per block but more blocks

per frame, while a larger block size with sampling has higher complexity per block but

fewer blocks per frame. However, a larger block size with sampling results in smaller total

number of operations per frame and smaller total memory size. Columns 2 and 8 in Table

5.13 show that, for similar accuracy, the 128 × 128 block with sampling (f1 = 1, f2 = 2)

reduces the total memory size and number of operations by 52% and 56%, respectively,

compared to the 64 × 64 block.

Table 5.13 Accuracy, Memory Size and Number of Operations of NG-fSGM+BIS
n 64 128
f1 1 2 1 2 1 2 1 2
f2 1 1 2 2 1 1 2 2

Grove2 1.62 1.80 1.86 1.89 1.64 1.78 1.79 1.95
Grove3 6.82 7.46 7.22 7.93 7.07 7.63 7.51 8.15

Hydrangea 0.72 0.87 0.74 1.03 0.76 0.92 0.75 1.00
RubberWhale 0.66 0.93 0.95 1.03 0.67 0.95 0.81 1.03

Urban2 4.33 5.31 4.94 6.03 3.73 4.20 4.22 4.32
Urban3 13.67 13.97 13.30 14.15 12.72 13.57 12.42 13.42
Mean 4.64 5.06 4.84 5.34 4.43 4.84 4.58 4.98

Memory / KB 125.18 100.18 98.93 86.43 324.68 243.68 241.43 200.93
Operations / 106 22.57 12.35 12.35 7.23 73.13 39.93 39.93 23.32

54

CHAPTER 6. CONCLUSION

This chapter summarizes the main contributions of this thesis and suggests possible future

work.

6.1 Contributions

This thesis presents novel dense optical flow methods based on Semi-Global Matching [10]

[9] for applications with extreme memory and computational constraints. The main

contributions of this thesis are summarized below:

• A dense optical flow method Neighbor-Guided Semi-Global Matching (NG-fSGM)

is presented. The proposed method has better accuracy and significant reductions in

memory size and number of operations, compared to a prior work using SGM [9]. The key

features are as follows.

1. A flow vector subset selection strategy based on exploring flow similarity of

neighboring pixels is proposed. It leads to a significant reduction in the search

space size and makes algorithm complexity independent of flow range.

2. A simple cost aggregation function, which reduces number of operations, is

proposed. When used in adjunction with flow subset selection, it outperforms

more complicated cost aggregation functions.

3. Pixel-wise matching cost and flow computation are embedded in cost

aggregation. This saves the memory for storing pixel-wise matching cost,

aggregated cost along paths and overall aggregated cost in the second scan.

55

4. Sparse-to-dense optical flow estimation is applied to further reduce complexity.

An interpolation method is introduced to maintain accuracy while operating

NG-fSGM on sampled pixels.

5. An evaluation of NG-fSGM was conducted on Middlebury dataset [2]. Impact

of algorithm parameters was analyzed to help find best set of parameters. The

results showed that the method using all proposed techniques outperforms

fSGM [9] in accuracy with 129x reduction in computation and 12x reduction in

memory size.

• Next a parallel block-based optical flow method is proposed based on NG-fSGM.

This method is desirable for multi-core architectures, achieving higher throughput, lower

latency and lower power. The key features are as follows.

1. Images are divided into overlapping blocks and a study of the extent of overlap

on the accuracy and hardware cost is conducted.

2. The overlap size in minimized by using inertia to help guide flow vector

selections for boundary pixels.

3. An evaluation of block-based NG-fSGM was conducted on Middlebury dataset

[2]. The results showed that with inertial guidance, the proposed method

achieves significantly improved throughput, latency and power efficiency,

while preserving the accuracy.

6.2 Future Work

The following items summarize possible research directions based on the work presented

in this thesis.

56

• Since SGM is applicable to both stereo matching and optical flow, a unified

architecture could provide solutions to both problems. Depth information could help

optical flow estimation and flow estimation could help stereo matching. Thus a depth and

optical flow joint estimation could result in better accuracy.

• Computing flow vectors for every pixel is wasteful for certain regions such as

background and large object surface. An adaptive support region could be determined to

reduce the number of total flow vectors that are computed and adjust cost aggregation

penalties at boundaries of the support region. This would help reduce the complexity and

improve the accuracy.

• While the proposed block-based NG-fSGM method is easy to parallelize, for GPU

implementations, we found that the bottleneck is the cache size in each core. Thus GPU-

specific optimizations could be developed to accelerate block-based NG-fSGM on GPUs.

• In recent years, it is shown that learned features obtained from multi-layer

convolutional neural network (CNN) are very useful in computer vision tasks. Several

papers have used deep learning to compute matching cost to improve accuracy. A CNN-

based matching cost, trained with a sufficient dataset, could lead to a better optical flow

accuracy.

57

REFERENCES

[1] Horn B.K.P, Robot Vision, MIT Press, 1986.

[2] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black and R. Szeliski, "A
Database and Evaluation Methodology for Optical Flow," International Journal
of Computer Vision, vol. 92, pp. 1-31, 2011.

[3] S. Baker and I. Matthews, "Lucas-Kanade 20 Years On: A Unifying
Framework," International Journal of Computer Vision, vol. 56, no. 3, pp. 221-
225, 2004.

[4] A. Bruhn, J. Weickert and C. Schnorr, "Lucas/Kanade meets Horn/Schunck:
combining local and global optic flow methods," International Journal of
Computer Vision, vol. 61, no. 3, pp. 211-231, 2005.

[5] H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn
and H.-P. Seidel, "Complementary optic flow," Energy Minimization Methods in
Computer Vision and Pattern Recognition, pp. 207-220, 2009.

[6] V. Lempitsky, S. Roth and C. Rother, "Fusion flow: discrete-continuous
optimization for optical flow estimation," Computer Vision and Pattern
Recognition, pp. 1-8, 2008.

[7] T. Cooke, "Two applications of graph-cuts to image processing," Proceedings
of digital image computing: techniques and applications, pp. 498-504, 2008.

[8] C. Lei and Y.-H. Yang, "Optical flow estimation on coarse-to-fine region-trees
using discrete optimization," Internatonal Conference on Computer Vision, pp.
1562-1569, 2009.

[9] S. Hermann and R. Klette, "Hierarchical scan line dynamic programming for
optical flow using semi-global matching," Computer Vision-ACCV Workshops,
vol. 7729, pp. 556-567, 2012.

[10] J. Xiang, Z. Li, D. Blaauw, H. S. Kim and C. Chakrabarti, "Low complexity
optical flow using neighbor-guided semi-global matching," IEEE International
Conference on Image Processing, pp. 4483-4487, 2016.

58

[11] H. Hirschmuller, "Stereo processing by semiglobal matching and mutual
information," IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 30, no. 2, pp. 328-341, 2008.

[12] J. Xiang, Z. Li, H. S. Kim and C. Chakrabarti, "Hardware-Efficient Neighbor-
Guided SGM Optical Flow for Low Power Vision Applications," IEEE
International Workshop on Signal Processing Systems, pp. 1-6, 2016.

[13] B. Horn and B. Schunck, "Determining optical flow," Artificial Intelligence,
vol. 17, pp. 185-203, 1981.

[14] D. Shulman and J.-Y. Herve, "Regularization of discontinuous flow fields,"
Proceedings. Workshop on Visual Motion, pp. 81-86, 1989.

[15] M. Black and P. Anandan, "The robust estimation of multiple motions:
Parametric and piecewise-smooth flow fields," Computer Vision and Image
Understanding, vol. 63, no. 1, pp. 75-104, 1996.

[16] D. Sun, S. Roth, J. Lewis and M. Black, "Learning optical flow," European
Conference on Computer Vision, vol. 3, pp. 83-97, 2008.

[17] A. Wedel, T. Pock and D. Cremers, " Structure and motionadaptive
regularization for high accuracy optic flow," IEEE International Conference on
Computer Vision, pp. 1663-1668.

[18] J. Bergen, P. Anandan, K. Hanna and R. Hingorani, "Hierarchical model-based
motion estimation," European Conference on Computer Vision, pp. 237-252,
1992.

[19] T. Brox and J. Malik, "Large displacement optical flow: Descriptor matching
in variational motion estimation," IEEE Transaction on Pattern Analysis Machine
Intelligence, vol. 33, no. 3, pp. 500-513, 2011.

[20] B. Glocker, N. Paragios, N. Komodakis, G. Tziritas and N. Navab, "Optical
flow estimation with uncertainties through dynamic MRFs," IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1-8, 2008.

[21] R. Zabih and J. Woodfill, "Non-parametric local transforms for computing
visual correspondance," European Conference on Computer Vision, vol. 2, pp.
151-158, 1994.

59

[22] P. Viola and W. M. Wells III, "Alignment by Maximization of Mutual
Information," International Journal of Computer Vision, vol. 24, no. 2, pp. 137-
154, 1997.

[23] C. Stiller, "Motion Estimation for Coding of Moving Video at 8 kbit/s with
Gibbs Modeled Vectorfield Smoothing," Visual Communications and Image
Processing '90: Fifth in a Series, pp. 468-476, 1990.

[24] G. d. Haan, P. Biezen, H. Huijgen and O. Ojo, "True-motion estimation with
3-D recursive search block matching," IEEE Transactions on Circuits and
Systems for Video Technology, vol. 3, no. 5, pp. 368-379, 1993.

[25] C. Barnes, E. Shechtman, A. Finkelstein and D. B. Goldman, "PatchMatch: a
randomized correspondence algorithm for structural image editing," ACM
Transactions on Graphics (Proc. SIGGRAPH), vol. 28, 2009.

[26] M. Werlberger, T. Pock and H. Bischof, "Motion estimation with non-local
total variation regularization," IEEE Conference on Computer Vision and Pattern
Recogintion, pp. 2464-2471, 2010.

[27] C. Vogel, S. Roth and K. Schindler, "An Evaluation of Data Costs for Optical
Flow," German Conference on Pattern Recognition, pp. 343-353, 2013.

[28] H. Hirschmuller and D. Scharstern, "Evaluation of stereo matching costs on
images with radiometric differences," IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 31, no. 9, pp. 1582-1599, 2009.

[29] R. B. Potts, "Some generalized order-disorder transformations," Mathematical
Proceedings of the Cambridge Philosophical Society, pp. 106-109, 1952.

[30] D. Gibson and M. Spann, "Robust optical flow estimation based on a sparse
motion trajectory set," IEEE Transactions on Image Processing, vol. 12, no. 4,
pp. 431-445, 2003.

[31] J. Wulff and M. J. Black, "Efficient sparse-to-dense optical flow estimation
using a learned basis and layers," IEEE Conference on Computer Vision and
Pattern Recognition, pp. 120-130, 2015.

[32] M. Irani, "Multi-frame optical flow estimation using subspace constraints," The
Proceedings of the Seventh IEEE International Conference on Computer Vision,
pp. 173-194, 1999.

60

[33] C.-M. Wang, K.-C. Fan and C.-T. Wang, "Estimating Optical Flow by
Integrating Multi-Frame Information," Journal of Information Science and
Engineering, pp. 1719-1731, 2008.

[34] R. Kennedy and C. J. Taylor, "Optical Flow with Geometric Occlusion
Estimation and Fusion of Multiple Frames," Energy Minimization Methods in
Computer Vision and Pattern Recognition, pp. 364-377, 2015.

[35] J. L. Barron, D. J. Fleet and S. S. Beauchemin, "Performance of optical flow
techniques," International Journal of Computer Vision, vol. 12, no. 1, pp. 43-77,
1994.

[36] B. D. Lucas and T. Kanade, "An iterative image registration technique with an
application to stereo vision," Proceedings of the 7th international joint conference
on Artificial intelligence, vol. 2, pp. 674-679, 1981.

[37] A. Blake and A. Zisserman, Visual reconstuction, MIT Press, 1987.

