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ABSTRACT

Alzheimer’s disease (AD), is a chronic neurodegenerative disease that usually

starts slowly and gets worse over time. It is the cause of 60% to 70% of cases

of dementia. There is growing interest in identifying brain image biomarkers that

help evaluate AD risk pre-symptomatically. High-dimensional non-linear pattern

classification methods have been applied to structural magnetic resonance images

(MRI’s) and used to discriminate between clinical groups in Alzheimers progression.

Using Fluorodeoxyglucose (FDG) positron emission tomography (PET) as the pre-

ferred imaging modality, this thesis develops two independent machine learning based

patch analysis methods and uses them to perform six binary classification experiments

across different (AD) diagnostic categories. Specifically, features were extracted and

learned using dimensionality reduction and dictionary learning & sparse coding by

taking overlapping patches in and around the cerebral cortex and using them as fea-

tures. Using AdaBoost as the preferred choice of classifier both methods try to utilize

18F-FDG PET as a biological marker in the early diagnosis of Alzheimer’s . Addi-

tional we investigate the involvement of rich demographic features (ApoeE3, ApoeE4

and Functional Activities Questionnaires (FAQ)) in classification. The experimental

results on Alzheimer’s Disease Neuroimaging initiative (ADNI) dataset demonstrate

the effectiveness of both the proposed systems. The use of 18F-FDG PET may offer

a new sensitive biomarker and enrich the brain imaging analysis toolset for studying

the diagnosis and prognosis of AD.
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Chapter 1

INTRODUCTION

Alzheimers disease (AD) is a chronic neurodegenerative disease in which amyloid

plaques and neurofibrillary tangles accumulate in the brain. The most common early

symptom is the difficulty remembering recent events (short-term memory loss). As

the disease advances, patients may lack motivation, have problems with self-care, and

show behavioral abnormalities or even withdraw from family and society (Burns and

Iliffe, 2009). AD has a typical pattern of progression, with changes in the brain that

correspond to the types and severity of symptoms. Disease progression has commonly

been divided into five main categories in the ADNI2 phase of Alzheimer’s Disease

Neuroimaging initiative(ADNI) (Weiner et al., 2013): Cognitively Normal (CN), Sig-

nificant Memory Concern(SMC), Early Mild Cognitive Impairment (EMCI), Impair-

ment (LMCI) and Alzheimer’s Disease (AD), defined clinically based on behavioral

and cognitive assessment. (SMC) are self-report significant memory concern from

the patient we choose to exclude it from our study. Table. 2.1 shows the participant

stages across ADNI 1/2/GO.

There has been a shift with a sense of urgency to find effective intervention in the

presymptomatic stage of AD so to reduce the risk of AD, delay or even prevent its

onset. To more adequately diagnose different stages of the disease and especially in

the early stage and predict future cognitive decline, computer-aided diagnostic clas-

sification is increasingly needed using biomarkers based on neuroimaging and other

measurements. There is evidence that the pathogenic cascade of AD is thought to be-

gin at least 1-2 decades prior to cognitive impairment, starting with accumulation of

the amyloid-β1-42(Aβ1-42) plaques (Langbaum et al., 2013). Research has suggested
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that these early processes can be assessed using brain imaging and fluid biomark-

ers. Prior research work on Fluorodeoxyglucose (FDG) positron emission tomogra-

phy (PET), Pittsburgh compound B (PIB), structural magnetic resonance imaging

(sMRI) and functional measures of resting-state networks (rs-fMRI) has supported

their validity as potential metabolic biomarkers. Among various neuroimaging tech-

niques, FDG-PET characterizes the cerebral glucose hypometabolism related to AD

and those at risk of AD. FDG-PET offers a reliable metabolic biomarker even at pre-

symptomatic stages. Despite major advances in FDG-PET used to track symptomatic

patients, there is still a lack of sensitive, reliable, and accessible FDG-PET imaging

algorithms capable of characterizing abnormal degrees of age-related metabolism de-

cline in preclinical individuals at high risk for AD whom early intervention is most

needed. Fig. 1.1 shows the different types of PET scans.

Recently minor cognitive impairment (MCI) in 18F-FDG PET has been classified

by a brain regional sensitivity mapping method based on summated index (Total Z

score) by utilizing the sensitivity-distribution maps (Kakimoto et al., 2011).In other

contemporary works a region of interest (ROI) mask is used to extract features and use

incomplete random forest-robust support vector machine to perform classification (Lu

et al., 2017). In general for a classification algorithm based on 3D FDG-PET images

the feature dimension is usually much larger than the number of subjects. Data with

extremely high dimensionality has presented serious challenges to existing learning

methods (Liu and Motoda, 2007) (Friedman et al., 2001). With the presence of a

large number of features, a learning model tends to overfit, affecting its performance.

In this context, when we apply three-dimensional statistical maps to do classi-

fication the feature dimension is usually much larger than the number of subjects,

i.e., the so-called high dimension, small sample size problem. When a vast number

of variables are measured from a small number of subjects, it is often necessary to
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reduce their high dimension features to low dimension features. In most cases, the

information gets lost by mapping into a lower-dimensional space. However, the dis-

carding information is always compensated by a more accurate space (or feature).

There are two general approaches to performing dimensionality reduction: feature

selection and feature extraction. Feature selection reduces the feature dimension by

selecting a subset of original variables (Jain and Zongker, 1997). It aims to choose

a small subset of the relevant features from the original ones according to certain

relevance evaluation criterion, which usually leads to better learning performance for

example higher learning accuracy for classification, lower computational cost, and

better model interoperability (Tang et al., 2014). Feature extraction reduces the di-

mension based on mathematical projections, which transform the original features

into a lower dimensional but more appropriate feature space (Guyon et al., 2008).

There are some widely used algorithms in machine learning, e.g., principle compo-

nent analysis (PCA) (Jolliffe, 2002), linear discriminant analysis (LDA) (Mika et al.,

1999), as analytic tools for feature extraction.

Both Feature extraction and feature selection are capable of improving learning

performance, lowering computational complexity, building better generalizable mod-

els, and decreasing required storage. Feature extraction maps the original feature

space to a new feature space with lower dimensions by combining the original feature

space. It is difficult to link the features from original feature space to new features.

Therefore further analysis of new features is problematic since there is no physical

meaning for the transformed features obtained from feature extraction techniques.

While feature selection selects a subset of features from the original feature set with-

out any transformation, and maintains the physical meanings of the original features.

In this sense, feature selection is superior in terms of better readability and inter-

pretability. This property has its significance in many practical applications such
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as finding relevant genes to a specific disease and building a sentiment lexicon for

sentiment analysis. Typically feature selection and feature extraction are presented

separately. Via sparse learning such as `1 regularization, feature extraction (trans-

formation) methods can be converted into feature selection methods (Masaeli et al.,

2010). In order to analyze images more efficiently, a dictionary that allows us to

represent them as a superposition of a small number of its elements so that we can

reduce each image to a small number of its coefficients (Schnass and Vandergheynst,

2008). Similarly sparse coding (Lin et al., 2014) has been proposed to use a small

number of basis vectors (also called dictionary) to represent local features effectively

and concisely and help image content recognition. From the input image data, sparse

coding learns an over-complete set of basis vectors (dictionary), which have been used

to select the most germane features (Friedman et al., 2001). To learn local imaging

features, image patches are usually selected to form dictionaries. Dictionary learn-

ing and sparse coding (Mairal et al., 2009) has shown to be efficient for many tasks

such as image deblurring (Yin et al., 2008), image super-resolution (Yin et al., 2008)

functional connectivity analysis Lv et al. (2015a,b), and image classification (Mairal

et al., 2009; Moody et al., 2012). In many computer vision, medical imaging and

bioinformatics applications (Mairal et al., 2009; Moody et al., 2012; Lv et al., 2015b)

dictionary learning and sparse coding leads to state-of-the-art results.

To address the problem of “curse of dimensionality”, we propose two sets of ap-

proaches for classification of a large set of 18F-FDG PETimages, and compare their

performance. The first approach consists of a learning based system with sparse

coding and dictionary learning for efficient data representation (Feature Learning),

maxpooling (Boureau et al., 2010) for feature and again AdaBoost (Rojas, 2009)

for classification. The second approach is a empirical machine learning based model

which includes patch based feature selection then maxpooling (Boureau et al., 2010)
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for feature agglomeration. We then form data vectors and apply probabilistic prin-

ciple component analysis for feature extraction using dimension reduction and fi-

nally AdaBoost for classification. The two systems serves as a comparison between

the approaches for analyzing 18F-FDG PET. Our goal is to discover an appropriate

18F-FDG PET diagnosis system design by investigating their performance. We tested

our hypothesis on the ADNI2 dataset across 668 subjects. We then carried out 10 fold

cross validation in six different classification experiments comparing the two methods

across various imaging measures.

Figure 1.1: Different types of P.E.T Scans

Structure of document This thesis document is divided logically into the fol-

lowing sections:

• Chapter 2 introduces the data used in the preparation of this document and

preprocessing of 18F-FDG PET .

• Chapter 3 discusses the background and history of both our proposed methods.

It also discuses the role of 18F-FDG PET as a biomarker. A brief history of the

techniques used and motivation. The techniques used are introduced.

• Chapter 4 discusses the system design and architecture in detail and addresses

the major components of the system.

• Chapter 5 describes the experimental setup, presents the results and sheds light

on the tools analysis. We show the result of classification in both methods. We
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compare and perform meta-analysis on stochastic coordinate coding (SCC) and

dimensionality reduction (feature extraction) and investigate addition of other

features.

• Chapter 6 continues our discussion on the results, lessons learned over the course

of the project, the limitations and talk about the further improvements.

• Chapter 8 concludes the thesis, with ideas about future works.

In this work we shed some light on 18F-FDG PET as a biomarker and we try to

evaluate our statistical map to find a better diagnosis of (AD). In summary we make

the following contribution.

• We use the second phase of ADNI as our choice of dataset. It is relatively new

and has extensive subject information.

• Building two empirical series of Machine Learning systems on the above dataset

and check the performance of state-of-the art algorithms on 18F-FDG PET.

• Introduction of a few demographic features in the classification process which

drastically improves performance.
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Chapter 2

SUBJECTS AND DATA PREPROCESSING

This chapter focuses on ADNI and its study phase ADNI2. The first section briefly

describes the history and background of ADNI and our choice of data acquisition

2.1 Subjects

Data used in the preparation of this article were obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was

launched in 2004 by the National Institute on Aging (NIA), the National Institute

of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administra-

tion (FDA), private pharmaceutical companies and non-profit organizations, as a $60

million, 5-year public private partnership. The primary goal of ADNI has been to

test whether serial magnetic resonance imaging (MRI), positron emission tomogra-

phy (PET), other biological markers, and clinical and neuropsychological assessment

can be combined to measure the progression of mild cognitive impairment (MCI) and

early Alzheimer’s disease (AD). Determination of sensitive and specific markers of

very early AD progression is intended to aid researchers and clinicians to develop

new treatments and monitor their effectiveness, as well as lessen the time and cost of

clinical trials.

ADNI is the result of efforts of many coinvestigators from a broad range of aca-

demic institutions and private corporations, and subjects have been recruited from

over 50 sites across the U.S. and Canada. The initial goal of ADNI was to recruit

800 subjects but ADNI has been followed by ADNI-GO and ADNI-2. To date, these

three protocols have recruited over 1500 adults, ages 55 to 90, to participate in the
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Figure 2.1: The summary of the clinical data for FDG-PET scans ADNI1 is indicated

ny light green and the later phases ADNI 2 & GO are represented by dark green. The

typical timeline for image accusation is over 4-5 years and the initial phase is Screening

and Baselines. Given the consistency of data for ADNI2 at Baseline we choose the

latter for analysis.

research, consisting of cognitively normal older individuals, people with early or late

MCI, and people with early AD. The follow up duration of each group is specified in

the protocols for the three phases if ADNI: ADNI-1, ADNI-2 and ADNI-GO. Sub-

jects originally recruited for ADNI-1 and ADNI-GO had the option to be followed in

ADNI-2. For up-to-date information, see www.adni-info.org.

Although the three studies all aim to advance AD research, there is some differ-

ences in participant pools, and adjustments to data collection protocols over time

as a result of scientific findings and changing technologies. ADNI2 phase started

in January 2011 and ended January 2016. ADNI1 has been a topic of research in

our laboratory (Shi et al., 2014; Zhang et al., 2016c) and this motivated us to an-

alyze ADNI2. Participants were recruited across North America during each phase

of the study and agreed to complete a variety of clinical assessments. The studies

includes participants to make multiple visits but in this study we refrain to baseline

and screening data, the marked region in Fig. 2.1.

For this thesis, we studied a total of 668 subjects in the ADNI2 baseline dataset,
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Table 2.1: Participant Stages across ADNI 1/GO/2. 1

within this population, there were 146 who had Alzheimer’s (AD), 158 had impair-

ment (LMCI), 178 had early mild cognitive impairment (EMCI) and 186 were normal

control (CN). Table. 2.1 gives a detailed description of all the stages in disease pro-

gression. (SMC) is a new cohort in ADNI 2, it is introduced in the study to minimize

the stratification risk among normal control and addressing the gap between healthy

elderly controls and Impaired. We choose to ignore (SMC) from our study as the

participants with (SMC) suffer from slight forgetfulness and they have a cognitive de-

mentia rating (CDR) (Morris, 1993) of zero and thus is very loosely based to clinical

dementia.

2.2 Data Gathering

To acquire 18F-FDG PETdata from the ADNI LONI website one has to complete

an application process which includes the acceptance of a data user agreement and

the submission of and online application form. It is also required that the application

includes the institutional affiliation and the proposed research to be conducted using

the ADNI data. The image collections are downloaded from the ADNI LONI database
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Table 2.2: Demographic Information of 668 Subjects in the ADNI2 Baseline Dataset.

Male Female Age Min / Max Age APOE1 APOE2 FAQ

AD 85 61 74.73± 8.15 56 / 90 3.11 3.63 13.39

LMCI 84 74 72.5± 7.5 55 / 91 3.03 3.54 03.62

EMCI 102 76 71.3± 7.2 55 / 89 2.94 3.42 02.08

CN 89 97 73.5± 6.25 57 / 89 2.86 3.24 00.16

at (https://ida.loni.usc.edu). We initially download the image scans across all the

accusation stages from the image search engine. We select the uniform pre and post

processed scans and download the data in “NiFTI” format. Out of 1340 subjects 774

were present at baseline and were used in our experimentation.

Figure 2.2: The File Structure of a Participant.

Fig. 2.2 shows the file structure of one participant in the downloaded image col-

lection. Participant is given a subject ID: “002 S 0295” as shown in Fig 2.2. In

the ADNI study after image accusation the 18F-FDG PET scans are filtered with

a scanner-specific filter function to produce images of a uniform isotropic resolu-

tion of 8 mm FWHM. These preprocessed PET data are co-registered, averaged

image from their baseline PET scans, which are then reoriented into a standard

160 × 160 × 96 voxel image grid, having 1.5 mm cubic voxels. This image grid

is oriented such that the anterior-posterior axis of the subject is parallel to the
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AC-PC line (Lee et al., 2014). This standardized image then serves as a refer-

ence image for all PET scans on that subject. Fig. 2.2 shows the folder name

“Coreg, Avg, Std Img and Vox Siz, Uniform Resolution” indicating the type of pre-

processing. Additionally a subject may have participated only at the baseline accu-

sation and some other subject may have been involved at both baseline and ADNI-1

year, so a patient may have more than one scan of which we only investigate the base-

line one. In Fig 2.2 folder “Date-Time” has only one record indicating the presence

of only one Baseline scan.

Each scan has a unique ID (“I240519” in Fig. 2.2) and associated to it is a XML

file. Form this structure we extract all the XMLs and the NiFTI image scans. To

learn about the demographics and segregate the stages in (AD) disease progression

we use python to crawl over the XML files. We extract key demographic information

from the XMLs and make a dictionary segregating the baseline scans from other

visits. From this we form six sets of collections over which we will run our proposed

methods. Table. 2.2 shows the demographic information of the participants.

2.3 Image Preproceessing

For a patch based method to work on 3D images it requires that a significant

portion of the cerebral 18F-FDG PET image scan is represented by the generated

patches. To minimize the empty and non-essential space in and around the relevant

region of interest (ROI), further processing is essential. Fig. 2.3(a.) shows the data

that we immediately get after downloading the 18F-FDG PET image scans, as seen in

Fig. 2.3(a.) the scan is surrounded by empty voxels which convey no information and

we wish to get rid of it. Before we crop the 3D-image scans we will have to spatially

normalize Fig. 2.3(b.) the image to bring all the scans to a same space. Human

brain differs in size and shape and thus goal of spatial normalization is to deform
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the human brain scans so one subject’s brain scans corresponds the same location in

another subject’s brain scans. To refrain ourself in using only the cerebral ROI we

further segmented the scans. Fig. 2.3(c.) is the normalized and segmented version of

our data.

Figure 2.3: Preprocessing Pipeline in FDG-PET. (a.) accuired data (b.) aligned &

normalized (c).skull stripped and segemented.

Given a FDG-PET image, the alignment and the image segmentation are auto-

matically performed software toolkit Statistical Parametric Mapping (SPM12) (Penny

et al., 2011) 2 . Firstly to linearly align all the images into a common space and nor-

malize them we use the (SPM) batch editor. As indicated in Fig 2.2 the baseline scans

of all the subjects are unique by the image-UID (e.g. “I240519”) and we can easily

mark and distinguish files by this ID. Keeping this in mind we batch normalize and

rename the NiFTI files as “ImageUID.nii”, below is a portion of the .m file created

and loaded in to the batch editor for normalization.

Second, we borrow a brain mask from SPM, an AAL template to decide which

regions to keep and which to remove. We align the template to the same space as we

did to the test images and turn the AAL template (Fig. 2.5) into a mask by turning

2http://www.fil.ion.ucl.ac.uk/spm/
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Figure 2.4: Code snippet for batching data into spm

all the non-zero voxels to the value of “1”. Third we compute the dot product of

the FDG-PET image scans and the mask generated to segment the region of interest.

Keeping the nomenclature of the files consistent with the previous step. Fourth, we

conduct spatial smoothing with a Gaussian kernel of the full width at half maximum

(FWHM) equal to (8; 8; 8) in three directions (x; y; z).
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Figure 2.5: AAL mask used for segementation
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Chapter 3

METHODS AND BACKGROUND

In this chapter we formulate our problem background and the history of machine

learning and PET images in literature. After setting us some goals and motivation

we will introduce in brevity the Machine Learning techniques we propose to use.

3.1 Background

In Chapter. 2 the PET data is processed and made ready to use. In this sec-

tion we look into the problem background, formulate mathematical frameworks to

base our analysis and look into the history of Machine Learning with respect to

18F-FDG PET and discuss it as a reliable biomarker.

3.1.1 Problem Background

ADNI2 is divided into five cohorts namely (AD), (LMCI), (EMCI), (SMC) and

(CN) (Table. 2.1). The overall goal of ADNI is to validate biomarkers for use in

Alzheimers disease clincal treatment trials. ADNI is not a population based study and

enrolls selected populations who may be used in future treatment trials. Therefore the

results from ADNI may not be generalizable to other populations. Dementia, one of

the most feared associates of increasing longevity, represents a pressing public health

problem and major research priority. The ADNI study is a major step toward the

early diagnosis and detection of (AD). Increasing knowledge over the last years about

the pathomechanisms involved in AD allow for the development of specific treatment

strategies aimed at slowing down or even preventing neuronal death in AD.

There is a sense of urgency in find imaging techniques and biomarkers. It is
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required that:

• AD be classified from normal control with high accuracy because non-AD de-

mentias would not benefit from an AD-specific treatment

• AD progression be tracked and distinguished from lower levels of dementia

(EMCI, LMCI & SMC in case of ADNI2) when an intervention would be most

effective.

• The treatment efficacy be reliably and meaningfully monitored

In the report by (Mueller et al., 2005) there is a mention that no one biomarker

exists yet that fulfills all the above requirements. Yet there is increasing evidence that

a combination of currently existing neuroimaging techniques and different biomarkers

can provide important complementary information and thus contribute to a more

accurate and earlier diagnosis of AD. Leading us to investigate the demographic

feature.

We design six experiments (1). AD vs. CU (2). AD vs. EMCI (3). AD vs. LMCI

(4). CU vs. EMCI (5). CU vs. LMCI (6). EMCI vs. LMCI. The objective here is

to independently study the inter-cohort relationships in hope of learning more about

the class separation in AD clinical group.

3.1.2 History of M.L. and FDG-PET

A 18F-FDG PET scan uses a small amount of fluorodeoxyglucose (FDG) tracer

ergo “FDG-PET” to show differences between healthy tissue and diseased tissue. The

radioactive tracer will take 30 to 90 minutes for it to travel through the body. In

previous studies FDG-PET is described as a neuronal injury biomarker in AD (Ishii,

2002, 2014).
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In the report “PET approach for dementia diagnosis”Ishii (2014) states that FDG-

PET generally has a higher accuracy than MR imaging for diagnosis of early AD and

for predicting rapid conversion for mild cognitive impairment (MCI) to AD. This is

corroborated by Fig. 3.1 where the strength of the curve is maximum for amyloid-

PET during the early stages. For statistical voxel based analysis the researches have

proposed for automatic diagnosis the t-sum method of calculating the total t-values

in a region-of-interest template by using the Statistical Parametric Mapping (SPM)

program. In other works (Rabinovici et al., 2011) FDG-PET has been compared

against amyloid ligand Pittsburgh compound B (PiB-PET) and has been used to

differentiate between frontotemporal lobar degeneration (FTLD) and AD. The study

concluded that PiB and FDG showed similar accuracy in discriminating AD and

FTLD.

For 3D PET scans “Z-score” images are used to represent the active parts of the

brain it will show all pixels with values below the lower threshold in blue, and pixels

above the upper threshold in red (Ishii, 2014). PET scans have also been analyzed

by utilizing adjusted T statistics and an automated voxel-based procedure (Herholz

et al., 2002) and Machine Learning algorithms to address the high dimensionality of

the statistical maps (Illán et al., 2011) (Higdon et al., 2004). Recently minor cognitive

impairment (MCI) in 18F-FDG PET has been classified by a brain regional sensitivity

mapping method based on summated index (Total Z score) by utilizing the sensitivity-

distribution maps (Kakimoto et al., 2011). In other contemporary works a region of

interest (ROI) mask is used to extract features and use incomplete random forest-

robust support vector machine to perform classification (Lu et al., 2017). In previous

work within our lab MRI images were classified using surface measures of ventricular

enlargement and sparse coding then applied on the 2D-patch features (Zhang et al.,

2016a,b) with 96.7% accuracy. These images were functional MRIs and the features
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were a combination of surface statistics, we build our idea on a similar model we fist

design a empirical machine learning based model. Using three dimensional patches

(i.e., small sub volumes of the image defined as three-dimensional [3D] cubes) we

extract information. A very similar 3D patch based feature selection is described in

(Coupé et al., 2011), In this work, voxels with similar surrounding neighborhoods are

considered to belong to the same structure and thus are used to estimate the final

label. Our data is also along the same lines.

3.1.3 Biomarker

The Figure 3.1 depicts the biomarkers as indicator of dementia. The curve in-

dicates the strength of the biomarker with respect to dementia state. The common

imaging and assessment modalities are:

1. Amyloid beta imaging modality detected in CSF and PET-Amyloid.

2. Neuro-degeneration detected by 18F-FDG PET.

3. Brain atrophy and neuron loss measured with MRI.

4. Memory loss measured by cognitive assessment

5. General cognitive decline measured by cognitive assessment

1-3 biomarkers can be observed before the diagnosis of dementia, and our data is of

the second type measuring the neuronic activity at a given time. 18F-FDG PET scan

is a 30 min procedure and requires the patient to stay still in a dark room. The

varition in neuronic activity at a time if any is accounted as outliers and it depends

on the chosen algorithms to handle outliers. The graph in Fig. 3.1 gives us an insight

into how out classification would perform given the biomarker as 18F-FDG PET. AD

vs. CU would be easily separable, groups like EMCI vs. LMCI who have close
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separation in progression may be the most difficult to classify and early changes in

disease progression should have a strong separation but not as strong as in case of

AD vs. CU.

Figure 3.1: Biomarkers vs. dementia in symptomatic stages of AD. The curves to

right (yellow(PET), melon-orange (PET)) have strong early slopes indicating early

class separation, curves to the right (orange (MRI), red (assessments)) have strong

slopes in later stages.

3.2 Methods

In this section, we briefly introduce the most relevant theoretical background

in Sparse Coding, Dimensionality Reduction, Max-Pooling and Adaptive Boosting

(Adaboost). The underlying algorithm are described in detail in Chapter. 4.
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3.2.1 Dictionary Learning and Sparse Coding

Sparse coding is the modeling of data vectors as sparse linear combinations of ba-

sis elements it is widely used in machine learning, neuroscience, signal processing, and

statistics. From the input image data, sparse coding learns an over-complete set of

basis vectors (dictionary), which have been used to represent data efficiently (Tibshi-

rani, 1996; Friedman et al., 2008). To learn local imaging features, image patches are

usually selected to form dictionaries. We first generate a 10 × 10 × 10 window on the

3D scan to obtain a collection of small image patch with constant overlap. We used

the technique of dictionary learning and sparse coding to learn meaningful features

based on stochastic approximations, which scales up gracefully to large datasets with

millions of training samples. Stochastic Coordinate Coding (SCC) (Lin et al., 2014)

was adopted in our work for dictionary construction because of its computational

efficiency.

Given a data set X = (x1 . . . xn) of image patches, each image patch is a p-

dimensional vector i.e., xi ∈ Rp, i = 1, . . . , n. Specifically, suppose there are m

atoms dj ∈ R, j = 1, . . . ,m, where the number of atoms is usually much smaller than

the number of image patch p. Each patch can be represented as xi =
∑m

j=1 zi,jdj.

In this way, the p-dimensional vector xi is represented by an m-dimensional vector

zi = (zi,1, . . . , z1,m)T which means the learned feature vector xi is a sparse vector. We

can then formulate the following optimization problem:

min fi(D, zi) =
1

2
‖Dzi − xi‖2 + λ‖zi‖1 (3.1)

where λ is the regularization parameter, ‖ . ‖ is the Euclidean norm and ‖zi‖1 =∑m
j=1 |zi,j|. We can interpret the first term of the Eq(1) as a reconstruction term which

tries to force the algorithm to provide a good representation of x. The second term
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of Eq(1) ensures the sparsity of the learned features zi. D = (d1, . . . , dm) ∈ Rp×m is

the dictionary. Given the whole dataset X., the sparse coding problem is then given

as follows:

min
D∈Bm,z1,...,zm

F(D, z1, . . . , zm) ≡ 1

n

n∑
i=1

fi(D, zi), (3.2)

It is a non convex problem with respect to joint parameters in the dictionary D

and the sparse code Z = z1, . . . , zm.However, it is a convex problem when either D or

Z is fixed. When the dictionary is fixed, solving each sparse code zi is a Lasso problem.

Because the PET scan feature dimension m is much larger than than n, solving the

Lasso problem is time consuming. On the other hand when the sparse codes are fixed,

it will become a quadratic problem. Solving the sparse coding problem also requires

a lot of time when dealing with large-scale data sets and a large-size dictionary. Thus

we choose the stochastic coordinate coding(SCC) algorithm (Lin et al., 2014), which

can dramatically reduce the computational costs of the sparse coding while keeping

a comparable performance. The dictionary learning and sparse coding based on SCC

algorithm may involve many rounds of iteration. One iteration is described in Fig. 3.2.

In many computer vision, medical imaging and bioinformatics applications (Mairal

et al., 2009; Zhang and Li, 2010; Lv et al., 2015b) dictionary learning and sparse

coding leads to state-of-the-art results.

3.2.2 Max-Pooling

State-of-the-art patch-based image representations involve a pooling operation

that aggregates statistics computed from local descriptors. After obtaining features

using convolution, we would next like to use them for classification. In theory, one

could use all the extracted features with a classifier such as a softmax classifier, but

this can be computationally challenging. We use max-pooling which summarizes the

coded features over larger neighborhoods. To address this, first recall that we de-
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Figure 3.2: Figure shows one iteration of the sparse coding algorithm. (a).Take an

image patch xi. (b). Perform few steps of coordinate descent to find the support (non

zero entries) of the sparse code. (c). Update the support of the dictionary by second

order stochastic gradient descent to obtain a new dictionary.

cided to obtain convolved features because images have the ”stationarity” property,

which implies that features that are useful in one region are also likely to be useful for

other regions. Thus, to describe a large image, one natural approach is to aggregate

statistics of these features at various locations. If one chooses the pooling regions to

be contiguous areas in the image and only pools features generated from the same

(replicated) hidden units. Then, these pooling units will then be translation invari-

ant. This means that the same (pooled) feature will be active even when the image

undergoes (small) translations. Translation-invariant features are often desirable; in

many tasks (e.g., object detection, audio recognition), the label of the example (im-
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Figure 3.3: Pooling layer down-samples the volume spatially, independently in each

depth slice of the input volume. Left: In this example, the input volume of size

[256 × 256 × 16] is pooled with filter size 2; stride 2 into output volume of size

[128×128×16]. Notice that the volume depth is preserved. Right: The most common

down-sampling operation is max, giving rise to max-pooling, and here shown with a

stride of 2, each max value is taken over 4 numbers (little 2× 2 square).

age) is the same even when the image is translated. For example, if you were to

take an MNIST digit and translate it left or right, you would want your classifier to

still accurately classify it as the same digit regardless of its final position. Standard

pooling operations include sum- and max-pooling. Sum-pooling lacks discriminabil-

ity because the resulting representation is strongly influenced by frequent yet often

uninformative descriptors, but only weakly influenced by rare yet potentially highly-

informative ones. Max-pooling equalizes the influence of frequent and rare descriptors

but is only applicable to representations that rely on count statistics, such as the bag-

of-visual-words (BOV) and its soft-and sparse-coding extensions. Fig. 3.3 shows the

whole process of max pooling. On the left hand side, pooling layer down-samples the

volume spatially, independently in each depth slice of the input volume. On the right

hand side, it is the most common max pooling shown with a stride of 2.
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3.2.3 Dimension Reduction

Feature extraction approaches project features into a new feature space with lower

dimensionality and the new constructed features are usually combinations of origi-

nal features. Examples of feature extraction techniques include Principle Component

Analysis (PCA), Linear Discriminant Analysis (LDA) and Singular Value Decomposi-

tion(SVD). Feature extraction maps the original feature space to a new feature space

with lower dimensions by combining the original feature space. In that context prin-

ciple component analysis (PCA) (Jolliffe, 2002) is a unsupervised machine learning

algorithm widely used for dimensionality reduction. It used orthogonal transforma-

tions to convert a set of observations of possibly co-related values into a set of linearly

uncorrelated variables called principle components.

After selecting the patches and structuring our 3D data into “sample × features”,

we would wish to analyze it summarizing its main characteristics. PCA is one of the

most popular techniques for processing, compressing and visualising data. We use

probabilistic PCA a variation of traditional PCA to reduce the dimensions of our

selected features. Traditionally PCA’s effectiveness is limited by its global linearity,

to overcome that a combination of local linear PCA projections has been found to be

able to capture data complexity efficiently. This model variant of PCA corresponds

to the probability density unlike traditional PCA and enables it to combine PCA

models (Tipping and Bishop, 1999). After reducing the dimensions of our dataset

we will classify using AdaBoost.

3.2.4 AdaBoost

A number of statistical classifiers have been proposed for brain biomarker research.

Support vector machine and Adaptive Boosting are the most popular ones. Adaboost
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Figure 3.4: Illustration of the general idea of AdaBoost algorithm. The original

training data is trained in three rounds. The first round is to create the first classifier,

then the wrong classes will be given more weight and train in next round. In round

2, AdaBoost constructs a new classifier on the different weighted data. Similarly, it

will give wrong classes higher weight and increase the probability of training in next

round. Here, × represents wrong classes. In the third round, AdaBoost learns a new

classifier based on last round weighted data. In this figure, the bigger shape means

more weight to be trained. Finally, AdaBoost combines all classifiers in three rounds

(calculated in last line) into the final classifier.
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short for “Abstract Boosting” is an approach to machine learning based on the idea

of creating a highly accurate prediction rule by combining many relative weak and in-

accurate rules. The AdaBoost Algorithm (Freund et al., 1996) was the first practical

boosting algorithm, and remains one of the most widely used and studied, with appli-

cations in numerous fields. Adaboost can achieve more accuracy than any individual

member classifier with unstable classifier. It can be used in conjunction with many

other types of learning algorithms to improve their performance. One of the main

ideas of the algorithm is to maintain a distribution or set of weights over the training

set. Initially, all weights are set equally, but on each round, the weights of incorrectly

classified examples are increased so that the weak learner is forced to focus on the hard

examples in the training set. Fig. 3.4 illustrates the general idea of the AdaBoost

algorithm. The algorithm takes as input a training set (x1, y1), . . . , (xm, ym) where

each xi belongs to some domain or instance space X, and each label yi is in some

label set Y . For most of the discussion, we assume Y = {−1,+1}. Adaboost calls a

given weak or base learning algorithm repeatedly in a series of rounds t = 1, . . . , T .

One of the main ideas of the algorithm is to maintain a distribution or set of weights

over the training set. The weight of this distribution on training example i on round

t is denoted as Dt(i). Initially, all weights are set equally , but on each round, the

weights of incorrectly classified examples are increased so that the weak learner is

forced to focus on the hard examples in the training sets. The weak learner’s job is to

find a weak hypothesis ht : X → {−1,+1} appropriate for the distribution Dt. The

goodness of a weak hypothesis is measured by its error.

εt = Pri∼Dt [ht(xi) 6= yi] =
∑

i:ht(xi)6=yi

Dt(i)

Notice that the error is measured with respect to the distribution Dt on which the

weak learner was trained. In practice, the weak learner may be an algorithm that
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can use the weights Dt on the training examples. Alternatively , when this is not

possible, a subset of the training examples can be sampled according to Dt, and these

(unweighted) resampled examples can be used to train the weak learner Schapire

(2013)
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Chapter 4

ALGORITHMS

Section 3.2 in contraction describes different methods that we propose to use in

this work. After the brief discussion about the data and theory in previous sections we

will now, in this section develop the analysis pipelines for both our proposed methods

and elaborate on the components of involved analysis system. The clarity of data flow

in the pipelines ensured by talking about the components as algorithmic modules.

4.1 Patch Based Dictionary Learning Pipeline

This section introduces the computational algorithms of the patch based dictio-

nary learning and sparse coding procedures in detail . Major steps are summarized

in Alg. 1 and Fig. 4.1.

4.1.1 Patch Generation for Dictionary Learning

In the first pipeline to find a better representation of the data in low class-

separability groups we will use Stochastic Coordinate Coding (SCC) to learn the

sparse representation of the FDG-PET scans. We generate 8000 image patches of

dimension 10 × 10 × 10 in each FDG-PET image, xi ∈ R1×p where i ∈ {1 . . . n}.

Of these we select 2000 patches to initialize the dictionary. This arrangement would

ensure overlapping which is proven to be very efficient in practice (Lin et al., 2014;

Zhang et al., 2016b). We generalize a cost function X = (x1, x2, . . . , xn), where n

is the number of patches and p is the patch dimension. As we noted early during

experimentation the patch dimension is 1000 and the objective matrix for SCC is

thus samples ∗ no of patches × patch dimension. The number of elements in an
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experiment is close to half a billion (644,000,000 in case of AD vs. Normal) given the

limit of space and complexity we decide to downsample the patch dimension using

max-pooling with a 2× 2× 2 window. The new size of patch is now 125.

4.1.2 Finding Dictionary and Sparse Codes

Dictionary learning is the learning of the basis set, also called the dictionary, to

adapt it to specific data, an approach that has recently proven to be very effective for

signal processing in the audio and image processing domains. Different from tradi-

tional feature extraction methods like principle component analysis and its variants,

sparse coding learns non-orthogonal and over-complete dictionaries which have more

flexibility to represent data. Stochastic Coordinate Coding has been used successfully

in the past (Lin et al., 2014; Mairal et al., 2009).

The following section describes Stochastic Coordinate Coding (SCC) algorithm (Lin

et al., 2014). The dictionary is initialized via any initialization method and denoted

as D1
1. The sparse codes are initialized as z0i = 0 for i = 1, . . . , n. Where i is the

index of data points and the superscript denotes the number of epoch. The algorithm

is describes as follows:

(1). Get an image patch xi.

(2). Update zki via one or a few steps of coordinate descent:

zki = CD(Dk
i , z

k−1
i , xi). (4.1)

Specifically, for j from 1 to m, update the j-th coordinate zk−1i,j of zk−1i cyclically as

follows:

bj ← (dki,j)
T (xi −Dk

i z
k−1
i ) + zk−1i,j , zk−1i,j ← hλ(bj), (4.2)

where h is the soft thresholding shrinkage function. We call such cycle as one step of

coordinate descent. The updated sparse code is then denoted by zki .
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Algorithm 1: Patch Based Stochastic Coordinate Coding

Input: A number of FDG-PET images

Output: A set of features and labels for the six classification experiment

1 The segmented dataset is divided and segregated into 6 binary parcels

2 for exp ← { [AD vs. CU], [AD vs. EMCI], [AD vs. LMCI], [CU vs. EMCI],

[CU vs. LMCI], [EMCI vs. LMCI]. } do

3 m ← number of samples

4 n ← number of patches

5 p ← patch dimension

6 Initialize X = [m*n × p] for samples ∈ exp do

7 A three dimensional patch of 10 × 10 × 10 is created in order to

extract meaning full information from the 3D segmented PET scans.

8 A number of random patches are generated over the volume and

random meaningful patches are selected from the ROI to initialize the

dictionary.

9 for patch ∈ patches do

10 downsample “patch” & linearly rearranged Xpatch = (x1, . . . , xp)

where patch ∈ p.

11 A matrix of all patches is arranged. i.e., X[sample*patch, : ] = [

Xpatch’]

12 end

13 end

14 X is then fed into the stochastic coordinate coding module. (Fig. 4.1(c)).

15 We apply max-pooling algorithm on the learned 2000-dimension dictionary

to aggregate discriminant features (Fig. 4.1(d)).

16 Ada-Boost is used to classify the six binary classification experiments.

17 end
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(3). Update the dictionary D by using stochastic gradient descent:

Dk
i+1 = PBm(Dk

i − ηki ∆Dk
i
fi(D

k
i , z

k
i )) (4.3)

where P denotes the projection operator. We set the learning rate as an approx-

imate of the inverse of the Hessian matrix. The gradient of Dk
i can be obtained as

follows:

∆Dk
i
fi(D

k
i , z

k
i ) = (Dk

i z
k
i − xi)(zki )T . (4.4)

(4). i = i+ 1. If i ≥ n, then set Dk+1
1 = Dk

n+1, k = k + 1 and i = 1.

When the data sets are very large, the learning rate ηki will be very small. In this

case, the dictionary will not change very much and the efficiency of the training will

decrease. In practice tuning the learning rate is tricky and sensitive. To obtain the

learning rate we use the Hessian matrix of the objective function. It is shown that the

following matrix provides an approximation of the Hessian: H =
∑

k,i z
k
i (zki )T , when

k and i go to infinity. According to the second order stochastic gradient descent, we

should use the inverse matrix of the Hessian as the learning rate. However, computing

a matrix inversion problem is computationally expensive. In order to get the learning

rate, we simply use the diagonal elements of the matrix H. The matrix H is updated

as follows:

H ← H + zki (zki )T . (4.5)

Alg. 2 summarizes the steps described in section 4.1.2
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Algorithm 2: SCC (Stochastic Coordinate Coding)

Input: Data set X = (x1, x2, . . . , xn) ∈ Rp×n, ensure D ∈ Rp×m and

Z = (z1 . . . zn) ∈ Rm×n

Output: D = Dk
n and zi = zki for i = i, . . . , n.

1 Initialize D1
1, H = 0 and z0i for i = 1, . . . , n,

2 for k = 1 to k do do

3 for i = 1 to n do

4 Get an image patch xi

5 Update zki via one or a few steps of coordinate descent:

zki ← CD(Dk
i , z

k−1
i , xi).

6 Update the Hessian matrix and the learninig rate:

H ← H + zki (zki )T , ηki,j = 1
hjj

.

7 Update the support of the dictionary via SGD:

dki+1,j ← dki,j − ηki,jzi,j(Dk
i z

k
i − xi)

8 If i = n, set Dk+1
1 = Dk

n+1.

9 end

10 end

4.2 Patch Based Dimensionality Reduction Pipeline

This section introduces the computational algorithms of the patch based feature

extraction (dimensionality reduction) classification procedures in detail. Major steps

are summarized in Alg. 1 and Fig. 4.2.

4.2.1 Patch Generation and Feature Selection

After we identify the region of interest as the cerebral cortex in the FDG-PET

scans we are left with a 80 × 95 × 80 voxel intensities which represent the metabolic
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activity. For this study we choose the entire cerebral cortex as the basis for comparison

or as we would call it the biomarker. The feature dimension with the FDG-PET data

is much larger than the number of subjects and is therefore prone to overfitting.

We first randomly generate a number of small 10 × 10 × 10 windows on each image

volume to obtain a collection of small image patches with different amounts of overlap.

The procedure is in fact equivalent to applying a high-pass filter to the original

volume. As a result, the region of interest (ROI) are still present, but some low

frequency signals have disappeared.

In the first pipeline we pool and arranged the patches into a linear array Xi =

(x1i , . . . , x
n
i ) where n is the number of feature and i ∈ {1 . . .m}, where m is the number

of samples in a group and stack them for the concerned groupX = (X1, . . . , Xi, . . . , Xm).

The corresponding labels are also generated in this step Y = (y1, . . . , ym). We will

then try to find out the linear and non-linear separability of the data using machine

learning algorithms.

Illustration of the patch selection procedure is shown in Fig. 5.1 (b).

4.2.2 Finding Linear Class Separability

Having designed the training dataset X in section 4.2.1, we can now use it for

classification. However when a vast number of variables are measured from a rela-

tively small dataset, the feature dimension is usually much larger than the sample

size and the volume of the space increases so fast that the available data becomes

sparse. In such a problem an enormous amount of data is required to ensure that

there are several samples with each combination of values thus ensure no overfitting.

With a fixed number of training samples, the predictive power reduces as the dimen-

sionality increases. To overcome this issue we choose to effectively represent our data

by reducing the dimensions of our feature space. In machine learning, dimensionality
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Algorithm 3: Patch Based Feature Extraction & Dimensionality Reduction

Pipeline

Input: A number of FDG-PET images

Output: A set of features and labels for the six classification experiment

1 The segmented dataset is divided and segregated into 6 binary parcels.

2 for exp ← { [AD vs. CU], [AD vs. EMCI], [AD vs. LMCI], [CU vs. EMCI],

[CU vs. LMCI], [EMCI vs. LMCI]. } do

3 n ← number of samples

4 p ← number of patches

5 Initialize X = [n × p]

6 for sample ∈ exp do

7 A three dimensional patch of 10 × 10 × 10 is created in order to

extract meaning full information from the 3D segmented PET scan.

8 A number of patches are generated over the PET volume and

overlapping is ensured

9 All patch windows are max-pooled and linearly arranged into a vector

B(Fig.4.2 (b)).

10 Xsample ← B. Where sample ∈ m

11 end

12 In X the high dimensionality of the data is reduced by probabilistic PCA

to avoid over fitting (Fig. 4.2(c)).

13 classification of X: sample × features, Y : labels, is performed by

AdaBoost.

14 end
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reduction is the introduction of new feature space where the original features are rep-

resented. The new space is of lower dimension that the original space. e.g., principle

component analysis (PCA) (Jolliffe, 2002), linear discriminant analysis (LDA) (Mika

et al., 1999).

A major limitation of traditional PCA is that it is non-parametric as there is

no probabilistic model for observed data. In 1999 ME Tipping (Tipping and Bishop,

1999) proposed a probabilistic PCA model (PPCA) in which the principle axes of a set

of observed data vectors may be determined through maximum-likelihood estimation.

The main idea of PPCA is based on the latent variable models which seeks to relate

a d-dimensional observed data vector t to a corresponding q-dimensional vector of

latent variable (i.e. the unobserved variables that can be inferred from the model) x.

y = Wx+ µ+ ε (4.6)

where, latent variables x ∼ N (0, I)). the noise model is described as ε ∼ N (0,Ψ),

and the (d× q) parameters matrix W contains the factor loading (Factor Analysis).

µ is the mean, given this formulation the observational vectors t are also normally

distributed t ∼ N (µ,C). In regards to equation (4.1) the probability model for the

case of isotropic noise ε ∼ N (0, σ2I) is

• y|x ∼ N (WX + µ, σ2I)

• y ∼ N (µ,Cy), where cy = WW T + σ2I (where Cy is the covariance matrix for

the observed data y)

The Maximum Likelihood solution for PPCA is obtained as:

WMLE = Uq(Λq − σ2
MLEI)1/2R,

where Uq is a matrix of q leading principal directions(eigen values of the covariance

matrix), Λq is a diagonal matrix of corresponding eigenvalues.
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σ2
MLE = 1

d−q
∑d

j=q−1 λj represents the variance lost in the projection and R is an

arbitrary q × q rotation matrix (corresponding to rotations in the latent space).

A key motivation for this model is that because of the diagonality of Ψ (the

variance not accounted by the latent factors ergo noise.) observed variables are con-

ditionally independent given latent factors x. The intention is that the dependencies

between the data variables t are explained by a smaller number of latent variables

x, while ε represents variance unique to each observation variable, unlike PCA which

treats covariance and variance similarly.

Figure 4.1: Pipelines for patch based Stochastic Coordinate Coding. (a). Patches

are generated for feature extraction. (b). The size of patch dimension is reduced

(c). After linearly arranging all the patches we find the dictionary and the sparse

codes. (d). Maxpooling the learned sparse codes for obtaining a objective matrix.

(e).applying AdaBoost for classification.
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Figure 4.2: Pipelines for patch based feature extraction, (a). patches are generated

for feature extraction. (b). patches are pooled to obtain specific activation. (c). the

pooled values are linearly arranged and PCA is used to reduce it to a lower dimension

space. (d). Adaboost is applied on the new feature space.

4.3 Assumptions

In both our methods we have made certain assumptions while building the system.

This section describes the assumptions and to what extent they hold true

1. The sample of the population is a representative sample.

We assume the sample provided by the ADNI initiative is representative of the

the population. The representative sample allows the collected results to be

generalized to a larger population. We assume the 18F-FDG PET analysis can

be generalized to the general population.
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2. 3D Patch pooling represents the activation of a volume.

In our first method of classification we use patch statistics to build the feature

matrix with an assumption that the aggregate volume’s (under 10 × 10 × 10)

activation can be represented by the maximum intensity of the voxel within

that region.

3. The cerebral cortex intensities are assumed to serve as a biomarker.

In this study we assume that the entire cerebral cortex may relay the metabolic

information. In previous years z-score based t-values have been calculated to

study regions of the brain and theory states that the metabolic changes during

disease progression have a differential effect on various parts of the brain (Ishii,

2014). This is a benign analysis and we assume cerebral cortex is can serve as

a good biomarker.
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Chapter 5

EXPERIMENTS AND RESULTS

We set up our system on “Saguaro” one of the three computing environments provided

by ASU for research purposes. Saguaro is a 5K processor Dell Linux cluster which

can perform almost 45 million floating point operation per second, it has over 9 Tera

bytes of RAM and over 400 Terra Bytes aggregate disk space. A node on Saguaro can

be easily and conveniently accessed via a SSH protocol. Each node has 8 processors

and 16GB of RAM. I acquired a node on saguaro during the summer of 2015.

5.1 Experimental Setup

In prior work Zhang et al. (2016b) the authors study the surface deformation of

the hippocampal region of the brain and use it as features for training a dictionary of

basis vectors and associated sparse codes. This encoding learn sets of over complete

basis vectors which are better able to capture structures and patterns inherent in the

input data. The hippocampal surface is modeled from the hippocampal region of the

brain and patches on its surface captures topological information effectively. Similar

a system can be designed which uses a patch based feature extraction process and

then use statistics derives form the patches for classification. However an important

question for diagnostic classification based on voxel-based or surface-based maps is

which statistics are best to analyze.

(Kakimoto et al., 2011) used the total z-score from the Brodmann Area sensitivity

map in the brain surface, (Lu et al., 2017) calculated the mean voxel values from

116 VOIs, standard deviations of voxel values from the 116 anatomical VOIs, and

mean voxel value differences between 54 pairs of the anatomical VOIs on left and
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right brain hemispheres. All VOIs were extracted form a AAL template similar to

the one in Fig. 2.5 with more regions of varying intensities. We hypothesize that a

patch based extraction methods which selects overlapping volumes from each image

in a number of samples and learns there sparse representations via a dictionary can

then be used for classification Alg. 1. To compare this system we design one more

system Alg. 3 in which we directly pool intensities in the patch volume to a max.

Maxing the overlapping patches ensure that the activation around a region is local

to that volume. After which PCA can be applied to reduce the high dimension of

the data and also helps in reducing noise induced for the blank patches (covering no

region). We then evaluate the cerebral cortex as a potential imaging biomarker for

AD diagnosis and prognosis research.

The two systems we come up with are described below :

1. Patch based Stochastic Coordinate Coding, Pooling the sparse codes to gener-

ate features for annotation, boosting features by adding gender, age, ApoeE1,

ApoeE2 and FAQ followed by classification.

2. Pooling n patches, using gender, age, ApoeE1, ApoeE2 and FAQ as additional

features for boosting classification, reducing the dimensions of the annotated

patches and classification.

After normalizing, segmenting and skull stripping the cerebral cortex we extract

features for classification. In our experiments each processed FDG-PET is a 80 ×

95 × 80 image with intensity values spread over the voxel volume. In this study we

applied two different patch based extraction techniques. (1) For patch based sparse

coding we compared 500, 1000 and 2000 number of patches to make the objective

matrix for SCC. To reduce complexity we down sample 1000 dimensional patches

to 125 dimensions by using a 2 × 2 × 2 window as described in Sec. 4.1.1. (2) For
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Figure 5.1: (a). Unstructured patches in Alg.1. The patches are generated randomly

and ensure overlapping by creating enough of them. (b). Structured patches in Alg.2.

with overlap shown in a slightly stronger shade of blue.

patch based dimension reduction (PPCA) we made 4050 patches with varying overlap

across the cerebral ROI-segmented FDG-PET volume. Fig. 5.1(a,b) shows the patch

formation for (1) and (2).

In the training matrix we then involve additional features which enables us to

make well defined classification, we include the genetic information and Functional

Activities Questionnaire (FAQ) Scores even Age and Gender were involved. the two

alleles of Apolipoprotein E(APOE) are available, APOE genotype is represented by

combination of e2 (episilon 2),e3 and e4. Each individual will have one of the follow-

ing combinations: e2/e2, e2/e34, e2/e44, e3/e3, e3/e4, e4/e4. Although the order

between two genotypes for each person doesn’t matter, they are represented in the

order of e2 ≥ e3 ≥ e4. After feature annotation, the dimension of the dataset was

reduced to a reasonable size and classification was performed.

5.1.1 System Configuration

We manage the data files on the cluster and use two system for the designing of

both our systems.
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Dell PowerEdge T110 II Server

CPU : Intel Core2 Quad @ 2.6 GHz

OS : Windows 7

Total Memory (RAM) : 8 GB

No. of Cores : 4

Dell Alienware X1

CPU : Intel Core i5 @ 2.8 GHz

OS : Windows 10

Total Memory (RAM) : 16 GB

No. of Cores : 4

Table 5.1: System Configurations

5.1.2 Languages and Software used.

In this section we enumerate the software tools and languages used for the exper-

iments.

1. Matlab (2016a,2015b) : To make the patches in both experiment • To max-

pool the data in patch pooling and down-sampling the patches in (SCC) Sec-

tion. 4.1.1.

2. C++ : To pool the learned dictionary • Sparse Coding, the code os taken from

(Lin et al., 2014) and modified to fit our needs.

3. Python (2.7.12) : For classification and file management

4. Shell : for scripting the above listed.

5. Software : SPM To preprocess the 18F-FDG PET scans • InkScape for dia-

grams • Micron: for visualizing NiFTI files • MobaXterm / WinSCP / Putty:

For accessing the cluster
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6. Libraries : Python/2.7.12 (sklearn) for classifiers.

5.2 Results

We run six experiments over the two methods described in Algorithm 1 (1) and

Algorithm 3 (2). An N-fold cross validation protocol was adopted to estimate clas-

sification accuracy. All subjects were randomly divided into N folds. The surface

biomarkers were selected by training on N-1 folds and the test was performed on

the remaining fold. We rotated this procedure for N times to estimate the accuracy.

In this paper, we choose N = 10 to complete the classification.The output of each

classification experiment was compared to the ground truth, and a contingency table

was computed to indicate how many class labels were correctly identified as members

of one of the two classes. The rows of the contingency table represent the true classes

and the columns represent the assigned classes. The cell at row r and column c is the

number of subjects whose true class is r while their assigned class is c. Natural per-

formance measures for classification problems mainly based on error rate or accuracy.

However, higher accuracy does not necessarily imply better performance on target

task. In two-category classification, one method for handling c-class problem is to

consider c 2-class problems: ωi

not ωi
(Fawcett, 2004). Therefore, confusion matrix was

proposed as a method to measure classifier performance. TP, FP, TN, FN represents

number of true positives, number of false positives, number of true negatives and

number of false negative, respectively. The matrix in Table. 5.2 represents a possible

combination of ground truth and predicted classification for two classes.

The total of TP, FP, FN, TN refers to the total number in the classification.

Five performance measures F1 Score, Recall, Specificity, Positive predictive value and

Negative predictive value were calculated as follows:
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Assigned Class

True Class Positive Negative

Positive TP FP

Negative FN TN

Table 5.2: The Confusion Matrix

F1 Score = 2× TP

FN + 2× TP + FP
.

In a given population precision measures the amount of true cases classified cor-

rectly and recall the strength of that number. When you have both high precision

and high recall it would mean that the population is well classified. F1 Score is the

measure that is the harmonic mean of precision and recall. The reason for taking

harmonic mean is because it is more appropriate when dealing rates and ratios.

Recall =
TP

TP + FN
.

Recall in this context is also referred as the true positive rate or sensitivity. is

a statistical measure of how well a binary classification test correctly identifies a

condition and the probability of correctly labeling members of the target class.

Specificity =
TN

FP + TN
.

The specificity is a statistical measure of how well a binary classification test

correctly identifies the negative cases.

Positive predictive value =
TP

TP + FP
.
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Where positive predictive value (PPV) is also referred to as precision, which mea-

sures the probability of a positive prediction is correct.

Negative predictive value =
TN

TN + FN
.

which measures the probability of a negative prediction is correct.

All these measures provide relevant information about the classification and no

single measure tells the entire story. For example consider a scenario where 90% of

the population does not have a disease and the 10% population is misclassified by the

classifier, the accuracy would still be 90%. Thus we should use multiple measures.

There are some standard performance evaluation measures for classification study.

Bigger values usually mean stronger classification power. We also computed the area-

under-the-curve (AUC) of the receiver operating characteristic (ROC). The ROC is

the average value of sensitivity for all the possible values of specificity. Such an

index is especially useful in a comparative study of two diagnostic tests. If two tests

are to be compared, it is desirable to compare the entire ROC curve rather than at a

particular point (Swets, 1979). The maximum AUC=1 means that the diagnostic test

is perfect in the differentiation between the diseased and stable. This happens when

the distribution of test results for the diseased and stable do not overlap. AUC = 0.5

means the chance of discrimination that curve located on diagonal line in ROC space.

Using these measures of analysis we first report the comparison between different sets

of feature, followed by a thorough analysis on both the proposed pipelines. We then

list the AUC comparison in the end.

5.2.1 Comparison between Sets of Features.

We tested our best scores across the features we have have in store for classification.

In this comparison we put emphasis on the features we are including in classification.
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We tested both the pipelines using (1).Voxel information from the image (2). Voxels

combined with rich genetic scores described in section.5.2 (3). A combination of (2)

and the other demographic information. We observe that (3). gives very good results

in AD vs. CU ∼ 98%. Only in CU vs. LMCI (2) performs better with ∼ 82%

Methods Exp. Voxels Voxels +

ApoeE2 +

ApoeE3 + FAQ

Voxels +

ApoeE2 +

ApoeE3 + FAQ

+ Age &

Gender

Pool+FE

AD vs. CU 88.97 95.10 96.30

AD vs. EMCI 76.92 81.69 83.68

AD vs. LMCI 63.26 69.44 73.42

CU vs. EMCI 54.49 62.63 69.94

CU vs. LMCI 63.87 82.19 78.28

EMCI vs. LMCI 58.04 59.47 57.38

SCC

AD vs. CU 81.69 95.78 95.78

AD vs. EMCI 74.56 81.31 81.31

AD vs. LMCI 64.44 78.49 78.49

CU vs. EMCI 51.96 59.57 64.02

CU vs. LMCI 61.37 63.89 79.58

EMCI vs. LMCI 51.96 59.05 59.05

Table 5.3: Comparison results between different sets of features. The measure used

in F1-Score, three different sets of features are used to compare the effectiveness of

Voxel, ApoeE1, ApoeE2, FAQ and age/gender in classification.
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5.2.2 Pooling and Dimension Reduction

We tested the framework described in Alg. 1 in six classification experiments (1).

AD vs CU, (2). AD vs EMCI, (3). AD vs LMCI, (4). CU vs EMCI, (5). CU vs

LMCI and (6). CU vs EMCI. We made 4050 patches and we extracted the Age, Gen-

der, ApoE2 1 (Ghebranious et al., 2005; Genin et al., 2011), ApoE3, and Functional

Activities Questionnaire (FAQ) Scores for each sample for the purpose of compari-

son. To boost classification we use the combination of “Voxel Feature”, “ApoE2”,

“ApoeE3”, “FAQ”, “Age” and “Gender”. We test the accuracy of using only the

voxels as features against using (voxels + ApoE2 + ApoeE3 + FAQ) and (voxels

+ ApoeE2 + ApoeE3 + FAQ + Age and Gender). The classification results are

shown in Table. 5.3. As seen in Table. 5.3 using the combination of all the features

(Voxels, ApoE2, ApoE3, FAQ, Age, Gender) gave the best results. To correctly

classify the annotated features we use dimension reduction before classification to

avoid overfitting. We compare Principle Component Analysis (PCA), Singular Value

Decomposition (SVD) and Kernel PCA (KPCA). (Mika et al., 1998). For the pur-

pose of classification we choose AdaBoost (Shawe-Taylor and Cristianini, 2004) and

compare it with popularly used classifiers such as Nears Neighbor, Linear Singular

Valued Decomposition (Linear SVD), Gaussian Process (GP) (Rasmussen, 2006) and

AdaBoost (Rojas, 2009).

Comparison between different classifiers

As indicated in Table. 5.4 the F1 Score of AD vs CU is best for Gaussian Process (GP)

with a 97.3% F1 Score compared to 96.2% in AdaBoost. 98.38% PPV and 95.20%

NPV indicates both the classes have been effectively classified. The class separation

is maximum in case of AD vs CU in reference to disease progression that explains the

1https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1243648/
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high F1measure. For AD vs EMCI, AD vs LMCI, CU vs EMCI and CU vs LMCI

the F1Score is highest case of Gaussian Process. In case of CU vs LMCI AdaBoost

performs comparatively poor in comparison to other classifiers. For EMCI vs LMCI

the NPV is poor for GP and Linear SVM which means one class is poorly classifier

and the classification accuracy is inconsistent. In this case AdaBoost performed good

as it gave a more consistent NPV and PPV the recall and sensitivity is also the best in

this experiment. For further comparison between dimensionality reduction we keep

our classifier as AdaBoost because of a more correct classification when AdaBoost

was used as classifier across all the experiments.

Comparing different Dimension reduction techniques,

As indicated in Table. 5.5 the F1 Score of AD vs CU is best when the dimensions

are reduced using singular valued decomposition (SVD) with 97% F1 Score. The

high Recall and Specificity implies AD vs CU is well classified. Again we believe

the 18F-FDG PET biomarker along with ApoeE2 and ApoeE3 the two alleles of

Apolipoprotein E and the Functional Activities Questionnaire (FAQ) are extremely

sensitivity if classifying between Alzheimer’s and Normal Control. Column two in

Table.5.5 shows that the subjects in AD vs EMCI are separable to a good extent with

F1 Score of 83.3% in case of Principle Component Analysis (PCA) and a Recall of

84.5% and Specificity of 85.7% shows that both the classes have been evenly separated.

Kernel PCA (Mika et al., 1998) performed the best in remaining experiments. With

CU vs LMCI the group separation is of one i.e. the disease progression there is one

stage in between CU and LMCI and we observe in column 5 of Table. 5.5 the F1 Score

is 80%. With AD vs LMCI and CU s EMCI with Kernel PCA the F1 Score is 76.65%

and 71.46% respectively. The last experiment (LMCI vs EMCI) F1 Score of 60.3% is

the most difficult to classify many good and popular classifiers failed to classify the

complex nature of early Mild impairment (EMCI) and impairment (LMCI). EMCI
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and LMCI as described in Section ?? are derived from the Mild Cognitive Impairment

(MCI) stage in ADNI1 and the participants reported a subjective memory concern

the difference in EMCI and LMCI is decided by the Wechsler Memory Scale Logical

(WMS). We believe there is no clear separation with 18F-FDG PET as our biomarker

and maybe more specific ROI may lead us to a more concrete conclusion.

5.2.3 Patch Based Stochastic Coordinate Coding

Having learned and classified the features using traditional feature extraction tech-

niques we use another dimensionality reduction approach, Stochastic Coordinate Cod-

ing described in Section 3.2 to learn a dictionary which allows us to store images more

efficiently as a superposition of a small number of its elements so that each image

is reduced to a small number of coefficient. We tested the framework described in

Alg. 3 in six classification experiments (1). AD vs CU, (2). AD vs EMCI, (3). AD vs

LMCI, (4). CU vs EMCI, (5). CU vs LMCI and (6). CU vs EMCI. We made 8000

patches across the entire 18F-FDG PET Cerebral cortex to ensure overlapping and

then selected 1000 random patches for initializing the dictionary. The sample size for

AD vs CU, AD vs EMCI, AD vs LMCI, CU vs EMCI, CU vs LMCI and vs EMCI

is 332000, 324000, 304000, 344000, 364000 and 336000. Our choice of patch size is

10× 10× 10 and the sample × feature size for say AD vs CU is 344, 000, 000 which

is a huge problem size, to tone down our features we down-sample the 10 × 10 × 10

patches by a 2 × 2 × 2 kernel and reduce the samples to 125. Figure. 3.3(b) shows

the general idea of downsampling. After learning the 2000 dimension dictionary and

sparse codes were learned, we applied max-pooling (Scherer et al., 2010) to generate

features for annotation. After feature reduction, the dimension of the dataset was

reduced to a reasonable size and classification was performed.
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Yet again we extract the Age, Gender, ApoE2 2 (Ghebranious et al., 2005; Genin

et al., 2011), ApoE3, and Functional Activities Questionnaire (FAQ) Scores for each

sample for the purpose of comparison. To boost classification we use the combination

of “Voxel Feature”, “ApoE2”, “ApoeE3”, “FAQ”, “Age” and “Gender”. We test

the accuracy of using only the voxels as features against using (voxels + ApoE2 +

ApoeE3 + FAQ) and (voxels + ApoeE2 + ApoeE3 + FAQ + Age and Gender).

The classification results are shown in Table. 5.3. As seen in Table. 5.3 using the

combination of all the features (Voxels, ApoE2, ApoE3, FAQ, Age, Gender) gave

the best results. For the purpose of classification we choose AdaBoost (Shawe-Taylor

and Cristianini, 2004) and compare it with popularly used classifiers such as Nears

Neighbor, Linear Singular Valued Decomposition (Linear SVD), Gaussian Process

(GP) (Rasmussen, 2006) and AdaBoost (Rojas, 2009). We also vary the number of

patches in the classification experiments we use 500, 1000, 1500, 2000 patches.

Comparison between different classifiers

As indicated in Table. 5.6 the F1 Score of AD vs CU is best for Gaussian Process

(GP) with a 97% F1 Score compared to 96.7% in AdaBoost. 98.3% PPV and 94.2%

NPV indicates both the classes have been effectively classified. The class separation

is maximum in case of AD vs CU in reference to disease progression that explains

the high F1measure. In case of experiments with a class separation of one i.e. AD vs

EMCI and CU vs LMCI (column 2 and 5) Gaussian Process gives us the best results

with F1 Score of 83.27% and 79.58%. In experiments with no class separability we

see that AdaBoost and LinearSVM perform well with an F1 Score of 78.5% in AD vs

LMCI with AdaBoost and F1 Score of 65.57% in CU vs EMCI with Linear SVM. As

seen from Table. 5.6 Gaussian Process gives a bad Recall Score for CU vs EMCI, CU

vs LMCI and EMCI vs LMCI and we can see the NPV to be low indicating that the

2https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1243648/
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classifier fails to classify the experiments. In the latter cases Adaboost and Linear

SVM performs evenly well for both classes and outperforms some unstable classifiers.

Comparing different number of features

In this comparison we refrain the results of experiments to only the voxel feature. We

are more interested in the performance of SCC when the number of random patches

are varied with regards to simplifying the image. The other factors responsible for

boosting classification essentially acts as non-factors if we wish to study dictionary

learning for feature learning. As indicated in Table. 5.7 the F1 Score of AD vs CU is

best when the number of features are more.

5.2.4 AUC of ROC Curves

Area under the Curve is used to measure receiver operating characteristic (ROC)

curve. The area is a measure of the predictive power of the classification experiment

to classify a randomly chosen positive example more accurately than a randomly

chosen negative example. ROC is the graphical plot between the true positive rate

and the false positive rate, it was first used during World War 2 for detecting enemy

objects from friendly ships and noise. Know as Signal detection theory, it measures

the ability of radar receiver operators to identify enemy ships.

In this comparison we plot the AUC and compare both of our methods with

and without demographics. The graphs show the superior accuracy of including rich

features over only the regional voxel intensities.
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Measure Method AD

CU

AD

EMCI

AD

LMCI

CU

EMCI

CU

LMCI

LMCI

EMCI

Nearest Neighbor

F1 Score 96.53 83.33 75.98 73.65 84.87 60.77

Recall 95.76 88.46 79.69 67.41 77.67 56.52

Specificity 96.50 84.02 76.60 75.00 90.00 52.71

PPV 97.31 78.76 72.60 81.18 93.54 65.73

NPV 94.52 91.57 82.91 58.98 68.35 43.03

Linear SVM

F1 Score 96.79 83.27 77.35 75.79 84.95 67.27

Recall 96.27 86.67 78.72 65.87 77.43 56.75

Specificity 96.52 84.65 78.52 82.14 90.67 59.74

PPV 97.31 80.13 76.02 89.24 94.08 82.58

NPV 95.20 89.88 81.01 51.68 67.72 29.11

Gaussian Process

F1 Score 97.34 83.68 77.58 75.96 85.64 63.76

Recall 96.31 86.76 80.74 68.69 79.35 55.93

Specificity 97.88 85.10 78.10 79.10 89.68 54.00

PPV 98.38 80.82 74.65 84.94 93.01 74.15

NPV 95.20 89.88 83.54 59.55 71.51 34.17

AdaBoost

F1 Score 96.85 83.33 73.42 69.94 78.28 57.38

Recall 94.38 84.50 75.00 67.50 78.07 58.04

Specificity 99.26 85.71 75.00 58.90 74.52 52.46

PPV 99.46 82.19 71.91 72.58 78.49 56.74

NPV 92.46 87.64 77.85 63.48 74.40 53.79

Table 5.4: Classification results between different classifiers. Popular classifiers are

used to perform analysis on the best feature set.
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Measure Method AD

CU

AD

EMCI

AD

LMCI

CU

EMCI

CU

LMCI

LMCI

EMCI

PCA

F1 Score 96.85 83.33 73.42 69.94 78.28 57.38

Recall 94.38 84.50 75.00 67.50 78.07 58.04

Specificity 99.26 85.71 75.00 58.90 74.52 52.46

PPV 99.46 82.19 71.91 72.58 78.49 56.74

NPV 92.46 87.64 77.85 63.48 74.40 53.79

SVD

F1 Score 97.09 81.85 70.23 66.67 77.62 57.47

Recall 95.33 85.18 68.62 67.78 77.83 58.82

Specificity 98.56 83.59 72.19 65.59 73.58 53.01

PPV 98.92 78.76 71.91 65.59 77.41 56.17

NPV 93.83 88.76 69.62 67.41 74.05 55.69

Kernel PCA

F1 Score 96.65 82.47 76.65 71.46 80.01 60.39

Recall 95.77 82.75 78.01 68.47 78.06 59.56

Specificity 96.50 85.47 77.91 70.80 77.02 54.90

PPV 97.31 82.19 75.34 74.73 82.25 61.23

NPV 94.52 85.95 80.37 64.04 72.78 53.16

Table 5.5: Classification Results with PCA, SVD and Kernel PCA. In this comparison

we used Adaboost as a fixed classifier for all the reduction technique.
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Measure Method AD

CU

AD

EMCI

AD

LMCI

CU

EMCI

CU

LMCI

LMCI

EMCI

Nearest Neighbor

F1 Score 97.05 79.02 74.91 73.23 83.80 59.73

Recall 96.79 80.71 77.37 65.00 75.21 56.85

Specificity 96.55 82.06 76.04 75.80 90.91 52.51

PPV 97.31 77.39 72.60 83.38 94.62 62.92

NPV 95.89 84.83 80.04 52.80 63.29 46.20

Linear SVM

F1 Score 96.80 81.78 74.56 65.04 81.74 60.38

Recall 95.78 82.06 75.88 65.57 78.32 59.56

Specificity 97.18 84.91 76.07 63.53 80.48 54.90

PPV 97.84 81.50 73.28 64.51 85.48 62.23

NPV 94.52 85.39 78.48 64.60 72.15 53.16

Gaussian Process

F1 Score 97.08 83.27 76.70 73.44 73.30 64.05

Recall 95.81 86.27 80.45 59.79 58.22 56.70

Specificity 97.87 84.65 77.19 86.76 92.85 55.23

PPV 98.38 80.13 73.28 95.16 98.92 73.59

NPV 94.20 89.88 83.54 33.14 16.41 36.70

AdaBoost

F1 Score 95.78 81.31 78.49 64.02 79.58 59.05

Recall 93.81 87.40 78.23 63.02 76.66 58.56

Specificity 97.10 82.23 80.02 62.05 77.62 53.54

PPV 97.84 76.02 78.76 65.05 82.79 59.55

NPV 91.78 91.01 79.74 60.11 70.25 52.53

Table 5.6: Classification Results between different classifiers. Popular classifiers are

used to perform analysis on the best feature set.
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Measure Method AD

CU

AD

EMCI

AD

LMCI

CU

EMCI

CU

LMCI

LMCI

EMCI

500 F

F1 Score 96.82 82.51 71.94 64.70 78.30 61.53

Recall 95.31 84.28 75.75 64.36 77.08 60.21

Specificity 97.86 84.78 73.25 63.06 75.00 56.00

PPV 98.38 80.82 68.49 65.03 79.56 62.90

NPV 93.83 87.64 79.74 62.35 72.15 53.16

1000 F

F1 Score 96.29 81.81 77.39 64.53 74.40 56.23

Recall 94.79 83.57 77.39 64.02 73.05 53.26

Specificity 97.14 84.57 79.11 62.85 70.19 47.44

PPV 97.84 80.13 77.39 65.05 75.80 59.55

NPV 93.15 87.07 79.11 61.79 67.08 41.13

2000 F

F1 Score 97.35 85.51 75.60 64.37 77.17 58.06

Recall 95.83 88.32 75.86 63.21 78.02 55.67

Specificity 98.57 86.63 77.35 62.57 72.83 50.70

PPV 98.92 82.87 75.34 65.59 76.34 60.67

NPV 94.52 91.01 77.84 60.11 74.68 45.55

Table 5.7: Classification Results between Number of Patches in Training the Dictio-

nary and Sparse Codes.
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Figure 5.2: Classification in AD vs. CU group with different features performance

comparison with receiver operating characteristic (ROC) curves and area under curve

(AUC) measures. The results for DR and DR + Demographic are computed with

the proposed method in Alg.1and DL and DL + Demographic are computed with

the proposed method in Alg.3. Within the four statistics, the result of using Feature

Extraction with Voxles, APOE and FAQ are better than others. Among all AUC

measures, DR+Demo feature achieved the best performance (AUC = 0.99).
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Figure 5.3: Classification in AD vs. CU group with different features performance

comparison with receiver operating characteristic (ROC) curves and area under curve

(AUC) measures. The results for DR and DR + Demographic are computed with

the proposed method in Alg.1and DL and DL + Demographic are computed with the

proposed method in Alg.3. Within the four statistics, the result of using Dictionary

Learning with Voxles, APOE and FAQ are better than others. Among all AUC

measures, DL+Demo feature achieved the best performance (AUC = 0.93).

57



Figure 5.4: Classification in AD vs. CU group with different features performance

comparison with receiver operating characteristic (ROC) curves and area under curve

(AUC) measures. The results for DR and DR + Demographic are computed with

the proposed method in Alg.1and DL and DL + Demographic are computed with

the proposed method in Alg.3. Within the four statistics, the result of using Feature

Extraction with Voxles, APOE and FAQ are better than others. Among all AUC

measures, DR+Demo feature achieved the best performance (AUC = 0.81).
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Figure 5.5: Classification in AD vs. CU group with different features performance

comparison with receiver operating characteristic (ROC) curves and area under curve

(AUC) measures. The results for DR and DR + Demographic are computed with

the proposed method in Alg.1and DL and DL + Demographic are computed with

the proposed method in Alg.3. Within the four statistics, the result of using Feature

Extraction with Voxles, APOE and FAQ are better than others. Among all AUC

measures, DR+Demo feature achieved the best performance (AUC = 0.69).
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Figure 5.6: Classification in AD vs. CU group with different features performance

comparison with receiver operating characteristic (ROC) curves and area under curve

(AUC) measures. The results for DR and DR + Demographic are computed with

the proposed method in Alg.1and DL and DL + Demographic are computed with the

proposed method in Alg.3. Within the four statistics, the result of using Dictionary

Learning with Voxles, APOE and FAQ are better than others. Among all AUC

measures, DL+Demo feature achieved the best performance (AUC = 0.84).
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Figure 5.7: Classification in AD vs. CU group with different features performance

comparison with receiver operating characteristic (ROC) curves and area under curve

(AUC) measures. The results for DR and DR + Demographic are computed with

the proposed method in Alg.1and DL and DL + Demographic are computed with

the proposed method in Alg.3. Within the four statistics, the result of using Feature

Extraction with Voxles, APOE and FAQ are better than others. Among all AUC

measures, DR+Demo feature achieved the best performance (AUC = 0.64).
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Chapter 6

DISCUSSION AND LIMITATIONS

Both the frameworks are are patch based differing in the extraction stage. The use

of stochastic coordinate coding has been shown to work great with 3D surface data

like MRI images (Zhang et al., 2016b). to model this system in voxel based 3d scans

it also required that we consider 3d image patches. (Zhang et al., 2016b) and (Lin

et al., 2014) explain in there work the computation overhead of SCC. Considering

our 10 × 10 × 10 patches with a 332 sample size and 1000 number of features and

our effective matrix size is 332000 × 1000. This matrix has 320 million entries and

conducting six experiments could be extremely challenging. We decided to pool the

10 × 10 × 10 matrix by a 2 × 2 × 2 window and down sample our patch features to

125. This might cause unexpected variations in results.

Our work purely concentrates on the usage of AdaBoost for classification. Our

aim was to choose Adaboost as a classifier and find the best configuration to efficiently

perform classification. FDG-PET image is 3 dimensional data, conforming to a voxel-

wise structure of the brain. In the past SVM has been the choice of classifier for

classifying clinical groups in (AD) progression so has been classifiers like incomplete

random forests, (Lu et al., 2017). We choose Ada boost as it has been used before in

our lab (Zhang et al., 2016a), tweaking some other classifier may have given better

performance.

This project includes experimentation purely on the baseline (first visit) data from

ADNI2. Integration of data collected from later visits in time can further help analyse

the dataset. Classification with time, (i.e. if a subject is diagnosed as CU (healthy),

and in a later visit diagnosed with MCI(Early or Late)) successful prediction on
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converters and non-converters with neural networks is a technique yet to be explored.

Since our optimal configurations were achieved by a brute force method, there is

a possibility of our results improving further. Further experimentation with neural

network configurations may help achieve even better classification accuracies.
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Chapter 7

CONCLUSION

In this thesis, we present two frameworks that combines three dimensional voxel

statistics with machine learning and dictionary learning & sparse coding to deal with

high dimensional features before classification. We applied an AdaBoost to classify

different AD stages. Our comprehensive experiments showed the effectiveness of

patch based methods in three dimensional Positron Emission Tomography (PET). We

obtained 96% classification with voxel + demographic statistics. Both frameworks

perform well with experiments with high group separation. With experiments having

low group separation both the algorithms struggled to some extent. This indicates

that there is significant metabolic change in AD vs. CU but in other stages the

metabolic change may be unpredictable to some extent.

We hope our work sheds light on the utilization of PET images as biomarker

information in classifying Non-AD classes with a greater accuracy. It also invokes the

use of varied multiple features in the diagnosis of Alzheimer’s via some clinical group

classification. In the future, we plan to apply our systems to other cortical and sub-

cortical regions in the brain, more specifically to design a better ROI based feature

selection method so as to identify regions in the cortex and sub-cortex responsible for

cognitive decline.
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Chapter 8

FUTURE WORK

We built a system which can detect dementia and thus we can also apply our patch

based method to other dementia related diseases. In both patch based dictionary

learning and patch based feature extraction we learn from the patch extracted data,

this enables us to explore other feature learning methods like autoencoders which

are similar to dictionary learning except they do not involve the concept of inducing

sparsity. we list our future works below.

1. This method can be used to classify DTI images.

2. PET imaging is effective in detecting Parkinson’s and so these methods can be

applied to detect Parkinson’s.

3. Use of autoencoders similar to Sparse coding in the pipeline might give inter-

esting results.

4. Other extraction based methods eg. Broadmann Area be utilized and compared

for a more solid knowledge of regions in the brain effected by dementia.
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