
Representing Hybrid Transition Systems in an Action Language Modulo ODEs

by

Nikhil Loney

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2017 by the
Graduate Supervisory Committee:

Joohyung Lee, Chair
Georgios Fainekos

Yu Zhang

ARIZONA STATE UNIVERSITY

May 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ASU Digital Repository

https://core.ac.uk/display/97833585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Several physical systems exist in the real world that involve continuous as well as

discrete changes. These range from natural dynamic systems like the system of a

bouncing ball to robotic dynamic systems such as planning the motion of a robot

across obstacles. The key aspects of effectively describing such dynamic systems is to

be able to plan and verify the evolution of the continuous components of the system

while simultaneously maintaining critical constraints. Developing a framework that

can effectively represent and find solutions to such physical systems prove to be highly

advantageous. Both hybrid automata and action languages are formal models for

describing the evolution of dynamic systems. The action language C+ is a rich and

expressive language framework to formalize physical systems, but can be used only

with physical systems in the discrete domain and is limited in its support of continuous

domain components of such systems. Hybrid Automata is a well established formalism

used to represent such complex physical systems at a theoretical level, however it is

not expressive enough to capture the complex relations between the components of

the system the way C+ does.

This thesis will focus on establishing a formal relationship between these two for-

malisms by showing how to succinctly represent Hybrid Automata in an action lan-

guage which in turn is defined as a high-level notation for answer set programming

modulo theories (ASPMT) — an extension of answer set programs in the first-order

level. Furthermore, this encoding framework is shown to be more effective and expres-

sive than Hybrid Automata by highlighting its ability in allowing states of a hybrid

transition system to be defined by complex relations among components that would

otherwise be abstracted away in Hybrid Automata. The framework is further real-

ized in the implementation of the system cplus2ASPMT, which takes advantage

of state of the art ODE(Ordinary Differential Equations) based SMT solver dReal

i

to provide support for ODE based evolution of continuous components of a dynamic

system.

ii

ACKNOWLEDGMENTS

First and foremost, I want to thank my adviser, Dr. Joohyung Lee. I decided to

pursue my Master’s in Computer Science at Arizona State University to help gain

expertise and increase my knowledge in the field of Artificial Intelligence and I can say

without a doubt this is exactly what Dr. Lee helped me achieve. I was in his class for

AI in Fall’15 and immediately grew to appreciate his teaching and advising techniques.

Dr. Lee worked closely with me throughout my time at ASU, patiently guiding me

through my research as well as providing suggestions for relevant coursework. I am

fortunate and grateful to have such an experienced, patient and dedicated adviser.

Thank you Dr. Lee.

I would also like to thank all my teammates, the members of the Automated

Reasoning Group: Samidh Talsania, Zhun Yang, Yi Wang, Manjula Malaiarasan and

Brandon Gardell. They provided crucial and valuable inputs for my work through

several discussions and group seminars. I would also like to thank my friends Rushali

Malde, Kishore Narendran, Sanjeet Phatak, Onkar Ghag, Narayan Kanhere, Kevin

Vira and many more for providing me with the support and guidance to carry out

my research as well as providing welcome distractions. Thank you all.

Finally I would like to thank my family. They have always been very loving,

encouraging and supportive throughout my life. My parents have never denied me

from pursuing what I was truly interested in and provided me with the support,

resources, encouragement and guidance to do so. I would like to specially thank my

mother. She has been my strongest light of guidance and pushed me in the right

direction whenever I went astray. Thank you Mom, Dad and Rahul.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND . 7

2.1 Review: Hybrid Automata . 7

2.2 Review: ASPMT . 10

2.3 Review:C+ . 11

2.3.1 Syntax of C+ . 11

2.3.2 Semantics of C+ . 12

2.4 Related Works . 13

2.4.1 PDDL+ . 13

2.4.2 Action Language H . 14

3 REPRESENTING LINEAR HYBRID AUTOMATA WITH CONVEX

INVARIANTS BY C+ MODULO THEORIES . 16

3.1 Representation . 16

3.2 Example . 21

3.3 Beyond Linear Hybrid Automata . 25

3.3.1 Representation. 25

3.3.2 Example . 27

3.4 Proofs . 31

3.4.1 Proof of Lemma 1. 31

3.4.2 Proof of Lemma 2. 37

3.4.3 Proof of Lemmas 3 and 4 . 39

iv

CHAPTER Page

4 C+ MODULO ODE . 41

4.1 New Causal Laws for Expressing Continuous Evolutions of ODEs . . 41

4.2 Corresponding Representation of New Causal Laws in ASPMT 43

5 REPRESENTING HYBRID TRANSITION SYSTEMS IN C+ MOD-

ULO ODE . 46

5.1 Representation . 46

5.2 Example . 49

5.3 Turning in the Input Language of dReal . 54

5.4 Proofs . 56

5.4.1 Proof of Lemma 11. 56

5.4.2 Proof of Lemma 12. 61

6 IMPLEMENTATION . 65

6.1 aspmt2smt . 65

6.1.1 Architecture . 66

6.1.2 Syntax Restrictions . 67

6.2 cplus2ASPMT . 68

6.3 Syntax of New Constructs . 69

6.3.1 In cplus2aspmt . 69

6.3.2 In Extended aspmt2smt . 70

6.4 Limitations . 71

6.5 Examples . 72

6.5.1 Water Tank Example - Example 1. 73

6.5.2 Turning Car Example - Example 3 . 74

6.6 Results . 77

v

CHAPTER Page

7 GOING BEYOND HYBRID AUTOMATA . 80

7.1 Additive Fluents . 80

7.2 Complex Definition of States of Hybrid Systems. 81

8 CONCLUSION . 83

REFERENCES . 85

APPENDIX

A ABBREVIATIONS IN C+ . 87

B WATER TANK EXAMPLE . 91

C 2 BALL EXAMPLE . 96

D CAR EXAMPLE . 107

vi

LIST OF TABLES

Table Page

6.1 Runtime Comparison of Hybrid Automata Solvers - Runtime(s) 77

6.2 Encoding Size (Number of Lines) Comparison . 78

vii

LIST OF FIGURES

Figure Page

1.1 Snippet of Traffic World in the Input Language of Cplus2ASP 2

1.2 (a) Feasible Plan (b) Infeasible Plan 4

3.1 Hybrid Automata for Water Tank System. 21

3.2 Hybrid Automata of Two Ball Example . 28

5.1 Hybrid Automata of Car example . 50

6.1 Architecture of System ASPMT2SMT as Shown In (Bartholomew

and Lee (2014)) . 66

6.2 Architecture of System cplus2ASPMT . 69

6.3 Output of Example 1 . 74

6.4 Output of Example 3 . 76

C.1 Output of Example 2 . 106

viii

Chapter 1

INTRODUCTION

Both hybrid automata and action languages are formal models for describing the

evolution of dynamic systems. Action language C+ (Giunchiglia et al. (2004)) is an

extensively used language currently available for formalizing discrete domain prob-

lems. It is written using causal laws and syntactic aspects of the action language

like if and after that implicitly takes care of time step expansion, which make C+

easy to use and understand for describing complex transition systems. The ability of

C+ to represent properties of actions and fluents as well capturing complex relations

among fluents make it a rich and expressive language. Setting up causal laws for a

physical system in this way helps capture the complex dependencies between com-

ponents of the system. The Causal Calculator (CCalc) (Giunchiglia et al. (2004))

is an implementation of the action language C+. The semantics of the language of

CCalc is related to default logic and logic programming and uses ideas of satisfiability

planning for its computations. The system Cplus2ASP (Babb and Lee (2013)), a

successor of CCalc, is a system designed to perform a modular translation of action

descriptions written for CCalc into Answer Set Programs(ASP) (Baral (2003)) and

uses an ASP solver to find the satisfiable models for a given problem. However, the

obvious downfall of using this framework is that in most works on action languages,

the transitions are limited to discrete changes only, so they are not appropriate to

model systems that involve continuous components governed by ODEs like in hybrid

automata or even simple real valued fluents.

Hybrid Automata is a well known mathematical model used extensively to describe

complex physical systems. In (Henzinger (1996)) we see that any Hybrid Automata

1

% If a car is at the end of a segment and will not leave then it will stay where it is

caused speed(C) = 0 if − (nextSegment(C) = none) & − willLeave(C).

% A car can’t have a next segment unless it has travelled

%to the end of its current segment

caused nextSegment(C) = none if node(C) = none.

caused nextSegment(C) = none if segment(C) = Sg &

node(C) = startNode(Sg) & positiveOrientation(C).

caused nextSegment(C) = none if segment(C) = Sg &

node(C) = startNode(Sg) & − positiveOrientation(C).

% Only cars which have selected a new segment can leave

constraint willLeave(C) → −(nextSegment(C) = none).

Figure 1.1: Snippet of Traffic World in the Input Language of Cplus2ASP

has two main components:

• Continuous components are the real valued variables of the Hybrid Automata

whose rate of change with time is governed by some ordinary differential equa-

tion.

• Discrete components are the control modes/switches of the Hybrid Automata

represented as vertices in a graph.

The focus of hybrid automata is to model continuous transitions as well as discrete

changes, but the discrete components are simply abstracted away not to be able to

represent various properties of actions nor complex relations among fluents like action

languages do. In (Akman et al. (2001)), the Traffic World problem is represented

2

using action language solver Cplus2ASP. A small snippet of the code can be seen

in Figure1.1. The first rule defines the speed of each car when the car does not

leave its segment. This is captured using the relation among the fluent constants

nextSegment and willLeave. These fluent constants are further defined by additional

constants that can be seen in the remaining rules in the code snippet. Due to the

nature in which states are defined in Hybrid Automata, such complex dependencies

cannot be effectively captured. Action languages can be used to perform defeasible

causal reasoning, reasoning about additive fluents, recursive definition of constants,

aggregate computation and more in transition systems which is not possible in Hybrid

Automata.

In (Lee and Meng (2013)), an extension of action language C+ (Giunchiglia et al.

(2004)) is shown to model hybrid transition systems. The main idea of the extension

is to reformulate the propositional C+ in terms of Answer Set Programming Modulo

Theories (ASPMT) — a tight integration of answer set programs and satisfiability

modulo theories (SMT) to allow SMT-like effective first-order reasoning in ASP. Based

on the reduction of the tight fragment of ASPMT to SMT, the extended C+ can

be turned into SMT formulas so that SMT solvers can be used for computing the

language. 1 However, this method does not ensure that an invariant holds during

continuous changes. For example, consider the problem of a robot navigating through

the pillars as in Figure1.2, where the circles represent pillars that the robot has to

avoid collision with.

In order to ensure that the robot does not collide into the pillars during continu-

ous transitions, checking the invariants at each discrete time points is not sufficient

because it could generate an infeasible plan, such as (b). This is related to the chal-

1The translation was done manually in that paper. One of the contributions of this paper is an
implementation that automates the process.

3

Figure 1.2: (a) Feasible Plan (b) Infeasible Plan

lenge in integrating high-level task planning and low-level motion planning, where

the plans generated by task planners may fail often in motion planners.

This thesis will describe how to succinctly represent hybrid automata in an action

language which in turn is defined as a high level notation for ASPMT. Starting with

a simple case, the description will go over how to represent linear hybrid automata

with convex invariants by an action language modulo theories. A further translation

into SMT allows for computing them using state-of-the-art SMT solvers that support

arithmetic over reals.

However, many practical problems in hybrid systems contain non-linear polyno-

mials, trigonometric functions and differential equations that cannot be represented

by linear hybrid automata. While solving the formulas with these functions is un-

decidable in general, there is a recent breakthrough in the work of SMT solving. In

(Gao et al. (2013a)), the authors presented “δ-complete decision procedures” for such

SMT formulas, leading to the concept of “satisfiability modulo ODE.” 2 SMT solver

2A δ-complete decision procedure for an SMT formula F returns false if F is unsatisfiable, and
returns true if its syntactic ”numerical perturbation” of F by bound δ is satisfiable, where δ > 0 is
number provided by the user to bound on numerical errors. The method is practically useful since
it is not possible to sample exact values of physical parameters in reality.

4

dReal is an implementation of SAT modulo ODEs and was shown to be useful for

encoding the general class of hybrid automata.

Based on these recent works, this thesis further extends the C+ representation of

hybrid automata to non-linear hybrid automata by resorting to ASP modulo ODE.

We introduce two new abbreviations of causal laws, one for representing the evolu-

tion of continuous variables as specified by ODEs and another for describing invariants

during continuous transitions, which stands for formulas whose universal quantifica-

tion is over bounded time intervals. The simplicity of this method is thanks to the

generality of the framework of ASPMT and its relation to SMT that enables algo-

rithmic improvements in SMT to be carried over to the ASPMT setting.

The System cplus2aspmt has been implemented based on these translations,

which allows for succinct representation of hybrid transition systems that can be

computed by turning an action description in C+ into the input language dReal.

By making use of dReal, the system provides support for continuous processes that

are governed by ordinary differential equations. The System cplus2ASPMT can

be used for reasoning about hybrid transition systems, where other action language

implementations, such as the Causal Calcualtor, Cplus2ASP (Babb and Lee (2013)),

and coala (Gebser et al. (2010)) cannot be used.

The key contribution of this thesis is a framework that can be used to represent

and reason about hybrid transition systems described using Hybrid Automata as

well as those that involve more complex internal relations among components of the

system that cannot be expressed in Hybrid Automata. By doing so, the framework

enjoys the advantage of the structure of the Hybrid Automata formalism as well

as the freedom to capture essential dependencies with the help of action language

specific constructs and perform defeasible causal reasoning in an effective way. This

framework is not just syntactic sugar and is realized in the prototype implementation

5

of system cplus2ASPMT. In this manner, the research culminates in an expressive

and effective tool to represent and reason about hybrid transition systems.

This thesis will be organized as follows. In Chapter2, we give a review of hybrid

automata, action language C+ and ASPMT to set up the terminologies used for the

translations. Chapter3 presents how to represent linear hybrid automata with convex

invariants in C+ modulo theory of reals. Chapter4 introduces new abbreviations of

causal laws that can be used for modeling invariants and flow using the concept of

SAT modulo ODE, and Chapter5 uses these new constructs to represent the general

class of non-linear hybrid automata and how to reduce it to the input language of

dReal. Chapter6 will cover the implementation of system cplus2aspmt, a variant

of the system cplus2asp, which uses dReal as the back-end SMT solver.

6

Chapter 2

BACKGROUND

2.1 Review: Hybrid Automata

We review the definition of Hybrid Automata (Henzinger (1996); Alur et al.

(2000)), formulated in terms of a logical language by representing arithmetic ex-

pressions by first-order formulas under the background theories, such as QF NRA

(Quantifier-Free Non-linear Real Arithmetic) or QF NRA ODE (Quantifier-Free Non-

linear Real Arithmetic with Ordinary Differential Equations). We assume the set

R of all real numbers. By R≥0 we denote the set of all non-negative reals and

Rn = {(r1, . . . , rn) | ri ∈ R, 1 ≤ i ≤ n}. Let X be a set of real variables. An

arithmetic expression over X is an atomic formula constructed using functions and

predicates from the background signature and elements from R ∪ X. Let A(X) be

an arithmetic expression over X and let x be a tuple of real numbers whose length

is the same as the length of X. By A(x), we mean the expression obtained from A

by replacing variables in X with the corresponding values in x. For an arithmetic

expression with no variables, we say that A is true if the expression is evaluated to

true in the background theory.

A Hybrid Automaton H consists of the following components:

• Variables. A finite list of real-valued variables X = (X1, . . . , Xn). The number

n is called the dimension of H. We write Ẋ for the list (Ẋ1, . . . , Ẋn) of dotted

variables, representing first derivatives during continuous change, and X ′ for the

set (X ′1, . . . , X
′
n) of primed variables, representing the values at the conclusion

7

of discrete change. X0 ⊆ X is the set of initial states. We use lower case letters

to denote the values of these variables.

• Control Graph. A finite directed graph 〈V,E〉. The vertices are called control

modes, and the edges are called control switches.

• Initial, invariant, and flow conditions. Three vertex labelling functions,

Init, Inv, and Flow, that assign to each control mode v ∈ V three first-order

formulas:

– Initv(X) is a first-order formula whose free variables are from X. The

formula constrains the initial condition.

– Invv(X) is a first-order formula whose free variables are from X. The

formula constrains the value of the continuous part of the state while the

mode is v.

– Flowv(X, Ẋ) is a set of first-order formulas whose free variables are from

X ∪ Ẋ. The formula constrains the continuous variables and their first-

order derivatives.

• Events. A finite set Σ of symbols called h-events and a function, hevent : E →

Σ, that assigns to each edge a unique h-event.

• Guard. For each control switch e ∈ E, Guarde(X) is a first-order formula whose

free variables are from X.

• Reset. For each control switch e ∈ E, Resete(X,X
′) is a first-order formula

whose free variables are from X ∪X ′.

Notation: Upper case Xi is a variable, and lower case xi is a value of Xi.

A labelled transition system consists of the following components:

8

• State Space: A set Q of states and a subset Q0 ⊆ Q of initial states.

• Transition Relations: A set A of labels. For each label a ∈ A, a binary

relation →a on the state space Q. Each triple q →a q′ is called a transition.

The Hybrid Transition System TH of a Hybrid Automaton H is the directed graph

obtained from H as follows.

• The set Q of states is the set of all (v, x) such that v ∈ V , x ∈ Rn, and Invv(x)

is true.

• (v, x) ∈ Q0 iff both Initv(x) and Invv(x) are true.

• The transitions are labelled by members from A = Σ ∪R≥0.

• (v, x) →σ (v′, x′), where (v, x), (v′, x′) ∈ Q and σ is an h-event in Σ, is a

transition if there is an edge e = (v, v′) ∈ E such that:

(1) hevent(e) = σ,

(2) the sentence Guarde(x) is true, and

(3) the sentence Resete(x, x
′) is true.Inv

• (v, x) →δ (v, x′), where (v, x), (v′, x′) ∈ Q and δ is a nonnegative real, is a

transition if there is a differentiable function f : [0, δ] → Rn, with the first

derivative ḟ : [0, δ]→ Rn such that:

(1) f(0) = x and f(δ) = x′,

(2) for all real numbers ε ∈ [0, δ], Invv(f(ε)) is true and, for all real numbers

ε ∈ (0, δ), Flowv(ḟ(ε), f(ε)) is true. The function f is called the witness

function for the transition (v, x)→δ (v, x′).

9

2.2 Review: ASPMT

Formally, an SMT instance is a formula in many-sorted first-order logic, where

some designated function and predicate constants are constrained by some fixed back-

ground interpretation. SMT is the problem of determining whether such a formula

has a model that expands the background interpretation (Barrett et al. (2009)). Some

of the background theories relevant to this paper are as follows:

• QF LRA (Only Quantifier free linear real arithmetic): It includes the following

binary function constants that represent arithmetic functions: +, −, × and /

and the following binary predicates that represent comparison operators: ≥,

≤, < and >. In essence, Boolean combinations of inequations between linear

polynomials over real variables.

• QF NRA (Only Quantifier free non-linear real arithmetic): It includes the fol-

lowing binary function constants that represent arithmetic functions: +, −, ∗

and / and the following binary predicates that represent comparison operators:

≥, ≤, < and >. It is similar to QF LRA with the difference that it is addition-

ally capable of handling non-linear polynomials, trigonometric functions(sin,

cos, tan) and other non-linear theories.

• QF NRA ODE (Only Quantifier free non-linear real arithmetic for ODEs):

This is a special background theory for dealing with ODEs. In addition to

QF NRA, QF NRA ODE adds support for functions like integral and ∀t.

The syntax of ASPMT is the same as that of SMT. Let σbg be the (many-sorted)

signature of the background theorybg. An interpretation of σbg is called a background

interpretation if it satisfies the background theory. For instance, in the theory of

reals, we assume that σbg contains the set R of symbols for all real numbers, the

10

set of arithmetic functions over real numbers, and the set {<,>,≤,≥} of binary

predicates over real numbers. Background interpretations interpret these symbols in

the standard way.

Let σ be a signature that is disjoint from σbg. We say that an interpretation I

of σ satisfies F w.r.t. the background theory bg, denoted by I |=bg F , if there is a

background interpretation J of σbg that has the same universe as I, and I∪J satisfies

F . For any ASPMT sentence F with background theory σbg, interpretation I is a

stable model of F relative toc (w.r.t. background theory σbg) if I |=bg SM[F ; c].

2.3 Review:C+

2.3.1 Syntax of C+

C+ is defined based on propositional stable model semantics. In this section we

formulate in terms of ASPMT. We refer the reader to (Bartholomew and Lee (2013))

for the definition of ASPMT. 1

We consider a many-sorted first-order signature σ that is partitioned into three

sub-signatures: the set σfl of object constants called fluent constants, the set σact

of object constants called action constants, and the background signatureσbg. The

signature σfl is further partitioned into the set σsim of simple fluent constants and

the set σsd of statically determined fluent constants.

A fluent formula is a formula of signatureσfl∪σbg. An action formula is a formula

ofσact ∪ σbg that contains at least one action constant and no fluent constants.

A static law is an expression of the form

caused F if G (2.1)

where F and G are fluent formulas.

1This is not novel; C+ was formulated in terms of ASPMT in (Lee et al. (2013)).

11

An action dynamic law is an expression of the form(2.1) in which F is an action

formula and G is a formula.

A fluent dynamic law is an expression of the form

caused F if G after H (2.2)

whereF andG are fluent formulas and H is a formula, provided thatF does not contain

statically determined constants.

A causal law is a static law, an action dynamic law, or a fluent dynamic law. An

action description is a finite set of causal laws.

2.3.2 Semantics of C+

For a signature σ and a nonnegative integer i, expression i : σ is the signature

consisting of the pairs i : c such that c ∈ σ, and the value sort of i : c is the same

as the value sort of c. Similarly, if s is an interpretation of σ, expression i : s is an

interpretation of i : σ such that cs = (i : c)i:s.

For any action description D of signature σfl ∪ σact ∪ σbg and any nonnegative

integer m, the ASPMT program Dm is defined as follows. The signature of Dm is

0 :σfl ∪ · · · ∪m :σfl ∪ 0 :σact ∪ · · · ∪ (m−1) :σact ∪ σbg. By i : F we denote the result

of inserting i : in front of every occurrence of every fluent and action constant in a

formulaF .

ASPMT program Dm is the conjunction of

i :G→ i :F

for every static law (2.1) in D and every i ∈ {0, . . . ,m}, and for every action dynamic

law (2.1) in D and every i ∈ {0, . . . ,m−1};

(i+1):G ∧ i :H → (i+1):F

12

for every fluent dynamic law (2.2) in D and every i ∈ {0, . . . ,m− 1}.

The transition system represented by an action descriptionD consists of states

(vertices) and transitions (edges). A state is an interpretation s of σfl such that

0 :s |=bg SM[D0; 0:σsd]. A transition is a triple 〈s, e, s′〉, where s and s′ are interpre-

tations of σfl and e is an interpretation of σact, such that

(0 :s) ∪ (0 :e) ∪ (1 :s′) |=bg SM[D1; (0 :σsd) ∪ (0 :σact) ∪ (1 :σfl)] .

The definition of the transition system above implicitly relies on the following

property of transitions:

Theorem 1 For every transition 〈s, e, s′〉, s and s′ are states.

The following theorem states the correspondence between the stable models of

Dm and the paths in the transition system represented by D:

Theorem 2

(0 :s0) ∪ (0 :e0) ∪ (1 :s1) ∪ (1 :e1) ∪ · · · ∪ (m :sm)

|=bg SM[Dm; (0 :σsd) ∪ (0 :σact) ∪ (1 :σfl) ∪ (1 :σact) ∪ · · · ∪ (m−1:σact) ∪ (m :σfl)]

iff each triple 〈si, ei, si+1〉 (0 ≤ i < m) is a transition.

It is not difficult to check that ASPMT program Dm that is obtained from action

description D is always tight. Functional completion (Bartholomew and Lee (2013))

on ASPMT can be applied to turn Dm into an SMT instance.

2.4 Related Works

2.4.1 PDDL+

PDDL 2.1 (Fox and Long (2003)) introduced numeric fluents and durative actions

to represent and reason about continuous time and resource. The framework is further

13

extended to allow autonomous processes and event in PDDL+ (Fox and Long (2006)).

While the former is similar to our simple encoding approach, the start-process-stop

model in PDDL+ can be represented in our framework by representing a process as

an inertial fluent. (Shin and Davis (2005)) extended SAT-based planning framework

to cover an extension of PDDL+ language using SAT-based arithmetic constraint

solvers. In (Shin and Davis (2005)), durative actions are always understood as the

start action, continuous action and end action. Hybrid planning problems expressed

in PDDL+ (Fox and Long (2006)) model mixed discrete and continuous change. Prior

work on PDDL+ plan synthesis (Bogomolov et al. (2014); Coles et al. (2012); Coles

and Coles (2014); Shin and Davis (2005)) assumes that continuous change is linear

or handle nonlinear change by discretization (Penna et al. (2009)). Our framework is

not restricted to the reasoning of hybrid transition systems whose continuous change

is linear.

In (Bryce et al. (2015)) an SMT encoding of a PDDL+ action description is pro-

posed that is able to perform reasoning about hybrid transition systems whose con-

tinuous change is non-linear. This is closely related to what we present in our frame-

work. (Bryce et al. (2015)) proposes a syntactic translation of a PDDL+ instance

to an equivalent SMT encoding but does not provide an implementation in automat-

ing this translation. Our framework is not simply syntactic sugar and provides an

implementation for automated SMT translation as seen in system cplus2ASPMT.

2.4.2 Action Language H

Our approach is similar to the Action Language H (Chintabathina (2008)) which

is a recent extension of action language to reason about continuous process. One

notable difference is there, each state represents an interval of time, rather than a

particular timepoint. This yields a different notion of Hybrid Transition systems than

14

what is described in Hybrid Automata. Instead of using SMT solvers, an implemen-

tation of H is by translation into the language AC (Mellarkod et al. (2008)), which

extends ASP with constraints. Action Language H does not have action dynamic

laws, and consequently does not allow additive fluents. While each discrete state

represents an interval of time, action language H does not provide support for con-

tinuous evolution via ODEs or constraint checking for each intermediate time point

of continuous evolution.

15

Chapter 3

REPRESENTING LINEAR HYBRID AUTOMATA WITH CONVEX

INVARIANTS BY C+ MODULO THEORIES

In this chapter, we will present a framework for representing a specific case of

Linear Hybrid Automata in C+ Modulo Theories and go on to prove the correspon-

dence of the transition systems. This chapter also presents certain classes of Hybrid

Automata that can be represented in C+ in a similar fashion.

3.1 Representation

Linear hybrid automata (Henzinger (1996)) are a special case of hybrid automata

where (i) the initial, invariant, flow, guard, reset conditions are boolean combinations

of linear inequalities, and (ii) the free variables of flow conditions are from Ẋ only.

Further we assume that for each Invv(X) from each control mode v, the set of values

of X that makes Invv(X) true forms a convex region. 1 For instance, this is the

case if Invv(X) is a conjunction of linear inequalities.

We show how a linear hybrid automata H can be turned into an action description

DH in C+, and extend this representation to non-linear hybrid automata in the next

section. Let H be a hybrid automaton. We first define the signature of action

description DH as follows.

• For each real-valued variable Xi in H, a fluent constant Xi of sort R.

• For each edge e ∈ E and the corresponding hevent(e) ∈ Σ, a boolean valued

action constant hevent(e).

1A set X is convex if for any x1, x2 ∈ X and any θ with 0 ≤ θ ≤ 1, we have θx1 + (1− θ)x2 ∈ X.

16

• An action constant Dur of sort nonnegative reals.

• A Boolean action constant Wait .

• A fluent constant Mode of sort V .

The C+ action description DH consists of the following causal laws. We use lower

case letter xi for denoting a real-valued variable. 2 For lists of object constants

and variables Y = (Y1, . . . , Yn) and Z = (Z1, . . . , Zn), by Y = Z, we denote the

conjunction (Y1 = Z1) ∧ · · · ∧ (Yn = Zn).

• Exogenous constants:

exogenous Xi (Xi ∈ X)

exogenous hevent(e)

exogenous Dur

Intuitively, these causal laws assert that the values of the fluents can be arbi-

trary. The action constant Dur is to record the Dur that each transition takes.

Discrete transitions are assumed to have duration 0.

• Discrete transitions: For each control switch e = (v1, v2) ∈ E:

– Guard:

nonexecutable hevent(e) if ¬Guarde(X)

The causal law asserts that an h-event cannot be executed if its guard

condition is not satisfied.

– Reset:

constraint Resete(x, x
′) if X = x′ after X = x ∧ hevent(e) ∧Mode = v1

2This is not to be confused with the notational convention for hybrid automata, where xi is a
real value.

17

The causal law asserts that if an h-event executed in the state with the

corresponding mode, the discrete transition set the new value of fluent X

in accordance with the reset condition.

– Mode Update :

nonexecutable hevent(e) if Mode 6= v1

hevent(e) causes Mode = v2

inertial Mode = v (v ∈ V)

The first causal law asserts an additional constraint for an h-event to be

executable (when the state is in the corresponding mode). The second

causal law resets the new control mode. The third causal law asserts the

commonsense law of inertia on the control mode: the mode does not change

when no action affects it.

– Duration:

hevent(e) causes Dur =0

During discrete transitions, duration is set to 0.

• Continuous Transitions: For each control mode v ∈ V :

– Wait:

default Wait =true

hevent(e) causes Wait =false

Wait is an auxiliary constant that is true when no h-events are executed,

in which case continuous transitions should occur.

18

– Flow: For each Xi ∈ X,

constraint Flowv((x
′ − x)/t) if X=x′

after X = x ∧Mode = v ∧ Dur = t ∧Wait =true (δ > 0)

constraint x′ = x if X=x′ after X = x ∧

Mode = v ∧ Dur = 0 ∧Wait =true

(3.1)

These causal laws assert that when no h-event is executed (i.e., Wait is

true), the next values of the continuous variables are determined by the

flow condition.

– Invariant:

constraint Invv(X) if Mode =v

The causal law asserts that in each state, the invariant condition for the

control mode should be true.

It is easy to see from the assumption on the flow condition of linear hybrid au-

tomata that the witness function exists and is unique; furthermore it is linear over

time.

Also note that it is sufficient to check the invariant condition in each state only,

not during the transitions, because of the assumption that the invariant condition is

convex and the flow condition is linear, from which it follows that

∀t ∈ [0, δ](Invv(f(0)) ∧ Invv(f(δ))→ Invv(f(t))) (3.2)

is true, where f is the witness function.

The following theorem asserts the correctness of the translation.

Theorem 3 There is a 1:1 correspondence between the paths of the transition system

of a Linear Hybrid automata H with convex invariants and the paths of the transition

system of the action description DH .

19

The proof is immediate from the following two lemmas. By a path in a transition

system, we mean the sequence of edges. 3 First, we show that every path in the

labelled transition system of TH is a path in the transition system described by DH .

Notation: We say that an interpretation I of σ satisfies F w.r.t. the background

theory bg, denoted by I |=bg F , if I ∪ J bg satisfies F .

Lemma 1 For any path

p = (v0, x0)
σ0−→ (v1, x1)

σ1−→ . . .
σm−1−−−→ (vm, xm)

in the labelled transition system of H, let

p′ = 〈s0, a0, s1, a1, . . . , sm〉,

where each si is an interpretation of fluent constants and each ai is an interpretation

of action constants such that, for i = 0, . . .m−1,

• s0 |=bg (mode, X) = (v0, x0);

• si+1 |=bg (mode, X) = (vi+1, xi+1) (i = 0, . . . ,m−1), where

– if σi = hevent(vi, vi+1), then ai |=bg Dur =0 and ai |=bg wait =false;

– if σi ∈ R≥0, then ai |=bg Dur =σi and ai |=bg wait =true;

Then, p′ is a path in the transition system DH .

Next, we show that every path in the transition system of DH is a path in the

labelled transition system of H.

3The start node of a path may not necessarily satisfy the initial conditions, but it is easy to
check. Dropping this requirement simplifies the statement.

20

Lemma 2 For any path

q = (s0, a0, s1, a1, . . . , sm)

in the transition system of DH , let

q′ = (v0, x0)
σ0−→ (v1, x1)

σ1−→ . . .
σm−1−−−→ (vm, xm),

where each vi ∈ V and each xi ∈ Rn for i = 0, . . . ,m such that

• si |=bg (Mode, X) = (vi, xi);

• σi is

– hevent(vi, vi+1) if ai |=bg hevent(vi, vi+1);

– ai(Dur) otherwise.

Then, q′ is a path in the transition system of TH .

3.2 Example

This section highlights the use of the earlier mentioned representation in repre-

senting the example of a simple water tank.

Figure 3.1: Hybrid Automata for Water Tank System.

Example 1 The Hybrid Automata in Figure 3.1 describes a water tank example with

2 tanks X1 and X2. Here R1 and R2 are constants that describe the lower bounds of

the level of water in the respective tanks. W1 and W2 are constants that define the

21

rate at which water is being added to the respective tanks and V is the constant rate

at which water is draining from the tanks.We apply the restriction that you can add

water to only 1 tank at a time.

Assuming W1 = W2 = 7.5, V = 5, R1 = R2 = 0 and initially the level of water in

the respective tanks are X1 = 0, X2 = 8, then the goal is to find the best way to add

water to each of the tanks with the passage of time.

The Hybrid Automata description as well as the corresponding representation in

C+ is as follows.

Hybrid Automata Components

• Variables:

– X1, X
′
1, Ẋ1

– X2, X
′
2, Ẋ2

• States:

– Q1(mode=1)

– Q2(mode=2)

• Directed Graph: The graph is given above

• Invariants:

– InvQ1(X) : X2 ≥ R2

– InvQ2(X) : X1 ≥ R1

• Flow:

22

– flowQ1(X) : Ẋ1 = W1 − V ∧ Ẋ2 = −V.

– flowQ2(X) : Ẋ1 = −V ∧ Ẋ2 = W2 − V.

• Jump:

– Guardq1,q2(X) : X2 ≤ R2.

– Guardq2,q1(X) : X1 ≤ R1.

– Resetq1,q2(X,X
′) : X ′1 = X1 ∧ X ′2 = X2.

– Resetq2,q1(X,X
′) : X ′1 = X1 ∧ X ′2 = X2.

C+ Action Description

q ∈ {Q1, Q2}; t, x1, x2 are variables of sort R≥0. W1,W2,V are fixed real numbers

Simple fluent constants: Sort:

X1, X2 R≥0

Mode {Q1, Q2}

Action constants: Sort:

E1, E2, Wait Boolean

Dur R≥0

% Exogenous constants:

exogenous X1, X2, E1, E2,Dur

% Guard:

nonexecutable E1 if ¬(X2 ≤ R2) nonexecutable E2 if ¬(X1 ≤ R1)

23

% Reset:

constraint (X1, X2) = (x1, x2) after (X1, X2) = (x1, x2) ∧ E1 ∧Mode = Q1

constraint (X1, X2) = (x1, x2) after (X1, X2) = (x1, x2) ∧ E2 ∧Mode = Q2

% Mode:

nonexecutable E1 if ¬(Mode = Q1) nonexecutable E2 if ¬(Mode = Q2)

E1 causes Mode = Q2 E2 causes Mode = Q1

inertial Mode = q (q ∈ {Q1, Q2}

% Duration:

E1 causes Dur =0 E2 causes Dur =0

% Wait:

default Wait = true

E1 causes Wait = false E1 causes Wait = false

% Flow:

constraint ((x′1−x1)/t, (x′2−x2)/t) = (W1 − V,−V) if (X1, X2) = (x′1, x
′
2)

after (X1, X2) = (x1, x2) ∧Mode = Q1 ∧ Dur = 0 ∧Wait = true

constraint ((x′1−x1)/t, (x′2−x2)/t) = (−V,W2 − V) if (X1, X2) = (x′1, x
′
2)

after (X1, X2) = (x1, x2) ∧Mode = Q2 ∧ Dur = 0 ∧Wait = true

constraint (x′1, x
′
2) = (x1, x2) after (X1, X2) = (x′1, x

′
2)

∧Mode = q ∧ Dur = 0 ∧Wait = true (q ∈ {Q1, Q2})

% Invariant

constraint X2 ≥ R2 if Mode = Q1 constraint X1 ≥ R1 if Mode = Q2

24

3.3 Beyond Linear Hybrid Automata

Note that formula (3.2) is not necessarily true in general even when Invv(X) is

a Boolean combination of linear (in)equalities (disjunction over them may yield a

non-convex invariant). The robot example introduction is another such instance.

Let’s now assume Flowv(X, Ẋ) is the conjunction of formulas of the form Ẋi =

g(X) for each Xi, where g is a Lipschitz continuous function whose variables are from

X only. 4 In this case, it is known that the witness function f exists and is unique.

This is a common assumption imposed on hybrid automata.

3.3.1 Representation

The encoding in the previous section still works even when the flow condition is

non-linear as long as for the unique witness function for each transition, formula (3.2)

is true. In such a case, we modify the Flow representation as

• Flow: For each v ∈ V and Xi ∈ X,

constraint Xi = fi(δ) after X = x ∧Mode = v ∧ Dur = δ ∧Wait = true

where fi : [0, δ]→ Rn is the witness function such that

(1) fi(0) = xi and

(2) for all reals ε ∈ [0, t], Flowv(˙fi(ε), f(ε)) is true.

Theorem 3 and Lemmas 1, 2 still remain true for this class of hybrid automata

assumed in the beginning of this section if we consider this version of DH instead

4A function f : Rn → Rn is called Lipschitz continuous if there exists λ > 0 such that for all
x, x′ ∈ Rn,

|f(x)− f(x′)| < λ|x− x′|.

25

of the previous one. The following modified theorem shows the correctness of the

translation.

Theorem 4 There is a 1:1 correspondence between the paths of the transition sys-

tem of a Hybrid automata H with convex invariants and the paths of the transition

system of the action description DH as obtained using the translation mentioned in

this section.

The proof is immediate from the following two lemmas. By a path in a transition

system, we mean the sequence of edges. 5 First, we show that every path in the

labelled transition system of TH is a path in the transition system described by DH .

Notation: We say that an interpretation I of σ satisfies F w.r.t. the background

theory bg, denoted by I |=bg F , if I ∪ J bg satisfies F .

Lemma 3 For any path

p = (v0, x0)
σ0−→ (v1, x1)

σ1−→ . . .
σm−1−−−→ (vm, xm)

in the labelled transition system of H, let

p′ = 〈s0, a0, s1, a1, . . . , sm〉,

where each si is an interpretation of fluent constants and each ai is an interpretation

of action constants such that, for i = 0, . . .m−1,

• s0 |=bg (mode, X) = (v0, x0);

• si+1 |=bg (mode, X) = (vi+1, xi+1) (i = 0, . . . ,m−1), where

– if σi = hevent(vi, vi+1), then ai |=bg Dur =0 and ai |=bg wait =false;

5The start node of a path may not necessarily satisfy the initial conditions, but it is easy to
check. Dropping this requirement simplifies the statement.

26

– if σi ∈ R≥0, then ai |=bg Dur =σi and ai |=bg wait =true;

Then, p′ is a path in the transition system DH .

Next, we show that every path in the transition system of DH is a path in the

labelled transition system of H.

Lemma 4 For any path

q = (s0, a0, s1, a1, . . . , sm)

in the transition system of DH , let

q′ = (v0, x0)
σ0−→ (v1, x1)

σ1−→ . . .
σm−1−−−→ (vm, xm),

where each vi ∈ V and each xi ∈ Rn for i = 0, . . . ,m such that

• si |=bg (Mode, X) = (vi, xi);

• σi is

– hevent(vi, vi+1) if ai |=bg hevent(vi, vi+1);

– ai(Dur) otherwise.

Then, q′ is a path in the transition system of TH .

3.3.2 Example

Example 2 Consider the two balls with different elasticity falling to the ground. This

example involves 2 balls with the same elasticity falling to the ground. Ball 1 starts

at 2 units from the ground while ball 2 starts at 3 units from the ground. Our aim is

to formalize this problem and observe the transition system of these 2 balls with time.

27

Figure 3.2: Hybrid Automata of Two Ball Example

The Flow condition for Ball b1 is represented as:

constraint V1 = v + (−g) · t after V1 = v ∧ Dur = t ∧Wait = true

constraint H1 = h+ v · δ − (0.5) · g · t · t after H1 = h ∧ Dur = t ∧Wait = true.

For this example, it is clear that (3.2) is true.

The Hybrid Automata description as well as the corresponding representation is

as follows.

Hybrid Automata Components

The control graph can be seen in Figure 3.2

• Variables:

– h1, h1′, ḣ1

– h2, h2′, ḣ2

– v1, v1′, v̇1

– v2, v2′, v̇2

• States:

– s0(Corresponds to mode = 1)

• Hevents:

– hitGround b1

28

– hitGround b2

• Directed Graph: The graph is given above

• Invariants:

– invs0(h1, h2) : h1 ≥ 0 ∧ h2 ≥ 0

• Flow:

– flows0(h1, h2, v1, v2) : ḣ1 = v1 ∧ ḣ2 = v2 ∧ v̇1 = −g ∧ v̇2 = −g.

• Jump:

– Guard(s0,s0)(h1, h2, v1, v2) : h1 = 0 ∧ h2 = 0

– Reset(s0,s0)(h1, h2, v1, v2) : h1′ = 0 ∧ h2′ = h2 ∧v1′ = −0.8∗v1 ∧ v2′ = v2

– Reset(s0,s0)(h1, h2, v1, v2) : h1′ = h1 ∧ h2′ = 0 ∧v1′ = v1 ∧ v2′ = −0.9∗v2

C+ Action Description

q ∈ {S0}; t,h1,h2 are variables of sort R≥0. v1,v2 are variables of sort R.

b ranges over {B1, B2}. G is a fixed real number

Simple fluent constants: Sort:

Height(b) R≥0

V elocity(b) R

Mode {Q1, Q2}

Action constants: Sort:

HitGround(b), Wait Boolean

Dur R≥0

% Exogenous constants:

29

exogenous Height(b), V elocity(b), HitGround(b),Dur

% Guard:

nonexecutable HitGround(b) if ¬(Height(b) = 0)

% Reset:

constraint (Height(B1), V elocity(B1), Height(B2), V elocity(B2))

= (h1,−0.8 ∗ v1, h2, v2) after (Height(B1), V elocity(B1), Height(B2),

V elocity(B2)) = (h1, v1, h2, v2) ∧HitGround(B1) ∧Mode = Q1

constraint (Height(B1), V elocity(B1), Height(B2), V elocity(B2))

= (h1,−0.9 ∗ v1, h2, v2) after (Height(B1), V elocity(B1), Height(B2),

V elocity(B2)) = (h1, v1, h2, v2) ∧HitGround(B2) ∧Mode = Q1

% Mode:

nonexecutable HitGround(b) if ¬(Mode = S0)

HitGround(b) causes Mode = S0

inertial Mode = q (q ∈ {S0})

% Duration:

HitGround(b) causes Dur =0

% Wait:

default Wait = true

HitGround(b) causes Wait = false

% Flow:

constraint V elocity(b) = v1 + (−G) · t after V elocity(b) = v1

∧ Mode = S0 ∧ Dur = t ∧Wait = true

30

constraint Height(b) = h1 + v1 · δ − (0.5) ·G · t · t after Height(B) = h1

∧ Mode = S0 ∧ Dur = t ∧Wait = true.

% Invariant

constraint Height(b) ≥ 0 if Mode = S0

3.4 Proofs

3.4.1 Proof of Lemma 1

Lemma 1

p′ is a path in the transition system DH .

Lemma 5 Given a linear function f(t) over t ∈ [0, σ] for some σ ∈ R≥0 such that

f : [0, σ]→ R and a conjunction of linear inequalities P (X) over X ∈ R≥0. Then,

∀ε ∈ (0, σ)(P (f(0)) ∧ P (f(σ))→ P (ε)).

Proof. Since P (X) is a conjunction of linear inequalities, we know from (Sec 2.2.4,

Boyd and Vandenberghe (2004)) values of X that satisfies P (X) must form a convex

region 6 in Rn. Since a straight line is basically a linear function and f(t) is a linear

function, it follows that for any ε ∈ (0, σ), P (f(ε)) is true, if P (f(0)) and P (f(σ))

are true.

Lemma 6 Let H be a linear hybrid automaton and

(v, x)
σ−→ (v, x′)

6A convex region is a set of points such that, given any two points A, B in that set, the line AB
joining them lies entirely within that set. If P is a convex set and x1...xk are any points in it, then

x =
∑k

i=1 λixi is also in P , where λi > 0 and
∑
i = 1kλi = 1.

31

be a transition in TH such that σ ∈ R≥0. f(t)=x+t∗(x′−x)/σ is a linear differentiable

function from [0, σ] to Rn, with the first derivative ḟ : [0, σ] → Rn such that: (1)

f(0)=x and f(σ)=x′ and (2) for all reals ε ∈ (0, σ), both Invv(f(ε)) and Flowv(ḟ(ε))

are true.

Proof. We check that f satisfies the above conditions:

• f(t) is differentiable over t ∈ [0, σ].

• It is clear that f(0)=x and f(σ)=x′.

• Since (v, x) and (v′, x′) are states of TH , it follows that Invv(f(0)) and Invv(f(σ))

are true. By Lemma 5 it is clear that for ε ∈ (0, σ), Invv(f(ε)) is true.

• Since (v, x)
σ−→ (v, x′) is a transition in TH , it follows that there is a function

f ′ such that (1) f ′ is differentiable in [0, σ], (2) for any ε ∈ (0, σ), Flowv(ḟ ′(ε))

is true, (3) f ′(0) = x and f ′(σ) = x′. Since f ′ is continuous on [0, σ] (differen-

tiability implies continuity) and differentiable on (0, σ), by mean value theorem

7 , there is a point c ∈ (0, σ) such that ḟ ′(c) = (x′−x)/σ. Consequently,

Flowv((x
′−x)/σ) is true. As a result, we get Flowv(ḟ(ε)) is true for all ε ∈ (0, σ).

Lemma 7 For each i ≥ 0, si is a state in the transition system of DH .

Proof. By definition we are to show that

0 : si |=bg SM [(DH)0;φ],

while SM [(DH)0;φ] is equivalent to the conjunctions of,

7http://en.wikipedia.org/wiki/Mean value theorem

32

← ¬(Invv(0 : X)) ∧ 0 : Mode = v. (3.3)

for each v ∈ V . Since p is a path,for each i ≥ 0,(vi, xi) is a state in TH . By the

definition of hybrid transition systems, Invvi(Xi) is true. Hence 0 : si |=bg (3.3)

Lemma 8 For each i ≥ 0, 〈si, ai, si+1〉 is a transition.

Proof. By definition, we are to show that

0 :si ∪ 0:ai ∪ 1:si+1 |=bg SM[(DH)1; 0 :σact ∪ 1:σfl]. (3.4)

From (Ferraris et al. (2011)) it is clear that for any formula F SM[F] is equivalent

to Comp[F]. Additionally, it is also clear that SM[F] ∧ Choice(c) is equivalent to

SM[F] where Choice(c) represents the choice rules for all non-intensional constants

c.

Comp[(DH)1; 0 : σact ∪ 1 : σfl] is equivalent to the conjunction of following formu-

las:

• Formula FLOW , which are the rules

← Flowv(1 : X − 0 : X/t) ∧ 0 : Mode = v ∧ 0 : Dur = t ∧ 0 : Wait ∧ t > 0

(3.5)

AND

← 1 : X = 0 : X ∧ 0 : Mode = v ∧ 0 : Dur = 0 ∧ 0 : Wait (3.6)

• Formula INV , which is the rule

← ¬(Invv(k : X)) ∧ k : Mode = v. (3.7)

for each k ∈ {0, 1} and each v ∈ V .

33

• Formula GUARD , which is the conjunction of

← 0 : hevent(e) ∧ 0 : ¬Guarde(X) (3.8)

for each edge e ∈ E;

• Formula RESET , which is the conjunction of

← ¬Resete(x0, x1) ∧ 1 : X = x1

∧ 0 : hevent(e) ∧ 0 : X = x0 ∧ 0 : Mode = v.

for each edge e ∈ E;

• Formula MODE , which is the conjunction of

← 0 : hevent(e) ∧ ¬(0 : Mode = v1).

1 : Mode = v2 ↔ (0 : Mode = v1 ∧ 0 : hevent(e)) ∨

(1 : Mode = v2 ∧ 0 : Mode = v2).

for each edge e = (v1, v2) ∈ E;

• Formula DURATION , which is the rule

0 : Dur = 0 ←
∨
e∈E 0 : hevent(e).

for each edge e = (v1, v2) ∈ E;

• Formula WAIT , which is the rule

0 : Wait = false ↔
∨
e∈E 0 : hevent(e).

0 : Wait = true ↔ ¬¬0 : Wait = true.

We will show that 0 : si ∪ 0 : ai ∪ 1 : si+1 satisfies FLOW , GUARD , RESET ,

MODE , DURATION , WAIT . From the definition of TH there are 2 cases for the

value of σ:

34

Case 1: σ = hevent(e) where e = (vi, vi+1). It follows from the construction of p′ that

(Dur)ai = 0, (hevent(e))ai = true and (Wait)ai = false. Since FLOW is trivially

satisfied, it is sufficient to consider only GUARD , RESET , MODE , DURATION ,

WAIT .

From the fact that:

(vi, xi)
σi−→ (vi+1, xi+1)

is a transition in TH and that σi = hevent(e), it follows from the definition of hybrid

transition systems that Guarde(0 : X) and Resete(0 : X, 1 : X) is true.

• GUARD : It is immediate that 0 : si ∪ 1 : si+1 |=bg Guarde(0 : X). Since

(hevent(e))ai = true, it follows that 0 : si ∪ 0 : ai ∪ 1 : si+1 |=bg GUARD

• RESET : Note that si |=bg (Mode,X) = (vi, xi) and si+1 |=bg (Mode,X) =

(vi+1, xi+1). It is immediate that 0 : si ∪ 1 : si+1 |=bg Resete(0 : X, 1 : X), 0 :

si |=bg 0 : Mode = vi, 0 : si |=bg 0 : X = xi and 0 : si |=bg 1 : X = xi+1. Since

(hevent(e))ai = true, it follows that 0 : si ∪ 0 : ai ∪ 1 : si+1 |=bg RESET

• MODE : Note that si |=bg (Mode,X) = (vi, xi) and si |=bg (Mode,X) =

(vi+1, xi+1). It is immediate that 0 : si |=bg 0 : Mode = vi and 1 : si+1 |=bg

1 : Mode = vi+1. Since (hevent(e))ai = true, it follows that 0 : si ∪ 0 :

ai ∪ 1 : si+1 |=bg MODE .

• DURATION : Since (Dur)ai = 0 and (hevent(e))ai = true, it follows that

0 : si ∪ 0 : ai ∪ 1 : si+1 |=bg DURATION

• WAIT : Since (hevent(e))ai = true, and (Wait)ai = false it follows that

0 : si ∪ 0 : ai ∪ 1 : si+1 |=bg WAIT

Case 2: σi ∈ R≥0. By the construction of p′, Durai = σi, Waitai = true and

(hevent(e))ai = false for every e = (v, v′) ∈ E. Since GUARD , RESET , MODE ,

35

DURATION , WAIT is trivially satisfied, it is sufficient to consider only FLOW and

INV .

From the fact that

(vi, xi)
σi−→ (vi+1, xi+1)

is a transition of TH and that σi ∈ R≥0, it follows from the definition of hybrid

transition systems that

(a) vi=vi+1, and

(b) there is a differentiable function f : [0, σi] → Rn, with the first derivative

ḟ : [0, σi] → Rn such that: (1) f(0) = xi and f(σi) = xi+1 and (2) for all reals

ε ∈ (0, σi), both Invvi(f(ε)) and Flowvi(ḟ(ε)) are true.

We check the following:

• INV : From the fact that (vi, xi) and (vi+1, xi+1) are states in TH , by the defini-

tion of hybrid transition systems, Invvi(xi) and Invvi+1
(xi+1) are true. Note that

si |=bg (Mode, x) = (vi, xi) and si+1 |=bg (Mode, x) = (vi+1, xi+1). As a result,

0 : si |=bg← ¬(Invvi(0 : X)) ∧ 0 : Mode = v.

1 : si+1 |=bg← ¬(Invvi(1 : X)) ∧ 1 : Mode = v.

Hence 0:si ∪ 0:ai ∪ 1:si+1 |=bg INV

• FLOW :

– If σi = 0, then Dure
i

= 0. From (b), xi = xi+1 = f(0). As a result

Xsi = Xsi+1 and it follows that 0 :si ∪ 0:ai ∪ 1:si+1 |=bg (3.6).

– If σi > 0, then Dure
i
>0. By Lemma 6, f(t) = xi + t ∗ (xi+1 − xi)/σi is a

differentiable function that satisfies all the conditions in (b). As a result,

Flowvi((xi+1 − xi)/σi) is true and thus 0 :si ∪ 0 :ei ∪ 1 :si+1 |=bg Flowvi((1 :

x− 0:x)/Dur). It follows that 0 :si ∪ 0:ei ∪ 1:si+1 |=bg (3.5).

36

Using the lemmas defined and proved above, we prove Lemma 2 as follows:

Proof. By Lemma 7, each si is a state of DH . By Lemma 8, each 〈si, ai, si+1〉 is a

transition of DH . So p′ is a path in the transition system of DH .

3.4.2 Proof of Lemma 2

Lemma 2

q′ is a path in the transition system of TH .

Lemma 9

(a) For each i ≥ 0, (vi, xi) is a state in TH , and

(b) (v0, x0) is an initial state in TH .

Proof.

(a) By definition, we are to show that Invvi(xi) is true. Since each si is a state in the

transition system of DH , by definition,

0 :si |=bg SM[(DH)0; ∅]. (3.9)

Note that SM[(DH)0; ∅] is equivalent to the conjunction of the formula:

0 : Invv(x)← 0:Mode = v (3.10)

for each location v ∈ V . Since (Mode)si = vi, it follows that si |=bg Invvi(x). Since

xsi = xi, it follows that Invvi(xi) is true.

(b) We are to show that Initv0(x0) is true. Since we express Initv0(x0) as is in DH . It

is trivially entailed.

37

Lemma 10 For each i ≥ 0, (vi, xi)
σi−→ (vi+1, xi+1) is a transition in TH .

Proof. From the fact that (si, ai, si+1) is a transition of DH , by definition we know

that

0 :si ∪ 0:ai ∪ 1:si+1 |=bg SM[(DH)1; 0 :σact ∪ 1:σfl]. (3.11)

Comp[(DH)1; 0 : σact∪1 : σfl] is equivalent to the conjunction of FLOW , RESET ,

GUARD , DURATION , MODE , WAIT .

Consider two cases:

Case 1: There exists an edge e = (v, v′) such that (hevent(e))ai = t. Since Modesi = vi

andModesi+1 = vi+1, it follows that (v, v′) must be (vi, vi+1).As a result, (hevent(e))ai =

t. It follows from the definition that σi = hevent(e).

• Since 0 : si ∪ 0 : ai ∪ 1 : si+1 |=bg GUARD , Xsi+1 = xi+1 and Xsi = xi, it is

immediate that Guarde(xi) is true.

• Since 0 : si ∪ 0 : ai ∪ 1 : si+1 |=bg RESET , Xsi+1 = xi+1 and Xsi = xi, it is

immediate that Resete(xi, xi+1) is true.

(b) By Lemma 9, (vi, xi) and (vi+1, xi+1) are states.

Case 2: There exists an edge e = (v, v′) such that (hevent(e))ai = false for (v, v′) ∈

E. By construction, (Dur)ai = σi for some σi ∈ R≥0. By Lemma 9, (vi, xi) and

(vi+1, xi+1) are states. From MODE , it follows that Modesi = Modesi+1 . As a result,

vi = vi+1. We are to show that there is a differentiable function f : [0, σi] → Rn,

with the first derivative ḟ : [0, σi] → Rn such that: (1) f(0) = xi and f(σi) = xi+1

and (2) for all reals ε ∈ (0, σi), both Invvi(f(ε)) and Flowvi(ḟ(ε)) are true. Define

f(t) = xi + t ∗ (xi+1 − xi)/σi. We check that f satisfies the above conditions:

38

• f(t) is differentiable over [0, σi].

• It is clear that f(0) = xi and f(σi) = xi+1.

• We check that for any ε ∈ (0, σ), Invv(f(ε)) is true. From i : si ∪ (i + 1) :

si+1 |=bg (3.7), it follows that Invvi(f(0)) and Invvi(f(σi)) are true. By Lemma 5

it is clear that for ε ∈ (0, σ), Invv(f(ε)) is true.

• We check that for any ε ∈ (0, σ), Flowvi(ḟ(ε)) is true. We only consider the

case where σi > 0 because otherwise is trivial (there is no ε ∈ (0, 0)). From

(3.5), it follows that Flowvi((f(σi) − f(0))/σi) is true. Since f(t) is a linear

function, it follows that for any ε ∈ (0, σi), ḟ(ε) = (f(σi) − f(0))/σi. As a

result, Flowvi(ḟ(ε)) is true

From above, we conclude that (10) is a transition.

Using the lemmas defined and proved above, we prove Lemma 2 as follows:

Proof. By Lemma 9 (a), each (vi, xi) is a state in TH . By Lemma 10, each

(vi, xi)
σi−→ (vi+1, xi+1) is a transition in TH . So q′ is a path in TH . If s0 |=bg Initv0 then

by Lemma 9 (b), (v0, x0) is a initial state in TH .

3.4.3 Proof of Lemmas 3 and 4

As we have mentioned earlier the Theorem 3 and Lemmas 1, 2 still remain true for

this class of hybrid automata assumed in the beginning of this section if we consider

this version of DH instead of the previous one. Only a few parts of the proof need to

be modified to take care of this updated consideration.

Equation 3.5 is modified and represented as follows:

← 1 : Xi = fi(δ) ∧ 0 : X = x ∧ 0 : Mode = v ∧ 0 : Dur = δ ∧ 0 : Wait = true

where fi : [0, δ]→ Rn is the witness function such that

39

(1) fi(0) = xi and

(2) for all reals ε ∈ [0, t], Flowv(˙fi(ε), f(ε)) is true.

The proof for Lemma 3 follows from Lemma 1. The only modification to be made

is to Lemma 8. The following will be the modified proof for FLOW in Case 2:

• If σi = 0, then Dure
i

= 0. From (b), xi = xi+1 = f(0). As a result Xsi = Xsi+1

and it follows that 0 :si ∪ 0:ai ∪ 1:si+1 |=bg (3.6).

• If σi > 0, then Dure
i
>0. From (3.6) we know that fi is a differentiable function

that satisfies all the conditions in (b). Since we consider Flow(X, Ẋ) to be

the conjunction of formulas of the form Ẋi = g(X) for each Xi, where g is a

Lipschitz continuous function whose variables are from X, hence fi is the only

solution to Ẋi. It follows that 0 :si ∪ 0:ei ∪ 1:si+1 |=bg (3.5).

The proof of Lemma 4 follows from Lemma 3. The only modification to be made

is to Lemma 10. The following will be the modified proof for FLOW in Case 2:

From (3.6) we know that fi is a differentiable function that satisfies all the conditions

for differentiable function f defined for a transition in Hybrid Automata. As a result,

Flowvi(ḟ(ε)) is true.

40

Chapter 4

C+ MODULO ODE

In this section we introduce two new abbreviations of causal laws to express the

continuous evolutions governed by ODEs. As usual, we assume ODEs are Lipschitz

continuous in order to ensure that the solutions to the ODEs are unique.

4.1 New Causal Laws for Expressing Continuous Evolutions of ODEs

We assume the set σfl of fluent constants contains a set σdiff of real valued fluent

constants X = (X1, . . . , Xn) called differentiable fluent constants, and an inertial

fluent constant Mode, which ranges over a finite set of control modes. Intuitively, the

values of differentiable fluent constants are governed by some ODEs associated with

each value of Mode. We also assume that Dur is an exogenous action constant of sort

R≥0.

Below are the two new abbreviations.

• A rate declaration is an expression of the form:

derivative of Xi is Fi(X) if Mode = v (4.1)

for each differentiable fluent constant Xi ∈ σdiff and for each value v of Mode,

where Fi(X) is a fluent formula over σbg ∪ σdiff . We assume that an action

description has a unique rate declaration for each Xi and v. This declaration

can be shown using the two ball example where we know that the rate of change

of height of the ball is dependent on its velocity in Mode = 1.

derivative of Height(B1) is velocity(B1) if Mode = 1

41

1 For (4.1), by d/dt[Xi](v) we denote the formula Fi(X). Let θv be the list

d/dt[X1](v), . . . , d/dt[Xn](v) for all differentiable fluent constants X1, . . . , Xn in

σdiff . The set of rate declarations expands into the following causal laws:

constraint (X1, . . . , Xn) = (x1 + y1, . . . , xn + yn) after (X1, . . . , Xn)

= (x1, . . . , xn) ∧ (y1, . . . , yn) =

∫ δ

0

(d/dt[X1](v), . . . , d/dt[Xn](v))dt

∧ Mode = v ∧ Dur = δ ∧ Wait =true (4.2)

where x1, . . . , xn and y1, . . . , yn are real variables. This can be demonstrated

once again with the two ball example where H1, V1, H2, V2 represent Height and

V elocity of ball1 and ball2.

constraint (H1, H1, H2, V2) = (x1 + y1, . . . , x4 + y4) after (H1, H1, H2, V2)

= (x1, . . . , x4) ∧ (y1, . . . , y4) =

∫ δ

0

(d/dt[H1](1), . . . , d/dt[V2](1))dt

∧ Mode = 1 ∧ Dur = δ ∧ Wait =true (4.3)

• An invariant law is an expression of the form

always t F (X) if Mode = v (4.4)

where F (X) is a fluent formula of signature σdiff ∪ σbg. This can be seen using

the two ball example

always t Height(b) ≥ 0 if Mode = 1

1Listing complete ODEs could be viewed as a strong condition. However, even in the state-of-
the-art system dReal, the integral construct only accepts complete ODE systems. It does not yet
support a parallel composition, where each mode of a single automaton corresponds to a partial
ODE system. Also note that flow conditions cannot be decomposed in general, since variables in
ODEs evolve simultaneously over continuous time. For this reason, existing SMT techniques use the
standard non-compositional encoding for networked hybrid automata.

42

Each invariant law (4.4) in an action description is expanded into

constraint ∀t∀x

(
(0 ≤ t ≤ δ)∧

(
x = (x1, . . . , xn) +

∫ t

0

(d/dt[X1](v), . . . , d/dt[Xn](v))dt→ F (x)
))

after (X1, . . . , Xn) = (x1, . . . , xn)∧Mode = v∧Dur = δ∧Wait = true.

(4.5)

4.2 Corresponding Representation of New Causal Laws in ASPMT

We slightly extend the ASPMT signature i : σ such that it is the signature con-

sisting of the pairs i : c such that c ∈ σ ∧ c /∈ σdiff , and the value sort of i : c is the

same as the value sort of c. If c ∈ X then i : c consists of 0 : X0 for i = 0 and i−1 : ct

for i ≥ 1, and the value sort of 0 : c0 and i − 1 : ct is the same as the value sort of

c. Similarly, if s is an interpretation of σ, expression i : s is an interpretation of i : σ

such that cs = (i : c)i:s.

We also extend i : F such that i : F describes a formula F by:

• Replacing every occurrence of c with 0 : c0 if c ∈ X and i = 0

• Replacing every occurrence of c with i− 1 : ct if c ∈ X and i ≥ 1

• Replacing every occurrence of c with i : c if c ∈ σ and c /∈ X

for every i ∈ {0, . . . ,m−1}. Each rate declaration law (4.1) is represented in ASPMT

as

d/dt[Xi] = Fi(X) ← Mode = v. (4.6)

We use the earlier example to demonstrate this:

d/dt[Height(B1)] = V elocity(B1) ← Mode = 1.

43

Each expanded rate declaration law (4.2) is represented in ASPMT as:

Case i = 0 : (0 : X1t, 0 : X2t, ..., 0 : Xnt) = (x1 + y1, . . . , xn + yn)←

(y1, . . . , yn) =

∫ d

0

θvdt ∧ 0 : Mode = v ∧ 0 : Dur = d ∧ 0 : Wait ∧

0 : X10 = x1 ∧ 0 : X20 = x2 ∧ ... 0 : Xn0 = xn.,

Case i ≥ 1 : (i : X1t, i : X2t, ..., i : Xnt) = (x1 + y1, . . . , xn + yn)←

(y1, . . . , yn) =

∫ d

0

θvdt ∧ i : Mode = v ∧ i : Dur = d ∧ i : Wait ∧

i− 1 : X1t = x1 ∧ i− 1 : X2t = x2 ∧ ... i− 1 : Xnt = xn..

(4.7)

for every i ∈ {0, . . . ,m−1}. We use the earlier example to demonstrate this:

Case i = 0 : (0 : H1t, 0 : V1t, 0 : H2t, 0 : V2t) = (x1 + y1, . . . , x4 + y4)←

(y1, . . . , y4) =

∫ d

0

θ1dt ∧ 0 : Mode = 1 ∧ 0 : Dur = d ∧ 0 : Wait ∧

0 : H10 = x1 ∧ 0 : V10 = x2 ∧ 0 : H20 = x3 0 : V20 = x4.,

Case i ≥ 1 : (i : H1t, i : V1t, i : H2t, i : V2t) = (x1 + y1, . . . , x4 + y4)←

(y1, . . . , yn) =

∫ d

0

θvdt ∧ i : Mode = v ∧ i : Dur = d ∧ i : Wait ∧

i− 1 : H10 = x1 ∧ i− 1 : V10 = x2 ∧ i− 1 : H20 = x3 i− 1 : V20 = x4.

(4.8)

44

Each expanded invariant law (4.5) is represented in ASPMT as:

← ¬∀t∀x

(
(0 ≤ t ≤ δ)∧

(
x = (x1, . . . , xn) +

∫ t

0

(d/dt[X1](v), . . . , d/dt[Xn](v))dt→ F (x)
))

∧ (i− 1 : X1, . . . , i− 1 : Xn) = (x1, . . . , xn) ∧ i− 1 : Mode = v

∧ i− 1 : Dur = δ ∧ i− 1 : Wait = true. (4.9)

for every i ∈ {1, . . . ,m−1}.

We use the earlier example to demonstrate this:

← ¬∀t∀x

(
(0 ≤ t ≤ δ)∧

(
x = (x1, . . . , x4) +

∫ t

0

(d/dt[H1](1), . . . , d/dt[V2](1))dt→ (x1, x3) ≥ 0
))

∧ (i− 1 : H1, . . . , i− 1 : V2) = (x1, . . . , x4) ∧ i− 1 : Mode = 1

∧ i− 1 : Dur = δ ∧ i− 1 : Wait = true. (4.10)

45

Chapter 5

REPRESENTING HYBRID TRANSITION SYSTEMS IN C+ MODULO ODE

In this chapter, we revisit the encoding of hybrid automata in language C+. This

time, we represent it in the language of C+ modulo ODE using the new causal laws

introduced in the previous chapter.

5.1 Representation

The signature is the same as before. Implicit rules and discrete transition laws

are the same as before.

The translation consists of the same rules as the one in Chapter 3 except for the

rules that account for continuous transitions. Each variable in hybrid automata is

identified with a differential fluent constant. The flow and invariant conditions are

modified as follows.

• Continuous Transition:

– Flow: We assume that flow conditions are written as a set of Ẋi = Fi(X)

for each Xi in σdiff where Fi is a formula whose free variables are from X

only. We assume there is only one such formula for each Xi.

For each v ∈ V and Xi ∈ X, DH includes a rate declaration

derivative of Xi is Fi(X) if Mode = v

which describes the flow of each differential fluent constant Xi for all pos-

sible values of Mode.

46

– Invariant: For each v ∈ V , DH includes an invariant law

constraint Invv(X) if Mode =v

always t Invv(X) if Mode = v

The new always t law ensures the invariant is true even during the tran-

sition.

Note that we do not need to extend language C+ for this purpose except it refers

to the new background theory QF NRA ODE.

Theorem 3 and Lemmas 1, 2 still remain true when we extend non-linear hybrid

automata assumed in the beginning of this section if we consider this version of DH

instead of the previous one. The extended theorem statements are as follows

Theorem 5 There is a 1:1 correspondence between the paths of the transition sys-

tem of a Hybrid automata H and the paths of the transition system of the action

description DH as obtained using the translation described in this section.

The proof is immediate from the following two lemmas. By a path in a transition

system, we mean the sequence of edges. 1 First, we show that every path in the

labelled transition system of TH is a path in the transition system described by DH .

Notation: We say that an interpretation I of σ satisfies F w.r.t. the background

theory bg, denoted by I |=bg F , if I ∪ J bg satisfies F .

Lemma 11 For any path

p = (v0, x0)
σ0−→ (v1, x1)

σ1−→ . . .
σm−1−−−→ (vm, xm)

1The start node of a path may not necessarily satisfy the initial conditions, but it is easy to
check. Dropping this requirement simplifies the statement.

47

in the labelled transition system of H, let

p′ = 〈s0, a0, s1, a1, . . . , sm〉,

where each si is an interpretation of fluent constants and each ai is an interpretation

of action constants such that, for i = 0, . . .m−1,

• s0 |=bg (mode, X) = (v0, x0);

• si+1 |=bg (mode, X) = (vi+1, xi+1) (i = 0, . . . ,m−1), where

– if σi = hevent(vi, vi+1), then ai |=bg Dur =0 and ai |=bg wait =false;

– if σi ∈ R≥0, then ai |=bg Dur =σi and ai |=bg wait =true;

Then, p′ is a path in the transition system DH .

Next, we show that every path in the transition system of DH is a path in the

labelled transition system of H.

Lemma 12 For any path

q = (s0, a0, s1, a1, . . . , sm)

in the transition system of DH , let

q′ = (v0, x0)
σ0−→ (v1, x1)

σ1−→ . . .
σm−1−−−→ (vm, xm),

where each vi ∈ V and each xi ∈ Rn for i = 0, . . . ,m such that

• si |=bg (Mode, X) = (vi, xi);

• σi is

– hevent(vi, vi+1) if ai |=bg hevent(vi, vi+1);

– ai(Dur) otherwise.

Then, q′ is a path in the transition system of TH .

48

5.2 Example

Example 3 We take the case where there is a car of length 1 unit moving at a

constant speed of 1 unit. The car is initially at origin where x = 0 and y = 0

and θ = 0. Additionally there are walls defined by the equations (x − 6)2 + y2 =

9,(x− 5)2 + (y− 7)2 = 4,(x− 12)2 + (y− 9)2 = 4. The goal is to find a plan such that

the car ends up at x = 13 and y = 0 without hitting the walls. The dynamics of the

car is as follows:

Moving Straight

d[x]

dt
= cos(θ),

d[y]

dt
= sin(θ),

d[theta]

dt
= 0

Turning Left

d[x]

dt
= cos(θ),

d[y]

dt
= sin(θ),

d[theta]

dt
= tan(

π

18
)

Turning Right

d[x]

dt
= cos(θ),

d[y]

dt
= sin(θ),

d[theta]

dt
= tan(− π

18
)

The invariant in the other example were just simple logical formulas. For this

particular example we wish to show that the car must not hit the obstacle. For that

to be true, the car must be outside the round wall. Hence the invariant for any state

in this example would be the logic formulas (x − 6)2 + y2 > 9,(x − 5)2 + (y − 7)2 >

4,(x− 12)2 + (y − 9)2 > 4.

The Hybrid Automata description as well as the corresponding representation is

as follows.

Hybrid Automata Components

The control graph for Example 3 can be seen in Figure 5.1.

• Variables:

49

Figure 5.1: Hybrid Automata of Car example

– x, x′, ẋ

– y, y′, ẏ

– theta, theta′, ˙theta

• States:

– moveStraight(mode = 1)

– moveLeft(mode = 2)

– moveRight(mode = 3)

• Directed Graph: The graph is given above

• H-Events:

– straighten

50

– turnLeft

– turnRight

• Invariants:

– inv(allmodes) : ((x − 6)2 + y2 > 9) ∧ ((x − 5)2 + (y − 7)2 > 4) ∧ ((x −

12)2 + (y − 9)2 > 4))

• Flow:

– flow(1)(x, y, theta) : ẋ = sin(theta) ∧ ẏ = cos(theta) ∧ ˙theta = 0.

– flow(2)(x, y, theta) : ẋ = sin(theta) ∧ ẏ = cos(theta) ∧ ˙theta =

tan(π/18).

– flow(3)(x, y, theta) : ẋ = sin(theta) ∧ ẏ = cos(theta) ∧ ˙theta =

tan(−π/18).

• Jump: We club the edges with same hevent together as they have the same

effect.

– Reset(({3, 1}, {2, 1})(x, y, theta)) : x′ = x ∧ y′ = y ∧ theta′ = theta.

– Reset(({1, 2}, {3, 2})(x, y, theta)) : x′ = x ∧ y′ = y ∧ theta′ = theta.

– Reset(({1, 3}, {2, 3})(x, y, theta)) : x′ = x ∧ y′ = y ∧ theta′ = theta.

C+ Action Description

q ∈ {Q1, Q2}; t is a variable of sort R≥0. x, y, theta are variables of sort R.

Simple fluent constants: Sort:

X, Y , Theta R≥0

Mode {Q1, Q2, Q3}

51

Action constants: Sort:

TurnLeft, TurnRight, Straighten Wait Boolean

Dur R≥0

% Exogenous constants:

exogenous X, Y, Theta, TurnLeft, TurnRight, Straighten,Dur

% Reset:

constraint (X, Y, Theta) = (x, y, theta) after

(X, Y, Theta) = (x, y, theta) ∧ straighten

constraint (X, Y, Theta) = (x, y, theta) after

(X, Y, Theta) = (x, y, theta) ∧ turnLeft

constraint (X, Y, Theta) = (x, y, theta) after

(X, Y, Theta) = (x, y, theta) ∧ turnRight

% Mode:

nonexecutable Straighten if (Mode = Q1)

nonexecutable TurnLeft if (Mode = Q2)

nonexecutable TurnRight if (Mode = Q3)

TurnLeft causes Mode = Q2

TurnRight causes Mode = Q3

Straighten causes Mode = Q1

inertial Mode = q (q ∈ {Q1, Q2, Q3}

% Duration:

TurnRight causes Dur =0

TurnLeft causes Dur =0

52

Straighten causes Dur =0

% Wait:

default Wait = true

TurnLeft causes Wait = false

Straighten causes Wait = false

TurnRight causes Wait = false

% Rate Declarations:

derivative of x is sin(theta) if Mode = Q1.

derivative of y is cos(theta) if Mode = Q1.

derivative of theta is 0 if Mode = Q1.

derivative of x is sin(theta) if Mode = Q2.

derivative of y is cos(theta) if Mode = Q2.

derivative of theta is tan(π/18) if Mode = Q2.

derivative of x is sin(theta) if Mode = Q3.

derivative of y is cos(theta) if Mode = Q3.

derivative of theta is tan(−π/18) if Mode = Q3.

% Invariant

constraint (X − 6) ∗ (X − 6) + (Y) ∗ (Y) > 9.

always t (X − 6) ∗ (X − 6) + (Y) ∗ (Y) > 9) if Mode = q. (q ∈ {Q1, Q2, Q3})

constraint (X − 5) ∗ (X − 5) + (Y − 7) ∗ (Y − 7) > 4.

53

always t (X − 5) ∗ (X − 5)&(Y − 7) ∗ (Y − 7) > 4 if Mode = q.

(q ∈ {Q1, Q2, Q3})

constraint (X − 12) ∗ (X − 12) + (Y − 9) ∗ (Y − 9) > 4.

always t (X − 12) ∗ (X − 12) + (Y − 9) ∗ (Y − 9) > 4 if Mode = q.

(q ∈ {Q1, Q2, Q3})

5.3 Turning in the Input Language of dReal

System dReal (Gao et al. (2013b)) is an SMT solver to check the satisfiability of

logic formulas over the real numbers up to a given precision δ > 0 using δ-complete

decision procedures, involving various non-linear real functions, such as polynomi-

als, exponentiation, trigonometric functions, and solutions of Lipschitz-continuous

ordinary differential equations (ODEs).

The input language of dReal follows Version 2 of SMT-LIB standard, but its ODE

extension is not standard. In the language, t-variables (variables ending with t) have

a special meaning. c i t is a t-variable between timepoint i and i+1 that progresses in

accordance with ODE specified by some flow condition, and is universally quantified

to assert that their values during each transition satisfies the invariant condition for

that transition (c.f. (4.5)).

For ASPMT formula F that is generated above, By dr(F) we describe a formula

F by:

• Replacing every occurrence of i :ct in F with c i t.

• Replacing every occurrence of i :c in F with c i.

for every i ∈ {0, . . . ,m− 1}.

54

The set θv of rate declaration law (4.1) can be expressed in dReal as

(define-ode flow v ((= d/dt[X1] F1), . . . , (= d/dt[Xn] Fn)))

An example of this can be showing using earlier example of two balls

(define-ode flow 1 ((= d/dt[H1] V1), . . . , (= d/dt[V2] − g)))

From (5), we know that the (d/dt[X1](v), . . . , d/dt[Xn](v)) is obtained from list Flowv.

We also know that every θv describes ODE system flow v. The integral construct

in dReal solves flow v for each interval [0, δ] by solving∫ δ

0

(d/dt[X1](v), . . . , d/dt[Xn](v)) dt (5.1)

and computing the values of dr(i + 1 : X1), . . . dr(i + 1 : Xn) given the initial values

dr(i : X1), . . . dr(i : Xn).

In the language of dReal, the integral construct explained above is represented

as

(integral (0. δ [X1, . . . , Xn] flow v))

Using this integral construct, every rule (4.2) can be expressed in dReal as

• if i = 0,

(assert (=> (and ((= mode 0 v) (= wait 0 true)))

(= [X1 0 t, . . . , Xn 0 t]

(integral (0. duration 0 [X1 0, . . . , Xn 0] Flow v))))

• if i > 1,

(assert (=> (and ((= mode i v) (= wait i true)))

(= [X1 i t, . . . , Xn i t]

(integral (0. duration i [X1 (i− 1) t, . . . , Xn (i− 1) t] Flow v))))

55

This can be demonstrated using the two ball example as follows:

(assert (=> (and ((= mode i 1) (= wait i true)))

(= [H1 i t, . . . , V2 i t]

(integral (0. duration i [H1 (i− 1) t, . . . , V2 (i− 1) t] Flow 1))))

Every invariant law (4.4) describes a formula with the bounded quantifier ∀[0,t]

explained earlier for any real value t. This quantifier is succinctly expressed in dReal

using the forall t construct. ASPMT rule (4.5) can be abbreviated in dReal as

(assert (forall t v [0 duration i] dr(i : F)))

This can be demonstrated using the two ball example as follows:

(assert (forall t 1 [0 duration i] (≥ Height B1 0)))

5.4 Proofs

5.4.1 Proof of Lemma 11

Lemma 11

p′ is a path in the transition system DH .

Lemma 13 Let H be a hybrid automaton and

(v, x)
σ−→ (v, x′)

be a transition in TH such that σ ∈ R≥0. f(t)=x+
∫ σi
0
ḟ(t) dt is a differentiable func-

tion from [0, σ] to Rn, with the first derivative ḟ : [0, σ]→ Rn such that: (1) f(0)=x

and f(σ)=x′ and (2) for all reals ε ∈ (0, σ), both nvv(f(ε)) and Flowv(f(ε), ḟ(ε)) are

true.

56

Proof. We know that ḟ is a Lipschitz continuous function. From the Picard-Lindelof

theorem, we know that there is a unique solution f ′ with the derivative ḟ . From the

definition of f , it is also clear that ḟ is the derivative of f . Consequently f = f ′.

We know that (v, x)
σ−→ (v, x′) is a transition in TH , hence there must exist a

function with the derivative ḟ that satisfies all the conditions. We also know that f

is the unique function with the derivative ḟ . Hence f satisfies all the conditions.

Lemma 14 For each i ≥ 0, si is a state in the transition system of DH .

Proof. By definition we are to show that

0 : si |=bg SM [(DH)0;φ],

while SM [(DH)0;φ] is equivalent to the conjunctions of,

← ¬(Invv(0 : X)) ∧ 0 : Mode = v. (5.2)

for each v ∈ V . Since p is a path,for each i ≥ 0,(vi, xi) is a state in TH . By the

definition of hybrid transition systems, Invvi(Xi) is true. Hence 0 : si |=bg (5.2)

Lemma 15 For each i ≥ 0, 〈si, ai, si+1〉 is a transition.

Proof. By definition, we are to show that

0 :si ∪ 0:ai ∪ 1:si+1 |=bg SM[(DH)1; 0 :σact ∪ 1:(σfl − σdiff)]. (5.3)

From (Ferraris et al. (2011)) it is clear that for any formula F SM[F] is equiv-

alent to Comp[F]. Additionally from (Ferraris et al. (2011)) it is also clear that

SM[F] ∧ Choice(c) is equivalent to SM[F] where Choice(c) represents the choice

57

rules for all non-intensional constants c.

Comp[(DH)1; 0 : σact ∪ 1 : σfl] is equivalent to the conjunction of following formu-

las:

• Formula FLOW , which is the rule

(1 : X1, 1 : X2, ..., 1 : Xn) = (x1 + y1, . . . , xn + yn)←

(y1, . . . , yn) =

∫ δ

0

θvdt ∧ 0 : Mode = v ∧ 0 : Dur = δ

∧ 0 : Wait = true ∧ 0 : X1 = x1 ∧ 0 : X2 = x2 ∧ ... 0 : Xn = xn. (5.4)

for each v ∈ V where 0 : X1, 0 : X2, ..., 0 : Xn ∈ 0 : X and 1 : X1, 1 : X2, ..., 1 :

Xn ∈ 1 : X for each v ∈ V and θv is the set of Fi(X) for each Xi ∈ X;

• Formula INV , which is the rule

∀t,F(0 ≤ t ∧ t ≤ δ ∧ F = [0 : X1, 0 : X2, ..., 0 : Xn]+∫ t

0

θv dt ∧ 0 : Mode = v ∧ 0 : Dur = δ ∧ 0 : Wait = true→ Invv(F)) (5.5)

for each v ∈ V where 0 : X1, 0 : X2, ..., 0 : Xn ∈ 0 : X and θv is the set of Fi(X)

for each Xi ∈ X

• Formula GUARD , which is the conjunction of

← 0 : hevent(e) ∧ 0 : ¬Guarde(X) (5.6)

for each edge e ∈ E;

• Formula RESET , which is the conjunction of

← ¬Resete(x0, x1) ∧ 1 : X = x1 ∧ 0 : hevent(e) ∧ 0 : X = x0 ∧ 0 : Mode = v.

for each edge e ∈ E;

58

• Formula MODE , which is the conjunction of

← 0 : hevent(e) ∧ ¬(0 : Mode = v1).

1 : Mode = v2 ↔ (0 : Mode = v1 ∧ 0 : hevent(e)) ∨ (1 : Mode = v2

∧ 0 : Mode = v2).

for each edge e = (v1, v2) ∈ E;

• Formula DURATION , which is the rule

0 : Dur = 0 ←
∨
e∈E 0 : hevent(e).

for each edge e = (v1, v2) ∈ E;

• Formula WAIT , which is the rule

0 : Wait = false ↔
∨
e∈E 0 : hevent(e).

0 : Wait = true ↔ ¬¬0 : Wait = true.

We will show that 0 : si ∪ 0 : ai ∪ 1 : si+1 satisfies FLOW , GUARD , RESET ,

MODE , DURATION , WAIT . From the definition of TH there are 2 cases for the

value of σ:

Case 1: σ = hevent(e) where e = (vi, vi+1). It follows from the construction of p′ that

(Dur)ai = 0, (hevent(e))ai = true and (Wait)ai = false. Since FLOW is trivially

satisfied, it is sufficient to consider only GUARD , RESET , MODE , DURATION ,

WAIT .

From the fact that:

(vi, xi)
σi−→ (vi+1, xi+1)

is a transition in TH and that σi = hevent(e), it follows from the definition of hybrid

transition systems that Guarde(0 : X) and Resete(0 : X, 1 : X) is true.

59

• GUARD : It is immediate that 0 : si ∪ 1 : si+1 |=bg Guarde(0 : X). Since

(hevent(e))ai = true, it follows that 0 : si ∪ 0 : ai ∪ 1 : si+1 |=bg GUARD

• RESET : Note that si |=bg (Mode,X) = (vi, xi) and si+1 |=bg (Mode,X) =

(vi+1, xi+1). It is immediate that 0 : si ∪ 1 : si+1 |=bg Resete(0 : X, 1 : X), 0 :

si |=bg 0 : Mode = vi, 0 : si |=bg 0 : X = xi and 0 : si |=bg 1 : X = xi+1. Since

(hevent(e))ai = true, it follows that 0 : si ∪ 0 : ai ∪ 1 : si+1 |=bg RESET

• MODE : Note that si |=bg (Mode,X) = (vi, xi) and si |=bg (Mode,X) =

(vi+1, xi+1). It is immediate that 0 : si |=bg 0 : Mode = vi and 1 : si+1 |=bg

1 : Mode = vi+1. Since (hevent(e))ai = true, it follows that 0 : si ∪ 0 :

ai ∪ 1 : si+1 |=bg MODE .

• DURATION : Since (Dur)ai = 0 and (hevent(e))ai = true, it follows that

0 : si ∪ 0 : ai ∪ 1 : si+1 |=bg DURATION

• WAIT : Since (hevent(e))ai = true, and (Wait)ai = false it follows that

0 : si ∪ 0 : ai ∪ 1 : si+1 |=bg WAIT

Case 2: σi ∈ R≥0. By the construction of p′, Durai = σi, Waitai = true and

(hevent(e))ai = false for every e = (v, v′) ∈ E. Since GUARD , RESET , MODE ,

DURATION , WAIT is trivially satisfied, it is sufficient to consider only FLOW and

INV .

From the fact that

(vi, xi)
σi−→ (vi+1, xi+1)

is a transition of TH and that σi ∈ R≥0, it follows from the definition of hybrid

transition systems that

(a) vi=vi+1, and

60

(b) there is a differentiable function f : [0, σi] → Rn, with the first derivative

ḟ : [0, σi] → Rn such that: (1) f(0) = xi and f(σi) = xi+1 and (2) for all reals

ε ∈ (0, σi), both Invvi(f(ε)) and Flowvi(ḟ(ε)) are true.

By Lemma 13, f(t) = xi+
∫ σi
0
ḟ(t) dt is a differentiable function that satisfies all

the conditions in (b).

We check the following:

• FLOW : If σi ≥ 0, then Dure
i ≥ 0. We know that f(0)=xi and f(σi)=xi+1 =

x+
∫ σi
0
ḟ(t) dt. Since Xsi = xi, X

si+1 = xi+1 and ḟ is basically θv, it is clear

that 0 : si ∪ 0 : ai ∪ 1 : si+1 |=bg FLOW .

• INV : Since we know that Dure
i ≥ 0, Xsi = xi, f(ε) = xi+

∫ ε
0
ḟ(ε) dt and

Invvi(f(ε)) is true for all reals ε ∈ (0, σi) then it is clear that 0 : si ∪ 0 : ai ∪ 1 :

si+1 |=bg INV

Using the lemmas defined and proved above, we prove Lemma 11 as follows:

Proof. By Lemma 14, each si is a state of DH . By Lemma 15, each 〈si, ai, si+1〉 is

a transition of DH . So p′ is a path in the transition system of DH .

5.4.2 Proof of Lemma 12

Lemma 12

q′ is a path in the transition system of TH .

Lemma 16

(a) For each i ≥ 0, (vi, xi) is a state in TH , and

(b) (v0, x0) is an initial state in TH .

61

Proof.

(a) By definition, we are to show that Invvi(xi) is true. Since each si is a state in the

transition system of DH , by definition,

0 :si |=bg SM[(DH)0; ∅]. (5.7)

Note that SM[(DH)0; ∅] is equivalent to the conjunction of the formula:

0 : Invv(x)← 0:Mode = v (5.8)

for each location v ∈ V . Since (Mode)si = vi, it follows that si |=bg Invvi(x). Since

xsi = xi, it follows that Invvi(xi) is true.

(b) We are to show that Initv0(x0) is true. Since we express Initv0(x0) as is in DH .

It is trivially entailed.

Lemma 17 For each i ≥ 0, (vi, xi)
σi−→ (vi+1, xi+1) is a transition in TH .

Proof. From the fact that (si, ai, si+1) is a transition of DH , by definition we know

that

0 :si ∪ 0:ai ∪ 1:si+1 |=bg SM[(DH)1; 0 :σact ∪ 1:σfl]. (5.9)

Comp[(DH)1; 0 : σact∪1 : σfl] is equivalent to the conjunction of FLOW , RESET ,

GUARD , DURATION , MODE , WAIT .

Consider two cases:

Case 1: There exists an edge e = (v, v′) such that (hevent(e))ai = t.. Since Modesi =

vi andModesi+1 = vi+1, it follows that (v, v′) must be (vi, vi+1).As a result, (hevent(e))ai =

t. It follows from the definition that σi = hevent(e).

62

• Since 0 : si ∪ 0 : ai ∪ 1 : si+1 |=bg GUARD , Xsi+1 = xi+1 and Xsi = xi, it is

immediate that Guarde(xi) is true.

• Since 0 : si ∪ 0 : ai ∪ 1 : si+1 |=bg RESET , Xsi+1 = xi+1 and Xsi = xi, it is

immediate that Resete(xi, xi+1) is true.

(b) By Lemma 16, (vi, xi) and (vi+1, xi+1) are states.

Case 2: There exists an edge e = (v, v′) such that (hevent(e))ai = false for every

(v, v′) ∈ E. By construction, (Dur)ai = σi for some σi ∈ R≥0. By Lemma 16, (vi, xi)

and (vi+1, xi+1) are states. From MODE , it follows that Modesi = Modesi+1 . As a

result, vi = vi+1. We are to show that there is a differentiable function f : [0, σi] →

Rn, with the first derivative ḟ : [0, σi]→ Rn such that: (1) f(0) = xi and f(σi) = xi+1

and (2) for all reals ε ∈ (0, σi), both Invvi(f(ε)) and Flowvi(f(ε), ḟ(ε)) are true. Define

f(t) = xi +
∫ t
0
ḟ(t) dt. We check that f satisfies the above conditions:

• f(t) is differentiable over [0, σi].

• Since i : si ∪ (i + 1) : si+1 |=bg (5.4.1), it is clear that f is the function being

used and that f(0)=xi and f(σ)=xi+1.

• We know that the θv comes directly from the definition of Hybrid Automata

and is basically ḟ . Flow(X, Ẋ) is true when the set Ẋi = Formulai(X) is

true. To show that Flowv(f(ε), ḟ(ε)) is true for all ε ∈ [0, σ], we must show

that ḟi(ε) = Formulai(f(ε)) is true. Since i : si ∪ (i + 1) : si+1 |=bg (5.4.1),

Flowv(f(ε), ḟ(ε)) is true for all ε ∈ [0, σ].

• We check that for any ε ∈ (0, σi), Invvi(f(ε)) is true. From i : si ∪ (i + 1) :

si+1 |=bg (5.4.1), it follows that Invvi(f(ε)) is true.

63

From above, we conclude that (17) is a transition.

Using the lemmas defined and proved above, we prove Lemma 12 as follows:

Proof. By Lemma 16 (a), each (vi, xi) is a state in TH . By Lemma 17, each

(vi, xi)
σi−→ (vi+1, xi+1) is a transition in TH . So p′ is a path in TH . If s0 |=bg initv0

then by Lemma 16 (b), (v0, x0) is a initial state in TH .

64

Chapter 6

IMPLEMENTATION

This chapter introduces the system cplus2ASPMT implemented for the purpose

of the framework. We briefly go over the system ASPMT2SMT, on which our system

is based. We also discuss the syntax and limitations of our system as well as some of

the experimental results involved for the same.

6.1 aspmt2smt

System aspmt2smt (Bartholomew and Lee (2014)) is a prototype implementation

of multi-valued propositional formulas under the stable model semantics computed

by the SMT solver Z3. This reduction is based on the theorem on completion which

describes how to capture the non-monotonic semantics of ASPMT in classical logic.

The implementation first compiles the ASPMT theory into a first-order formula

without functions. System f2lp (Lee and Palla (2009)) is used to turn these first-

order formulas into normal logic programs. Gringo is a grounder that is then used

to partially ground the logic program. The system then converts the logic program

back into an ASPMT theory with functions that is now partially ground. Then, the

system computes the completion of the partially ground ASPMT theory, eliminates

any remaining variables resulting in a variable-free first order formula with function.

Finally, Z3 computes the classical models of this first-order formula, which correspond

to the stable models of the original ASPMT theory.

65

Figure 6.1: Architecture of System ASPMT2SMT as Shown In (Bartholomew and
Lee (2014))

6.1.1 Architecture

The architecture of the system is shown in Figure 6.1 The aspmt2smt system

first converts the ASPMT description to a propositional formula containing only pred-

icates. In addition, this step substitutes auxiliary constants for value variables and

necessary preprocessing for f2lp and Gringo to enable partial grounding of argu-

ment variables only. f2lp transforms the propositional formula into a logic program

and then Gringo performs partial grounding on only the argument variables. The

aspmt2smt system then converts the predicates back to functions and replaces the

auxiliary constants with the original expressions. Then the system computes the com-

pletion of this partially ground logic program and performs variable elimination on

that completion. Finally, the system converts this variable-free description into the

language of z3 and then relies on z3 to produce models which correspond to stable

models of the original ASPMT description.

66

6.1.2 Syntax Restrictions

System aspmt2smt imposes three syntactic restrictions on input aspmt2smt

theories comprised of rules of the form H ← B where B is a conjunction of possibly

negated literals and H is ⊥ or f(t) = v: they must have the following properties.

The following terms are introduced and defined in (Bartholomew and Lee (2014)).

Variable Isolated

Some SMT solvers do not support variables at all (e.g. iSAT) while others suffer

in performance when handling variables (e.g. z3). While we can partially ground

the input theories, some variables have large (or infinite) domains and should not

(cannot) be grounded. Thus, we consider two types of variables; ASP variables -

variables which should be grounded - and SMT variables - variables which should

not be grounded. Eliminating ASP variables is simply done by grounding the original

ASPMT theory. Then, we consider the problem of equivalently rewriting the comple-

tion of the partially ground ASPMT theory so that the result contains no variables.

To ensure that variable elimination can be performed, we impose some syntactic re-

strictions on ASPMT instances. We first impose that no SMT variable appears in

the argument of an uninterpreted function.

av-separated

We call a variable v in a rule an argument variable if it occurs in an argument t of

some uninterpreted function f(t) in the rule. We call a variable v in a rule a value

variable if it occurs in

• f(t) = v for any term where f is an uninterpreted function, or

• t1 = t2 where t1, t2 are terms consisting of interpreted symbols (i.e., from σbg)

67

and at least one other value variable (different from v) in the rule. A rule is said to

be av − separated (argument-value separated) if it contains no variable that is both

an argument variable and a value variable.

f-plain

Let f be a function constant. A first-order formula is called f -plain 1 if each atomic

formula

• does not contain f , or

• is of the form f(t) = u where t is a tuple of terms not containing f , and u is a

term not containing f .

For example, f = 1 is f -plain, but each of p(f), g(f) = 1, and 1 = f are not f -plain.

6.2 cplus2ASPMT

cplus2aspmt is a system we have developed to handle the proposed framework

for representing hybrid transition system. As explained earlier, the input language

follows similar syntax and semantics to that of action language C+. The C+ input

is then translated into the language of ASPMT. We then make use of an extended

version of the system aspmt2smt (Bartholomew and Lee (2014)) to solve the trans-

lated ASPMT encoding. The aspmt2smt system is extended so that it can handle

the encoding of ODEs. This is done by using dReal(ODE based SMT solver) as the

SMT solver rather than the native z3 solver. The architecture of the system can be

seen in Figure 6.2.

Downloading and execution instructions as well as tutorials and examples is avail-

able at:

1The notion of f -plain comes from Lifschitz and Yang (2011).

68

Figure 6.2: Architecture of System cplus2ASPMT

http://reasoning.eas.asu.edu/cplus2aspmt

Source code of project can be found at

https://github.com/Nikh13/cplus2ASPMT

6.3 Syntax of New Constructs

6.3.1 In cplus2aspmt

• Differentiablel Fluent Constant Declaration: All differential fluent constants

Xi ∈ X are declared in the input language as follows:

Xi :: continuousFluent(l..u)

where l, u are lower and upper limits of the constants respectively.

69

http://reasoning.eas.asu.edu/cplus2aspmt
https://github.com/Nikh13/cplus2ASPMT

• Rate declarations: Every rate declaration (4.1) is encoded in the input language

as

d/dt[Xi] = Fi(X) if mode = v.

• Invariant Law:Every invariant law (4.4) is encoded in the input language as

always t F if mode = v

6.3.2 In Extended aspmt2smt

As mentioned earlier, at the ASPMT level, the system cplus2aspmt extends the

system aspmt2smt by providing support for evolution of variables based on ODEs.

To handle this we add the following constructs:

• t-variables Declaration: dReal treats a variable c i t as the value of a differen-

tial constant c between the time points i and i+1. We represent such constants

at the ASPMT level with the constant declaration:

Xi t(astep) :: real[l..u]

where l, u are lower and upper limits of the constants respectively. Here astep

is an integer valued sort describing the transition steps.

• Rate declarations: Every ASPMT rate declaration (4.6) is encoded in the ex-

tended input language of aspmt2smt as:

d/dt[Xi] = Fi(X)← mode = v.

for each Xi ∈ X

• Integral construct: Every ASPMT integral law (4.7) contains the solution i+1 :

[X1, . . . , Xn] = i : [X1, . . . , Xn] +
∫ T
0
θv dt for the ODE system θv at mode = v.

70

This solution can be encoded in the extended input language of aspmt2smt as

the term:

int(0, T, [x1, . . . , xn], v)

where T ,x1, . . . , xn are variables and [x1, . . . , xn] is a term representing a list of

terms. Here v is the mode for which the corresponding complete ODE system

exists from the rate declarations.

• Invariant Law: Every ASPMT invariant law (4.10) is encoded in the extended

input language of aspmt2smt as:

always t F ← mode = v & duration = T

6.4 Limitations

The system does not capture all examples of hybrid transition systems. This is

due to certain implementation related limitations that are as follows:

1. While defining the ODE system for any given state, it is necessary that the state

is defined by a single real valued constant called mode. This is due to the fact

that the dReal system expects an encoding in the form of Hybrid Automata

where the states are statically defined as unique modes. This prevents the if

clause in the rate declaration law from being any combination of predicates.

2. Some invariants may need to be expressed using some form of disjunction(A∨B,

A→ B, ¬(A∧B)). In most cases disjunctive logical expressions represent non-

convex invariants. While the theory of SAT Modulo ODEs is tolerant towards

any non-convex invariant, the system dReal does not currently provide support

for invariants using any form of disjunction. Hence, the system cplus2aspmt

imposes the restriction that the formula F in the invariant law must be void of

any form of disjunction.

71

3. As mentioned in Chapter 4 we assume that an action description has a unique

rate declaration for eachXi and v. While listing complete ODEs could be viewed

as a strong condition, dReal only accepts complete ODE systems while using

the integral. Hence this system imposes the further restriction that the set

of rate declaration laws defined for mode = v must describe a complete ODE

system.

In future iterations of the system cplus2ASPMT we hope to resolve these limi-

tations. An idea to resolve (1) would be to allow the if clause in the rate declaration

law to be any boolean valued formula and later translating each of these formulas to

a unique placeholder, mode. This mode would then be used as required by dReal.

The developers of dReal are currently working on adding support for invariant for-

mulas that are using some form of disjunction. We hope to add support for the same

once its updated iteration is ready and subsequently resolve the limitation specified

in (2). In (Gao et al. (2013b)), an extension for lifting the restriction specified in (3)

is left for the future work, using new commands pintegral and connect, but they

are still not available in the distributed version. It should be possible to extend the

abbreviations to express partial ODEs in accordance with this extension.

6.5 Examples

In this section we will revisit Examples 1 and 3. For each of the examples we

will show their cplus2ASPMT input program and visual output of the solution

obtained. The intermediate ASPMT as well as SMT translations can be found in

Appendix B.

72

6.5.1 Water Tank Example - Example 1

cplus2ASPMT Input Program

:− cons tant s
x1 : : s impleFluent (r e a l [0 . . 3 0]) ;
x2 : : s impleFluent (r e a l [0 . . 3 0]) ;
mode : : i n e r t i a l F l u e n t (r e a l [1 . . 2]) ;
e1 , e2 : : exogenousAction ;
wait : : a c t i on ;
durat ion : : exogenousAction (r e a l [0 . . 1 0]) .

:− v a r i a b l e s
X11 , X21 , X10 , X20 ,T.

exogenous x1 .
exogenous x2 .
e1 causes durat ion =0.
e2 causes durat ion =0.

d e f a u l t wait .
e1 causes ˜ wait .
e2 causes ˜ wait .

caused f a l s e i f mode=1 & −(x2>=r2) .
caused f a l s e i f mode=2 & −(x1>=r1) .

nonexecutable e1 i f −(x2<=r2) .
nonexecutable e2 i f −(x1<=r1) .

nonexecutable e1 i f −(mode=1) .
nonexecutable e2 i f −(mode=2) .

c o n s t r a i n t (((x1−X10) //T)=w1−v & ((x2−X20) //T)=−v) a f t e r x1=X10 &
x2=X20 & mode=1 & durat ion=T & wait & T>0.

c o n s t r a i n t (x1=X10 & x2=X20) a f t e r x1=X10 & x2=X20 & mode=1 &
durat ion=0 & wait .

c o n s t r a i n t (((x1−X10) //T)=−v & ((x2−X20) //T)=w2−v) a f t e r x1=X10 &
x2=X20 & mode=2 & durat ion=T & wait & T>0.

c o n s t r a i n t (x1=X10 & x2=X20) a f t e r x1=X10 & x2=X20 & mode=2 &
durat ion=0 & wait .

c o n s t r a i n t (x1=X10 & x2=X20) a f t e r x1=X10 & x2=X20 & e1 .
c o n s t r a i n t (x1=X10 & x2=X20) a f t e r x1=X10 & x2=X20 & e2 .

73

Figure 6.3: Output of Example 1

e1 causes mode=2.
e2 causes mode=1.

:− query
l a b e l : : i n i t ;
maxstep : : 2 ;
0 : mode=1;
0 : x1 = 10 ;
0 : x2 = 15 ;
2 : s t a t e =2.

Output of Example 1 can be seen in Figure 6.3.

6.5.2 Turning Car Example - Example 3

cplus2ASPMT Input Program

:− cons tant s
x : : cont inuousFluent (r e a l [0 . . 4 0]) ;
y : : cont inuousFluent (r e a l [−5 0 . . 5 0]) ;
theta : : cont inuousFluent (r e a l [−5 0 . . 5 0]) ;
s t r a i gh t en , turnLeft , turnRight : : exogenousAction ;
mode : : i n e r t i a l F l u e n t (r e a l [1 . . 2]) ;
wait : : a c t i on ;
durat ion : : exogenousAction (r e a l [0 . . 1 0]) .

74

:− v a r i a b l e s
X, X0 , X1 , X2 ,D, D1 ,T,RP,R.

exogenous x .
exogenous y .
exogenous theta .
s t r a i g h t e n causes durat ion =0.
turnLe f t causes durat ion =0.
turnRight causes durat ion =0.

d e f a u l t wait .
s t r a i g h t e n causes ˜ wait .
turnLe f t causes ˜ wait .
turnRight causes ˜ wait .

% Rates
d e r i v a t i v e o f x i s cos (theta) i f mode=1.
d e r i v a t i v e o f y i s s i n (theta) i f mode=1.
d e r i v a t i v e o f theta i s 0 i f mode=1.
d e r i v a t i v e o f x i s cos (theta) i f mode=2.
d e r i v a t i v e o f y i s s i n (theta) i f mode=2.
d e r i v a t i v e o f theta i s tan (p i /18) i f mode=2.
d e r i v a t i v e o f x i s cos (theta) i f mode=3.
d e r i v a t i v e o f y i s s i n (theta) i f mode=3
d e r i v a t i v e o f theta i s tan(−pi /18) i f mode=3.

%Invar i an t
c o n s t r a i n t x=X & y=Y & ((X−6)∗(X−6) & (Y) ∗(Y)>9) .
a lways t (x=X & y=Y & ((X−6)∗(X−6) & (Y) ∗(Y)>9)) i f mode=1.
a lways t (x=X & y=Y & ((X−6)∗(X−6) & (Y) ∗(Y)>9)) i f mode=2.
a lways t (x=X & y=Y & ((X−6)∗(X−6) & (Y) ∗(Y)>9)) i f mode=3.

c o n s t r a i n t x=X & y=Y & ((X−5)∗(X−5) & (Y−7)∗(Y−7)>4) .
a lways t (x=X & y=Y & ((X−5)∗(X−5) & (Y−7)∗(Y−7)>4)) i f mode=1.
a lways t (x=X & y=Y & ((X−5)∗(X−5) & (Y−7)∗(Y−7)>4)) i f mode=2.
a lways t (x=X & y=Y & ((X−5)∗(X−5) & (Y−7)∗(Y−7)>4)) i f mode=3.

c o n s t r a i n t x=X & y=Y & ((X−12) ∗(X−12) & (Y−9)∗(Y−9)>4) .
a lways t (x=X & y=Y & ((X−12) ∗(X−12) & (Y−9)∗(Y−9)>4)) i f mode=1.
a lways t (x=X & y=Y & ((X−12) ∗(X−12) & (Y−9)∗(Y−9)>4)) i f mode=2.
a lways t (x=X & y=Y & ((X−12) ∗(X−12) & (Y−9)∗(Y−9)>4)) i f mode=3.

s t r a i g h t e n causes mode=1.
turnLe f t causes mode=2.
turnRight causes mode=3.

75

Figure 6.4: Output of Example 3

%State R e s t r i c t i o n s
nonexecutable s t r a i g h t e n i f mode=1.
nonexecutable turnLe f t i f mode=2.
nonexecutable turnRight i f mode=3.

%Reset
c o n s t r a i n t (RP=D & X2=X0 & D1=X2) & x = RP & y=X2 & theta=D1

a f t e r x = D & y=X0 & theta=X1 & turnLe f t .
c o n s t r a i n t (RP=D & X2=X0 & D1=X2) & x = RP & y=X2 & theta=D1

a f t e r x = D & y=X0 & theta=X1 turnRight .
c o n s t r a i n t (RP=D & X2=X0 & D1=X2) & x = RP & y=X2 & theta=D1

a f t e r x = D & y=X0 & theta=X1 & s t r a i g h t e n .

:− query
l a b e l : : i n i t ;
maxstep : : 5 ;
0 : x=0;
0 : y=0;
0 : mode=1;
5 : x=13;
5 : y=0.

Output of Example 3 can be seen in Figure 6.4. The different paths are obtained

by varying the value of maxstep. For example, when maxstep = 3, we get the shorter

path but when we extend the maxstep to 5 we are able to get the longer, more realistic

76

path.

6.6 Results

We run experiments on the examples described above to gauge the performance of

the system in comparison to other Hybrid Automata solvers. We also run experiments

to demonstrate the capability of the system in minimizing the effort in encoding by

comparing encoding sizes and number of ground atoms with Hybrid Automata and

SMT solvers.

Runtime Performance

Steps dReach cplus2ASPMT(with path) cplus2ASPMT(without path)

Thermostat Example

6 .454 .213 .243

10 0.658 0.645 3.22

12 1.050 1.060 > 10m

20 5.25 9.6076 >10m

Car Example

3 0.876 1.123 8.735

4 2.312 17.23 3m28

6 5.765 33.533 >10m

7 7.322 2m43 >10m

Table 6.1: Runtime Comparison of Hybrid Automata Solvers - Runtime(s)

We run the thermostat and car example on Hybrid Automata solver dReach

and our system and compare the results in Table 6.1. For our system we consider 2

scenarios: (1) Expected path is mentioned in query (2) Only final goal is specified.

77

This is done to try and effectively compare runtime with dReach as it incrementally

solves for a specific transition path 2 . From the table we see that both systems have a

similar runtime for smaller number of steps but our system takes a much longer time

as steps and domain size increase. While dReach perform better than our system,

the focus of this thesis is not to find the most optimum performance solution but to

be able to effectively represent hybrid transition systems. dReach falls short here

as they are limited to hybrid transition systems described by Hybrid Automata.

Incremental grounding in system Cplus2ASP: As observed, dReach per-

forms better than our system by pruning out the final encoding based on a specific

path. A similar approach can be seen in the working of Cplus2ASP, where incre-

mental grounding is performed to optimize performance of the system. This is done

by incrementally grounding the encoding up to the maximum number of steps and

using a solution at a previous stage to solve further iterations. Since our system is

an extension of Cplus2ASP, we could borrow this idea to optimize runtime.

Encoding Size

Example cplus2ASPMT dReach dReal

Water Tank Example(2 steps) 47 33 115

Two Ball Example(4 steps) 45 26 275

Turning Car example(3 steps) 66 37 304

Table 6.2: Encoding Size (Number of Lines) Comparison

For each of the examples described in the earlier section we also compare their

encoding size with SMT solver dReal and Hybrid Automata solver dReach in

2When solving a Hybrid Automata, system dReach incrementally selects a probable transition
path at random and runs a subset of the rules containing only those path variables. This way it
solves only a small subset of code and optimizes runtime

78

Table 6.2. We clearly observe that our system is much more efficient than SMT solvers

like dReal in terms of encoding effort. Additionally, it is important to note that in

our system, the encoding size remains the size no matter the number of steps required

to obtain the solution. This is not the case for its equivalent SMT encoding as SMT

input must always be grounded. We notice that dReach has a slight advantage in

this metric as well. But once again, we highlight the fact that dReach is not tolerable

to hybrid transition systems not defined by Hybrid Automata while cplus2ASPMT

is.

79

Chapter 7

GOING BEYOND HYBRID AUTOMATA

The advantage of using the action language C+ is its expressivity outside of the

domain of Hybrid Automata. This can be seen in its ability to handle reasoning

about additive fluents and defining more complex relations for the formation of a

state.

7.1 Additive Fluents

Additive fluents in C+ help abstracting away complex rules to represent con-

current effects of certain actions on a common fluent constant. Apart from adding

support for the new causal rules proposed in this thesis, the CPLUS2ASPMT system

also provides support for additive fluents subject to the background theory of reals as

in Example 4. Cplus2ASP provided only integer domain support for additive fluents,

which seemed to be highly restrictive.

Example 4 The following formalization as introduced in (Lee and Meng (2013))

describes the level of a water tank that has two taps with different flow rates and

possible leaking. The action description for the example can be seen below

:− s o r t s
taps .

:− o b j e c t s
t1 , t2 : : taps .

:− cons tant s
on (taps) : : i n e r t i a l F l u e n t ;
tapRate (taps) : : i n e r t i a l F l u e n t (r e a l [0 . . 1 0]) ;
leakRate : : i n e r t i a l F l u e n t (r e a l [0 . . 1 0]) ;

80

l e a k i n g : : i n e r t i a l F l u e n t ;
durat ion : : exogenousAction (r e a l [0 . . 2 0]) ;
turnOn (taps) : : exogenousAction ;
turnOff (taps) : : exogenousAction ;
l e v e l : : add i t i v eF luent (r e a l [0 . . 3 0]) .

:− v a r i a b l e s
Z ,X, X1 , X2 ,Y,T, S1 , S0 ,M,D;
TP : : taps .

turnOn (TP) causes on (TP) .
caused durat ion=0 i f turnOn (TP) .
turnOff (TP) causes ˜on (TP) .
caused durat ion=0 i f turnOff (TP) .

on (TP) increments l e v e l by X i f durat ion=T & tapRate (TP)=X1 & X=
X1∗T.

l e a k i n g decrements l e v e l by X i f durat ion=T & leakRate=X1 & X=X1∗
T.

7.2 Complex Definition of States of Hybrid Systems

Additionally, by adding the new constructs for supporting ODE and constraint

checking for intermediate time points, the system Cplus2ASPMT may also be used

to represent complex relations that lead to the formation of a state that would oth-

erwise be abstracted away in a Hybrid Automata. This can be seen in Example 5.

From the encoding we can see that the action/events are not leading to the state

change. The events lead to some changes in specific boolean valued fluents. The

state or mode at any given time is determined by the relation among some of these

fluents. For example turnPumpOn sets the value of pumpOn to true, but mode is

set to 1 only if tapOn is false at the same time.

Example 5 Similar to the previous example with minor modifications. When the tap

is on, the bucket is filled at some constant rate. When the pump is turned on, the

water is drained at an accelerated rate. The action description for the example can

81

be seen below.

:− cons tant s
tapRate : : i n e r t i a l F l u e n t (r e a l [0 . . 1 0]) ;
tapOn : : i n e r t i a l F l u e n t ;
pumpOn : : i n e r t i a l F l u e n t ;
turnTapOn : : exogenousAction ;
turnTapOff : : exogenousAction ;
turnPumpOn : : exogenousAction ;
turnPumpOff : : exogenousAction ;
l e v e l : : cont inuousFluent (0 . . 3 0) ;
leakRate : : cont inuousFluent (−30 . .30) .

:− v a r i a b l e s
Z ,X, X1 , X2 ,Y,T, S1 , S0 ,M,D.

d e f a u l t wait .
caused durat ion=0 i f turnPumpOn .
caused durat ion=0 i f turnPumpOff .
caused durat ion=0 i f turnTapOn .
caused durat ion=0 i f turnTapOff .
caused wait=f a l s e i f turnPumpOn .
caused wait=f a l s e i f turnPumpOff .
caused wait=f a l s e i f turnTapOn .
caused wait=f a l s e i f turnTapOff .

d e r i v a t i v e o f leakRate i s −1 i f mode=1.
d e r i v a t i v e o f l e v e l i s leakRate i f mode=1.

caused mode=1 i f pumpOn & −tapOn .
caused mode=2 i f tapOn & −pumpOn.
caused mode=3 i f −tapOn & −pumpOn.

turnPumpOn causes pumpOn.
turnPumpOff causes ˜pumpOn.
turnTapOn causes tapOn .
turnTapOff causes ˜tapOn .

c o n s t r a i n t l e v e l=X a f t e r mode=2 & l e v e l=X1 & durat ion=T & wait &
tapRate=X2 & X=X1+X2∗T.

c o n s t r a i n t l e v e l=X a f t e r mode=3 & l e v e l=X & durat ion=T & wait .
c o n s t r a i n t (X=X1 & S1=0) & l e v e l=X & leakRate=S1 a f t e r −(wait) &

l e v e l=X1 .

82

Chapter 8

CONCLUSION

Reasoning about hybrid transition system faces several challenges among which

are performing defeasible reasoning and efficient computation in the presence of large

domains. While, action language C+ helps represent such problems with the help

of causal laws, most of its solvers like Cplus2ASP are restricted to reasoning only

over discrete domains. Hybrid Automata is another formalism used to represent

hybrid transition systems. However most Hybrid Automata solver do not allow for

any complex relations among components of the system that may be ignored or

abstracted away while describing a problem in Hybrid Automata.

The research culminated in a framework to represent hybrid automata in action

language modulo theories. As the enhanced action language is based on ASPMT,

which in turn is founded on the basis of ASP and SMT, it enjoys the development in

SMT. SMT is used extensively to represent and perform formal verification on hybrid

transition systems, hence developing SMT as an underlying formalism proves to be

highly advantageous. The framework also proves to be expressive as we are able to

encode hybrid transitions that are not necessarily described by Hybrid Automata. By

doing so we do not restrict the encoding to strictly follow Hybrid Automata semantics

and allow for more complex relations among components of the system.

The research involved in this thesis culminates in an expressive and effective tool

based on an Action Language Modulo ODE to represent and reason about hybrid

transition systems. The thesis highlighted the ease of defining the Action Language

Modulo ODE on the foundation of ASPMT thus taking advantage of the benefits of

both ASP as well as development in SMT. The developed framework presents how

83

action language modulo ODE lifts the concept of SMT modulo ODEs to the action

language level. The key improvement of this framework over other related works is

its expressive power. The expressivity was displayed in its ability to represent and

reason about hybrid transition systems described using Hybrid Automata as well as

those that involve more complex internal relations among components of the system

that cannot be expressed in Hybrid Automata. Thus enjoying the benefits of the

structure of Hybrid Automata as well as the expressive power of action language C+

in capturing crucial intricate dependencies. This framework is finally bundled as a

prototype implementation and presented as system cplus2ASPMT.

The prototype implementation cplus2ASPMT presented in this thesis serve as

a proof-of concept for the presented framework by providing the capability to reason

and efficiently compute hybrid transition systems whose continuous components are

governed by ODEs. The system does not consider composition of hybrid automata

in the ODE setting, because the underlying technology of SMT is not yet mature

enough to handle this. In (Gao et al. (2013b)), such extension is left for the future

work, using new commands pintegral and connect, but they are still not available

in the distributed version. It should be possible to extend the abbreviations to express

partial ODEs in accordance with this extension. SMT solvers are becoming the key

enabling technology in formal verification in hybrid systems. Nonetheless expressing

the concept in the language of SMT is non-trivial. Though the framework presented

in this thesis, we expect that high level action languages can facilitate reasoning and

encoding efforts for hybrid transition systems.

84

REFERENCES

Akman, V., S. Erdoğan, J. Lee and V. Lifschitz, “A representation of the traffic world
in the language of the causal calculator”, In Working Notes of the Fifth Symposium
on Formalizations of Commonsense Knowledge (2001).

Alur, R., T. A. Henzinger, G. Lafferriere, George and J. Pappas, “Discrete abstrac-
tions of hybrid systems”, in “Proceedings of the IEEE”, pp. 971–984 (2000).

Babb, J. and J. Lee, “Cplus2ASP: Computing action language C+ in answer set
programming”, in “Proceedings of International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR)”, pp. 122–134 (2013).

Baral, C., Knowledge representation, reasoning and declarative problem solving (Cam-
bridge university press, 2003).

Barrett, C. W., R. Sebastiani, S. A. Seshia and C. Tinelli, “Satisfiability modulo theo-
ries”, in “Handbook of Satisfiability”, edited by A. Biere, M. Heule, H. van Maaren
and T. Walsh, vol. 185 of Frontiers in Artificial Intelligence and Applications, pp.
825–885 (IOS Press, 2009).

Bartholomew, M. and J. Lee, “Functional stable model semantics and answer set
programming modulo theories”, in “Proceedings of International Joint Conference
on Artificial Intelligence (IJCAI)”, (2013).

Bartholomew, M. and J. Lee, “System ASPMT2SMT: Computing aspmt theories
by smt solvers”, in “Proceedings of European Conference on Logics in Artificial
Intelligence (JELIA)”, pp. 529–542 (2014).

Bogomolov, S., D. Magazzeni, A. Podelski and M. Wehrle, “Planning as model check-
ing in hybrid domains”, in “AAAI’14”, (2014).

Boyd, S. and L. Vandenberghe, Convex optimization (Cambridge university press,
2004).

Bryce, D., S. Gao, D. Musliner and R. Goldman, “Smt-based nonlinear pddl+ plan-
ning”, in “Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelli-
gence”, (2015).

Chintabathina, S., “Towards answer set prolog based architectures for intelligent
agents.”, in “AAAI’08”, pp. 1843–1844 (2008).

Coles, A. and A. Coles, “Pddl+ planning with events and linear processes”, in “Pro-
ceedings of the Twenty- Fourth International Conference on Automated Planning
and Scheduling”, (2014).

Coles, A., A. Coles, M. Fox and D. Long, “Colin: Planning with continuous linear
numeric change”, Journal of Artificial Intelligence Research 44 (2012).

85

Ferraris, P., J. Lee and V. Lifschitz, “Stable models and circumscription”, Artificial
Intelligence 175, 236–263 (2011).

Fox, M. and D. Long, “PDDL2.1: An extension to pddl for expressing temporal
planning domains”, J. Artif. Intell. Res. (JAIR) 20, 61–124 (2003).

Fox, M. and D. Long, “Modelling mixed discrete-continuous domains for planning”,
J. Artif. Intell. Res. (JAIR) 27, 235–297 (2006).

Gao, S., S. Kong and E. Clarke, “Satisfiability modulo odes”, arXiv preprint
arXiv:1310.8278 (2013a).

Gao, S., S. Kong and E. M. Clarke, “dreal: An smt solver for nonlinear theories over
the reals”, in “International Conference on Automated Deduction”, pp. 208–214
(Springer Berlin Heidelberg, 2013b).

Gebser, M., T. Grote and T. Schaub, “Coala: A compiler from action languages to
ASP”, in “Proceedings of European Conference on Logics in Artificial Intelligence
(JELIA)”, pp. 360–364 (2010).

Giunchiglia, E., J. Lee, V. Lifschitz, N. McCain and H. Turner, “Nonmonotonic causal
theories”, Artificial Intelligence 153(1–2), 49–104 (2004).

Henzinger, T. A., “The theory of hybrid automata”, in “Proceedings, 11th Annual
IEEE Symposium on Logic in Computer Science”, pp. 278–292 (1996).

Lee, J., V. Lifschitz and F. Yang, “Action language BC: Preliminary report”, in
“Proceedings of International Joint Conference on Artificial Intelligence (IJCAI)”,
(2013).

Lee, J. and Y. Meng, “Answer set programming modulo theories and reasoning about
continuous changes”, in “Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI)”, (2013).

Lee, J. and R. Palla, “System f2lp – computing answer sets of first-order formulas”,
in “Procedings of International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR)”, pp. 515–521 (2009).

Mellarkod, V. S., M. Gelfond and Y. Zhang, “Integrating answer set programming and
constraint logic programming”, Annals of Mathematics and Artificial Intelligence
53, 1-4, 251–287 (2008).

Penna, G. D., D. Magazzeni, F. Mercorio and B. Intrigila, “Upmurphi: A tool for
universal planning on pddl+ problems”, in “Proceedings of the Nineteenth Inter-
national Conference on Automated Planning and Scheduling”, (2009).

Shin, J.-A. and E. Davis, “Processes and continuous change in a sat-based planner”,
Artificial Intelligence 166, 1-2, 194–253 (2005).

86

APPENDIX A

ABBREVIATIONS IN C+

1. A static law or an action dynamic law of the form

caused F if >

can be written as
caused F.

2. A fluent dynamic law of the form

caused F if > after H

can be written as
caused F after H.

3. A static law of the form
caused ⊥ if ¬F

can be written as
constraint F.

4. A fluent dynamic law of the form

caused ⊥ if ¬F after G

can be written as
constraint F after G.

5. An expression of the form
rigid c

where c is a fluent constant stands for the set of causal laws

constraint c=v after c=v

for all v ∈ Dom(c).

6. A fluent dynamic law of the form

caused ⊥ after ¬F

can be written as
always F.

7. A fluent dynamic law of the form

caused ⊥ after F ∧G

87

where F is an action formula can be written as

nonexecutable F if G. (A.1)

8. An expression of the form

F causes G if H (A.2)

where F is an action formula stands for the fluent dynamic law

caused G after F ∧H

if G is a fluent formula, 1 and for the action dynamic law

caused G if F ∧H

if G is an action formula.

9. An expression of the form

default F if G (A.3)

stands for the causal law

caused {F}ch if G.

10. An expression of the form

default F if G after H

stands for the fluent dynamic law

caused {F}ch if G after H.

The part

if G

1It is clear that the expression in the previous line is a fluent dynamic law only when G does
not contain statically determined fluent constants. Similar remarks can be made in connection with
many of the abbreviations introduced below.

88

in this abbreviation can be dropped if G is >.

11. An expression of the form

exogenous c if G (A.4)

where c is a constant stands for the set of causal laws

default c=v if G

for all v ∈ Dom(c).

12. An expression of the form

F may cause G if H (A.5)

where F is an action formula stands for the fluent dynamic law

default G after F ∧H

if G is a fluent formula, and for the action dynamic law

default G if F ∧H

if G is an action formula.

13. An expression of the form

inertial c if G (A.6)

where c is a fluent constant stands for the set of fluent dynamic laws

default c=v after c=v ∧G

for all v ∈ Dom(c).

89

14. If any of the abbreviations (A.2)–(A.6) ends with

if >

then this part of the expression can be dropped.

15. The expression obtained by appending

unless c

where c is a Boolean statically determined fluent constant to a static law

caused F if G (A.7)

stands for the pair of static laws

caused F if G∧ ∼c,

default ∼c.
(A.8)

16. The expression obtained by appending

unless c

where c is a Boolean action constant to an action dynamic law (A.7) stands for the

pair of action dynamic laws (A.8).

17. The expression obtained by appending

unless c

where c is a Boolean action constant to a fluent dynamic law

caused F if G after H

stands for the pair of dynamic laws

caused F if G after H∧ ∼c,

default ∼c.

90

APPENDIX B

WATER TANK EXAMPLE

As we have already covered the input and output in Chapter 6, we will show only

the intermediate ASPMT and SMT translation for Example 1

Intermediate ASPMT Translation

:− cons tant s
s tep : x1 : : r e a l [0 . . 3 0] ;
s t ep : x2 : : r e a l [0 . . 3 0] ;
s t ep : mode : : r e a l [1 . . 2] ;
as tep : e1 , e2 : : boolean ;
astep : wait : : boolean ;
astep : durat ion : : r e a l [0 . . 1 0] .

{AS+1:mode=X} <− AS: mode=X.
{ST: x1=X} .
{ST: x2=X} .
{AS: durat ion=X} .
{AS: e1=X} .
{AS: e2=X} .

%System Rules
%Al l a c t i o n s have 0 durat ion
AS: durat ion=0 <− AS: e1 .
AS : durat ion=0 <− AS: e2 .

{AS: wait=true } .
AS : wait=f a l s e <− AS: e1 .
AS : wait=f a l s e <− AS: e2 .

<− ST: mode=1 & −(ST : x2>=r2) .
<− ST: mode=2 & −(ST : x1>=r1) .

<− AS: e1 & −(AS: x2<=r2) .
<− AS: e2 & −(AS: x1<=r1) .

<− AS: e1 & −(AS: mode=1) .
<− AS: e2 & −(AS: mode=2) .

91

<− not (((AS+1x1−X10) //T)=w1−v & ((AS+1:x2−X20) //T)=−v) & AS: x1=
X10 & AS: x2=X20 & AS: mode=1 & AS: durat ion=T & AS: wait & T>0.

<− not (AS+1:x1=X10 & AS+1:x2=X20) & AS: x1=X10 & AS: x2=X20 & AS:
mode=1 & AS: durat ion=0 & AS: wait .

<− not (((AS+1x1−X10) //T)=−v & ((AS+1:x2−X20) //T)=w2−v) & AS: x1=
X10 & AS: x2=X20 & AS: mode=2 & AS: durat ion=T & AS: wait & T>0.

<− not (AS+1:x1=X10 & AS+1:x2=X20) & AS: x1=X10 & AS: x2=X20 & AS:
mode=2 & AS: durat ion=0 & AS: wait .

<− not (AS+1:x1=X10 & AS+1:x2=X20) & AS: x1=X10 & AS: x2=X20 & AS:
e1 .

<− not (AS+1:x1=X10 & AS+1:x2=X20) & AS: x1=X10 & AS: x2=X20 & AS:
e2 .

AS+1:mode=2 <− AS: e1
AS+1:mode=1 <− AS: e2

<− not 0 : mode=1.
<− not 0 : x1 = 0 .
<− not 0 : x2 = 8 .
<− not 2 : mode=2.

SMT Encoding

(set−l o g i c QF NRA ODE)
(dec la re−const t rue a Bool)
(dec la re−const f a l s e a Bool)
(dec la re−const du ra t i on 0 Real)
(dec la re−const du ra t i on 1 Real)
(dec la re−const e 1 0 Bool)
(dec la re−const e 1 1 Bool)
(dec la re−const e 2 0 Bool)
(dec la re−const e 2 1 Bool)
(dec la re−const q l a b e l i n i t Bool)
(dec la re−const s t a t e 0 Real)
(dec la re−const s t a t e 1 Real)
(dec la re−const s t a t e 2 Real)
(dec la re−const wa i t 0 Bool)
(dec la re−const wa i t 1 Bool)
(dec la re−const x1 0 Real)
(dec la re−const x1 1 Real)
(dec la re−const x1 2 Real)
(dec la re−const x2 0 Real)
(dec la re−const x2 1 Real)

92

(dec la re−const x2 2 Real)
(a s s e r t t rue a)
(a s s e r t (not f a l s e a))
(a s s e r t (>= dura t i on 0 0))
(a s s e r t (<= dura t i on 0 10))
(a s s e r t (>= dura t i on 1 0))
(a s s e r t (<= dura t i on 1 10))
(a s s e r t (>= s t a t e 0 1))
(a s s e r t (<= s t a t e 0 2))
(a s s e r t (>= s t a t e 1 1))
(a s s e r t (<= s t a t e 1 2))
(a s s e r t (>= s t a t e 2 1))
(a s s e r t (<= s t a t e 2 2))
(a s s e r t (>= x1 0 0))
(a s s e r t (<= x1 0 30))
(a s s e r t (>= x1 1 0))
(a s s e r t (<= x1 1 30))
(a s s e r t (>= x1 2 0))
(a s s e r t (<= x1 2 30))
(a s s e r t (>= x2 0 0))
(a s s e r t (<= x2 0 30))
(a s s e r t (>= x2 1 0))
(a s s e r t (<= x2 1 30))
(a s s e r t (>= x2 2 0))
(a s s e r t (<= x2 2 30))
(a s s e r t (or (or (and (= wa i t 1 t rue) (= wa i t 1 t rue)) (and (=

e 2 1 true) (= wa i t 1 f a l s e))) (and (= e 1 1 true) (= wa i t 1
f a l s e))))

(a s s e r t (=> (= wa i t 1 t rue) (= wa i t 1 t rue)))
(a s s e r t (=> (= e 2 1 true) (= wa i t 1 f a l s e)))
(a s s e r t (=> (= e 1 1 true) (= wa i t 1 f a l s e)))
(a s s e r t (or (or (and (= wa i t 0 t rue) (= wa i t 0 t rue)) (and (=

e 2 0 true) (= wa i t 0 f a l s e))) (and (= e 1 0 true) (= wa i t 0
f a l s e))))

(a s s e r t (=> (= wa i t 0 t rue) (= wa i t 0 t rue)))
(a s s e r t (=> (= e 2 0 true) (= wa i t 0 f a l s e)))
(a s s e r t (=> (= e 1 0 true) (= wa i t 0 f a l s e)))
(a s s e r t (or (or (= s t a t e 2 s t a t e 1) (and (= e 2 1 true) (=

s t a t e 2 1))) (and (= e 1 1 true) (= s t a t e 2 2))))
(a s s e r t (=> (= e 2 1 true) (= s t a t e 2 1)))
(a s s e r t (=> (= e 1 1 true) (= s t a t e 2 2)))
(a s s e r t (or (or (= s t a t e 1 s t a t e 0) (and (= e 2 0 true) (=

s t a t e 1 1))) (and (= e 1 0 true) (= s t a t e 1 2))))
(a s s e r t (=> (= e 2 0 true) (= s t a t e 1 1)))
(a s s e r t (=> (= e 1 0 true) (= s t a t e 1 2)))

93

(a s s e r t (= q l a b e l i n i t t rue))
(a s s e r t (= q l a b e l i n i t t rue))
(a s s e r t (=> (= e 2 1 true) (= dura t i on 1 0)))
(a s s e r t (=> (= e 1 1 true) (= dura t i on 1 0)))
(a s s e r t t rue a)
(a s s e r t (=> (= e 2 0 true) (= dura t i on 0 0)))
(a s s e r t (=> (= e 1 0 true) (= dura t i on 0 0)))
(a s s e r t (not (and (= s t a t e 0 1) (not (>= x2 0 0)))))
(a s s e r t (not (and (= s t a t e 2 1) (not (>= x2 2 0)))))
(a s s e r t (not (and (= s t a t e 1 1) (not (>= x2 1 0)))))
(a s s e r t (not (and (= s t a t e 0 2) (not (>= x1 0 0)))))
(a s s e r t (not (and (= s t a t e 2 2) (not (>= x1 2 0)))))
(a s s e r t (not (and (= s t a t e 1 2) (not (>= x1 1 0)))))
(a s s e r t (not (and (= e 1 1 true) (not (<= x2 1 0)))))
(a s s e r t (not (and (= e 1 0 true) (not (<= x2 0 0)))))
(a s s e r t (not (and (= e 2 1 true) (not (<= x1 1 0)))))
(a s s e r t (not (and (= e 2 0 true) (not (<= x1 0 0)))))
(a s s e r t (not (and (= e 1 1 true) (not (= s t a t e 1 1)))))
(a s s e r t (not (and (= e 1 0 true) (not (= s t a t e 0 1)))))
(a s s e r t (not (and (= e 2 1 true) (not (= s t a t e 1 2)))))
(a s s e r t (not (and (= e 2 0 true) (not (= s t a t e 0 2)))))
(a s s e r t (not (and (and (and (not (= (/ (− x1 2 x1 1)

dura t i on 1) (− (/ 75 10) 5))) (> dura t i on 1 0)) (= s t a t e 1
1)) (= wa i t 1 t rue))))

(a s s e r t (not (and (and (and (not (= (/ (− x1 1 x1 0)
dura t i on 0) (− (/ 75 10) 5))) (> dura t i on 0 0)) (= s t a t e 0
1)) (= wa i t 0 t rue))))

(a s s e r t (not (and (and (and (not (= (/ (− x2 2 x2 1)
dura t i on 1) −5)) (> dura t i on 1 0)) (= s t a t e 1 1)) (=
wa i t 1 t rue))))

(a s s e r t (not (and (and (and (not (= (/ (− x2 1 x2 0)
dura t i on 0) −5)) (> dura t i on 0 0)) (= s t a t e 0 1)) (=
wa i t 0 t rue))))

(a s s e r t (not (and (and (and (not (= x1 2 x1 1)) (= wa i t 1 t rue
)) (= s t a t e 1 1)) (= dura t i on 1 0))))

(a s s e r t (not (and (and (and (not (= x1 1 x1 0)) (= wa i t 0 t rue
)) (= s t a t e 0 1)) (= dura t i on 0 0))))

(a s s e r t (not (and (and (and (not (= x2 2 x2 1)) (= wa i t 1 t rue
)) (= s t a t e 1 1)) (= dura t i on 1 0))))

(a s s e r t (not (and (and (and (not (= x2 1 x2 0)) (= wa i t 0 t rue
)) (= s t a t e 0 1)) (= dura t i on 0 0))))

(a s s e r t (not (and (and (and (not (= (/ (− x1 2 x1 1)
dura t i on 1) −5)) (> dura t i on 1 0)) (= s t a t e 1 2)) (=
wa i t 1 t rue))))

(a s s e r t (not (and (and (and (not (= (/ (− x1 1 x1 0)

94

dura t i on 0) −5)) (> dura t i on 0 0)) (= s t a t e 0 2)) (=
wa i t 0 t rue))))

(a s s e r t (not (and (and (and (not (= (/ (− x2 2 x2 1)
dura t i on 1) (− (/ 75 10) 5))) (> dura t i on 1 0)) (= s t a t e 1
2)) (= wa i t 1 t rue))))

(a s s e r t (not (and (and (and (not (= (/ (− x2 1 x2 0)
dura t i on 0) (− (/ 75 10) 5))) (> dura t i on 0 0)) (= s t a t e 0
2)) (= wa i t 0 t rue))))

(a s s e r t (not (and (and (and (not (= x1 2 x1 1)) (= wa i t 1 t rue
)) (= s t a t e 1 2)) (= dura t i on 1 0))))

(a s s e r t (not (and (and (and (not (= x1 1 x1 0)) (= wa i t 0 t rue
)) (= s t a t e 0 2)) (= dura t i on 0 0))))

(a s s e r t (not (and (and (and (not (= x2 2 x2 1)) (= wa i t 1 t rue
)) (= s t a t e 1 2)) (= dura t i on 1 0))))

(a s s e r t (not (and (and (and (not (= x2 1 x2 0)) (= wa i t 0 t rue
)) (= s t a t e 0 2)) (= dura t i on 0 0))))

(a s s e r t (not (and (not (= x1 2 x1 1)) (= e 1 1 true))))
(a s s e r t (not (and (not (= x1 1 x1 0)) (= e 1 0 true))))
(a s s e r t (not (and (not (= x2 2 x2 1)) (= e 1 1 true))))
(a s s e r t (not (and (not (= x2 1 x2 0)) (= e 1 0 true))))
(a s s e r t (not (and (not (= x1 2 x1 1)) (= e 2 1 true))))
(a s s e r t (not (and (not (= x1 1 x1 0)) (= e 2 0 true))))
(a s s e r t (not (and (not (= x2 2 x2 1)) (= e 2 1 true))))
(a s s e r t (not (and (not (= x2 1 x2 0)) (= e 2 0 true))))
(a s s e r t (not (not (= s t a t e 0 1))))
(a s s e r t (not (not (= x1 0 0))))
(a s s e r t (not (not (= x2 0 8))))
(a s s e r t (not (not (= x2 2 0))))

(check−sa t)
(e x i t)

95

APPENDIX C

2 BALL EXAMPLE

Input, Output and all intermediate translations for Example 2.

cplus2ASPMT Input Program

:− s o r t s
b a l l .

:− o b j e c t s
b1 , b2 : : b a l l .

:− cons tant s
mode : : i n e r t i a l F l u e n t (r e a l [0 . . 1]) ;
he ight (b a l l) : : s impleFluent (r e a l [0 . . 5 0]) ;
v e l o c i t y (b a l l) : : s impleFluent (r e a l [−3 0 . . 3 0]) ;
hitGround (b a l l) : : exogenousAction ;
wait : : a c t i on ;
durat ion : : exogenousAction (r e a l [0 . . 1 0 0]) .

:− v a r i a b l e s
E : : events ;
B : : b a l l ;
B1 : : b a l l ;
V, V1 , V0 ,D,H, H1 , H0 ,T,R.

%System Rules
%Al l a c t i o n s have 0 durat ion
caused durat ion=0 i f hitGround (B) .

d e f a u l t wait .
caused ˜ wait i f hitGround (B) .
exogenous he ight (B) .
exogenous v e l o c i t y (B) .

% Flow Trans la t i on
c o n s t r a i n t he ight (B)=H1 a f t e r v e l o c i t y (B)=V0 & he ight (B) = H0 &
H1=H0+V0∗T+0.5∗−g∗T∗T & mode=1 & durat ion = T & wait .

96

c o n s t r a i n t v e l o c i t y (B)=V1 a f t e r v e l o c i t y (B) = V0 & V1=V0 + −g∗T &
mode=1 & durat ion = T & wait .

% Guard Trans la t i on
nonexecutable hitGround (B) i f −(he ight (B) =0) .

% Hevent R e s t r i c t i o n s
nonexecutable hitGround (B) i f −(mode=1) .

% Invar i an t Trans la t i on
caused f a l s e i f mode=1 & −(he ight (B)>=0) .

% Reset Trans la t i on
c o n s t r a i n t (H1=0 & V1=−0.9∗V0) & he ight (b2)=H1 & v e l o c i t y (b2)=V1

a f t e r he ight (b2)=H0 & v e l o c i t y (b2)=V0 & hitGround (b2) .
c o n s t r a i n t (H1=0 & V1=−0.8∗V0) & he ight (b1)=H1 & v e l o c i t y (b1)=V1

a f t e r he ight (b1)=H0 & v e l o c i t y (b1)=V0 & hitGround (b1) .
c o n s t r a i n t (H1=H0 & V1=V0) & he ight (B)=H1 & v e l o c i t y (B)=V1 a f t e r

he ight (B)=H0 & v e l o c i t y (B)=V0 & −(B=B1) & hitGround (B1) .

% Planning
:− query
l a b e l : : i n i t ;
maxstep : : 7 ;
0 : mode=1;
0 : he ight (b1) =2;
0 : he ight (b2) =3;
0 : v e l o c i t y (b1) =0;
0 : v e l o c i t y (b2) =0.

Intermediate ASPMT translation

:− s o r t s
events , b a l l ; as tep ; s tep .

:− o b j e c t s
0 . . maxstep : : s tep ;
0 . . maxstep−1 : : as tep ;
b1 , b2 : : b a l l .

:− v a r i a b l e s
ST : : s tep ;
AS : : astep .

:− cons tant s

97

s tep : mode : : i n t e g e r [0 . . 5] ;
s t ep : he ight (b a l l) : : r e a l [0 . . 5 0] ;
s t ep : v e l o c i t y (b a l l) : : r e a l [− 3 0 . . 3 0] ;
as tep : hitGround (b a l l) : : boolean ;
astep : wait : : boolean ;
astep : durat ion : : r e a l [0 . . 1 0 0] .

:− v a r i a b l e s
E : : events ;
B : : b a l l ;
B1 : : b a l l .

{AS+1:mode=X} <− AS: mode=X.
{ST: he ight (B)=X} .
{ST: v e l o c i t y (B)=X} .
{AS: durat ion=X} .
{AS: hitGround (B)=X} .

%System Rules
%Al l a c t i o n s have 0 durat ion
AS: durat ion=0 <− AS: hitGround (B) .

{wait (AS)=true } .
AS : wait=f a l s e <− AS: hitGround (B) .

% Flow Trans la t i on
<− not (AS+1: he ight (B)=H1) & AS: v e l o c i t y (B)=V0 & AS: he ight (B) =

H0 & H1=H0+V0∗T+0.5∗−g∗T∗T & AS: mode=1 & AS: durat ion = T & AS:
wait .

<− not (AS+1: v e l o c i t y (B)=V1) & AS: v e l o c i t y (B) = V0 & V1=V0 + −g∗T
& AS: mode=1 & AS: durat ion = T & AS: wait .

% Guard Trans la t i on
<− AS: hitGround (B) & −(AS: he ight (B) =0) .

% Hevent R e s t r i c t i o n s
<− AS: hitGround (B) & −(AS: mode=1) .

% Invar i an t Trans la t i on
<− not (ST : he ight (B)>=0)

% Reset Trans la t i on
<− not (H1=0 & V1=−0.9∗V0) & AS+1: he ight (b2)=H1 & AS+1: v e l o c i t y (

b2)=V1 &
AS: he ight (b2)=H0 & AS: v e l o c i t y (b2)=V0 & AS: hitGround (b2) .

98

<− not (H1=0 & V1=−0.8∗V0) & AS+1: he ight (b1)=H1 & AS+1: v e l o c i t y (
b1)=V1 &

AS: he ight (b1)=H0 & AS: v e l o c i t y (b1)=V0 & AS: hitGround (b1) .

<− not (H1=H0 & V1=V0) & AS+1: he ight (B)=H1 & AS+1: v e l o c i t y (B)=V1
&

AS: he ight (B)=H0 & AS: v e l o c i t y (B)=V0 & −(B=B1) & AS: hitGround (B) .

% Planning
0 : mode=1;
0 : he ight (b1) =2;
0 : he ight (b2) =3;
0 : v e l o c i t y (b1) =0;
0 : v e l o c i t y (b2) =0.

Final SMT Encoding

(set−l o g i c QF NRA ODE)
(dec la re−const t rue a Bool)
(dec la re−const f a l s e a Bool)
(dec la re−const du ra t i on 0 Real)
(dec la re−const du ra t i on 1 Real)
(dec la re−const du ra t i on 2 Real)
(dec la re−const du ra t i on 3 Real)
(dec la re−const h e i g h t b 1 0 Real)
(dec la re−const h e i g h t b 1 1 Real)
(dec la re−const h e i g h t b 1 2 Real)
(dec la re−const h e i g h t b 1 3 Real)
(dec la re−const h e i g h t b 1 4 Real)
(dec la re−const h e i g h t b 2 0 Real)
(dec la re−const h e i g h t b 2 1 Real)
(dec la re−const h e i g h t b 2 2 Real)
(dec la re−const h e i g h t b 2 3 Real)
(dec la re−const h e i g h t b 2 4 Real)
(dec la re−const hevent h i tGround b1 0 Bool)
(dec la re−const hevent h i tGround b1 1 Bool)
(dec la re−const hevent h i tGround b1 2 Bool)
(dec la re−const hevent h i tGround b1 3 Bool)
(dec la re−const hevent h i tGround b2 0 Bool)
(dec la re−const hevent h i tGround b2 1 Bool)
(dec la re−const hevent h i tGround b2 2 Bool)
(dec la re−const hevent h i tGround b2 3 Bool)
(dec la re−const q l a b e l i n i t Bool)
(dec la re−const s 0 0 Bool)
(dec la re−const s 0 1 Bool)

99

(dec la re−const s 0 2 Bool)
(dec la re−const s 0 3 Bool)
(dec la re−const s 0 4 Bool)
(dec la re−const v e l o c i t y b 1 0 Real)
(dec la re−const v e l o c i t y b 1 1 Real)
(dec la re−const v e l o c i t y b 1 2 Real)
(dec la re−const v e l o c i t y b 1 3 Real)
(dec la re−const v e l o c i t y b 1 4 Real)
(dec la re−const v e l o c i t y b 2 0 Real)
(dec la re−const v e l o c i t y b 2 1 Real)
(dec la re−const v e l o c i t y b 2 2 Real)
(dec la re−const v e l o c i t y b 2 3 Real)
(dec la re−const v e l o c i t y b 2 4 Real)
(dec la re−const wa i t 0 Bool)
(dec la re−const wa i t 1 Bool)
(dec la re−const wa i t 2 Bool)
(dec la re−const wa i t 3 Bool)
(a s s e r t t rue a)
(a s s e r t (not f a l s e a))
(a s s e r t (>= dura t i on 0 0))
(a s s e r t (<= dura t i on 0 100))
(a s s e r t (>= dura t i on 1 0))
(a s s e r t (<= dura t i on 1 100))
(a s s e r t (>= dura t i on 2 0))
(a s s e r t (<= dura t i on 2 100))
(a s s e r t (>= dura t i on 3 0))
(a s s e r t (<= dura t i on 3 100))
(a s s e r t (>= h e i g h t b 1 0 0))
(a s s e r t (<= h e i g h t b 1 0 50))
(a s s e r t (>= h e i g h t b 1 1 0))
(a s s e r t (<= h e i g h t b 1 1 50))
(a s s e r t (>= h e i g h t b 1 2 0))
(a s s e r t (<= h e i g h t b 1 2 50))
(a s s e r t (>= h e i g h t b 1 3 0))
(a s s e r t (<= h e i g h t b 1 3 50))
(a s s e r t (>= h e i g h t b 1 4 0))
(a s s e r t (<= h e i g h t b 1 4 50))
(a s s e r t (>= h e i g h t b 2 0 0))
(a s s e r t (<= h e i g h t b 2 0 50))
(a s s e r t (>= h e i g h t b 2 1 0))
(a s s e r t (<= h e i g h t b 2 1 50))
(a s s e r t (>= h e i g h t b 2 2 0))
(a s s e r t (<= h e i g h t b 2 2 50))
(a s s e r t (>= h e i g h t b 2 3 0))
(a s s e r t (<= h e i g h t b 2 3 50))

100

(a s s e r t (>= h e i g h t b 2 4 0))
(a s s e r t (<= h e i g h t b 2 4 50))
(a s s e r t (>= v e l o c i t y b 1 0 −30))
(a s s e r t (<= v e l o c i t y b 1 0 30))
(a s s e r t (>= v e l o c i t y b 1 1 −30))
(a s s e r t (<= v e l o c i t y b 1 1 30))
(a s s e r t (>= v e l o c i t y b 1 2 −30))
(a s s e r t (<= v e l o c i t y b 1 2 30))
(a s s e r t (>= v e l o c i t y b 1 3 −30))
(a s s e r t (<= v e l o c i t y b 1 3 30))
(a s s e r t (>= v e l o c i t y b 1 4 −30))
(a s s e r t (<= v e l o c i t y b 1 4 30))
(a s s e r t (>= v e l o c i t y b 2 0 −30))
(a s s e r t (<= v e l o c i t y b 2 0 30))
(a s s e r t (>= v e l o c i t y b 2 1 −30))
(a s s e r t (<= v e l o c i t y b 2 1 30))
(a s s e r t (>= v e l o c i t y b 2 2 −30))
(a s s e r t (<= v e l o c i t y b 2 2 30))
(a s s e r t (>= v e l o c i t y b 2 3 −30))
(a s s e r t (<= v e l o c i t y b 2 3 30))
(a s s e r t (>= v e l o c i t y b 2 4 −30))
(a s s e r t (<= v e l o c i t y b 2 4 30))
(a s s e r t (or (or (and (= wa i t 3 t rue) (= wa i t 3 t rue)) (and (=

hevent h i tGround b2 3 true) (= wa i t 3 f a l s e))) (and (=
hevent h i tGround b1 3 true) (= wa i t 3 f a l s e))))

(a s s e r t (=> (= wa i t 3 t rue) (= wa i t 3 t rue)))
(a s s e r t (=> (= hevent h i tGround b2 3 true) (= wa i t 3 f a l s e)))
(a s s e r t (=> (= hevent h i tGround b1 3 true) (= wa i t 3 f a l s e)))
(a s s e r t (or (or (and (= wa i t 2 t rue) (= wa i t 2 t rue)) (and (=

hevent h i tGround b2 2 true) (= wa i t 2 f a l s e))) (and (=
hevent h i tGround b1 2 true) (= wa i t 2 f a l s e))))

(a s s e r t (=> (= wa i t 2 t rue) (= wa i t 2 t rue)))
(a s s e r t (=> (= hevent h i tGround b2 2 true) (= wa i t 2 f a l s e)))
(a s s e r t (=> (= hevent h i tGround b1 2 true) (= wa i t 2 f a l s e)))
(a s s e r t (or (or (and (= wa i t 1 t rue) (= wa i t 1 t rue)) (and (=

hevent h i tGround b2 1 true) (= wa i t 1 f a l s e))) (and (=
hevent h i tGround b1 1 true) (= wa i t 1 f a l s e))))

(a s s e r t (=> (= wa i t 1 t rue) (= wa i t 1 t rue)))
(a s s e r t (=> (= hevent h i tGround b2 1 true) (= wa i t 1 f a l s e)))
(a s s e r t (=> (= hevent h i tGround b1 1 true) (= wa i t 1 f a l s e)))
(a s s e r t (or (or (and (= wa i t 0 t rue) (= wa i t 0 t rue)) (and (=

hevent h i tGround b2 0 true) (= wa i t 0 f a l s e))) (and (=
hevent h i tGround b1 0 true) (= wa i t 0 f a l s e))))

(a s s e r t (=> (= wa i t 0 t rue) (= wa i t 0 t rue)))
(a s s e r t (=> (= hevent h i tGround b2 0 true) (= wa i t 0 f a l s e)))

101

(a s s e r t (=> (= hevent h i tGround b1 0 true) (= wa i t 0 f a l s e)))
(a s s e r t (= s 0 4 s 0 3))
(a s s e r t (= s 0 3 s 0 2))
(a s s e r t (= s 0 2 s 0 1))
(a s s e r t (= s 0 1 s 0 0))
(a s s e r t (= q l a b e l i n i t t rue))
(a s s e r t (= q l a b e l i n i t t rue))
(a s s e r t (=> (= hevent h i tGround b2 3 true) (= dura t i on 3 0)))
(a s s e r t (=> (= hevent h i tGround b1 3 true) (= dura t i on 3 0)))
(a s s e r t (=> (= hevent h i tGround b2 2 true) (= dura t i on 2 0)))
(a s s e r t (=> (= hevent h i tGround b1 2 true) (= dura t i on 2 0)))
(a s s e r t (=> (= hevent h i tGround b2 1 true) (= dura t i on 1 0)))
(a s s e r t (=> (= hevent h i tGround b1 1 true) (= dura t i on 1 0)))
(a s s e r t t rue a)
(a s s e r t (=> (= hevent h i tGround b2 0 true) (= dura t i on 0 0)))
(a s s e r t (=> (= hevent h i tGround b1 0 true) (= dura t i on 0 0)))
(a s s e r t (not (and (and (not (= h e i g h t b 2 1 (+ (+ h e i g h t b 2 0 (∗

v e l o c i t y b 2 0 dura t i on 0)) (∗ (∗ (/ (∗ (/ 5 10) −98) 10)
du ra t i on 0) du ra t i on 0)))) (= s 0 0 true)) (= wa i t 0 t rue))
))

(a s s e r t (not (and (and (not (= h e i g h t b 2 2 (+ (+ h e i g h t b 2 1 (∗
v e l o c i t y b 2 1 dura t i on 1)) (∗ (∗ (/ (∗ (/ 5 10) −98) 10)

du ra t i on 1) du ra t i on 1)))) (= s 0 1 true)) (= wa i t 1 t rue))
))

(a s s e r t (not (and (and (not (= h e i g h t b 2 3 (+ (+ h e i g h t b 2 2 (∗
v e l o c i t y b 2 2 dura t i on 2)) (∗ (∗ (/ (∗ (/ 5 10) −98) 10)

du ra t i on 2) du ra t i on 2)))) (= s 0 2 true)) (= wa i t 2 t rue))
))

(a s s e r t (not (and (and (not (= h e i g h t b 2 4 (+ (+ h e i g h t b 2 3 (∗
v e l o c i t y b 2 3 dura t i on 3)) (∗ (∗ (/ (∗ (/ 5 10) −98) 10)

du ra t i on 3) du ra t i on 3)))) (= s 0 3 true)) (= wa i t 3 t rue))
))

(a s s e r t (not (and (and (not (= h e i g h t b 1 1 (+ (+ h e i g h t b 1 0 (∗
v e l o c i t y b 1 0 dura t i on 0)) (∗ (∗ (/ (∗ (/ 5 10) −98) 10)

du ra t i on 0) du ra t i on 0)))) (= s 0 0 true)) (= wa i t 0 t rue))
))

(a s s e r t (not (and (and (not (= h e i g h t b 1 2 (+ (+ h e i g h t b 1 1 (∗
v e l o c i t y b 1 1 dura t i on 1)) (∗ (∗ (/ (∗ (/ 5 10) −98) 10)

du ra t i on 1) du ra t i on 1)))) (= s 0 1 true)) (= wa i t 1 t rue))
))

(a s s e r t (not (and (and (not (= h e i g h t b 1 3 (+ (+ h e i g h t b 1 2 (∗
v e l o c i t y b 1 2 dura t i on 2)) (∗ (∗ (/ (∗ (/ 5 10) −98) 10)

du ra t i on 2) du ra t i on 2)))) (= s 0 2 true)) (= wa i t 2 t rue))
))

(a s s e r t (not (and (and (not (= h e i g h t b 1 4 (+ (+ h e i g h t b 1 3 (∗

102

v e l o c i t y b 1 3 dura t i on 3)) (∗ (∗ (/ (∗ (/ 5 10) −98) 10)
du ra t i on 3) du ra t i on 3)))) (= s 0 3 true)) (= wa i t 3 t rue))
))

(a s s e r t (not (and (and (not (= v e l o c i t y b 2 1 (+ v e l o c i t y b 2 0
(∗ (/ −98 10) du ra t i on 0)))) (= s 0 0 true)) (= wa i t 0 t rue)
)))

(a s s e r t (not (and (and (not (= v e l o c i t y b 2 2 (+ v e l o c i t y b 2 1
(∗ (/ −98 10) du ra t i on 1)))) (= s 0 1 true)) (= wa i t 1 t rue)
)))

(a s s e r t (not (and (and (not (= v e l o c i t y b 2 3 (+ v e l o c i t y b 2 2
(∗ (/ −98 10) du ra t i on 2)))) (= s 0 2 true)) (= wa i t 2 t rue)
)))

(a s s e r t (not (and (and (not (= v e l o c i t y b 2 4 (+ v e l o c i t y b 2 3
(∗ (/ −98 10) du ra t i on 3)))) (= s 0 3 true)) (= wa i t 3 t rue)
)))

(a s s e r t (not (and (and (not (= v e l o c i t y b 1 1 (+ v e l o c i t y b 1 0
(∗ (/ −98 10) du ra t i on 0)))) (= s 0 0 true)) (= wa i t 0 t rue)
)))

(a s s e r t (not (and (and (not (= v e l o c i t y b 1 2 (+ v e l o c i t y b 1 1
(∗ (/ −98 10) du ra t i on 1)))) (= s 0 1 true)) (= wa i t 1 t rue)
)))

(a s s e r t (not (and (and (not (= v e l o c i t y b 1 3 (+ v e l o c i t y b 1 2
(∗ (/ −98 10) du ra t i on 2)))) (= s 0 2 true)) (= wa i t 2 t rue)
)))

(a s s e r t (not (and (and (not (= v e l o c i t y b 1 4 (+ v e l o c i t y b 1 3
(∗ (/ −98 10) du ra t i on 3)))) (= s 0 3 true)) (= wa i t 3 t rue)
)))

(a s s e r t (not (and (= hevent h i tGround b2 0 true) (not (=
h e i g h t b 2 0 0)))))

(a s s e r t (not (and (= hevent h i tGround b2 1 true) (not (=
h e i g h t b 2 1 0)))))

(a s s e r t (not (and (= hevent h i tGround b2 2 true) (not (=
h e i g h t b 2 2 0)))))

(a s s e r t (not (and (= hevent h i tGround b2 3 true) (not (=
h e i g h t b 2 3 0)))))

(a s s e r t (not (and (= hevent h i tGround b1 0 true) (not (=
h e i g h t b 1 0 0)))))

(a s s e r t (not (and (= hevent h i tGround b1 1 true) (not (=
h e i g h t b 1 1 0)))))

(a s s e r t (not (and (= hevent h i tGround b1 2 true) (not (=
h e i g h t b 1 2 0)))))

(a s s e r t (not (and (= hevent h i tGround b1 3 true) (not (=
h e i g h t b 1 3 0)))))

(a s s e r t (not (and (= hevent h i tGround b2 0 true) (= s 0 0 f a l s e
))))

103

(a s s e r t (not (and (= hevent h i tGround b2 1 true) (= s 0 1 f a l s e
))))

(a s s e r t (not (and (= hevent h i tGround b2 2 true) (= s 0 2 f a l s e
))))

(a s s e r t (not (and (= hevent h i tGround b2 3 true) (= s 0 3 f a l s e
))))

(a s s e r t (not (and (= hevent h i tGround b1 0 true) (= s 0 0 f a l s e
))))

(a s s e r t (not (and (= hevent h i tGround b1 1 true) (= s 0 1 f a l s e
))))

(a s s e r t (not (and (= hevent h i tGround b1 2 true) (= s 0 2 f a l s e
))))

(a s s e r t (not (and (= hevent h i tGround b1 3 true) (= s 0 3 f a l s e
))))

(a s s e r t (not (and (= s 0 0 true) (not (>= h e i g h t b 2 0 0)))))
(a s s e r t (not (and (= s 0 0 true) (not (>= h e i g h t b 1 0 0)))))
(a s s e r t (not (and (= s 0 1 true) (not (>= h e i g h t b 2 1 0)))))
(a s s e r t (not (and (= s 0 2 true) (not (>= h e i g h t b 2 2 0)))))
(a s s e r t (not (and (= s 0 3 true) (not (>= h e i g h t b 2 3 0)))))
(a s s e r t (not (and (= s 0 4 true) (not (>= h e i g h t b 2 4 0)))))
(a s s e r t (not (and (= s 0 1 true) (not (>= h e i g h t b 1 1 0)))))
(a s s e r t (not (and (= s 0 2 true) (not (>= h e i g h t b 1 2 0)))))
(a s s e r t (not (and (= s 0 3 true) (not (>= h e i g h t b 1 3 0)))))
(a s s e r t (not (and (= s 0 4 true) (not (>= h e i g h t b 1 4 0)))))
(a s s e r t (not (and (not (= h e i g h t b 1 1 0)) (=

hevent h i tGround b1 0 true))))
(a s s e r t (not (and (not (= h e i g h t b 1 2 0)) (=

hevent h i tGround b1 1 true))))
(a s s e r t (not (and (not (= h e i g h t b 1 3 0)) (=

hevent h i tGround b1 2 true))))
(a s s e r t (not (and (not (= h e i g h t b 1 4 0)) (=

hevent h i tGround b1 3 true))))
(a s s e r t (not (and (not (= v e l o c i t y b 1 1 (∗ (/ −8 10)

v e l o c i t y b 1 0))) (= hevent h i tGround b1 0 true))))
(a s s e r t (not (and (not (= v e l o c i t y b 1 2 (∗ (/ −8 10)

v e l o c i t y b 1 1))) (= hevent h i tGround b1 1 true))))
(a s s e r t (not (and (not (= v e l o c i t y b 1 3 (∗ (/ −8 10)

v e l o c i t y b 1 2))) (= hevent h i tGround b1 2 true))))
(a s s e r t (not (and (not (= v e l o c i t y b 1 4 (∗ (/ −8 10)

v e l o c i t y b 1 3))) (= hevent h i tGround b1 3 true))))
(a s s e r t (not (and (not (= h e i g h t b 2 1 0)) (=

hevent h i tGround b2 0 true))))
(a s s e r t (not (and (not (= h e i g h t b 2 2 0)) (=

hevent h i tGround b2 1 true))))
(a s s e r t (not (and (not (= h e i g h t b 2 3 0)) (=

104

hevent h i tGround b2 2 true))))
(a s s e r t (not (and (not (= h e i g h t b 2 4 0)) (=

hevent h i tGround b2 3 true))))
(a s s e r t (not (and (not (= v e l o c i t y b 2 1 (∗ (/ −9 10)

v e l o c i t y b 2 0))) (= hevent h i tGround b2 0 true))))
(a s s e r t (not (and (not (= v e l o c i t y b 2 2 (∗ (/ −9 10)

v e l o c i t y b 2 1))) (= hevent h i tGround b2 1 true))))
(a s s e r t (not (and (not (= v e l o c i t y b 2 3 (∗ (/ −9 10)

v e l o c i t y b 2 2))) (= hevent h i tGround b2 2 true))))
(a s s e r t (not (and (not (= v e l o c i t y b 2 4 (∗ (/ −9 10)

v e l o c i t y b 2 3))) (= hevent h i tGround b2 3 true))))
(a s s e r t (not (and (not (= h e i g h t b 2 1 h e i g h t b 2 0)) (=

hevent h i tGround b1 0 true))))
(a s s e r t (not (and (not (= h e i g h t b 2 2 h e i g h t b 2 1)) (=

hevent h i tGround b1 1 true))))
(a s s e r t (not (and (not (= h e i g h t b 2 3 h e i g h t b 2 2)) (=

hevent h i tGround b1 2 true))))
(a s s e r t (not (and (not (= h e i g h t b 2 4 h e i g h t b 2 3)) (=

hevent h i tGround b1 3 true))))
(a s s e r t (not (and (not (= h e i g h t b 1 1 h e i g h t b 1 0)) (=

hevent h i tGround b2 0 true))))
(a s s e r t (not (and (not (= h e i g h t b 1 2 h e i g h t b 1 1)) (=

hevent h i tGround b2 1 true))))
(a s s e r t (not (and (not (= h e i g h t b 1 3 h e i g h t b 1 2)) (=

hevent h i tGround b2 2 true))))
(a s s e r t (not (and (not (= h e i g h t b 1 4 h e i g h t b 1 3)) (=

hevent h i tGround b2 3 true))))
(a s s e r t (not (and (not (= v e l o c i t y b 2 1 v e l o c i t y b 2 0)) (=

hevent h i tGround b1 0 true))))
(a s s e r t (not (and (not (= v e l o c i t y b 2 2 v e l o c i t y b 2 1)) (=

hevent h i tGround b1 1 true))))
(a s s e r t (not (and (not (= v e l o c i t y b 2 3 v e l o c i t y b 2 2)) (=

hevent h i tGround b1 2 true))))
(a s s e r t (not (and (not (= v e l o c i t y b 2 4 v e l o c i t y b 2 3)) (=

hevent h i tGround b1 3 true))))
(a s s e r t (not (and (not (= v e l o c i t y b 1 1 v e l o c i t y b 1 0)) (=

hevent h i tGround b2 0 true))))
(a s s e r t (not (and (not (= v e l o c i t y b 1 2 v e l o c i t y b 1 1)) (=

hevent h i tGround b2 1 true))))
(a s s e r t (not (and (not (= v e l o c i t y b 1 3 v e l o c i t y b 1 2)) (=

hevent h i tGround b2 2 true))))
(a s s e r t (not (and (not (= v e l o c i t y b 1 4 v e l o c i t y b 1 3)) (=

hevent h i tGround b2 3 true))))
(a s s e r t (not (not (= s 0 0 true))))
(a s s e r t (not (not (= h e i g h t b 1 0 2))))

105

Figure C.1: Output of Example 2

(a s s e r t (not (not (= h e i g h t b 2 0 3))))
(a s s e r t (not (not (= v e l o c i t y b 1 0 0))))
(a s s e r t (not (not (= v e l o c i t y b 2 0 0))))
(a s s e r t (not (not (= hevent h i tGround b1 1 true))))
(a s s e r t (not (not (= hevent h i tGround b2 3 true))))
(a s s e r t (not t rue))

(check−sa t)
(e x i t)

Output of Example 2 can be seen in Figure C.1.

106

APPENDIX D

CAR EXAMPLE

As we have already covered the input and output in Chapter 6, we will show only the

intermediate ASPMT and SMT translations for Example 3.

Intermediate ASPMT translation

:− s o r t s
astep ; s tep .

:− o b j e c t s
0 . . maxstep : : s tep ;
0 . . maxstep−1 : : as tep .

:− cons tant s
astep : wait : : boolean ;
0 : x : : r e a l [0 . . 3 0] ;
as tep : x t : : r e a l [0 . . 3 0] ;
0 : y : : r e a l [0 . . 3 0] ;
as tep : y t : : r e a l [0 . . 3 0] ;
0 : theta : : r e a l [0 . . 3 0] ;
as tep : t h e t a t : : r e a l [0 . . 3 0] ;
as tep : durat ion : : a c t i on (r e a l [0 . . 3 0]) ;
as tep : s t r a i gh t en , turnLeft , turnRight : : a c t i on ;
s tep : mode : : s impleFluent (r e a l [0 . . 1 0 0]) .

:− v a r i a b l e s
E : : events .

%Extra i m p l i c i t r u l e s
{AS: x t=X} .
{AS: y t=X} .
{AS: t h e t a t=X} .
{AS: s t r a i g h t e n=X} .
{AS: turnLe f t=X} .
{AS: turnRight=X} .
{AS: durat ion=X} .
AS : durat ion = 0 <− AS: s t r a i g h t e n .

107

AS: durat ion = 0 <− AS: turnLe f t .
AS : durat ion = 0 <− AS: turnRight .

{AS+1: wait}<−AS: wait .
{AS: wait=true } .
{AS: wait=f a l s e } <− AS: s t r a i g h t e n .
{AS: wait=f a l s e } <− AS: turnLe f t .
{AS: wait=f a l s e } <− AS: turnRight .

% Rates
d/dt [x] (1)=cos (theta) .
d/dt [y] (1)=s i n (theta) .
d/dt [theta] (1) =0.
d/dt [x] (2)=cos (theta) .
d/dt [y] (2)=s i n (theta) .
d/dt [theta] (2)=tan (3 . 14/18) .
d/dt [x] (3)=cos (theta) .
d/dt [y] (3)=s i n (theta) .
d/dt [theta] (3)=tan (−3.14/18) .

%Flow
0 : [x t , y t , t h e t a t] =D<− 0 : x = D1 & 0 : y=X0 & 0 : theta=X1 & D =

i n t (0 ,T , [D1 , X0 , X1] , d/dt (1)) & 0 : mode=1 & 0 : durat ion = T & 0 :
wait .

AS : [x t , y t , t h e t a t] =D<− AS−1: x t = D1 & AS−1: y t=X0 & AS−1:
t h e t a t=X1 & D = i n t (0 ,T , [D1 , X0 , X1] , d/dt (1)) & AS: mode=1 & AS:
durat ion = T & AS: wait .

0 : [x t , y t , t h e t a t] =D<− 0 : x = D1 & 0 : y=X0 & 0 : theta=X1 & D =
i n t (0 ,T , [D1 , X0 , X1] , d/dt (2)) & 0 : mode=2 & 0 : durat ion = T & 0 :
wait .

AS : [x t , y t , t h e t a t] =D<− AS−1: x t = D1 & AS−1: y t=X0 & AS−1:
t h e t a t=X1 & D = i n t (0 ,T , [D1 , X0 , X1] , d/dt (1)) & AS: mode=2 & AS:
durat ion = T & AS: wait .

0 : [x t , y t , t h e t a t] =D<− 0 : x = D1 & 0 : y=X0 & 0 : theta=X1 & D =
i n t (0 ,T , [D1 , X0 , X1] , d/dt (2)) & 0 : mode=3 & 0 : durat ion = T & 0 :
wait .

AS : [x t , y t , t h e t a t] =D<− AS−1: x t = D1 & AS−1: y t=X0 & AS−1:
t h e t a t=X1 & D = i n t (0 ,T , [D1 , X0 , X1] , d/dt (1)) & AS: mode=3 & AS:
durat ion = T & AS: wait .

%Invar i an t
<− not (AS: x t=X & AS: y t=Y & ((X−6)∗(X−6) & (Y) ∗(Y)>9)) .
a lways t (AS: x t=X & AS: y t=Y & ((X−6)∗(X−6) & (Y) ∗(Y)>9)) & AS:

mode=1 & AS: durat ion=D.

108

a lways t (AS: x t=X & AS: y t=Y & ((X−6)∗(X−6) & (Y) ∗(Y)>9)) & AS:
mode=2 & AS: durat ion=D.

a lways t (AS: x t=X & AS: y t=Y & ((X−6)∗(X−6) & (Y) ∗(Y)>9)) & AS:
mode=3 & AS: durat ion=D.

<− not (AS: x t=X & AS: y t=Y & ((X−5)∗(X−5) & (Y−7)∗(Y−7)>4)) .
a lways t (AS: x t=X & AS: y t=Y & ((X−5)∗(X−5) & (Y−7)∗(Y−7)>4)) &

AS: mode=1 & AS: durat ion=D.
a lways t (AS: x t=X & AS: y t=Y & ((X−5)∗(X−5) & (Y−7)∗(Y−7)>4)) &

AS: mode=2 & AS: durat ion=D.
a lways t (AS: x t=X & AS: y t=Y & ((X−5)∗(X−5) & (Y−7)∗(Y−7)>4)) &

AS: mode=3 & AS: durat ion=D.

<− not (AS: x t=X & AS: y t=Y & ((X−12) ∗(X−12) & (Y−9)∗(Y−9)>4)) .
a lways t (AS: x t=X & AS: y t=Y & ((X−12) ∗(X−12) & (Y−9)∗(Y−9)>4))

& AS: mode=1 & AS: durat ion=D.
a lways t (AS: x t=X & AS: y t=Y & ((X−12) ∗(X−12) & (Y−9)∗(Y−9)>4))

& AS: mode=2 & AS: durat ion=D.
a lways t (AS: x t=X & AS: y t=Y & ((X−12) ∗(X−12) & (Y−9)∗(Y−9)>9))

& AS: mode=3 & AS: durat ion=D.

AS+1:mode=1<−AS: s t r a i g h t e n .
AS+1:mode=2<−AS: turnLe f t .
AS+1:mode=3<−AS: turnRight .

%State R e s t r i c t i o n s
<− AS: s t r a i g h t e n & AS: mode=1.
<− AS: turnLe f t & AS: mode=2.
<− AS: turnRight & AS: mode=3.

%Reset
<− (RP=D & X2=X0 & D1=X2) & 0 : x t = RP & 0 : y t=X2 & 0 : t h e t a t=D1

& 0 : x = D & 0 : y=X0 & 0 : theta=X1 & 0 : turnLe f t .
<− (RP=D & X2=X0 & D1=X2) & AS: x t = RP & AS: y t=X2 & AS: t h e t a t=

D1 & AS−1:x = D & AS−1:y=X0 & AS−1: theta=X1 & AS: turnLe f t .
<− (RP=D & X2=X0 & D1=X2) & 0 : x t = RP & 0 : y t=X2 & 0 : t h e t a t=D1

& 0 : x = D & 0 : y=X0 & 0 : theta=X1 & 0 : turnRight .
<− (RP=D & X2=X0 & D1=X2) & AS: x t = RP & AS: y t=X2 & AS: t h e t a t=

D1 & AS−1:x = D & AS−1:y=X0 & AS−1: theta=X1 & AS: turnRight .
<− (RP=D & X2=X0 & D1=X2) & 0 : x t = RP & 0 : y t=X2 & 0 : t h e t a t=D1

& 0 : x = D & 0 : y=X0 & 0 : theta=X1 & 0 : s t r a i g h t e n .
<− (RP=D & X2=X0 & D1=X2) & AS: x t = RP & AS: y t=X2 & AS: t h e t a t=

D1 & AS−1:x = D & AS−1:y=X0 & AS−1: theta=X1 & AS: s t r a i g h t e n .

0 : x=0;

109

0 : y=0;
0 : theta =0.698132;
0 : mode=1;
3 : x=13;
3 : y=0.

Final SMT Encoding

(set−l o g i c QF NRA ODE)
(dec la re−const t rue a Bool)
(dec la re−const f a l s e a Bool)
(dec la re−const theta Real)
(dec la re−const the ta 0 Real)
(dec la re−const t h e t a 0 t Real)
(dec la re−const t h e t a 1 t Real)
(dec la re−const t h e t a 2 t Real)
(dec la re−const x Real)
(dec la re−const x 0 Real)
(dec la re−const x 0 t Real)
(dec la re−const x 1 t Real)
(dec la re−const x 2 t Real)
(dec la re−const durat i on 0 Real)
(dec la re−const durat i on 1 Real)
(dec la re−const durat i on 2 Real)
(dec la re−const t u r n L e f t 0 Bool)
(dec la re−const t u r n L e f t 1 Bool)
(dec la re−const t u r n L e f t 2 Bool)
(dec la re−const turnRight 0 Bool)
(dec la re−const turnRight 1 Bool)
(dec la re−const turnRight 2 Bool)
(dec la re−const s t r a i g h t e n 0 Bool)
(dec la re−const s t r a i g h t e n 1 Bool)
(dec la re−const s t r a i g h t e n 2 Bool)
(dec la re−const q l a b e l i n i t Bool)
(dec la re−const mode 0 Real)
(dec la re−const mode 1 Real)
(dec la re−const mode 2 Real)
(dec la re−const mode 3 Real)
(dec la re−const y Real)
(dec la re−const y 0 Real)
(dec la re−const y 0 t Real)
(dec la re−const y 1 t Real)
(dec la re−const y 2 t Real)
(dec la re−const wa i t 0 Bool)
(dec la re−const wa i t 1 Bool)

110

(dec la re−const wa i t 2 Bool)

; Flow d e c l a r a t i o n (must i m p l i c i t l y convert to s i n g l e l i n e
d e c l a r a t i o n s)

; movingStraight s t a t e
; d/dt [x] (movingStraight)=cos (theta) .
; d/dt [y] (movingStraight)=s i n (theta) .
; d/dt [theta] (movingStraight) =0.
(de f ine−ode f l ow 1 ((= d/dt [x] (cos theta))(= d/dt [y] (s i n theta)

)(= d/dt [theta] 0)))

; tu rn ingLe f t s t a t e
; d/dt [x] (tu rn ingLe f t)=cos (theta) .
; d/dt [y] (tu rn ingLe f t)=s i n (theta) .
; d/dt [theta] (tu rn ingLe f t)=tan (p i /8) .
(de f ine−ode f l ow 2 ((= d/dt [x] (cos theta))(= d/dt [y] (s i n theta)

)(= d/dt [theta] (tan 0 .226893))))

; turn ingRight s t a t e
; d/dt [x] (turn ingRight)=cos (theta) .
; d/dt [y] (turn ingRight)=s i n (theta) .
; d/dt [theta] (turn ingRight)=tan (p i /8) .
(de f ine−ode f l ow 3 ((= d/dt [x] (cos theta))(= d/dt [y] (s i n theta)

)(= d/dt [theta] (tan −0.226893))))

(a s s e r t t rue a)
(a s s e r t (not f a l s e a))
(a s s e r t (>= theta 0 −50))
(a s s e r t (<= theta 0 50))
(a s s e r t (>= t h e t a 0 t −50))
(a s s e r t (<= t h e t a 0 t 50))
(a s s e r t (>= t h e t a 1 t −50))
(a s s e r t (<= t h e t a 1 t 50))
(a s s e r t (>= t h e t a 2 t −50))
(a s s e r t (<= t h e t a 2 t 50))
(a s s e r t (>= x 0 −40))
(a s s e r t (<= x 0 40))
(a s s e r t (>= x 0 t −40))
(a s s e r t (<= x 0 t 40))
(a s s e r t (>= x 1 t −40))
(a s s e r t (<= x 1 t 40))
(a s s e r t (>= x 2 t −40))
(a s s e r t (<= x 2 t 40))
(a s s e r t (>= durat ion 0 0))
(a s s e r t (<= durat ion 0 40))

111

(a s s e r t (>= durat ion 1 0))
(a s s e r t (<= durat ion 1 40))
(a s s e r t (>= durat ion 2 0))
(a s s e r t (<= durat ion 2 40))
(a s s e r t (>= y 0 −50))
(a s s e r t (<= y 0 50))
(a s s e r t (>= y 0 t −50))
(a s s e r t (<= y 0 t 50))
(a s s e r t (>= y 1 t −50))
(a s s e r t (<= y 1 t 50))
(a s s e r t (>= y 2 t −50))
(a s s e r t (<= y 2 t 50))

; Completion f o r wait
(a s s e r t (or (or (or (and (= wa i t 2 t rue) (= wa i t 2 t rue)) (and

(= s t r a i g h t e n 2 true) (= wa i t 2 f a l s e))) (and (= t u r n L e f t 2
t rue) (= wa i t 1 f a l s e))) (and (= turnRight 2 t rue) (=

wa i t 2 f a l s e))))
(a s s e r t (or (or (or (and (= wa i t 1 t rue) (= wa i t 1 t rue)) (and

(= s t r a i g h t e n 1 true) (= wa i t 1 f a l s e))) (and (= t u r n L e f t 1
t rue) (= wa i t 1 f a l s e))) (and (= turnRight 1 t rue) (=

wa i t 1 f a l s e))))
(a s s e r t (or (or (or (and (= wa i t 0 t rue) (= wa i t 0 t rue)) (and

(= s t r a i g h t e n 0 true) (= wa i t 0 f a l s e))) (and (= t u r n L e f t 0
t rue) (= wa i t 0 f a l s e))) (and (= turnRight 0 t rue) (=

wa i t 0 f a l s e))))

; d e f a u l t wait=true
(a s s e r t (=> (= wa i t 2 t rue) (= wa i t 2 t rue)))
(a s s e r t (=> (= wa i t 1 t rue) (= wa i t 1 t rue)))
(a s s e r t (=> (= wa i t 0 t rue) (= wa i t 0 t rue)))

; hevent (E) causes wait=f a l s e
(a s s e r t (=> (= s t r a i g h t e n 2 true) (= wa i t 2 f a l s e)))
(a s s e r t (=> (= t u r n L e f t 2 t rue) (= wa i t 2 f a l s e)))
(a s s e r t (=> (= turnRight 2 t rue) (= wa i t 2 f a l s e)))
(a s s e r t (=> (= s t r a i g h t e n 1 true) (= wa i t 1 f a l s e)))
(a s s e r t (=> (= t u r n L e f t 1 t rue) (= wa i t 1 f a l s e)))
(a s s e r t (=> (= turnRight 1 t rue) (= wa i t 1 f a l s e)))
(a s s e r t (=> (= s t r a i g h t e n 0 true) (= wa i t 0 f a l s e)))
(a s s e r t (=> (= t u r n L e f t 0 t rue) (= wa i t 0 f a l s e)))
(a s s e r t (=> (= turnRight 0 t rue) (= wa i t 0 f a l s e)))

; Completion f o r mode
(a s s e r t (or (or (or (= mode 3 mode 2) (and (= s t r a i g h t e n 2

112

t rue) (= mode 3 1))) (and (= t u r n L e f t 2 t rue) (= mode 3 2)))
(and (= turnRight 2 t rue) (= mode 3 3))))

(a s s e r t (or (or (or (= mode 2 mode 1) (and (= s t r a i g h t e n 1
true) (= mode 2 1))) (and (= t u r n L e f t 1 t rue) (= mode 2 2)))
(and (= turnRight 1 t rue) (= mode 2 3))))

(a s s e r t (or (or (or (= mode 1 mode 0) (and (= s t r a i g h t e n 0
true) (= mode 1 1))) (and (= t u r n L e f t 0 t rue) (= mode 1 2)))
(and (= turnRight 0 t rue) (= mode 1 3))))

; hevent (s t r a i g h t e n) causes mode=1.
; hevent (turnLe f t) causes mode=2.
; hevent (turnRight) causes mode=3.
(a s s e r t (=> (= s t r a i g h t e n 2 true) (= mode 3 1)))
(a s s e r t (=> (= t u r n L e f t 2 t rue) (= mode 3 2)))
(a s s e r t (=> (= turnRight 2 t rue) (= mode 3 3)))
(a s s e r t (=> (= s t r a i g h t e n 1 true) (= mode 2 1)))
(a s s e r t (=> (= t u r n L e f t 1 t rue) (= mode 2 2)))
(a s s e r t (=> (= turnRight 1 t rue) (= mode 2 3)))
(a s s e r t (=> (= s t r a i g h t e n 0 true) (= mode 1 1)))
(a s s e r t (=> (= t u r n L e f t 0 t rue) (= mode 1 2)))
(a s s e r t (=> (= turnRight 0 t rue) (= mode 1 3)))

; l a b e l : i n i t
(a s s e r t (= q l a b e l i n i t t rue))
(a s s e r t (= q l a b e l i n i t t rue))

; hevent (E) causes durat ion=0
(a s s e r t (=> (= s t r a i g h t e n 2 true) (= durat ion 2 0)))
(a s s e r t (=> (= t u r n L e f t 2 t rue) (= durat ion 2 0)))
(a s s e r t (=> (= turnRight 2 t rue) (= durat ion 2 0)))
(a s s e r t (=> (= s t r a i g h t e n 1 true) (= durat ion 1 0)))
(a s s e r t (=> (= t u r n L e f t 1 t rue) (= durat ion 1 0)))
(a s s e r t (=> (= turnRight 1 t rue) (= durat ion 1 0)))
(a s s e r t (=> (= s t r a i g h t e n 0 true) (= durat ion 0 0)))
(a s s e r t (=> (= t u r n L e f t 0 t rue) (= durat ion 0 0)))
(a s s e r t (=> (= turnRight 0 t rue) (= durat ion 0 0)))

(a s s e r t t rue a)

; Flow (tu rn ingLe f t) .
(a s s e r t (=> (and (= mode 0 2) (= wa i t 0 t rue)) (= [x 0 t y 0 t

t h e t a 0 t] (i n t e g r a l 0 . durat i on 0 [x 0 y 0 the ta 0] f l ow 2)))
)

(a s s e r t (=> (and (= mode 1 2) (= wa i t 1 t rue)) (= [x 1 t y 1 t
t h e t a 1 t] (i n t e g r a l 0 . durat i on 1 [x 0 t y 0 t t h e t a 0 t]

113

f l ow 2))))
(a s s e r t (=> (and (= mode 2 2) (= wa i t 2 t rue)) (= [x 2 t y 2 t

t h e t a 2 t] (i n t e g r a l 0 . durat i on 2 [x 1 t y 1 t t h e t a 1 t]
f l ow 2))))

; Flow (movingStraight) .
(a s s e r t (=> (and (= mode 0 1) (= wa i t 0 t rue)) (= [x 0 t y 0 t

t h e t a 0 t] (i n t e g r a l 0 . durat i on 0 [x 0 y 0 the ta 0] f l ow 1)))
)

(a s s e r t (=> (and (= mode 1 1) (= wa i t 1 t rue)) (= [x 1 t y 1 t
t h e t a 1 t] (i n t e g r a l 0 . durat i on 1 [x 0 t y 0 t t h e t a 0 t]
f l ow 1))))

(a s s e r t (=> (and (= mode 2 1) (= wa i t 2 t rue)) (= [x 2 t y 2 t
t h e t a 2 t] (i n t e g r a l 0 . durat i on 2 [x 1 t y 1 t t h e t a 1 t]
f l ow 1))))

; Flow (turn ingRight) .
(a s s e r t (=> (and (= mode 0 3) (= wa i t 0 t rue)) (= [x 0 t y 0 t

t h e t a 0 t] (i n t e g r a l 0 . durat i on 0 [x 0 y 0 the ta 0] f l ow 3)))
)

(a s s e r t (=> (and (= mode 1 3) (= wa i t 1 t rue)) (= [x 1 t y 1 t
t h e t a 1 t] (i n t e g r a l 0 . durat i on 1 [x 0 t y 0 t t h e t a 0 t]
f l ow 3))))

(a s s e r t (=> (and (= mode 2 3) (= wa i t 2 t rue)) (= [x 2 t y 2 t
t h e t a 2 t] (i n t e g r a l 0 . durat i on 2 [x 1 t y 1 t t h e t a 1 t]
f l ow 3))))

(a s s e r t (> (+ (∗ (− x 0 9)(− x 0 9)) (∗ y 0 y 0)) 9))
(a s s e r t (> (+ (∗ (− x 0 t 9)(− x 0 t 9)) (∗ y 0 t y 0 t)) 9))
(a s s e r t (> (+ (∗ (− x 1 t 9)(− x 1 t 9)) (∗ y 1 t y 1 t)) 9))
(a s s e r t (> (+ (∗ (− x 2 t 9)(− x 2 t 9)) (∗ y 2 t y 2 t)) 9))

(a s s e r t (f o r a l l t 1 [0 durat ion 0] (> (+ (∗ (− x 0 t 9)(− x 0 t
9)) (∗ y 0 t y 0 t)) 9)))

(a s s e r t (f o r a l l t 1 [0 durat ion 1] (> (+ (∗ (− x 1 t 9)(− x 1 t
9)) (∗ y 1 t y 1 t)) 9)))

(a s s e r t (f o r a l l t 1 [0 durat ion 2] (> (+ (∗ (− x 2 t 9)(− x 2 t
9)) (∗ y 2 t y 2 t)) 9)))

(a s s e r t (f o r a l l t 2 [0 durat ion 0] (> (+ (∗ (− x 0 t 9)(− x 0 t
9)) (∗ y 0 t y 0 t)) 9)))

(a s s e r t (f o r a l l t 2 [0 durat ion 1] (> (+ (∗ (− x 1 t 9)(− x 1 t
9)) (∗ y 1 t y 1 t)) 9)))

(a s s e r t (f o r a l l t 2 [0 durat ion 2] (> (+ (∗ (− x 2 t 9)(− x 2 t
9)) (∗ y 2 t y 2 t)) 9)))

114

(a s s e r t (f o r a l l t 3 [0 durat ion 0] (> (+ (∗ (− x 0 t 9)(− x 0 t
9)) (∗ y 0 t y 0 t)) 9)))

(a s s e r t (f o r a l l t 3 [0 durat ion 1] (> (+ (∗ (− x 1 t 9)(− x 1 t
9)) (∗ y 1 t y 1 t)) 9)))

(a s s e r t (f o r a l l t 3 [0 durat ion 2] (> (+ (∗ (− x 2 t 9)(− x 2 t
9)) (∗ y 2 t y 2 t)) 9)))

(a s s e r t (> (+ (∗ (− x 0 5)(− x 0 5)) (∗ (− y 0 7) (− y 0 7))) 4))
(a s s e r t (> (+ (∗ (− x 0 t 5)(− x 0 t 5)) (∗ (− y 0 t 7) (− y 0 t

7))) 4))
(a s s e r t (> (+ (∗ (− x 1 t 5)(− x 1 t 5)) (∗ (− y 1 t 7) (− y 1 t

7))) 4))
(a s s e r t (> (+ (∗ (− x 2 t 5)(− x 2 t 5)) (∗ (− y 2 t 7) (− y 2 t

7))) 4))

(a s s e r t (f o r a l l t 1 [0 durat ion 0] (> (+ (∗ (− x 0 t 5)(− x 0 t
5)) (∗ (− y 0 t 7) (− y 0 t 7))) 4)))

(a s s e r t (f o r a l l t 1 [0 durat ion 1] (> (+ (∗ (− x 1 t 5)(− x 1 t
5)) (∗ (− y 1 t 7) (− y 1 t 7))) 4)))

(a s s e r t (f o r a l l t 1 [0 durat ion 2] (> (+ (∗ (− x 2 t 5)(− x 2 t
5)) (∗ (− y 2 t 7) (− y 2 t 7))) 4)))

(a s s e r t (f o r a l l t 2 [0 durat ion 0] (> (+ (∗ (− x 0 t 5)(− x 0 t
5)) (∗ (− y 0 t 7) (− y 0 t 7))) 4)))

(a s s e r t (f o r a l l t 2 [0 durat ion 1] (> (+ (∗ (− x 1 t 5)(− x 1 t
5)) (∗ (− y 1 t 7) (− y 1 t 7))) 4)))

(a s s e r t (f o r a l l t 2 [0 durat ion 2] (> (+ (∗ (− x 2 t 5)(− x 2 t
5)) (∗ (− y 2 t 7) (− y 2 t 7))) 4)))

(a s s e r t (f o r a l l t 3 [0 durat ion 0] (> (+ (∗ (− x 0 t 5)(− x 0 t
5)) (∗ (− y 0 t 7) (− y 0 t 7))) 4)))

(a s s e r t (f o r a l l t 3 [0 durat ion 1] (> (+ (∗ (− x 1 t 5)(− x 1 t
5)) (∗ (− y 1 t 7) (− y 1 t 7))) 4)))

(a s s e r t (f o r a l l t 3 [0 durat ion 2] (> (+ (∗ (− x 2 t 5)(− x 2 t
5)) (∗ (− y 2 t 7) (− y 2 t 7))) 4)))

(a s s e r t (> (+ (∗ (− x 0 12)(− x 0 12)) (∗ (− y 0 9) (− y 0 9))) 4)
)

(a s s e r t (> (+ (∗ (− x 0 t 12)(− x 0 t 12)) (∗ (− y 0 t 9) (− y 0 t
9))) 4))

(a s s e r t (> (+ (∗ (− x 1 t 12)(− x 1 t 12)) (∗ (− y 1 t 9) (− y 1 t
9))) 4))

(a s s e r t (> (+ (∗ (− x 2 t 12)(− x 2 t 12)) (∗ (− y 2 t 9) (− y 2 t
9))) 4))

115

(a s s e r t (f o r a l l t 1 [0 durat ion 0] (> (+ (∗ (− x 0 t 12)(− x 0 t
12)) (∗ (− y 0 t 9) (− y 0 t 9))) 4)))

(a s s e r t (f o r a l l t 1 [0 durat ion 1] (> (+ (∗ (− x 1 t 12)(− x 1 t
12)) (∗ (− y 1 t 9) (− y 1 t 9))) 4)))

(a s s e r t (f o r a l l t 1 [0 durat ion 2] (> (+ (∗ (− x 2 t 12)(− x 2 t
12)) (∗ (− y 2 t 9) (− y 2 t 9))) 4)))

(a s s e r t (f o r a l l t 2 [0 durat ion 0] (> (+ (∗ (− x 0 t 12)(− x 0 t
12)) (∗ (− y 0 t 9) (− y 0 t 9))) 4)))

(a s s e r t (f o r a l l t 2 [0 durat ion 1] (> (+ (∗ (− x 1 t 12)(− x 1 t
12)) (∗ (− y 1 t 9) (− y 1 t 9))) 4)))

(a s s e r t (f o r a l l t 2 [0 durat ion 2] (> (+ (∗ (− x 2 t 12)(− x 2 t
12)) (∗ (− y 2 t 9) (− y 2 t 9))) 4)))

(a s s e r t (f o r a l l t 3 [0 durat ion 0] (> (+ (∗ (− x 0 t 12)(− x 0 t
12)) (∗ (− y 0 t 9) (− y 0 t 9))) 4)))

(a s s e r t (f o r a l l t 3 [0 durat ion 1] (> (+ (∗ (− x 1 t 12)(− x 1 t
12)) (∗ (− y 1 t 9) (− y 1 t 9))) 4)))

(a s s e r t (f o r a l l t 3 [0 durat ion 2] (> (+ (∗ (− x 2 t 12)(− x 2 t
12)) (∗ (− y 2 t 9) (− y 2 t 9))) 4)))

; nonexecutable hevent (s t r a i g h t e n) i f mode=1.
; nonexecutable hevent (turnLe f t) i f mode=2.
; nonexecutable hevent (turnRight) i f mode=3.
(a s s e r t (not (and (= s t r a i g h t e n 2 true) (= mode 2 1))))
(a s s e r t (not (and (= s t r a i g h t e n 1 true) (= mode 1 1))))
(a s s e r t (not (and (= s t r a i g h t e n 0 true) (= mode 0 1))))
(a s s e r t (not (and (= t u r n L e f t 2 t rue) (= mode 2 2))))
(a s s e r t (not (and (= t u r n L e f t 1 t rue) (= mode 1 2))))
(a s s e r t (not (and (= t u r n L e f t 0 t rue) (= mode 0 2))))
(a s s e r t (not (and (= t u r n L e f t 2 t rue) (= mode 2 3))))
(a s s e r t (not (and (= t u r n L e f t 1 t rue) (= mode 1 3))))
(a s s e r t (not (and (= t u r n L e f t 0 t rue) (= mode 0 3))))

; Reset
; c o n s t r a i n t (RP=D & X2=X0 & D1=X2) & x = RP & y=X2 & theta=D1

a f t e r hevent (turnLe f t) & x = D & y=X0 & theta=X1 .
; c o n s t r a i n t (RP=D & X2=X0 & D1=X2) & x = RP & y=X2 & theta=D1

a f t e r hevent (turnRight) & x = D & y=X0 & theta=X1 .
; c o n s t r a i n t (RP=D & X2=X0 & D1=X2) & x = RP & y=X2 & theta=D1

a f t e r hevent (s t r a i g h t e n) & x = D & y=X0 & theta=X1 .
(a s s e r t (not (and (not (= x 2 t x 1 t)) (= t u r n L e f t 2 t rue))))
(a s s e r t (not (and (not (= x 1 t x 0 t)) (= t u r n L e f t 1 t rue))))
(a s s e r t (not (and (not (= x 0 t x 0)) (= t u r n L e f t 0 t rue))))

116

(a s s e r t (not (and (not (= y 2 t y 1 t)) (= t u r n L e f t 2 t rue))))
(a s s e r t (not (and (not (= y 1 t y 0 t)) (= t u r n L e f t 1 t rue))))
(a s s e r t (not (and (not (= y 0 t y 0)) (= t u r n L e f t 0 t rue))))
(a s s e r t (not (and (not (= t h e t a 2 t t h e t a 1 t)) (= t u r n L e f t 2

t rue))))
(a s s e r t (not (and (not (= t h e t a 1 t t h e t a 0 t)) (= t u r n L e f t 1

t rue))))
(a s s e r t (not (and (not (= t h e t a 0 t the ta 0)) (= t u r n L e f t 0 t rue

))))
(a s s e r t (not (and (not (= x 2 t x 1 t)) (= turnRight 2 t rue))))
(a s s e r t (not (and (not (= x 1 t x 0 t)) (= turnRight 1 t rue))))
(a s s e r t (not (and (not (= x 0 t x 0)) (= turnRight 0 t rue))))
(a s s e r t (not (and (not (= y 2 t y 1 t)) (= turnRight 2 t rue))))
(a s s e r t (not (and (not (= y 1 t y 0 t)) (= turnRight 1 t rue))))
(a s s e r t (not (and (not (= y 0 t y 0)) (= turnRight 0 t rue))))
(a s s e r t (not (and (not (= t h e t a 2 t t h e t a 1 t)) (= turnRight 2

t rue))))
(a s s e r t (not (and (not (= t h e t a 1 t t h e t a 0 t)) (= turnRight 1

t rue))))
(a s s e r t (not (and (not (= t h e t a 0 t the ta 0)) (= turnRight 0

t rue))))
(a s s e r t (not (and (not (= x 2 t x 1 t)) (= s t r a i g h t e n 2 true))))
(a s s e r t (not (and (not (= x 1 t x 0 t)) (= s t r a i g h t e n 1 true))))
(a s s e r t (not (and (not (= x 0 t x 0)) (= s t r a i g h t e n 0 true))))
(a s s e r t (not (and (not (= y 2 t y 1 t)) (= s t r a i g h t e n 2 true))))
(a s s e r t (not (and (not (= y 1 t y 0 t)) (= s t r a i g h t e n 1 true))))
(a s s e r t (not (and (not (= y 0 t y 0)) (= s t r a i g h t e n 0 true))))
(a s s e r t (not (and (not (= t h e t a 2 t t h e t a 1 t)) (= s t r a i g h t e n 2

true))))
(a s s e r t (not (and (not (= t h e t a 1 t t h e t a 0 t)) (= s t r a i g h t e n 1

true))))
(a s s e r t (not (and (not (= t h e t a 0 t the ta 0)) (= s t r a i g h t e n 0

true))))

; Query
(a s s e r t (= x 0 0))
(a s s e r t (= y 0 0))
(a s s e r t (= mode 0 1))

(a s s e r t (not (not (= x 2 t 13))))
(a s s e r t (not (not (= y 2 t 0))))

(check−sa t)
(e x i t)

117

	LIST OF TABLES
	LIST OF FIGURES
	1
	2
	2.1 Review: Hybrid Automata
	2.2 Review: ASPMT
	2.3 Review:C+
	2.3.1 Syntax of C+
	2.3.2 Semantics of C+

	2.4 Related Works
	2.4.1 PDDL+
	2.4.2 Action Language H

	3
	3.1 Representation
	3.2 Example
	3.3 Beyond Linear Hybrid Automata
	3.3.1 Representation
	3.3.2 Example

	3.4 Proofs
	3.4.1 Proof of Lemma 1
	3.4.2 Proof of Lemma 2
	3.4.3 Proof of Lemmas 3 and 4

	4
	4.1 New Causal Laws for Expressing Continuous Evolutions of ODEs
	4.2 Corresponding Representation of New Causal Laws in ASPMT

	5
	5.1 Representation
	5.2 Example
	5.3 Turning in the Input Language of dReal
	5.4 Proofs
	5.4.1 Proof of Lemma 11
	5.4.2 Proof of Lemma 12

	6
	6.1 aspmt2smt
	6.1.1 Architecture
	6.1.2 Syntax Restrictions

	6.2 cplus2ASPMT
	6.3 Syntax of New Constructs
	6.3.1 In cplus2aspmt
	6.3.2 In Extended aspmt2smt

	6.4 Limitations
	6.5 Examples
	6.5.1 Water Tank Example - Example 1
	6.5.2 Turning Car Example - Example 3

	6.6 Results

	7
	7.1 Additive Fluents
	7.2 Complex Definition of States of Hybrid Systems

	8
	REFERENCES
	A
	B
	C
	D

