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ABSTRACT 

 

 A tumor is a heterogeneous combination of proliferating tumor cells, infiltrating 

immune cells and stromal components along with a variety of associated host tissue cells, 

collectively termed the tumor microenvironment (TME). The constituents of the TME 

and their interaction with the host organ shape and define the properties of tumors and 

contribute towards the acquisition of hallmark traits such as hypoxia. Hypoxia imparts 

resistance to cancer from chemotherapy and radiotherapy due to the decreased production 

of reactive oxygen species and also promotes angiogenesis, malignant progression and 

metastasis. It also provides a powerful physiological stimulus that can be exploited as a 

tumor-specific condition, allowing for the rational design of anticancer hypoxia-activated 

pro-drugs (HAP). Accurate evaluation of tumor oxygenation in response to therapeutics 

interventions at various stages of growth should provide a better understanding of tumor 

response to therapy, potentially allowing therapy to be tailored to individual 

characteristics. The primary goal of this research was to investigate the utility of 

prospective identification of hypoxic tumors, by two different Magnetic Resonance 

Imaging (MRI) based oximetry approaches, in successful treatment with hypoxia 

activated therapy. In the present study, I report the utility of these two techniques 1) 

PISTOL (Proton Imaging of Siloxanes to map Tissue Oxygenation Levels) and 2) use of 

a hypoxia binding T1 contrast agent GdDO3NI in reporting the modulations of hypoxia 

pre and post hypoxia activated therapies in pre-clinical models of cancer. I have 

performed these studies in non-small cell lung cancer (NSCLC) and epidermoid 

carcinoma (NCI-H1975 and A431 cell lines, respectively) as well as in patient derived 
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xenograft models of NSCLC. Both the oximetry techniques have the potential to 

differentiate between normoxic and hypoxic regions of the tumor and reveal both 

baseline heterogeneity and differential response to therapeutic intervention. The response 

of the tumor models to therapeutic interventions indicates that, in conjunction with pO2, 

other factors such as tumor perfusion (essential for delivering HAPs) and relative 

expression of nitroreductases (essential for activating HAPs) may play an important role. 

The long term goal of the proposed research is the clinical translation of both the MRI 

techniques and aiding the design and development of personalized therapy (e.g. patient 

stratification for novel hypoxia activated pro-drugs) particularly for cancer. 
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CHAPTER 1 

INTRODUCTION  

1.1 Tumor Microenvironment 

Cancer is the leading cause of death in the world and years of research has brought 

into light the complexity of the tumors and their transformations [1]. Cancer is a 

collective organization of malignant tumor cells and non-malignant tumor promoting 

cells. Together these constituents form the tumor microenvironment which differs 

significantly from the surrounding host tissue as it contains several modified cellular and 

molecular signatures [2-4].  These signatures or “hallmarks” [5] define the properties of a 

tumor and distinguish it from the host both morphologically and functionally (figure 1.1). 

The tumor microenvironment is a heterogeneous combination of proliferating malignant 

cells, infiltrating inflammatory cells, cancer associate fibroblast cells, endothelial cells, 

pericytes, adipocytes, extracellular matrix. The interaction of these components shapes 

and defines the pathophysiology of malignant tumors and contribute at varying degree 

towards the acquisition of hallmark traits such as decreased apoptotic potential, 

angiogenesis, resistance to treatment, metastasis, invasion and hypoxia [3-15]. The 

components of the tumor stroma are initially recruited from the host tissue and 

reprogramed to take various tumor promoting roles as the tumor progresses [15]. In order 

to curb the growing tumor it is necessary to fight the environment that is contributing to 

its growth [3, 4, 9, 16]. These underlying signatures of the tumor microenvironment can 

be exploited for diagnosis and treatment of a tumor by developing novel targeted drugs 

and drug delivery agents for tumor specific accumulation and action [17-22]. 



2 
 

 
Figure 1.1: The hallmarks of a tumor microenvironment. The non-malignant and 

malignant cells comprising the TME form a complex organ, which is regularly recruiting 

and transforming cells to acquire and maintain the hallmark characteristics for its survival 

and progression. Modified from reference [5] 

 

1.1.1 Tumor vasculature and hypoxia 

The vasculature in normal tissues is a well-organized network of arteries, veins 

and capillaries that are maintained by well-regulated expression of pro- and anti-

angiogenic factors. A functioning lymphatic system along with the efficient vasculature 

helps in draining the excess build-up of fluid and removal of waste metabolic products 

from the interstitium [23]. The highly proliferating tumor cells quickly outgrow their 

blood supply which leads to formation of regions with hypoxia (≤10-15 torr pO2) [4, 5, 8, 

10, 11, 24-31]. The lack of oxygen leads to hypoxia-induced expression of hypoxia 



3 
 

inducible factor-α (HIF1 α) which up-regulates pro-angiogenesis factors such as vascular 

endothelial growth factor-A (VEGF-A) and vascular endothelial growth factor receptor 2 

(VEGFR2) [32-35]. The poorly regulated expression of angiogenesis growth factors 

within the tumor microenvironment such as VEGF induces formation of neo-vasculature 

that is extremely inefficient in structure and function. The fundamental properties of a 

tumor vasculature are: 1) hyper permeability, 2) immature (lack of pericyte coverage), 3) 

chaotic organization, 4) deteriorating diffusion geometry, 5) lack of blood vessel 

hierarchy and 6) arteriovenous shunts (figure 1.2 A). The discontinuous diameter of the 

vessels along with abrupt blunt ends, abnormal budges and irregular shape results in 

inefficient delivery of the blood and nutrients to the tumors [36, 37]. Paired with a poor 

lymphatic system, this leads to fluid and waste build up in the vessels and tumors which 

leads to increase interstitial fluid pressure [38, 39]. The tumor vasculature is well 

organized and mature at the tumor-host interface and deteriorates as we move towards the 

center of the tumors. As the tumor grows, the vascular density decreases and leads to 

formation of regions with necrosis.  

Depending on the characteristics of tumor vasculature, hypoxia can be subdivided 

into chronic (diffusion limited) and acute (perfusion limited) (figure 1.2 B). The capacity 

of oxygen to diffuse is limited to 100-150 µm [40] from the nearest blood vessels due to 

consumption: regions that are farther than this diffusion limit develop chronic hypoxia. 

The transient changes in blood flow due to tumultuous, collapsed and dilated blood 

vessels and abrupt blunt ends leads to development of transient, acute hypoxia in the 

tumors.  
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Figure 1.2: Representation of vasculature in normal tissues and tumors. (A) The 

vasculature in normal tissues is well organized with balanced hierarchy and a functional 

lymphatic system. In tumors the vasculature is tumultuous, lacking vascular hierarchy, 

underdeveloped with improper lining of the pericytes and smooth muscle cells leading to 

leaky vessels. The inefficient blood vessels are not capable of meeting the increased 

requirement of oxygen and nutrients by the tumor cells which leads to formation of 

hypoxia. (B) The combination of poor vasculature network and highly proliferating cells 

leads to formation of chronic or diffusion limited hypoxia as the oxygen is not able to 

diffuse further than 100-150 µm in distance. Conversely, presence of abrupt blunt ends, 

arteriovenous shunts, blockages and temporary collapse of vessels causes acute or 

perfusion limited hypoxia. Reproduced from [22] and [21]. 
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1.1.2 Significance of hypoxia 

Several studies have highlighted the direct or indirect contribution of hypoxia 

towards the acquisition and regulation of hallmark properties of tumors. Hypoxia is one 

of the most prominent features of a tumor’s microenvironment, that varies between 

different tumor types and plays an important and complex role in the regulation of many 

hallmark characteristics of a tumor, thus making its evaluation crucial for understanding a 

tumor’s characteristics and for the development of a personalized treatment protocol [10, 

41-47]. Hypoxia is known to promote angiogenesis, invasion and metastasis and its 

presence is considered a marker for poor clinical prognosis [5, 11, 28, 41-46, 48-50]. 

Hypoxia also promotes resistance to apoptosis, chemotherapy and radiation thus limiting 

the number of potentially useful therapeutic options.  The persistence of hypoxia leads to 

selection of genetic variants that are able to adapt and grow in the stressful environment 

and develop resistance to therapy. Hypoxia provides a powerful physiological stimulus 

that can be exploited as a tumor-specific condition, allowing for the rational design of 

hypoxia targeted therapies as well as hypoxia imaging techniques [18, 48, 51-57]. Recent 

studies have shown that cancer stem cells,(neoplastic cells or tumor initiating cells) that 

may play a role in various tumor promoting factors such as metastasis, invasion and 

resistance to therapy [58-64], are more likely to be present in hypoxic regions and that 

hypoxia aids in their regulation and maintenance [65-68]. The extent and severity of 

hypoxia can be spatially heterogeneous in tumors and fluctuate over time as the disease 

progresses [69-72]. Figure 1.3 depicts the cycle of events mediated by hypoxia that 

makes it a prevalent condition for tumors. 
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Figure 1.3: The schematic presentation of hypoxia mediated cycles in a tumor. As the 

tumor out-grows its initial vasculature, regions with hypoxia develop. Hypoxia in turns 

regulates the expression of pro-angiogenesis factors that lead to formation of 

neovasculature which is chaotic in nature. The consequence of chaotic and 

underdeveloped vasculature is an increase in regions of hypoxia, thus the vicious cycle 

continues. The chronic development of hypoxia leads to increase in mutations and clonal 

selection of variants with decreased apoptotic potential and increased angiogenic 

potential thus resulting in tumor propagation and resistance to therapy. Image modified 

from [73]. 

 

 

The outstripping of nutrients and oxygen supply in neoplasms due to the inability 

of vasculature to meet the increased demand by proliferating cells leads to formation of 

hypoxia, which results in induction of angiogenesis. The unchecked expression of 
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angiogenesis factors lead to development of chaotic vasculature which in turn increases 

the presence of hypoxia and thus the cycle continue (figure 1.3).  

The various contributions of hypoxia can be summarized as follows: 

1. Resistance to radiotherapy due to lack of the reactive oxygen species, 

2. Hypoxic stress slows the proliferation of cancer cells leading to development 

of resistance against chemotherapeutic drugs that target highly proliferating 

cells. The associated lack of blood vessel supply to the hypoxic regions also 

makes it difficult for the drugs to penetrate into these regions.  

3. Hypoxia induces increase in genomic instability (high mutation frequency) 

and heterogeneity, 

4. Due to the increased stress in the hypoxic microenvironment, the cells that 

survive are usually clonal variants with anti-apoptotic mutations and increased 

aggressiveness, 

5. Hypoxia also contributes towards increased tumor survival by evading the 

immune response, 

6. Hypoxia is known to upregulate factors that promote angiogenesis, tumor 

invasiveness, malignancy and metastasis. 

 

1.1.3 Hypoxia activated bioreductive pro-drugs 

Targeted cancer therapeutics has garnered increased interest in the last few 

decades as a means to selectively target the tumor regions with increased toxicity. The 

plethora of tumor promoting factors induced by hypoxia indicates that selective targeting 
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of hypoxic regions in the tumors has the potential to improve the therapeutic efficacy. 

Hypoxia was recognized as a high-priority target for the development of cancer selective 

therapeutics and was first demonstrated by hypoxia selective toxicity of nitroimidazoles 

[74]. Hypoxia targeted therapeutics are mainly classified into hypoxia activated bio-

reductive pro-drugs or HAPs and drugs for molecular targeting of hypoxia specific 

pathways such as HIF pathways [54]. The focus of this dissertation will be the 

application of HAPs and their dependence and effect on the tumor hypoxia. Hypoxia 

activated bioreductive pro-drugs are a category of hypoxia targeted therapies that 

selectively target the hypoxic regions by getting reduced into their toxic counterparts 

known as ‘effectors’ in the presence of hypoxia and exert toxicity via various 

mechanisms. 

An ideal HAP should have the following fundamental properties : 1) ability to 

reach the hypoxic regions of the tumor that are contributing towards tumor resistance and 

are particularly present towards the center of the tumor, 2) a higher hypoxic threshold for 

conversion into the toxic counterpart, 3) ability to impart toxicity to the hypoxic cells 

especially the non-proliferating population within the hypoxic fraction and 4) ability to 

exert a bystander effect towards the less hypoxic and proliferating tumor population. 

Other important characteristics include high stability and solubility of the drug. Apart 

from these intrinsic properties of the HAPs, the extrinsic properties are more tumor type 

dependent, such as the presence of reductases that would convert the pro-drug to its toxic 

counterpart and sensitivity of the tumor cells towards the toxic metabolite. These 
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properties determine the efficacy of HAP in a tumor model and thus should be considered 

while developing a novel HAP. 

A typical HAP is composed of three components: a trigger, linker and an effector 

[75]. The trigger determines the hypoxic selectivity and the hypoxic threshold for the pro-

drug conversion and the linker makes sure the drugs stays deactivated in a normoxic 

environment. The effector imparts toxicity to the hypoxic cells and then exerts its toxicity 

to surrounding cells via bystander effect. The clinical relevance of hypoxia has led to the 

development of several HAPs, for example, PR-104 [76], AQ4N [77], EO9 [78], TH-302 

[79], TH-4000 [80, 81] and tirapazamine [82]. A few of these HAPs are discussed in 

detail below. 

The efficacy of two HAPs, tirapazamine and PR509, were evaluated in this study.  

Tirapzamine, (3-amino-1,2,4-benzotriazine 1,4-N-oxide, TPZ [83-88], figure 1.4) is a 

prototypical HAP that was developed in mid-1980s. The agent shows selective 

cytotoxicity to hypoxic cells and causes DNA single and double strand breaks. TPZ gets 

activated (under mild hypoxia) by the one-electron reduction activation by cytochrome 

P450 reductase to form an intermediate radical.  In the absence of oxygen, the radical 

gets converted to hydroxyl or benzotriazinyl radicals that cause DNA double of single 

strand breaks.  In the presence of oxygen, the intermediate gets re-oxidized to form the 

parent compound. TPZ can also undergo 2-electron reduction pathway via NQO1 to form 

mono-N-oxide with very low toxicity (figure 1.4). TPZ showed promising results in the 

preclinical studies [89] and phase I and II trials in combination with cisplatin, etoposide 

and radiotherapy, but failed in phase III studies [90].  



10 
 

 

Figure 1.4: The mechanism of action of tirapazamine. TPZ gets activated (mild hypoxia) 

by the one-electron reduction activation by cytochrome P450 reductase to form an 

intermediate radical.  In the absence of oxygen, the radical gets converted to hydroxyl or 

benzotriazinyl radicals that cause DNA double of single strand breaks.  In the presence of 

oxygen, the intermediate gets back oxidized to form the parent compound. TPZ can also 

undergo 2-electron reduction pathway via NQO1 to form mono-N-oxide with very low 

toxicity Reproduced from [54] (http://creativecommons.org/licenses/by/4.0/). 

 

PR509 is a novel hypoxia-activated bioreductive pro-drug that gets converted to 

its toxic counterpart PR509E in hypoxic regions [91]. It is an irreversible multikinase 

inhibitor that targets the EGFR family of kinases and was developed by a group of 

scientists at the University of Auckland led by Dr. Adam Patterson. Currently, an analog 

of PR509 called TH4000 [80, 81] (Hypoxin
TM

, Threshold Pharmaceuticals, San 

Francisco, USA) is currently undergoing phase II clinical trial in advanced NSCLC and 

metastatic squamous cell carcinoma of the head and neck. The mechanism of action of 

PR509 is similar to that of TH4000 (figure 1.5). Briefly, TH4000 undergoes 1 electron 

reduction in regions with hypoxia and gets converted to a nitro radical anion that 

undergoes further fragmentation to form the toxic product. The pre-clinical studies with 

http://creativecommons.org/licenses/by/4.0/
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PR-610 have shown its activity against NSCLC with wild-type and mutant EGFR [54, 

80, 81]. 

 

Figure 1.5:  Structure and mechanism of action of TH-4000. TH-4000 gets converted to a 

nitro radical anion via one electron reductases in the presence of hypoxia. The nitro-

radical anion undergoes further fragmentation to form the effector TH4000E that causes 

inhibition of the EGFR family of kinases. PR509 is an analog of TH4000 with chlorine 

replaced with fluorine. Reproduced from [54] 

(http://creativecommons.org/licenses/by/4.0/). 

 

Figure 1.6 Structure of the hypoxia activated pro-drugs discussed in this chapter. 

Reproduced from [54] (http://creativecommons.org/licenses/by/4.0/). 

 

The HAPs can also be broadly classified on the basis of their mechanism to 

impart toxicity to the hypoxic regions. Typically the toxic counterpart of the HAP either 

causes DNA damage via introducing breaks in DNA or inhibition of cell proliferation via 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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kinase inhibiting pathways. The DNA damaging agents have a cytotoxic effect resulting 

in the death of cancer cells while kinase inhibiting agents induce antiproliferative effects 

resulting in cytostasis [92]. The goal of our study was to investigate the effect of TPZ and 

PR509 (changes in tumor volume as well as oxygenation) in pre-clinical tumor models as 

the drugs represent both the class of HAPs respectively. We also studied the effect of 

PR509E in order to evaluate the role of molecular targets (EGFR in the case of PR509) in 

determining the effect of the toxic effectors as their efficacy is independent of the 

presence of hypoxia.  

EO9 (apaziquone [78, 93]) is an indolequinone derivative of mitomycin C that 

causes generation of DNA damaging species (figure 1.6 A). The drug showed selective 

toxicity to hypoxic cells that are devoid of NAD(P)H:quinone oxidoreductase 1 (NQO1, 

a cytosolic flavoprotein), but is also showed toxicity to aerobic cells that express high 

levels of NQO1. EO9 showed poor penetration and fast degradation and thus failed to 

show good results in the clinical trials with NSCLC, pancreatic, breast, colorectal and 

gastric cancers.  

TH-302 (evofsoamide [79, 94] (figure 1.6) is a recently developed 2-

nitroimidazole containing HAP that showed great potential in the pre-clinical [95, 96] as 

well as clinical trials, but failed in the phase III trials in pancreatic adenocarcinoma and 

soft tissue sarcoma and was discontinued in phase II trials of NSCLC [55]. The TH-302 

effector causes DNA cross-linking and cell cycle arrest [97].  

PR-104 [76] is a nitroaromatic compund that causes DNA cross-linking in 

hypoxic cells via reduction by cytochrome P450 reductase (figure 1.6 C). The agent also 
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shows toxicity to aerobic cells  due to the oxygen-independent reduction by AKR1C3 

(aldo–ketoreductase 1C3). The PR-104 performed well in the pre-clinical [98] studies and 

phase I/II clinical trials[99] but unfortunately failed to show survival benefit and were 

discontinued [55].  

1.2 Magnetic Resonance Imaging 

MRI is a non-invasive tomographic imaging technique based on the phenomenon 

of nuclear magnetic resonance (NMR). MRI utilizes the fundamental property of nuclear 

spin to detect measurable signals arising from bulk nuclear spin polarization in presence 

of an external magnetic field (nuclear paramagnetism). Two- and three-dimensional 

images of the body with high spatial resolution and contrast can be generated using MRI 

by acquiring these signals in the presence of position encoding gradients [100]. Advances 

in the last three decades have led to a substantial improvement in the quality of the MR 

images generated with higher signal to noise ratio and sensitivity.  

Signal in MRI is generated from the electromagnetic radiations emitted when a 

nuclear spin is exposed to static and oscillating magnetic fields. Hydrogen atom contains 

a single proton with +1/2 and -1/2 nuclear spin states which results in a bulk magnetic 

moment in presence of a strong external magnetic field. This forms the basis for proton 

MRI that is widely prevalent in clinical settings. The human body is ~70% water by body 

weight and (along with hydrogen from fat) provides plenty of hydrogen protons that can 

be used as NMR active nuclei. Image contrast is defined as the ability to discriminate 

tissues based on their relative brightness and darkness on an image. Contrast obtained in 

the MRI images depends on several intrinsic properties of the tissue such as proton 
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density (ρ), diffusion, perfusion, spin-lattice relaxation time (T1), spin-spin relaxation 

time (T2), observed spin de-phasing time (T2*), magnetization transfer and chemical 

exchange effects. The images are generated by using specific “weighting” (e.g. T1 or T2 

weighting). Based on the choice of scanner settings, that exploits the differences in the 

above mentioned properties between the pathology and healthy tissue and results in 

image contrast that reflects the variation in the chosen property. For example the T1 and 

T2 of water at 1.5 T are ~ 4000 ms and 2000 ms, respectively [101]. Cerebrospinal fluid 

has similar T1 and T2 as water because the hydrogen protons are less restricted while fat 

protons have restricted mobility, resulting in shorter T1 (280-340 ms) and T2 (60-100 ms). 

In comparison, the T1 and T2 of white matter are ~ 800 ms and 80 ms, respectively, while 

those for gray matter are slightly longer with values ~1100 ms and 90 ms, respectively. 

Abnormalities such as edema, tumor, inflammation, infarction and infection have 

increased water content (in the case of tumors, lower cell density as well) and can be 

detected by using T2 weighting during the MRI acquisition as they appear bright 

compared to their surrounding normal tissue. In a routine clinical examination, T2 

weighted scan is often the first indicator of presence of an abnormality. A T1-weighted 

scan is often used at lower clinical magnetic field such as 1 or 1.5 T. 

The first images of a tumor were generated in 1971 and paved the path for use of 

MR for discrimination of tumors from surrounding tissues based on differences in 

relaxation times [102]. MRI provides an excellent platform for non-invasive in-vivo 

molecular imaging of cancer, providing superior soft tissue contrast and high resolution 

with moderate sensitivity compared to other imaging modalities [103]. MRI can generate 
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images depicting anatomical, biochemical and functional information while offering a 

good balance between image resolution and imaging time [104]. Additionally, MRI can 

also help in identifying the hallmarks of cancer and lead to development, analysis and 

therapeutic response assessment of improved targeted therapies on tumors.  

 

1.2.2 Paramagnetic relaxation enhancement 

MRI contrast agents are biocompatible, small-molecular or nanoscale chemical 

entities introduced exogenously into the body to improve the contrast between the area of 

interest and the surrounding tissue. The properties and advantages of contrast agents were 

first outlined by Lauffer in 1987 [105] and since then tremendous improvements have 

been achieved in the field of contrast agents and several new agents are developed each 

year [103, 106-111]. MRI based contrast agents typically use paramagnetic molecules 

(e.g. chelates of gadolinium or iron oxide) to enhance the contrast of the region of their 

accumulation by shortening the relaxation times of the water protons around them [105]. 

The majority of gadolinium based contrast agents are T1 relaxation agents and improve 

the contrast of the region of accumulation in a T1 weighted image. On the other hand, 

iron oxide based contrast agents are predominantly T2 weighted agents and make the 

accumulation region appear dark on a T2 or T2* weighted image. The efficiency of a 

contrast agent is based on its relaxivity (r1 or r2), which is the change in spin-lattice 

relaxation rate R1 (= 1/T1) or spin-spin relaxation rate R2 (=1/T2), respectively, of water 

per unit concentration of contrast agent. The relaxivity is typically calculated by 

measuring the relaxation rate (R1 or R2) as a function of agent concentration and by 
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determining the slope of the graph (R1 or R2 vs. concentration). The relationship between 

the relaxation times, the relaxivity and the concentration of the contrast agent is given by 

the following equation: 

         1/Ti (measured) = 1/Ti (water) + ri [Agent]; i= 1 or 2                                         [1.1] 

Here i= 1 or 2 and refers to the T1 and T2 relaxation times, respectively. The important 

properties that influence contrast agent relaxivity are (a) spin S and the electronic 

relaxation times Tie of the paramagnetic ion (b) the number of inner (directly coordinated 

to the Ln atom) and outer (hydrogen-bonded) coordination sphere water molecules (q and 

q’ respectively), (c) the residence lifetime of the inner and outer sphere water molecule(s) 

(m and m’ respectively), (d) the tumbling time of the agent in solution (R, rotational 

correlation time), (e) the distance between water proton and metaland (f) magnetic field 

strength (figure 1.7).  

The major contribution to the relaxation properties of the contrast agents is due to the 

inner sphere mechanisms. This contribution is given by: 

mm

mIS

i
T

qP
r




1

;    i= 1                                                             [1.2]  

Where; Pm = the mole fraction of metal ion; 

              q = number of bound water molecules per metal ion; 

              T1m = relaxation time of the bound water protons; and  

              m = residence lifetime of the bound water.  

Magnetic field strength alters the relaxation rate of the contrast agent which 
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typically decreases with increasing field strength (at slower tumbling time) [112]. The 

relaxation rate at clinically relevant field depends mainly on the m and R properties of 

the agent. Reduction in the rotational correlation time of the agent, which can be achieved 

by increasing the molecular weight of the agent, causes an increase in the relaxivity of the 

agent but the increases in r2 dominate over r1 at higher fields, as discussed by Caravan et 

al. in detail [113]. If the residence time of water protons in the inner sphere is long then 

the corresponding exchange of relaxed water with the bulk water is limited, thus resulting 

in lower relaxation rate. On the other hand, very short residence time also results in lower 

relaxation rates due to an inefficient relaxation of the bound water. Thus there is an 

optimum range of residence time for which the relaxation of the agent is highest. Many of 

these properties can be altered in order to develop improved contrast agents for cancer 

imaging by rational design of the chelate ligand [107]. 

Targeted exogenous contrast agents can alter the T1 (and T2 or T2*) of the tissues 

and result in increased contrast as compared to non-targeted contrast agents. The factors 

influencing the relaxivity of targeted contrast agents in described in figure 1.7.  
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Figure 1.7:  Factors influencing the solvent water relaxation and strategies for controlling 

rotational dynamics of multimeric, targeted contrast agents. IS: inner sphere, OS: outer 

sphere, T1e/T2e: electronic relaxation times, S: electron spin, τr: rotation tumbling time, 

τm: residence lifetime of water molecule, T1m /T2m: relaxation times of bound water, r: 

Ln-H distance for IS water molecules, q: number of IS water molecules, TA: targeting 

agent/ligand). Corresponding parameters for OS water molecules are denoted with a 

prime (‘) e.g r’: Ln-H distance for OS water molecules. 

(Note Section 1.2 is based on the paper -  Agarwal S and Kodibagkar VD. “Targeted 

Contrast Agents for 1H MRI of tumor microenvironment” Cancer Therapeutics and 

Imaging: Molecular and Cellular Engineering and Nanobiomedicine World Scientific 

Publishing. Eds, Rege K and Goklany S. 2016 (In press, accepted 4/9/16)) 

 

1.3 Assessment of tissue oxygenation 

As discussed before in detail, the assessment of tumor oxygenation is crucial and 

an effective oximetry technique that can facilitate the identification of hypoxic regions 

within the tumor can drastically improve our understanding of the tumor behavior and 
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eventually result in better cancer therapeutics. In this section, I will be discussing the 

various established and novel oximetry techniques for qualitative and quantitative 

assessment of tissue oxygenation. In particular, I will discuss in detail the two novel 

oximetry techniques that I used for the assessment of hypoxia in my research.  

1.3.1 Existing methods for measurement of pO2 

Assessment of oxygenation status can be achieved by various invasive and non-

invasive techniques [114, 115]. In-vivo invasive techniques such as polarographic needle 

electrodes[116] and fiber optic probe[117] techniques can measure the local pO2 and can 

facilitate multiple measurements throughout the tumor to get an estimate of the 

oxygenation distribution throughout the tumor. Ex-vivo immunohistochemical hypoxic 

markers (EF5 [118], HIF1α [119], pimonidazole, CAIX) [120, 121] enable visualization 

of hypoxia or related molecular events throughout the tumor at higher resolution and can 

also be used to analyze necrosis, perfusion and expression of hypoxia regulated proteins 

when paired with other IHC agents. The technique provides qualitative information of 

hypoxia and given the dynamic nature of hypoxia might not reflect the status of the tumor 

by the time treatment is administered, if the ex-vivo analysis is performed with tissue 

samples obtained well before the start of treatment.  

Non-invasive oximetry techniques include imaging agents for NIR spectroscopy 

[122], phosphorescence quenching [123],  positron emission tomography (PET) [124], 

single photon emission computed tomography (SPECT) [106, 125]  and MR based 

imaging techniques [114]. NIR spectroscopy is a non-invasive, portable technique that 

detects the changes in vascular oxygen saturation with high temporal resolution and can 
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facilitate measurements from limited depth in the tissue [126]. PET imaging agents 

[
18

F]fluoromisonidazole (
18

F-MISO), [
18

F]fluoroazomycin arabinoside (FAZA), [
18

F]-

EF5, [
18

F] fluoroerythronitroimidazole (FETNIM) and [
64

Cu]-diacetyl-bis(N(4)-

methylthiosemicarbazone (Cu-ATSM) and [
19

F] Tri-Fluoromisonidazole (TF-MISO) 

contain the 2-nitroimidazole moiety and have been evaluated as hypoxia binding agents 

[127]. Nitroimidazoles were discovered to be radiosensitizers for hypoxic cells in 1974 

[128] and since then significant research has been carried out on their ability to sensitize 

cancer cells [129-131]. The PET or SPECT agents show selective binding to the hypoxic 

regions and facilitate the differentiation between hypoxic and normoxic regions of a 

tumor. Agents such as 
18

F-AZA and 
18

F-MISO have shown the ability to determine the 

hypoxic fraction [132] of tumors and predict the treatment outcome in clinical studies 

[133, 134] respectively. However PET and SPECT based techniques lack spatial 

resolution, cannot provide quantitative oximetry information, are not suitable for repeated 

measurements.  

The current MR based oximetry techniques can be sub-divided into qualitative 

techniques Blood Oxygen Level Dependent (BOLD) [135], Tissue Oxygen Level 

Dependent (TOLD) [136], oxygen-enhanced MRI [137] and quantitative techniques EPR 

[138], 
19

F NMR of perfluorocarbon emulsions, e.g. FREDOM (utilizing 
19

F MRI of 

hexafluorobenzene, a reporter for oxygen [139]) and its 
1
H MR analog HMDSO based 

imaging called PISTOL [140, 141]. BOLD-MRI signal is dependent on the paramagnetic 

deoxyhemoglobin (R2*) and can facilitate oxygenation imaging at high spatial and 

temporal resolution. Previous studies have shown that BOLD signal changes are 
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correlated with the changes in pO2 [135, 142]. TOLD and OE-MRI signals are also 

qualitative oximetry imaging methods and dependent on the paramagnetic molecular 

oxygen’s influence on the water spin-lattice relaxation rate (R1). OE-MRI has shown 

great potential for measuring the hypoxic fraction of tumors and can be used to study 

cyclic hypoxia (as it facilitates repeated measurements) and the effect of carbogen 

breathing [143].  

The EPR oximetry technique is a minimally invasive technique that can provide 

quantitative oxygenation information via measuring the change in linewidth of an 

exogenously administered paramagnetic spin probe as it interacts with molecular oxygen.  

The technique can be used to obtain multiple measurements of the same region in tumors. 

Some of the EPR probes are LiPc, LiNc, Fusinite, Gloxy, India Ink, TAM etc, of which 

only India Ink is approved for clinical use [138, 144]. The 
19

F NMR oximetry uses 

exogenous perfluorocarbon reporters such as perfluoro-15-crown-5-ether (15C5 [145]) as 

oxygen reporters. FREDOM (Fluorocarbon Relaxometry using Echo planar imaging for 

Dynamic Oxygen Mapping) is a technique that exploits the linear relationship of the 

relaxation rate of hexafluorobenzene (HFB) with oxygenation and has the potential to 

provide quantitative measurements of the tissue oxygenation sequentially and can be used 

to monitor the response of tumors to hyperoxic gas.    
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1.3.2 Quantitative MR oximetry using PISTOL 

PISTOL (Proton Imaging of Siloxanes to Map Tissue Oxygenation Levels) is a 

quantitative 
1
H MR oximetry technique that was developed by Kodibagkar et al. [140, 

141]. PISTOL exploits the linear relationship of relaxation rate (R1) of oxygen reporter 

probe (siloxanes) with pO2.  

The molecular oxygen is paramagnetic in nature and shortens the longitudinal 

relaxation time. The oxygen reporter molecules should possess high hydrophobicity to 

ensure exchange of gases between the reporter molecule and environment, and a high 

solubility for oxygen. Various linear siloxanes such as hexamethyldisiloxane (HMDSO, 

figure 1.8 A), octamethyltrisiloxane (OMTSO), decamethyltetrasiloxane (DMTSO), 

dodecamethylpentasiloxane (DDMPSO), polydimethylsiloxane (PDMSO, trimethylsiloxy 

terminated, M.W. 410) and cyclic siloxanes octamethylcyclotetrasiloxane (OMCTSO) 

and decamethylcyclopentasiloxane (DMCPSO) as well as perfluorocarbons have the 

characteristics to be utilized as oxygen reporter molecules. PISTOL has been established 

as a quantitative oximetry technique that allows for accurate, non-invasive and repeated 

measurement of tissue oxygenation using HMDSO and HMDSO based nanoemulsions at 

4.7 T [140, 141, 146]. The calibration of HMDSO at 4.7 T showed the reporter’s 

sensitivity to changes in pO2 while less prone to changes in temperature (figure 1.8 B). 
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Figure 1.8: A) Chemical structure of hexamethyldisiloxane (HMDSO). B) Calibration of 

neat HMDSO at 0%, 5%, 10%, and 21% Oxygen Concentrations at 37ºC. Fitting data to 

the linear model R1= A’+B’* pO2 resulted in calibration constants A’ = 0.11056 ± 

6.54x10
-4

 and B’ = 0.00108 ± 1.7x10
-5

.  

 

The pulse sequence for PISTOL consists of the following components: 1) 20 non-

selective saturation pulses, followed by a tau delay for magnetization recovery, 2) 3 

CHESS pulses for selective saturation of water and fat, 3) An EPI based spin-echo 

acquisition with frequency selective π/2 pulse (on-resonance for siloxane), followed by a 

4) slice selective π pulse, and an EPI readout (figure 1.9).  
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Figure 1.9: Schematic representation of the pulse sequence for PISTOL. Modified from 

reference [141]. 

 

The relationship between the relaxation rate of reporter molecule and pO2 can be 

obtained by considering two pools of protons: a diamagnetic component that is due to the 

longitudinal relaxation rate of protons without oxygen in its neighborhood (R1d) and a 

combined paramagnetic (R1p) and diamagnetic component due to the proton in the 

vicinity of oxygen (R1d + R1p). The relaxation rate for both the pools of protons can be 

represented as a molar weighted average, where x is the molar fraction of the oxygen:  

                           R1 = (1 − x) ∗ R1d + x ∗ (R1d + R1p) =  R1d + x ∗ R1p [1.3] 

According to Henry’s law, the partial pressure of oxygen is directly related to the mole 

fraction of dissolved oxygen.  

                                                              pO2 = k ∗ x                                                      [1.4] 

where k is the solubility coefficient of oxygen. Thus, equation 1.3 can be 

rewritten as: 

                                                          R1 = A' + B' ∗ pO2                                               [1.5] 
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Where, A’ is the diamagnetic i.e. anoxic component (R1d) and B’ is the 

paramagnetic component that is dependent on pO2 (R1p/k).  

The temperature dependence of the A’ and B’ components can be approximated 

as: 

A' =  A + C ∗ T  

                                                           B' =  B + D ∗ T                                                  [1.6] 

Thus, a temperature dependent model for estimation of pO2 can be obtained by 

substituting the values from equation 1.8 in equation 1.7. 

                                         R1 = A + B ∗ pO2 + C ∗ T + D ∗ T ∗ pO2                            [1.7] 

The above equation can be used to determine oxygenation levels as well as errors 

in estimation pO2/°C, thus providing a more accurate and reliable quantification. The 

following equation can be used to determine error in pO2 determination for change in 

temperature by 1°C at a particular temperature T and oxygenation level: 

 
∆pO2

∆T
=

|C + D∗pO2|

B + D∗T
         [1.8] 

 

1.3.3 Qualitative MR oximetry using GdDO3NI 

An important alternate strategy for imaging hypoxia exploits the principle of 

selective enzyme mediated reduction of the nitro group in 2-nitroimidazole containing 

compounds under hypoxic conditions. Rojas-Quijano, et al., in 2012 reported a novel 

hypoxia-targeted contrast agent GdDO3NI [147]. The agent was prepared by conjugation 

of DO3A-monamide with 2-nitroimidazole moiety, which has been used to sensitize the 
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hypoxic tumors to radiotherapies [148]. The hypoxia selective enzyme mediated 

reduction of nitro group leads to accumulation and binding of the contrast agent in the 

hypoxic regions [149, 150]. The agent (figure 1.10) has r1 relaxivity of 5.21 ± 0.04 

mM
−1

s
−1

 and r2 relaxivity of 4.74 ± 0.03 mM
−1

s
−1

 in PBS at 4.7 T. The in-vivo hypoxia 

imaging of rat prostate adenocarcinoma AT1 tumors with GdDO3NI reported the utility 

of the agent in distinguishing between the normoxic and hypoxic regions within the 

tumor [151]. The agent has also shown ability in mapping the differential response of 

tumor hypoxia to hyperoxic gas breathing in prostate cancer sublines [152]. The agent 

has the potential to generate three-dimensional distribution maps of hypoxia, which can 

be utilized by clinicians for planning radiation and therapy. 

 

Figure 1.10: Structure of GdDO3NI. The 2-nitroimidazole moiety is highlighted in the 

blue circle.  
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CHAPTER 2 

QUANTITATIVE ASSESSMENT OF CHANGES IN TUMOR OXYGENATION 

POST HYPOXIA ACTIVATED THERAPY USING PISTOL 

 

2.1 Abstract 

In the present study, a novel pO2 measuring technique PISTOL (Proton Imaging 

of Siloxanes to map Tissue Oxygenation Levels) was used to determine the baseline 

oxygenation of pre-clinical xenograft tumor models of NSCLC (NCI-H1975) and 

epidermoid carcinoma (A431) and their response to hypoxia-activated pro-drugs (HAPs) 

PR509, its effector PR509E and tirapazamine (TPZ). The A431 tumor model had lower 

baseline oxygenation than the NCI-H1975 tumor model (p<0.05). PR509 and PR509E 

were effective slowing the growth of NCI-H1975 (p<0.05) and A431 tumors (p<0.01) as 

compared to untreated control cohorts. PR509E and TPZ resulted in a significant increase 

in the oxygenation of A431 tumor centers (p<0.05). TPZ was effective in slowing the 

tumor growth only in NCI-H1975 tumors despite the fact that A431 tumors were more 

hypoxic (p<0.05). TPZ resulted in a significant decrease in the oxygenation of NCI-

H1975 tumor centers as a result of its anti-vascular effect (p<0.05). In conclusion, 

PISTOL was able to report the changes in tumor oxygenation in both the tumor 

xenografts. The results indicate that other factors such as tumor perfusion (essential for 

delivering TPZ) and relative expression of nitroreductases (essential for activating HAPs) 

may play an important role. 
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2.2 Introduction 

Hypoxia is a characteristic feature of many tumor types, for example, prostate 

[153, 154], cervical [154, 155], lung [29-31, 156-158], glioblastoma [159, 160], breast 

[154] and head and neck cancer [49, 154, 161]. The clinical relevance of hypoxia has led 

to the development of several hypoxia-targeting therapeutics (discussed in detail in 

section 1.1.3). The failure of several promising HAPs calls for an in-depth evaluation of 

tumor hypoxia, its heterogeneity and its contribution towards treatment resistance and 

progression to improve clinical decision-making [127, 162-166].  

PISTOL (Proton Imaging of Siloxanes for mapping Tissue Oxygenation Levels) 

([140, 141] is a recently developed oximetry technique, and as discussed earlier in section 

1.3.2, has the potential to provide direct quantitative measurement of oxygenation non-

invasively and longitudinally along with the spatial distribution and degree of hypoxia. 

Here I used PISTOL to quantitatively map the oxygenation of tumor xenograft models 

pre and post hypoxia-activated therapies (HAPs). I investigated the efficacy of a novel 

pro-drug PR509 and its effector PR509E and compared it with tirapazamine, a 

prototypical DNA damaging hypoxia-activated pro-drug, in non-small cell lung cancer 

(NCI-H1975) and epidermoid carcinoma (A431) xenograft models. The main purpose of 

this study was to 1) study the baseline oxygenation of tumor xenograft models, 2) 

investigate the relationship between tumor oxygenation and the efficacy of hypoxia-

activated pro-drugs, 3) demonstrate the potential of PISTOL for identifying, and 

categorizing tumors with hypoxia and 4) to test the hypothesis that identification of 

tumors with hypoxia could assist in predicting the treatment outcome. 
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2.3 Materials & Methods 

2.3.1 Animal models 

Human NCI-H1975 non-small cell lung cancer and A431 epidermoid carcinoma 

cells (ATCC Inc.) were cultured in Roswell Park Memorial Institute (RPMI 1640) media 

and Dulbecco’s Modified Eagle’s Medium (DMEM) respectively, supplemented with 1% 

penicillin/streptomycin and 10% fetal bovine serum (Life Technologies, Carlsbad, CA, 

USA), in a 5% CO2-containing humidified atmosphere at 37
0
C. The tumor models were 

selected based on the studies conducted by our collaborators by our collaborators, Dr. 

Adam Patterson and Dr. Jeff Smaill from The University of Auckland, to test the novel 

hypoxia-activated pro-drug PR509 and its toxic counterpart PR509E. 

Immunocompromised nu\nu mice (5-11/per cohort, Charles River Laboratories, USA) 

were implanted subcutaneously with 2x10
6
/40 µl cells of the respective cell line (A431 or 

NCI-H1975) in the right thigh. The animals were monitored and maintained as per the 

guidelines by The Arizona State University Institutional Animal Care and Use 

Committee (IACUC). 

 

2.3.2 Hypoxia-targeted therapy 

The mice bearing NCI-H1975 and A431 tumors were treated with a multi-kinase 

inhibitor hypoxia-activated prodrug called PR509 (60 µmole/kg), its effector PR509E (60 

µmole/kg) and tirapazamine (TPZ, 60 µmole/kg, Sigma Aldrich). The respective 

therapies were administered immediately after the acquisition of baseline PISTOL maps.  

PR509 and TPZ were dissolved in 5% dextrose while PR509E was dissolved in an acidic 
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buffer at pH 4.5 and administered intraperitoneally. The vehicle 5% dextrose was 

administered as a control agent. PR509 and PR509E were generously provided by Dr. 

Adam Patterson from University of Auckland, New Zealand. 

 

2.3.3 Tumor Volume Measurements 

Tumor volume measurements were made using Vernier calipers every 3
rd

 day 

from the day of tumor appearance until tumor excision (day 20). The formula for an 

ellipsoid (πabc/6), where a, b and c are three longest orthogonal dimensions (with a being 

the longest), was used to calculate the tumor volumes. Tumor volumes were normalized 

to baseline imaging (pre-treatment) volumes and then compared with post-treatment 

volumes to study the treatment response. Tumor doubling times were measured by fitting 

the mean normalized tumor volumes to a standard exponential growth curve. 

 

2.3.4 MR imaging protocol 

The following imaging protocol was followed to assess the baseline oxygenation 

of NCI-H1975 and A431 tumor models: Baseline (day 0) PISTOL maps were acquired 

once the tumors reached ~300 mm
3
 in volume. Neat HMDSO (Sigma Aldrich., 10-50 μL) 

was injected directly into the tumor using a Hamilton syringe with 32 Gauge needle and 

HMDSO droplets were deposited in a fan pattern, as shown in reference [167], along a 

single plane (figure 2.1). The mice were then placed on a mouse bed a mouse brain 

receiver coil was placed over the tumor. The mouse bed was then pushed inside the 

magnet and imaged using a mouse surface receiver and a volume transmitter coil. The 
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body temperature of mice was maintained by keeping them on a heated water-bed at 

37
0
C. After positioning the mouse inside the scanner, a standard multi-slice multi-echo 

(MSME) T2 mapping sequence was used to calculate T2 (TR = 3 s & TE = 14-210 ms, 

total 15 TEs, matrix 128 x 128 and FOV 2 cm) of tumor followed by acquisition of three 

consecutive PISTOL T1 maps. The mice were kept under anesthesia (air and 1.5% 

isoflurane; Veterinary Anesthesia Systems Inc.) during the entire course of experiment. 

At the end of the imaging protocol, respective therapy (TPZ, PR509, PR509E or 5% 

dextrose) was injected intraperitoneally. Subsequent imaging was conducted every 5
th

 

day until day 15 post baseline imaging i.e. at day 5, 10 and 15.  

A custom built T1 mapping MATLAB code was used to compute mean pO2 from 

the PISTOL maps, as described previously [141]. The T1 values obtained were used to 

obtain the pO2 values via equation [1.5]. Based on the calibration of neat HMDSO at 

37ºC at 7 T (shown in section 1.3.2) the T1 threshold was set at <9.05 s (i.e. pO2 greater 

than 0 torr) and >3.5 s (i.e. pO2 less than 160 torr). Mean pO2 value from the three pO2 

maps generated from the respective three PISTOL maps was computed and compared for 

each tumor. In order to study the heterogeneity in tumor, we used a T2 weighted image 

from the acquired MSME T2 images to delineate the tumor and segmented it into 

periphery and central regions (outer and inner 50% voxels in order to equally segment the 

tumor into two regions, respectively, figure 2.4) and average pO2 for both the regions as 

well as the whole tumor were analyzed.  
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Figure 2.1: The representation of experiment set-up. Neat HMDSO droplets were 

deposited directly into the tumor using a Hamilton syringe in a fan pattern at axial plane. 

 

 

Figure 2.2: Schematic representation of the study protocol. 

 

Figure 2.3: Schematic representation of the imaging protocol. 
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Figure 2.4: Representation of the image segmentation procedure for data analysis. (a) 

tumor region with the ROI applied to delineate tumor from thigh region. (b) The 

generated tumor mask and the corresponding center (c) and periphery (d) masks.  

 

2.3.5 Tumor collection and immunohistochemical analysis 

Three different tumors from each cohort were examined. 60 minutes prior to 

euthanization, the mice were injected intraperitoneally with 60 mgs/kg/body weight 

pimonidazole HCL (Hypoxyprobe Inc.). The mice were then placed under anesthesia and 

then euthanized by cervical dislocation. The tumors were surgically removed and 

embedded in optimum cutting temperature compound (OCT) placed in a cryomold and 

frozen on dry ice and stored at -80 
º
C until further processing. For ex-vivo analysis of 

hypoxia, 25 µm thick tumor sections were obtained using a cryostat and placed on a 

microscope slide. The tumor section corresponding to the slice location of PISTOL maps 

were selected and stained with FITC conjugated anti-pimonidazole antibody (1:200) 

overnight at 4
0
C and counterstained with DAPI (300 nM, nucleic acid stain). The stained 

section were visualized under a fluorescence microscope (Leica Biosystems) using the 

GFP channel (EX: 450-490 nm, EM: 500-550 nm) for pimonidazole and the blue channel 

(EX: 355-425 nm, EM: 470 nm) for DAPI at 5X magnification. Hypoxic fractions were 

calculated using a custom made MATLAB code. Briefly, the image was split into blue 

(DAPI) and green (Pimo) channels. The blue channel image was used to delineate the 
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tumor and applied to the green channel image. A region of interest was then drawn within 

the green channel image corresponding to the tumor around a region with minimum 

intensity and its mean and standard deviation was calculated.  Regions with value 2 

standard deviations above the mean of were considered as hypoxic and used to calculate 

the hypoxic fraction. The hypoxic fractions of all the cohorts were then compared for 

analysis.  

 

2.3.6 Edema fraction analysis 

We investigated the occurrence of edema in the tumors pre and post treatment and 

analyzed the correlation with the treatment. The inefficient vasculature and lymphatic 

system in the tumors leads to formation of regions with higher fluid accumulation or 

edema. Edema can also result from the necrosis and treatment induced cell-death. Edema 

has higher T2 as compared to the tumors [168]. The edema fraction was calculated by 

applying a bi-exponential fit model, a modification of the model described here [169, 

170], to the acquired T2 maps using a custom made MATLAB code. Pixel by pixel 

computation of short (0-200 ms) and long T2 (>200 ms) components was conducted to 

calculate the edema fraction. Mean edema fraction (fraction of pixels with long T2 

component) was then calculated for the entire volume of the tumor.   

 

2.3.7 Data analysis 

Statistical analyses of all the tumor volume, oxygenation and edema fraction data 

were conducted via a Student T-Test using the GraphPad PRISM 7.0 Software 
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(GraphPad Inc., La Jolla CA). For statistical analysis alpha of <0.05 was considered as 

significant.  Un-paired T-Tests were conducted between the normalized tumor volumes 

for A431 and NCI-H1975 tumor bearing cohorts treated with PR509, PR509E, TPZ and 

untreated control to evaluate the treatment response. Un-paired T-Tests were also 

conducted to analyze the difference between the mean baseline oxygenation and mean 

edema fraction of the two tumor models. Paired t-tests were conducted to determine the 

baseline intra-tumoral variation in oxygenation of central and peripheral region. Paired T-

Tests were also conducted to determine the significance of changes between the 

oxygenation of tumors as well as edema fraction post treatment i.e. at day 5-15 from day 

0. Paired t-tests were also conducted between the oxygenation of central and peripheral 

region for each cohort. Un-paired T-Tests were conducted between the A431 and NCI-

H1975 tumor bearing mice treated with the same therapy. Tumor doubling times were 

calculated using the Origin 8.1 software (OriginLab Corporation).  

 

2.4 Results 

2.4.1 Baseline tumor oxygenation and edema fraction  

A total of 31 A431 and 32 NCI-H1975 tumor bearing animals were studied. In 

order to understand the baseline characteristics of A431 and NCI-H1975 tumors, the 

mean pO2 values derived from the PISTOL maps for each tumor type were compared 

using an unpaired t-test. The mean baseline (day 0) oxygenation of A431 tumors (32 ± 

12.5 torr) was found to be significantly lower than the NCI-H1975 tumors (47 ± 14 torr) 

(p<0.0001) (figure 2.5 A). Further comparison between the mean pO2 of tumor center and 
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periphery showed that A431 tumor centers had significantly lower oxygenation (27 ± 12 

torr) as compared to NCI-H1975 tumor centers (50 ± 17 torr , p<0.0001). The 

oxygenation of A431 tumor periphery (39 ± 15 torr) was also significantly lower than the 

NCI-H1975 tumors’ periphery (47 ± 15 torr, p<0.05). 

Figure 2.5: The baseline mean tumor oxygenation (A) and baseline edema fraction (B) of 

A431 (n = 31) and NCI-H1975 (n = 32) tumors. A431 tumors were significantly more 

hypoxic and had smaller edema fraction than NCI-H1975 tumors. Note: Black * 

represent statistical difference between A431 and NCI-H1975 tumors. Red * represent 

difference between the center and periphery of the respective tumor type (**** represents 

p<0.0001 and ** represents p<0.01).  

 

In order to determine the intra-tumoral variations we compared the mean 

oxygenation of the central and peripheral regions (figure 2.5 A). Paired t-tests showed 

that the A431 tumor centers had significantly lower oxygenation as compared to the 

periphery (p<0.005), while the center of NCI-H1975 tumors had slightly higher 

oxygenation than the tumor periphery but the difference was not statistically significant. 

Furthermore, we computed and compared the baseline mean edema fraction between the 

tumor models and found that A431 tumors (0.1 ± 0.02) had significantly lower edema 

fraction as compared to the NCI-H1975 tumors (0.16 ± 0.04, p<0.0001, figure 2.5 B). 
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2.4.2 Treatment response 

The efficacy of the HAP treatment was determined by analyzing the normalized 

mean tumor volume differences between the treated and untreated control cohorts. The 

mean normalized tumor volumes of PR509 and PR509E treated A431 tumors were 

significantly lower than the untreated control tumors (p<0.0001) at day 15 while TPZ 

treated A431 tumors were comparable to the control tumors (figure 2.6 A). The mean 

normalized tumor volumes of PR509 and PR509E treated NCI-H1975 tumors were 

significantly lower than the untreated control tumors (p<0.001 and p<0.05) at day 15 

(figure 2.6 B).  TPZ treated NCI-H1975 tumors were also significantly smaller as 

compared to the untreated control tumors at day 15 (p<0.05, figure 2.6 B). A significant 

difference was also observed between control A431 and NCI-H1975 normalized mean 

tumor volumes at day 15 with A431 control tumors being smaller than the NCI-H1975 

control tumors (p<0.05). PR509 was more effective than PR509E in NCI-H1975 

xenografts (p<0.06). 

We also investigated the tumor volume doubling times in order to evaluate the 

therapeutic effect and tumor prognosis. The mean volume doubling time for untreated 

A431 tumors was 7 ± 0.4 days while for NCI-H1975 tumors was 5 ± 0.4 days. PR509 and 

PR509E treated A431 tumors showed regression while those treated with TPZ had a 

doubling time of 7.5 ± 0.5 days. PR509, PR509E and TPZ treated NCI-H1975 tumors 

had a doubling time of 9 ± 0.8, 7 ± 0.2 and 7 ± 0.2 days respectively (Table 2.1). 
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Figure 2.6: The mean normalized tumor volumes of A431 and NCI-H1975 tumor treated 

with TPZ, PR509, PR509E and untreated control and their statistical differences. The 

PR509 and its effector PR509E treated A431 tumors had significantly lower mean 

normalized tumor volumes than the TPZ and untreated control tumors. While all the three 

treatments were successful in slowing down the tumor growth in NCI-H1975 cohorts and 

had significantly lower mean normalized tumor volumes than the untreated control.  

Note: The error bars represent the standard deviation. The statistical difference were 

calculated between the treated and untreated control normalized tumor volumes for both 

the tumor types (*** represents p<0.001 and * represents p<0.05). 

 

 

Table 2.1: Tumor doubling times of A431 and NCI-H1975 treated tumors. 

 Tumor doubling time (Days) 

 Untreated Control TPZ PR509 PR509E 

A431 7 ± 0.4 7.5 ± 0.5 N/A N/A 

NCI-H1975 5 ± 0.4 7 ± 0.2 9 ± 0.8 7 ± 0.2 

2.4.3 In-vivo Imaging 

We evaluated the therapy induced changes in the tumors’ oxygenation and 

compared them to baseline levels. We investigated the changes in the overall tumor 

oxygenation as well as in tumor center and periphery.  

2.4.3.1 In-vivo Imaging: Treatment response of epidermoid carcinoma A431 

Untreated Control: The untreated control A431 tumor centers had a significant 

increase in the oxygenation at day 15 (34 ± 10 torr) from the baseline levels (24 ± 12.5 
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torr, p<0.05). While, no significant change was observed in the periphery. The tumor did 

not show any significant intra-tumoral heterogeneity (center vs. periphery) in the 

oxygenation. The behavior of the untreated control cohort is shown in figure 2.7 (A).  

TPZ: The oxygenation of TPZ treated tumors increased post treatment and the 

difference was significant between day 15 (54 ± 11 torr, p<0.05) and baseline (30 ± 14 

torr) for the tumor centers. The behavior of the TPZ treated cohort is shown in figure 2.7 

(B). On the other hand, the changes in oxygenation of tumor periphery were not 

significant. We also observed that the tumor center (59 ± 11 torr) had significantly higher 

oxygenation than the tumor periphery (47 ± 13 torr, p<0.01) post-treatment at day 15.  

PR509: PR509 treated tumors initially showed a decrease in the mean 

oxygenation at day 10 (28 ± 7 torr) but a not significant increase was observed at day 15 

(38 ± 8 torr, p<0.08, fig 3C). The mean oxygenation at day 5 (28 ± 10 torr, p<0.08) of the 

tumor periphery was lower as compared to the baseline (41 ± 17 torr). The post-treatment 

(day 5) oxygenation of tumor centers was significantly lower as compared to the 

periphery. The behavior of the PR509 treated cohort is shown in figure 2.8 (A). 

PR509E: PR509E treatment of the A431 cohort resulted in a significant increase 

in the oxygenation of tumor centers at day 5 (41 ± 7 torr) and day 15 (52 ± 18 torr) from 

baseline (23 ± 8 torr, p<0.01). The peripheral regions’ oxygenation did not show any 

significant change for post-treatment. There were no significant intra-tumoral differences 

observed. The behavior of the PR509E treated cohort is shown in figure 2.8 (B). 
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Figure 2.7: The oxygenation changes of untreated control (n = 11) and TPZ treated  (n = 

7) A431 cohorts and their statistical comparison. Note: The error bars represent the 

standard deviation. The black colored * represents the significant difference from 

baseline and the red colored * represents the significant difference between the center and 

periphery (* represents p<0.05 and ** represents p<0.01). 
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Figure 2.8: The oxygenation changes of PR509 (n = 8) and PR509E (n = 5) treated A431 

cohorts and their statistical comparison. Note: The error bars represent the standard 

deviation. The black colored * represents the significant difference from baseline (* 

represents p<0.05). 
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Figure 2.9: Overlay of the reference T2-weighted tumor image and the respective pO2 

map from day 0 – 15 for all the four A431 cohorts. The region of interest (shown as red 

boundary) represents the segmentation that was conducted to delineate the tumor from 

surrounding tissue and also to segment the tumor into center and periphery. 
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2.4.3.2 In-vivo imaging: Treatment response of non-small cell lung cancer NCI-H1975 

Untreated control: Untreated control NCI-H1975 tumor centers as well as 

periphery had a significant decrease in the mean oxygenation of the tumor at day 5 from 

baseline (p<0.01). The tumor periphery had significantly lower oxygenation also at day 

10 (33.5 ± 9 torr) as compared to baseline (55 ± 19 torr). The behavior of the untreated 

control cohort is shown in figure 2.10 (A). 

TPZ: The TPZ treatment of NCI-H1975 tumors resulted in a decrease in the 

oxygenation at day 5 (40 ± 11 torr) and day 10 (40 ± 10 torr) of tumor centers from the 

baseline (55 ± 15 torr, p<0.05). The behavior of the TPZ treated cohort is shown in figure 

2.10 (B).  

PR509 & PR509E: The statistical analysis showed that PR509 treatment resulted 

in a significant decrease in the oxygenation of the tumor periphery at day 5 (24 ± 5 torr, 

p<0.05) from baseline (37 ± 11.5 torr, p<0.05). Post day 5, the oxygenation increased for 

both tumor center as well as periphery till day 15 and the increase was significant for 

tumor periphery at day 15.  In PR509E treated tumors, the oxygenation of tumor centers 

decreased significantly at day 15 (33 ± 18 torr) from baseline (47 ± 20 torr). The behavior 

of the PR509 and PR509E treated cohorts are shown in figure 2.11 (C & D).  
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Figure 2.10: The oxygenation changes of untreated control (n = 8) and TPZ treated (n = 

8) NCI-H1975 cohorts and their statistical comparison. Note: The error bars represent the 

standard deviation. The black colored * represents the significant difference from 

baseline. (* represents p<0.05 and ** represents p<0.01) 
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Figure 2.11: The oxygenation changes of PR509 (n = 8) and PR509E (n = 8) treated NCI-

H1975 cohorts and their statistical comparison. Note: The error bars represent the 

standard deviation. The black colored * represents the significant difference from 

baseline and the red colored * represents the significant difference from day 5. (* 

represents p<0.05) 
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Figure 2.12: Overlay of the reference T2-weighted tumor image and the respective pO2 

map from day 0 – 15 for all the four NCI-H1975 cohorts. The region of interest (shown 

as red boundary) represents the segmentation that was conducted to delineate the tumor 

from surrounding tissue and also to segment the tumor into center and periphery.  
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Table 2.2: Mean oxygenation of A431 and NCI-H1975 xenograft tumor models from day 

0 -15.  

  Mean pO2 (torr) 

Tumor 

Model 

Treatment  Day 0 Day 5 Day 10 Day 15 

A431  

Untreated 

Control 

(n = 8) 

Mean 28 ± 14 36 ±14 31 ± 14 38 ± 20 

Center 24 ± 11.5 41 ± 19 34 ± 15 34 ± 10 

Periphery 32 ± 13 32 ± 13 30 ± 13 36 ± 23 

 

TPZ 

(n = 8) 

Mean 36 ± 14 48 ± 12 46 ± 11 54 ± 11 

Center 30 ± 14 46 ± 10 49 ± 11 59 ± 11 

Periphery 46 ± 19 64 ± 29 42 ± 13 47 ± 13 

 

PR509 

(n = 8) 

Mean 32 ± 11 30 ± 10 28 ± 7 36 ± 8 

Center 30 ± 9 31 ± 10 29 ± 6 35 ± 13 

Periphery 41 ± 17 28 ±10 27 ±11 36 ± 8 

 

PR509E 

(n = 8) 

Mean 37.5 ± 8 41 ± 7 36 ± 10 53 ± 19 

Center 23 ± 8 41 ± 7 35 ± 9 52 ± 18 

Periphery 39.5 ± 8 38.5 ± 10 38 ± 16 55 ± 19 

NCI-H1975  

Untreated 

Control 

(n = 11) 

Mean 54 ± 16 35 ± 14 36± 13 42 ± 18 

Center 66 ± 14 36 ± 7 46 ± 31 49 ± 27 

Periphery 55 ± 19 37 ± 20 33.5 ± 9 35 ± 20 

 

TPZ 

(n = 7) 

Mean 48.5 ± 14 38 ± 12 39 ± 9 42 ± 9 

Center 55 ± 15 40 ± 11 40 ± 10 45 ± 13 

Periphery 45 ± 15 36 ± 14 36 ± 10 37 ± 8 

 

PR509 

(n = 8) 

Mean 38 ± 11 26 ± 6 30 ± 9 33.5 ± 8 

Center 38 ± 14 26 ± 8 31 ± 11 33 ± 11 

Periphery 37 ± 11.5 24 ± 5 29 ± 10 35 ± 9 

  

PR509E 

(n = 5) 

Mean 46.5 ± 11 39 ± 14 38 ± 19 30 ± 10 

Center 47 ± 20 40 ± 16 36 ± 18 29 ± 9 

Periphery 48 ± 9 39 ± 15 37 ± 19 33 ± 19 

 

2.4.4 Edema fraction 

Edema fractions were calculated from the analysis of T2 maps. We investigated 

the changes in edema fraction as a response to therapy and also compared the intra-

treatment differences in the mean edema fraction for each tumor model. Untreated 

control A431 tumors had a significant decrease in the edema fraction at day 10 (0.09 ± 
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0.02, p<0.05) and day 15 (0.08 ± 0.01, p<0.05) from the baseline (0.11 ± 0.03) (figure 

2.13). There were no significant changes observed in all the three treated A431 cohorts. 

Even a comparison among the edema fraction of treatments at same time point did not 

show any significant difference. Next, we compared the edema fractions of NCI-H1975 

tumors. The edema fraction of TPZ treated cohort was significantly lower than the 

untreated control cohort at all the time point post-treatment (figure 2.14). The edema 

fraction was even significantly lower than PR509E at day 10. The treatment with PR509 

resulted in a significantly lower edema fraction than untreated control at day 15. We also 

observed that the mean edema fraction of PR509 treated tumors were lower than the 

PR509E treated (p<0.06).  
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Figure 2.13: Treatment induced changes in edema fraction of A431 tumors. Note: The 

error bars represent the standard deviation. The black colored * represents the significant 

difference from baseline (* represents p<0.05).  
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Figure 2.14: Treatment induced changes in edema fraction of NCI-H1975 tumors. Note: 

The error bars represent the standard deviation. The black colored * represents the 

significant difference from untreated control cohort and the blue colored * represents the 

significant difference from at day 15 from day 10 of TPZ treated cohort (* represents 

p<0.05 and ** represents p<0.01). 

 

As stated above, the baseline edema fractions were significantly different for 

A431 and NCI-H1975 tumors. Next, we wanted to see the differences among the two 

tumor models treated with respective therapies. The statistical analysis of mean edema 

fraction changes between the respective A431 and NCI-H1975 cohorts showed that NCI-

H1975 tumors consistently had higher edema fraction post-treatment than their A431 

counterparts (figure 2.15). Table 2.3 lists all the mean edema fractions for all the 8 

cohorts.  
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Figure 2.15: Treatment induced changes in edema fraction A431 vs. NCI-H1975. Note: 

The error bars represent the standard deviation (* p<0.05, ** p<0.01, *** p<0.005 and 

**** p<0.0001). 

 

Table 2.3: Mean Edema fraction of A431 and NCI-H1975 xenograft tumor models.  

  Mean Edema Fraction 

Tumor Model Treatment Day 0 Day 5 Day 10 Day 15 

A431 Untreated control 0.11 ± 0.03 0.09 ± 0.03  0.09 ± 0.02 0.08 ± 0.01 

TPZ 0.09 ± 0.02 0.09 ± 0.02  0.09 ± 0.01 0.09 ± 0.02 

PR509 0.10 ± 0.01 0.08 ± 0.03  0.09 ± 0.03 0.08 ± 0.03 

PR509E 0.10 ± 0.02 0.11 ± 0.05  0.13 ± 0.06 0.09 ± 0.03 

NCI-H1975 Untreated control 0.17 ± 0.05 0.16 ± 0.02  0.18 ± 0.04 0.22 ± 0.05 

TPZ 0.14 ± 0.05 0.13 ± 0.02  0.12 ± 0.04 0.15 ± 0.05 

PR509 0.18 ± 0.04 0.14 ± 0.05  0.14 ± 0.03 0.14 ± 0.02 

PR509E 0.16 ± 0.01 0.14 ± 0.03  0.18 ± 0.04 0.19 ± 0.05 
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2.4.5 A431 vs. NCI-H1975 tumor oxygenation 

The heterogeneity of tumor behavior as a response to therapy is not well 

documented, thus we wanted to investigate the differences in behavior of our tumor 

models with respect to treatments. The comparison between the untreated control A431 

and NCI-H1975 tumors showed that the oxygenation between the cohorts was not 

significantly different (figure 2.16 A). The periphery of A431 tumors treated with TPZ 

had significantly higher mean oxygenation as compared to the NCI-H1975 tumors at day 

5 and day 15 (figure 2.16 B). The tumor centers of A431 cohort treated with PR509 had 

significantly lower oxygenation as compared to the NCI-H1975 cohort at day 10 (figure 

2.16 C). While periphery of A431 tumors treated with PR509E were significantly higher 

than the NCI-H1975 tumors at day 15 (figure 2.16 D).  
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Figure 2.16: A431 vs. NCI-H1975 oxygenation (* p<0.05). Note: The error bars 

represent the standard deviation. 
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In order to confirm the existence of hypoxia within the tumors post day 15 post-

therapy, we analyzed the distribution of hypoxia in tumors by immunohistochemical 

analysis of pimonidazole adducts based measurement of hypoxic fractions (gold standard 

for hypoxia). Three tumors from each cohort were selected for the ex-vivo analysis of 

hypoxia. The center of TPZ treated NCI-H1975 tumors (0.27 ± 0.10) had significantly 

higher hypoxic fraction than the PR509E treated tumors (0.08 ± 0.04, figure 2.17 C). 

PR509 treated NCI-H1975 tumor centers (0.10 ± 0.04) had lower hypoxic fraction than 

the tumor periphery (0.22 ± 0.04, figure 2.17 C). No significant difference was observed 

in the hypoxic fractions of rest of the cohorts. Table 4 contains all the mean hypoxic 

fractions from each cohort. 
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Figure 2.17: (A) The mean hypoxia fractions of A431 and NCI-H1975 cohorts, measured 

at day 15 post-treatment, by pimonidazole staining (n = 3). TPZ treatment of NCI-H1975 

tumors resulted in a higher extent of hypoxia as compared to other three NCI-H1975 

cohorts. The mean hypoxia fraction of (B) A431 and (C) NCI-H1975 tumors segmented 

into center and periphery. No significant changes were observed in the A431 tumors. In 

NCI-H1975 tumors, the TPZ treated tumor centers had significantly higher hypoxic 

fraction than the PR509E treated tumors and PR509 treated tumor centers had lower 

hypoxic fraction than the tumor periphery (* represents p<0.05). 
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Table 2.4: Mean hypoxic fraction of A431 and NCI-H1975 treated tumors computed 

from immunohistochemistry. 

 

 Mean Hypoxic Fraction 

 Untreated Control TPZ PR509 PR509E 

A431 0.21 ± 0.02 0.24 ± 0.08 0.3 ± 0.1 0.19 ± 0.08 

NCI-H1975 0.19 ± 0.03 0.4 ± 0.1 0.21 ± 0.06 0.18 ± 0.07 

 

 

Figure 2.18: Pimonidazole stained NCI-H1975 tumor sections treated with (a) untreated 

(b) TPZ (c) PR509 and (d) PR509E. The green color represents regions with 

Pimonidazole and the blue represents DAPI nuclear stain.  
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Figure 2.19: Pimonidazole stained A431 tumor sections treated with (a) untreated (b) 

TPZ (c) PR509 and (d) PR509E. The green color represents regions with Pimonidazole 

and the blue represents DAPI nuclear stain. 

 

2.5 Discussion 

Hypoxia, mostly chronic, modulates various cellular responses and signaling 

pathways that lead to selection of aggressive phenotype, malignant progression, invasion 

and metastasis [41-45]. Hypoxia targeted therapies have been in focus since the last 30 

years and are aimed at targeting the treatment limiting regions in the tumor 

microenvironment. The failure of various extensively studied HAPs calls for an in-depth 
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analysis of the design and functioning of HAPs as well as the contribution of hypoxia in 

their efficacy.  

Previous studies have shown that incorporation of hypoxia and perfusion imaging 

techniques (
18

F-FMISO PET and EPR oximtery) were able to predict the response to TH-

302 in squamous cell carcinoma SCCVII, human colon cancer cell line HT29, C6 

glioblastomas and 9L gliosarcomas [171, 172]. In this study, I investigated the efficacy of 

a novel HAP called PR509, its effector PR509E and tirapazamine in tumor xenograft 

models of non-small cell lung cancer (NCI-H1975) and epidermoid carcinoma (A431). 

The hypothesis was that information about the baseline oxygenation of tumor pre-therapy 

could be predictive and can throw light on other factors and complex processes that are 

involved in the effective working of these hypoxia-activated drugs in-vivo. The PISTOL 

technique was used in my study measure the tumor oxygenation before and after therapy.  

 A lower baseline oxygenation in A431 was observed as compared to NCI-H1975 

tumors. Previous PET based hypoxia imaging studies have shown the presence of 

hypoxia in A431 and NSCLC tumors [127, 173-175]. The distribution of hypoxia varies 

within the tumor regions and therefore the tumor was delineated into central and 

peripheral regions. A431 tumors had higher baseline intra-tumoral heterogeneity in the 

oxygenation of center and periphery, with center being more hypoxic. Both A431 and 

NCI-H1975 tumors responded to the PR509 and PR509E treatments. As expected, the 

more hypoxic A431 tumors had higher response than the NCI-H1975 tumors. The 

toxicity of PR509E is independent of the presence of hypoxia and thus highlights two 

important factors about the multi-kinase inhibitor HAPs: the presence of molecular 
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targets in the tumors and the toxicity level of the HAP. The efficacy of PR509 was higher 

as compared to PR509E in NCI-H1975 tumors as evidenced by the tumor doubling times. 

Previous clinical studies have shown that most NSCLC tumors acquired 

resistance against the first generation multi-kinase inhibitors such as geftinib and 

erlotinib [176]. The efficacy of EGFR-TKIs is dependent on the expression of wild-type 

EGFR and the types of mutations in EGFR (sensitizing or resistance inducing) and their 

level of expression. NCI-H1975 expresses the double-mutant L858R/T790M EGFR 

which imparts resistance against tyrosine kinase inhibitors [177], while A431 has 

overexpression of wild type EGFR [178]. EGFR receptors are over-expressed in regions 

with tumor hypoxia and are known to contribute towards increase tumor proliferation and 

resistance to therapy [179]. The efficacy of PR509E in A431 demonstrates that hypoxia 

was not the sole contributor towards the efficacy and that over-expression of EGFR 

kinases also contributed towards it. The efficacy of PR509E and PR509 in NCI-H1975 

tumors indicates the possibility that hypoxia was a contributor towards increased efficacy 

of PR509 than its effector. Studies conducted over TH4000, the analog of PR509 have 

shown that TH4000 was able to overcome the resistance to conventional tyrosine kinase 

inhibitors such as erlotinib in mutant EGFR NSCLC model [80]. Hypoxia is known as a 

driving factor for resistance to therapy, but it is not always the case in all the cancer sub-

types [55]. It is important that HAPs are able to target the hypoxic regions that are 

contributing towards resistance to conventional therapies. The effect of PR509 in NCI-

H1975 tumors shows that it was able to target the highly aggressive, tumor promoting 

regions of the tumors.  
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TPZ, on the other hand, showed a completely different efficacy between A431 

and NCI-H1975. Despite the fact that A431 tumors were more hypoxic, the TPZ 

treatment was only effective in NCI-H1975 tumors. The mild activation threshold of TPZ 

might affect its diffusion range, resulting in early metabolism of the drug before reaching 

the severe hypoxic regions of the A431 tumors [180]. Previous studies have shown that 

TPZ does not work well with highly dense tumors [181-184]. The lower edema fraction 

of A431 tumors indicates more cellularly dense tumors as compared to NCI-H1975 

tumors. The drug has also been known to exert a limited bystander effect [185]. Overall 

higher levels of baseline hypoxia may indicate poorer perfusion, leading to lower 

transport of the pro-drug and hence reduced efficacy.  

The determinants of HAP efficacy have been discussed in detail in section 1.1.3. 

It is also important to identify the expression of reductases to predict sensitivity of the 

tumor cells to the effector. Analysis for the presence of these reductases in A431 and 

NCI-H1975 cell lines would assist in analyzing the response and correlate with the results 

obtained. The efficacy of HAP is also dependent on the half-life of the cytotoxic 

counterpart. A longer half-life would enable the effector to target more regions in the 

tumors before being metabolized and excreted. The effector should have high potency 

and ability to kill cells in different pH and different cell cycles states such as proliferating 

as well as non-proliferating, which are predominantly present in the hypoxic regions.  

Therapy induced changes in oxygenation are an important factor for examining 

treatment effect. Previous studies have shown that treatment with EGFR-TKIs geftinib 

and erlotinib resulted in tumor regression as well as a decrease in hypoxia in NSCLC 
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tumors [173, 186]. PR509 inhibits the proliferation and differentiation in the tumors 

expressing the EGFR family of tyrosine kinase receptors, thereby resulting in the tumor 

regression in some tumor models. EGFR has been shown to regulate angiogenesis [92, 

187] and thus inhibition of EGFR via PR509 might explain the reduction in oxygenation 

post PR509 therapy in NCI-H1975 tumors and no significant improvement in the 

oxygenation of A431 tumors.  

 In NCI-H1975, the TPZ treatment resulted in a significant decrease in the 

oxygenation of tumor centers at day 5 and day 10 post-treatment, which is in agreement 

with the previous studies that show tirapazamine causes vascular shutdown in the center 

of the tumor [188-191]. This pattern was further validated by the significantly higher 

hypoxic fraction (obtained from pimonidazole staining) in TPZ treated NCI-H1975 

tumors as compared to the untreated control. The successful treatment with PR509 and its 

effector resulted in an increase in the oxygenation of A431 tumors. While in NCI-H1975 

tumors, PR509 resulted in maintaining the oxygenation of tumor centers and a significant 

increase in the tumor periphery. On the other hand, PR509E treated tumors had a 

reduction in the oxygenation of tumor centers at day 15 post-treatment.  

With the use of the PISTOL technique we were able to determine the baseline 

levels of oxygenation and the intra-tumoral heterogeneity in tumor. The technique was 

also successful in determining the therapy-induced changes in tumor oxygenation can 

differentiate between the different levels of hypoxia. Pimonidazole is considered to be a 

gold-standard for hypoxia and thus we analyzed the distribution of hypoxia post-therapy. 

The hypoxic fractions obtained from IHC cannot be used to differentiate between mild 
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hypoxia, severe hypoxia and anoxia. Pimonidazole is limited to the tumor regions that are 

well perfused and thus might fail to generate an accurate map of distribution of hypoxia.  

A potential limitation of our current PISTOL probe is that pO2 measurements can 

only be extracted from the regions that contain HMDSO droplets, which might not 

represent the oxygenation of the entire tumor. Keeping this limitation in mind we aimed 

at depositing the HMDSO droplets uniformly at a single plane in the tumor. The 

significant differences observed in the center vs. periphery of the tumors suggest that this 

method was able to report the heterogeneity in the tumors. There is also a possibility that 

HMDSO droplets might fall in the anoxic or necrotic regions of the tumor, affecting the 

measured mean pO2, thus it is necessary to consider this experimental limitation and 

exclude pO2 measurements from such regions in future.  

The results obtained so far show us that there not a direct correlation between 

HAP efficacy and occurrence of hypoxia. Identification of predictive hypoxic biomarkers 

in individual patients is critical in designing a treatment plan and evaluating response of 

HAP therapies. Given the heterogeneity of hypoxia and perfusion in different tumor types 

and also within different patients, there is need for improved stratification strategies and 

also for development of novel and better hypoxia targeted/activated therapeutics. 

Screening of multiple tumor models for hypoxia and their response to the HAPs is 

necessary in planning therapies and development of better therapeutics. The parameters 

such as oxygen consumption and its dependence on pO2 measured for various cancer cell 

types add to our understanding of the metabolic consequences of cancer progression and 

provide an opportunity to engineer new therapeutics.  
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CHAPTER 3 

QUALITATIVE MRI ASSESSMENT OF CHANGES IN TUMOR HYPOXIA POST 

HYPOXIA-TARGETED THERAPY USING A NOVEL HYPOXIA-TARGETING T1 

CONTRAST AGENT-GdDO3NI 

 

3.1 Abstract 

The goal of this study was to investigate the potential of GdDO3NI in generating 

high-resolution maps of tumor hypoxia before and after administration of hypoxia 

activated therapy. The r1 and r2 relaxivities of GdDO3NI at 7 T were measured to be 4.75 

± 0.04 mM
-1

 s
-1

 and 7.52 ± 0.07 mM
-1

 s
-1

 respectively, in deionized water. GdDO3NI was 

able to report the baseline distribution and intensity of hypoxia in non-small cell lung 

cancer xenograft models (NCI-H1975) as well as a response to the hypoxia activated pro-

drug tirapazamine. Heterogeneous distribution of hypoxia was found within the NSCLC 

tumors. The agent was able to differentiate between the hypoxic vs. normoxic regions in 

the tumor. NCI-H1975 tumors had a hypoxic fraction of 0.48 ± 0.28 and a normoxic 

fraction of 0.45 ± 0.26. The baseline mean percentage enhancement (i.e. the hypoxic 

intensity) was found to be 23% ± 6.5%. Tirapzamine was effective in slowing down the 

growth in treated tumors as compared to the untreated control tumors (p<0.05). An 

increased distribution of hypoxia was observed post Tirapzamine treatment as compared 

to the untreated control tumors (p<0.05). Furthermore, a significant increase was 

observed in the hypoxic intensity of untreated control tumors from baseline. GdDO3NI is 
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therefore a promising hypoxia imaging agent for detection and evaluating the 

modulations of hypoxia non-invasively and longitudinally.  

3.2 Introduction 

Hypoxia is a physiological condition associated with various pathologies, 

including cancer, ischemic heart disease, peripheral vascular disease and stroke [192]. 

Given that hypoxia is a prominent contributor toward tumor growth and therapeutic 

resistance, it is important to evaluate the presence, distribution and degree of hypoxia 

before and after therapeutic interventions. A hypoxia mapping technique that can provide 

accurate three-dimensional maps of degree and distribution of hypoxia non-invasively 

and in real time could assist clinicians in therapy planning and potentially improve the 

treatment outcome.  

Despite advances in imaging techniques, there is still a lack of an efficient 

hypoxia imaging technique that can provide accurate, high-resolution 3-D distribution 

and intensity maps of hypoxia longitudinally and non-invasively in the clinical setting. 

Hypoxia is highly variable throughout the tumor and information about its location and 

intensity in the tumors can assist clinicians in determining the radiation dosage, region of 

maximum impact and also drug combinations to improve therapy outcome. As a 3D 

hypoxia mapping agent [152], GdDO3NI has the potential to provide accurate maps of 

the distribution and severity of hypoxia before and after therapeutic interventions. 

Preliminary in-vivo studies carried out on nu\nu mice implanted subcutaneously with 

NCI-H1975 (NSCLC) tumor cell line demonstrated the efficacy of GdDO3NI in 

reporting regions of hypoxia when compared with the gold-standard pimonidazole. 



64 
 

Briefly, 1 mm thick T1-weighted images were acquired pre and post intra-peritoneal 

injection of 0.3 mmol\kg body weight GdDO3NI for every 5 minutes up to 130 minutes 

post injection to a total time of 150 minutes. Pimonidazole was used as an ex-vivo marker 

for hypoxia and tumors were harvested for IHC staining.  A single MR percentage 

enhancement image corresponding to the pimonidazole stained image was co-registered. 

R
2
 values between the tumor boundaries and hypoxia boundaries were then determined 

using custom MATLAB code to determine the degree of correlation for the images. 

When registered, the tumor boundaries yielded R
2

 values of 0.9034 and hypoxia-

thresholded R
2
 values of 0.4752 (figure 3.1). The preliminary results motivated us to 

investigate the baseline heterogeneity in NCI-H1975 tumors and their response to TPZ 

treatment via GdDO3NI and compare the results with PISTOL analysis.  

 

 

Figure 3.1: Co-Registration and hypoxic thresholding of IHC and MR percentage 

enhancement images.  
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3.3 Materials and Methods: 

The GdDOTA monoamide conjugate of 2-nitroimidazole, GdDO3NI (molecular 

weight 0.912 kD), was prepared as previously described [147]. All the MR Studies were 

performed on a Bruker BioSpec 7 Tesla (7 T) preclinical scanner (Bruker BioSpin 

Corporation, USA).  

3.3.1 Relaxivity measurements 

The in-vitro relaxivity studies were conducted at bore temperature (~23.6 
0
C) and 37 

0
C. 

Serial dilution phantoms of GdDO3NI (0-2mM) in deionized water (DI) were prepared. 

The solutions (100 µl) were added to a 96 well plate that was cut into a 4 × 2 grid and 

placed inside the magnet on a heated water bed. A volume trans/receiver coil was used to 

conduct the imaging. The temperature of the phantoms was monitored using a fiber optic 

probe. A RARE T1 mapping sequence with a variable TR ranging between 148 ms and 5 

s (total 10 TR times) and a TE of 11 ms was used to determine the T1 of the samples. A 

MSME T2 mapping sequence with a variable TE ranging between 11-330 ms (total 30 

TEs) and a TR of 2.5 ms was used to determine the T2 of the samples. The relationship 

between Ri (1/Ti) values and contrast agent concentration (eqn. 1.1) was used to 

determine the ri relaxivity of GdDO3NI (where i = 1 or 2). The T1 values were obtained 

at by fitting the acquired T1 maps to a single exponential, three parameter saturation 

recovery equation:  

Mz (t) = M0(1-e
-TR/T1) 
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The T2 values were obtained at by fitting the acquired T2 maps to a single exponential, 

three parameter saturation recovery equation:  

 Mxy(t) = M0 e−TE/T2 

3.3.2 Animal models 

Human NCI-NCI-H1975 non-small cell lung cancer cells (ATCC Inc.) were 

cultured in Roswell Park Memorial Institute (RPMI 1640) media and Dulbecco’s 

Modified Eagle’s Medium (DMEM) respectively, supplemented with 1% 

penicillin/streptomycin and 10% fetal bovine serum (Life Technologies, Carlsbad, CA, 

USA), in a 5% CO2-containing humidified atmosphere at 37
0
C. Immunocompromised 

nu\nu mice (5-6/per cohort, Charles River Laboratories) were implanted subcutaneously 

with 2x10
6
/40 µl cells of the respective cell line in the right thigh. The animals were 

monitored and maintained as per the guidelines by The Arizona State University 

Institutional Animal Care and Use Committee (IACUC).  

 

3.3.3 Hypoxia activated treatment 

Hypoxia activated pro-drugs have a characteristic hypoxic threshold at which they 

convert into their toxic counterpart. We wanted to examine the correlation between the 

baseline distribution and extent of hypoxia in our tumor model with HAP efficacy. The 

efficacy of hypoxic activated pro-drug tirapazamine (SR 4233) was analyzed in this 

study. TPZ was administered intra-peritoneally at the dosage of 60 µmole/kg/body-

weight in 5 % dextrose to each mouse after the completion of baseline MR imaging.  
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In order to determine the efficacy of treatment, tumor volume measurements were 

made using calipers every 3
rd

 day from the day of baseline imaging and until tumor 

excision (day 5). The formula for an ellipsoid (πabc/6), where a, b and c are three longest 

orthogonal dimensions (with a being the longest), was used to calculate the tumor 

volumes. Tumor volumes were normalized to baseline imaging volumes and then 

compared to study the treatment response.  

 

3.3.4 In-vivo MR imaging 

11 nu/nu mice were imaged in this study to evaluate the efficacy of the GdDO3NI 

in mapping the tumor hypoxia pre and post therapeutic intervention. All the imaging 

procedures were approved by The Arizona State University Institutional Animal Care and 

Use Committee (IACUC). The imaging was done once the tumors reached ~300 mm
3
 in 

volume. The mice were anesthetized (1.5% isoflurane in Air) and placed inside the 

magnet on a circulating heated water bed with a mouse body surface coil positioned on 

the tumor for imaging. The water bed was maintained at 37°C throughout the experiment. 

Multi-slice T1 and T2 maps were acquired pre and post GdDO3NI injection with the 

following parameters: T1 mapping with a variable TR of 0.2 – 5 s (9 TRs) and a TE of 8 

ms and T2 mapping with a variable TE of 8-160 ms (15 TEs) and TR of 3 s (FOV= 2 cm 

× 2 cm, matrix=128 × 64 (RO x PE, reconstructed to 128 x 128), slice thickness = 1 mm, 

resolution 156 µm). The pre-injection T1 and T2 mapping images were followed by 

acquisition of a 3D gradient echo imaging with a TE of 3 ms, TR of 80 ms and an alpha 

of 35º (FOV= 2 cm × 2 cm × 2 cm, matrix=128 × 64 × 64 (RO x PE1 x PE2, reconstructed 



68 
 

to 128 x 128 x 128)). Three consecutive multi-slice T1-weighted images (TR/TE = 200/8 

ms, FOV= 2 cm × 2 cm, matrix=128 × 64 (RO x PE reconstructed to 128 x 128), slice 

thickness = 1 mm) were then acquired and were immediately followed by intravenous 

administration of 0.1 mmol/kg/body-weight of GdDO3NI. Serial T1-weighted images 

with the same parameters were acquired every 5 min for a total of 130 min along with 

two 3D gradient echo images at 60 min and 125 min post-GdDO3NI injection (total 24). 

TPZ was administered after the completion of day 0 MR imaging and the same imaging 

protocol was followed at day 5. The following relationship was used to determine the 

concentration of Gd: [Gd] = (R1,post – R1,pre)/r1 , where R1,pre and R1,post are the relaxation 

rates and r1 is the relaxivity of the contrast agent. The spin-echo based signal equation 

was used to compute the concentration of the agent for all the T1-weighted scans.  

 

Figure 3.2: Schematic representation of the study protocol. 
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Figure 3.3: Schematic representation of the imaging protocol. 

3.3.5. Immunohistochemical analysis of hypoxia 

In order to determine the efficacy of GdDO3NI as a hypoxia-imaging agent, we 

compared the hypoxia distribution pattern with that of gold standard pimonidazole. 

Pimonidazole HCL (60 mgs/kg/body-weight (Hypoxyprobe Inc.)) was administered 

simultaneously with GdDO3NI and the tumors were excised immediately after imaging 

and embedded in optimum cutting temperature compound (OCT).  For ex-vivo analysis 

of hypoxia, 30 µm thick tumor sections (30 sections) at the same imaging plane as MR 

were obtained using a cryostat. The tumor section were stained with FITC conjugated 

anti-pimonidazole antibody (1:500) overnight at 4
0
C and counterstained with DAPI (300 
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nM, nucleic acid stain). The stained section were mounted with Vectashield medium 

(Vector Laboratories, Burlingame, CA) and visualized under the DMI 6000B Leica 

Microsystems microscope using the green channel for pimonidazole and the blue channel 

for DAPI at 5X magnification.  

Hypoxic fractions were calculated using a custom made MATLAB code. Briefly, 

the image was split into blue (DAPI) and green (Pimo) channels. The blue channel 

images were used to delineate the tumors and applied to green channel image. A region 

of interest was drawn around a normoxic region in the green channel image and tumor 

regions with intensity 2 standard deviations above the mean intensity of the normoxic 

region were considered as hypoxic and used to calculate the hypoxic fraction. 

 

3.3.6 Edema fraction analysis 

The protocol for this calculation has been discussed in detail in chapter 2 section 

2.3.6. The edema fraction was calculated for both the cohorts before and after treatment. 

The mean baseline edema fraction for the tumors was calculated by pooling all the 

tumors together. 

 

3.3.7 Data analysis 

A region of interest was drawn on a T2-weighted scout image in order to delineate 

the tumor. A mean of three baseline T1-weighted images was computed and used to 

obtain percentage enhancement maps. The regions with percentage enhancement >10% 

as compared to baseline at the 130 min post injection were considered as hypoxic while 
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regions with >10% enhancement at 90s and <10% at 130 min post-injection time point 

were considered normoxic and <10% at 90s and <10% 130 min post-injection were 

considered to be necrotic. Hypoxic fractions for MR images were calculated based on the 

percentage enhancements maps calculates based on baseline and 130 min post-injection 

time point T1-weighted image. The above mentioned threshold for image analysis are 

based on the previous in-vivo studies conducted with GdDO3NI and its untargeted 

counterpart GdDO3ABA (Gd-DOTA-(n-butyl)monoamide, control agent) [151]. The 

analysis of time course changes in signal intensities and contrast agent concentration 

based on a threshold of 10% showed a significantly higher intensity and concentration of 

GdDO3NI than GdDO3ABA in tumors at the late time points (i.e. 130 min post 

injection). A threshold of <10% enhancement was considered to exclude the regions with 

necrosis as the contrast agents are prone to accumulate in those regions over  time via 

passive diffusion [193]. Previous studies were successful in differentiating the regions 

with necrosis based on the threshold as validated with ex-vivo hypoxia imaging using 

pimonidazole [151].  

  



72 
 

 

Figure 3.4: Representation of the image segmentation procedure for data analysis. (a) 

Tumor region with the ROI applied to delineate tumor from thigh region. (b) The 

percentage enhancement image at (b) 90s and (c) 130 min from the time of injection  

were used to segment the (e) normoxic (% enhancement <10 % at 130 min post injection 

and >10% at 90s post injection) and (f) necrotic regions (% enhancement <10 % at 130 

min post injection and <10% at 90s post injection). (d) The regions with % 

enhancement>10% at 130 post-injection were considered hypoxic.  

 

3.3.8 Image registration 

The efficacy of GdDO3NI in reporting regions of hypoxia were analyzed by a 

voxel by voxel correlation with the pimonidazole stained images of the tumors. The 

mechanism of action for pimonidazole, like other 2-nitroimidazole moiety containing 

agents, is the irreversible reduction into the hydroxylamine. Thiols play an important role 

in the binding of pimonidazole in the hypoxic regions. Pimonidazole binds to thiol 

containing protein such as glutathione and gets trapped in the hypoxic environment.  

A strong correlation between the hypoxic maps obtained by the two imaging 

modalities is indicative of the agent’s efficacy. Regions of interest were drawn on a T2-

weighted image and DAPI stained tumor image, and both the images were registered and 
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the correlation between the ROIs was evaluated using a coefficient of determination, or 

R
2
. With the images adequately registered, voxel-to-voxel comparison was conducted to 

show the correlation between the hypoxia maps. A hypoxic threshold of >10% MR 

enhancement image was used for the MR images and 2 standard deviations above the 

mean of normoxic tissue was used for the pimonidazole stained image to calculate the 

hypoxic fractions. Assuming a normal or Gaussian distribution of the intensity of 

normoxic regions, approximately 95% of the values would fall between the mean and 2 

standard deviation above the mean. Thus choosing a threshold of above the 2 standard 

deviation would ensure efficient determination of regions with hypoxia. In addition, a 

structural similarity index between both modalities was used as another metric for 

establishing the similarity of the images post-thresholding [6], with mean squared error 

also calculated between the two modalities.  

 

3.4 Results 

3.4.1 Baseline tumor hypoxia and edema fraction  

The r1 and r2 relaxivities of GdDO3NI at 7 T were measured to be 4.75 ± 0.04 

mM
-1

 s
-1

 and 7.52 ± 0.07 mM
-1

 s
-1

 respectively, in deionized water at 37 ºC (figure 3.5). 

11 NCI-H1975 tumor-bearing animals were studied, 6 mice were given the TPZ 

treatment and 5 were treated as control (5% dextrose). The mean baseline hypoxic 

fraction and mean percentage enhancement (using GdDO3NI) of the of NCI-H1975 

tumors was found to be 0.48 ± 0.28 and 23% ± 6.5% respectively (figure 3.6 A).  As 

expected the mean percentage enhancement of the normoxic region was significantly 



74 
 

lower at 3.7% ± 4%, but the normoxic fraction was found to be similar to hypoxic 

fraction at 0.45 ± 0.26 (figure 3.6 B). A threshold of 10% and above enhancement from 

the baseline was used to calculate the hypoxic fractions.  The mean baseline edema 

fraction of the tumor model was 0.12 ± 0.03.  

 

Figure 3.5: Relaxivity of GdDO3NI at 7 T, in DI at 37 ºC. 
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Figure 3.6: Baseline distribution and intensity of hypoxia in NCI-H1975 tumors (n =11).  

A correlation analysis between the baseline distribution (figure 3.7 A) and 

severity of hypoxia (figure 3.7 B) with the tumor volumes showed that the presence of 

hypoxia was not dependent on the tumor size.  

 

Figure 3.7: Correlation analysis between baseline characteristics of hypoxia and tumor 

volume. 
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3.4.2 Treatment response 

3.4.2.1 Tumor volume and edema fraction  

The efficacy of the HAP treatment was determined by analyzing the normalized 

mean tumor volume differences between the treated and untreated control cohorts. The 

mean normalized tumor volumes of TPZ treated NCI-H1975 tumors (2.1 ± 0.28) were 

significantly lower than the untreated control tumors (2.7 ± 0.50 p<0.05) at day 5 (figure 

3.8). The treatment resulted in an increase in the edema fraction of TPZ treated tumors at 

day 5 (0.15 ± 0.05) from day 0 (0.11 ± 0.03, p = ns (not-significant)), while the untreated 

control tumors did not show any change in the edema fraction at day 5 (0.12 ± 0.04) from 

day 0 (0.12 ± 0.04) (figure 3.9). 

 

Figure 3.8: Mean of normalized tumor volumes of treated (n =6) and untreated control (n 

= 5) NCI-H1975 tumors (* represents p<0.05). Note: the error bars represents standard 

deviations. 
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Figure 3.9: The edema fraction before and after treatments. Note: the error bars 

represents standard deviations. 

 

3.4.2.2 Treatment effect on hypoxic fraction and intensity 

Hypoxia is an important indicator of the treatment efficacy and the treatment-

induced changes have not been well documented before. I evaluated the changes in mean 

hypoxic fraction and percentage enhancement in the tumors post-treatment. The hypoxic 

fraction between the individual cohorts did not show a significant difference from their 

baseline levels. We observed that TPZ treated tumor had a significantly higher hypoxic 

fraction at day 5 than the untreated control tumors (figure 3.10 A). The mean percentage 

enhancement of the tumors increased for both TPZ and untreated control tumors at day 5, 

although the changes were only significant for untreated control tumors (figure 3.10 B).  

The mean percentage enhancement of TPZ tumors was higher than the untreated control, 

but the difference was not significance (p<0.09).  



78 
 

 

Figure 3.10: The treatment induced changes in distribution and intensity of hypoxia (* 

represents p<0.05). Note: the error bars represents standard deviations. 

 

3.4.3 Kinetics of GdDO3NI in NCI-H1975 tumors 

We investigated the time course changes in the mean percentage enhancement of 

both the cohorts. Figure 3.11 shows the time course changes in the concentration of the 

agent for both hypoxic and normoxic regions of the cohorts. The concentration maps 

were generated from the enhancement maps for each animal pre and post therapy. 

Quantitatively, the peak concentration of the agent was 41 ± 10 µM in TPZ treated 

tumors and a peak concentration of 33 ± 10 µM in untreated control tumors (, p = ns). 

The analysis of time course of Gd concentration showed that the time to reach peak 



79 
 

concentration was faster pre-treatment as compared to post treatment for both the 

treatment groups. As, expected the peak concentrations were higher for the normoxic 

regions followed by a rapid clearance of the agent. 

 

Figure 3.11: The kinetics of mean agent concentration for normoxic and hypoxic regions 

in NCI-H1975 tumors. 

Linear fitting of mean concentrations for end time points (100-125 min post 

injection) showed no significant difference between the slopes of hypoxic vs. normoxic 

regions as well as between pre and post treatment hypoxic regions. As expected, linear 

fitting the early time point (15-35 min post injection) Gd concentrations showed a 
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significant difference between the slopes of normoxic vs. hypoxic regions for both the 

treatment groups.  

 

3.4.4 Co-registration of MRI and IHC images 

We analyzed one TPZ-treated and one untreated control tumor for correlation analysis. 

Pimonidazole staining of the NCI-H1975 tumors confirmed the presence of hypoxia 

within the tumors. Because our goal was to compare the hypoxia maps obtained by 

GdDO3NI, we conducted a voxel by voxel comparison between the MR and IHC images 

(figure 3.12). A single 30 µm thick microcopy image was compared with 1 mm thick MR 

percentage enhancement image. The image similarity indices also showed a strong 

correlation for each image, with 0.7295 for H-1975 TPZ treated tumor and 0.6737 for 

untreated control tumor. This is a strong metric for determining how similar two images 

are, taking into consideration luminance, structure, and contrast between images to 

measure image similarity. R
2
 values were also collected for both hypoxic regions as well 

as tumor boundaries, shown in figure 3.12. A high correlation was obtained between the 

boundaries of the DAPI stained image and the corresponding T2 weighted image. The R
2
 

comparisons didn’t show favorably between the hypoxic maps of the modalities as did 

the structural similarity index. Mean-squared errors were very small, however, further 

showing strong correlation between modalities.  
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Figure 3.12: The correlation analysis between pimonidazole stained tumors vs. MR 

obtained hypoxia maps.  
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Figure 3.13: Percentage enhancement maps of a single slice of untreated control NCI-

H1975 tumor at 125 minutes post-injection of GdDO3NI with respect to pre-injection 

intensity. The region of interest used to delineate the tumor is shown in the T2 weighted 

reference image.  
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Figure 3.14: Percentage enhancement maps of a single slice from the same NCI-H1975 

untreated tumor (at a distance of 5 mm from the previous slice) at 125 minutes post-

injection of GdDO3NI with respect to pre-injection intensity. The region of interest used 

to delineate the tumor is shown in the T2 weighted reference image. T and M represent 

the tumor and muscle regions.  
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Figure 3.15: Percentage enhancement maps of a single slice of TPZ treated NCI-H1975 

tumor at 125 minutes post-injection of GdDO3NI with respect to pre-injection intensity. 

The region of interest used to delineate the tumor is shown in the T2 weighted reference 

image. T and M represent the tumor and muscle regions. 

 

 

 

 

 

 

 

 

 



85 
 

3.5 Discussion 

The hypoxia targeting ability of GdDO3NI has been validated previously in-vitro 

and in-vivo using 9L glioma cells incubated under hypoxia and AT1 xenograft models 

respectively [147, 151]. The goal of this study was to demonstrate the efficacy of our 

hypoxia binding T1 contrast agent GdDO3NI in reporting the distribution and extent of 

tumor hypoxia, evaluate the efficacy of TPZ and its effect over the hypoxia of non-small 

cell lung cancer tumors.  

The non-small cell lung cancer model NCI-H1975 was chosen to be studied as the 

preliminary analysis conducted via GdDO3NI was able to show presence of hypoxia in 

the tumor model. The relaxivity properties of the agent at 7 T were found to be similar to 

the relaxivities obtained at 4.7 T [151] and also to the other conventional Gd based MR 

contrast agents [194]. The slight decrease in T1 relaxivity can be attributed to the increase 

in magnetic field strength.  

We first evaluated the baseline properties of hypoxia within the tumors. NCI-

H1975 tumors had high hypoxic fraction of about 48%, which has been seen in previous 

studies conducted with 
18

F-FMISO or 
18

F-FETNIM [195, 196].  

It is important to note that solid tumors that are grown subcutaneously are prone 

to be more hypoxic than the orthotopic models [30]. The contribution of necrotic regions 

were excluded from all the analysis as the agent is prone to accumulate in those regions 

due to passive diffusion which has been seen by both targeted as well as non-targeted 

contrast agents [193]. HAPs impart their toxicity to hypoxic cells by converting into their 

toxic counterpart in the presence of hypoxia, thus baseline oxygenation of the tumors 
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could aid in predicting the therapeutic response. TPZ treatment resulted in a significant 

decrease in tumor growth as compared to the untreated control, which is consistent with 

the observation of baseline hypoxia within the NCI-H1975 tumors. 

Therapeutic modulation of tumor hypoxia is an important indicator for therapy 

effect and the changes have not been well studied. The hypoxic fraction results indicate 

an increase in the distribution of hypoxia within the tumors post TPZ as well as untreated 

control tumors. Several studies have documented that effective TPZ treatment results in 

vascular shutdown in xenograft models of tumors, resulting in increased hypoxia in the 

central regions of the tumors [188-191]. TPZ gets converted into its toxic counterpart at 

relatively moderate hypoxia, thus tumors with higher distribution of moderate hypoxia 

have the inclination to be more responsive to TPZ treatment. 

The variations in the retention of GdDO3NI in tumor regions represent the 

heterogeneity in the severity of hypoxia (as reflected in mean agent concentrations). 

GdDO3NI was able to report the treatment induced changes in severity of hypoxia post 

treatment. Untreated control tumors had a significant increase in the severity of hypoxia 

(p<0.05), but no significant difference in the distribution of hypoxia. It is important to 

note that the TPZ resulted in significantly more regions of hypoxia than the untreated 

control (p<0.05) and a higher percentage enhancement but the difference was not 

statistically significant for the latter (p<0.09).  

The time course evolution of mean percentage enhancement and derived 

concentrations indicate a delay in accumulation and higher retention of the agent in the 

hypoxic regions as compared to the normoxic regions. Normoxic regions show faster 
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accumulation for both pre and post-treatment time points and a fast wash-out. The slower 

buildup of the GdDO3NI in hypoxic regions is similar to the kinetics of other targeted 

contrast agents [197].  

In order to validate the efficacy of GdDO3NI in reporting regions of hypoxia, I 

decided to carry out a correlation analysis of MR percentage enhancement images with 

pimonidazole stained images of the tumors. Pimonidazole is a gold-standard hypoxia 

marker that is extensively used in the clinic to detect regions of hypoxia [119]. It also 

contains the 2-nitroimidazole moiety and has a hypoxia binding threshold of <10 torr. 

Pimonidazole staining confirmed the presence of hypoxia within the tumors which is 

consistent with the hypoxia maps obtained from MR enhancement images. The 

correlation between MR hypoxic fractions and pimonidazole hypoxic fraction on a whole 

tumor level showed much lower R
2
 values are much smaller than expected. However, this 

might be due to the difference in slice thickness between the modalities (1mm for MRI, 

30 µm for IHC). The discrepancies in the amount of tissue imaged between the two 

modalities might lead to significant mismatch in hypoxia assessment between the two 

techniques.  Visually, the hypoxia distribution pattern correlates between the 

pimonidazole images and GdDO3NI contrast enhancement maps obtained and highlight 

the agent’s ability to effectively report regions of hypoxia. Future work will involve the 

collection of serial sections of tumor tissues ex-vivo and reconstruction of tumor volume 

corresponding to the thickness of MR images.  

Targeted, non-invasive in-vivo imaging of hypoxia using GdDO3NI has the 

potential to determine regions with poor oxygenation and differentiate between normoxic 
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vs. hypoxic tissues. The response of NCI-H1975 tumors to TPZ treatment was in 

agreement with the baseline distribution of hypoxia as detected by GdDO3NI.  A higher 

resolution imaging of tumor oxygenation is preferable for imaging the spatial 

heterogeneity of hypoxia which might vary even at smaller distances of <150 µm. MRI 

can facilitate acquisition of higher resolution 2D images but with longer acquisition 

times. The clinical imaging with PET is mostly acquired at a resolution of 5 mm and 

recent developments have led to acquisition at 1 mm resolution [198, 199]. In the current 

study, we were able to acquire multi-slice T1 weighted images and 3D gradient echo 

images at a high resolution of 156 µm which is better suited for evaluating the 

heterogeneity in tumor hypoxia. GdDO3NI has shown the ability to bind to hypoxic 

regions in both well and poorly perfused regions of a tumor. The agent can also be 

utilized to monitor the behavior of tumor hypoxia as a response to hyperoxic breathing 

for patient stratification. The voxel-by voxel analysis of GdDO3NI kinetics can provide 

crucial information regarding the tumor’s perfusion. Further advancement in the 

understanding of contrast kinetics of the agent can facilitate extraction of quantitative pO2 

values and differentiate between the mild, moderate and severe levels of hypoxia. 
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CHAPTER 4 

 

MRI ASSESSMENT OF CHANGES IN HYPOXIA AND OXYGENATION IN 

PATIENT DERIVED XENOGRAFT MODELS OF NSCLC POST HYPOXIA 

ACTIVATED THERAPY 

 

4.1 Abstract 

The development and screening of novel hypoxia activated therapeutics rely on 

tumor models that can represent the same microenvironmental conditions as seen 

clinically. Patient derived xenograft models have emerged as an improved platform for 

pre-clinical evaluation of tumor properties (such genomic and phenotypic markers) and 

the pharmacokinetics and pharmacodynamics of novel drugs. The goal of the current 

study was to examine the hypoxic environment of two different non-small cell lung 

cancer PDX models and their response to hypoxia activated pro-drug, tirapazamine. The 

efficacy of both PISTOL and GdDO3NI as hypoxia imaging techniques were examined 

and compared. The M112004 PDX models had significantly higher baseline hypoxia than 

the M1005 PDX model (p<0.01) as measured by PISTOL and GdDO3NI. The 

tirapazamine treatment resulted in an increase in extent and severity of hypoxia in the 

M1005 tumors (p<0.05). The application of both the oximetry techniques has the 

advantage of providing functional and physiological information of hypoxia that can 

benefit the scientific community in improving the treatment protocol.  
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4.2 Introduction 

Animal models of rodents with compromised immune system are routinely used 

in pre-clinical studies to screen novel chemotherapeutic agents for their toxicity, efficacy 

and pharmacokinetics [200-203].  The subcutaneous xenograft models of established cell 

lines have been the most studied models in-vivo because of their ease of development and 

extensive genetic information available, but they lack the relevant heterogeneity in 

mutations and sub-population of tumor cell types that are present in a patient’s tumor 

[204, 205]. Thus, these models might fail in representing the clinical therapeutic 

response. The failure of recent promising HAPs in the clinical trials have called for 

inclusion of patient stratification strategies based on hypoxia and also for improved pre-

clinical tumor models that can faithfully replicate the environment and characteristics of a 

clinical tumor. Patient derived xenograft models are developed by extracting tumor 

fragments from a patient’s tumor and propagating them in rodent models, thus 

eliminating the 2D growth cycle which removes the selection bias that 2D cell culture go 

through. Patient derived xenograft models retain the genetic mutations and phenotypic 

heterogeneity of the parent patient tumor [205-209]. They also represent the tumor 

vasculature, invasiveness, metastatic potential, morphology, molecular markers and 

cellular diversity of the tumor [203, 210-214]. Thus, patient derived xenograft models are 

better suited for pre-clinical evaluation of tumor properties.  

I have previously reported the behavior of a NCI-H1975 cell line based model of 

NSCLC before and after tirapazamine intervention in chapters 2 and 3. Given the 

importance of tumor microenvironment and its components in defining the effect of a 
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treatment, we decided to evaluate the baseline oxygenation of NSCLC PDXs in-vivo and 

their response to the tirapazamine. Multi-modality imaging of hypoxia has the advantage 

of generating a more comprehensive analysis of tumor hypoxia by combining the 

strengths of two complimentary imaging techniques, e.g. PET imaging agents combined 

with quantitative assessment of hypoxia via polarographic needle electrodes [114, 199, 

215-218] The hypoxia binding contrast agent GdDO3NI and oxygenation mapping 

technique PISTOL (Proton Imaging of Siloxanes to Map Tissue Oxygenation Level) have 

shown the efficacy in reporting regions of hypoxia qualitatively and quantitatively 

respectively. The combined assessment of oxygenation via GdDO3NI and PISTOL has 

the potential to provide a more detailed representation of hypoxia that can be used for 

better treatment planning. In this chapter I report the baseline expression of hypoxia in 

PDX models of NSCLC and their response to tirapazamine treatment via PISTOL and 

GdDO3NI imaging.  

 

4.3 Materials and Methods 

The MRI contrast agent GdDO3NI was prepared as published previously [147, 

151]. All the MR Studies were performed on a Bruker BioSpec 7 Tesla (7 T) preclinical 

scanner (Bruker BioSpin Corporation, USA).  

4.3.1 Animal models 

Human non-small cell lung cancer PDX models M112004 and M1005 were 

provided by Dr. Landon J. Inge (Assistant Professor Norton Thoracic Institute, St. 

Joseph's Hospital and Medical Center, Phoenix, AZ USA). The PDX models were 
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passaged in immunocompromised nu/nu mice by implanting tumor chunks of the 

respective tumor model subcutaneously. The tumors were then extracted and ground 

using a tissue grinder to form a homogenous tumor slurry and 100 µl of the slurry was 

implanted subcutaneously in two cohorts of 10 immunocompromised nu/nu mice for each 

PDX model (therefore 20 mice for each PDX model in total).  The animals were 

monitored and maintained as per the guidelines by The Arizona State University 

Institutional Animal Care and Use Committee (IACUC).   

The NSCLC PDXs were derived from patient tumors collected under an IRB 

approved protocol (#07HL029) at St. Joseph’s Hospital and Medical Center.  NSCLC 

PDXs (M1005, M112004) were derived from patients without evidence of metastatic 

disease and previous treatment, undergoing routine resection [219].  

 

4.3.2 Hypoxia activated treatment 

As stated in earlier studies it is important to examine the correlation between the 

baseline levels of hypoxia in our tumor model with HAP efficacy. The efficacy of 

hypoxic activated pro-drug tirapazamine (SR 4233) was analyzed in this study. TPZ was 

administered intraperitoneally at the dosage of 60 µmole/kg/body-weight in 5% dextrose 

to each mouse after the completion of baseline MR imaging. 5% dextrose was 

administered to the untreated control cohort. Tumor volume measurements were made 

and analyzed using the same protocol described in chapter 2 and 3.  

 

 



93 
 

 

4.3.3 MR imaging protocol 

The imaging was conducted on the mice once the tumors reached ~300 mm
3
 in 

volume. The following imaging protocol was followed for both the tumor models: 

Baseline (day 0) PISTOL maps were acquired by following the same protocol as 

described in chapter 2. Briefly, neat HMDSO (Sigma Aldrich., 10-50 μL) droplets were 

deposited in a fan pattern along a single plane in the tumors and mice were then placed 

on a mouse bed. A mouse surface receiver coil was placed over the tumor. The body 

temperature of mice was maintained by keeping them on a heated water-bed at 37
0
C.  Pre 

GdDO3NI injection multi-slice T1 and T2 maps were acquired with the following 

parameters: T1 mapping with a variable TR of 0.2 s – 5 s (9 TRs) and a TE of 8 ms and 

T2 mapping with a variable TE of 8-160 ms (15 TEs) and TR of 3 s (FOV= 2 cm × 2 cm, 

matrix=128 × 64 (RO x PE, reconstructed to 128 x 128), slice thickness = 1 mm, 

resolution 156 µm). Three consecutive PISTOL T1 maps were then acquired followed by 

acquisition of a 3D gradient echo imaging with a TE of 3 ms, TR of 80 ms and an alpha 

of 35º (FOV= 2 cm × 2 cm × 2 cm, matrix=128 × 64 × 64 (RO x PE1 x PE2, reconstructed 

to 128 x 128 x 128)).  Three consecutive multi-slice T1-weighted images (TR/TE = 200/8 

ms, FOV= 2 cm × 2 cm, matrix=128 × 64 (RO x PE reconstructed to 128 x 128), slice 

thickness = 1 mm) were then acquired and were immediately followed by intravenous 

administration of 0.1 mmol/kg/body-weight of GdDO3NI. T1-weighted images with the 

same parameters were then acquired every 5 min for a total of 130 min. Two 3D gradient 

echo images were acquired at 60 min and 125 min post-GdDO3NI injection. Post 
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injection T1 and T2 maps were acquired with the same imaging parameters as pre-

injection. At the end of the day 0 imaging protocol, respective therapy (TPZ or 5% 

dextrose) was injected intraperitoneally. Pimonidazole HCL (60 mgs/kg/body-weight 

(Hypoxyprobe Inc, Burlington, Massachusetts, USA)) was administered along with 

GdDO3NI on day 5.  

 

 

Figure 4.1: Schematic representation of the imaging protocol.  

 

4.3.4 Data analysis 

The oxygenation maps from the PISTOL sequence were obtained via the same 

procedure as described in chapter 2. The pre and post GdDO3NI MR images were also 

analyzed as described in chapter 3. Edema fraction analysis was also conducted via the 
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same protocol. For statistical analysis, t-tests (unpaired or paired) were used and an alpha 

of <0.05 was considered significant. 

4.4 Results 

4.4.1 Baseline tumor oxygenation and edema fraction  

18 M1005 and 14 M112004 tumor-bearing animals were studied in total using 

PISTOL technique. The M1005 tumors had a mean baseline oxygenation of 43 ± 16 torr, 

similar to the mean baseline oxygenation of M112004 tumors at 47 ± 10 torr (figure 4.2). 

The tumors were segmented into center and periphery based on the T2 weighted images. 

The M112004 tumors had higher baseline intra-tumor heterogeneity in the tumor 

oxygenation with center being more hypoxic than the periphery, while M1005 tumors 

had similar oxygenation throughout the tumor. The hypoxic fraction (a measure of 

distribution of hypoxia) of the M1005 (0.59 ± 0.21) and M112004 (0.70 ± 0.29) tumors 

were similar (figure 4.3 B). Due to unforeseen loss of few mice with M112004 tumors 

resulted in a small sample size for the GdDO3NI imaging (n = 2 for untreated control and 

n = 4 for TPZ treated). A threshold of 10% and above enhancement from the baseline 

was used to calculate the hypoxic fractions. The mean hypoxic intensity (i.e. mean 

percentage enhancement >10%) analysis showed that M112004 tumors (30 ± 9%) were 

significantly more hypoxic than the M1005 tumors (19 ± 3%, p<0.01, (figure 4.3 A)). 

The comparison between the baseline oxygenation of tumor centers of both the PDXs 

also confirmed the observation with M112004 (38 ± 17 torr) having significantly lower 

oxygenation than the M1005 tumors (47 ± 14 torr). M112004 (0.14 ± 0.08) had 
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significantly higher mean baseline edema fraction than the M1005 tumors (0.08 ± 0.03, 

p<0.01, (figure 4.4)).  

 

Figure 4.2: Baseline mean oxygenation of M112004 (n = 14) and M1005 PDX tumors (n 

= 18, * represents p<0.05 and *** represent p<0.001). Note: the error bars represents 

standard deviations. 
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Figure 4.3: The baseline distribution and intensity of M112004 (n = 6) and M1005 PDX 

tumors (n = 11, ** represents p<0.01). Note: the error bars represents standard deviations. 

 

Figure 4.4: Baseline mean edema fraction of M112004 (n = 14) and M1005 PDX tumors 

(n = 16, ** represents p<0.01). Note: the error bars represents standard deviations. 
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4.4.2 Treatment response 

 

4.4.2.1 Tumor volume and edema fraction 

The efficacy of HAP treatment was evaluated by comparing the tumor volumes 

pre and post treatment as well as changes in the baseline oxygenation. The mean 

normalized tumor volumes of both the TPZ treated PDX tumors were not significantly 

different than the untreated control tumors (figure 4.5). No significant changes were 

observed in the edema fraction too for both the PDX models (figure 4.6).  

 

Figure 4.5: The mean of normalized tumor volumes post-treatment of M112004 and 

M1005 PDX tumors. Note: the error bars represents standard deviations. 
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Figure 4.6: The mean edema fraction post-treatment of M112004 and M1005 PDX 

tumors. Note: the error bars represents standard deviations. 

 

4.4.2.2 Treatment induced changes in oxygenation 

Because our goal was to investigate the treatment induced changes in 

oxygenation, we compared the mean oxygenation between pre and post treatment. The 

untreated control M1005 and M112004 tumors did not show any significant changes in 

the mean oxygenation from baseline (figure 4.7 (A) and figure 4.8 (A) respectively). The 

center of TPZ treated M1005 tumors showed a significant decrease in the oxygenation 

from baseline (figure 4.7 B) while M112004 tumors showed no significant changes from 

the baseline (figure 4.8 B).  
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The comparison between oxygenation of center and periphery post-treatment to 

evaluate intra-tumor heterogeneity showed that the centers of M112004 untreated control 

tumors were significantly more hypoxic than the periphery (figure 4.8 A). The M1005 

untreated control tumors also had lower oxygenation in the tumor centers as compared to 

the periphery, but the difference was only close to significance (p<0.06, figure 4.7 A).  

 

Figure 4.7: The changes in oxygenation post therapy in M1005 PDX tumors (* represents 

p<0.05). Note: the error bars represents standard deviations. 
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Figure 4.8: The changes in oxygenation post therapy in M112004 PDX tumors (* 

represents p<0.05). Note: the error bars represents standard deviations. 
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Table 4.1: Mean oxygenation of M112004 and M1005 PDX tumor models pre and post-

treatment.  

Tumor Model Treatment  Mean pO2 (torr) 

 Day 0 Day 5 

M112004  

Untreated Control 

(n = 6) 

Mean 50 ± 18 33 ±11 

Center 45 ± 21 32 ± 10 

Periphery 58 ± 18 37 ± 10* 

 

TPZ 

(n = 8) 

Mean 38 ± 13 30 ± 7 

Center 32 ± 11 29 ± 9 

Periphery 51 ± 18 35 ± 11 

M1005  

Untreated Control 

(n = 8) 

Mean 49 ± 14 43 ± 10 

Center 50 ± 19 40 ± 10 

Periphery 49 ± 16 47 ± 11 

 

TPZ 

(n = 10) 

Mean 46 ± 7 35 ± 8 

Center 45 ± 9 33 ± 10 

Periphery 48 ± 11 40 ± 12 
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4.4.2.3 Hypoxic fraction and intensity  

Next, I analyzed the hypoxic fraction and mean percentage enhancement of the 

treated and untreated control PDX models to evaluate the treatment induced changes in 

the entire tumor. While PISTOL is efficient in providing the quantitative information, it 

is limited to the regions receiving the HMDSO droplets. No significant difference was 

observed in the distribution of hypoxia in M112004 tumors post-therapy (figure 4.9 A). 

The TPZ treatment of M1005 tumors resulted in significant increase in the hypoxic 

fraction of the tumors, while no significant difference was observed in the untreated 

control tumors (figure 4.9 B).  

 

Figure 4.9: The changes in hypoxic fraction post therapy in M112004 and M1005 PDX 

tumors (Untreated control and TPZ treated M1005 n = 5 and 6 respectively, untreated 

control and TPZ treated M112004 n = 2 and 4 respectively).  

 

The mean percentage enhancement for M1005 tumors treated with TPZ increased 

from their baseline levels, although the difference was only close to significance (p<0.08, 

figure 4.10 B). The comparison between the PDX cohorts (i.e. TPZ/Untreated control-

M1005 vs. TPZ/ Untreated control -M112004) showed no significant differences, which 
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means that the distribution and severity of hypoxia were similar for both the tumor 

models post therapy.  

 

Figure 4.10: The changes in hypoxic intensity post therapy in M112004 and M1005 PDX 

tumors (Untreated control and TPZ treated M1005 n = 5 and 6 respectively, untreated 

control and TPZ treated M112004 n = 2 and 4 respectively). 
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4.5 Discussion 

The constituents of the tumor stroma are a key contributor towards the 

development of tumor microenvironment and play a major role in promoting 

proliferation, invasion, angiogenesis, and metastasis and also in response to therapy [15, 

220]. The tumor stromal components and the induced microenvironment differ 

significantly between different tumor types, tumor grades and might also differ between 

different patients with the same tumor type. The NSCLC tumors in humans have a 

cocktail of mutations that are unique to each patient’s tumor [221, 222]. These mutations 

are relevant in determining the therapeutic efficacy of targeted drugs that are dependent 

on the expression of molecular targets for imparting toxicity. The PDX models maintain 

the mutation characteristics of the clinical tumors, thus the drug efficacy can be expected 

to closely resemble that seen in clinical studies. Previous studies have shown that PDX 

models were able to replicate the chemotherapeutic responses as seen in parent tumor 

[212, 223, 224].  

The goal of this study was to investigate the behavior of two different patient 

derived xenograft models of non-small cell lung cancer (M112004 and M1005), that 

showed resistance to conventional therapies, as a response to hypoxia activated therapy 

tirapazamine. The changes in distribution and severity of hypoxia therapy were studied 

via both quantitative and qualitative oximetry techniques, simultaneously.  

The oximetry studies via PISTOL and GdDO3NI showed that M112004 were 

more hypoxic and had more intra-tumor heterogeneity than M1005. The higher edema 

fraction points towards higher fluid build-up in the tumors and lack of vasculature in 
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poorly-differentiation M112004 tumors as compared to the well-differentiated M1005 

tumors [219]. 

M1005 tumors were more responsive towards the TPZ treatment than M112004 

tumors. Ideally, we would expect tumors with higher oxygenation to be less responsive to 

the hypoxia activated therapeutics and vice a versa. Tumors with severe hypoxia or larger 

tumor volumes might exacerbate the penetration of TPZ into the central regions of the 

tumors. The tumor centers of M112004 were more hypoxic than the periphery, which 

might result in the inability of TPZ to reach the more hypoxic and aggressive regions of 

the tumor. As discussed before, TPZ has a mild hypoxia activation threshold and suffers 

from a poor bystander effect.  But as discussed in detail before, the presence of hypoxia is 

not the only factor responsible for governing the treatment efficacy. Hypoxic regions are 

known to be distributed throughout the tumor, but not all the regions equally contribute to 

the treatment resistance, thus is it important to locate the treatment limiting hypoxic 

regions of the tumor that provide a niche for the more aggressive phenotype and cancer 

stem cells.  

We would expect a higher efficacy of the drug TPZ in M112004 tumors, but the 

tumors were completely un-responsive to TPZ. Results have also shown that TPZ does 

not work well with dense tumor models as its early metabolism due to mild activation 

threshold in the low density hypoxic regions compromises its penetration towards more 

hypoxic regions. The post-TPZ treatment reduction in the oxygenation in M1005 tumor 

centers might be due to the vascular disruptive nature of TPZ. There was a decrease in 



107 
 

oxygenation and also an increase in the regions with hypoxia in M1005 tumors post TPZ 

therapy.  

Because the goal was to investigate the differences between the hypoxic 

behaviors of PDX models vs. the established cell line model, we compared the 

oxygenation data between NCI-H1975 and the PDXs. No significant differences were 

observed in the distribution of hypoxia between the NCI-H1975 and PDX models. 

Quantitative oxygenation data showed that M112004 tumor centers were found to be 

more hypoxic than the NCI-H1975 tumors.  

These results show that the complexity of the tumor microenvironment and its 

interaction with HAPs is a multifactor process. The incidence of hypoxia, its severity, its 

effect on the treatment resistance and tumor progression needs to be evaluated for 

efficient treatment planning. As discussed in chapter 2, the efficacy of any HAP is 

dependent on several factors. Molecular profiling of both the tumor models will give an 

idea of all the genetic mutations that could be relevant to predicting the outcome of HAP 

therapies that target specific molecular markers. The PDX models are an excellent 

platform to test the novel therapeutics, test the different combinatorial treatment protocols 

and for novel drug designing due to their ability to maintain the clinical genetic and 

phenotypic state of the tumor. Studies conducted in pancreatic tumor xenografts in both 

subcutaneous and orthotopic models showed unusually high levels of hypoxia in 

subcutaneous models as compared to orthotopic models [225].  Studies have also shown 

that the response of tumors against therapies was dependent on the location and 

microenvironment of the tumor [226, 227]. It is important to note that the genetic 
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framework of a tumor results in the characteristic tumor microenvironment, thus PDX 

models are an efficient model for replicating the interaction of the HAP with the tumors. 

But the lack of an efficient vascular network and immune response are some of the 

limitations faced by subcutaneous models grown in immunocompromised mice. The 

relationship between the incidence of hypoxia and immune response are still being 

understood. Thus, orthotopic tumor models with clinically relevant expression of hypoxia 

and tumor vasculature might be a better platform than subcutaneous models for 

evaluating the novel HAPs.  

Our study shows that the combined application of PISTOL and GdDO3NI has the 

potential to provide quantitative and qualitative oxygenation data of a tumor which can 

aid in selecting and categorizing patients based on their hypoxic distribution and severity, 

for designing of better therapeutic protocol based on the tumor’s response and for 

determining the optimum time and region of impact for maximum outcome of radiation 

therapy. 
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CHAPTER 5 

CONCLUSIONS & FUTURE DIRECTIONS 

Cancer is a ‘rogue’ organ with its own unique microenvironment, molecular 

markers, signaling pathways and organization of vasculature that have all been 

transformed to promote its growth [4]. Since hypoxia plays an important role on the 

tumor progression and disease resistance, it is important to develop and evaluate hypoxia 

targeting and imaging techniques that can improve the clinical therapeutic response. The 

primary goal of these studies was to test the hypothesis that prospective identification of 

hypoxic tumors is important in predicting the therapeutic response and for development 

of personalized treatment protocols. I analyzed the baseline characteristics of hypoxia in 

pre-clinical models of human cancer using two MRI oximetry techniques unique to our 

lab (GdDO3NI and PISTOL) and monitored their response to hypoxia activated therapy 

in terms of tumor size and changes in oxygenation.  

First, I investigated the efficacy of a novel HAP called PR509, its effector 

PR509E and tirapazamine in tumor xenograft models of non-small cell lung cancer (NCI-

H1975) and epidermoid carcinoma (A431). I used the recently developed PISTOL 

technique to map the tumor’s baseline oxygenation and the therapy-induced changes. A 

lower baseline oxygenation in A431 as well as higher intra-tumor heterogeneity in the 

distribution of hypoxia was observed as compared to NCI-H1975 tumors. The treatment 

efficacy of PR509 was in agreement with the expression profile of EGFRs in NCI-H1975 

(mutated EGFR) and A431 (wild-type EGFR) as well as with the baseline expression of 

hypoxia. The effects demonstrated the importance of evaluating the sensitivity of the 
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tumors towards the effector as well as the ability of HAPs to impart toxicity to the 

treatment limiting and tumor promoting sub-population of the tumor cells. Next, I 

reported the ability of GdDO3NI in mapping the distribution and extent of hypoxia in 

NCI-H1975 and two NSCLC patient derived xenograft models M1005 and M112004 

tumors as a response to TPZ treatment. The agent showed r1 relaxivity comparable to 

other clinical contrast agents at 7 T [194].Since hypoxia imaging with GdDO3NI 

confirmed the presence of hypoxia in NCI-H1975s as reported earlier by PISTOL 

imaging. The baseline and therapy induced characteristics of hypoxia of both the PDX 

tumor models were studied via PISTOL as well as GdDO3NI. M112004 tumors were 

more hypoxic, had more intra-tumor heterogeneity and higher edema fraction than 

M1005 pre-treatment (i.e. baseline characteristics). The post-TPZ treatment reduction in 

the oxygenation in M1005 tumor centers might be due to the vascular disruptive nature of 

TPZ. We observed a decrease in oxygenation but also an increase in the regions with 

hypoxia in M1005 tumors post TPZ therapy. The TPZ-induced changes in oxygenation of 

NCI-H1975 tumors, where it was able to slow down the tumor growth, proved the anti-

angiogenic property of TPZ, which was in agreement with the previous studies that show 

tirapazamine causes vascular shutdown in the center of the tumor [188-190].  

The response of  NCI-H1975, A431, M1005 and M112004 tumors to TPZ 

revealed that an effective HAP needs to have higher hypoxic threshold, ability to 

penetrate into the more dense and hypoxic regions of the tumor (potentially containing 

the cells with more aggressive phenotype) and exert a good bystander effect. 



111 
 

The clinical performance of HAPs has been unsatisfactory. With the inclusion of 

a hypoxia imaging technique for stratification of patients, the outcome of the drug trials 

can be improved. The response of our tumor models to HAPs has highlighted the 

importance of assessing nitroreductase levels, cytotoxicity of the drug, sensitivity of the 

tumor models to the drug, ability of the drug to kill high-proliferating as well as non-

proliferating cells, drug penetration and bystander effect. As discussed before, hypoxia 

although present in most tumors is not always treatment limiting and it is important to 

differentiate the treatment limiting regions for predicting the therapeutic efficacy of 

HAPs. It is important to include the analysis of all the above mentioned factors in 

assessing the efficacy of a novel HAP in different pre-clinical as well as clinical tumor 

models for improving the clinical translatability of the drugs.  

The pre-clinical screening of novel therapeutic drugs is critical in predicting their 

efficacy in clinical trials. An efficient model for screening the HAPs should not only have 

the clinically relevant mutations and also correctly representation of the clinical tumor’s 

vasculature and hypoxia. The tumor vasculature is fundamentally different from the host 

tissue’s vasculature in structure, function and organization [23, 32]. Initially the tumor 

coopts the vasculature of surrounding tissue and initiates angiogenesis as the tumor grade 

increases [228, 229]. The occurrence of hypoxia is correlated with the pattern of 

vasculature and vice a versa, thus hypoxia and tumor vasculature both are important 

parameters in tumor’s growth [230-234]. Recent studies have shown that the location and 

microenvironment of the tumor defines the pattern of vasculature and hypoxia and in turn 

the response of tumor to targeted therapies [226, 235]. The incidence of hypoxia is 
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intertwined with the tumor’s microenvironment, thus it is important to screen the efficacy 

of hypoxia activated therapeutics within in-vivo models that show more clinically 

relevant representation of hypoxia. PDX models are a better platform than the established 

cell-line based models due to their ability to maintain the original characteristics of the 

parent clinical tumor. 

The subcutaneous tumors, especially of lung cancer models, are prone to be more 

hypoxic and necrotic due to the lack of vasculature that is found in orthotopic lung cancer 

tumors [30]. They also lack the interface between the host tissue and tumor that exists 

between the orthotopic tumors. The interface of the subcutaneous tumors with fat, muscle 

and connective tissue found beneath the skin contributes towards variation from the 

clinical tumors. Thus, incorporation of orthotopic models of NSCLC for evaluation of 

their baseline oxygenation and response to HAPs via our oximetry techniques should 

yield more clinically relevant results.  

In chapter 4 I was able to show the efficacy in reporting hypoxia by combined 

application of PISTOL and GdDO3NI imaging. The direct injection of HMDSO into the 

tumors allows us to measure the oxygenation of regions that might be perfusion limited 

and thus not able to be reported by GdDO3NI. Similarly, HMDSO droplets cannot be 

injected over the entire region of the tumors while GdDO3NI can be used to generate 3D 

maps of hypoxia. For the clinical translation of PISTOL, it is necessary to develop a 

nano-emulsion based platform for the systemic delivery of HMDSO or other siloxane 

based reporter molecules. Currently, the oxygenation information via PISTOL is limited 

to single slice, and implementation of spectral spatial pulses could allow for mult-slice or 
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3D acquisition of PISTOL maps. Extensive studies have been conducted on the PET 

hypoxia imaging agent 
18

F-FMISO or 
18

F-FAZA and a correlation analysis of GdDO3NI 

with the PET could be helpful in evaluating the clinical translatability of the MR agent.  

I also reported the correlation between the hypoxic maps obtained via GdDO3NI 

and immunohistochemical staining with pimonidazole. Visually, the hypoxia distribution 

pattern correlates between the pimonidazole images and GdDO3NI contrast enhancement 

maps obtained and highlight the agent’s ability to effectively report regions of hypoxia. 

Further modifications in the comparative analysis have potential to improve the 

correlation results between GdDO3NI and pimonidazole hypoxia maps. 

The cancer imaging community could be positively impacted by the availability 

of two new imaging techniques (one PISTOL and one contrast agent) for imaging tumor 

hypoxia. Thus this work could impact the broader medical research community by 

opening a new window into the progression of metastatic diseases. The techniques can be 

incorporated into routine examination of hypoxia in tumors as they undergo treatments in 

order to determine the window of opportunity at which the HAPs will be able to result in 

better treatment outcome. The imaging techniques could also be used to monitor the 

response of tumors towards the therapies and accordingly modify the treatment plan and 

dosage. The HAPs have been in development since the past 40 years and yet no single 

agent has been approved for clinical use. Our techniques have the potential to improve 

the outcome of clinical results involving HAPs by allowing the clinicians to extract 

quantitative as well as qualitative distribution and severity of hypoxia within the tumors. 

The information can be used to formulate the therapy protocol that will result in the 
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maximum impact. The administration of HAPs as a single therapy is unlikely and 

combination therapeutic protocols involving HAPs is the future. The goal of combination 

therapeutics would be to ensure the eradication of hypoxic as well as the normoxic 

fraction of the tumors. Administration of HAPs with conventional therapies and guided 

with hypoxia imaging techniques for patient selection has the potential to significantly 

improve the treatment outcome and clinical translation of HAPs. The combination 

therapies can be designed based on the mechanism of action of drugs e.g. cytotoxic drugs 

such as TPZ and TH302 could be administered in combination with radiotherapies and 

chemotherapies which are inhibited by the hypoxia mediated resistance. The combination 

therapy of PR509 with anti-angiogenic drugs such as cyclophosphamide could increase 

the regions that will be affected by PR509 as cyclophosphamide would facilitate the 

increase in hypoxia. PR509 could also be administered with chemotherapies such as 

cisplatin and docetaxel that are cytotoxic and target the highly proliferative cells in the 

tumor. The dosing and schedule of the therapies would be dependent on the mechanism 

of action of the drugs being administered. Anti-angiogenic drugs could be administered 

first to increase the regions with hypoxia followed by administration of HAPs.  Thus the 

imaging techniques could impact future patients by aiding the design and development of 

personalized therapy (e.g. patient stratification for novel hypoxia activated pro-drugs) 

particularly for cancer and by the potential to improve how radiotherapy is planned and 

delivered in the clinic. 

Possible Future Experimentation: The imaging protocol for generation of 

oxygenation maps using PISTOL were acquired at a time interval of 5 days, although 
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smaller intervals of 2 to 3 days could be incorporated into future studies for evaluating of 

oxygenation changes at early time points post administration of therapy. The acquisition 

of T1-weighted images at a higher temporal resolution (< 15 s) up to 15 minutes post-

injection of GdDO3NI agent could facilitate the determination of parameters such as 

volume transfer constant (K
trans

), extravascular and extracellular volume fraction (ve) and 

the rates of transfer of contrast agent (CA) etc using a three compartment model [236-

238]. The length of the post-injection scan time can be increased to, say, 180 min from 

130 min to evaluate the time course behavior of hypoxic and normoxic regions at later 

time points. The goal of increasing the number of T1-weighted scans post-injection would 

be to achieve a complete clearance of the contrast agent from normoxic regions and 

analysis of concentration of the agent in hypoxic regions at those time points. The 3D 

gradient echo images provide a 3D distribution of the regions with hypoxia and can be 

used to calculate the hypoxic fraction of the entire tumor volume. Future studies could 

also focus on evaluating the binding efficiency of GdDO3NI at various levels of hypoxia 

as they can used for extracting quantitative oxygenation data. Immunohistochemical 

staining for multiple hypoxic markers such as HIF1α along with pimonidazole could 

provide information regarding the regulation of hypoxia in tumors. Future studies could 

also involve the staining for tumor vasculature and angiogenesis related markers for 

evaluation of tumor perfusion and regulation of angiogenesis. The inclusion of ex-vivo 

staining for proliferation markers in tumors would be useful for evaluating the treatment 

effect involving HAPs.  The therapy protocol for this study consisted of a single dosage 

of HAPs and future studies could evaluate the effect of multiple dosages (such as at 
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intervals of 5 days) of the agents on tumor volume and oxygenation. The dosing time 

interval could be decided based on the imaging protocol. The effect of combination 

therapies such as HAPs with cyclophosphamide (anti-angiogenic drug), cisplatin or 

chemo radiation could be exploited in future studies.  

Experimental Challenges: The oxygenation data obtained using PISTOL 

technique is dependent on the distribution of neat HMDSO in the tumors. The goal is to 

have a uniform distribution of HMDSO droplets thoughout the tumor. The physical 

properties of each tumor model affect the ability of the experimenter to distribute the 

probe uniformly. For example, a tumor with higher structural integrity and high 

interstitial pressure would show higher resistance which might result in difficulty in 

depositing the HMSO in tumor centers, while a tumor with higher edema or fluid fraction 

would facilitate an easier injection of the probe. Multiple droplets (~ 2 µl in volume) 

should be deposited at equal distance as the needle is pulled of the tumor. HMDSO is 

hydrophobic thus care needs to be taken when injecting the probe so that it does not enter 

the blood stream and cause an embolismin the mouse. The challenges involved with 

GdDO3NI imaging protocol include the intravenous injection of the contrast agent. The 

agent should be injected steadily and slowly in order to make a successful injection. It is 

important to maintain the animals at a stable temperature and respiration rate to facilitate 

correct evaluation of tumor perfusion. The correlation of pimonidazole staining tumor 

sections with the corresponding MR images is dependent on maintaining the same 

orientation of the extracted tumor between the cryosectioning and MR image acquisition. 

External markers can be drawn over the tumor as the tumor is placed over the mouse bed 
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for imaging and those markers can be used as a guide to orient to the tumor when placing 

in OCT for cryosectioning.  

In conclusion, the techniques discussed in this thesis have a great potential for 

translation into the clinic. The field of hypoxia activated therapies is still evolving and 

inclusion of these techniques could improve the translatability of the drugs. Our imaging 

techniques could be exploited for validation of predictive biomarkers in patient 

subpopulation as well as studying the treatment response (e.g. the modifications in 

hypoxic fraction). Personalized medicine is an emerging paradigm and these techniques 

have the potential in facilitating development of personalized therapeutic protocol by 

detecting the hypoxic biomarkers at various stages of treatment course. The incorporation 

of these techniques in routine examination of hypoxia behavior of the tumor could also 

shed more light on the role of hypoxia in treatment outcome and disease progression.  
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APPENDIX A 

MORE BULLETS FOR PISTOL: LINEAR SILOXANE REPORTER PROBES FOR 1H 

OXIMETRY 
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A.1 ABSTRACT 

We have previously reported the ability of HMDSO and HMDSO based nano-

emulsions for accurate and repeated measurements of oxygen using the PISTOL 

technique. In this study, we report the feasibility of linear siloxanes hexadimethylsiloxane 

(HMDSO) octamethyltrisiloxane, (OMTSO) and polydimethylsiloxane (PDMSO) 

oxygen reporter molecules. The spin-lattice relaxation rate of all the siloxanes exhibited a 

linear relationship with the oxygenation (R1 versus pO2): R1 (s
-1

) = 0.1105 ± 0011*pO2, 

0.1497 ± 0.0013*pO2 and 0.2091 ± 0.0012*pO2 at 7 T and 37 ºC for neat HMDSO, 

OMTSO and PDMSO respectively.  The sensitivity index decreased with an increase in 

chain length and the values ranged from 7.5 – 11.5 X10
-3 

torr
-1

. We observed no 

substantial change in the relaxation time at higher magnetic fields for HMDSO and 

OMTSO, thus indicating no substantial increase in imaging time. A small temperature 

dependence (approximately 1-2 torr/ ºC) in the calibration curves for HMDSO, OMTSO 

and PDMSO at higher magnetic fields was observed, similar to the previous report on 

neat HMDSO at 4.7 T. In summary, we have demonstrated the feasibility of various 

linear and cyclic siloxanes as pO2-sensing probes for 
1
H MR oximetry. 

A.2 Introduction 

The 
19

F NMR oximetry uses exogenous perfluorocarbon reporters such as perfluoro-15-

crown-5-ether (15C5[145]) as oxygen reporters. FREDOM (Fluorocarbon Relaxometry 

using Echo planar imaging for Dynamic Oxygen Mapping) is a technique that exploits 

the linear relationship of hexafluorobenzene (HFB) with oxygenation. Our group has 

previously shown the feasibility of accurate and repeated measurements of oxygen using 

HFB and hexamethyldisiloxane  (HMDSO) in thigh and tumor regions in-vivo using the 
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19
F

 
and

 1
H NMR spectroscopy and imaging based sequences [141, 239-241] respectively. 

We have also shown the ability of HMDSO based nano-emulsions for tissue oximetry 

[146]. In this study, we have further characterized the calibration curves of various linear 

siloxanes and their utility as pO2 sensing reporter molecules. The siloxanes characterized 

in this study are: linear siloxanes hexamethyldisiloxane, octamethyltrisiloxane (OMTSO), 

and polydimethylsiloxane (PDMSO, trimethylsiloxy terminated, M.W. 410) at 7 T.   

  

A.3 Materials & methods 

 

Preparation of siloxane samples for R1 calibration  

The linear siloxanes hexamethyldisiloxane (HMDSO), octamethyltrisiloxane 

(OMTSO), and polydimethylsiloxane (PDMSO) were purchased from Sigma-Aldrich (St. 

Louis, MO). All the materials were used as received.  

For the sample preparation, each siloxane was placed in 4 gas-tight NMR glass 

tubes (Wilmad Taperlok 528SJH, Buena, NJ) and saturated by bubbling for 15 minutes 

with varying standard of gases including 0%, 5%, 10%, and 21% O2 (balance N2), 

respectively. Gases with varying oxygen concentrations were made by mixing nitrogen 

and air in varying proportions in a HypoxyDial™ (STARR Life Sciences Corp.; 

Oakmont, PA, USA). A pO2 meter was connected in line with the output of the 

HypoxyDial™ in order to verify the accuracy of the HypoxyDial™. The tubes were then 

sealed. For measurement of the temperature dependence of T1, the temperature of the 
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water pad was varied between 17 to 52 
o
C. A fiber optic probe (FISO Technologies Inc., 

Quebec, Canada) was used to measure the temperature of the tubes. 

MRI experiments were performed on a Bruker BioSpec 7 T horizontal bore 

system equipped with actively shielded gradients. The tubes were placed together on a 

pad with circulating water and imaged using a volume transceiver coil [146]. At all the 

magnetic field strengths T1 was measured as a function of temperature in the 

physiologically relevant range of 17-52 
o
C. T1 measurements were performed after the 

tube temperature was allowed to equilibrate at the desired value for 10-20 min.  

Pulse sequence for measuring pO2 

A frequency selective 
1
H NMR spectroscopy based sequence as described in 

detail in reference [140] was used for determination of T1 of the prepared samples at 4.7 

T. A 
1
H MR spin-echo imaging based sequence as described in detail in reference [141] 

and an inversion recovery based sequence was used for T1 determination at 7 T. T1 data 

were fit to a single exponential, 3-parameter saturation-recovery equation (refer to 

equation [1]) using the Levenberg-Marquardt algorithm. The data at each temperature 

was then fit into the equations 1-3 to obtain the corresponding calibration constants and 

T1 values.  

                                                          R1 = A' + B' ∗ pO2                                               [1] 

Where, A’ is the diamagnetic i.e. anoxic component and B’ is the paramagnetic 

component that is dependent on pO2.  

The temperature dependence of the A’ and B’ components can be approximated 

as: 
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A' =  A + C ∗ T  

                                                           B' =  B + D ∗ T                                                  [2] 

Thus, a temperature dependent model for estimation of pO2 can be obtained by 

substituting the values from equation 1.8 in equation 1.7. 

                                         R1 = A + B ∗ pO2 + C ∗ T + D ∗ T ∗ pO2                            [3] 

The above equation can be used to determine oxygenation levels as well as errors 

in estimation pO2/°C, thus providing a more accurate and reliable quantification. The 

following equation can be used to determine error in pO2 determination for change in 

temperature by 1°C at a particular temperature T and oxygenation level: 

 
∆pO2

∆T
=

|C + D∗pO2|

B + D∗T
         [4] 

 

Calculation of error in pO2 determination 

Using the characterization parameters A, B, C, D, the relative errors in the pO2 

determination were calculated at all the field strength using equation [4] for oxygenation 

levels in relevant a hypoxic range (0 Torr to 50 Torr) at 37°C and for a change in 

temperature by 1°C.  
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A.4 Results 

 

Calibration of HMDSO at 7 T  

The calibration of HMDSO was conducted at 7 T to study the effect of variation 

of pO2 and temperature on R1 of HMDSO. R1 values were obtained as a function of pO2 

while the temperature was kept constant. The acquired R1 vs. temperature data was fit to 

the linear model described before to yield the calibration constants A’ and B’ at 7 T 

(figure A.1). The R1 of the HMDSO showed a linear dependence with the pO2 at a fixed 

temperature.  

A’ and B’ were then plotted with respect to variations in temperature, in the 

physiologically relevant range of 17°C to 48°C, to yield characterization parameters A, B 

C and D at 7 T (figure A.1 C & D). For pO2 of 5 Torr, the resulting error in pO2 

determination for a change in temperature by 1°C at 37°C was ~ 0.1 Torr/°C at 7 T. 
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Table A.1: Calibration constants of HMDSO at 7 T and 9.4 T. 
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Figure A.1: Neat HMDSO R1 dependence on pO2 at different temperatures at 7 T. 

 

Calibration of Octamethyltrisiloxane (OMTSO) at 7 T 

OMTSO is a symmetric molecule with a single NMR resonance close to that of 

tetramethylsilane (TMS). OMTSO has characteristics similar to that of HMDSO and its 

R1 showed a linear dependence on pO2. Calibration of OMTSO was done at 7 T and the 

acquired R1 vs. temperature data was fit to the linear model described before to yield the 

calibration constants A’ and B’. 
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The temperature dependence of constants A’ and B’ was determined by linear 

fitting the constants at different temperatures at  7 T. The error in pO2 determination for 

a1°C change in temperature was calculated to be ~ 1 Torr/°C for a pO2 of 5 Torr at 7 T. 

 

Figure A.2: Neat OMTSO R1 dependence on pO2 at different temperatures at 7 T 
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Table A.2: Calibration constants of OMTSO at 4.7 T, 7 T and 9.4 T. 
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Calibration of polydimethylsiloxane at 7 T 

PDMSO (M.W. 410) is a polymer of dimethylsiloxane with a viscosity of 2 

centistokes. The temperature dependence of constants A’ and B’ was determined by 

linear fitting the constants at different temperatures at 7 T (figure A.3). At 7 T the values 

were A= 0.29023 ± 0.0036 s
-
1, C=-0.0022 ± 9.53x10

-5
 (s*°C)

-1 
(figure A.3 C) and 

B=0.0015 ± 3.13x10
-5

 (s*Torr)
-1

 and D= -8.61x10
-6 

± 8.22x10
-7

 (s*Torr*°C)
-1

 (figure A.3 

D). The error in pO2 determination for a 1°C change in temperature was calculated to be 

~ 1.9 Torr/°C for a pO2 of 5 Torr at 7 T (figure A.4 C). 

 

Figure A.3: Neat PDMSO R1 dependence on pO2 at 7 T. 
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Table A.3: Calibration constants of PDMSO at 7 T. 
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Figure A.4: The comparison of simulated error in pO2 determination for neat (A) 

HMDSO, (B) OMTSO and (C) PDMSO with a 1
o
C change in temperature in a hypoxia 

relevant pO2 range at 37
o
C at 4.7, 7 and 9.4 T. 

 

A.5 Discussion 

Accurate assessment of oxygenation is vital for monitoring tissue and organ 

functions and also for the diagnosis and characteristization of pathophysiology. PISTOL 

has been established as a quantitative oximetry technique that allows for accurate, non-

invasive and repeated measurement of tissue oxygenation. HMDSO has been 

characterized as the oxygen reporter agent and HMDSO based nanoemulsions have also 

shown their ability to report oxygenation in-vivo at 4.7 T [146]. Measuring tissue 
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oxygenation using siloxanes at higher magnetic field strength has the following 

advantages: 1) species have larger chemical shift separation between them which aids in 

selective excitation, 2) increase in net magnetization (M0 ∝ B0). It is well known that at 

higher magnetic fields the relaxation time gets longer (for small molecules) which might 

result in an increase in the total imaging time [242, 243]. Our goal was to evaluate the 

relationship of T1s of HMDSO and OMTSO at 7 T and 9.4 T and also help in 

determining the choice of siloxane (smaller dynamic range of T1’s across the pO2 range) 

for applications requiring faster time resolution. Our results suggest that for neat 

HMDSO at 7 T, T1 at 37°C ranged from 9 seconds (pO2=0 Torr) to 3.5 seconds (pO2=160 

Torr) and at 9.4 T, T1 ranged from 9 seconds (pO2=0 Torr) to 3.21 seconds (pO2=160 

Torr) which differed by ~ 2 % from T1 obtained at 4.7 T [140] indicating no substantial 

increase in imaging time. Also, the calculated error in pO2 determination as given by 

Equation [8] at 37°C for 1°C change in temperature was ~ 0.1 Torr/°C at 7 T and ~ 1.18 

Torr/°C at 9.4 T when the actual pO2 value was 5 Torr. Since the imaging time at 7 T and 

9.4 T was same as for 4.7 T with no significant increase of error in pO2 determination, 

imaging of HMDSO would be desired at higher magnetic field strengths. Similarly for 

OMTSO the T1 ranged from 6.4 seconds at 4.7 T to 6.7 seconds at 7 T and 7 seconds at 

9.4 T (pO2=0 Torr) and from 2.1 seconds at 4.7 T to 2.7 at 7 T and 2.6 seconds at 9.4 T 

(pO2=160 Torr). Thus, the changes in the T1 did not result in a substantial increase in the 

imaging time for OMTSO.  

The calibration of OMTSO and PDMSO demonstrated that longitudinal 

relaxation rate of both the siloxanes varied linearly with respect to changes in pO2, 
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demonstrating the potential of OMTSO and PDMSO to measure dynamic changes in 

tissue pO2 following intramuscular injection.  At a constant temperature of 37°C OMTSO 

(B’OMTSO@4.7 T = 0.0013 ± 2.66x10
-5

, B’OMTSO@7 T = 0.0013 ± 5.55x10
-5

, B’OMTSO@9.4 T = 

0.0014 ± 8.66x10
-5

) and PDMSO (B’PDMSO@7 T = 0.0012± 1.59x10
-5

) had oxygen 

sensitivity similar to HMDSO (B’HMDSO@4.7 T = 0.0013 ± 5.5x10
-5

, B’HMDSO@7 T = 0.00108 

± 1.7x10
-5

, B’HMDSO@9.4 T =0.0012 ± 8.81x10
-6

). Another important observation was that 

PDMSO had higher anoxic relaxation rate (A’) compared to neat HMDSO at 7 T and 

OMTSO at 7 T. OMTSO also had higher anoxic relaxation rate (A’) compared to neat 

HMDSO at 4.7 T, 7 T and 9.4 T respectively. The higher anoxic relaxation rate indicates 

faster T1 for the siloxanes which can be further exploited to map tissue oxygenation faster 

than HMDSO. It should be also noted that the boiling point of neat OMTSO (153°C) is 

higher than the boiling point of neat HMDSO (101°C) and neat PDMSO (85-105 °C) 

thus OMTSO is advantageous for the emulsification process as it would be less volatile 

during the emulsification process [244]. The errors in pO2 determination for OMTSO as 

well as PDMSO were found to be in the same range as HMDSO at 4.7 T, 7 T and 9.4 T 

respectively at an actual pO2 of 5 Torr with change in temperature by 1°C at 37°C. Thus, 

OMTSO and PDMSO can be identified as a promising pO2 probe which could enable 

faster mapping of tissue oxygenation than HMDSO. Alternatively, for applications 

requiring faster time resolution, one can use cyclic or long chain linear siloxanes as the 

reporter molecules because of their smaller dynamic range of T1s. 

As stated before, at a given temperature (and magnetic field) the linear 

relationship between pO2 and temperature (defined by equation [4]) determines the 
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sensitivity of R1 to changes in pO2. The ratio η = slope/intercept (B’/A’) is a parameter 

that helps in determining the sensitivity index of different MRI pO2 reporter molecules. A 

larger slope and smaller intercept represents greater sensitivity to changes in pO2 but also 

indicates longer imaging times. We observed a decrease in η with respect to an increase 

in chain length of the linear siloxanes and the η values ranged from 7.5 – 11.5 X10
-3 

torr
-

1
. 

The octanol-water partition coefficient (KOW) defines the hydrophobicity and 

lipophilicity of a compound and a higher KOW represents higher hydrophobicity [245]. 

The octanol-water partition coefficient of HMDSO is 4.2 [245], octamethyltrisiloxane is 

4.8[245], decamethyltetrasiloxane is 5.4 [245], dodecamethylpentasiloxane is 6 [245], 

octamethylcyclotetrasiloxane (OMCTSO) is 6.98 [246] and 

decamethylcyclopentasiloxane (DMCPSO) is 8.09 [246] at ~ 25 ºC.  As evident, the 

hydrophobicity of organic siloxanes increases with increasing molecular weight.  

Our previous studies have shown the feasibility of measuring oxygenation via 

direct injection of siloxanes into the region of interest. The direct injection of neat 

siloxane or nano-emulsions ensures the delivery of a sufficient dosage of the probe over 

the entire tissue or tumor, although this method of delivering the reporter agent is limited 

to regions that are accessible. Siloxane based nano-emulsions with systemic deliverability 

needs to be developed in order to map the oxygenation of inaccessible regions. Various 

HMDSO based oil in water nanoemulsions have been synthesized successfully using 

PEGylated non-ionic surfactant and have been characterized with respect to changes in 

pO2 and temperature [146, 247]. These nanoemulsions have oxygen sensitivity similar to 
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neat HMDSO indicating potential of and being used as a pO2 probes following systemic 

delivery. 

In summary, we have demonstrated for the first time the feasibility of various 

linear and cyclic siloxanes as pO2-sensing probes for 
1
H MR oximetry. These siloxanes 

of different chain lengths with a broad range of boiling points, hydrophobicity and 

dynamic range of T1s can be used for diversifying the application of 
1
H MR oximetry. 

With systemic delivery for tissue oximetry in mind, we plan to further synthesize 

siloxane based nano-emulsions and optimize the synthesis procedure to obtain smaller 

sized nanoprobes, which could improve uptake in regions with restricted vascularization 

and reduce the bias in delivery to well vascularized regions as has been seen with the use 

of microemulsions [248].  
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APPENDIX B 
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1. Permission to reproduce and modify Figure 1.2 A 
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3. Permission to reproduce and modify Figure 1.2 B 
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APPENDIX C 

APPROVAL DOCUMENTS FOR STUDIES INVOLVING ANIMAL SUBJECTS 
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