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ABSTRACT 

Many environmental microorganisms such as marine microbes are un-culturable; hence, 

they should be analyzed in situ. Even though a few in situ ocean observing instruments 

have been available to oceanographers, their applications are limited, because these 

instruments are expensive and power hungry. 

In this dissertation project, an inexpensive, portable, low-energy consuming, and 

highly quantitative microbiological genomic sensor has been developed for in situ ocean-

observing systems. A novel real-time colorimetric loop-mediated isothermal 

amplification (LAMP) technology has been developed for quantitative detection of 

microbial nucleic acids. This technology was implemented on a chip-level device with an 

embedded inexpensive imaging device and temperature controller to achieve quantitative 

detection within one hour. A bubble-free liquid handling approach was introduced to 

avoid bubble trapping during liquid loading, a common problem in microfluidic devices. 

An algorithm was developed to reject the effect of bubbles generated during the reaction 

process, to enable more accurate nucleic acid analysis. This genomic sensor has been 

validated at gene and gene expression levels using Synechocystis sp. PCC 6803 genomic 

DNA and total RNA. Results suggest that the detection limits reached 10 copies/μL and 

100 fg/μL, respectively. This approach was highly quantitative, with linear standard 

curves down to 10
3
 copies/μL and 1 pg/μL, respectively. In addition to environmental 

microbe characterization, this genomic sensor has been employed for viral RNA 

quantification during an infectious disease outbreak. As the Zika fever was spreading in 

America, a quantitative detection of Zika virus has been performed. The results show that 
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the genomic sensor is highly quantitative from 10 copies/μL to 10
5
 copies/μL. This 

suggests that the novel nucleic acid quantification technology is sensitive, quantitative, 

and robust. It is a promising candidate for rapid microbe detection and quantification in 

routine laboratories.  

In the future, this genomic sensor will be implemented in in situ platforms as a 

core analytical module with minor modifications, and could be easily accessible by 

oceanographers. Deployment of this microbial genomic sensor in the field will enable 

new scientific advances in oceanography and provide a possible solution for infectious 

disease detection.  
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1. OBJECTIVES AND CONTRIBUTION 

1.1 Objectives 

The ocean is a unique ecosystem that contributes to a large portion of the global primary 

production, and regulates the climate of the earth. However, most of the ocean remains 

unexplored. In the past few decades, researchers began to realize that bacteria played 

dominant roles in maintaining the abundance and diversity of marine ecosystems, while 

most of the bacteria are not cultivable in lab conditions. With the successful 

implementation of ocean-observing systems, especially in situ genomic sensors, ocean-

related research has achieved significant progress. Unfortunately, in situ genomic sensors 

are in their infancy, and only available to small groups of scientists for very limited 

marine microbiology studies.  

In my dissertation project, a low cost and low energy-consuming, chip-level device 

has been developed to serve as a core analytical unit for future in situ instruments. The 

objectives of this project are as follows:   

(1) For the first time, a real-time colorimetric nucleic acid quantification method has 

been developed for LAMP reactions. Image acquisition, processing, and data modeling 

tools have been built to automate the data analysis process. The colorimetric 

quantification method, whose signals can be easily picked up by the naked eye and 

cameras, is promising to become competitive to traditional fluorescence-based 

quantifications.  

(2) A hardware platform has been designed and built with a heating element and 

chip-level device to be compatible with real-time colorimetric detection and 
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quantification for the LAMP reaction. The goal of this objective is that the hardware 

platform design must be simple and portable for future in situ implementation. The 

platform should use low-cost and easily accessible materials and elements, so that it can 

be used in both academia and industry. 

(3) The performance of the platform has been validated by environmental microbe 

(Synechocystis sp. PCC 6803) detection at both gene and gene expression levels. The 

LAMP reaction protocols have been optimized to achieve a good performance, and been 

compatible with the chip-level device.  

(4) The platform has been applied in viral RNA detection and quantification, 

targeting the Zika crisis in America. This is an external application and further validation 

of the colorimetric quantification platform. This platform proves its broad applications 

not only in the area of environmental observations but also in the region of infectious 

disease diagnostics.  This objective seeks the potential application of the genomic sensor 

to benefit other research communities.  

(5) The bacterial community in the Biosphere 2 Ocean has been characterized. The 

microbiota information will become available for researchers, serving as a foundation for 

future in situ device validation.  

The ultimate goal of this project is to build a low-cost and portable ocean-observing 

system that is accessible to most oceanographers. This ocean-observing system should 

contain multiple modules and units, for example, the sampling and sample processing 

module, the nucleic acid analytical module and power system, etc. This dissertation 

mainly focuses on the core nucleic acid analytical module development. The analytical 
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module that is constructed in this dissertation project will be available to perform the 

detection for multiple purposes with minor modifications. Figure 1 shows the pipeline of 

the device design process.  

 

Figure 1. Device development and validation pipeline 

1.2 Scientific contributions 

All of the objectives have been achieved, based on the results of my dissertation projects. 

The scientific contributions of my dissertation project are as follows:  

(1) A real-time colorimetric LAMP quantification method has been established. The 

results indicated that hue is a reliable and robust parameter to quantify the color shift, 

which is the most important indicator of the LAMP amplicons. The reasons for choosing 

hue are: (i) it is independent to the room lighting intensity, which decreased the 

requirements to optical setups. (ii) It simplified the device and reduced the cost. A 

generalized data analysis pipeline and related supporting platform have been built. This 

whole process is fully automated to perform image acquisition, image processing, and 

data analysis. A bubble and background rejection algorithm has been implemented in this 

pipeline, solving the bubble issue that frequently occurred in microfluidic devices. 
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Compared with the traditional fluorescence-based quantifications, this colorimetric 

quantification method has high tolerance on the effects of bubble generated during the 

heating and incubation process. The completion of this part of the project opened a new 

path for rapid nucleic acid quantification.  

(2) A low-cost chip-level device, as well as the supporting hardware setup, has been 

established. The chip-level device was fabricated with easily accessible plastics. The 

results showed that the chip-level device was suitable to perform colorimetric LAMP 

quantifications within one hour. The hardware platform, including a temperature 

controlling unit, and a digital camera, has been constructed. Each individual part in the 

hardware platform can be easily accessed in conventional laboratories or in remote areas.  

(3) The performance of the colorimetric LAMP platform has been validated. The 

results suggested that the platform was highly specific, quantitative, and sensitive to the 

target nucleic acid sequence. Compared with qPCR, this platform achieved comparable 

sensitivity, while detection was rapid, and eradicated the requirement of thermal cycling. 

A rapid isothermal amplification reduced the need of power supplies, and potentially 

elongated the endurance of the genomic sensor when deployed in situ.  

(4) The colorimetric LAMP platform has been applied to Zika viral RNA detection 

and quantification. The results indicated that the Zika viral RNA can be quantitatively 

detected by the colorimetric LAMP platform within 40 minutes, while other similar viral 

RNA (dengue, chikungunya, West Nile) did not cross-react.  This suggested the 

colorimetric LAMP platform can be a promising technology for infectious disease 

diagnostics. It will be especially useful in remote areas, where healthcare infrastructure is 
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minimal. This part of the project offered an unprecedented opportunity for rapid and 

quantitative virus diagnostics, and will cut down the infectious disease diagnostics 

associated health care expenditures.  

(5) A practical application of this platform is to test it in the Biosphere 2 Ocean. The 

bacterial community structure in the Biosphere 2 Ocean has been identified. The 

Biosphere 2 Ocean is an ideal location for ocean-observing instrumentation validation. 

This part of project provided bacterial community information from the Biosphere 2 

Ocean, as well as interesting detection targets for developing in situ genomic sensors in 

the future. This work served as a foundation for future instrument development.  

The colorimetric quantification method and the related platform have been developed 

and validated. Besides environmental observation and health care applications, this 

platform will be useful for multiple purposes with minor modifications. The results of 

this PhD study and research have culminated in one patent applications, one conference 

publication, one submitted journal manuscript and three manuscripts that are under 

preparation for submission.  

1. Ci, S., Martineau, R., Chao, S. H., Gao, W., Wang, H., & Meldrum, D. R. On-

chip quantitative colorimetric loop mediated isothermal amplification, in preparation. 

2. Ci, S., et al. Quantitative detection and analysis of Zika using colorimetric loop 

mediated isothermal amplification, in preparation.  

3. Ci, S., et al. Bacterial community structure analysis in Biosphere 2 Ocean, in 

preparation.  
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4. Martineau, R., Murray, S. A., Ci, S., Gao, W., Chao, S. H., & Meldrum, D. R. 

Improved performance of loop-mediated isothermal amplification assays via Swarm 

priming. Anal Chem, Accepted.  

5. Martineau, R., Houkal, J., Chao, S. H., Gao, W., Ci, S., & Meldrum, D. 

(2016). U.S. Patent No. 20,160,114,323. Washington, DC: U.S. Patent and Trademark 

Office.  

6. Martineau, R. L., Ci, S., Houkal, J., Gao, W., Chao, S. H., & Meldrum, D. 

R. (2014). DEEP-well microfluidics for arrayed colorimetric LAMP analysis. In 18th 

International Conference on Miniaturized Systems for Chemistry and Life Sciences, 

MicroTAS 2014. (pp. 1009-1011). Chemical and Biological Microsystems Society. 
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2. INTRODUCTION 

The effect of marine microbes on the global ecosystem is tremendous. Marine microbes 

account for more than 90% of the ocean biomass (Whitman et al., 1998). They perform 

most of the primary production in the oceans, accounting for half of the global primary 

production (Field et al., 1998; Rivkin and Legendre, 2001). They also control the 

biogeochemical dynamics in the ocean (Stocker, 2012). In recent years, studies regarding 

ocean acidification, carbon cycling, and climate change require increased understanding 

of microbial populations (Bardgett et al., 2008; Follows et al., 2007; Liu et al., 2010). 

Despite the progress achieved in ocean microbial research, the behavior of many 

mysterious bacterial communities remain undiscovered (DeLong, 2006), and around 91% 

of the species in the ocean are still waiting to be discovered and described (Mora et al., 

2011).  

A typical and conventional approach to study the microbial community is culture-

based. In brief, bacterial species from a sample were filtrated, plated and incubated for a 

period of time. The bacteria was expected to grow into colonies (Abbaszadegan, 2004). 

The bacterial colonies can be counted, followed by molecular methods for species 

identification (Laiz et al., 2003). However, because of the unculturability of a major (> 

98%) environmental microorganisms (Wade, 2002) in lab conditions, more and more 

researchers realized that the conventional culture-based microbial community analysis is 

inadequate for marine microbial research (Rusch et al., 2007; Streit and Schmitz, 2004; 

Wagner et al., 1993).  
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There are some explanations for the unculturability. For example, even though 

some microbes remain alive in laboratory conditions, they could not proliferate, because 

some specific nutrients required for their growth was not present in the culture medium 

(Roszak and Colwell, 1987). On the other side, inappropriate cultivation conditions (e.g. 

toxins in the culture medium, temperature, pH, and oxygen concentration) inhibit the 

growth of the specific microbe (Vartoukian et al., 2010). Besides, some microbes 

collaborate and depend on each other to form a complex community (e.g. biofilms) 

(Mulcahy et al., 2008). When microorganisms are separated from their communities, they 

fail to grow in vitro. In addition, in vitro cultivation is likely to disrupt the cytokine 

networks of the microbes. The cytokine networks play an important role in bacterial 

signaling and are responsible for extracellular matrix construction (Kell and Young, 2000; 

Wade, 2002). The disruption of the cytokine networks may contribute to the 

unculturability of microorganisms (Wade, 2002).  

Thus, to study the marine microbes more efficiently, in situ analysis instruments 

are desired. Below is a summary of the currently available in situ ocean-observing 

technologies.  

2.1 In situ ocean-observation instruments 

In the past few decades, with the successful implementation of genomic sensors and 

ocean-observing systems (Griffiths, 2010), researchers began to realize that bacteria 

played dominant roles in maintaining the abundance and diversity of marine ecosystems, 

and the ocean-related studies were accelerated. There are a few technologies that are 

currently available for in situ microbe observation. A lot of progress has been achieved 
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recently in developing in situ ocean-observing systems. Unfortunately, today’s reality is 

that in situ genomic sensors are still in their infancy (Paul et al., 2007), and only available 

to small groups of scientists for very limited marine microbiology studies. Some of the 

most important reasons are that instruments are too expensive, too cumbersome, too 

complex, and too power-hungry. Therefore, there is a need to develop inexpensive in situ 

genomic sensors for ocean-observation.  

2.1.1 Environmental Sample Processor (ESP) 

ESP  (Greenfield et al., 2006), and the second generation ESP (2G-ESP) were developed 

by the Monterey Bay Aquarium Research Institute (MBARI). As a remote ocean-

observing instrument, ESP and 2G-ESP have been deployed in multiple locations to 

perform in situ cell-free molecular analysis for microbe identification and algal toxin 

detection (Greenfield et al., 2008; Scholin et al., 2009).  

The ESP consists of multiple modules: a sampling module, a core ESP, and an 

analytical module (Scholin et al., 2006). The sampling module is for pressurizing 

seawater to the instrument, and introducing the filtered particulates to the core ESP 

(Scholin et al., 2006). The core ESP is for concentrating particulates and performing 

chemical assays. In the first generation ESP, a low-density microarray was implemented, 

and hybridized with the ribosomal RNA (rRNA) from the sample (Goffredi et al., 2006). 

As the concentration of the target molecules increased, the fluorescence intensity became 

stronger. This microarray technology is capable of multiple target analysis (Doucette et 

al., 2009; Jones et al., 2008). Unfortunately, its quantification capability is limited at low 

copy numbers (e.g. < 2.5 × 10
4
 cells/L) (Greenfield et al., 2006).  
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For better quantification and performance, in 2G-ESP, PCR-based microbe 

detection has been implemented in the analytical module (Preston et al., 2011). The DNA 

from the collected biomass was purified, concentrated, and introduced to the PCR module. 

If a target gene presents in the sample, it would be amplified, and would generate 

stronger fluorescence signals. For deep sea exploration, 2G-ESP has been upgraded to a 

deep-sea version (D-ESP) as well (Ussler et al., 2013).  These instruments have been 

successfully deployed in multiple locations, and identified target species (Aylward et al., 

2015; Ottesen et al., 2014).  

However, even in 2G-ESP, it seems the multi-target capability is not significantly 

improved. Additionally, as multiple thermal cycling steps are required in qPCR, the 

automated system has to provide more power supply (Hatch et al., 2014), and the 

endurance of the system could be potentially decreased. 

2.1.2 Integrated In-Situ Analyzer-Gene (IISA-Gene) 

IISA-Gene (Fukuba and Fujii, 2012; Fukuba et al., 2011) was developed by the 

Japan Agency for Marine-Earth Science and Technology. Similar to 2G ESP, IISA-Gene 

performs qPCR based analysis as well. The IISA-Gene system contains a control unit and 

an analysis unit. It collects the biomass from the ocean, lyses the cells, and purifies the 

DNA for PCR amplification. In the analysis unit, there is a microfluidic device for flow-

through PCR. The device is a PDMS-glass hybrid chip with three pieces of heating 

elements to generate temperature gradients. The fluorescence signals of the PCR 

reactions were measured by a photomultiplier tube (PMT) and monitored by a PC. IISA-

Gene was mounted on an ROV named HYPER-DOLPHIN, and tested in situ. Even 
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though it successfully amplified 16S rRNA close to the hydrothermal site, it seems its 

performance was not stable. During the field operation, the PCR reaction was 

occasionally interrupted, either due to a malfunctioned solenoid actuated valve, or power 

shortage (Fukuba et al., 2011). In addition, this device required relatively complicated 

fluidic design.  

2.1.3 Autonomous Microbial Genosensor (AMG) 

AMG was developed by a research group in University of South Florida. So far, 

AMG has been deployed for in situ gene expression level characterization (e.g. rbcL gene 

mRNA), and red tide monitoring. AMG was able to perform sample collection and 

filtration, RNA extraction, and RNA amplification. AMG applied Nucleic Acid Sequence 

Based Amplification (NASBA) for gene expression measurement. NASBA is a sensitive 

and quantitative technology (Cook, 2003; Leone et al., 1998). The major drawback of 

this technology is that it is limited to RNA amplifications (Sooknanan and Malek, 1995).  

There are some critical limitations of current in situ observation instruments. This 

reminds us some important design criteria in building such systems (Paul et al., 2007). 

First, the detection approach should be rapid and consume less energy, so that the 

experiment can be performed more frequently, and the device can have a longer working 

period. Second, the detection technology should be simple, without multiple sample 

manipulation steps. This reduces the need of complicated electrical elements, and 

decreases the load of the instrument. Third, the detection method should have sufficient 

analytical capability. The instrument should be able to perform analysis at both DNA and 

RNA levels, based on the research topic. Fourth, in many situations, a quantitative 
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measurement is desired, for example, to analyze the abundance of a microbial species, 

and to characterize the structure of a microbial community. Thus, the detection approach 

should be highly sensitive and quantitative.  

2.2 Culture-independent microbial analysis methods 

As conventional cultivation-based microbial detection technologies are labor 

intensive, time-consuming, and not able to analyze uncultivable microorganisms. Thus, 

for in situ analysis purpose, instead of cultivation-based approaches, culture-independent 

methods should be applied. There are three types of culture-independent microbial 

detection technologies available that could be potentially useful for in situ analysis.  

2.2.1 Sequencing-based microbial community analysis 

 Three main types of DNA sequencing technologies have been developed and 

widely used for biological research: basis DNA sequencing (Sanger sequencing, Maxim-

Gilbert sequencing), advanced DNA sequencing (short-gun sequencing), next-generation 

sequencing (or high-throughput sequencing), and third-generation sequencing (single-

molecule sequencing).  

Compared with basis DNA sequencing and advanced DNA sequencing, next-

generation sequencing reduced the cost from around $1000 to less than $1 per 1 million 

bases. Major commercialized next-generation sequencing platforms include (1) 454 

pyrosequencing (GS FLX+ system from Roche), (2) Illumina sequencing platforms (e.g. 

MiSeq, NextSeq, HiSeq), (3) Ion Torrent from ThermoFisher Scientific, (4) SOLiD from 

Life Technologies, and (5) Single-molecule real-time sequencing (Pacific Biosciences).  
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Next-generation sequencing has been widely used for microbiome studies. One of 

the most popular topics in microbiology is the human microbiome. It has been reported 

that human metabolism and energy balance are associated with the gut microbiome (Le 

Chatelier et al., 2013; Turnbaugh and Gordon, 2009). The human microbiome may 

substantially contribute to a wide range of diseases; for example, Alzheimer’s disease 

(Shoemark and Allen, 2015), inflammatory bowel diseases (Morgan et al., 2012), 

diabetes (Pflughoeft and Versalovic, 2012), and obesity (Turnbaugh et al., 2006). 

Similarly, in the ocean, the marine microbiome caught researchers’ attentions also. 

Sunagawa et al. studied the global ocean microbiome by investigating the microbial 

community structures in seawater samples collected from 68 Tara Oceans sampling 

stations, and reported that the microbial community composition was mainly affected by 

temperature (Sunagawa et al., 2015). Interestingly, even though the ocean and human gut 

are two ecosystems with different physicochemical properties, they found more than 73% 

of the abundance in the ocean microbiome was overlapped with the human gut 

microbiome (Sunagawa et al., 2015).  

Even though next-generation sequencing has brought about a revolution in 

biological and medical research, the technologies have some limitations. For example, the 

accuracy and read length is not comparable with Sanger sequencing (Shendure and Ji, 

2008). To address these problems, new technologies (third-generation sequencing) are 

currently being developed. Third-generation sequencing includes nanopore sequencing 

(Branton et al., 2008), electron microscopy (Bell et al., 2012), sequencing by tip-

enhanced Raman scattering (Yeo et al., 2009), etc. Among the approaches, nanopore 



14 

 

technology seems to be most promising regarding high throughput, high accuracy, long 

read length, and low cost (Wang et al., 2015). Commercial sequencing platforms (e.g. 

MinION from Oxford Nanopore Technologies) have become available for nanopore 

sequencing since 2015. Besides being useful for DNA and RNA (Biswas et al., 2016), 

this technology has been applied to amino acids and peptides identification (Im et al., 

2016; Lindsay et al., 2013; Zhao et al., 2013, 2014) This is inspiring as there are no PCR-

type approaches for peptide amplifications. Hence, peptide sequencing cannot be 

achieved by amplification based next-generation sequencing technologies. This 

technology is promising to integrate genomic, transcriptomic, and proteomic data 

simultaneously for a deeper level microbial community analysis.  

While sequencing technologies have achieved remarkable progress, they still 

require great effort to be miniaturized and the processing time shortened for reliable in 

situ device development.  

2.2.2 Immunoassay-based microbial analysis 

Enzyme-linked immunosorbent assay (ELISA) was developed and used in many areas 

(e.g. molecular biology, microbiology, and immunology) in the past few decades 

(Crowther, 2008). It identifies a specific substrate by antigen-antibody interactions and 

color change.  

There are two ELISA detection strategies: direct and indirect. In ELISA, the 

antibodies are immobilized on the plate surface and the target antigens are captured. In 

direct detection, the labeled primary antibody is directly immobilized on the plate surface, 

and interacts with the antigens (Beier et al., 1988; Czerkinsky et al., 1983). In indirect 
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detections, a labeled secondary antibody is conjugated with the primary antibody. The 

secondary antibody captures the target antigens (Russell et al., 1984). Indirect ELISA has 

a higher sensitivity than direct ELISA (Friguet et al., 1985). Labeling the primary 

antibody in direct ELISA is costly and time-consuming, while labeling the secondary 

antibody in indirect ELISA increases the rate of non-specific binding (Gan and Patel, 

2013).  

Even though various substrates, conjugates, and buffers have been commercially 

available, the principles of these ELISAs are the same. ELISAs have been well developed 

for low cost microbial detections. They need multiple washing and incubation steps, 

which is labor-intensive, and difficult to be implemented for automatic in situ analysis 

(Huet et al., 2010).  

2.2.3 Microbial biosensors 

Microbial biosensors are devices that implement microbial analytical units with physical 

transducers to produce quantitative signals, which can be monitored mechanically, 

electronically, electrochemically, or optically (Kelbauskas et al., 2017; Song et al., 2013; 

Su et al., 2011).  

Biosensors are promising candidates for precise and rapid microbial analysis. 

Park et al. reported a DNA array detection approach with gold nanoparticles by recording 

the conductivity changes during DNA hybridization (Park et al., 2002).  Tront et al. built 

microbial fuel cells and cultivated bacterial biofilms on the electrode. They reported that 

the current values were linearly correlated with acetate concentrations, which was an 

indicator of the respiration rate of Geobacter sulfurreducens (Tront et al., 2008). 
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Fiorentino et al. designed a whole-cell bacterial biosensor to monitor the aromatic 

aldehydes concentration. They engineered E. coli with alcohol dehydrogenase inducible 

promoter, which controlled the expression of green fluorescent protein (GFP). The 

fluorescence from GFP was detected by optical sensors (Fiorentino et al., 2008).   

So far, a few microbial biosensors have been commercialized. However, there are 

some problems of microbial biosensors that still need to be overcome. Usually, microbial 

biosensors have relatively poor specificities, and the response is slow (Su et al., 2011).  

2.2.4 Nucleic acid amplification based microbial analysis 

Nucleic acid amplification approaches have a wide range of applications, from analyzing 

environmental samples, to monitoring food safety and detecting infectious diseases. 

These approaches are usually precise, accurate, and provide quantitative results. 

Depending on the requirement of thermal cycling steps, nucleic acid amplification 

approaches can be divided into two groups: PCR-based methods, and isothermal 

amplification methods.  

2.2.4.1 PCR-based methods 

PCR stands for polymerase chain reaction. It amplifies the target sequence by repeating 

three steps: a denaturation step at high temperature (94-98 °C), a primer annealing step at 

low temperature (50-65 °C), and an elongation step (usually at 72 °C). During the 

reaction, the amplicons accumulates exponentially. A traditional way to visualize the 

PCR products is by agarose gel electrophoresis. Depending on research purposes, a few 

variations of PCR have been developed.    
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 Multiplex PCR: Multiplex PCR is a complex version of PCR, and the multiplex 

PCR system contains multiple primer sets in one reaction, targeting different DNA 

sequences. For example, Cebula et al. evaluated Mismatch Amplification Mutation 

Assay-Multiplex PCR (MAMA-multiplex PCR) with E. coli O157:H7 (Cebula et al., 

1995). Primers used in MAMA-multiplex PCR targeted three genes: SLT-I, SLT-II, and 

uidA. SLT-I and SLT-II are Shiga-like toxins (SLTs) encoding genes (Strockbine et al., 

1988). SLTs are enterotoxins produced by E.coli O157:H7. However, some non-

O157:H7 E.coli produces SLTs also. Including uidA gene discriminated SLT-producing 

E.coli from E. coli O157:H7 (Feng and Lampel, 1994). Oliveira et al. reported using 

multiplex PCR for methicillin-resistant Staphylococcus aureus identification (Oliveira 

and Lencastre, 2002). They designed PCR primers targeting eight loci to characterize the 

mec element, which is related to drug resistance. The results showed this approach was 

able to identify 18 MRSA strains from an outbreak in Barcelona, Spain.   

Quantitative PCR (qPCR): PCR amplicons can be real-time quantified by 

incorporating fluorescent compounds to the reactions. There are two types of fluorescent 

compounds: TaqMan probe, and SYBR Green DNA intercalating dye (Burgos et al., 

2002). The TaqMan probe is an oligonucleotide that has a fluorophore and a quencher 

labeled at both two ends, and can anneal to the target DNA sequence. By taking 

advantage of the 5’ to 3’ exonuclease activity of the Taq polymerase, the TaqMan probe 

is designed such that the Taq polymerase can degrade the probe during the PCR 

elongation step. Thus, the fluorophore and the quencher can be separated, and release 

fluorescent signals. Compared with TaqMan probes, SYBR Green dye is more 
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straightforward to use. SYBR Green dye has high affinity to double stranded DNA. 

During the amplification, it is incorporated in the double stranded DNA, and generates 

fluorescence. In qPCR, DNA was quantified by calculating the number of cycles that the 

increase of fluorescence exceeded the threshold cycle (Ct) (Kuboniwa et al., 2004). Both 

absolute and relative quantification (Klein, 2002) can be achieved in qPCR. Absolute 

quantification means calculating target gene concentrations or copy numbers given a 

standard curve plotted by Ct values (Yu et al., 2005), while relative quantification means 

the fold change (or ratio) of concentrations comparing the Ct values of target gene and 

reference gene (Lehmann and Kreipe, 2001; Livak and Schmittgen, 2001). Using qPCR, 

Kuboniwa et al. (Kuboniwa et al., 2004) detected and quantified six bacteria as well as 

their species richness from both tooth and tongue debris specimens. 

 Quantitative reverse transcription PCR (RT-qPCR): RT-qPCR is a sensitive and 

specific approach to quantify the gene expression changes at mRNA levels. 

Quantification methods used in qPCR can also be used for RT-qPCR. RT-qPCR is 

relatively fast and a less labor-intensive approach for gene expression measurements than 

other alternative approaches (Gao et al., 2011), such as fluorescence in situ hybridization 

(FISH) (Franks et al., 1998), and flow cytometry (Strovas and Lidstrom, 2009). Matsuda 

et al. performed an rRNA-targeted RT-qPCR method to identify bacterial populations in 

feces and blood samples (Matsuda et al., 2007). This method was able to identify 10
3
 

Pseudomonas aeruginosa cells per gram of feces (Matsuda et al., 2007). In addition, RT-

qPCR is particularly suited to single cell gene expression analysis. Shi et al. developed a 

single-cell RT-qPCR analysis pipeline (Shi et al., 2011), and applied this method to 
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quantitatively measure the gene expression of Thalassiosira pseudonana at the single-cell 

level (Shi et al., 2013). Their single-cell RT-qPCR results revealed the heterogeneity in 

cell-to-cell gene expression levels.  

 Generally, PCR-based methods are sensitive and specific to the targets. However, 

the thermal cycling steps in PCR usually require complex fluidic design. The heating and 

cooling steps consume a lot of energy.  

2.2.4.2 Isothermal amplifications 

Due to the requirement of multiple thermal cycling steps, PCR is not an appropriate 

technology for in situ device development. Instead, isothermal amplifications can be 

performed at a constant temperature, and do not require cycle heating and cooling steps. 

This could reduce the complexity of the instruments and save a lot of energy.  

Nucleic Acid Sequence Based Amplification (NASBA): NASBA is an isothermal 

amplification method (Compton, 1991) that can be performed with simple fluidic devices 

and low energy consumption. In NASBA, three types of enzymes are added: reverse 

transcriptase, RNAase H, and T7 RNA polymerase. One primer anneals to the 

complementary sequence at the 3’ side of the RNA target. With the presence of reverse 

transcriptase, a complementary DNA strand is synthesized, and the amplification is 

initialized. Next, the RNA template is hydrolyzed by RNAase H, leaving a single DNA 

strand. The second primer anneals to the DNA strand, elongates with reverse 

transcriptase, and forms a double strand DNA. The first primer has been specifically 

designed, so that a T7 RNA polymerase promoter site is coded when a double strand 

DNA is synthesized. Hence, T7 RNA polymerase binds to its promotor site, and 
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synthesizes RNA with the DNA template. This cycle is repeated until a large amount of 

amplicons can be accumulated at 41 °C within 2 hours (Compton, 1991). NASBA has 

been widely employed in microbiological labs for pathogen detection, such as West Nile, 

St. Louis encephalitis viruses (Lanciotti and Kerst, 2001), Mycoplasma pneumoniae 

(Templeton et al., 2003), Aspergillus fumigatus (Loeffler et al., 2001), and dengue viral 

RNA (Wu et al., 2001). Schneider et al. reported that real-time NASBA has a comparable 

sensitivity with qPCR, as both of the technologies have the sensitivity of detecting 20 

Plasmodium falciparum per milliliter of blood (Schneider et al., 2005). Even though it is 

highly sensitive and quantitative in RNA targets detection, its DNA amplification 

capability is limited because DNA amplification can only occur when the RNA target is 

absent, and its amplification efficiency is low (Deiman et al., 2002).    

 Strand displacement amplification (SDA): SDA is able to amplify both DNA and 

RNA targets (Walker et al., 1992). In a two-primer SDA system, the primer with a 

restriction endonuclease recognition site at the 5’ end anneals to the target sequence, and 

starts to elongate by the DNA polymerase. The restriction endonuclease nicks the primer 

at the recognition site. The DNA can be synthesized from the nicking site, and displace 

the previous synthesized DNA sequence. The nicking, extension, and displacement repeat, 

resulting in the accumulation of DNA products. Instead of using two primers, a four-

primer SDA system has been reported to enhance the sensitivity (Walker et al., 1994).  

SDA has been applied in pathogenic bacteria and virus detection, such as Mycobacterium 

tuberculosis (Walker et al., 1996) and Neisseria gonorrhoeae (Akduman et al., 2002). 

Drawbacks of this technique include: (1) the primers cannot bind with the target sequence 



21 

 

specifically, and (2) the amplification is not efficient for long target sequences (Yan et al., 

2014).  

Loop-mediated isothermal amplification (LAMP): In a basic LAMP system, there 

are four primers recognizing six regions on the target sequence. The forward inner primer 

FIP anneals to the F2c region on the target sequence, and initiates the elongation. As the 

DNA polymerase in LAMP reaction has strand-displacement activity, the template 

sequence was replaced by the newly synthesized DNA strand. The forward outer primer 

F3 anneals to the F3c region, and initiates DNA synthesis. It replaces the strand 

synthesized by FIP. This single-stranded DNA contains two complementary sequences 

(F1 and F1c regions), which can form a loop structure at one end. The loop structure 

serves as a template for the FIP primer. At the backward side, backward inner primer BIP 

and outer primer B3 initiate the same reaction. The reaction is cycled by primer 

hybridization, elongation, strand displacement, and loop structure formation. The final 

products are cauliflower-like structures containing repeats of the target sequence 

connected by the loops (Notomi et al., 2000). In addition, loop primers LF and LB can be 

added in the solution to increase the sensitivity of the LAMP reaction (Nagamine et al., 

2002). The loop primers are designed to hybridize at the loop structures (Mori and 

Notomi, 2009; Nagamine et al., 2002). Since LAMP uses four to six primers for 

amplification, it has higher specificity than NASBA and SDA (Notomi et al., 2000). 

Moreover, LAMP is able to amplify a few copies of target sequences up to 10
9 

copies 

within one hour (Notomi et al., 2000). It is more robust to inhibitors than PCR (Kaneko 

et al., 2007). Therefore, it has become a powerful approach for molecular detection and 
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disease diagnostics. So far, LAMP has been applied for rapid detection of microbes, 

including E. coli O157 (Zhao et al., 2009), Bacillus anthracis (Qiao et al., 2007), Vibrio 

cholerae (Yamazaki et al., 2008), Yersinia pseudotuberculosis (Horisaka et al., 2004), 

dengue virus (Parida et al., 2005), chikungunya virus (Parida et al., 2007), pseudorabies 

virus (En et al., 2008), white spot syndrome virus (Jaroenram et al., 2009), orf virus (Tsai 

et al., 2009), H1N1 virus (Kubo et al., 2010), etc.  

There are a few more isothermal amplification technologies published, for 

example, helicase-dependent amplification (HDA) (Vincent et al., 2004), rolling circle 

amplification (RCA) (Lizardi et al., 1998), signal mediated amplification of RNA 

technology (SMART) (Wharam et al., 2001), and recombinase polymerase amplification 

(RPA) (Piepenburg et al., 2006). These technologies are not as popular as LAMP because 

they require stringent conditions such as complicated buffer systems (Yan et al., 2014).  

2.3 Miniaturized microfluidic devices for microbial analysis 

Micro-Electro-Mechanical Systems (MEMS) (Ho and Tai, 1998) are extremely 

useful for microbial analysis. A combination of microactuators, microsensors, and 

microelectronics enable the analysis of microbes by their physical, chemical, and/or 

optical properties (Thielicke and Obermeier, 2000). As the analysis is performed in 

micro- or nanoscale structures, these devices usually require tiny amount of samples and 

fluids (Squires and Quake, 2005). Therefore, these devices are called microfluidics 

(Whitesides, 2006). Microfluidic devices usually yield high sensitivity, as the small 

volume increases the local concentration of a specific target (Wu and Dekker, 2016). 

There are multiple approaches (e.g. photolithography, soft lithography, electron-beam 
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lithography) to fabricate micro- and nanoscale features (Wu and Dekker, 2016). Based on 

the need, the surface of the features can be modified, before or after assembly of the 

MEMS device. The applications of MEMS devices include bacteria filtration, separation, 

sorting, on-chip cultivation, detection, etc. (Bridle et al., 2014). Wu et al. reported a high-

throughput microfluidic device to separate E. coli from human blood cells by taking 

advantage of the soft inertial force on the fluid (Wu et al., 2009). Balagaddé et al. 

fabricated a microfluidic bioreactor to cultivate programmed E.coli cells, and monitor 

their behavior at the single-cell level over long time periods (Balagaddé et al., 2005). 

Koh et al. integrated PCR amplification and gel electrophoresis on a plastic MEMS 

device, and successfully identified E. coli O157 and Salmonella typhimurium (Koh et al., 

2003). Their PCR reaction volume can be as low as 29 μL (Koh et al., 2003).  

Considering the accuracy, cost, power consumption, and time duration of the 

aforementioned microbial detection technologies, a simple LAMP-based nucleic acid 

detection and quantification approach has been developed in this dissertation project. 

This technology was implemented with a chip-level device for miniaturized analysis. 

This platform will serve as a core analytical module in the future ocean-observing system.  
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3. REAL-TIME COLORIMETRIC QUANTIFICATION METHOD 

3.1 Introduction 

Loop mediated isothermal amplification (LAMP) is a rapid and sensitive gene 

amplification method (Notomi et al., 2000). LAMP reactions are conducted at a single 

temperature (between 60-65 °C) and the results are usually obtained within one hour. The 

technique is based on a polymerase with strand displacement activity and three pairs of 

primers. LAMP is generally considered to be highly specific because the three pairs of 

primers recognize six distinct regions in the target DNA. LAMP products—and thus the 

presence of an analytical target of interest in an unknown sample—can be assessed 

through a wide variety of detection chemistries (Fischbach et al., 2015; Martineau et al., 

2017). Turbidity measurement (Mori et al., 2004), bioluminescence (Gandelman et al., 

2010), fluorescence via intercalating dyes (Nagamine et al., 2002; Notomi et al., 2000) , 

and even fluorescence by removal of fluorophore quenchers (Tanner et al., 2015) are 

among the most commonly used real-time detection methods to date. Drawbacks to these 

methods include poor signal-to-noise ratio and high susceptibility to measurement 

artifacts (turbidity), increased rates of false positives (intercalating dyes) (Njiru, 2011), 

and high cost of reagents, detectors, or both (bioluminescence, fluorophore quenching, 

and intercalating dyes). Colorimetric reagents, including metal ion indicators such as 

hydroxyl naphthol blue (HNB) (Goto et al., 2009; Martineau et al., 2014) and pH 

indicators such as cresol red (Tanner et al., 2015) may offer the best performance to cost 

values. For both reagents, fast differentiation between positive and negative reactions has 

been reported (Goto et al., 2009; Tanner et al., 2015). However, real-time quantitative 
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results have not been achieved using either colorimetric method. Of the two colorimetric 

approaches, indicators based on metal ion concentrations may be best suited for 

environmental applications since these reactions are robust in pH-buffered master mixes, 

as opposed to pH-based indicator methods which rely on pH changes in weak or non-

buffered masters.   

 To achieve real-time quantification using the colorimetric method, a novel real-

time quantitative colorimetric LAMP reaction is proposed. Compared with conventional 

fluorescence-based nucleic acid quantification, this proposed colorimetric method is 

independent of the ambient lighting. This technology could be used in room lighting 

conditions, not affected by lighting intensity. Therefore, an additional light control 

element is not required.  

3.2 Experiments 

3.2.1 Colorimetric detection 

To represent color changes during LAMP, it is desired that a color space is applied in 

which any color is a single value that is independent from brightness and illumination.  

HSV (Hue, Saturation, Value) (Solomon and Breckon, 2011) is a color space for 

describing color properties. It uses a hexone model in the H, S, and V axes in a 

cylindrical coordinate system to represent colors (Smith, 1978). The hue value is the 

azimuth, defined from red at 0°, yellow (60°), green (120°), blue (240°), and back to red 

again at 360°. The hue value can be used as a single quantity for tracking color changes 

as LAMP reactions precede.  
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To obtain real-time hue information, color images of the LAMP reaction are 

captured every one minute. Colorimetric detection begins by estimating the radius of a 

reaction chamber on real-time images. Based on the radius of the reaction chamber 

shown on the image, a square Region of Interest (ROI) is defined which can be fitted into 

the reaction chamber area. To reduce the variations, the same side length is applied to all 

of the ROIs in one experiment. Once an ROI of a specific reaction chamber was defined, 

its location and area are not changed until the whole stack of images is processed. The 

RGB (Red, Green, Blue) values of all of the pixels in each ROI are extracted.  The RGB 

values from each pixel are transformed into HSV color space (Wang et al., 2011). The 

HSV values of each ROI are obtained by calculating the mean H, S, and V of all the 

pixels that passed the bubble and background rejection algorithm. The mean H, S, and V 

of each ROI are used to represent the color information of the corresponding reaction 

chamber.  

3.2.2 Bubble and background rejection algorithm 

Air bubbles are a common issue in microfluidic devices (Kang et al., 2008). During the 

chip fabrication process (Chapter 4), the following approaches were employed to reduce 

bubble trapping during the on-chip liquid loading process: (1) attached a piece of 

hydrophobic filter membrane beneath the reaction chamber, and (2) hydrophilic treatment 

of the channel and chamber surface by PEG. However, these approaches did not 

completely prevent the generation of small bubbles caused from degassing during the 

heating process. These air bubbles presented along the edge of the reaction chambers and 

reflected ambient illumination. Compared with the areas containing LAMP mixtures, air 
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bubbles and background areas tend to exhibit low saturation, which provided the basis to 

reject bubbles during image processing. Saturation S is the radial coordinate in HSV 

color space that shows the purity of a color. I set a threshold on the saturation of S = 0.1. 

When the S of a pixel was below the threshold, our algorithm rejected the pixel. All 

pixels that passed the bubble and background rejection algorithm were used to compute 

the average hue. 

3.2.3 Curve fitting algorithm 

The record of hue changes as a function of time represents the LAMP amplification curve.  

Similar to qPCR, this amplification reaction is best characterized as a sigmoid function 

(Cobbs, 2012; Spiess et al., 2008). The real time hue data is fitbased on the sigmoid 

function shown in Eq. (1): 

ℎ = 𝐻max + 𝑆1𝑡 + 
𝐻min−𝐻max

1+10𝑆2(𝑇t−𝑡)     (1) 

where h is the hue value of the reaction as a function of reaction time t. Hmax and Hmin are 

the maximum and minimum asymptotes, respectively. Similar to the threshold cycle (Ct) 

value in qPCR, Tt, the threshold time of the reaction, represents the time when the hue 

value approaches the inflection point. Tt is also the time when the derivative of the curve 

displays a maximal absolute value and the time the amplification has the highest rate. S1 

and S2 are slope factors. Five parameters, Hmax, Hmin, Tt, S1 and S2, were estimated by 

nonlinear least-squares. 

3.3 Results 

The end point color of the LAMP reactions is shown in Figure 2. The image was 

captured after a 60 min reaction. The positive LAMP reaction (Figure 2B, template DNA: 
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Synechocystis sp. PCC 6803 genomic DNA) was sky blue, while the negative control 

(Figure 2A, template DNA was replaced by ddH2O) was purple. The color difference can 

be seen with the naked eye.  

 

Figure 2. End point colorimetric negative (A) and positive (B) LAMP reactions 

To analyze the color changes, three positive and one negative LAMP reactions in 

PCR tubes were recorded (one frame per minute). For each reaction, the color 

information was extracted. Figure 3 shows how hue, saturation, and value shift in LAMP 

reactions as a function of time. While all of the three parameters showed significant 

change as the reaction preceded, saturation and value were more dependent on the actual 

room lighting conditions. As the room lighting intensity changed, both saturation and 

value shifted immediately. Compared with saturation and value, hue was robust and not 

affected by the change of room lighting intensity. Additionally, hue showed appealing 

results in representing the color change in both positive reactions and negative controls. 

This suggested that hue could be used as a feature to characterize the LAMP reaction.  

(A)                        (B)  
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Figure 3. Hue, saturation, and value shift in negative and positive LAMP reactions.  

(Arrow: time point that the room light intensity decreased.) 
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To validate the effectiveness of the bubble and background rejection algorithm, 

real-time LAMP reactions were selected to evaluate the performance of the bubble and 

background rejection algorithm. The results were plotted in Figure 4, where triplicate 

reactions were analyzed by both of the two methods (A and D, B and E, C and F). 

Figure 4A shows that without the rejection algorithm, the raw hue values from replicate 

1 cannot be fit with the sigmodal function, while using the algorithm, the trend of the hue 

can be captured. The results from three replicate experiments indicated that the bubbles 

and background area potentially affected the hue calculation, and lead to inaccurate curve 

fitting. The bubble and background rejection algorithm reduced the effects of the bubbles 

and background areas in the images, resulting in more constant Tt values.  
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Figure 4. Real-time hue shift in triplicated colorimetric LAMP reactions without (A, 

B, C) and with (D, E, F) applying the bubble and background rejection algorithm.  

(Dots: raw hue values, lines: fitted amplification curves. DNA template concentration: 

10
6
 copies/μL.) 

3.4 Discussion  

The following targets have been achieved in this chapter: (1) hue has been applied as a 

major feature to characterize the color shift of a LAMP reaction, (2) saturation has been 

selected as an auxiliary feature to control the quality of the pixels, (3) a regression model 

has been defined to represent real-time hue change, and (4) rapid image acquisition, 

processing, and data analysis tools have become available for future experiments. 

In many situations, such as in the field, the ambient lighting intensity is largely 

affected by the weather. For many field-operable devices, an individual light control unit 
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is built to regulate lighting during signal detection. This is an effective approach; 

however, adding these elements into the system usually increase the size and cost of the 

device. The robustness of hue in this research suggested that the LAMP reaction could be 

performed in a platform without the need of additional components for controlling the 

ambient lighting conditions, which means the size and weight of the hardware platform 

could be reduced.  
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4. HARDWARE FABRICATION   

4.1 Introduction 

A miniaturized nucleic acid detection component is required to be implemented in an in 

situ device and deployed widely in the  field (Auroux et al., 2004). Miniaturization 

accelerates chemical reactions, reduces the volume of assays, and decreases the need of 

sample amount (Ahmad and Hashsham, 2012). 

In the past few years, significant progress has been achieved by integrating 

LAMP into lab-on-a-chip technologies. The availability of various LAMP product 

detection approaches, including turbidity (Fang et al., 2012; Mori et al., 2001), 

fluorescence (Ahmad and Hashsham, 2012; Wu et al., 2011), and colorimetric-based 

methods (Safavieh et al., 2014; Tanner et al., 2015) have further advanced the 

development. Fang et al. (Fang et al., 2010) reported a real-time quantitative µLAMP 

system by measuring turbidity on a polydimethylsiloxane (PDMS)-glass hybrid 

microfluidic chip. Hsieh et al. (Hsieh et al., 2012) reported a quantitative LAMP platform 

by adding DNA-binding methylene blue redox reporter molecules in the amplification 

step. Electrochemical monitoring of the redox current, which decreases during DNA 

synthesis, enables quantitative detection. However, it required a network of integrated 

microelectrodes in the microfluidic channels to measure the current, thus drastically 

increasing the cost and complication of the device. 

The goal of this chapter is to validate the fundamental concept of a microfluidic 

LAMP device, and provide a benchtop prototype device that can be modified and 

integrated into the in situ genomic profiler in the future. All of the components in this 
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proposed handheld platform can be acquired easily. Therefore, this platform dramatically 

reduces the cost.  

4.2 Experiments 

4.2.1 Chip design and fabrication 

To validate the use of qLAMP on chip level devices, a stamp-sized plastic chip was 

designed and fabricated. The chip had five isolated columns and each column had five 

reaction chambers (Figure 5A). This arrangement was used to perform qLAMP with 

multiple template concentrations and to characterize the performance with an 

amplification standard curve. 

The chip is a 25.4 mm by 25.4 mm square with five layers (Figure 5B, 5C). The 

chip fabrication process includes forming liquid loading channels on the first layer by 

hot-embossing, creating reaction chambers as well as liquid loading inlets and outlets on 

the first two layers by mechanical drilling, cutting an oil chamber on the fourth layer by 

laser-ablation, and assembling the chip by thermal bonding. The surface structures on the 

first layer were formed using an aluminum master mold and hot embossing. The hot 

embossing process was performed in a heat press (Tetrahedron Associates, San Diego, 

CA) for 7 min at a temperature of 141 °C and pressure of 220 psi. Since the master mold 

had positive channel shaped patterns, after hot embossing, the patterns were replicated to 

the first layer. Each channel was 380 μm wide and 250 μm deep. The second layer 

consisted of an array of reaction chambers. Each chamber was 2 mm deep, with a volume 

of 2.5 μl. The third layer was a piece of hydrophobic polypropylene filter membrane 

(pore size: 0.22 μm, Sterlitech, Kent, WA). The top three layers were thermally bonded at 
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a temperature of 135 °C and pressure of 220 psi for 7 min. To create an oil chamber, a 

0.05 mm thick pressure sensitive adhesive polyethylene terephthalate (PET) frame (layer 

4) was attached between the filter membrane and the bottom layer (layer 5). Layers 1, 2, 

and 5 in the chip were made from cyclic olefin polymers (Zeon Chemicals, Louisville, 

KY). 

All chip layers were completely rinsed with 1M EDTA and ddH2O to remove 

potential contaminants. To increase surface hydrophilicity, the channel and reaction 

chamber were exposed to air plasma (PDC-32G, Harrick Plasma, Ithaca, NY) for 10 min. 

These layers were rinsed in 50 mg/mL EDC and 5 mg/mL NHS (Sigma-Aldrich, St. 

Louis, MO) solution for 10 min.  Then, the layers were incubated in 0.2 M carbonate 

buffer (pH: 9.0) with 10 μM NH2-PEG-OH (Sigma-Aldrich, St. Louis, MO) for 1 hour.   
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Figure 5. Structure of qLAMP chip   

(A) Top view of the assembled chip, (B) Schematic of the chip layers, (C) Cross-section 

view of the chip (not to scale) 

(A) 

Layer 1 

Layer 2 

Layer 3 

Layer 4 

Layer 5 

(B) 

(Channel layer) 

(Reaction chamber) 

(Filter membrane) 

(Bottom layer) 

(Oil chamber) 

(C) 
Layers 
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4.2.2 Liquid loading 

A critical step for visualizing the color of the on-chip LAMP reaction was to manufacture 

deep reaction chambers with a high aspect ratio (depth / diameter of the reaction 

chamber). However, when the chambers have only one inlet, the high aspect ratio 

geometry results in dead volumes that trap bubbles during liquid loading. To solve this 

problem, a hydrophobic polypropylene filter membrane (PP022005, Sterlitech, Kent, WA) 

was added underneath the reaction chambers (Figure 6A). Air would easily vent through 

the porous filter membrane and the liquid stopped once it touched the hydrophobic 

surface (Figure 6B). In addition, channels and reaction chambers were treated to be 

hydrophilic to prevent bubbles trapping or attached to the surface of either the channels 

or inner walls of the reaction chambers. After the liquid loading was done, the liquid 

inlets and outlets were sealed. Silicone oil was loaded to the backside of the filter 

membrane to ensure that the pores on the filter membrane were sealed by oil. With the 

chip inlets and outlets sealed, conduction of the LAMP reaction at an elevated 

temperature resulted in increased reaction pressures which prevented bubble formation 

via outgassing (Figure 6C).   
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Figure 6. Image sequence of liquid loading into chambers 

4.2.3 Heater design 

A key advantage of colorimetric LAMP is that the system architecture is relatively simple. 

Figure 7 shows the three major components of a general LAMP system: a chip with 

multiple reaction chambers, a color camera and white light illumination, and a heater that 

maintains the reaction temperature at a constant 65 °C during amplification. 

 

Figure 7. Heater structure 



39 

 

4.3 Results 

4.3.1 Bubble reduction during liquid loading 

As indicated previously, the chip design included a hydrophobic filter membrane to vent 

air in the deep reaction chambers. The filter membrane allowed bubbles to pass through 

yet retains the liquid in the wells. The design was evaluated by compareingthe formation 

of bubbles by loading food coloring into the chips with and without the filter membrane 

layer.  The structure of the chip with the filter membrane was identical to that illustrated 

in Figure 5, while the one without the filter did not have layers 3 and 4 in Figure 5B.  

Figure 8B showed that without the filter membrane, large bubbles formed at the base of 

all chambers. When the filter layer was added (Figure 8A), the trapped air vented 

through the filters so no bubbles formed in the chambers.  

 

Figure 8. Liquid loading with (A) and without (B) a hydrophobic membrane at the 

bottom of the wells 

(A) (B) 



40 

 

4.3.2 Chip temperature validation  

To validate the heating capability, the temperature of the heater and the chip was 

monitored every 30 seconds (Figure 9). The chip requires 13 minutes to reach 65 °C. 

Then, the temperature remains constant at 65 °C.  

 

Figure 9. Heater and chip temperature 

4.4 Discussion  

In summary, the hardware platform is ready to use for colorimetric LAMP reactions. In 

this part of the project, a chip level device has been designed and assembled to perform 

colorimetric LAMP reactions. The implementation of the hydrophobic filter member 

enabled bubble-free reaction solution loading. A temperature controller was designed and 

built for the chip to maintain isothermal conditions at 65 °C.  

The cost of the chip material was negligible. Moreover, the fabrication process of 

the chip can be easily scaled up for mass production, which reduced the cost further.  
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5. ON-CHIP REAL-TIME COLORIMETRIC LAMP 

5.1 Introduction 

Many genomic analytical applications require quantitative measurements under resource-

limited conditions (Nolan and Bustin, 2013; Thomson and Cooper, 2013). Examples 

include point-of-care diagnosis devices (Punter-Villagrasa et al., 2015), portable field-

operable devices (Nakamura, 2012), and automated in situ instruments (Kotiaho, 1996). 

Such devices benefit from techniques and subsystems which enable low energy 

consumption, a small footprint, and robust operation to achieve long operational duration 

and easy deployment (Wang et al., 2016).  

In situ monitoring of environmental microbial communities is an important 

application potentially addressed by portable nucleic acid analyzers (Buffle and Horvai, 

2000). The predominant analytical methods for this purpose are fluorescence-based 

nucleic acid amplification methods such as polymerase chain reaction (PCR) because 

they are highly sensitive and quantitative (Shi et al., 2011, 2013). Quantitative PCR 

(qPCR) is particularly useful to quantitatively analyze the constituency of the microbial 

communities (Fredricks, 2011). Although qPCR is a routine technology and is widely 

adopted in molecular biology laboratories, it has intrinsic limitations for portable 

instruments. The requirement for repetitive thermal cycling and high temperatures for 

DNA melting consumes large amounts of energy, and fluorescence-based detection 

requires more complicated, expensive optical setups (Kokkinos et al., 2013). Instrument 

developers have made progress on reducing the thermal load by reducing reagent volume 
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using microfluidics (Curtis Saunders et al., 2013), but the final products are still less than 

ideal for portable operations. 

In this chapter, the on-chip, real-time quantitative LAMP with colorimetric 

hydroxy naphthol blue (HNB) detection is presented. Images are captured by an 

inexpensive digital color camera, and the color changes are correlated to the 

concentration of the template quantitatively by assessing the time required to produce 

colorimetric changes. This appears to be the first demonstration of real-time colorimetric 

and quantitative LAMP (qLAMP) on a microfluidic device. In addition, colorimetric 

LAMP allows for a simple and inexpensive system architecture. The feasibility of on-

chip qLAMP will encourage further development of easily accessible, miniature, 

quantitative in situ biological instruments. 

5.2 Experiments 

5.2.1 Experimental apparatus 

 

Figure 10. Experimental setup 
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A key advantage of colorimetric qLAMP is its relatively simple system 

architecture. Figure 10A shows the three major components of the qLAMP system: 1) a 

chip with multiple reaction chambers, 2) a color camera, and 3) a heater that maintains 

the reaction temperature at a constant 65 °C during amplification. A photograph of the 

experimental setup is shown in Figure 10D. The basic approach to on-chip, colorimetric 

LAMP analysis relies on the color change that occurs as the amplicon accumulates during 

a LAMP reaction. The experimental setup tracks the colors of each LAMP reaction over 

time to follow reaction progression. Figures 10B and 10C show the principle of the 

colorimetric qLAMP measurement. The disks in Figure 10B represent the LAMP 

reaction chambers. At the beginning of the LAMP reaction (Figure 10B, t0), the solutions 

in the LAMP reaction chambers are purple. As reactions proceed (Figure 10B, from t0 to 

t3), the colors of positive reactions shift from purple to sky blue, while the negative 

controls remain purple. The computer converts the color of the digital image from the 

RGB (Red, Green, Blue) space into the HSV (Hue, Saturation, Value) space. The color of 

the LAMP reactions are plotted as amplification curves (Figure 10C). The time period of 

the color change during amplification can be used to infer the concentration of the target 

template in the sample in a manner similar to the determination of the threshold cycle ‘Ct’ 

(Muller et al., 2002) value of qPCR.   

5.2.2 Bacterial cultivation and genomic DNA preparation 

Synechocystis 6803 has been cultivated in BG11 medium at 30 
o
C under a light intensity 

of 35 μE/m
2
/s (Rippka et al., 1979). Synechocystis cells were harvested, and their 

genomic DNA was extracted and purified. LAMP primers are designed to target the rbcL 
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gene. rbcL is an important carbon dioxide fixation gene (Huang et al., 2002). It allows 

Synechocystis to grow in a range of carbon dioxide concentrations with the presence of 

light. Genome copy number was calculated using the following equation: 

𝐶𝑜𝑝𝑦𝑁𝑢𝑚𝑏𝑒𝑟 =
𝑚DNA∗𝑁A

𝑙DNA∗𝑤basepair
, 

where CopyNumber is the number of copies of the genome in a specific amount of 

genomic DNA, mDNA is the amount of DNA, NA is Avogadro’s number, lDNA is the length 

of the DNA (in bp), and wbasepair is the average weight of a base pair.  

5.2.3 Reaction mixture for LAMP 

The LAMP amplification procedure was modified based on the previous work described 

by Tomita et al. (Tomita et al., 2008) and Goto et al. (Goto et al., 2009). Three pairs of 

primers were designed by the online LAMP primer design tool PrimerExplorer V4 

(http://primerexplorer.jp/elamp4.0.0/index.html), and synthesized by Invitrogen (Life 

Technologies, Grand Island, NY). LAMP primers were designed to target the rbcL gene 

of Synechocystis sp. PCC 6803 genome. Primer sequences are as follows.  

Table 1. Primer sequences for Synechocystis sp. PCC 6803 qLAMP 

Primer  Sequence (5' - 3') 

FIP AAGTCCAAACCACCCCGGAGAAACTTGGTCTGTCCGCCA 

BIP ATCAACTCCCAGCCCTTCATGCGCTTTTTCGATCGCCTCTTG 

LF AACAGCCCGACCGTAGTTCT 

LB GCGCGATCGTTTCCTCTTCG 

F3 GTCCTCTGCTTGGTTGTACC 

B3 TCGTTGGTCTCAGCCTGG 
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The LAMP reaction mixture contained: 20 mM Tris-HCl, 10 mM (NH4)2SO4, 10 

mM KCl, 6 mM MgSO4, 800 μM dNTP, 180 μM HNB (Sigma-Aldrich, St. Louis, MO), 

800U/mL Bst 2.0 warmstart polymerase (New England Biolabs, Ipswich, MA), 1.6 μM 

FIP, 1.6 μM BIP, 0.8 μM LF, 0.8 μM LB, 0.2 μM F3, 0.2 μM B3, and Synechocystis sp. 

PCC 6803 genomic DNA. The genomic DNA was quantified by a Nanodrop 

spectrophotometer (Thermo Scientific, Wilmington, DE). For acquiring the standard 

curve, the DNA template was 10-fold serial diluted. DNA was replaced by DEPC-treated 

water (Thermo Fisher Scientific, Cat No. AM9916) in negative controls. The LAMP 

reaction was incubated in 65 °C for 1 h. 

5.2.4 Experimental procedures 

The LAMP reaction mixture was prepared following the protocol mentioned above. A 

serial dilution of Synechocystis sp. PCC 6803 genomic DNA was added and completely 

mixed in each reaction. All of the procedures were performed in a biosafety cabinet.  

After assembly, LAMP reaction solutions were loaded into the microfluidic chip 

through the liquid inlets with one template concentration in each channel. Driven by both 

capillary action and positive pressure, the liquid flowed through the channels and filled 

the entire reaction chambers. This microfluidic chip enables five reactions to be 

performed simultaneously, including four positive LAMP reactions plus a negative 

control group. When the reaction chambers and channels were filled, both of the liquid 

loading inlets and outlets were sealed to create an airtight reaction condition. Then a 

vacuum was applied on the oil outlet to introduce the hot silicone oil (65 °C) to the oil 

chamber. In this way, the filter membrane was immersed in silicone oil as well.  
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Therefore, all of the pores in the filter membrane were sealed. Silicone oil prevented the 

reaction liquid from evaporating. Finally, the whole chip was placed on the pre-heated 

heater, and incubated at 65 °C for 1 h. The webcam (HD Pro Webcam C910, Logitech, 

Newark, CA) was placed right above the reaction chamber, and the images were taken 

every 1 min. The images were batch-processed to extract hue information for each single 

reaction chamber. The hue data was exported for curve fitting and Tt value calculation.  

5.3 Results 

5.3.1 Colorimetric quantification 

To validate the HNB-based colorimetric measurement and to evaluate the range of 

sensitivity, the template concentration was serially diluted with a factor of 100, from 10
7
 

copies/µL to 10 copies/µL. Figure 11A shows the webcam image captured right after 

loading the LAMP mixture, where the first column from the right is the negative control. 

The colors of all chambers were uniform. Figure 11B is the image after 70 minutes of 

LAMP reaction. All chambers with concentrations higher than 10
3
 copies/µL showed 

significant color changes, indicating positive LAMP reactions. All five chambers for the 

negative control became purple, indicating negative LAMP reactions. Only one chamber 

for the 10 copies/µL concentration had a positive reaction. The result showed that the 

LAMP platform was sufficiently sensitive for concentrations higher than 10
3
 copies/µL. 

In addition, Figures 11A and 11B can be easily perceived with the naked eye or a cell 

phone camera. 
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Figure 11. The images of the qLAMP array at (A) the beginning and (B) 70 minutes 

after the start of Synechocystis sp. PCC 6803 qLAMP reaction 

In addition to recording the images at the beginning and the end of the experiment, 

a PC was programmed to record images through the webcam every minute with 

LabVIEW (National Instruments, Austin, TX), and the hue, saturation, and intensity 

values were extracted for each reaction chamber at every time point with Matlab 

(MathWorks, Natick, MA). Figure 12 (A-E) shows the quantitative hue changes of the 

same chip for Figure 11. Each color indicates the color of a reaction chamber, where 

each dot represents the measured hue value at that time point. The solid curves are the 

curve-fit results using Eq. (1).  The results show that although the hue of different 

chambers had offsets and the rate of color changes differed, the curve-fit algorithm 

captured the amplification process.  At higher DNA concentrations (from 10
3
 copies/µL 

to 10
7
 copies/µL), a decreased hue from dark blue (hue 225) to sky blue (hue 210) took 

(A) (B) 
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place within 60 min. In negative control groups, hue drifted upward and the color 

transformed from dark blue (hue 225) to violet (hue 240). 

The reactions for concentrations higher than 10
3
 copies/µL were fast. The 

reactions were completed in 35 minutes, and the significant color swing occurred within 

10 minutes (Figure 12A-C). The amplification of the only positive reaction for 10 

copies/µL had a much lower reaction rate (Figure 12D).  

The standard curves in Figure 12F show the average Tt with the error bars as the 

standard errors among the five reaction chambers with the same template concentration. 

The relation between the average Tt and the template concentration is highly linear.  The 

Tt of the same concentration has small variations for concentrations >10
3
 copies/µL. 

Higher concentrations had smaller variations. 

 

Figure 12. Amplification curves and standard curves of Synechocystis sp. PCC 6803 

qLAMP 



49 

 

A continuously decreasing trend was observed in positive LAMP reactions after 

the threshold time. This phenomenon happened  slowly, which is very similar to the 

“fluorescence drift” (Rutledge and Stewart, 2008) phenomenon that  occurs in qPCR. To 

interpret the hue drift in colorimetric LAMP reactions, a linear term 𝑆1𝑡 was added into 

the proposed model. A slightly increasing trend of the hue was observed in non-reacting 

wells. Because non-reacting wells were not counted for Tt value calculations, this trend 

does not affect the quantification results. Therefore, investigating the reasons that led to 

this phenomenon is beyond the scope of this study.  

 

Figure 13. Repeatability of the chip-based qLAMP reactions with Synechocystis sp. 

PCC 6803 

Beyond the experiment shown in Figure 12, additional chip-based LAMP 

reactions were performed and the standard curves are plotted in Figure 13. The standard 

curves showed that the chip-based LAMP reactions were highly quantitative and 

repeatable. The quantitative range was from 10
3
 copies/µL to 10

7
 copies/µL. Around 20% 

of the reactions in the 10 copies/µL group showed up positive, indicating that this 

concentration was not a good candidate for quantification, but the sensitivity of the 
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LAMP reaction reached 10 copies/µL. Similar to qPCR, due to different experimental 

setups and different batches of reagents, it was noticed that the slope of the standard 

curves varied in chip-based LAMP reactions.  

It was initially expected that the color of the same column would be uniform at 

the end of a 60-minute experiment because the chambers of the same column are 

connected by channels; however, the results showed that this is not the case. It is 

interesting to see that, in Figure 11, only one out of five reaction chambers had a positive 

reaction. Even though the reaction chambers were connected by a main channel, it seems 

the reaction in one reaction chamber does not affect the reaction in its adjacent reaction 

chamber within the timeframe of these experiments. It was also evident that even though 

the reaction chambers were connected, the Tt values showed heterogeneity. The 

variations of the Tt values tend to be larger at a lower template DNA concentration. This 

evidence suggested that diffusion might not affect the reactions among different reaction 

chambers, perhaps contrary to expectations.  It appears that the rates needed for amplified 

products and HNB or Mg
2+

to migrate to the neighboring chambers were much lower than 

the rate of LAMP amplification, thus reducing the crosstalk between neighboring 

chambers as long as the duration is less than 60 minutes. The 0 copy/µL negative control 

results also showed that the reaction system was stable and reliable during the measuring 

time period, without production of false positive results.  Future device designers should 

exploit this feature to simplify their microfluidic platforms with architectures that do not 

require full liquid isolation with qLAMP.  
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5.3.2 Primer specificity test 

The specificity of the reaction has been evaluated by replacing the DNA template with 

other non-target DNA. Non-target DNA used in this study include the genomic DNA 

extracted from the following species: (1) E. coli, (2) Bacillus sp., (3) Thaiassiosira 

pseudonana, and (4) human cell line FLO-1. The end point measurement showed the 

proposed Synechocystis primers only target Synechocystis, and do not generate cross-

reactions with the above non-target DNA. This indicates high primer specificity.  

 

Figure 14. Specificity test of Synechocystis sp. PCC 6803 primers  

(1) Negative control (H2O), (2) Bacillus sp. DNA, (3) E. coli DNA, (4) Human cell line 

FLO1 DNA, (5) Thalassiosira pseudonana DNA, (6) Positive control (Synechocystis sp. 

PCC 6803 DNA) 

5.4 Discussion  

This study reports a low-cost system for real-time quantitative LAMP reactions by 

colorimetric measurement that was easy to build and user-friendly. In this system, the 

LAMP reactions were loaded into the microfluidic chips and then incubated at 65 °C. 

Instead of using optical fibers and fluorescence detectors, this device can be placed in 

ambient light, and only requires a webcam for monitoring the reactions. The application 

of a webcam as the imaging tool eliminated the need for delicate electrical elements. The 
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chip fabrication process is simple, which can be scaled up for mass-production, and the 

cost of the materials in the chip is negligible; thus, manufacturing this plastic microfluidic 

chip is inexpensive. Additionally, heaters (or ovens) and webcams can be easily accessed, 

even in remote areas. This system is a handy platform for performing quantitative DNA 

analysis without expensive instruments. The simple imaging method also reduces the 

time and resources for operator training. 

To date, the microfluidic chip in this system enables the simultaneous detection of 

up to five DNA targets. To increase the throughput of the chip, the arrangement of the 

reaction chambers can be modified to be denser.  

This detection system could be applied to a wide range of applications, including 

microbial community monitoring, food and water quality control, and infectious disease 

diagnostics. This low-cost, portable system for LAMP analyses shows promise for 

reducing the expense associated with high-performance, DNA-based analyses.  
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6. ON-CHIP COLORIMETRIC RT-LAMP WITH BACTERIAL RNA 

6.1 Introduction 

It has been reported that gene expression level change can be used to predict the 

consequence of the ocean change, as gene expression alters the physiological function of 

marine species (Evans and Hofmann, 2012). Monitoring gene expression becomes an 

important goal of ocean conservation (Evans and Hofmann, 2012). Thus, an ocean-

observing device having gene expression level quantification capability could advance 

ocean studies significantly.  

 Real-time reverse transcription loop-mediated isothermal amplification (RT-

LAMP) is a rapid and sensitive RNA quantification technology. In RT-LAMP, reverse 

transcriptase synthesizes cDNA via RNA templates. The amplification initiates by primer 

annealing, and continues by forming dumbbell structures and strand displacement. The 

reaction results in rapid accumulation of amplicons within one hour. As Bst polymerase 

has strand displacement activity, RT-LAMP reaction eradicates the need of thermal 

cycling. In one step RT-LAMP, by adding reverse transcriptase and Bst polymerase to 

the reaction, cDNA synthesis and LAMP reactions can be performed simultaneously in 

one tube. Similar to LAMP, one step RT-LAMP products can be detected using routine 

molecular biology laboratory techniques in molecular biological laboratories. End point 

HNB measurement is one of the commonly used techniques. However, no real-time 

colorimetric and quantitative RT-LAMP methods have been reported so far.  

Cyanobacteria are some of the major players of nitrogen fixation (Falcón et al., 

2004) and photosynthesis (Falkowski et al., 1998) in the natural environment. Among 
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cyanobacteria, Synechocystis is one of the most common genera (Kaneko and Tabata, 

1997). They are widely distributed, not only in freshwater, but also in the ocean (Falcón 

et al., 2004). Because of their essential role in oxygenic photosynthesis, Synechocystis sp. 

Strain PCC 6803 has become an interesting target of researchers (Wang et al., 2012), and 

is a commonly used model for photosynthesis studies (Kaneko and Tabata, 1997). 

In this study, the real-time colorimetric quantification approach to RT-LAMP was 

applied for the first time by using Synechocystis 6803 total RNA. 

6.2 Experiments 

6.2.1 Reverse transcriptase selection 

In one-step RT-qLAMP, chemical components remain the same with qLAMP, except the 

template and enzymes (Lee et al., 2011). Because the Bst 2.0 DNA polymerase in 

qLAMP reactions does not have reverse transcript activity, additional reverse 

transcriptase needs to be added in the reaction solution. Three types of reverse 

transcriptase have been evaluated based on their performance: (1) WarmStart RTx, (2) 

AMV reverse transcriptase, and (3) Bst 3.0 (a DNA polymerase with reverse transcriptase 

activity). Among these types of reverse transcriptase, WarmStart RTx generated the best 

RT-qLAMP results, regarding sensitivity, specificity, and quantitative capability. 

Therefore, WarmStart RTx was used for future one step RT-qLAMP reactions.  

6.2.2 Reaction mixture for Synechocystis RT-qLAMP 

The primer sequences used in RT-qLAMP reactions are listed in Table 2. All of the 

primers were synthesized by Integrated DNA Technologies (Coralville, Iowa, USA). RT-

qLAMP reaction mixture contains 1x ThermoPol DF buffer (New England Biolabs, 
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Ipswich, MA), 1.6 μM inner primers, 0.8 μM loop primers, 0.2 μM outer primers, 180 

μM HNB, 6 mM MgSO4, 800 μM dNTP, 800U/mL Bst2.0 WarmStart polymerase (New 

England Biolabs, Ipswich, MA), 300U/mL WarmStart RTx Reverse Transcriptase (New 

England Biolabs, Ipswich, MA), and Synechocystis sp. PCC 6803 total RNA. In negative 

control group, the RNA template was replaced by DEPC-treated water. The total RNA 

was extracted by ZR Fungal/Bacterial RNA kits (Zymo Research, Irvine, CA, USA), and 

quantified by Nanodrop 1000 spectrophotometer (Thermo Scientific, Waltham, MA, 

USA). 

Table 2. Primer sequences for Synechocystis sp. PCC 6803 RT-qLAMP 

Primer  Sequence (5' - 3') 

FIP AAGTCCAAACCACCCCGGAGAAACTTGGTCTGTCCGCCA 

BIP ATCAACTCCCAGCCCTTCATGCGCTTTTTCGATCGCCTCTTG 

LF AACAGCCCGACCGTAGTTCT 

LB GCGCGATCGTTTCCTCTTCG 

F3 GTCCTCTGCTTGGTTGTACC 

B3 TCGTTGGTCTCAGCCTGG 

 

6.2.3 Experimental procedures 

To demonstrate that this colorimetric RT-qLAMP approach can be robust even in small 

volume reactions, amplifications were performed in a homemade 24-well optical plate. 

The plate was a piece of acrylic with an array of 2.2 mm deep, 1.4 mm diameter wells cut 

by a CO2 laser. RT-qLAMP reactions of 3 μL were loaded into each well and covered by 

silicone oil to prevent evaporation. To maintain the reaction temperature, the plate was 
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placed on a 65 °C heating element. All of the reactions were recorded by a webcam, 

which captured time-lapse images every minute. The images were analyzed and hue 

values of the reactions were extracted. The trend of the hue values was fit with a 

sigmoidal function to obtain a faithful representation of the chemical reactions. The 

exponent parameter of the sigmoidal function was represented as threshold time (Tt) to 

characterize reaction dynamics. The Tt values were plotted to construct a standard curves.  

6.3 Results 

Three types of reverse transcriptases were compared. The RT-qLAMP reaction with 

WarmStart RTx reverse transcriptase shows the highest sensitivity, specificity, and 

quantitative capability. However, Bst 3.0 generated non-specific amplifications. Even 

though AMV reverse transcriptase did not generate false positives, its quantification 

capability is not as decent as WarmStart RTx.  
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Figure 15. RT-qLAMP standard curves and amplification curves with Warmstart 

RTx reverse transcriptase 
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Figure 16. RT-qLAMP standard curves and amplification curves with AMV reverse 

transcriptase 
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Figure 17. RT-qLAMP standard curves and amplification curves with Bst 3.0 DNA 

polymerase 

The sensitivity and quantitative range of RT-qLAMP were evaluated by 

performing RT-qLAMP with 10-fold series diluted RNA templates. In positive RT-

qLAMP reactions, the hue values exhibited significantly decreasing trend within one hour 

(Figure 18). The color of the reactions shifted from violet to sky blue. However, no 

decreasing trend of the hue values was observed in negative controls. 33% of the wells 

reacted when the RNA concentration is 100 fg/μL, suggesting that the sensitivity of the 

reaction reached 100 fg RNA/μL. The quantitative range of the RT-qLAMP reaction was 

from 1 pg RNA/μL to 1 ng RNA/μL (R
2
 = 0.9915).  
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Figure 18. Colorimetric RT-qLAMP Amplification curves (template: Synechocystis 

sp. PCC 6803 total RNA) 

The specificity of the assay was validated by replacing the RNA template with 

non-target RNAs. In this study, total RNA from Bacillus sp., E. coli, Thalassiosira 

pseudonana, and human cell line FLO-1 have been evaluated as control experiments.  

The results showed that none of the control experiments was amplified. This means the 

Synechocystis rbcL primers in this study was highly specific and did not generate cross-

reactions from other non-targeted RNAs.  
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Figure 19. Colorimetric RT-qLAMP Standard curve (template: Synechocystis sp. 

PCC 6803 total RNA) 

6.4 Discussion  

This study presents what is believe to be the first report on hue-based real-time 

quantitative RT-qLAMP reaction. The reaction was specifically targeting Synechocystis 

sp. PCC6803 rbcL RNA, and was sensitive with a detection limit 100 fg/μL. This 

approach required only a heating element and a simple optical setup to produce highly 

quantitative gene expression results. Compared with other fluorescence based RNA 

quantification methods, this approach eliminated the demand of expensive thermocyclers 

and signal detectors to achieve rapid and low cost quantification by applying 

computational methods. This quantitative RT-qLAMP approach is also compatible with 

multiple reaction platforms. In this study, the reactions performed in custom-made 

microplates and PCR tubes are reported. The reactions can be performed in other 

commercial optical plates based on specific volume requirements. This novel RT-
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qLAMP quantification approach is promising as a tool for gene expression 

characterization, field research, and rapid medical diagnosis in front line clinics.  
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7. ON-CHIP COLORIMETRIC RT-LAMP WITH ZIKA VIRAL RNA 

7.1 Introduction 

The Zika crisis is growing and affecting public health in the Americas. Six years after the 

first reported Zika outbreak in Yap State in 2007 (Duffy et al., 2009), the Zika fever 

became a larger epidemic in French Polynesia in 2013 (Cao-Lormeau et al., 2014). Since 

then, the Zika fever was actively circulating in the Pacific islands. During 2015-2016, the 

Zika fever arrived and was spreading rapidly in the Americas (Musso and Gubler, 2016; 

Musso et al., 2014). As of August 31, 2016, it was actively transmitting in more than 50 

countries and territories throughout the world (CDC). The ongoing Zika crisis is caused 

by the Zika virus (ZIKV). ZIKV is a species from the flavivirus genus, and is usually 

transmitted by mosquitoes (Dick et al., 1952). It is an enveloped virus with 

approximately 10,676 bases single-stranded positive-sense RNA genome (Cunha et al., 

2016; Sirohi et al., 2016). ZIKV has been reported to be highly associated with a 

neurological disorder called Guillain-Barré syndrome in adults (Oehler et al., 2014), and 

recently confirmed to cause Microcephaly in neonates (Rasmussen et al., 2016). So far, 

as there is no vaccine available for ZIKV, and no medications available for Zika infection 

treatments, it is crucial to control the spread of ZIKV.  

Effective, rapid Zika detection methods are urgently needed, but the development 

to detect this emerging infectious disease is in its infancy. Various groups have 

demonstrated the detection of ZIKV from a variety of clinical samples. However, since 

the clinical presentation of the Zika fever is similar to those of chikungunya and dengue 

fever, the Zika fever can be misclassified as other diseases, increasing the difficulty for 



64 

 

ZIKV infection diagnosis (Musso et al., 2015). Currently, to diagnose ZIKV, there are 

two main types of methods routinely used in laboratory conditions, RT-PCR based (Faye 

et al., 2008; Gourinat et al., 2015; Calvet et al., 2016) molecular tests and ELISA based 

(Lanciotti et al., 2008) serological tests. The FDA has published a list of Zika diagnostic 

kits under Emergency Use Authorizations (e.g. LightMix
®
 Zika rRT-PCR Test from 

Roche). Even though these technologies identified a large amount of Zika cases, false 

positives and cross-reactions with other flaviviruses (e.g. DENV) occur frequently 

(Musso and Gubler, 2016; Shan et al., 2016). In addition, RT-PCR based detection 

methods require multiple thermal cycling stages, forming a bottleneck to assess the 

pandemic situation.   

In addition to diagnosis, there is also a need for a quantitative tool to measure the 

viral burden of ZIKV.  Not only qualitative detection at the end point, but also 

quantitative measurement of ZIKV RNA is desired when developing ZIKV diagnosis 

platforms. For developing vaccines, medications, or treatments for ZIKV infections, 

researchers can quantitatively measure ZIKV RNA loads to evaluate pathogen reduction 

efficacy (Epstein and Vostal, 2003). An effective treatment should be able to reduce 

pathogen load by 6 to 10 log copies/mL in a blood product (Epstein and Vostal, 2003). In 

addition, for point-of-care usage, the diagnostics technology should be inexpensive and 

rapid. Pardee et al. (Pardee et al., 2016) reported the performance of a low cost diagnosis 

device using a combination of NASBA and the CRISPR/Cas9 technology. This 

technology is sensitive and robust, but to achieve quantitative measurements, more 

expensive electrical elements are required. In addition, it takes around 3 hours for 
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diagnostics. Song et al. (Song et al., 2016) reported a portable microfluidic cassette for 

Zika diagnosis in the field using the end point colorimetric RT-LAMP technology.  

LAMP is a sensitive, selective, and rapid (~ 1 hour) gene amplification method that is 

performed in isothermal conditions (65 
o
C – 70 

o
C) (Notomi et al., 2000). Adding the 

colorimetric dyes in the reaction solution gives qualitative measurement of a specific 

nucleic acid target. The platform was reported (Song et al., 2016) with a high sensitivity 

for ZIKV detection. However, no real-time ZIKV RNA quantification has been achieved 

using colorimetric RT-LAMP.  

A simple platform for ZIKV RNA detection and quantification using a real time 

colorimetric RT-qLAMP technology is presented. This is believed to be the first real-time 

quantitative and colorimetric viral RNA detection on a chip-level device. The feasibility 

of this novel real-time colorimetric RT-qLAMP technology is demonstrated using an 

inexpensive digital camera and heater. All analyses were performed on a mass-production 

compatible, stamp-size plastic microwell chip. The combination of inexpensive 

components, small volume reaction and robust analysis is particularly suited to resource-

limited developing countries, where large numbers of ZIKV infections were reported. 

When mass produced, the cost of running colorimetric RT-qLAMP detections on the 

microwell chip can be significantly lower than conventional PCR approach. In addition, 

the device is small and consumes low energy, and allows for rapid analysis. These 

features enable point-of-care diagnosis/analysis in remote areas.  Professionals, or people 

without specific knowledge, would be able to make their own microwell chip.  
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7.2 Experiments 

RT-LAMP primers were designed to target the ZIKV RNA. There are some conserved 

regions on the ZIKV genome that are highly diverse among other flaviviruses. These 

conserved regions include the envelope protein coding region (Faye et al., 2008) and NS5 

coding sequence (Fulop et al., 1993; Maher-Sturgess et al., 2008). In order to test the 

sensitivity, quantification capability, and specificity of the RT-qLAMP reaction, six 

primers were designed to target the ZIKV envelope protein coding region (position 1279-

1497 bp). The primers were optimized and analyzed in silico to reduce the formation of 

secondary structures, including self-dimers and cross-dimers. The targeted sequence of 

the primers was compared with the genomes of other common flavivirus to ensure that 

the target sequence shared high homology in ZIKV and low identity in other viruses. The 

primer sequences are listed in Table 3.  

Table 3. Primer sequences for Zika virus RT-qLAMP 

Primer  Sequence 

FIP 5’- CCGGTTGAATGCTCTTCCCGGGCAAAGGGAGCTTGGTGAC -3’ 

BIP 5’- GCTATCAGTGCATGGCTCCCAGGCGTAACCTCGACTTTCG -3’ 

LF 5’- AACACGTAAACTTGGCACAT -3’ 

LB 5’- AGCGGGATGATTGGATATGAA -3’ 

F3 5’- GGGAAACGGTTGTGGACTT -3’ 

B3 5’- GCTTCCGCTCTTGGTGAAT -3’ 
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 The RT-qLAMP reaction was performed using 300 units/mL Warmstart RTx 

reverse transcriptase and 800 units/mL Bst 2.0 Warmstart DNA polymerase in 1x 

ThermolPol DF buffer (New England Biolabs, Ipswich, MA). The reaction solution also 

contains primer mix (Integrated DNA Technologies, Coralville, Iowa) with 

concentrations indicated in Table 1, 180 μM HNB (Sigma-Aldrich, St. Louis, MO), 6 

mM MgSO4, and 800 μM dNTP. A serial 10-fold dilution of viral RNA was added as 

reaction templates. In negative control, ddH2O was used to replace the viral RNA.  

For proof-of-concept, the performance of the colorimetric quantification method 

was evaluated using ZIKV genomic RNA (VR-1838DQ™, ATCC, Manassas, VA). This 

RNA was obtained from the ZIKV strain MR 766. The specificity of the Zika RT-

qLAMP primers was tested by the human cell line FLO-1 RNA, dengue virus (DENV) 

RNA (ATCC® VR-3228SD™, ATCC, Manassas, VA), chikungunya (CHIKV) RNA 

(ATCC® VR-3246SD™, ATCC, Manassas, VA), and West Nile Virus (WNV) RNA 

(ATCC® VR-3198SD™, ATCC, Manassas, VA). 

Real time colorimetric quantification was performed on an acrylic microwell chip 

that contains a 5 × 5 array of wells (Figure 20). The geometry of each well is a step 

cylinder: the top 2 mm depth has a diameter of 2.5 mm and the bottom 2 mm has a 

diameter of 1.3 mm.  The microwell chip was rinsed by 0.1% micro90 (Sigma-Aldrich, St. 

Louis, MO), followed by ddH2O, to remove potential contaminants.  

In this study, acrylic was used for microwell chip fabrication, but other types of 

plastics, for example, cyclic olefin polymers, polypropylene, polystyrene, could be 
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suitable for colorimetric LAMP reactions as well. Instead of laser-cutting, the reaction 

chambers could be produced by other existing plastic forming methods.  

The amplification was recorded by obtaining the real-time images of the 

microwell chip. In a colorimetric RT-qLAMP measurement, the hues of the wells in the 

image were analzyed to track the color shift. Here, hue is a parameter in HSV (Hue, 

Saturation, Value) color space that quantifies color. The hue from each pixel was 

calculated. The average hue in the reaction well area represented the color of a specific 

reaction.  

In conventional real-time PCR, the abundance of templates is described by Ct 

(cycle threshold), the number of cycles which the fluorescent signal crosses an arbitrary 

threshold (usually defined as a background signal level). This method is not practical for 

colorimetric RT-qLAMP measurements because the absolute hue values vary 

significantly for different reactions. Instead, the historical change of hue was 

characterized by a four-parameter sigmoid function: 

ℎ = 𝐻max +
𝐻min−𝐻max

1+10𝑆(𝑇t−𝑡), 

where the hue of a reaction h can be represented by a function of time t. Hmax and 

Hmin are two asymptotes. S is a slope factor. Tt stands for the threshold time that hue 

reached the inflection point. I used Tt to describe the reaction rate.  

The RT-qLAMP reaction solution was prepared using the aforementioned 

protocol. Silicone oil (Fisher Scientific, Pittsburgh, PA) was loaded to the reaction 

chambers before the reaction solution to prevent the cross contaminations from the 

loading process. Reaction solutions of 3 µL were loaded into each reaction chamber in 
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the microwell chip. The chip was placed in a custom-made heater to maintain a constant 

reaction temperature at 65 
o
C for one hour.  A webcam (HD Pro Webcam C910, Logitech, 

Newark, CA) was placed above the chip to monitor the reaction. Color images were 

captured and recorded every one minute. In this experiment, the color is easily visible and 

captured by cameras under regular room lighting and white background. The color shift 

of the reaction was characterized by real-time hue change. The image analysis pipeline 

introduced in Section 3.2 was followed, the real time raw hue data was fit by a sigmoid 

function, and the parameter Tt from the function was used to represent the reaction rate.  

7.3 Results 

End point colorimetric RT-LAMP reaction has been widely used for qualitative virus 

RNA detection (Ma et al., 2010; Zhang et al., 2013). The color difference between 

negative and positive reactions can be easily seen with naked eyes. Figure 20 shows an 

overview of the microwell chip with colorimetric RT-qLAMP reactions at the end point. 

Five groups of reactions were performed simultaneously on the microwell chip. For each 

group, five replicate experiments can be performed in five isolated reaction chambers. 

Figure 20A is an end point image demonstrating the detection limit of the colorimetric 

RT-qLAMP reaction. All reactions with template ZIKV RNA concentration higher than 

10 copies/µL turned to sky blue at the end of the reaction, while all of the negative 

controls were purple. Four out of five reactions turned positive in 10 copies/µL group, 

indicating that the detection limit was close to single copies of target ZIKV RNA. 

Developing Zika detection methods is a critical step to monitor the transmission of Zika 

fever. ZIKV can be detected from a variety of clinical samples. For example, the ZIKV 
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RNA loads can be as high as 2.2 x 10
8
 copies/mL in urine (Gourinat et al., 2015), 2.1 x 

10
6
 copies/mL in breast milk (Besnard et al., 2014), and 7.3 x 10

5
 copies/mL in serum 

(Lanciotti et al., 2008). This suggests that the colorimetric RT-qLAMP technology 

should be sensitive enough to detect the ZIKV RNA from clinical samples. The 

specificity of the ZIKV primers was tested (Figure 20B). No cross reactivity has been 

observed between the ZIKV primers and the non-target RNAs. Only the positive control 

with ZIKV RNA showed sky blue, while the reactions with human cell line RNA, DENV 

RNA, CHIKV RNA, and WNV RNA remained purple. This results confirmed that the 

ZIKV primers were specific to Zika viral RNA.  

 

Figure 20. Overview of the chip at the end point  

(A) Sensitivity test of the colorimetric RT-qLAMP. Five reaction chambers in one 

column represent five replicates. (ZIKV RNA template concentration: 1: 10
4
 copies/µL, 2: 

10
3
 copies/µL, 3: 10

2
 copies/µL, 4: 10 copies/µL, 5: 0 copies/µL) (B) Primer specificity 

test with multiple template RNAs ( 1: human FLO-1 cell line RNA, 2: ZIKV RNA, 3: 

DENV RNA, 4: CHIKV RNA, 5: WNV RNA) 

Real-time quantitation using colorimetric RT-qLAMP was also achieved in this 

research. Figure 20A shows how hue shifts in negative and positive RT-qLAMP 
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reactions. The data was taken from the same experiment as the one shown in Figure 20A. 

The real time raw hue values were plotted as dots and the values were fitted by the 

sigmoid function using solid curves. Each color represents a replicate within the same 

template concentration group. Hue values decreased from around 240 to around 210 in 

most positive RT-qLAMP reactions (from 10 copies/µL to 10
4
 copies/µL), while 

remained constant at around 240 in negative controls.  

The Tt values of positive RT-qLAMP reactions were calculated and plotted in 

Figure 21 (F). In this experiment, the color shift of all positive reactions was achieved 

within 40 minutes. There is a strong linear trend between the Tt values and log10RNA 

concentrations. As RT-qLAMP precedes rapidly, a 10-fold difference in template RNA 

results in an approximately 3 min ΔTt in this specific experiment. Even though this ΔTt is 

small, the error bars on the standard curve were small also, suggesting that there was not 

much variations among the Tt values with the same template RNA concentration. Using 

this standard curve, one can easily tell the template RNA concentration in a reaction 

based on a Tt value. This result indicates that real-time colorimetric RT- qLAMP can be a 

promising candidate for characterizing the viral RNA loads in routine practice.   
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Figure 21. Amplification curves (A-E) and standard curve (F) of real-time 

colorimetric RT-qLAMP with ZIKV RNA 

7.4 Discussion  

This reported colorimetric detection approach was rapid, and can be completed within 40 

minutes. The results suggest that this technology can specifically identify ZIKV RNA 

with no cross-reactivity with other common viral RNAs. These characteristics suggest the 

real-time colorimetric ZIKV RNA detection platform is suitable for both rapid point-of-

care diagnostics and front-line Zika monitoring. The highly quantitative feature of this 

technology indicates the platform can be used for rapid viral load tests for vaccine and 

therapy development purposes. The colorimetric RT-qLAMP chemical reaction is robust 

to multiple materials of the reaction vessels. The protocol is portable to different labware 

(F) 

(A)  (B)  (C)  

(D)  (E)  
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formats, from tubes, microplates, and microwell chips (as presented in this work) to 

future microfluidic cassettes.  

Currently available Zika detection technologies must be performed in a laboratory 

setting and require a long detection time. They are limited for field operations in 

resource-limited areas.  In the real-time colorimetric ZIKV RNA quantification 

technology presented here, the amplification can be monitored by a ubiquitous color 

camera or webcam. In one scenario, health workers can perform the RT-qLAMP on a 

heating plate or in an oven at 65 
o
C and monitor the color changes using a cell phone. 

The results can be analyzed on the phone or on a cloud server. This approach does not 

require new technology or infrastructure, but allows rapid outbreak assessment from 

personal to societal levels.   
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8. MICROBIOTA ANALYSIS OF THE BIOSPHERE 2 OCEAN  

8.1 Introduction 

Biosphere 2 is a 3.14-acre ecological system located in Oracle, Arizona. It was built by 

Apace Biosphere Ventures from 1987 (Allen and Nelson, 1999), and was taken over by 

Columbia University on January 1, 1996. Since July 2011, Biosphere 2 was operated by 

the University of Arizona as a teaching, outreach, and research facility. The facility 

includes an ocean, a mangrove estuary (Finn, 1996), a tropical rainforest (Leigh et al., 

1999), a savannah grassland, and a desert. The ocean in Biosphere 2 is a 2650 m
3
 

saltwater tank with algae, microbes, animals, and coral reef (Atkinson et al., 1999). There 

are water pumps to circulate water, aerators to simulate ocean waves, and filtration 

systems to maintain the water quality. The water chemistry is constantly monitored and 

stabilized (Atkinson et al., 1999).  

Due to its proximity to ASU and complementarily simulated environment,  

Biosphere 2 Ocean habitat is an excellent place for us to validate ocean-observing 

technologies. In the future, after packaging the molecular detection device with hardware 

subsystems, the prototype of the genomic sensor will be placed in the Biosphere 2 Ocean 

for performance characterization. One reason is that compared with real oceans, the 

Biosphere 2 Ocean is a well-controlled ecosystem (Allen and Nelson, 1999). Additionally, 

since the Biosphere 2 Ocean is designed to simulate real oceans, its microbial 

communities have a high degree of complexity (Atkinson et al., 1999). Investigating the 

microbial community structures in the Biosphere 2 Ocean is a critical step towards in situ 

genomic sensor development.  
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8.2 Experiments 

8.2.1 Sampling and sample processing 

Samples of the Biosphere 2 Ocean were collected once a month (from September, 2015 

to August, 2016) from the location labelled in Figure 22. Three liters of Biosphere 2 

seawater were collected from the surface, and filtered using EMD Millipore Stericup™ 

Sterile Vacuum Filter Units (Fisher Scientific, Asheville, NC) with pore size 0.22 μM. 

This process took approximately 10 mins, after which the filter membranes with biomass 

were temporarily stored on dry ice, while the filtrate was discarded. After shipping the 

samples back to the laboratory, the filter membranes with the samples were removed 

from the filter unit, transferred to sterilized Petri dishes, and stored in -80 
o
C freezers.  

 

Figure 22. Sampling site (yellow marker) in the Biosphere 2 Ocean 

During sample processing, the filter membranes were cut into pieces and the 

genomic DNA was purified from the biomass. To reduce the bias that could be 

introduced in the DNA extraction stage, the performance of multiple DNA purification 
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kits with different cell lysis methods was compared. Three DNA extraction kits were 

evaluated: the Zymo Quick-gDNA kit, the ZR Fungal/Bacterial DNA kit, and the ZR Soil 

Microbe DNA kit (Zymo Research, Irvine, CA). A best kit was selected for sample 

preparations based on the species richness and phylogenetic diversity it provides. Three 

replicates from the same samples were prepared and the DNA replicates were pooled to 

reduce the potential bias generated by the individual DNA purification process (Pinto and 

Raskin, 2012). To ensure the 16S sequencing quality, the purified genomic DNA was 

quantified by a Nanodrop spectrophotometer (Thermo Scientific, Wilmington, DE). 

8.2.2 16S rDNA sequencing 

The bacterial community from the Biosphere 2 Ocean was analyzed on the MiSeq 

platform from Illumina. 16S rDNA sequencing was performed at the Microbiome 

Analysis Laboratory (http://krajmalnik.environmentalbiotechnology.org/microbiome-

lab.html) at Arizona State University (Tempe, AZ). In this project, the V4 region of the 

16S rDNA was amplified and sequenced. The amplification was performed using the 

barcoded primer set 515f/806r designed by Caporaso et al. (Caporaso et al., 2012), and 

the library was prepared following the protocol from the Earth Microbiome Project (EMP) 

(http://www.earthmicrobiome.org/emp-standard-protocols/). For each sample, the PCR 

amplification was performed in triplicate, then pooled and quantified using Quant-iT™ 

PicoGreen® dsDNA Assay Kit (Invitrogen, Grand Island, NY). DNA of 240 ng per 

sample were pooled and then cleaned using QIA quick PCR purification kit (QIAGEN, 

Valencia, CA). The PCR pool was quantified by the Illumina library Quantification Kit 

ABI Prism® (Kapa Biosystems, Wilmington, MA). The DNA pool was determined and 

http://krajmalnik.environmentalbiotechnology.org/microbiome-lab.html
http://krajmalnik.environmentalbiotechnology.org/microbiome-lab.html
http://www.earthmicrobiome.org/emp-standard-protocols/
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diluted to a final concentration of 4 nM then denatured and diluted to a final 

concentration of 4 pM with a 30% of PhiX. Finally, the DNA library was loaded in the 

MiSeq Illumina sequencer using the chemistry version 2 (2 × 150 paired-end) and 

following the manufacturer’s protocol.  

8.2.3 Data analysis 

The 16S rDNA sequence reads were merged to assemble paired-end reads. The reads 

were clustered to generate operational taxonomic units (OTUs) using the Cluster 

Database at High Identity with Tolerance (CD-HIT) clustering method (Li and Godzik, 

2006). In each OTU, the sequence identity was defined higher than 97%. Representative 

sequences were selected from each OTU, while other redundant sequences were removed 

to reduce the computational efforts.  All the representative sequences were aligned with 

the Python Nearest Alignment Space Termination tool (PyNAST) (Caporaso et al., 2010). 

RDP classifier (Wang et al., 2007) with confidence threshold 80% was used to assign 

taxonomy information to the representative sequences.  

According to the endosymbiosis theory, eukaryotes took up alpha-proteobacteria, 

which became the organelle called mitochondria in eukaryotes (Giezen, 2011). Similarly, 

the chloroplasts in eukaryotes were bacteria origin as well (Giezen, 2011). Neither 

chloroplast nor mitochondria was functional in bacteria. Moreover, the primers in the 16S 

sequencing should target bacteria, instead of archaea and eukaryotes. In addition, even 

though the chloroplast in the datasets could partly reflect the dynamic of some 

photosynthesis algae, the information it conveyed was incomplete, and could not 
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represent the whole photosynthesis community. Therefore, a quality control step was 

performed to remove the archaea, chloroplast, and mitochondria from the datasets. 

With taxonomy information assigned to the representative bacterial sequences, a 

phylogenetic tree was built to visualize the evolutionary relationships among the bacterial 

community. The phylogenetic tree was constructed by the FastTree method (Price et al., 

2009). As the sequence read numbers varied among samples, the reads were subsampled 

and normalized, so that the samples can be compared directly. The minimum count of the 

12 samples was calculated and used as a subsampling depth. Species richness, Shannon 

Index, Simpson’s Diversity, and phylogenetic diversity were calculated for each 

normalized samples. The bacterial community composition was summarized at multiple 

taxonomic levels.  

8.2.4 Comparison between the Biosphere 2 Ocean and real oceans 

After analyzing the bacterial community composition within one year’s period, the 

structure of the Biosphere 2 Ocean community was compared with the communities from 

real oceans. In this part of the project, time series marine microbiome sequencing data 

from public databases have been incorporated and analyzed. The first database was from 

the Hawaii Ocean Time-series (HOT) station ALOHA. Scientists from HOT program 

conducted cruises approximately once each month to ALOHA, and performed 16S 

sequencing to investigate the bacteria information from the Pacific Ocean’s surface 

(22
o
45’N 158

o
W) (DeLong, 2006). The sequencing reads from Feb 1, 2013 to May 5, 

2013 were downloaded for this project. The second database contained the sampling 

results from the TARA Ocean project. From 2009 to 2012, 243 samples from 68 
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locations were collected from the global ocean (Sunagawa et al., 2015). Among them, 17 

samples were selected for this project. In sum, the 16S rRNA gene sequencing data of the 

microbial communities used in this study was collected from the North Pacific Ocean 

(source: ALOHA station ALOHA130201–ALOHA130503, TARA Ocean NPO137–140), 

South Pacific Ocean (source: TARA Ocean SPO94–98), Atlantic Ocean (source: TARA 

Ocean NAO145–148, SAO68–72), Indian Ocean (source: TARA Ocean IO56–62), and 

the Southern Ocean (source: TARA Ocean SO84–85). The same data processing 

procedure was carried out as described in the previous sections. The sequencing reads 

were subsampled to reach the same number of OTUs as the Biosphere 2 Ocean dataset.  

8.3 Results 

8.3.1 Performance of three DNA purification kits 

In this part of project, the aim was to evaluate the performance of commercially available 

DNA extraction kits. The biomass collected in September 2015 was selected to assess the 

extraction methods and the chloroplast and mitochondria related sequencing reads were 

intentionally not removed. To directly compare different DNA purification methods, 

subsampling was performed on the sequencing data with a subsampling depth of 21667. 

Both the ZR Fungal/Bacterial DNA kit and the ZR Soil Microbe DNA kit (Figure 23) 

generated a high percentage of gram-positive bacteria (and bacteria with multilayer cell 

wall structures) DNA. The ZR Soil Microbe DNA kit was considered to have the best 

performance regarding the species richness and phylogenetic diversity. Using the ZR Soil 

Microbe DNA kit, 2669 taxa were observed among 21667 total reads, and the 

phylogenetic diversity was 132.9 (Table 4), while the ZR Fungal/Bacterial DNA kit and 
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ZR gDNA kit yielded a significantly reduced amount of taxa. Figure 23 shows that the 

ZR Soil Microbe DNA kit had a high yield of gram-positive bacteria. For example, the 

ZR Soil Microbe DNA kit yields 4.7% of Actinobacteria, a phylum of gram-positive 

bacteria, while the ZR Fungal/Bacterial DNA kit and ZR gDNA kit generated 1.5% and 

0.1% Actinobacteria, respectively. In terms of the sequencing results, the ZR Soil 

Microbe kit was selected for subsequent DNA sample preparations.  

Table 4. DNA extraction efficiency comparison 

  gDNA  Fungal Bacterial Soil Microbe 

Cell lysis method Lysis buffer Lysis buffer Lysis buffer 

  

 

Bead beating Bead beating 

Inhibitor removal No No Yes 

Species richness  1624 2026 2669 

Phylogenetic diversity 78.2 104.2 132.9 

 

 

Figure 23. Comparison of three genomic DNA purification kits 
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8.3.2 Bacterial community composition 

Among 35,434 OTUs, a total of 55 distinct bacterial phyla were found in the 

Biosphere 2 Ocean, suggesting that the bacterial communities in the Biosphere 2 Ocean 

were highly diverse. However, the community was dominated by a few taxa. Four phyla 

accounts for an average of 93% of the bacterial community (Figure 24): Bacteroidetes 

(48%), Proteobacteria (38%), Cyanobacteria (5%), and Actinobacteria (2%). In Figures 

24, 25, 26, and 27, identified taxa that exceeded 0.1% of the total community were 

plotted. Taxa that have a percentage less than 0.1% in all of the samples or not identified 

were classified as “Other” in the plots. The seasons were grouped as winter (January – 

March), spring (April – June), summer (July - September), fall (October - December).  

In the surface water of the Biosphere 2 Ocean, the two most abundant phyla were 

Bacteroidetes and Proteobacteria. During winter and early spring (January to April), the 

dominant phylum in the Biosphere 2 Ocean was Proteobacteria, while during the 

remaining months of the year, the phylum with highest abundance was Bacteroidetes. 

The relative abundance of Bacteroidetes exhibited a seasonal pattern. The percentages of 

Bacteroidetes during fall (October, November, and December) and spring (April, May, 

and Jun) are significantly higher than other seasons (p < 0.05, t test). In contrast, 

Proteobacteria showed an opposite trend. The percentages during fall (October, 

November, and December) and spring (April, May, and Jun) are significantly lower than 

winter and summer (p < 0.05, t test). 

In the Biosphere 2 Ocean, there were 132 distinct classes identified. In 

Bacteroidetes, the dominant class was Flavobacteriia. The percentage of the class 
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Flavobacteriia reached a peak value (66%) in October. A minimum percentage (31%) of 

Flavobacteriia showed up in April. Two dominant classes were found in Proteobacteria: 

Alphaproteobacteria and Gammaproteobacteria. Alphaproteobacteria reached a peak in 

July, accounting for 24% of the analyzed OTUs. The number dropped to 7% in August 

and September. The peak (39%) of Gammaproteobacteria showed up in March, while the 

lowest relative abundance (6%) of Gammaproteobacteria appeared in June. It is 

interesting to note that the abundance of the class Rhodothermi from Bacteroidetes 

experienced an obvious increase during May (5%), June (1%), and July (4%), whereas in 

the remaining time its abundance was less than 0.2%. In phylum Cyanobacteria, the most 

abundant class was Oscillatoriophycideae. It peaked during December (25%) and April 

(25%).  

There were 194 orders and 260 families identified, respectively. Flavobacteriales 

had the highest relative abundance, and accounted for more than 31% of the bacterial 

community. It was the dominant order in Bacteroidetes in the Biosphere 2 Ocean. 

Flavobacteriales showed a high percentage during October (66%), November (61%), and 

December (60%). Rhodobacterales was the dominant order in Alphaproteobacteria. Its 

percentage fluctuated around 11%, with a maximum 22% in July and minimum 3% in 

September. The dominant order in Gammaproteobacteria was not identified. In the 

Biosphere 2 Ocean, Cryomorphaceae played a key role in maintaining the composition of 

the bacterial community. It was the most abundant family in the samples. 

Cryomorphaceae was a member of Flavobacteriales. It accounted for 60% of the taxa in 
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October. Even in April, when it presented a smallest proportion, it still constituted 22% 

of the taxa.  

Three more samples were collected during October, November, and December 

2016 to compare the bacterial community structure between 2015 and 2016. The average 

of the proportion from the three samples was calculated and compared with the three 

months’ average in 2015 (Oct, Nov, and Dec). Bacteroidetes experienced a 27.7% 

decrease in 2016. Flavobacteriia was the major player that resulted in the shrinkage of the 

Bacteroidetes community. Compared with 2015, Flavobacteriia decreased 28.6% during 

the fall. The percentage of Proteobacteria decreased by 20.7%, most of which was 

contributed by Gammaproteobacteria (increased by 18.7%). Actinobacteria increased by 

5.4%. The percentage of other phyla remained stable. The dominant phyla remain the 

same within two years. Even though certain fluctuations have been found in the 

Biosphere 2 Ocean bacterial communities, no significant change of major taxa was 

observed at class, order, and family levels. 
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Figure 24. Phylum-level taxonomy of bacterial community in the Biosphere 2 Ocean. 

 (“k__”: kingdom, “p__”: phylum) 
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Figure 25. Class-level taxonomy of bacterial community in the Biosphere 2 Ocean.  

(“k__”: kingdom, “p__”: phylum, “c__”: class) 
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Figure 26. Order-level taxonomy of bacterial community in the Biosphere 2 Ocean.  

(“k__”: kingdom, “p__”: phylum, “c__”: class, “o__”: order) 
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Figure 27. Family-level taxonomy of bacterial community in the Biosphere 2 Ocean.  

(“k__”: kingdom, “p__”: phylum, “c__”: class, “o__”: order, “f__”: family)  
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8.3.3 Bacterial community diversity and seasonality  

The species richness has been characterized. The sequencing reads have been re-sampled 

with a subsampling depth 35,434 sequences. The observed numbers of taxa in the 

normalized samples were randomly distributed around the mean species richness (Figure 

28A) 3570, and the phylogenetic diversity (Figure 28B) around 190. There were no 

obvious patterns regarding the species richness and phylogenetic diversity throughout the 

year. One-way analysis of variance suggested that the species richness did not exhibit 

significant difference (p = 0.8986, F test) during four seasons, neither did phylogenetic 

diversity (p = 0.9618, F test). Different from previous reports showing that the bacterial 

diversity reached a highest value in winter at a temperate coast (Gilbert et al., 2010), or 

peaked at summer in a drinking water treatment plant (Pinto et al., 2014), no strong 

patterns of species richness between different seasons were observed in the Biosphere 2 

Ocean. This is reasonable because the Biosphere 2 Ocean is a better-controlled 

environment. The temperature, salinity, and pH in this ocean have been real-time 

regulated.  

The relative abundance of the populations has been evaluated by calculating two 

diversity indices (Shannon index and Simpson’s diversity index).  The Shannon index 

indicated the diversity of the bacterial community, which was determined by the species 

richness and evenness. A population with high equitability and more species tends to 

exhibit high Shannon index. The Simpson’s diversity index suggested dominancy of the 

common species. Similarly, a high Simpson’s diversity index showed a high species 

diversity in a population. In both Figure 28C and 28D, the diversity and evenness of the 
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bacterial community in the Biosphere 2 Ocean showed similar patterns. Statistical results 

confirmed that the bacterial community compositions were not significantly different 

(Shannon index: p = 0.4883, F test; Simpson’s diversity index: p = 0.0611, F test; α = 

0.05) among four seasons. These results indicate that the bacterial community in the 

Biosphere 2 Ocean is stable. The community composition and diversity remained 

constant during four seasons.  

 

Figure 28. Alpha diversity trends in the Biosphere 2 Ocean bacterial community 
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The sequencing results were rarefied and the number of observed OTUs was plotted 

versus the number of reads (Figure 29). Based on 97% similarity, the figure suggested 

the rarefaction curves were approaching the maximum plateaus, meaning the majority of 

the bacterial communities can be represented. Sample 2015.09 appeared to have high 

abundant OTUs, while sample 2016.08 has the low abundant OTUs.   

 

Figure 29. Rarefaction curves of the Biosphere 2 Ocean samples 

The evenness of the samples was displayed in Figure 30, which showed that the rank-

abundance curve from sample 2015.09 lay above the others. The lower slope in sample 

2015.09 suggested greater evenness within the community. Except sample 2015.09, the 

other samples produced approximately similar steepness of rank-abundance curves, 

indicating the evenness within the community was similar.   
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Figure 30. Rank-abundance curves of the Biosphere 2 Ocean samples 

8.3.4 Biosphere 2 and real open oceans 

In the previous sections, the Biosphere 2 Ocean has been characterized. Its bacterial 

community seems to be diverse and stable during the investigation period. However, it 

should not be denied that Biosphere 2 is an artificial environment. Even though the 

microbial community of this small ocean was collected from the Pacific Ocean, with 

almost 20 years’ cultivation in the desert, its bacterial community structure is likely to 

have changed significantly. Therefore, the bacterial communities in the Biosphere 2 

Ocean were compared with the bacterial communities in real open oceans.  

The bacterial community structures in real open oceans were plotted in Figure 

31-34. Figure 31, 32 showed the time series observations at the station ALOHA 
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(22
o
45’N 158

o
W) at the North Pacific Ocean. “ALOHA130201” represented by the date 

(Feb 01, 2013) that the seawater samples were collected.  Data collected from the station 

ALOHA from March to May in 2013 showed that the most abundant phylum was 

Cyanobacteria (average: 57.7%) during the early spring. Synechococcophycideae (55.9%) 

was the dominant class in Cyanobacteria. There were sudden increases of 

Verrrucomicrobia (Feb to Apr average: 1.6%, May average: 23.0%) and Planctomycetes 

(Feb to Apr average: 3.0%, May average: 21.2%) in May. The second dominant phylum 

was Proteobacteria (average: 13.0%), while Bacteroidetes only accounted for 2.7% of the 

bacteria community in spring. The data collected from the TARA Ocean project indicated 

that the dominant phylum was Proteobacteria (average: 66.3%) in the Pacific Ocean, 

Atlantic Ocean, Indian Ocean, and the Southern Ocean (Figure 33, 34). 70.1% of the 

Proteobacteria were in the class Alphaproteobacteria, and 27.4% belonged to 

Gammaproteobacteria. Cyanobacteria accounted for an average of 13.9%. Similar with 

the structure observed from the station ALOHA, Cyanobacteria were dominated by 

Synechococcophycideae. Bacteroidetes consisted 8.2% of the community of the open 

ocean based on the TARA Ocean.  

These results from real open oceans showed different patterns compared with the 

community structures in the Biosphere 2 Ocean. First, the Biosphere 2 Ocean possessed a 

relatively lower percentage of Cyanobacteria, while a higher percentage of Bacteroidetes. 

Second, the major player of Cyanobacteria was Oscillatoriophycideae in the Biosphere 2 

Ocean, instead of Synechococcophycideae from the open ocean. The reason for the 
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alternations in the community composition remains to be investigated. It is likely to be 

the result of the lighting/temperature controlling system in the Biosphere 2 facilities.  

 

Figure 31. Phylum-level taxonomy of bacterial community from ALOHA station.  

(“k__”: kingdom, “p__”: phylum) 
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Figure 32. Class-level taxonomy of bacterial community from ALOHA station.  

(“k__”: kingdom, “p__”: phylum, “c__”: class) 
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Figure 33. Phylum-level taxonomy of bacterial community from the TARA Ocean. 

(“k__”: kingdom, “p__”: phylum) 
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Figure 34. Class-level taxonomy of bacterial community from the TARA Ocean. 

(“k__”: kingdom, “p__”: phylum, “c__”: class) 
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In this study, the alpha diversity of the real open ocean has been investigated as 

well. Shannon index and phylogenetic diversity have been evaluated.  

Most of the environmental samples from the real open oceans had a Shannon 

index between 9 and 12. Among eight sampling locations, the North Atlantic Ocean has 

the highest species richness with Shannon index higher than 12, while the Shannon index 

from the majority of the Biosphere 2 Ocean samples was less than 6 (Figure 35). This 

suggested that with around 20 years’ cultivation in a closed environment, the species 

richness in the Biosphere 2 Ocean has decreased, even though the environmental factors 

were highly controlled.  Both of the ALOHA time series and Biosphere 2 time series 

suggested that the Shannon index varied during the sampling period.  

Similar pattern were observed in the phylogenetic diversity plot (Figure 36). The 

phylogenetic diversity was represented by the PD whole-tree index, meaning the sum of 

the branch lengths in the phylogenetic trees. The North Atlantic Ocean showed the 

highest phylogenetic diversity, while the phylogenetic diversity in the Biosphere 2 Ocean 

was lower than in the open oceans.  
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Figure 35. Shannon index from the Biosphere 2 Ocean and real open oceans. 
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Figure 36. Phylogenetic diversity from the Biosphere 2 Ocean and real open oceans. 

8.4 Discussion  

The 16S rDNA sequencing profiles suggested temporal patterns of Bacteroidetes and 

Proteobacteria relative abundance. However, it is interesting to know that the overall 

evenness and diversity in the Biosphere 2 Ocean bacterial community have not changed 

significantly within the one year window (Figure 28), and did not suggest clear seasonal 
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trends. This is not surprising, as the environmental factors in the Biosphere 2 Ocean were 

real-time monitored and regulated.  

 Comparisons between the Biosphere 2 Ocean and the real open oceans suggest 

that the species richness and phylogenetic diversity in the Biosphere 2 Ocean bacterial 

community were lower than the communities in the natural ocean. It seems the ecosystem 

in an artificial environment is likely to lose certain evenness of species, especially with 

years’ cultivation. Nevertheless, being away from the real ocean for years, the alteration 

of the bacterial communities implied that the Biosphere 2 Ocean is becoming a unique 

environment. A stable ecosystem potentially reduced the need of real-time 

characterization of the bacterial community during in situ instrument validation. This 

information could potentially reduce the cost of testing in situ devices. Additionally, the 

interesting ecosystem in the Biosphere 2 is a promising candidate to be treated as a 

miniature of a real ecosystem for future ecological investigations.  
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9. CONCLUSION AND FUTURE WORK 

9.1 Conclusion 

In environmental and biomedical research, qPCR is a critical tool used widely in 

laboratory settings. However, it is relatively limited for field applications because it 

requires a complicated detection platform and large energy storage. In this dissertation 

project, a novel quantitative DNA analyses system using colorimetric loop mediated 

isothermal amplification (LAMP) has been demonstrated. The conclusions of this project 

include: 

(1) A novel real-time colorimetric quantification approach has been established. 

Algorithms and analysis tools have been built that automatically rejects pixels of bubbles, 

extracts the hues of individual wells, and fits the amplification curves using a sigmoidal 

function. Threshold time—similar to the threshold cycle number for qPCR—has been 

defined to represent the relative abundance of the template. These tools enabled 

automatic and rapid image acquisition, image processing, and data analysis, which are 

convenient and timesaving. Notably, these tools are user friendly and do not require 

professional training to operate. This novel quantification idea opened a new path for 

rapid nucleic acid quantification and the construction of the related analysis tools is a 

critical step to popularize this technology for routine laboratory use.  

(2) The corresponding hardware platform has been built for real-time colorimetric 

LAMP reactions. The quantification requires only a chip, an inexpensive camera and a 

heater. A chip with deep wells has been designed to increase the optical paths, thus 

enhancing the contrast of the color changes. The combination of chip design, protocol, 
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and algorithm enable better field-operable or in situ quantitative DNA analysis 

measurements. The advantage of this colorimetric approach is that an end point 

qualitative LAMP measurement can be easily transformed into a real-time quantitative 

system by adding a camera to record the reaction. Additionally, this real-time reaction 

can be performed in ambient lighting conditions. Conventional PCR systems require 

fluorescence measurements while this real-time colorimetric LAMP system can be easily 

set up in a laboratory and health care facilities without purchasing delicate qPCR 

thermocyclers. The easy operation makes this system also suitable for institutions without 

microfabrication specialists. The hardware platform, as well as the analysis software, 

serve as a generalized product of the quantification system. The innovative quantification 

device can also be modified for novel commercial instruments manufacturing.  

(3) The qLAMP reactions of serially diluted Synechocystis sp. PCC 6803 genomic 

DNA templates showed linear standard curves down to10
3
 copies/µL. The RT-qLAMP 

reactions with serially diluted Synechocystis sp. PCC 6803 total RNA templates have a 

quantitative limit up to 1 pg/µL. The highly quantitative trait paved the way for 

promoting the colorimetric quantification technology to the research community. The 

results proved that the quantification approach was robust and sensitive, suggesting that 

this technology is a promising candidate for in situ device development.  

(4) The colorimetric RT-qLAMP could be promising not only for microbial gene 

expression level characterization, but also for viral RNA load quantification. The RT-

qLAMP reactions with serially diluted ZIKV RNA suggest that the technology is highly 

quantitative for viral RNA detection. The detection limit can be as low as 10 copies/µL. 
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In addition to environmental monitoring, this colorimetric quantification platform will be 

of immediate use to health care professionals for rapid and low-cost infectious disease 

diagnosis.   

(5) As the Biosphere 2 Ocean showed relatively stable bacterial community structure, 

and seasonal community composition changes, the Biosphere 2 Ocean could be used to 

validate our future in situ instruments. Before deploying the instrument in real oceans, the 

instrument can be deployed in the Biosphere 2 Ocean for performance validation and 

optimization. This will significantly reduce the cost of instrumentation development. The 

bacterial community structure information will provide background biological knowledge 

of a promising test site for the researchers who are planning to build in situ devices. This 

information will accelerate environmental observing instrument development, benefit 

oceanographers, and lead to unprecedented ocean discoveries.  

9.2 Future work  

Even though this dissertation project provides fundamental concepts and set a solid 

foundation for in situ instrument development, there are still issues that remain to be 

solved before implementing field-operable devices. For example, regular webcams are 

low-cost and easily accessible, but they are huge regarding field operation. To save space, 

a tiny image acquisition element needs to be inserted into the in situ instrument to replace 

the webcam. This image acquisition element might need to be tuned further for optimal 

performance.  

 In this dissertation project, for proof-of-concept, only five groups of reactions 

were performed on a single chip. The throughput can be increased by rearranging the 
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layout of the reaction chambers or increasing the overall area of the chip. Moreover, in 

this project, only a single type of nucleic acid was analyzed each time. For future field 

operations, depending on specific research topics, multiple primer sets can be deposited 

into the reaction chambers to allow multiple target analysis capability. After integrating 

the platform with other important components (e.g. sampling unit, power system), the 

device can be deployed in the Biosphere 2 Ocean to characterize the performance.  
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APPENDIX A 

MATLAB CODE FOR COLORIMETRIC QLAMP IMAGE PROCESSING 
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function varargout = analysis(varargin) 
% ANALYSIS MATLAB code for analysis.fig 
%      ANALYSIS, by itself, creates a new ANALYSIS or raises the existing 
%      singleton*. 
% 
%      H = ANALYSIS returns the handle to a new ANALYSIS or the handle to 
%      the existing singleton*. 
% 
%      ANALYSIS('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in ANALYSIS.M with the given input arguments. 
% 
%      ANALYSIS('Property','Value',...) creates a new ANALYSIS or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before analysis_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to analysis_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

  
% Edit the above text to modify the response to help analysis 

  
% Last Modified by GUIDE v2.5 25-Nov-2014 22:50:14 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @analysis_OpeningFcn, ... 
                   'gui_OutputFcn',  @analysis_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

  

  
% --- Executes just before analysis is made visible. 
function analysis_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to analysis (see VARARGIN) 

  
% Choose default command line output for analysis 
handles.output = hObject; 

  
% Update handles structure 
guidata(hObject, handles); 
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% UIWAIT makes analysis wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 

  

  
% --- Outputs from this function are returned to the command line. 
function varargout = analysis_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 

  

  
% --- Executes on button press in Open_button. 
function Open_button_Callback(hObject, eventdata, handles) 
% hObject    handle to Open_button (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global directory_name; 
global fileIndex; 
global current_file_index; 
global files; 
directory_name = uigetdir; 
files = dir(directory_name); 
fileIndex = find(~[files.isdir]); 
if ~isempty(fileIndex) 
    current_file_index = fileIndex(1); 
    axes(handles.Raw_image); 
    imshow(strcat(directory_name,'\',files(current_file_index).name)); 
    set(handles.Raw_image_label,'String',files(current_file_index).name); 
    

set(handles.image_name,'String',strcat(num2str(1),'/',num2str(length(fileIndex)

))); 
end 

  

  
% --- Executes on button press in Save_button. 
function Save_button_Callback(hObject, eventdata, handles) 
% hObject    handle to Save_button (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
global files; 
global fileIndex; 
global directory_name; 
global Total_channel_number; 
global channel_info; 
global side_length; 
global H_color; 
global S_color; 
global V_color; 
format long; 
%set(handles.Processed_image_label,'String','Saving Channels'); 
axes(handles.Processed_image); 

  



125 

 

currentFolder = pwd; 
for k=1:length(fileIndex) 
    rgb=imread(strcat(directory_name,'\',files(fileIndex(k)).name)); 
    [pathstr,name,ext]=fileparts(files(fileIndex(k)).name); 
    axes(handles.Raw_image); 
    imshow(rgb); 
    set(handles.Raw_image_label,'String',name); 
    H_color(k,1) = str2double(name(10:15)); 
    S_color(k,1) = H_color(k,1); 
    V_color(k,1) = H_color(k,1); 
    H_color_temp = zeros(1,Total_channel_number); 
    S_color_temp = zeros(1,Total_channel_number); 
    V_color_temp = zeros(1,Total_channel_number); 
    parfor d=1:Total_channel_number 
        channel_name_num = num2str(d); 
        rgb_temp = imcrop(rgb,[channel_info(d,1) channel_info(d,2) side_length 

side_length]); 
        hsv_image = rgb2hsv(rgb_temp); 
        h_image = hsv_image(:,:,1); 
        s_image = hsv_image(:,:,2); 
        v_image = hsv_image(:,:,3); 
        threshold = hsv_image(:,:,2) > 0.1; 
        h_ave = mean(h_image(threshold)); 
        s_ave = mean(s_image(threshold)); 
        v_ave = mean(v_image(threshold)); 

  
        H_color_temp(d) = h_ave*360; 
        S_color_temp(d) = s_ave*360; 
        V_color_temp(d) = v_ave*360; 
        if(~exist(channel_name_num,'dir')) 
            mkdir(channel_name_num); 
        end 
        savewheel(hsv_image,fullfile(currentFolder,channel_name_num),name); 
    end 
    H_color(k,2:Total_channel_number+1) = H_color_temp; 
    S_color(k,2:Total_channel_number+1) = S_color_temp; 
    V_color(k,2:Total_channel_number+1) = V_color_temp; 
    cla(handles.Raw_image,'reset'); 
    

set(handles.image_name,'String',strcat(num2str(k),'/',num2str(length(fileIndex)

))); 
end 
csvwrite('H_Channel.csv',H_color); 
csvwrite('S_Channel.csv',S_color); 
csvwrite('V_Channel.csv',V_color); 

  

  
% --- Executes on button press in Previous_button. 
function Previous_button_Callback(hObject, eventdata, handles) 
% hObject    handle to Previous_button (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global current_file_index; 
global fileIndex; 
global directory_name; 
global files; 

  
cla(handles.Raw_image,'reset'); 
if (current_file_index > fileIndex(1)) 
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    current_file_index = fileIndex(find(fileIndex ==current_file_index)-1); 
    axes(handles.Raw_image); 
    imshow(strcat(directory_name,'\',files(current_file_index).name)); 
    set(handles.Raw_image_label,'String',files(current_file_index).name); 
end 

  

  
% --- Executes on button press in Next_button. 
function Next_button_Callback(hObject, eventdata, handles) 
% hObject    handle to Next_button (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global current_file_index; 
global fileIndex; 
global directory_name; 
global files; 

  
cla(handles.Raw_image,'reset'); 
if (current_file_index <= fileIndex(end-1)) 
    current_file_index = fileIndex(find(fileIndex == current_file_index)+1); 
    axes(handles.Raw_image); 
    imshow(strcat(directory_name,'\',files(current_file_index).name)); 
    set(handles.Raw_image_label,'String',files(current_file_index).name); 
%    set(handles.image_name,'String',files(current_file_index).name); 
end 

  

  
function Total_CH_Callback(hObject, eventdata, handles) 
% hObject    handle to Total_CH (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of Total_CH as text 
%        str2double(get(hObject,'String')) returns contents of Total_CH as a 

double 

  

  
% --- Executes during object creation, after setting all properties. 
function Total_CH_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Total_CH (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on button press in Est_radii_set. 
function Est_radii_set_Callback(hObject, eventdata, handles) 
% hObject    handle to Est_radii_set (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global d 
axes(handles.Raw_image); 
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if(strcmp(get(handles.Est_radii_set,'String'),'Est Radii')) 
    d = imdistline; 
    set(handles.Est_radii_set,'String','Set'); 
else 
    set(handles.Est_radii_set,'String','Est Radii'); 
    api = iptgetapi(d); 
    api.delete(); 
end 

  

  
function Radius_Callback(hObject, eventdata, handles) 
% hObject    handle to Radius (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of Radius as text 
%        str2double(get(hObject,'String')) returns contents of Radius as a 

double 

  

  
% --- Executes during object creation, after setting all properties. 
function Radius_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Radius (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on button press in Select_CH. 
function Select_CH_Callback(hObject, eventdata, handles) 
% hObject    handle to Select_CH (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global h_rec; 
global side_length; 
%h_rec = rectangle('Position',[250 250 side_length side_length]); 
%ini_rec = [250 250 side_length side_length]; 
%[h_rec] = dragrect(ini_rec); 
%axes(handles.Raw_image); 
%waitforbuttonpress; 
%point1 = get(handles.Raw_image,'CurrentPoint'); % button down detected 
h_rec = impositionrect(handles.Raw_image,[250 250 side_length side_length]); 

  

  
function CH_Callback(hObject, eventdata, handles) 
% hObject    handle to CH (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of CH as text 
%        str2double(get(hObject,'String')) returns contents of CH as a double 
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% --- Executes during object creation, after setting all properties. 
function CH_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to CH (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on button press in Set_CH. 
function Set_CH_Callback(hObject, eventdata, handles) 
% hObject    handle to Set_CH (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
Current_channel_number = floor(str2double(get(handles.CH,'String'))); 

  
global channel_info; 
global h_rec; 

  
api = iptgetapi(h_rec); 
pos = api.getPosition(); 
channel_info(Current_channel_number,1)=pos(1); 
channel_info(Current_channel_number,2)=pos(2); 

  

  
% --- Executes on button press in Test_all_CH. 
function Test_all_CH_Callback(hObject, eventdata, handles) 
% hObject    handle to Test_all_CH (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global channel_info; 
global side_length; 
for i=1:length(channel_info(:,1)) 
    rectangle('Position',[channel_info(i,1) channel_info(i,2) side_length 

side_length]); 
    

text(floor(channel_info(i,1)+side_length/2),floor(channel_info(i,2)+side_length

/2),num2str(i)); 
end 

  

  
% --- Executes on button press in Start. 
function Start_Callback(hObject, eventdata, handles) 
% hObject    handle to Start (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global Total_channel_number; 
global channel_info; 
global side_length; 
global H_color; 
global S_color; 
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global V_color; 
global fileIndex; 

  
Total_channel_number = floor(str2double(get(handles.Total_CH,'String'))); 
channel_info = zeros(Total_channel_number,2); 
side_length = floor(str2double(get(handles.Radius,'String'))*1.4); 
H_color = zeros(length(fileIndex),Total_channel_number+1); 
S_color = zeros(length(fileIndex),Total_channel_number+1); 
V_color = zeros(length(fileIndex),Total_channel_number+1); 

 

 
function savewheel(hsv_image_temp, path, save_file_name) 

  
format long g; 
format compact; 
fontSize = 20; 

  
% Let's compute and display the histogram. 
figure('Visible','off'); 
numberOfBins = 120; 
step = 360/numberOfBins; 
h = hsv_image_temp(:,:,1); 
% Display the original color image. 
scaledHue = 360*h; 
[pixelCount, grayLevels] = hist(scaledHue(:), 1:step:360); 
subplot(2, 1, 1);  
bar(grayLevels, pixelCount); 
grid on; 
title('Histogram of Hue Channel', 'FontSize', fontSize); 
xlim([0 360]); % Scale x axis manually. 

  
subplot(2, 1, 2);  
cmap = hsv(length(1:step:360)); 
r = pixelCount / max(pixelCount(:)); 
drawWheel(r,cmap); 
saveas(gcf,fullfile(path,save_file_name),'png'); 
%figure('Visible','on') 
 

 

 
function drawWheel(r, cmap) 
if (any(r > 1) || any(r < 0)) 
    error('R must be a vector of values between 0 and 1') 
end 

  
if numel(r) ~= size(cmap,1) 
    error('Length of r and cmap must be the same') 
end 

  
n = numel(r); 
innerRadius =  250; 
outerRadius = 300; 

  
angles = linspace(0,2*pi,n+1); 
newR = innerRadius*(1-r); 
% Draw the hue in the annulus. 
for k = 1:n 
%   newR(k); 
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    drawSpoke(innerRadius, outerRadius, angles(k), angles(k+1), cmap(k,:)); 
    drawSpoke(newR(k), innerRadius, angles(k), angles(k+1), cmap(k,:)); 
end 

  
% Draw circle at the center. 
line(0,0,'marker','o'); 
% Draw outer black ring. 
line(cos(angles)*outerRadius, sin(angles)*outerRadius, 'LineWidth', 2, 'Color', 

'k'); 
% Draw inner black ring. 
line(cos(angles)*innerRadius, sin(angles)*innerRadius, 'LineWidth', 2, 'Color', 

'k'); 
axis equal; 

  

  
function h = drawSpoke(ri,ro,thetaStart,thetaEnd,c) 
xInnerLeft  = cos(thetaStart) * ri; 
xInnerRight = cos(thetaEnd)   * ri; 
xOuterLeft  = cos(thetaStart) * ro; 
xOuterRight = cos(thetaEnd)   * ro; 
yInnerLeft  = sin(thetaStart) * ri; 
yInnerRight = sin(thetaEnd)   * ri; 
yOuterLeft  = sin(thetaStart) * ro; 
yOuterRight = sin(thetaEnd)   * ro; 

  
X = [xInnerLeft, xInnerRight, xOuterRight xOuterLeft]; 
Y = [yInnerLeft, yInnerRight, yOuterRight yOuterLeft]; 

  
h = patch(X,Y,c); 
set(h,'edgeColor', 'none'); 
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APPENDIX B 

R CODE FOR COLORIMETRIC QLAMP HUE DATA ANALYSIS 
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Sigmoid <- function(params, x) { 

    # Four-parameter sigmoidal function. 

    params[1] + (params[2] - params[1]) / (1 + 10 ^ ((params[3] - x) * 

params[4])) 

} 

 

 

SigmoidFit <- function(x, y) { 

    # Fit the data with four-parameter sigmoidal function. 

    #  

    # Args: 

    #   x: predictive variable in Sigmoid function. e.g. time. 

    #   y: response variable in Sigmoid funtion. e.g. Hue of a specific group. 

    # 

    # Returns: 

    #   If a Sigmoid function can be applied to the provided y, return 4 coefs.  

    #   Four params: Max, Min, Tt, Slope.  

    #   Otherwise, return 4 "NA"s. 

     

    library(nls2) 

    coefs <- c() 

    tryCatch({ 

        start.df <- data.frame(a = c(232, 230, 228), 

                              b = c(210, 215, 220), 

                              c = c(20, 30, 50), 

                              d = c(0.07, 0.08, 0.15)) 

        # calculate starting value for nls optimization 

        start.value <- nls2(y ~ a + (b - a) / (1 + 10 ^ ((c - x) * d)),  

                           start     = start.df, 

                           algorithm = "brute-force", 

                           control   = list(maxiter = 500)) 

        coefs <- coef(nls2(y ~ a + (b - a) / (1 + 10 ^ ((c - x) * d)), 

                           start   = start.value, 

                           control = list(maxiter = 500))) 

         

    }, error = function(p) { 

        coefs <- c(NA, NA, NA, NA) 

    }) 

    return(coefs) 

} 

 

 

FindParams <- function(hue, groups = 2 : ncol(hue),  

                       save2file = "threshold") { 

    # Find four parameters of the sigmoidal function for multiple groups. 

    # 

    # Args: 

    #   hue: an input data frame that contains real time hue data.  

    #       (Format: first column is time, following columns are reaction 

groups; 

    #                colnames:"time", "R0.1"(Reaction 

logConcentration.Replicate), "R2.1": first replicate in 100 copies reaction.) 

    #   groups: a list contains column numbers that need to be analyzed. 

    #   save2file: types of data that need to be saved to csv files. Three 

choices available:  

    #              "all": a data frame containing four parameters of all 

analyzed groups;  

    #              "reacted": a data frame containing four parameters of all 

reacted groups (max > min + 3);  
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    #              "tt": a data frame containing the threshold times for all 

reacted groups.  

    # Returns: 

    #   -- 

 

    library(nls2) 

    params <- c() 

    coefs <- c() 

    for (i in groups) { 

        x <- hue[, 1] 

        y <- hue[, i] 

        coefs      <- SigmoidFit(x, y) 

        params.new <- as.data.frame(matrix(c(colnames(hue)[i], coefs), ncol = 

5)) 

        params     <- rbind(params, params.new) 

    } 

    params[, 2:5]    <- as.numeric(as.character(unlist(params[, 2:5]))) 

    colnames(params) <- c("groups", "Max", "Min", "Tt", "Slope") 

    params.reacted    <- params[which(params$Max > params$Min + 3), ] 

    result <- list("all"       = params, 

                   "reacted"   = params.reacted, 

                   "threshold" = data.frame("groups"    = params.reacted[, 1],  

                                            "threshold" = params.reacted[, 4])) 

    if ("threshold" %in% save2file) { 

        write.csv(result$threshold, "tt.csv") 

    } 

    if ("all" %in% save2file) { 

        write.csv(result$all, "parameters_all.csv") 

    } 

    if ("reacted" %in% save2file) { 

        write.csv(result$reacted, "parameters_reacted.csv") 

    } 

} 

 

 

SummariseTt <- function(filedir = "tt.csv", save2file = T) { 

    # Summarise the threshold time (Tt) by calculating the mean and standard 

error of Tts in each group 

    #  

    # Args: 

    #   filedir: the directory of a csv file containing a data frame of the 

threshold times for all reacted groups;  

    #            this file could be generated by FindParams(). 

    #   save2file: if TRUE, save the summarized data frame (mean and ste of 

each group) in "summarisedTt.csv"; if not, not. Default is TRUE. 

    # Returns: 

    #   -- 

     

    library(dplyr) 

    library(tidyr) 

    threshold.time <- tbl_df(read.csv(filedir)) %>% 

        separate(groups, c("concentrations", "replicates")) %>% 

        mutate(concentrations = extract_numeric(concentrations)) %>% 

        group_by(concentrations) %>% 

        select(concentrations, replicates, threshold) 

    summarise.tt <- summarise(threshold.time,  

                              means = mean(threshold),  

                              se = sd(threshold)/sqrt(length(threshold))) 

    if (save2file) { 

        write.csv(summarise.tt, "summarizedTt.csv") 
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    } 

} 

 

 

PlotStdCurve <- function(filedir = "summarizedTt.csv", 

                         xlabel = expression("log"[10]*"concentraion"~ 

"("*"Copies /" ~ mu*L*")"), ylabel= "Tt (min)",  

                         trend.start.row = 1, trend.end.row = nrow(tt), 

                         points.col = "blue", line.col = "red", 

                         legendx = "topright", legendy = NULL, 

                         img.save = F, img.width = 300, img.height = 250) { 

    # Plot a standard curve using the Tt values. 

    #  

    # Args: 

    #   filedir: the directory of a csv file containing the mean and standard 

error of Tts in each group; 

    #            this file can be generated by SummariseTt(). 

    #   xlabel: x axis label of the standard curve. 

    #   ylabel: y axis label of the standard curve. 

    #   trend.start.row: from which row the Tt values will be plotted on the 

standard curve. 

    #   trend.end.row: to which row the Tt values will be plotted on the 

standard curve. 

    #   points.col: the color of points on the standard curve. 

    #   line.col: the color of the fitted line on the standard curve. 

    #   legendx: the x location to put the legend. Default is topright.  

    #   legendy: the y location to put the legend. 

    #   img.save: if TRUE, save the standard curve to a png file; if not, not. 

Default is FALSE. 

    #   img.width: if img.save, what is the width of the image. 

    #   img.height: if img.save, what is the height of the image. 

    # 

    # Returns: 

    #   r.square: r^2 of the fitted line. 

    #   adj.r.square: adjucted r^2 of the fitted line. 

    #   beta0: intercept of the regression line. 

    #   beta1: slope of the regression line. 

     

    tt <- read.csv(filedir) 

    lm.fit <- lm(tt$means[trend.start.row:trend.end.row] ~ 

tt$concentrations[trend.start.row:trend.end.row]) 

    r.square     <- round(summary(lm.fit)$r.squared, 3) 

    adj.r.square <- round(summary(lm.fit)$adj.r.squared, 3) 

    beta0        <- round(summary(lm.fit)$coef[1], 2) 

    beta1        <- round(summary(lm.fit)$coef[2], 2) 

     

    # Plotting 

    plot(x = tt$concentrations, y = tt$means, 

         type = "n", ylim = c(0, 60), 

         xlab = xlabel, ylab = ylabel) 

    points(x = tt$concentrations, y = tt$means,  

           pch = 19, col = points.col) 

    abline(lm.fit,  

           col = adjustcolor(line.col, alpha = 0.5), lwd = 2) 

    legend(x = legendx, y = legendy, bty = "n", legend = bquote(R^2 

== .(r.square))) 

    arrows(tt$concentrations, tt$means - tt$se,  

           tt$concentrations, tt$means + tt$se,  

           length = 0.05, angle = 90, code = 3) 
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    # Saving image 

    if (img.save) { 

        dev.copy(png, file = "standcurve.png",  

                 width = img.width, height = img.height) 

        dev.off() 

    } 

    result <- list("r.square"     = r.square,  

                   "adj.r.square" = adj.r.square, 

                   "beta0"        = beta0, 

                   "beta1"        = beta1) 

    return(result) 

} 

 

 

PlotAmpCurve <- function(hue.start.column, hue.end.column, 

                         xlabel= "Time (min)", ylabel= "Hue",  

                         xlim = c(1, 60), ylim = c(210, 240), 

                         legendx = "topright", legendy = NULL, legend = NULL) { 

    # Plot amplification curves using the real-time hue data. 

    # 

    # Args: 

    #   hue.start.column: from which column the hue data needs to be plotted on 

the amplification curve. 

    #   hue.end.column: to which column the hue data needs to be plotted on the 

amplification curve. 

    #   xlabel: x axis label of the amplification curve. 

    #   ylabel: y axis label of the amplification curve. 

    #   xlim: range of x axis. 

    #   ylim: range of y axis. 

    #   legendx: the x location to put the legend. Default is topright.  

    #   legendy: the y location to put the legend. 

    #   legend: text in the legend. 

    # Returns: 

    #   -- 

     

    library(RColorBrewer) 

    colpal <- brewer.pal(5, "Set1") 

    set.seed(123) 

    plot(x = hue$time, y = hue[, 2],  

         type = "n",  

         xlim = xlim, ylim = ylim, 

         xlab = xlabel, ylab = ylabel) 

    legend(x = legendx, y = legendy, legend = legend, bty = "n") 

    for (i in hue.start.column : hue.end.column) { 

        x <- hue$time 

        y <- hue[, i] 

        tryCatch({ 

            params <- SigmoidFit(x, y) 

            if (params[1] < params[2] + 3) { 

                 points(x = hue$time, y = hue[, i], pch = 20,  

                        col = adjustcolor(sample(colpal, 1), alpha = 0.5)) 

            } 

            else { 

                color <- sample(colpal, 1) 

                y2 <- Sigmoid(params, x) 

                lines(x = hue$time, y = y2, 

                      col = adjustcolor(color, alpha = 0.7), lwd = 2) 

                points(x = hue$time, y,  

                       pch = 20, col = adjustcolor(color, alpha = 0.5)) 

            } 
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        }, error = function(p) { 

            points(x = hue$time, y = hue[, i],  

                   pch = 20,  

                   col = adjustcolor(sample(colpal, 1), alpha = 0.5)) 

        }) 

    } 

} 

 

 

# processing example 

hue <- read.csv("Hue.csv") 

FindParams(hue) 

SummariseTt() 

par(mfrow = c(2, 3), mar = c(4, 4, 1, 1)) 

PlotAmpCurve(22, 26, legend = "A") 

PlotAmpCurve(17, 21, legend = "B") 

PlotAmpCurve(12, 16, legend = "C") 

PlotAmpCurve(7, 11, legend = "D") 

PlotAmpCurve(2, 6, legend = "E") 

PlotStdCurve() 
 


