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ABSTRACT 

While predicting completion in Massive Open Online Courses (MOOCs) has been 

an active area of research in recent years, predicting completion in self-paced MOOCS, 

the fastest growing segment of open online courses, has largely been ignored. Using 

learning analytics and educational data mining techniques, this study examined data 

generated by over 4,600 individuals working in a self-paced, open enrollment college 

algebra MOOC over a period of eight months.  

 Although just 4% of these students completed the course, models were developed 

that could predict correctly nearly 80% of the time which students would complete the 

course and which would not, based on each student’s first day of work in the online 

course. Logistic regression was used as the primary tool to predict completion and 

focused on variables associated with self-regulated learning (SRL) and demographic 

variables available from survey information gathered as students begin edX courses (the 

MOOC platform employed).  

 The strongest SRL predictor was the amount of time students spent in the course 

on their first day. The number of math skills obtained the first day and the pace at which 

these skills were gained were also predictors, although pace was negatively correlated 

with completion. Prediction models using only SRL data obtained on the first day in the 

course correctly predicted course completion 70% of the time, whereas models based on 

first-day SRL and demographic data made correct predictions 79% of the time. 
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CHAPTER 1 
 

 Technological innovation has been the driving force for increasing the amount of 

information that can be communicated over distance (Poe, 2011). The invention of the 

printing press in late medieval Europe allowed for information in a portable format to be 

transported and distributed across the continent. The sudden availability and distribution 

of texts such as the Bible and the works of Plato and Aristotle in the 14th through 16th 

centuries created a political revolution and the destruction of an economic order that had 

dominated Europe for a thousand years (Eisenstein, 1983). The invention of the telegraph 

and the telephone in the 19th century brought another wave of change in the delivery of 

information when the spoken word could be transmitted almost instantly over long 

distances. When the concept of mass media was introduced in the form of radio and 

television, the ability to transmit information over long distances went beyond 

communication between two individuals to instantaneous communication to large 

populations over long distances. Most recently, in the past two decades, information 

communication has once again been revolutionized through the advent of the Internet and 

the World Wide Web (Gross & Harmon, 2016).  

 Because one of the core elements of education is the communication of 

information, each of the above technological developments in information transmission 

has had an impact on education (Thelin, 2009).  However, not all have had the same 

degree of impact. Some information communication technologies, such as the printing 

press, have had a more direct impact on education than others, such as the telegraph. Yet, 

the newest innovation in the communication of information over great distances, the 

invention of the Internet, is having a profound impact on education. How far reaching this 
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impact will be is just now beginning to be understood (Mason, 2000; Hollands & 

Tirthalia, 2015).  

The first classes offered over the Internet by institutions of higher learning began 

to be available in the mid-1990s through the Open University in the United Kingdom, 

and Walden University and the University of Phoenix in the United States (Hollands & 

Tirthalia, 2015). Today, twenty years later in the U.S., one in seven university students is 

taking all her classes online (Poulin & Straut, 2016). In recent years in the United States, 

private not-for-profit universities and public universities have taken the lead in the 

growth of online education. At one point, for-profit universities dominated online higher 

education in the U.S.; however recently, for-profit enrollments have declined (9%). On 

the other hand, the most recent government surveys for the period between 2012 and 

2014 reported private not-for-profit university enrollments in online education growing at 

a robust rate of 33% and a 12% growth in enrollments of online students by public 

institutions of higher education (Poulin & Straut, 2016).  

Statement of the Problem 

 One of the fastest growing segments of online education in recent years has been 

Massive Open Online Courses (MOOCs) (Hollands & Tirthalia, 2015). These courses are 

offered by universities for free or at a very low cost to students anywhere in the world 

(Belleflamme & Jacqmin, 2014). The “openness” of these online courses means that 

anyone with access to a computer and an Internet connection can participate. One of the 

reasons for the massive number of students in these classes is their openness to all. It is 

not unusual for thousands of students to enroll in a course. However, because of the low 

bar for entry, often at no cost to the student and requiring no academic prerequisites, 



	

	 3 

attrition in these courses is dramatic. Researchers have found the completion rate in many 

MOOCs to be less than 10% (Amnueypornsakul, Bhat, & Chinprutthiwong, 2014) and, 

since the advent of large MOOC platforms such as Coursera and edX in 2012-13, there 

has been much interest by researchers in the causes for students either persisting or 

dropping out of MOOC-type courses (Allione & Stein, 2016; Zheng, Han, Rosson, & 

Carroll, 2016; Xiong et al., 2015; Skrypnyk, De Vries, & Hennis, 2015). Although 

various approaches to predicting attrition, retention, and completion have been taken with 

respect to several MOOC courses, these issues have not been addressed in two of the 

fastest growing segments of the MOOC market—self-paced and credit-bearing MOOCs 

(Shah, 2016). There are several reasons why prediction may be more critical for these 

courses and why research into attrition and completion might yield insights over and 

above that for prediction for session-based non-credit or certificate-type courses:  

1. MOOC courses offering college credit have a well-defined goal that involves 

course completion. Whether or not offering credit contributes to or increases the 

achievement of this goal, completion itself must be examined. 

2. The characteristics of students who pursue credit through MOOCs must be 

determined. 

3. Self-paced courses do not have the cohort structure of many of the original 

MOOCs. One result of this is less active forums (Shah, 2016). How this affects 

course completion must also be studied.  

4. Success in a self-paced MOOC is highly dependent on students being able to self-

regulate their behavior. Traces of self-regulation in student online behavior may 
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offer valuable insights for strengthening prediction models, which can then offer 

insights into how students self-regulate when working in a self-paced MOOC. 

Research Questions 

The three primary research questions of this dissertation are: (1) What demographic 

characteristics and online behaviors are exhibited by students who complete or do not 

complete a self-paced mathematics MOOC?  (2) How early can we predict that a student 

will either complete or not complete a self-paced MOOC? (3)  Is there evidence in the daily 

activity logs of a self-paced mathematics MOOCs that can show evidence of self-regulation 

on the part of users? Students working online produce millions of lines of data every day. 

By mining the information created by students as they work, researchers can better 

understand the behavior patterns associated with student persistence in online courses, and 

when a student is at risk of dropping out. 

A Brief History of MOOCs 

 Tuition-based online offerings by institutions of higher education have been 

available in the United States for two decades. In recent years, however, the trend of 

offering higher educational resources for free over the Internet has accelerated (Hollands 

& Tirthalia, 2015). One of the most ambitious of these free programs emerged in the 

early 2000s as the Massachusetts Institute of Technology’s (MIT’s) OpenCourseWare 

initiative. In 2001, a new type of public copyright license was established, known as the 

Creative Commons license (Creative Commons, 2016). This license allows individuals 

and organizations to give permission for the free distribution of works that would 

normally fall under copyright restrictions.  Under these licenses in 2004, MIT uploaded 

to the Internet videos, handouts, and resources used in its undergraduate and graduate 
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courses. Following MIT’s lead, several other universities have since started their own 

open-courseware initiatives. Currently, 80 institutions of higher education offer free 

courseware over the Internet from more than 25,000 courses (Danver, ed., 2016).  

Another significant development during this decade was the 2006 launch of Khan 

Academy. Using a Yahoo Doodle notepad to create short math tutorials that could be 

uploaded to YouTube, Salman Khan began tutoring his niece who was located several 

states away. Soon, friends and family were accessing the videos and making their own 

requests (Pinkus, 2015). These online videos became so popular that Sal Khan quit his 

job as a hedge-fund manager and formed the non-profit educational company, Khan 

Academy. Now Khan Academy offers free instruction to 26 million registered students in 

190 countries in subjects from physics and computer science to art history and American 

civics (Scorza, 2016).  

 While the primary focus of Khan Academy was not the higher education market, 

its widespread success along with the open-courseware initiatives of major universities 

such as MIT, Yale, and Carnegie Mellon paved the way for the newest wave in online 

education: the MOOC.  

The Original MOOC 

The term MOOC was coined in 2008 by two Canadian professors, Dave Cormier 

and Bryan Alexander (Parr, 2013). Both Cormier and Alexander had spent a decade 

experimenting with how educators could use the Internet to enhance instruction. They 

were subsequently enlisted by George Siemens of the University of Manitoba and Steven 

Downes, senior research officer of Canada’s National Research Council, to help create a 

new course. These two professors designed a class called Connectivism and Connective 
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Knowledge. Twenty-five fee-paying students from the University of Manitoba enrolled, 

but the course was also opened to anyone who wanted to join over the Internet. Over 

2,000 students enrolled, thereby accessing the course for free (Yuzer & Kurubackak, eds., 

2014). 

 This first MOOC grew out of a theory of learning developed by Siemens and 

Downes called connectivism. Connectivism views learning as analogous to a computer 

network composed of nodes and links. This theory sees the learning process as taking 

place when connections develop between individuals and between individuals and non-

human “appliances” such as databases. Emphasis is placed on the non-linear development 

of knowledge and how learning and knowledge develop in an organic fashion when 

knowledge flow is unimpeded and continuously updated within the network (Siemens, 

2005). Two websites that exemplify Siemens’ view of how connectivism works in the 

age of the Internet are the online encyclopedia, Wikipedia, and the question-and-answer 

programming site, Stack Overflow (D. Bruff, 2016). Both Wikipedia and Stack Overflow 

rely on cooperative communities to contribute information and to keep the sites up-to-

date. Conversations are at the heart of both projects. In Wikipedia, conversations about 

the content of any one topic take place in the wiki background as knowledge is curated by 

an expert community for presentation in the visible part of the encyclopedia. In Stack 

Overflow, conversations about the best answer to a question posed by a programmer 

occur in the open and members vote for the answers they think are best. MOOCs built 

around the connectivist theory have come to be known as cMOOCs. Four activities are 

key to cMOOCs: aggregation, the accumulation of learning materials that are 

continuously updated by participants as the MOOC progresses; remixing, the act by 
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learners of making connections between different learning materials and then sharing 

those insights with other participants through blogging, social bookmarking, or tweeting; 

and repurposing and feeding forward, the processes of creating internal connections 

between the materials and the insights of others and then afterwards forming new 

connections (Yeager, Hurley-Dasgupta, & Bliss, 2013). Although cMOOCs were the first 

MOOCs to appear on the online scene and have been defended as having been designed 

and grounded in educational theory in order to be authentic and to generate new learning, 

at present they constitute only a small part of the overall MOOC landscape (Caulfield, 

2013). 

The Beginning of xMOOCs 

In 2011, a different type of MOOC emerged. Unlike the cMOOCs championed by 

Siemens and Downes, this type of MOOC is more linear, instructor-driven, platform-

driven, and similar in many ways to the format of the traditional university classroom, 

while also adapted in certain respects for the Internet age (Sokolik & Bárrcena, 2015). 

Although xMOOCs (as these instructor-driven MOOCs have come to be known) seemed 

to burst onto the scene in 2011, much like the cMOOCs, they actually reflected years of 

experimentation and incremental development by educators who wished to combine the 

power of the Internet with the goals of learning (Ng & Widom, 2014).  

Stanford University was the pioneer in the field of xMOOCs. Stanford’s first 

foray into the MOOC space grew out of the open-courseware movement in the early part 

of the 21st century. In 2007, Andrew Ng, a Stanford professor and leading researcher in 

machine learning, collaborated with the Stanford Center for Professional Development to 

videotape and post online ten courses complete with lecture notes and self-graded 
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homework (Ng & Widom, 2014). What was different about these courses was their 

completeness. Up to this point, open-courseware consisted of educator resources posted 

online. For example, a professor might post her syllabus and outlines of lectures, 

handouts, and videos of student projects. While this made materials available to other 

educators, they were not meant to replace the actual courses. When Ng constructed his 

complete courses in cooperation with the Stanford Center for Professional Development 

and made them available as open-courseware, he labeled the set of courses the Stanford 

Engineering Everywhere (SEE) project. Ng wanted students anywhere in the world to be 

able to access not only course resources, but complete course contents with merely a 

computer and an available Internet connection. As part of the SEE project, Ng and his 

colleague, Jennifer Widom, experimented with several innovations. One of these 

innovations was their version of the Khan Academy-style tablet recordings of 

instructional videos, which they sought to incorporate into their courses (Ng & Widom, 

2014). 

While Andrew Ng was working on his “teach the world” project, another 

colleague at Stanford University, Daphne Koller, was working on a different learning 

problem: how to incorporate a “flipped classroom” model into her own courses by 

uploading videos of her lectures to YouTube with the intent of making her class time 

with students more productive (Severance, 2012). The “flipped classroom” is a 

pedagogical model in which students view taped lectures at home, so class time can be 

devoted to exercises, projects, or discussions (EDUCAUSE learning initiative, 2012). 

Eventually, Ng and Koller joined forces to achieve both goals at once: enhance their face-

to-face classes while making the content of their courses available to the world. In 2011, 
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Stanford launched the first three xMOOCs: Databases, taught by Jennifer Widom, 

Machine Learning, taught by Andrew Ng, and Artificial Intelligence taught by Sebastian 

Thrun and Peter Norvig (Ng & Widom, 2014). The response to these three free Stanford 

courses exceeded everyone’s expectations. Over 160,000 students signed up for Thrun 

and Norvig’s Artificial Intelligence course alone. All three courses in the initial xMOOC 

offering had over 100,000 enrollees (Severance, 2012). Professor Thrun’s students were 

located in 190 countries and included soldiers on active duty in Afghanistan and single 

mothers in the United States (Chafkin, 2013). The next year, Thrun and Michael 

Sokolsky launched the startup Udacity, which is based on a computer platform that was 

designed to teach Thrun’s AI course, and Ng, Koller, and Widom used the computer 

platform that was used to teach Machine Learning and Databases to create the startup 

Coursera (Ng & Widom, 2014). With an explosion of enrollees at Coursera exceeding 1.7 

million in 2012, Ng boasted to the New York Times, “We’re growing faster than 

Facebook!” (Pappano, 2012).  

Within a few months of the launch of Coursera, an xMOOC competitor was born 

on the east coast of the United States at Harvard and MIT. This MOOC platform, dubbed 

edX, was created to produce xMOOCs based on course content from these universities.  

MOOCs are continuing to grow at a rapid pace. In 2016, 11.3% of institutions of 

higher education offer MOOCs (Allen & Seaman, 2016). Class Central, a website 

devoted to organizing and disseminating information about MOOCs, reported that more 

than 1,200 free courses were beginning in the month of November 2016, and 127 of those 

courses were brand new (Shah, 2016). 
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The Computer Science Connection 

In order to understand the emergence of MOOCs, it is important to note the close 

connection between MOOCs and computer science. Both the founders of cMOOCs and 

xMOOCs were deeply interested in computer science and technology and all the founders 

of the xMOOCs were programmers with an interest in artificial intelligence (Severance, 

2012). Although the course content of the original cMOOCs and the xMOOCs centered 

around computers, there are key differences between these two genres of open online 

courses. George Siemens and Stephen Downes, the founders of the cMOOC, are 

particularly interested in the theory and philosophy surrounding human-computer 

interaction (HCI) and human-to-human connections. Ng, Widom, and Thrun, in contrast, 

were programmers as well as professors who taught various aspects of computer science 

at Stanford University. As an elite university adjacent to Silicon Valley, California, the 

connection between xMOOCs and high technology was evident from the beginning.  

This difference in background and objectives—on the one hand, contextualizing 

computer science in the modern world through theory and philosophy, and on the other 

hand, the practical application of computer science—has affected the trajectory of 

cMOOCs and xMOOCs. For example, the original cMOOC, Connectivism and 

Connective Knowledge, has gone through several iterations and has matured into a 

growing community of connected users who continue to benefit from the interactions 

created through the course (MoocGuide, 2016; Caulfield, 2013). xMOOCs, on other 

hand, pioneered the development of the computer code necessary to simultaneously 

deliver educational content to hundreds of thousands of students and has resulted in some 

of the largest and most successful MOOC platforms, including Coursera, edX, and 
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Udacity (Fowler, 2013). The popularity of the first three xMOOCs highlights the fact that 

there is a hunger worldwide for high-quality instruction in the computer sciences, and 

that computers are particularly well adapted to delivering instruction regarding 

computers. Although MOOCs currently cover almost every educational discipline, 

computer science continues to be a cornerstone and driver of MOOC content (Shah, 

2016). MOOCs are also dependent on the computer science community for the 

development of new computer code to continue the process of innovation in MOOC 

content delivery (Waks, 2016).  

 This deep computer science connection, especially with respect to xMOOCs, has 

become a major source of criticism regarding xMOOCs and of MOOCs in general (Papa, 

2014). Critics argue that the xMOOC movement is not driven by educators but by 

computer programmers, is disconnected from contemporary educational theory, and is 

rooted in obsolete theories of education and psychology (Papa, 2014; Armellinini & 

Rodriguez, 2016; Kelly, 2014; Fischer, 2014). Some of this criticism is coming from the 

proponents of cMOOCs. In a 2013 interview with Chris Parr of the Times Higher 

Education website, Siemens, Downes, and Cormier criticized xMOOCs as “static and 

passive education,” comparable to television or online textbooks, depending on pedagogy 

that was “several decades behind,” and devoid of an understanding of the history of 

online education (Parr, 2013). Each of these points has become part of an ongoing and 

active debate about what kind of “education” MOOCs actually deliver. This dissertation 

focuses on yet another criticism of both xMOOCs and cMOOCs: their high dropout and 

low completion rates. 
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The Problem of Low Rates of Completion in MOOCs 

 While educators were surprised and pleased by the number and variety of students 

who signed up for the first MOOCs, they were equally appalled at the steep drop-off rates 

of students over the life of these courses. When Sebastian Thrun launched Udacity, 

typical completion rates for the xMOOC-type courses were 7–10% (Chafkin, 2013). 

Even more discouraging was how stubbornly these numbers persisted over time even as 

Thrun struggled to mitigate attrition through innovations in curriculum and delivery as he 

developed new courses and revamped the original one. Thrun’s disillusionment regarding 

the low course completion rate was one of the primary drivers that caused him to 

abandon higher education as the content of Udacity’s platform and instead tweak 

Udacity’s focus to skill-based professional development courses contracted through large 

companies such as AT&T and Google (Chafkin, 2013). Sebastian Thrun was not the only 

one to note the steep attrition rates in MOOCs. In the first years following the launches of 

Coursera and edX, low course completion rates became a major point of criticism of 

MOOCs and led some to proclaim that MOOCs were a grand failure (Konnikova, 2014). 

 In the intervening four years since the establishment of the major xMOOC 

platforms, attrition and completion rates for MOOCs have become the focus of intense 

research (Ferguson, Coughlan, & Herodotou, 2016; Breslow, 2016; Veletsianos & 

Shepherdson, 2016). There have been several drivers of this research. The first two and 

most obvious were the twin goals of MOOC proponents to raise completion rates and to 

shed light on why students drop out of MOOCs. But this research has also made a 

valuable contribution in having opened the discussion regarding the kind of completion 

rates to be expected in MOOCs. Many researchers believe this debate over expectations 
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to have been very fruitful because it has begun to shape a dialogue on how MOOCs fit 

into the higher education landscape (Clark, 2016; Ho et al., 2014; Koller, Ng, Do & 

Chen, 2013). Some examples of the kinds of questions that are being asked in the debate 

over MOOC attrition include: 

1. In what ways are MOOCs similar to and different from their corresponding face-

to-face courses taking place in the classroom at colleges and universities?  

2. Is learning taking place in MOOCs; and if it is taking place, what kind of learning 

is it, and how can it be measured?  

3. Is a MOOC more like a book in a library that students check out to obtain specific 

information and then return to the shelf, or are MOOCs more like college classes 

from which benefits arise from interactions with experts in a particular field, 

discussions with fellow students, and the credentialing that comes with formal 

education? 

Due to the diversity of MOOC offerings and MOOC learners, none of these questions 

have simple answers. 

New Trends 

Growth of Self-Paced MOOCs 

In November 2016, Dhawal Shah of Class Central reported on the recent 

developments in MOOC trends of 2016 in an article titled, “MOOC Trends of 2016: 

MOOCs No Longer Massive” (2016a). In the article, Shah pointed out that while MOOC 

participation continues to grow, recently passing the 35 million mark, individual course 

sizes are down. One of the major drivers of both the growth in participant numbers in 

MOOCs and the smaller class sizes is the increased number of self-paced courses and the 
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number of courses with rolling enrollment offered on a monthly or bi-weekly basis. The 

trend toward rolling enrollment has more than doubled the number of courses being 

offered in any given month (Figure 1).  

 

Figure 1. Growth of self-paced courses from Sept 2013 to Sept 2016 (Shah, 2016b). 

MOOCs for College Credit 

 Another trend emerging in 2016 is the offering of MOOCs for college credit from 

accredited universities or accreditation organizations (Shah, 2016a). Six universities from 

five countries collaborated with the MOOC platform edX to produce MOOCs with 

transferable college credit. One of the leaders in this trend has been Arizona State 

University. In April 2015, Arizona State University and edX announced the launch of the 

Global Freshman Academy (Lewin, 2015). The Academy offers a full year of university 

courses that can be taken for transferable college credit. One of these courses offered for 

transferable credit, college algebra, is also a self-paced course.   
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CHAPTER 2 

Literature Review 

 In the three years since The New York Times declared 2012 the “Year of the 

MOOC,” the issue of MOOC completion and attrition rates has become a very active 

research area (Gašević, Kovanović, Joksimović, & Siemens, 2014; Ferguson, et al., 2015; 

Breslow, 2016; Veletsianos & Shepherdson, 2016; Ferguson, Coughlan, & Herodotou, 

2016). Overall, MOOC completion rates are very low. An average of 5–10% of students 

who enroll in MOOCs will go on to complete them (Veletsianos & Shepherdson, 2016; 

Skrypnyk, De Vries, & Hennis, 2015; Glance & Barrett, 2014; Koller, Ng, Do, & Chen, 

2013). In addition, these high attrition and low completion rates have been stubbornly 

resistant to innovations in MOOC design and interventions directed at students (Bacon et 

al., 2015; DeBoer, Ho, Stump, & Breslow, 2014; Glance & Barrett, 2014).  

Because MOOCs are similar in many ways to conventional university courses, 

i.e., containing lectures, quizzes, exams, and homework assignments, the stark difference 

in dropout rates is disturbing. Beyond the simplistic argument that there is a low bar for 

entry (anyone can sign up and, often, at no cost), researchers have tried to determine who  

the students in MOOCs are and what do they seek to gain from their participation 

(Goldwasser, Mankoff, Manturuk, Schmid, & Whitfield, 2016). One way researchers 

have sought to explain the difference in dropout rates is in terms of MOOC participant 

intent. Many participants in MOOCs, these researchers argue, never intended to earn a 

certificate or complete the course in the first place (“Massive study on MOOCs,” 2015).  

Instead, the MOOC participants can be viewed as belonging to different classes of 

students with differing motivations. For instance, a MOOC may contain passive 
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participants, active participants, and community contributors (Koller, Ng, Do, & Chen, 

2013).  Other researchers have argued that course completion is the wrong measure of 

MOOC success in the first place. Participants may achieve their goals with respect to 

their participation in MOOCs and these goals may not involve completion (Clark, 2016; 

Ho et al., 2014). In some ways, the more interesting question has become—why do 

students stay in a course rather than why do they drop out.  

Psychological Factors Affecting Dropout 

In order to investigate this question regarding the intent of participants in 

MOOCs, several studies have examined the internal factors of participants that might 

determine whether a student will complete a course or drop out early. These internal 

factors include motivation, affect, goal-striving, grit, self-efficacy, and sentiment, among 

others (Breslow, 2016; Ferguson, Coughlan & Herodotou, 2016; Khalil, 2014). One of 

the major approaches for investigating these intrinsic factors has been the use of surveys 

filled out by participants before, during, or after the course is completed (Cupitt & 

Golshan, 2014; Green, Oswald, & Pomerzantz, 2015; Oakley, Poole & Nestor, 2016). 

Among the internal factors most studied is the motivation of participants in taking the 

course (Ferguson, Coughlan, & Herodotaou, 2016; Breslow, 2016). Adamopoulos found 

that student attitudes toward the professor of a course had a major effect on the 

motivation of students to remain in the course. The author also identified course difficulty 

and length as major motivating factors (2013). Xiong et al. examined intrinsic motivation 

versus extrinsic motivation in MOOCs and found both to be important for student 

retention, whereas social motivation was not as important (2015). Other researchers have 

found that the intent expressed by participants at the beginning of their courses was a 
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good indicator of whether they were motivated to complete the course (Pursel, Zhang, 

Jablokow, Choi, & Velegol, 2016).  

Other internal factors related to motivation that have been connected to the 

successful completion of MOOCs include goal-striving, sentiment, and affect. Kizilcec & 

Halawa found goal-striving to be a characteristic that was more commonly found in 

successful completers of MOOCs than those who did not complete (2015). On the other 

hand, negative grit scores, especially for at-risk students, were found to be correlated with 

poor performance in this medium (Cupitt & Golshan, 2014). In addition to goal-striving, 

how a student feels about participating in MOOCs has also been explored as a possible 

clue to whether MOOC users will persist or drop out. In some studies, differences in 

affect were not shown to be statistically significant in predicting who would persist in a 

MOOC (Heutte, Kaplan, Fenouillet, Caron, & Rosselle, 2014). However, sentiment, 

measured on the basis of forum comments, was found to be predictive of student dropout 

in some studies (Chaplot, Rhim, & Kim, 2015; Tucker & Divinsky, 2014). However, in 

other studies, sentiment analysis was not found to be predictive of who would persist and 

who would not (Dmoshinskaia, 2016). 

Demographic Factors Affecting Dropout 

In addition to internal psychological factors, demographic variables have been 

measured with respect to determining their impact on MOOC completion and attrition 

rates. Since participants in MOOCs can be located anywhere in the world, several 

researchers have been interested in how physical location may affect persistence in these 

courses. In a MOOC experiment by the French Ministry of Higher Education, researchers 

looked at differences between European and African participants (Heutte, Kaplan, 
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Fenouillet, Caron, & Rosselle, 2014). While African participants displayed a higher 

degree of enthusiasm at the beginning of the course, they were less likely to persist and 

complete it. Ho et al. reported on the first year of Harvard and MIT MOOCs and found 

that although the United States had the largest number of enrollees (almost a third of that 

of the top 25 countries), Spain, Greece, and the Czech Republic were the countries with 

the largest percentage of registered users who went on to receive certification (2014). 

Hone & El Said reported a 32% completion rate among students from the University of 

Cairo who were encouraged to take a MOOC for their own academic development—a 

rate of completion well above the overall average completion rates of 5–10% for MOOCs 

(2016).  

Other demographic factors that have been examined in relation to MOOC 

completion, retention, and attrition rates have been gender, language, and socio-economic 

and educational background. Dillahunt, Wang, & Teasley compared how students from 

developed countries fared in MOOCs versus those from developing regions of the world 

(2014). While a higher percentage of participants from developed regions earned 

certificates and completed the courses, participants from developing regions were more 

likely to earn a certificate with distinction. Another demographic factor that has been 

studied is gender. MOOCs, especially STEM MOOCs, have been dominated by men (Ho 

et al., 2014). Jiang, Schenke, Eccles, Xu, and Warschauer found that not only is 

participation in STEM MOOCs dominated by males, completers of STEM MOOCs are 

disproportionately male. However, this statistic varies widely by country and culture. For 

example, in Indonesia, a STEM MOOC completer is, on average, slightly more likely to 

be female, whereas in Japan, almost none of the completers are female (2016).  
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Barriers to Completion of MOOCs 

Another approach researchers have taken to consider why participants in MOOCs 

do not persist is by looking at barriers to completion. In 2013, Belanger & Thorton 

surveyed participants in Duke University’s first MOOC, called Bioelectricity: A 

Quantitative Approach, to determine why they had not finished the course. The most 

common answers were: lack of time, insufficient math background, and an inability to 

transfer their learning from the conceptual to application. The time factor tends to be one 

of the reasons cited most often by students who drop out of MOOCs (Xiong et al., 2015; 

Khalil, 2014; Thille et al., 2014). This may have to do with expectations. To master the 

material from rigorous courses like Bioelectricity takes time. Even a motivated student 

may find it very difficult to meet the demands of a rigorous course in addition to fulfilling 

other life responsibilities. In their study, Learner’s Strategies in MOOCs, Veletsianos, 

Reich, & Pasquini report hearing repeatedly from students the necessity of “stealing 

time” from other critical life activities in order to complete a MOOC that was a priority 

for them (2016). 

Prediction of MOOC Completion 

In addition to identifying reasons why participants may or may not complete a 

MOOC, research into MOOC completion has focused on prediction. Predictable patterns 

of persistence or attrition offer insight into the drivers of MOOC completion as well as 

providing touchpoints for actionable interventions that can increase completion rates. The 

data used for the prediction of MOOC persistence has come from five sources: 

demographic data on participants, participant surveys, clickstream data of various types, 

participation in forums and social media, and work done within the courses themselves 
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(Goldwasser, Mankoff, Manturuk, Schmid, & Whitfield, 2016; Sharkey & Sanders, 2014; 

Zheng, Han, Rosson, & Carroll, 2016; Kizilcec, Piech, & Schneider, 2013).  

Video viewing. Several types of clickstream data have been used as variables to 

develop predictive models. One of the most common variables in MOOC predictive 

models is clicks related to video viewing (Breslow, 2016). Actions related to a video, 

such as hitting the pause button, can be stored as a server-side event in a file written in 

JavaScript Object Notation (JSON) (Balakrishnan, 2013). Methods for measuring video 

watching to predict persistence vary widely from measuring video watching as a simple 

binary (watched or did not watch the video) (Stein & Allione, 2014) to capturing 

elaborate video watching patterns such as re-watching, skipping, fast watching, and slow 

watching (Sinha, Jermann, Li, & Dillenbourg, 2014). Greater amounts of video watching 

in MOOCs have been conclusively shown to be predictive of course completion and has 

even been linked with greater satisfaction with the course (Kizilcec, Piech, & Schneider, 

2013). One interesting finding showed that it is not necessary for participants to have 

watched videos from beginning to end to demonstrate this predictive effect, especially 

near the end of the course (Balakrishan, 2013).  

Quiz attempts. Another clickstream variable found to be predictive of course 

completion in MOOCs is quiz attempts. Like videos, quiz data has been measured in 

different ways. Studies have looked at quiz attempts on both practice and graded quizzes 

(De Barba, Kennedy, & Ainley, 2016) and purely at graded quiz attempts 

(Amnueypornsakul, Bhat, & Chinprutthiwong, 2014). Another study looked at quiz 

attempts in conjunction with other behaviors such as referring to other materials (Sharkey 

& Sanders, 2014). Stein & Allione (2014) found that participants in MOOCs who took 
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the first quiz were 30% less likely to drop out of the course, and De Barba, Kennedy, & 

Ainley found the number of quiz attempts to be more predictive of completion than video 

hits (2016). 

Forum activity. A third variable that has proven very predictive of MOOC 

persistence is forum activity.  Forum activity can be looked at as a predictive variable in 

many ways. For example, it can be deduced purely from clickstream data as forum page 

views (Kloft, Stiehler, Zheng, & Pinkwart, 2014). A more in-depth approach to forum 

posts is counting how many posts a student contributes and then analyzing the text 

through natural language processing to identify characteristics such as sentiment 

(Chaplot, Rhim, & Kim, 2015). Other forum behavior such as up-voting, down-voting, or 

starting new threads can also be measured (Sinha, Li, Jermann, & Dillenbourg, 2014). All 

these measures have been found to be predictive of MOOC persistence and completion. 

In addition, Jiang, Williams, Schenke, Warschauer, & O’Dowd found that forum 

behavior could be predictive of those who would receive a certificate with distinction. 

Other clickstream traces. Several other behaviors that can be detected from 

clickstream behavior have been linked by researchers to MOOC persistence and 

completion. Some of the major ones include the number of active days a student spends 

in a course (Lim, 2016; Kloft, Stiehler, Zheng, & Pinkwart, 2014; Laurillard, 2014; 

DeBoer, Ho, Stump, & Breslow, 2014). Another is the student’s pace in moving through 

the material (Thille et al., 2014) or the number and length of breaks or stop-outs a student 

takes from a course (Halawa, Greene, & Mitchell, 2014). Although these measures taken 

together do not create perfect models, they have the potential to give early indications as 

to who will be a persistent completer and who may drop out of the course along the way. 
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Prediction Methods  

Because of the amount of data associated with online courses (often millions of 

lines of computer code), machine learning techniques are favored among researchers for 

building predictive models for MOOC completion and attrition. These analysis methods 

include methods of classification (Kizilcec, Piech, & Schneider, 2013; Sinha, Jermann, 

Li, & Dillenbourg, 2014) and clustering (Kizilcec, Piech, & Schneider, 2013). Other 

machine learning algorithms used are Hidden Markov Models (HMM) (Breslow, 2016; 

Kizilcec & Halawa, 2015) and neural networks (Chaplot, Rhim, & Kim, 2015). More 

conventional educational research techniques such as Structural Equation Modeling 

(SEM) (Aparicio, Bacao, & Oliveira, 2016; Xiong et al., 2015) and logistic regression 

(Semenova, 2016; Thille et al., 2014) have been used to build predictive models for 

MOOCs. Other techniques such as survival analysis have also been used (Allione & 

Stein, 2016; DeBoer, Ho, Stump, & Breslow, 2014; Greene, Oswald, & Pomerantz, 

2015). 

 Many excellent predictive models have been created in relation to courses in 

online education (for example see Barber & Sharkey, 2012), and even though MOOCs 

are a recent innovation in online education, predicting completion in MOOCs has been an 

active area of research. Predictive models based on case studies of individual MOOCs are 

common, as are studies that aggregate data from multiple MOOCs. The primary sources 

of data for this research consist of demographic information from students, clickstream 

data generated as students work online and navigate through a course, and survey data 

collected from willing participants before, during, and after a course is completed. Major 

sources of clickstream data come from video views, completion of quizzes and 
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homework, and forum activity. The use of machine learning techniques dominate in the 

creation of predictive models due to the volume of data produced by students in MOOCs.  

Attempts to find effective predictors of MOOC completion have generally been 

successful although there is plenty of room for improvement. Almost all of the research 

on MOOC completion is based on session-type MOOCs with single start and completion 

dates. There is almost no completion-prediction research associated with self-paced 

MOOCs or rolling-enrollment MOOCs, even though this is currently the fastest growing 

segment of the MOOC market (Shah, 2016). In addition, there is almost no prediction 

research associated with credit-bearing MOOCs. This omission is less surprising since, at 

this point, credit-bearing MOOCs make up a very small part of the total number of 

MOOCs offered. 
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CHAPTER 3 

Methodology 

 The source of the data for this study is a self-paced MOOC from the Global 

Freshman Academy (GFA). The GFA is offered by Arizona State University (ASU) 

through the MOOC edX. The Global Freshman Academy offers several online courses 

that are typically taken by freshman at ASU.  These courses are offered in a “try before 

you buy” format where students can enroll and take the course for free (or a small fee for 

identity verification through edX) and then if students successfully complete the course 

they can decide if they want to purchase college credit. Courses range from first year 

English composition to astronomy. More information on the Global Freshman Academy 

can be found at https://gfa.asu.edu/. 

Knowledge Space Theory 

The course studied here is the college algebra course. This mathematics MOOC 

uses the Assessment and LEarning in Knowledge Spaces (ALEKS) intelligent tutoring 

system (ITS) to present the mathematical content of the college algebra course to 

students. ALEKS uses an artificial intelligence (AI) engine that was developed based on 

Knowledge Space Theory. This is a mathematical cognitive theory developed by 

mathematical psychologist Jean-Claude Falmagne (McGraw Hill Education, 2016). The 

central concept of Knowledge Space Theory is the “knowledge state,” which is defined as 

a set containing all the problems (in this case, college algebra mathematics problems) that 

an individual is capable of solving (Falmagne, Koppen, Villano, Doignon, & Johannesen, 

1990). A collection of knowledge states constitutes a “knowledge structure” and certain 

classes of knowledge structures are called “knowledge spaces.” The purpose of 
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knowledge spaces is to map commonalities between math components that need to be 

mastered and to use these commonalities to create accurate assessments of a student’s 

math knowledge and to design custom learning pathways for each student based on that 

student’s current math knowledge. Each pathway is designed to result in the student’s 

successful mastery of all the components in the domain (McGraw Hill Education, 2016).  

Theoretical Framework 

 Whereas the Knowledge Space Theory was the theoretical framework for the 

creation of the ALEKS mathematics program, the theoretical framework for this research 

is self-regulated learning (SRL) theory. SRL, like knowledge space theory is concerned 

with the learning process within the individual student. SRL explores how students use 

consciousness of cognition, behavior, and motivation to control these aspects within 

themselves in order to actively pursue an academic task (Alexander, Dinsmore, Parkinson 

& Winters). When learners are self-regulated, they engage in volitional behaviors that 

further their learning goals. These behaviors can include goal setting, developing task 

strategies, and help seeking (Barnard-Brak, Lan, & Osland Paton, 2010). SRL is therefore 

seen as a lens through which achievement differences in students can be explained and 

predicted (Marzouk et al., 2016). Bussey (2011) observed that self-regulation takes on 

greater importance as technology gains greater prominence in education. Because of 

technology, students are becoming more responsible for the pace, timing, and place of 

learning as learning takes place more and more frequently outside the classroom, 

especially due to the availability of learning over the Internet (Douglas & Alemanne, 

2007).  
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 The performance and persistence of students in a self-paced mathematics course, 

such as ALEKS presented in a MOOC format, relies heavily on student self-regulation to 

be successful. Although this self-regulation is not directly observable through activity log 

data, the results of self-regulation can be viewed in behaviors such as completing the 

initial knowledge check (the pretest in ALEKS), the amount of time students work in the 

intelligent tutoring system, and how steadily they progress through the material. These 

traces of self-regulation constitute the building blocks of the models used in this study. 

The Data 

 The data for this study were gathered from college algebra students in a self-

paced MOOC offered through a large public university during an eight-month period 

from May 1 to December 31, 2016. This MOOC is marketed through the edX platform 

and is one of the few MOOCs currently available that is offered for college credit. There 

are two sets of data associated with each student. The first dataset, provided by edX, 

contains demographic data featuring the following variables: 

• Student ID 

• Gender 

• Birth year 

• Country location 

• Education level  

Each of these variables was tested as part of the model to gauge their respective 

predictive values regarding student persistence, completion, and attrition.  

The second dataset was drawn from ALEKS in the form of JSON files converted into 

flat files as Excel spreadsheets. In these files, a line of data reflects a single day in which a 
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student has worked in the course along with several data points collected or calculated from 

the daily activity logs, including: 

• How much time the student spent working in the course 

• How close the student is to mastering all 419 mathematical skills 

• The date of last login  

• The date of last assessment 

• How many skills have been mastered 

• How many skills have been learned 

This raw data generated by students working online is longitudinal and fairly 

granular. The unit of time is a twenty-four-hour period, so it does not reflect a moment-

by-moment record of student activity. For example, if a student works in ALEKS more 

than once in a single day, hours in ALEKS will be aggregated for that day and will not be 

recorded as separate sessions. Each new skill learned by a student in a twenty-four-hour 

period is recorded and a comparison can reveal if a topic has moved from learned to 

mastered during that day.  

Splitting Data to Make Predictions 

 In the field of machine learning, the analysis undertaken here would be regarded 

as a “classification problem” (Witten & Frank, 2000). In this case, college algebra 

students were in the sample were separated into two classes: “completers” and “non-

completers.” From there, the goal was to predict in the early stages of the course which 

students will fall into each class. To develop models that can correctly predict these two 

outcomes, a dataset for which the ultimate outcome is known must be used. The 

retrospective dataset for the self-paced college algebra fulfills this requirement because 
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for each of these students who began on May 1, 2016, and worked in the course until 

December 31, 2016, who completed the course and who did not is known.  

 Here, to prevent “overfitting” the model, a technique commonly employed in 

machine learning known as “splitting the dataset” was employed (Witten & Frank, 2000). 

To split the data, an algorithm is used to divide the dataset into two evenly matched 

groups with respect to the distribution of the outcome characteristic of completing or not 

completing. With this technique, a subset sample is created from the sample for the 

purpose of making the model more highly generalizable. If predictions are customized 

too closely to the current dataset, there is a chance that when fresh data is applied to the 

model—such as new students in the college algebra course—the model will not predict as 

well as it did using the original dataset for which it was designed. This is due to quirks 

that are unique to the original dataset and is called “overfitting” the data.  

 Splitting the dataset into training and testing sets mitigates overfitting by 

mimicking the process of introducing the model to fresh data and observing how it 

performs. The “training set” is used as the basis on which to build the model and contains 

a larger portion of the data (usually between 70–80%). Once the model has been 

completed using the training set, it is used on the “testing set” containing the remainder 

of the data to determine whether the model predicts as well as it did on the training set. If 

its performance is similar, there is a high probability that the model will predict similarly 

when introduced to new data for which the outcome is unknown. In this study, for the 

logistic regression dataset, I introduced a 70/30 data split to produce the training and 

testing sets. 
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Techniques 

 To create and analyze variables, linear and logistic regression were used as 

primary techniques after data cleaning and performed all data cleaning and data analysis 

in R version 3.3.1 (2016-06-21) within the open source integrated development 

environment (IDE) RStudio version 0.99.902. Extensive data cleaning was required to 

remove from the dataset students who never completed the initial knowledge check and 

to remove lines of data that were redundant or superfluous. For example, a line of data is 

created for each day a student is in the course, but new lines continue to be created every 

day until the chosen cut-off date, whether or not the student is active in the course on any 

of those subsequent days. Determining when students cease to be active in the course and 

removing the associated extra lines of data are essential steps in preparing data for 

analysis. A heuristic of thirty days of inactivity was used to determine that a student had 

become “inactive” in this course. The last active day before a student becomes inactive 

was considered the last day in the course. Repeated lines of data after this last active day 

were the lines that were removed. In addition, all the skills students master are stored in 

lengthy character vectors. These vectors must be converted to binaries (does this student 

have this skill or not) and numerical values (how many skills has this student mastered on 

this day of the course).  
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 After the data is cleaned, the variables must be summarized and calculated to be 

added to the predictive models. Table 1 lists the variables used in the models:  

Table 1 
Independent Variables, data types, and values 
Variable Type Possible Values 

Age range Categorical 18-22; 23-29; 30-39; 40-49; 
50-59; 60-69; Over 70; Under 

18; Unknown 
Gender Categorical Male, Female, Other, 

Unknown 
Country/Region Categorical One of 142 countries or 

aggregated as one of 20 world 
regions defined by UN DESA, 

Unknown 
Education Categorical Associate, Bachelor, 

Doctorate, Elementary, High 
School, Junior High School, 

Master, None, Other, 
Unknown 

Verified Dichotomous Verified, Audit, Unknown 
Placement Test Score Continuous 0 - 419 
Total days in course Continuous 1 - 240 
Total active days Continuous 1 - 240 
Ratio of active to total days in course Continuous 0 - 1 
Hours in course Continuous 1 – 5,760 
Mean topics per hour mastered Continuous 0 - 419 
Mean topics per day mastered Continuous 0 - 419 
Mean topics per week mastered Continuous 0 - 419 
Time in initial knowledge check Continuous 0 - 50 
Days in initial knowledge check Continuous 0 - 50 
Greatest number of active days in a 
row 

Continuous 1 - 240 

Number of breaks from the course Continuous 1 - 120 
Greatest number of non-active days Continuous 1 - 240 
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• Age Range. Age range is a variable of interest because self-regulation may be 

affected by age due to exposure to education or work experience and may 

therefore be predictive of course completion.  

• Gender and country. Researchers have found that self-regulation can vary in 

online learning by gender and culture, especially in STEM subjects (Bussey, 

2011; McInerney & Schunk, 2011).  

• Education. Because school is a primary environment in which self-regulation is 

learned, level of education is expected to be predictive of completion or attrition 

in the MOOC. 

• Verified. Choosing edX verification allows students to opt to convert their 

completion in the course to university credit; therefore, choosing verification 

constitutes evidence of goal setting—a key component of self-regulated 

learning—and is expected to be predictive of completion.  

• Placement. Placement within the course pretest is a key indicator of background 

knowledge.  

• Active days and ratio of active days to total days. Active days are 

operationalized as any day a student spends working in the course whether or not 

they make any progress. Days working on the pretest before it is completed are 

considered to be time spent doing a pretest, and are not counted as active days. 

Number of active days has been shown to be predictive in other MOOC models 

and may be evidence of self-regulation (Lim, 2016; Kloft, Stiehler, Zheng, & 

Pinkwart, 2014; Laurillard, 2014; DeBoer, Ho, Stump, & Breslow, 2014).  Total 
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days is operationalized as all active or not active days between and including the 

first and last active days in the course. 

• Hours in course. Amount of time is measured as whole hours and tenths of 

hours. Amount of time is operationalized by a student logging into ALEKS 

through edX and working in the course. Time spent working in the course is 

regarded as evidence of self-regulation and is expected to be predictive of 

completion. 

• Pace. Pace is measured as the number of topics learned or mastered per hour 

worked in the course. Average pace as well as acceleration or deceleration of pace 

are considered as predictive variables of completion and drop-out. Pace has been 

used by other researchers to predict completion in MOOCs (Thille et al., 2014). In 

a self-paced MOOC like this one, pace may be even more predictive. 

• Breaks between active days. The number and length of breaks between active 

days is also considered as a predictive variable. Other MOOC researchers have 

considered these breaks in their predictive models of MOOC completion (Halawa, 

Greene, & Mitchell, 2014).  

• Number of consecutive days working in the course. The number of consecutive 

days a student works within the course has not been one of the major variables 

considered by other MOOC researchers, but in a self-paced MOOC, this variable 

could be predictive and is included here. 

Using linear regression models, the above variables were tested to predict the following:  

1. The total number of math skills a student will learn in the course. 

2. Whether or not this student will complete the course. 
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Because attrition is so high in MOOCs, based on earlier research results, it can expected 

that signals related to dropout or completion to be weak at the beginning of the course 

and grow stronger as data accumulates (Kloft, Stiehler, Zheng, & Pinkwart, 2014). 

 

Logistic Regression 

 Because the outcome variables are dichotomous, logistic regression can be used 

as a technique for predicting these binary-type variables. For example, “Will this student 

show up next week and work on the algebra course?” is a yes or no question. Logistic 

regression creates probabilities for the answers yes or no. In order to have data to both 

create and then test the model, the data was split into training and testing sets. The 

packages in R can do this automatically, e.g., the “caTools” package. To create a training 

data set, 70% of the data was used because there was plenty of student data and it was 

possible to make the testing data set larger to increase the level of confidence in the 

model. Next, the variables were tested for multicollinearity using the “cor” function in R. 

In cases of variables with high correlations, the variable with the highest correlation with 

the outcome variable was retained and the others were discarded.  

 Next, a logistic model in R was created using the remaining variables. The 

logistic function can be written as follows: 𝑓 𝑥 = $
$	&'((*+,	*-	.-,	*/./,⋯,	*1.1)

  

where 𝛽4 = the intercept 

 𝛽5𝑥5= the regression coefficient multiplied by the value of the predictor. 

Because of the large number of dropouts in MOOCs, it is important to minimize false 

negatives for students staying in the course (Chaplot, Rhim, & Kim, 2015). To choose an 

effective threshold and to minimize false negatives in our model, a confusion matrix was 
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created to compare actual with predicted outcomes and to examine the sensitivity and 

specificity of the model. To assist in adjusting the threshold, an ROC curve was graphed 

in R to determine an ideal threshold value that minimizes both false positives and false 

negatives. The area under the ROC curve (AUC) was also examined to evaluate the 

model quality.  

Limitations of the Dataset 

 This dataset had several limitations. First, daily activity logs were the main 

evidence in this study of self-regulated learning. Although consistent work in a course 

and persistence may seem to be evidence of self-regulation, actual contact with students 

through surveys or other instruments is essential to confirm that self-regulation is taking 

place and to show that there is a firm connection between self-regulation and the 

behaviors used as predictors in the models.  Secondly, although a large number of 

students were evaluated in this case study (N ≅ 4,600), the study addressed only a single 

self-paced MOOC course offered by a single university in a single-domain, mathematics.  

  



	

	 35 

CHAPTER 4 

Results 

This chapter is divided into six major sections, in which:  

1. Descriptive statistics of the sample are detailed. 

2. Differences between completers and non-completers in the sample are described. 

3. Variables that served as traces of self-regulation in the daily activity log data. 

4. The results of the linear regression models are reviewed. 

5. There is a review of the results of the logistic regression models that predict 

completion and non-completion based on data from the entire course. 

6. There is a review of the results of the logistic regression models that use only data 

from the first active day students were enrolled in the course both with and 

without the contribution of demographic variables. 

Description of the Sample 

 In the sample, the work of students who participated in a self-paced, open-

enrollment college algebra MOOC between May 1, 2016 and December 31, 2017 was 

examined. Anyone who began the MOOC before May 1st but showed activity extending 

into the examined time period was excluded as well as anyone who began during the time 

period but continued to work past December 31st. Like most MOOCs, this course 

experienced severe attrition (Figures 1–2). Because of the structure of the course, several 

distinct periods in which students tend to drop out were examined (see Figure 3). In his 

paper titled, “MOOCs and the funnel of participation,” Douglas Clow likened the attrition 

in MOOCs to a marketing sales funnel (2013). 
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Figure 2. Visualization of attrition in the college algebra course for students who have 

completed the pretest, based on the total number of active and inactive days in the course. 

As shown in the graph, approximately 90% of the students were no longer active by their 

5th day. Average completers of the course persisted for between 70 and 105 days.  
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Figure 3. Funnel of participation in the open-enrollment self-paced college algebra 

course examined in this study. The dataset used in this study included anyone who 

completed the pretest between May 1, 2016 and December 31, 2016. 

  

The sample used in this study was restricted not only by the designated time 

period, but also to only those students who had completed the pretest, which was a 

prerequisite in ALEKS for proceeding with the course. The pretest is used to assess what 

the student already knows and is used by the intelligent tutoring system to identify skills 

that the student should work on during the fall semester within that student’s zone of 

proximal development (ZPD) (Vygotskiï, 1978). 

Sample Demographics 
Descriptive statistics for the sample studied are presented in Table 2. 
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Table 2 
 Demographics (All data N = 4623, Complete-cases with no 
missing demographic data N = 3264) 

 

 

Characteristic n % Total Cases  % Complete Cases 

Gender    
Male 2515 54 61 
Female 1487 32 38 
Other 48 1 1 
Missing 573 12 NA 

Age    
0 – 18 521 11 14 
19 – 25  1221 26 33 
26 – 35  1249 27 31 
36 – 50  676 15 15 
51 – 65  236 5 5 
Over 65 78 2 1 
Missing 642 14 NA 

Country    
United States 2043 44 53 
India 208 4 6 
Canada 132 3 3 
Great Britain 123 3 3 
Australia  70 2 2 
Other 1248 27 33 
Missing 799 17 NA 

Education    
None 12 .3 .3 
Elementary 45 1 1 
Junior high school 333 7 9 
High school 1603 35 43 
Associate degree 335 7 9 
Bachelor’s degree 908 20 21 
Master’s degree 522 11 12 
Other 189 4 4 
Missing 676 15 NA 

ID Verified    
Audit 4360 94 95 
Verified  188 4 5 
Missing 75 2 NA 
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Demographic data of students enrolled in this course was obtained from a short 

voluntary survey that is presented to users upon enrolling in a course through edX. The 

category “ID Verified” is an option available to students to have their identity verified 

through edX, which is required if they intend to take the final exam and receive college 

credit from any university offering a course through edX. Over half of the respondents 

were male (54%), with the percentage of female respondents notably smaller (32%). As 

with all the survey categories, a substantial portion of respondents chose not to answer 

the question regarding their gender (12%). The mean age reported by course participants 

was 30 years old and there were 9 respondents who reported their age as being younger 

than 7 years. As this is unlikely for a college algebra course, the minimum age more 

likely ranged between 9–11 years—the next lowest reported age group. While the age 

data of those who reported to be less than 7 years old was viewed as probably erroneous 

when calculating the minimum age of the sample, the records were retained because the 

negative impact of this error was determined to be minimal. The maximum age reported 

was 89 years. 

 Participants in this course were from 142 countries in 20 world regions, with 47% 

coming from North America. The region with the next highest percentage of students was 

South Asia with 281 participants, or 6% of the sample studied. When participants were 

asked for their “highest level of education completed,” the most frequent answer was 

high school (35%). However, 38% reported holding some sort of college degree 

(Associates, Bachelor’s and Master’s combined). Only a small number of students (4%) 

requested identity verification, which is an important indication of the intention to 

complete the course.  
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Missing Data 

 All the demographic variables have a substantial amount of missing data, ranging 

from 12% for gender to 17% for country. None of the data containing evidence of self-

regulated learning—the activity log data—was missing. The nature of the missing data 

was explored both visually and through logistic regression modeling to determine 

whether the missing data should be characterized as: (1) missingness completely at 

random, (2) missingness at random, (3) missingness that depends on unobserved 

predictors, or (4) missingness that depends on the missing value itself (Gelman & Hill, 

2016). Figure 4 shows a visual model of the distribution for all the sample missing data. 

A visualization like this one is helpful in looking for patterns of missing data. For 

example, it is obvious from the visualization that country of origin is not correlated with 

missingness in education, age or gender.  
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Figure 4. Visualization of the distribution of missing observations in relation to each 

other. Red represents data that is not missing. White represents missing data.  

 
Table 3 shows the results of the logistic regression models regarding the missing data. 

When regressed on the dependent variable of completion, missing versus non-missing 

data of gender, age, country, and education was not able to predict completion and none 

of the demographic variables was statistically significant in the regression models. 

 

Table 3. Results of four logistic regression models using completion as the dependent 

variable and the missingness of each of the demographic characteristics as the 

independent variables. 

Variable B SEB 𝜷 Sig. AIC 
Missing Gender .00 .22 -.04 .97 1669.9 
Missing Age .00 .21 -.04 .97 1669.9 
Missing Country -.04 .19 -.21 .84 1669.9 
Missing Edu -.07 .21 -.34 .73 1669.8 
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Based on the data visualization evidence and that of the logistic regression models, the 

missing data was classified as missingness at random (MAR) since missingness 

completely at random (MCAR) is almost impossible to determine (Gelman & Hill, 2016). 

There seemed to be no observable patterns of missingness in the data, which served as 

justification for excluding the missing data when performing the complete cases logistic 

regression analysis on day 1 data that included demographic variables in the prediction. 

The N’s for cases with no missing data are presented in Table 2. 

Comparisons of Demographic Data for Completers and Non-completers 

 When comparing distributions of the demographic characteristics for completers 

and non-completers, several differences were evident. Although those choosing to be ID 

verified represent a minority of both completers and non-completers, it is evident in the 

distributions of ID verified and audit that a greater proportion of completers opted for ID 

verification than non-completers (Figure 5).  
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Figure 5. Comparison of ID verification for completers and non-completers. 

Unlike ID verification, the distributions of gender for completers and non-completers 

differed substantially (Figure 6). Although males comprised about half of the course 

participants overall, among completers, they accounted for almost 70%. In addition, 

indicating gender on the survey appears to be highly correlated with completion and may 

be an indication of engagement.  
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Figure 6. Comparison of distributions of gender for completers and non-completers. 

 

The mean age of completers in this sample was 37 years whereas the mean age of non-

completers was 30 years. Visualizing the distribution of age shows that a large majority 

the non-completers are younger than 36 years (76% of those who responded to the 

survey), whereas a majority of the completers were 36 years of age or older (59% of 

those who responded) (Figure 7). 
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Figure 7. Comparison of age groups between completers and non-completers. 

 

While there are differences in the age distributions of completers and non-completers, the 

educational background of both groups is very similar. Both have a large proportion of 

students with only a high school diploma and another large group who possess a college 

degree. In both groups, nearly the same proportions have only a high school diploma or 

some sort of degree (Figure 8). 
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Figure 8. Visualization of the distributions of the highest level of education achieved by 

completers and non-completers. 

Much like highest level of education achieved, the geographic distributions were very 

similar between the groups, with a slightly higher proportion of students in the non-

completer group coming from North America (47%) versus those in the completer group 

(39%) (Figure 9). Around half of the students in both groups were from regions of the 

world other than the United States, Canada, or Mexico. 
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Figure 9. Distribution of students by region comparing between completers and non-

completers. 

Comparing Completers with Non-completers and Traces of Self-regulation 

 One of the objectives of this study was to examine the role that self-regulation 

may play with respect to achievement in this open-enrollment self-paced college algebra 

MOOC. Although individual self-regulation strategies and/or motivations cannot be 

directly observed through activity logs, there is evidence of self-regulation in the course 

behaviors that are present in the behaviors represented in the data. For example, in the 

daily activity logs, it can be observed that a student spent two hours working in the 
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course. Why this student did so is not obvious, but it is reasonable to assume that this 

data may constitute evidence of self-regulation. 

SRL Measured as Maximum Time in One Day and Average Skills Gained. 

One way to examine the effects of self-regulation on achievement was to examine the 

correlations between the average time spent in the course on any day a student worked in 

the course and the average number of mathematics skills that were gained per active day 

in the course. These traces can best be seen by visualizing the data. These visualizations 

compare in graphic fashion the average number of skills gained each day with the 

average number of hours worked each by completers and non-completers. Regression 

lines represent predictions for each group based on these variables. It was also important 

to determine if these correlations varied depending on the extent of background 

knowledge a student brought to the course—especially those who scored in the first, 

second, and third quartiles on the pretest (individuals who scored in the fourth quartile on 

the pretest are of less interest because they have demonstrated that they have already 

mastered most of the course content). Figures 10–12 show the results of these 

comparisons. 



	

	 49 

 

Figure 10. Comparison of SRL traces for students who placed in the 1st quartile on the 

pretest.  
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Figure 11. Comparison of SRL traces for students who placed in the 2nd quartile on the 

pretest.  



	

	 51 

 

Figure 12. Comparison of SRL traces for students who placed in the 3rd quartile on the 

pretest.  

  

By comparing these visualizations, it can be observed that completers in all quartiles 

show higher average hours worked and skills gained with the greatest difference in slope 

being reflected by students in the first quartile. 

SRL Measured as Average Number of Hours Spent during Active Days. 

Another indicator of self-regulation is the difference in the number of hours that 
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completers and non-completers devoted to the course averaged over the total number of 

their active days in the course. Table 4 documents the differences between completers 

and non-completers in time spent in the course in terms of the average number of hours 

spent on active days and total number of active days in the course. Students who scored 

in the first quartile on the pretest spent 1.6 hours more on average working in the course 

than non-completers who scored in the first quartile—reflecting the largest difference in 

all the quartiles of the average time spent working in the course on active days. 

 

Table 4: Relationship between completion average hours worked and average number of 

active days in the course. 

 Av Hrs/   
A-day 

Min 
Hrs/ 

A-day 

Max Hrs/ 
A-day 

Av  
A-days 

Min 
A-days 

Max 
A-days 

All Complete 2.74 0.60 9.08 25.66 1 134 
All Non-Complete 1.42 0.10 11.3 5.63 1 143 
Q1 Complete 2.95 1.07 9.08 45.00 12 89 
Q1 Non-Complete 1.35 0.10 11.2 5.81 1 143 
Q2 Complete 2.95 0.74 7.77 36.85 7 134 
Q2 Non-complete 1.54 0.10 11.3 6.11 1 81 
Q3 Complete 2.51 0.65 8.27 27.56 3 69 
Q3 Non-complete 1.60 0.10 7.5 4.25 1 36 
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Figure 13 illustrates how much more time on average completers spent working in 

the course during active days in contrast to non-completers. Overall, the majority of 

completers (64%) spent more than two hours on days when they were working in the 

course, whereas most non-completers (66%) spent 1.5 hours or less.  

 

Figure 13. SRL traces shown as average hours spent per active day (all students).  

 

 When broken down by quartile, as in Figures 14–16, the average time spent by 

non-completers exhibits a definite peak and drop-off. In quartiles 1 and 2, the largest 

group of non-completers spent roughly an hour working in the course, whereas in quartile 

3, the largest group of non-completers spent around 1.5 hours. Unlike the non-completer 
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plots, the completer plots are jagged, thereby reflecting clusters of students in each 

quartile working about the same amount of time in the course. This may be further 

evidence of self-regulation on the part of completers. These clusters could reflect groups 

of students who committed more time to working in the course because they naturally 

learn at a slower pace or because they had set goals for themselves to finish the course in 

a shorter period of time. 

  

 

Figure 14. SRL traces shown as average hours spent per active day (1st quartile).  
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Figure 15. SRL traces shown as average hours spent per active day (2nd quartile).  

 

As reflected in Table 3, Figure 15 shows that completers in quartile 2 put in the 

most time on average of all the students in the course, and that the majority of quartile 2 

completers (52%) put in 2.5 or more hours into the course each active day whereas most 

of the non-completers (59%) worked in the course for 1.5 hours or less. 
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Figure 16. SRL traces shown as average hours spent per active day (3rd quartile).  

SRL Measured as Early Indicator of Ultimate Achievement in Course.  

A third way self-regulation was measured was by examining how well activity log 

data that seemed to indicate self-regulation on the first day of the course correlated with 

that student’s achievement in the course. In this case, student achievement was compared 

with the number of mathematical skills gained after the pretest. Figures 17–19 illustrate 

the results of these relationships in visual depictions of linear regression predictions with 

Locally Weighted  Smoothing (LOESS) to enhance the visualization of the relationship 

between the variables and to show trends (Cleveland, 1979).  
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 Figure 17 shows the total number of skills gained after the pretest regressed 

against the number of hours worked on the first day. This figure indicates the strong 

relationship between the time spent by the student on the first day and that student’s 

future performance in the course. The more time a student put in on the first day, the 

stronger was the probability that the maximum number of skills that student would 

achieve in the course would be high.   

 Figure 18 shows that there is a moderate relationship between the number of skills 

gained on the first day and the maximum number of skills a student will achieve by their 

last active day in the course. The shading on the graph shows that the variance for skills 

achieved on the first day is larger than the variance in the hours put in on that first day. 

This may mean that the hours put in on the first day are a signal of motivation—an SRL 

variable strongly correlated with achievement (Marzouk et al., 2016). 

 The wide bands of standard error on Figure 19 show the lack of correlation 

between velocity on the first day and the number of skills ultimately mastered by students 

after the pretest. When combined with other variables in the linear regressions, velocity 

was negatively correlated with achievement. This shows that working faster may be a 

sign of impatience or other indication of the lack of self-regulation. 
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Figure 17.  Total number of skills gained after the pretest (max = 419) regressed on  the 

number of hours worked in the course on the first day with predictions fitted with LOESS 

smoothing. Shading reflects the standard error. 
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Figure 18.  Total number of skills gained after the pretest (max = 419) regressed on the 

number of skills in the course achieved with predictions fitted with LOESS smoothing. 

Shading reflects the standard error.  
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Figure 19.  Total number of skills gained after the pretest (max = 419) regressed on the 

velocity on the first day with predictions fitted with LOESS smoothing. Shading reflects 

the standard error.  

 

Linear Regression Models 

 Based on the available data, achievement can be measured in this college algebra 

course in two ways. It can be viewed as a binary outcome, completion versus non-

completion, or in terms of how many of the 419 course math skills the student mastered. 
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Completion is the outcome of primary interest in this study. However, although the 

number of skills is actually an ordinal variable, this outcome can be treated as a 

continuous variable for the purposes of performing regression and making approximate 

correlations.  

 Using only the daily activity log data, eighteen independent variables were 

derived directly from the logs or calculated based on data that had been taken directly 

from it. Table 5 lists the characteristics of these variables. 

 

Table 5. Characteristics of the eighteen variables derived from daily activity logs for all 

students 

 Mean SD Skewness Kurtosis 
Pretest (419 max) 101.90 93.84 1.09 0.22 
Topics learned after pretest 36.99 57.21 2.55 7.41 
Percent course completion 33.17 26.43 0.84 -0.23 
Total days in course 33.15 45.12 1.83 2.98 
Active days in course 6.45 9.86 4.15 27.95 
Hours spent in course 10.58 20.51 4.62 29.11 
Average hours per day in the course 0.79 0.93 2.46 8.96 
Average hours per active day 1.48 1.03 2.15 8.76 
Total number of topics tested and learned 139 110.73 0.84 -0.23 
Total number of topic learned 17.73 18.30 1.34 1.05 
Ratio of active days to total days 0.50 0.38 0.26 -1.55 
Velocity (topics gained per hour) 3.81 4.91 8.83 147.98 
Velocity (topics gained per day) 23.56 38.80 2.68 8.32 
Velocity (topics gained per active day) 5.28 5.86 2.26 8.70 
Average velocity per active day 25.32 61.04 3.30 11.22 
Max hours spent in a single day 2.64 2.22 2.23 8.23 
Number of breaks away from course 2.63 3.85 3.00 12.41 
Longest break away from course (days) 18.36 31.26 2.73 8.63 

 
 

The large standard deviations in many of the variables in Table 5 reflect the great 

degrees of variability in this dataset. For example, “Topics learned after the pretest,” 
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“Total days in the course,” and “Active days in the course” have standard deviations 

greater than their means. The high skewness and kurtosis values indicate that most of 

these values are not normally distributed and exhibit heavy tails. Using standard 

statistical procedures could be difficult when working with this kind of dataset. 

Fortunately, because there is a large amount of data, it is still possible to detect 

significant signals within the dataset when performing predictions. Large amounts of data 

is one of the big advantages to be gained from working with courses in a MOOC format 

(Ferguson & Clow, 2015). 

Correlations Between Variables in Complete Dataset and Among 1st Day Variables 

Next, with a focus on how well these variables might predict achievement in the 

course, correlations between these variables were examined and the outcome variable of 

how many skills the students mastered after taking the pretest. These relationships were 

tested at two levels—the whole dataset and only the data that could be gained from a 

student’s first active day in the course. 

The whole dataset correlations. Table 6 lists these correlations. The top five 

strongest correlations between the dependent and independent variables were the total 

hours spent in the course (.55), the total number of skills gained in the course (including 

skills determined in the pretest to have already been mastered) (.49), the average number 

of skills mastered divided by total number of days in the course (.49), the number of 

active days in the course (.44), and the maximum number of hours spent working in the 

course in a single day (.38). The potential for multicollinearity between these variables 

was a definite concern, so correlations between the independent variables were also 

examined. 
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Table 6. Correlations between independent variables and the dependent variable m
ath 

skills gained after the pretest.  

 



	

	 64 

 First day correlations. Correlations were examined and compared with the 

independent variables derived only from activity log data available from the students’ 

first active day. The first active day is operationalized as the first day in the course in 

which the student completed the pretest. For some students, this first active day contained 

only pretest information. For others, after finishing the pretest, they went on to start 

learning some of the new math skills in the course. The difference was determined 

entirely by the choices made by the students themselves. 

 The number of available variables was substantially more limited (6 independent 

variables versus 17 independent variables for the complete dataset). This reduced number 

of variables was partially due to the unavailability of certain variables from the whole 

dataset, such as the maximum hours worked on a single day. Other variables were the 

same on the first day, such as total active days. Table 7 lists the correlations between the 

first day variables.  

 

Table 7. Correlations between the dependent variable and independent variables from 

day 1 data 

 1 2 3 4 5 6 
1   Max skills post-pretest       
2   Placement .32      
3   Total days .00 -.02     
4   Hours .16 .22 -.01    
5   Skills learned .09 -.04 -.03 .48   
6   Velocity (hour) .05 .33 -.02 -.20 .09  
7 Pretest quartile number .32 .95 -.01 .18 -.06 .31 
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One of the strongest first-day correlations that was linked to achievement was the 

relationship between the number of hours the student worked on the first day and the 

maximum number of skills the student learned throughout the course. The total number 

of days in the course was negatively correlated with several other variables. 

 Determining which independent variables to use in models. By examining the 

correlations between the dependent variable and the independent variables and the 

correlations between the independent variables themselves, it was determined that a 

single variable should be chosen from four categories for the linear and logistic 

regression models. Three of these variables reflect self-regulation on the part of the 

students, including (1) a time variable that reflects how much time students were 

investing in the course, (2) a skill variable that reflects how many skills students were 

gaining as they worked in the course, and (3) a velocity variable that reflects how fast 

students were gaining skills in the course. The fourth variable was the student’s 

placement on the pretest, which functioned as a covariate to control for background 

knowledge. It was also desirable to choose variables that were available both in the 

complete dataset and on the first active day in the course in order to be able to draw 

comparisons between models. As a result, the following SRL variables were selected:  

1. Total number of hours spent in the course (time variable). 

2. Total number of skills learned between formative assessments (skills variable). In 

ALEKS, students perform mathematical exercises and are then tested on the skills 

developed in those exercises. These tests involve formative assessments in a 

mastery-type format connected to the AI within ALEKS. Skills learned 

constitutes skills gained between these formative assessments. 
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3. Total number of skills they learned divided by the total number of hours spent in 

the course (velocity variable). 

The above three variables, along with the pretest score (ranging from 0–419), comprise 

the four variables used in all of the linear and logistic regression models. 

Multiple Linear Regression Models 

 Multiple linear regression models on the training set were created, comprising 

70% of the complete dataset, a testing set with 30% of the complete dataset, a training set 

with 70% of the day 1 dataset, and a testing set with 30% of the day 1 dataset. Table 8 

presents the Ns of these datasets.  

 
Table 8. Ns for each dataset. The Day 1 Complete Cases dataset was used only in the 

final logistic regression models that included demographic variables as predictors. 

Complete cases represent the students who had all the demographic variables present in 

their data. 

 All Completers Non-Completers 
All Data (100%) 4623 203 4420 
All Data (Train, 70%) 3236 142 3094 
All Data (Test, 30%) 1387 61 1326 
Day 1 Data (100%) 4623 203 4420 
Day 1 (Train, 70%) 3236 142 3094 
Day 1 (Test, 30%) 1387 61 13226 
Day 1 Complete Cases (100%) 3264 143 3121 
Day1 CC Train (70%) 2285 100 2185 
Day 1 CC Test (30%) 979 43 936 

 
 

The multiple linear regression models were created to determine the strength of 

the relationship between the dependent variable, the total number of mathematics skills 

acquired in the course, and the combination of self-regulation variables—hours spent in 

the course, mathematical skills learned, velocity as defined above, and placement on the 
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pretest as a control for background knowledge. Tables 9–12 present the results of these 

linear regression models. 

 

Table 9. Multiple linear regression of the complete training dataset.  

 

Note.    * p < .05    ** p < .01    *** p < .001. R2 = 0.97 

 

Table 10. Multiple linear regression of the complete testing dataset.  

 Note.    * p < .05    ** p < .01    *** p < .001. R2 = 0.96 

 

Since their outcomes were very similar, the results of the linear regression models 

of the complete dataset confirm a successful split between the data in the testing and 

training sets. Based on all the data available in this dataset, these model results also 

reveal the relative beta values of the variables. While all the variables were statistically 

significant, the beta values of the hours and skills learned were much larger than that of 

velocity. As would be expected, the pretest beta value indicating the level of background 

knowledge was also very large. Velocity—the dependent variable in the linear 

regressions—was negatively correlated with the number of mathematical skills mastered. 

Variable B SEB 𝜷 t-value Sig. 
Hours 1.78 .02 .33 90.05 < 2e-16*** 
Skills Learned 1.43 .02 .23 62.65 < 2e-16*** 
Velocity -0.67 .07 -.03 -9.11 < 2e-16*** 
Pretest 0.99 .00 .84 262.73 < 2e-16*** 

Variable B SEB 𝜷 t-value Sig. 
Hours 1.80 .03 .34 53.76 < 2e-16*** 
Skills Learned 1.60 .04 .28 40.97 < 2e-16*** 
Velocity -2.28 .20 -.07 -11.19 < 2e-16*** 
Pretest 0.98 .00 .82 160.23 < 2e-16*** 
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Table 11. Multiple linear regression of the day 1 training dataset.  

Note.    * p < .05    ** p < .01    *** p < .001.  R2 = 0.38 

 
Table 12. Multiple linear regression of the day 1 testing dataset.  

Note.    * p < .05    ** p < .01    *** p < .001.  R2 = 0.35 

  

After examining the linear regressions of all the data, these results were compared 

with the multiple linear regressions of the data gathered from the students’ first day in 

course. Although the amount of time spent was significant when the data from all days 

were included in the complete set, it was not predictive in the linear regression with 

respect to the total number of mathematical skills that would be ultimately mastered by 

the students. The number of skills learned, however, was predictive. Velocity continued 

to be negatively correlated but was not statistically significant. 

Logistic Regression Models 

 Next, logistic regression models were run using the same independent variables as 

those used in the linear models but with completion/non-completion as the binary 

outcome rather than the continuous dependent variable of the total number of math skills 

Variable B SEB 𝜷 t-value Sig. 
Hours 0.46 1.28 .01 0.36 0.72 
Skills Learned 0.75 0.23 .06 3.19 < 0.001*** 
Velocity -0.32 0.22 -.02 -1.49 0.14 
Pretest 0.74 0.02 .61 40.65 < 2e-16*** 

Variable B SEB 𝜷 t-value Sig. 
Hours -2.69 1.98 -.04 -.1.36 0.17 
Skills Learned 1.32 0.37 .10 3.56 < 0.001*** 
Velocity -0.48 0.30 -.04 -1.62 0.10 
Pretest 0.75 0.03 0.59 25.47 < 2e-16*** 
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gained. These regression models were created using the four datasets noted above as 

follows:  

1. Day 1 data with SRL variables: training set (70%). 

2. Day 1 data with SRL variables: testing set (30%). 

3. Complete cases day 1 data with SRL and demographic variables: training set 

(70%). 

4. Complete cases day 1 data with SRL and demographic variables: testing set 

(30%). 

Table 13 presents the results of these models while Table 14 presents the predictions 

resulting from the models. Figures 20–23 show the receiver operating characteristic 

(ROC) visualization curves of the logistic regression models. The strongest model results 

were in the day 1 logistic regression model using the complete dataset of student cases. 

This model performed with an overall prediction accuracy rate of 76% for the data 

training set and an 82% prediction accuracy rate in the data testing set. The model that 

based its predictions only on activity log data demonstrated an overall prediction 

accuracy rate of 71% in both the training and testing datasets. 
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Table 13. Logistic regression model comparison. Day 1 Train and Day 1 Test are based 

on the first day of the whole dataset. Day 1 Train CC and Day 1 Test CC are based on 

the complete cases. 

 Model 1 
Day 1 
Train 

Model 2 
Day 1 

Test 

Model 3 
Day 1 CC 

Train 

Model 4 
Day 1 CC 

Test 
Hours 0.11* 0.01 0.15* 0.21* 
 (0.05) (0.07) (0.07) (0.11) 
Skills Learned 0.02 0.04** NA NA 
 (0.01) (0.01)   
Pretest 0.01 *** 0.01 *** 0.01 *** 0.01*** 
 (0.00) (0.00) (0.00) (0.11) 
ID Verified NA NA 1.67*** 2.38*** 
   (0.33) (0.48) 
Regiona NA NA   

N. America   -1.09* -- 
   (0.54)  

N. Europe   -1.63* -- 
   (0.80)  

S. Asia   -1.35* -- 
   (0.67)  
Ageb  NA NA   

51-65   1.07* -- 
   (0.48)  

Over 65    -- 2.67** 
    (0.93) 
Gender NA NA -- -- 
     
AUC 0.72 0.68 0.83 0.84 
Correct Predictions 2306 1081 1619 849 
Incorrect Predictions 930 306 666 130 
Total N 3236 1385 2285 979 
McFadden R2 0.142 0.107 0.229 0.281 

Note.    * p < .05    ** p < .01    *** p < .001.  a, b Only values with significant 
levels of at least p < .05 are reported. 

 
Table 13 shows the results for all the models. Aside from the pretest results, the 

number of hours worked on the first day was the most consistent predictor. From the SRL 
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variables alone, skills learned on Day 1 was predictive. However, when demographic 

data was included, skills learned was no longer predictive and was dropped from the 

models. ID verification was a significant predictor, along with region and age. Gender 

added to the predictive value of the models but was not statistically significant.  

 

Table 14. Confusion matrices displaying the accuracy of predictions in four different 

logistic regression models 

 
 Day 1 Train Day 1Test 

Day 1  
SRL Data Only  

  

Sensitivity 0.662 0.639 
Specificity 0.750 0.786 

Prediction Average 0.706 0.713 
 

 Day 1 CC Train Day 1 CC Test 
Day 1 

Complete Cases 
With Demographic 

Info 

  
Sensitivity 0.820 0.767 
Specificity 0.703 0.872 

Prediction Average 0.762 0.820 
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 The confusion matrices shown in Table 14 present the actual predictions made by 

the models. Sensitivity indicates the percentage of time that the model correctly predicted 

which students would be completers. Specificity indicates the percentage of time the 

model correctly predicted which students would be non-completers. True positives are 

the actual number of correctly predicted completers. False positives are individuals whom 

the model predicted would be completers but were actually non-completers. True 

negatives are individuals whom the model correctly predicted would be non-completers. 

False negatives are individuals whom the model predicted would be non-completers but 

were actually completers.  An average correct prediction rate of 71% was achieved using 

the activity log SRL data alone. The training and testing sets predicted comparably. In the 

complete cases dataset that included the demographic data, the average correct prediction 

rate in the training and testing sets was 79%. The testing set predicted slightly better than 

the training set, achieving a correct prediction rate of 82%. 
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Figure 20. Receiver operating characteristic (ROC) curve for day 1 training model. 
 

 
Figure 21. ROC curve for day 1 test model.  



	

	 74 

 

 
Figure 22. ROC curve for day 1 training model with demographic information included 
as predictors. 
 

 

 
Figure 23. ROC curve for day 1 test model with demographic information included as 
predictors. 
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Figures 20–23 above show the receiver operating characteristic (ROC) curves. The ROC 

curves in Figures 20 and 21 depict the predictions made by the logistic regression models 

(both training and testing) that used activity log data alone to predict completion by 

individuals in the college algebra course. The tick-marks on the curves reflect the 

effective cutoffs for these models. The cutoff point that yielded the most accurate 

predictions for the training set (Figure 20) was 0.04, whereas the most accurate cutoff 

point for the test set was 0.05. These are fairly aggressive cutoff points that reflect the 

unbalanced nature of the dataset (4% completers and 96% non-completers). These cutoffs 

mean that when the model predicts that a user has a 4% or 5% chance of being a 

completer, it will predict that the student will complete the course. If the model 

determines that the chance of that individual completing is less than 4%, it will predict 

that individual to be a non-completer.  

 In Figures 22 and 23, the shapes of the curves away from the halfway 50/50 

prediction rate that cross the ROC curves diagonally reflect the improvement in the 

model’s prediction rate by the addition of the demographic data. The area-under-the-

curve (AUC) rates also reflect this improvement. While the average AUC for the training 

and testing sets that used activity log data alone was 70% (see Table 13), the average 

AUC for the models that included the demographic data was 84%.  
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CHAPTER 5 

Discussion 

The objective of this research was to examine data generated by students working 

online in a self-paced mathematics MOOC for evidence that self-regulation plays a role 

in who completes and who does not complete this course. Predictive models were created 

to measure the relative importance of these behavioral patterns as evidenced through the 

data, and these behavioral variables were then combined with demographic information 

not only to increase the predictive power of the models but also to measure how these 

variables behave in relation to differences in demographics that also influence 

completion. There was a further objective for creating these prediction models beyond 

shedding light on what behavior and demographic variables were influential in this type 

of MOOC. Although completion is not the objective of every MOOC user, one of the 

reasons for creating these early prediction models was to assist in the future creation of 

effective interventions that could contribute to the success of students who do wish to 

complete.  

A Review of the Study Methodology 

To accomplish these goals, a three-phase approach was implemented. The first 

phase was to examine data in the daily activity logs that could contain evidence of self-

regulation on the part of the learners and be linked to successful completion of the course. 

The second phase was to test the predictive power of these behavioral data through linear 

and logistic regression. The third phase was to combine these variables derived from 

these data with demographic information gained from a survey conducted by edX to 

understand how behaviors within the course and demographic characteristics work 
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together to influence completion. Because one of the objectives of this research was to 

examine these variables with an eye to interventions that could help students in the 

future, the final logistic regressions were designed to predict with only data derived from 

the first day in the course. The purpose in relation to this objective was to test how early 

signals could be detected that could influence completion. 

Seventeen variables were developed either directly from what was recorded by 

computers through the activity logs or calculated from data by combining these variables 

(Tables 6 & 7). Because students in a self-paced mathematics MOOC often work in 

isolation with very little extrinsic pressure to make progress, it seemed reasonable to 

assume that many of these variables could result from self-regulation. For example, how 

long a student works in the course each day, or how many days each week they are 

active, or how quickly they progress from one math skill to another seem to most likely 

emerge from motivation and impetus that arise from within the student alone when they 

are working in this kind of MOOC environment. 

Three Important Behavioral Variables 

In order to choose which of the seventeen behavioral variables should be included 

in the regression models, correlations with the outcomes of the course were examined.  

Two outcomes were considered, the total number of mathematics skills learned over the 

total amount of time the students spent in the course and the binary outcome of course 

completion/non-completion. They were also evaluated from two perspectives: 1) 

considering all the days the students worked in the course in relation to the outcome 

variables, and 2) just considering the first day the students worked in the course. Three 

variables emerged as most important: time spent working in the course, the number of 
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math skills learned, and the velocity at which students mastered math skills in the 

MOOC.  These three variables were operationalized in two different ways. The first way 

took into account all the data generated during the eight month period of the study that 

could be derived from these variables. The second way only took into account data that 

were generated on the first day students worked in the course.  

Time. For the regressions that took into account all the data in the course, the 

time variable was operationalized as total hours spent by students in the course. In the 

regressions that predicted based on just first day data, the time variable was 

operationalized as the total time the student worked in the course on the first day.  

Mathematics skills learned. For the regressions that took into account all the 

data in the course, the skills learned variable was operationalized as the total number of 

mathematics skills learned between formative assessments over the entire course. In the 

regressions that predicted based on just first day data, the skills learned variable was 

operationalized as the number of mathematic skills that were learned after the pretest on 

the first day. 

Velocity. For the regressions that took into account all the data in the course, the  

velocity variable was operationalized as the total number of skills learned between 

formative assessments during the whole time a student worked within the course divided 

by the total number of hours worked in the course. In the regressions that predicted based 

on just first day data, the velocity variable was operationalized as the number of skills 

learned after the pretest on the first day divided by the total number of hours spent on the 

first day. 
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Two Different Kinds of Models 

The primary purpose of the models that used all the data in the course was 

exploratory. The relative predictive power of each of these three variables, time spent, 

skills learned, and velocity could be measured when combined in a single regression 

model that incorporated the full amount of data available for each of these variables from 

each student regressed on the total amount of mathematics skills learned in the course 

(Tables 9-10). As expected, these three variables, along with the pretest functioning as a 

covariate, were able to capture most of the variance in the data (R2 = .96). The strongest 

predictor variable in this first linear model was total hours spent in the course (𝛽 = .34) 

with the next strongest predictor being the number of skills learned (𝛽 = .28). The 

weakest predictor was velocity and was negatively correlated to the maximum skills 

learned in the course (𝛽 = -.07). All three of the variables examined were statistically 

significant (p < .001) as part of this model. 

In the second set of linear and logistic regression models, the predictive power of 

the three independent variables, time spent, skills learned, and velocity were measured 

using just the data generated by students on the first day in the course. In a first set of 

exploratory regressions it was desirable to see how these variables using just the data 

from the first day predicted how many skills the student would ultimately earn during 

their entire time in the course. A set of models regressing each of these variables 

individually on total number of mathematics skills learned explored this behavior 

(Figures 17-19). Another set of linear regression models examined how the variables 

behaved when combined and regressed against the total number of mathematics skills in 

the course (Tables 11-12). Finally, a set of logistic regression models examined the three 
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variables using just the data generated on the first day regressed on the binary outcome of 

completion/non-completion (Table 13). 

Time Spent 

The most consistently predictive behavioral variable was the time variable. The 

only variable that was more predictive in any of the regressions was the student 

background knowledge measured by the score the students achieved on the pretest that 

was acting as a covariate in all of the models. In the multiple linear regression model 

using all the data of these three variables that students generated over their entire time in 

the course, time spent working in the course had the largest beta of the three independent 

variables (𝛽 = .34, Table 10). In three of the four of the logistic regression models using 

just the data generated on the first day in the course, time spent on the first day working 

in the course was statistically significant with a p < .05 (Table 13). 

The hours variable was not significant in the linear regression models using just 

first day data with the total number of skills learned as the dependent variable. This is a 

reflection of both multicollinearity with the skills learned variable, and the nature of the 

dependent variable. While dependent variables of total number of skills learned and 

completion are closely related, they are not the same. Many students in this dataset 

learned a large number of skills but did not go onto complete. While completion is 

operationalized at learning 90% or more of the total 419 skills in the course, 8% of non-

completers learned 70% or more of the skills but did not go on to complete. So the non-

significance of the hours variable in the first day linear regression should be regarded as 

informative as far as exploring the dataset but should not be regarded as a definitive 
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explanation of the impact of time worked on the first day on  the dependent variable of 

final completion. 

Skills Learned 

The second most predictive variable was the skills learned variable. In the 

regression model that drew from all the data in the course, this variable was the third 

most predictive after the pretest and time spent in the course (Table 10). When taking into 

account all the data in the course, time spent and skills earned was highly correlated with 

a correlation coefficient of .83 (Table 6); however, it was only modestly correlated in the 

first day data with a correlation coefficient of .48 (Table 7).  

Despite the modest correlation between skills learned and time spent on the first 

day, the two variables responded similarly in the logistic regression models. For example, 

including or excluding the time spent and skills learned variables resulted in only slight 

differences in AUC or McFadden’s R2. In Model 1 of Table 13, including both time and 

skills learned resulted in a model AUC of 0.72 and a McFadden’s R2 of 0.14. The same 

model excluding hours worked would have produced an AUC of 0.71 and a McFadden’s 

R2 of 0.13.  

Velocity 

 Velocity was the least predictive of the three variables. In many cases, it was 

negatively correlated with the outcome variable meaning that the faster a student worked 

in the course, the less likely that student was to complete the course (Tables 9-12). In the 

linear regression models using only the first day’s data, velocity was not statistically 

significant and did not add to the predictive value of the logistic regressions and was 

therefore not included in the final models. 
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Multicollinearity 

One of the challenges of using these pieces of information from the daily activity 

logs was that many of these variables were highly correlated posing the threat of 

multicollinearity. For example, time spent working in the course and the number of math 

skills learned are very closely related as it takes time to work through each math skill. 

The challenge was to produce parsimonious models that captured the most important 

differences between completers and non-completers while minimizing multicollinearity. 

One of the ways multicollinearity was minimized was by keeping the number of variables 

in the models low and seeking to draw variables from data that would offer different 

information even if related to a certain degree. To achieve this, the correlations of 

variables were examined and their behavior in relation to each other was carefully 

monitored in the linear and logistic regression models. 

ID Verification 

ID verification was a unique variable that was not part of the data recorded in the 

daily activity logs, nor was it part of the survey data collected by edX. Rather it was an 

option offered to students who wish to take the final exam and receive college credit or a 

certificate of completion. In the MOOC platform edX, ID verification takes place when 

students pay a nominal fee to have their IDs verified through automated software created 

for this purpose within the MOOC (edX, Inc., 2017b). Students must provide a photo of 

themselves and their government issued identification by taking a picture with their 

computer webcam. ID verification was a more common characteristic of completers than 

non-completers (15% versus 4%) confirming other research showing ID verification to be 

a key indicator of completion in MOOCs (Ho et al., 2015). It was also predictive of 
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completion and was statistically significant (p < .001). Only 4% of the students in this 

sample opted into being ID verified and of those students 16% went on to complete the 

course.  

Important Demographic Variables 

 When demographic information was added to the logistic regression models, the 

predictive power of the models increased. These were the demographic variables that 

emerged as most important in the models.  

Age. The mean age of course participants was 30 years old; however, the mean 

age of completers was 37 years of age. This was an important indicator that this sample 

was largely made up of non-traditional students and that older students were more likely 

to complete in this course. Because of this, age was predictive in the logistic regressions 

with the oldest age groups of 51 to 65 and over 65 being statistically significant (p < .05 

and p < .01 respectively, Table 13). It could be speculated that this is related to the 

greater self-regulation of these older students. While older students have been shown to 

have more self-regulation strategies, this has been primarily demonstrated in populations 

that are much closer to the ages of traditional college students (Usher and Pajares, 2008). 

There is little research into levels of self-regulation in older adult learners.  

Gender. The variable of gender was especially interesting. Slightly more than 

half of the sample (54%) self-identified as male while 32% self-identified as female. In 

this sample, 13% self-identified as “other” or did not answer the survey question for 

gender (Table 2). While males made up 53% of non-completers, they constituted 67% of 

completers (Figure 6). However, gender was not statistically significant as a predictor in 

the models tested, although including it as a predictor variable did add to the predictive 
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power of the model. This predictive power of the gender designation did not seem to 

come from a difference in behavior between males and females. For example, mean 

number of hours spent on the first day by male and female completers was almost 

identical (2.548 for males versus 2.553 for females). The average amount of time spent in 

the course by male and female non-completers was also very similar (1.505 for males 

versus 1.499 for females). Likewise, the mean number of math skills learned for male and 

female completers on the first day was very close with females slightly outperforming 

males (7.162 skills for males versus 8.195 for females). The mean number of 

mathematics skills completed by non-completers on the first day was also close with 

females outperforming males by a narrower margin (4.102 skills for males versus 4.618 

skills for females). What made gender predictive of completion in the logistic regression 

models was only the fact that more males than females completed the course. However, it 

was a very weak predictor because the behavior of males and females on the first day of 

the course was almost identical. 

Region. The five most common countries of origin for course participants were 

the United States (44%), India (4%), Canada (3%), Great Britain (3%), and Australia 

(2%). The geographic location of course participants when grouped by region was 

weakly predictive. Three regions, North America, northern Europe, and southern Asia 

were statistically significant (all with p < .05) when the larger training dataset was used; 

however, in the smaller testing set, no regions were statistically significant. The three 

regions that were statistically significant in the training set were negatively correlated 

with completion but were also in the top five most common regions from which students 
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originated (Figure 9 & Table 13). This can viewed as an artifact of the high N’s of these 

regions in highly unbalanced dataset. 

Educational Background 

One characteristic of students that did not seem to influence completion was 

educational background. This demographic is operationalized in the edX survey from 

which all the demographic data for this course was gathered as “highest level of 

education completed” (edX, Inc., 2017a). A high school diploma was the most common 

level of education chosen by the entire sample (35%). When broken out by completers 

and non-completers, approximately half of both completers and non-completers had a 

college or university degree (46% for completers and 53% for non-completers), and over 

a quarter of both groups had a high school diploma or less (29% of completers and 27% 

of non-completers). The distribution of level of education for both groups was very 

similar, and the amount of education did not add predictive value in any of the models 

(see Figure 8). 

Combining Behavioral and Demographic Information 

When the demographic variables were added to the model in the test dataset, the 

self-regulation variable of time spent working in the course on the first day was 

statistically significant (p < .05). ID verification was also statistically significant (p < 

.001) along with being over age 65 (p < .01). Region and gender were not statistically 

significant; however, they contributed to the overall strength of the model by increasing 

the prediction accuracy in both the training and the test datasets. The AUC for the logistic 

regression model that combined behavioral and demographic data was 0.84 and the 

McFadden’s pseudo R2 was 0.281. This model produced 849 correct predictions with 130 
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incorrect predictions. It was correct 78% of the time predicting who would complete the 

course, and it was correct 87% of the time predicting who would not complete and had an 

average correct prediction rate of 82%.  

Overall, adding the variable of ID verification, and the demographic variables of 

region, age, and gender into the logistic regression models strengthened the predictive 

power of the models. The AUC increased from 0.68 to 0.84 showing that including 

demographic variables contributed important information that reflected variation among 

course participants that was not captured by the behavioral data in the daily activity logs 

alone (Table 13). Because more variance was captured in the model, the prediction power 

of the model was also increased from 71% correct predictions to 82% correct predictions. 

When combined with the demographic variables, the behavioral variable that contributed 

most strongly to the predictive power of the model was the amount of time students spent 

in the course on the first day (Table 13). Including the amount of the mathematical skills 

learned on the first day did not add to the accuracy of the predictions and was not 

statistically significant and was therefore dropped from the model that combined the 

demographic data with the daily activity log data. 
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CHAPTER 6 

Conclusion 

In addition to looking for variables in student behavior that could point to self-

regulation, this study was also focused on early prediction. Reasonably accurate early 

predictions in any course are valuable because of the prospect of interventions that can be 

implemented at a point when they might have the greatest impact. This strategy of 

researching prediction with an eye to intervention is a strategy that is already being 

deployed for session-based MOOCs (He, Bailey, Rubinstein, & Zhang, 2015). 

Pure Accuracy Versus Informative Accuracy 

The key goal of this research was to provide insight into what makes a successful 

completer in a self-paced mathematics MOOC. Because this goal was first and foremost, 

pure accuracy of prediction was not enough. By merely predicting that all student would 

not complete, a model could be created that would have an overall correct prediction rate 

of 96%, but this would provide no information about what it takes to be a completer 

because the model would be wrong 100% of the time for the all of the completers. By 

creating a model that has an 80% overall correct prediction rate for both completers and 

non-completers, key insights into what it takes to be a completer in this environment 

were illuminated. 

The Most Important Predictive Variables 

In the end, the most predictive model included only six variables: the score on the 

pretest, how much time the student spent working on the first day, whether the student 

was ID verified, the student’s geographic region, the student’s age, and the student’s 

gender.  



	

	 88 

How much time a student spent working in the course on the first day was the key 

behavioral predictor of who would continue working in the course to the end. This 

supports other research focused on MOOC completion and attrition. In Learner’s 

Strategies in MOOCs, Veletsianos, Reich, & Pasquinini found that a key strategy of 

successful learners is their ability to carve out blocks of time from their busy lives to 

invest in their educational future (2016). Researchers who have surveyed students that 

drop out of MOOC courses have reported that “lack of time” is the most commonly cited 

reason by students regarding why they dropped out (Xiong et al., 2015; Khalil, 2014; 

Thille et al., 2014; Belanger & Thorton, 2013).  

The Importance of Self-Regulation in Self-Paced MOOCs 

Because self-paced MOOCs lack the structure of a course schedule with fixed 

beginning and end dates and a weekly framework to keep students on track, it was 

theorized by this researcher that self-regulation may play an even greater role in a self-

paced MOOC than in session-based MOOCs. This theory motivated the examination of 

variables in daily activity logs that could be linked to self-regulation and produce 

predictive results. 

Considering the diversity of students working in this college algebra MOOC 

combined with the structure of a self-paced course, a reasonable explanation for students 

choosing to work longer in the course on the first day is self-regulation on the part of 

these learners. When all the days in the course were taken into consideration, students 

who completed, on average, spent about twice as much time working in the course each 

day they were active over non-completers even when split by pretest quartiles (Table 4). 

Self-regulation has been closely linked with effective time management (Zimmerman, 
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2008; Winne & Hadwin, 1998). For example, in their COPES typology, Winne and 

Hadwin list time as one of the primary task conditions that must be constantly updated as 

part of the planning, metacognitive monitoring, and metacognitive evaluating that go into 

an academic studying task (Winne & Hadwin, 1998). This self-regulation can be either 

productive, with metacognitive evaluations triggering a greater investment of time and 

effort, or counter-productive as in this example of an IF-THEN statement provided by 

Winne and Hadwin:  

1. IF time and effort spent on target and 
IF judgement of learning is below standard, 
THEN attribute the negative difference to high task difficulty. 

2. IF task difficulty is high, 
THEN quit the task. 

 Either way, it appears that the amount of time a student is willing to spend on the first 

day of an online mathematics MOOC may yield insights into positive or negative self-

regulation at work within students.  

ID verification was also a strong indicator of completion that could be linked to 

self-regulation. The odds of completing the course increased by a factor of 1.24 (p < 

.001) when a student opted for ID verification (Table 13). There is reason to believe that 

this is an indication of self-regulation related to goal setting since there is no other benefit 

conveyed by ID verification than the option to either receive a certificate of completion 

or college credit at the end of the course. According to Schunk and Zimmerman, 

motivation and self-regulation are closely related, and motivation is influenced by setting 

effective goals. Because ID verification is a self-set goal that is specific to the learning 

task, it can be expected to have a positive effect on self-regulation influencing choice and 



	

	 90 

attention toward goal-relevant tasks (working problems within ALEKS), increasing 

effort, and sustaining persistence toward the goal (2012). 

The Importance of MOOCs and Teaching Mathematics at Scale 

The significance of studying signal detection of student completion on the first 

day of a college algebra course is centered on the prospect that providing early detection 

and intervention to help students is achievable. This is important for several reasons. 

Knowledge and achievement in mathematics are tied to socioeconomic status not only at 

the level of the individual but also on a global level (Jurdak, 2014). In the sample studied 

here, students working within this mathematics course came from 142 countries around 

the world, and over half the students engaged in this course during the eight month period 

studied were from outside North America (Table 2). Teaching mathematics at scale 

successfully is not only going to involve technological innovations in software and 

artificial intelligence that have been pioneered by MOOC platforms, but will also involve 

a deep understanding of what students need to bring to the course in terms of self-

regulation. Knowledge of demographic variables that can function as barriers to success 

also needs to be understood if a diverse population of students is going to be served. 

Limitations of This Study 

There are several limitations connected with this study. The first and most 

important limitation is that this is a case study of one self-paced mathematics MOOC 

offered by one university. Self-paced MOOCs is a new area of research that has not been 

thoroughly studied. Even though single MOOCs afford large samples sizes compared to 

many other types of educational research, more research on self-paced MOOCs is needed 

before results can be generalized. 
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A second limitation related to the first one is the fact that only one mathematics 

intelligent tutoring system (ITS) was used in this college algebra course. Mathematics 

ITSs are among the oldest users of artificial intelligence in education (Carnegie Mellon 

University, 2015). Although, automated mathematics instruction is constantly improving, 

the content, delivery, and quality of instruction of these systems directly affect student 

outcomes. Comparing how different ITSs work in the MOOC context of is also important 

in the progress toward generalizable results. 

A third limitation is only one statistical technique was used in the study of this 

dataset. Logistic regression has been demonstrated to be a robust approach that is 

especially helpful in handling the unbalanced samples seen in MOOCs (Lauría, Presutti, 

Guarino, & Sokoloff, 2017). However, this is only one approach and many other machine 

learning and statistical techniques have been effectively applied to MOOCs and could be 

useful in exploring this type of data. In addition, interactions were not explored in this 

study and could yield important information especially when examined in relation to the 

demographic variables and the behavioral variables. 

A fourth limitation is that only data that was readily obtainable was used in this 

study. The behavioral data was derived from daily activity logs provided by McGraw Hill 

to this researcher. Although these logs allow for examination on a day-to-day basis, the 

granularity of this data is limited. It can be assumed that clickstream data would provide 

additional insights that are not available through daily activity logs. An example of this is 

the time variable used in this study. While there is a high degree of confidence that this 

variable is fairly accurate based on its predictive power and statistical significance in the 

predictive models as well as informal focus groups that were conducted after the 
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conclusion of this study, webpage timeout issues connected to this variable serve as 

confounds that could be resolved by having access to more granular data as other 

research has shown relating clickstream and time data (Douglas & Alemanne, 2007). 

A final limitation is that this study only looked at early predictions based on data 

that was gathered on the first day the student was in the course. Predictions gathered from 

the data of students as they spend more time in the course could be even more accurate 

and could still generate early predictions. 

Directions for Future Research 

Interventions Aimed at Users Who Choose ID Verification. This research 

represents a limited view into how students work within a self-paced mathematics 

MOOC; however, the findings can be applied by researchers and practitioners seeking to 

improve student success. One of the challenges of defining “success” in the MOOC 

context is the diversity of goals and personal objectives that students bring to MOOCs 

when they begin a course. Understanding this diversity has been the subject of much of 

the research and discussion surrounding MOOCs since their inception (Clark, 2016; Ho 

et al., 2014). For example, many students enroll in MOOCs, but completion is not one of 

their reasons for participating in the first place (Koller, Ng, Do, & Chen, 2013). So, it is 

important for practitioners and researchers to understand what constitutes success in the 

eyes of the MOOC participants themselves to assist them in achieving their own goals 

and objectives.  

One of the most concrete indications of a MOOC participant’s intention to 

complete is ID verification. While most MOOCs allow students to participate for free (at 

least on a limited level), ID verification involves a monetary fee. In addition, ID 
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verification adds little if any value to the course for students who do not complete. Since 

the purpose of ID verification is to be eligible to receive a certificate of completion or 

college credit as a result of meeting all the requirements of the course, it clearly signals 

on behalf of the student a desire to finish. Targeting interventions aimed at raising 

completion rates for students who opt for ID verification not only aligns the goals of the 

student and the researcher, but it also provides a sandbox for testing interventions that 

may increase completion rates for other students who would like to finish the course but 

have not made that goal explicit by opting for ID verification. 

While students who do choose ID verification could be targeted for interventions 

in a self-paced mathematics MOOC without referring to research similar to what has 

been conducted in this study, the findings of this study provide context and targets that 

could make these interventions more successful. For example, in this sample, although ID 

verified students had a higher completion rate (16%) than the sample as whole (4%), the 

remaining 84% of students who had signaled an intention to complete the course through 

signing up for ID verification failed to achieve their goal. This research shows that 

students who complete this course on average work about twice as long on the first day as 

those who do not. Students who complete and are ID verified also work longer (2.68 

hours on the first day) compared to those who are ID verified and who do not complete 

(1.50 hours on the first day). In addition, ID verified students follow the same pattern as 

the overall sample in number of mathematics skills learned on the first day: 8.41 skills 

learned on average for completers versus 4.88 skills on average learned by non-

completers. Research into the self-regulation of ID verified completers could lead to 

successful interventions for the ID verified non-completers who began the course with 
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the intention to gain credit or a certificate of completion and help these students to meet 

the goals they have set for themselves.  

While the emphasis of this research has been examining the accuracies of the 

models developed, even the inaccuracies of the models can shed light on ways to increase 

student success. For example, false positives in the model reflect students who are 

behaving like completers on the first day but fail to complete the course. This may be 

another subpopulation in addition to students who have opted for ID verification that may 

be subjects of further productive research into self-regulation (especially persistence) and 

possible intervention. 

 Deeper Research into Self-Regulation. While MOOC user behaviors such as 

time spent working in the course or ID verification seem to point to self-regulation—

especially in a course that is self-paced—the types of self-regulation that are going on to 

allow these students to complete the course are not clear from purely computer generated 

data. Investigation into what self-regulation strategies completers are using to be 

successful in the course has the potential of being a productive area of research that could 

directly benefit other students who are seeking to complete this type of course but are 

unsuccessful because they lack the self-regulation of the completers. Qualitative research 

in this area could be especially useful in terms of interviews, focus groups, or surveys 

that have the potential of uncovering the internal self-regulation that make students 

successful when they are working in an online environment without much of the 

scaffolding that is offered in a face-to-face college or university environment. Other 

characteristics of students could also be investigated that are closely aligned with self-

regulation such as grit and motivation. 
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Stereotype and Social-Identity Threat. This study could also provide a 

blueprint for investigations into interventions focused on demographic sub-populations in 

the course. This study shows that in this self-paced mathematics MOOC, age, gender, and 

country of origin are more predictive of completion than educational background. 

Research and interventions aimed at addressing various types of stereotype threat or 

social-identity threat may be effective in increasing success for students who are being 

held back by a conscious or sub-conscious sense of lack of welcome or self-confidence.   

In the second set logistic regression models, the addition of demographic 

information increased the number of correct predictions by 11%. Although predictions in 

self-paced MOOCs like this one have not been well researched, the importance of 

demographics in influencing course completion in session-based MOOCs has been 

examined by René F. Kizilcec at Stanford University (2015). The results of the logistic 

models used in this research show that demographics can play a significant role in self-

paced MOOCs as well. In recent research by Kizilcec, his team is showing that targeting 

sub-populations in MOOCs for intervention can increase completion rate for those whose 

success in MOOCs is threatened by various types of social-identity threat (Kizilcec, 

Saltarelli, Reich, & Cohen, 2017). 

Female users of the course could also benefit from research into interventions. 

Although they complete at much lower rates than male students (see Figure 6) their 

behavior in course does not predict non-completion as demonstrated in all the logistical 

regressions where gender was not statistically significant as predictor in the models 

(Table 13). This could point to other factors in play. Stereotype threat among females in 

mathematics courses is well established in research (e.g. Inzlicht & Ben-Zeev, 2000) and 
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effective interventions have been implemented to combat stereotype threat (Martens, 

Johns, Greenberg, & Schimel, 2006). Further research into whether these strategies could 

be employed at scale in a self-paced mathematics MOOC could result in widespread 

benefits to females who struggle in math. 

Fixed Versus Growth Mindset. One demographic variable that was not 

predictive of completion in this self-paced mathematics MOOC was educational 

background (Figure 8). In fact, the distribution of the highest level of education 

completed was similar between completers and non-completers. Slightly less than a third 

of both completers (29%) and non-completers (27%) received a high school diploma or 

less as their highest formal educational achievement. That this is true of completers 

seems especially significant, as only 4% of everyone to finished the pretest of this self-

paced college algebra course went on to complete it. What is positive about this insight is 

that general educational knowledge in this case does not predict how well a student can 

do in this course. Sal Kahn, who was part of the inspiration of the first xMOOCs that 

eventually became Coursera has been very active in promoting the research of Carol 

Dweck of Stanford University on “growth mindset” (Khan Academy, 2014). This 

research combines neurobiological research into the ability of the brain to adapt to new 

challenges and create new connections at the neural level with the importance of 

encouraging self-regulatory strategies in students rather than emphasizing innate abilities 

(Myers, Wang, Black, Bugescu, & Hoeft, 2016). Sal Khan and Carol Dweck have 

pioneered research into messaging at scale that can encourage growth mindset in students 

who use Khan Academy. Research into whether these messaging strategies work in 
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mathematics MOOC environments similar to the one used in this study could increase the 

generalizability of this research.  

 On the first day that students start working in a self-paced mathematics college 

algebra MOOC, self-regulatory strategies and demographic conditions are already in play 

to such a significant degree that it is possible to predict with just first day data who will 

complete and who will not complete the course with 80% accuracy. However, this does 

not mean that this research must result in a deterministic attitude toward students. Rather 

knowing the factors that are the most important elements of this prediction, how a student 

performed on the pretest, whether the student chose ID verification, the time spent by the 

student working in the course on the first day, the number of math skills completed on the 

first day, the age of the student, the gender of the student and the geographical location of 

the student in the world can help us better understand what can be done to improve 

mathematics instruction at scale and bring the benefits of mathematics education to an 

increasingly larger audience. 
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