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ABSTRACT 

Organic optoelectronics include a class of devices synthesized from carbon 

containing ‘small molecule’ thin films without long range order crystalline or polymer 

structure.  Novel properties such as low modulus and flexibility as well as excellent device 

performance such as photon emission approaching 100% internal quantum efficiency have 

accelerated research in this area substantially.  While optoelectronic organic light emitting 

devices have already realized commercial application, challenges to obtain extended 

lifetime for the high energy visible spectrum and the ability to reproduce natural white light 

with a simple architecture have limited the value of this technology for some display and 

lighting applications.  In this research, novel materials discovered from a systematic 

analysis of empirical device data are shown to produce high quality white light through 

combination of monomer and excimer emission from a single molecule: platinum(II) 

bis(methyl-imidazolyl)toluene chloride (Pt-17).  Illumination quality achieved 

Commission Internationale de L’Éclairage (CIE) chromaticity coordinates (x = 0.31, y = 

0.38) and color rendering index (CRI) > 75.  Further optimization of a device containing 

Pt-17 resulted in a maximum forward viewing power efficiency of 37.8 lm/W on a plain 

glass substrate.  In addition, accelerated aging tests suggest high energy blue emission from 

a halogen-free cyclometalated platinum complex could demonstrate degradation rates 

comparable to known stable emitters.  Finally, a buckling based metrology is applied to 

characterize the mechanical properties of small molecule organic thin films towards 

understanding the deposition kinetics responsible for an elastic modulus that is both 

temperature and thickness dependent.  These results could contribute to the viability of 

organic electronic technology in potentially flexible display and lighting applications.  The 
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results also provide insight to organic film growth kinetics responsible for optical, 

mechanical, and water uptake properties relevant to engineering the next generation of 

optoelectronic devices. 
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CHAPTER 1  

INTRODUCTION 

1.1 Motivation 

Organic electronics have continued to develop scientific and commercial interests 

based on a rich array of potentially useful electronic and optical characteristics.  As early 

as the 1952 novel properties including, relatively high conductivity,1 photoluminescence 

(PL),2 electroluminescence (EL),3 and the photovoltaic effect (PV)4 have all been 

properties of interest for applications to organic photovoltaics (OPV) and organic light 

emitting devices (OLEDs).  Although renewable energy has become insistently popular in 

recent years, it is OLED rather than OPV technology that has currently reached a state of 

technical maturity that enables it to reach the marketplace.5  Numerous products including 

full color large format displays,6 high resolution mobile devices, and paradigm shifting 

OLED lighting7 are already available to the consumer.  Selected examples are shown in 

Figure 1. 

     [a]     [b] 

Figure 1.  [a] Samsung Galaxy S7 with 2560 x 1440 curved AMOLED display.8  [b] 

General Electric lighting concepts enabled by white OLED technology.7 
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Organics, as compared to their inorganic analogs, have the potential to be easily 

processed without the need for high vacuum, ultra clean, and high temperature 

environments.  This class of materials is inherently soft (modulus of elasticity ~ 1GPa), 

very adhesive, and very conformal at low thicknesses (organic device stack ~ 100nm).  

Flexible technology as well as novel processing methods can exploit these properties.  

Solution based processing, roll-to-roll processing, and even inkjet printing methods have 

all been proposed as feasible routes to manufacture organic electronics.9  Figure 2 from 3M 

Corporation shows an example of a flexible electronics manufacturing line.  In addition, 

organic vapor phase deposition (OVPD) and other more traditional fabrication techniques 

have been employed and developed to support a growing consumer interest in organic 

electronics. 

d  

Figure 2.  Photograph from 3M Corporation showing roll-to-roll processing to enable 

high volume and low cost manufacturing techniques for flexible electronics.10 
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OLED technology has gathered specific and recent attention as a useful technology 

for display and lighting applications.5  Initial technology has evolved from extremely 

inefficient devices with high turn-on voltages, low stability, and nondescript color 

targets.11,12  In the last twenty years, published successes have shown that internal quantum 

efficiencies (IQE) approaching 100% and external quantum efficiency (EQE) of over 

20%13 have been achieved (approaching the theoretical EQE limit of ~22% on glass 

substrates).14  As an extremely attractive characteristic for growing mobile markets, OLED 

devices are now also regularly discussed with turn-on voltages below 3 volts.15  Color 

tuning to hit broad or narrow emission spectral targets has ample latitude for development 

due to the freedom of molecular design.  Many classes of molecules have been red shifted, 

blue shifted, and even made to emit over the entire visual spectrum with small adjustments 

to their chemical structure.16  Degradation mechanisms remain a poorly understood 

segment of the field as it has been shown that undetectably small number of degraded 

molecules can significantly taint performance.17,18  Still, operational lifetimes exceeding 

35,000 hours have been reported on numerous accounts in the last several years.  The future 

for OLED and organic optoelectronic technology is promising as rapid advances in the 

understanding and performance of organic electronics are being achieved.19 

1.2 Molecular States in OLED 

Transport phenomena in organic semiconductor devices are fundamentally 

different than inorganic semiconductors.  Some mechanistic parallels to traditional 

inorganic materials exist; however, organics are markedly unique in many ways.  In both 

of organic and inorganic devices, a thorough understanding of charge and energy transport 

through an operational device is required to draw conclusions from macroscopic 
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performance metrics.  In this way, the relationships between optical power, current, and 

voltage can be correlated to material properties and device architecture variables towards 

improving particular materials or structures.  For example, a device with an undesirable 

low power efficiency because of a relatively high resistance has electrical characteristics 

that result from the bulk and interface properties of all layers of the device stack.  Models 

can then be formulated and fit to observed phenomena towards understanding and 

improving device performance through application of novel materials or architecture 

optimization. In the example of a high resistance device, the mobility of individual films 

as well as the relative energy of charge carriers through the device layers would be useful 

to predict methods to increase current at lower voltages.  To begin discussion on the 

mechanics of organic semiconductors, one can consider that an operating optoelectronic 

device will contain several molecular species as shown in Figure 3.  This figure also 

demonstrates electronic states of interest where the neutral molecule has its highest 

occupied molecular orbital (HOMO) energy level below the energy gap.  The lowest 

unoccupied molecular orbital (LUMO) is just above the energy gap. 
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Figure 3. Schematic presentation of neutral molecules, hole, electron, and excitons of 

organic semiconductors. 

 

In 1987 Tang and Vanslyk inspired a revolution in organic electronics research with 

the first thin film OLED.20  This was a simple single heterojunction device that made use 

of Tris-(8-hydroxyquinoline)aluminum (Alq3) as both an emitter and electron transporting 

layer as shown in figure 4.  N,N′-Di-[(1-naphthyl)-N,N′-diphenyl]-1,1′-biphenyl)-4,4′-

diamine (NPD) acts as the hole transport material from the anode to emissive region with 

a transparent anode being constructed from indium tin oxide (ITO) opposite of an 

Aluminum metallic cathode.  The device emits a green light as a result of radiative decay 

of excited state Alq3 molecules. 
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[a] [b]  

Figure 4.  [a] Energy diagram (w.r.t. vacuum) for NPD/Alq3 devices [b] chemical 

structures of Alq3 and NPD 21 

 

The operation of an NPD/Alq3 device can be separated into component steps shown in 

Figure 5.  Contemporary small molecule OLEDs may have substantially more complicated 

structure as compared to the NPD/Alq3 example, but at a high level the principles of 

operation remain the same.  Following an electron from the Al cathode towards the organic 

interface, we see that an energy barrier exists for injection into the lowest unoccupied 

molecular orbital from the Fermi level of the metal cathode.  Note that low work function 

cathodes are ideal to minimize this barrier and metals such as Al and Mg/Ag are chosen 

based on their low work functions simultaneous with relatively good electrochemical 

stability.  Similarly, holes are most readily injected into the organic layer by a high work 

function anode that is commonly constructed from ITO because of its transparency in the 

visible spectrum.  The details of the injection process and materials parameters for 

functional layers including the cathode will be discussed in more detail in later sections.  

Continuing with the path of an electron after injection into the LUMO, the charge is driven 
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away from the metal cathode in response (primarily) to the applied electric field as shown 

in Figure 5b. 

 

 

Figure 5. Steps to electroluminescence in OLED [a] charge injection by oxidation and 

reduction of molecules at the anode and cathode [b] charge transport by 'hoping' 

mechanisms [c] carrier recombination in the emission region [d] Emission from radiative 

decay processes. 
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At the Anode, electrons are accepted from oxidized molecules near the organic interface.  

This is schematically represented by positive “hole” charge carriers being injected from 

the anode into the organic layers.  Similarly, these carriers hop along the HOMO energy 

level towards the metal cathode also primarily motivated by an applied electric field.  The 

relative positive and negative carrier concentration as a function of distance from the 

cathode is critical for effective device operation and will also be discussed in later sections.  

Ideally, no single carrier current conduction exists.  That is, electrons never reach the anode 

and holes never reach the cathode where they would be quickly and nonradiatively 

quenched to the respective Fermi level.  It is preferred in a high efficiency device for 

electron and hole recombination to generate excited state molecules (excitons) that can 

have a high probability to decay radiatively with photons emitted.  Thus, a mechanism to 

luminesce at characteristic energies due to applied electric power using organic materials 

can be realized. 

1.3 Charge Injection and Transport 

Injection of charge carriers into organic layers occurs as individual molecules are 

oxidized or reduced.  It is at this interface that the delocalized carriers from the cathode or 

anode become localized to a specific molecule.  It is of particular interest to observe that 

Aluminum is a common and successful cathode material even though the energy diagram 

shows a ~1eV injection barrier from the Fermi energy of Al to the LUMO of Alq3.  In 

practice, this interface can be made Ohmic because of defect states formed at the interface.  

Defects occur as a result of damage from high kinetic energy inorganic materials that are 

deposited on organic layers to form the cathode structure barrier.  Defect concentration can 

be further enhanced by adding LiF, CsF, or similar compounds to create additional defect 
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states.22  Figure 6 provides a schematic of this phenomenon where carriers can bypass the 

injection barrier by making use of lower energy defect states to generate charge carriers in 

the organic transport layers. 

 

  

Figure 6.  Representation of charge injection across the metal/organic interface showing 

that defect states in the organic material mitigate the injection barrier.  

 

Amorphous deposited small molecule films are weakly bonded by intermolecular 

interactions such as Van Der Waals forces.  This means that energy bands do not form in 

the same way that they do in the case of inorganic semiconductors.23  Instead, cation and 

anion radicals (that act as holes and electrons) exist within close proximity to other 

molecules with similar energy levels such that molecule-to-molecule transport is enabled.  

Figure 7 shows [a] charge carriers sequentially transferred from the anion radical of a 

molecule to a neutral molecule through the LUMO for electron transport and [b] electrons 
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sequentially transferred from a neutral molecule to a neighboring cation radical through 

the HOMO for hole transport. 

 

      

Figure 7.  Schematic illustration of the [a] electron transporting process and [b] hole 

transporting processes. 

 

A study of molecular crystals with long range order has reported mobility values in the 

range of 10-2 to 1 cm2V-1s-1.24  Small molecule vapor deposited thin films have mobility 

that is orders of magnitude lower.  This reinforces that an amorphous or short range ordered 

structure is not ideal for the close contact required for hopping mechanisms as well as other 

transport phenomena related to the film structure.25  Amorphous structures are chosen for 

OLEDs because of homogeneous and conformal film properties even though they suffer 

lower mobility.  The mobility of glassy films is field dependent, and generally greatly 

reduced from crystalline forms; however, device morphology mandates that thin, 

conformal, and predictable films that cannot be highly crystalline are used for device 

applications.  In contrast to the high mobility observed in crystalline organics, amorphous 

films are almost always selected for organic optoelectronic applications. 

Numerous interactions contribute to the observed electrical behavior in organic 

semiconductors and more than one charge transport model can be proposed.  All models 

adhere to the fundamental microscopic “hopping” mechanism previously described; 

[a] [b] 
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however, models differ to explain observed behavior that can be unique to particular 

circumstances or materials systems with unique microscopic transport phenomena.  

Models for transport mechanisms can then be compared to empirical current density vs. 

voltage (J-V)22 with the goodness of fit providing one measure of the validity of a proposed 

transport mechanism.  Comparison between macroscopic carrier transport observations and 

adequate transport models then becomes a useful strategy to elucidate the nature of 

microscopic behavior in very complex systems.  Many authors agree that contemporary 

OLED devices are well described by space charge limited current (SCLC) transport model 

and that the J-V response predicted by this theory could represent a theoretical maximum 

for organic optoelectronic carrier mobility.22  Figure 8 depicts the effective electromotive 

force (EMF) as experienced by a single molecule charge carrier (either positive or negative 

net charge).  In Figure 8a the charge carrier will ‘hop’ in response to the applied EMF from 

biasing the device, but Figure 8b shows how an increased carrier density can lead to charge 

build-up.  The repulsive force due to close proximity of carriers with like charges 

aggregates to oppose the applied EMF.  The effective EMF as the primary motivation to 

make it energetically favorable for a carrier to ‘hop’ is then reduced in comparison to the 

applied EMF as a function of carrier density. 
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Figure 8. Schematic diagram of thin film charge transport where red molecules represent 

charge carriers for [a] low current density where the applied EMF equals the effective 

EMF and [b] high current density where charge buildup contributes to the EMF of 

individual charge carriers. 

 

The SCLC model can be constructed from a few theories that are grounded by the Mott-

Gurney law which has successfully modeled transport in common materials like Alq3 with 

a current voltage relationship shown in equation 1.26    

   𝐽 =
9

8
𝜀𝑜𝜀𝜇

𝑉2

𝑑2
       (1) 

For most cases, the field strength dependence of mobility cannot be ignored so that a 

correction needs to be made to account for lower observed current.  A few models have 

been proposed to explain the temperature and electric-field dependencies of charge carrier 

drift mobility observed in organic disordered systems, which include the Poole-Frenkel 

model, small-polaron model, and disorder formalism.23,27  The Poole-Frenkel equation can 

be applied to model the field dependence on mobility according to: 

  𝜇(𝐸) = 𝜇𝑜exp⁡(𝛽√𝐸)      (2) 
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Then for cases when the injection interface behaves as Ohmic, it is possible to approximate 

current as SCLC as shown in equation 3.  This expression is based on a combination of the 

models from equations 1 and 2:28 

  𝐽𝑠𝑐𝑙𝑐 =
9

8
𝜀𝑜𝜀𝜇𝑜exp(0.89𝛽√

𝑉

𝑑
)
𝑉2

𝑑2
    (3) 

Successful application of SCLC relationship requires that carrier injection is not a limiting 

component of conduction.  In many cases it is inappropriate to assume Ohmic behavior at 

the metal organic interface such that carrier injection is in fact a limiting process.  If the 

conductivity of a device is constrained by carrier injection, injection limited current (ILC) 

characteristics are observed and a different J-V relationship shown in equation 4 is 

obtained:29 

  𝐽𝐼𝐿𝐶 = 4𝑁𝑜𝜓
2𝑒𝜇𝐸𝑒𝑥𝑝 (

−𝑒𝜙𝐵

𝑘𝐵𝑇
) 𝑒𝑥𝑝 (𝑓

1

2)   (4) 

The energy barrier at the organic/electrode contact is analogous to a Schottky barrier 

commonly evaluated in inorganic semiconductor interfaces.30  

The mechanisms introduced to model current flow in OLEDs are interesting from 

a theoretical standpoint; however, the predicted current voltage response from these models 

is often obscured by interrelated effects.  In practice, OLEDs at operational brightness 

should observe current densities in excess of 3mA/cm2.  Mobility within an amorphous 

film and especially at higher current densities observed during operation is relatively low 

(10-5 to 10-3 cm2 V-1 s-1).23  For most contemporary device structures there is ample 

injection into the organic layers.  This results in a surplus of carriers being added into 

relatively electrically insulating materials so that charge builds up within the organic layer.  

Thus, it is a field dependent carrier mobility described by SCLC and less commonly by 
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ILC that successfully models performance in many contemporary devices with 

significantly different results than those predicted by Mott-Gurney law. 

Another contribution to the resulting carrier mobility seen in recent real devices 

results from trap states that exist within the energy gap located between the HOMO and 

LUMO states.  Trapped charge limited current (TCLC) models have been successful to 

explain the J-V curves of many common types of OLEDs.31  A schematic representation 

of the trap states involved with charge transport is shown in Figure 9.  At room temperature, 

these traps can provide energy states within proximity of the HOMO and LUMO so that 

chemical hole-traps and electron-traps are created.24 

 

  

Figure 9.  An adapted schematic for TCLC defect states in organic semiconductors.24 

 

The exact nature, energy, and description of the traps is highly dependent on the materials 

system being considered; however, two primary mechanisms will be presented here as 
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examples.  First, the geometry of carrier molecules is different between ground and excited 

state molecules.  A physical relaxation from ground state into carrier state geometry when 

a molecule is ionized lowers the effective energy of the LUMO by the amount equal to the 

compliance energy.  A rigid molecule and film structure might have higher mobility due to 

shallower traps associated with low compliance energy.  Additionally, this idea predicts 

some thermal influences on mobility because carriers will interact with phonons in the 

lattice differently depending on whether they are neutral or charged.  A second reason to 

motivate the existence of shallow traps stems from the similarity in energies for several 

common defect types found in addition to packing imperfections within an amorphous film.  

Defects of similar energy might include molecular isomers, irregular morphology, or 

compositional defects.  The similarity in energy for a variety of circumstances is a result 

of the weak intermolecular interactions in loosely bonded solids without long range order.32  

The conduction mechanism for the organic film does not differ greatly from the conduction 

into or out of many common types of defects.  There is, however, a difference in conduction 

in the presence of defects due to a thermal activation energy required to release a trapped 

carrier.  The time required for a trapped state to be filled and evacuated contributes directly 

to the carrier mobility.  Decreased temperature should correlate exponentially with 

detrapping rates so that conductivity related to TCLC should suffer a similar reduction 

dependent on temperature.24,33  Effects from TCLC can be significant with low ppm levels 

of impurities leading to orders of magnitude change in mobility.34   

Charge transport models for space charge limited current (SCLC) and trapped 

charge limited current (TCLC) are proposed as good representation of contemporary 

optoelectronic devices with current density in a range that is relevant to light emitting 
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devices.  Other models do exist to explain less common or poorly understood charge 

transport behavior in organic electronics;35,36 however, for devices with adequate cathode 

materials (not injection limited current) SCLC and TCLC remain the most widely accepted.  

Devices behavior as an aggregate of numerous transport models can be reviewed carefully 

so that the shape or particular features of an observed J-V curve can be assigned to the 

performance of particular material layers and/or transport mechanisms. 

1.4 Energy Transfer and Decay Processes 

Molecules that are radical cation ‘hole’ and radical anion ‘electron’ charge carriers 

existing within suitable proximity can combine to form excited state molecules as shown 

in Figure 10.  Excitons in organic materials are localized to particular molecules in the 

same manner as charge carriers.  In special cases, excitons can also be localized within 

small groups of molecules to form exciplexes that will be discussed in a later section for 

potential application to white OLEDs.  It is notable that electroluminescent devices are not 

spin correlated.  Figure 10 depicts the uncertainty of electrically generated charge carriers 

with the double ended arrows for both of electron and hole carriers.  The random 

distribution of available charge carrier symmetry means that one-of-four (only 25%) of 

electroluminescent recombination will result in an excited state molecule with asymmetric 

spin symmetry.  
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Figure 10. Schematic illustration of formations of electrically generated excitons.  

Random generation of excitons will result in ~25% spin-symmetric singlet excitons and 

75% spin-asymmetric triplet excitons. 

 

One mechanism to reduce an excited molecule to its preferred ground state can be through 

radiative decay and emission of a photon.  The energy of the photon is determined by the 

energy of transition from excited state to ground state and thus tuning this energy gap 

enables higher or lower will either blue or red shift the emission spectrum of a device.  

Other non-radiative decay mechanisms exist and lead to the generation of heat.  Methods 

to mitigate the amount of energy lost to non-radiative mechanisms are also important to 

maintain high efficiency and potentially stable device structures. 

Two models can be applied to the transfer of charge neutral energy.  These include 

Dexter and Förester energy transfer mechanisms.  Dexter energy transfer mechanism 

shown in Figure 11 occurs as a straightforward hoping of an exciton from one molecule to 

an adjacent one.  The activation energy required for the hop can be applied thermally or as 

the result of interaction with surrounding materials.  Some models predict distortions in the 

film associated with exciton formation that can interact with lattice vibrations and 

thermally diffuse excitons.  Electron transfer does enable both singlet excitons (S1) and 
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triplet excitons (T1) to be transferred.  The interaction is short range (approximately 1nm) 

reinforcing the semi-classical description where close proximity between molecules is 

necessary for electron distributions to significantly overlap and transfer the excited state 

electrons.  

 

  

Figure 11. Dexter Energy Transfer.  Representation of short range energy transfer from a 

donor molecule to an acceptor molecule. 

 

Förster energy transfer shown in Figure 12 makes use of dipole-dipole coupling for non-

radiative energy transfer over long range (up to 10nm) unlike the Dexter mechanism that 

requires nearly direct molecule-to-molecule contact.  Also unlike the Dexter mechanism, 

electrons are conserved by the molecule that they were originally associated with in the 

Förster Method.  Förster events can only transfer S1 (spin symmetric) excitons as the 

electron pair for the recombined exciton donor must not violate exclusion principles.37    
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Figure 12. Förster Energy Transfer.  Representation of long range energy transfer from a 

donor molecule located in the host matrix to an acceptor phosphor emitter doped in the 

emissive layer (EML) 

 

In Förster transfer, it is not possible (as in the Dexter mechanism) for selective electron 

transfer at the HOMO level to satisfy spin requirements for T1 transfer.37   Both energy 

transfer mechanisms have an important role in to enable nearly 100% of emission from 

molecular species with as little as 1% mass fraction distributed through the emissive layer 

(EML) in phosphorescent OLEDs.  

Photoluminescence and electroluminescence processes differ in terms of the type 

of exciton and spatial correlation to symmetry that can be formed.  Photo generated 

excitons originate from a single molecule that becomes excited by an incident photon and 

therefore have correlated electron spin orientations between electrons in the HOMO and 

LUMO state.  In contrast electroluminescent devices inject carriers from independent 

anodes and cathodes and do not observe spin correlation upon recombination of electron-

hole pairs.  The resulting uncorrelated carrier recombination will incur an equal number of 
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each of the four possible exciton species.  25% will be singlet excitons and 75% will be 

triplets excitons that would require forbidden transition in order to enable decay.  Triplet 

excitons have extended lifetimes because decay is forbidden by the exclusion principle and 

decay through other non-radiative mechanisms becomes a dominate path.38 

Phosphorescence emitters are unique because of their ability to achieve 100% 

internal quantum efficiency (IQE) in for electroluminescent devices containing both singlet 

and triplet exciton states.13  Molecules designed for phosphorescence emission may have a 

heavy metal atom with significant spin-orbit-coupling that can contribute the angular 

momentum required for electron spin flip.  Figure 13 provides a schematic representation 

of thethe relative excited state energies as well as the intersystem crossing (ISC) 

mechanism that enables a path to radiative decay through the triplet states that would 

otherwise (without phosphorescence) be forbidden due to exclusion principles.39    

 

 

Figure 13. Relative energies and transfer processes including intersystem crossing (ISC) 

for fluorescence and phosphorescence radiative decay paths40 
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Emitters such as green Ir(ppy)3 fundamentally changed the device emission efficiency 

achievable by organic optoelectronic light emitters.  Addition of the iridium atom positions 

electrons populated in asymmetric orbitals in proximity to unstable excitons.  Intersystem 

crossing (ISC) then describes the contribution of momentum from iridium to assimilated 

excitons so that singlet states will rapidly decay to triplet states.   ISC and spin-flip 

mechanisms enable contribute to a radiative decay mechanism for both of singlet and triplet 

excitons41 and it has been observed that electroluminescent phosphorescence emission can 

occur approaching 100% IQE.  High efficiency OLEDs making use of phosphorescent 

molecules will be well suited to portable display technology that can be exceptionally thin, 

potentially flexible, and exceptionally energy efficient.  High quantum efficiency in 

addition to low turn-on voltages also positions OLED white lighting panels to be among 

the most efficient and innovative devices on the market. 

1.5 Structure and Function of OLED 

Device design targets three primary device level objectives that are not specifically 

dependent on the properties of the individual materials selected.42  An appropriately 

designed OLED will maintain all of: efficient charge injection from the electrodes for lower 

driving voltages, good hole/electron ratio for charge balance, and confinement of excitons 

within the EML for maximum probability of radiative recombination.  Many OLED 

materials can serve a number of functions.  In a simple bi-layer device using Alq3 and NPD, 

only a single layer of Alq3 
20 performs the functions of all five (electron injection, electron 

transport, emissive host, emissive dopant, and hole blocking) materials that are used in 

more contemporary device structures.  There exists the opportunity to independently 
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optimize the properties of each material based on the function it needs to perform; however, 

additional layers and interfaces also add complexity to device operation and performance.   

Several device structures were investigated for use as a basis to begin testing of the 

novel emissive layers (EML) formed as a codeposited combination of host material and 

dopant molecules.  Many literature reports exist with some commonality in device design 

with a characteristic example shown.  Analysis of the function of each layer as well as 

empirical optimization lead to a baseline device structure shown in in Figure 14 that is 

suitable to evaluate novel emitting materials and adjusted optoelectronic architectures. 

 

Figure 14. General scheme for a baseline phosphorescence OLED structure.  The EML 

consists of a host matrix doped with emitter molecules. 

 

OLED materials for use in thin film devices are typically fabricated to result in an 

amorphous structure with any relevant grain structure being small as compared to the film 
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thickness.43-45  That is, a 40nm thick film should have grains much smaller than 40nm so 

that films can be largely isotropic and continuous.  Each material layer has a particular 

structure and function that leads to desired device performance. 

Anode:  Indium Tin Oxide is a widely used for the anode materials.   Indium-tin oxide 

(ITO) has excellent electrical conductivity, high transparency (~90%) and good chemical 

stability in the visible light region.46,47  A number of materials have been studied as 

replacements for ITO and many treatments of these materials have been investigated with 

some prospect.48,49  Still, ITO is very extensively used for device fabrication as it is 

deposited after solvent and UVO cleaning treatments. 

Hole Transporting Layer (HTL):  Holes are transported by radical cation hoping from 

molecules at the anode towards molecules near the EML.  HTL materials must be 

electrically stable during repeated oxidation processes and readily donate electrons to 

facilitate hole injection from the anode.43  Also, in the case that the HTL contacts the EML, 

it would be beneficial for it to be energetically unfavorable to create electron carriers in the 

HTL to improve confinement of electrons and excitons within the EML where they are 

there is an ideal path for radiative decay.50 

 

           

Figure 15. Chemical structures of selected hole transport layer HTL materials.21 
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Electron Blocking Layer (EBL):  The EBL prevents electrons from escaping into the anode; 

however, most devices are naturally ‘hole heavy’ because of the typically lower electron 

mobility as compared to hole mobility in organic semiconductors.  Another observed 

function of the EBL is to prevent exciplexes at the HTL/EML interface.  It has been 

observed that adding as little as 3nm of TCTA (EBL) between the HTL and EML 

significantly changed the observed EL spectrum to suggest significantly reduction in NPD 

(HTL) and exciplex emission.51 

Emissive Layer (EML):  Most phosphorescent molecules would be very inefficient emitters 

if deposited as pure layers because of severe concentration quenching.42,52,41  Thus, the 

emissive layer for phosphorescent devices typically consists of a dopant molecule 

contained by a host matrix material commonly fabricated from materials like those in 

Figure 16. Successful integration of a two materials matrix requires efficient energy 

transfer from host to dopant while minimizing non-radiative decay mechanisms.  Efficient 

energy transfer can be accomplished by enabling Förster, Dexter, or direct exciton transfer 

to the dopant molecule.  Limiting non-radiative mechanisms occurs by proper energy band 

alignment at the EML interfaces, exciton confinement, and large d-d band splitting within 

the dopant molecule.39 
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Figure 16. Chemical structures of selected host materials used in the emissive layer 

(EML).21 

 

Electron Transporting Layer (ETL):  This layer is responsible for radical anion hoping that 

results in electron carrier transport from the cathode towards desired recombination centers 

at the emissive portion of the device.  The electron affinity of the ETL should be similar to 

the work function of the cathode to eliminate significant barriers to injection.53  Injection 

from metal anode into the ETL has also been demonstrated to be highly dependent on 

defect states present at the metal-to-organic interface.29,30,54  ETL materials shown in Figure 

17 typically have lower charge carrier mobility than HTL materials making them the 

limiting component in high current devices that aim to maintain charge balance.  Thus, the 

conductivity of a balanced device is often limited by the mobility of the ETL making this 

a contemporary area of interest for researchers.39 
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Figure 17. Chemical structures of selected ETL materials21 

 

Metal Cathode:  The cathode must make good electrical contact with the device and 

provide macroscopic contacts to the outside world.  A material with low work function that 

will readily give up electrons will increase the rate of carrier injection into the ETL.  

Codeposited alloys like Mg/Ag can be used to construct the cathode.  Aluminum is widely 

used and tends to minimize damage to underlying organic layers during physical vapor 

deposition (PVD) processes as compared to other metals because of its lower atomic weight 

and relatively low melting point.  A small amount of Lithium Fluoride (LiF) can also be 

added to the metal organic interface to increase the number of defect states in the organic 

with energy appropriate for fast electron injection.55 

1.6 Thin Film Mechanical Characterization using Buckling 

Traditional mechanical characterization techniques have had limited application to 

organic electronic materials characterization.  The first challenge facing traditional 

stress/strain and related test methods is the impracticality of bulk testing methods due to 

limited quantities and very high cost of organic electronic materials.  Even if sufficient 

quantities of bulk material could be acquired, traditional load cells, strain gauges, and 

associated mechanical testing equipment are not easily applied to the bulk form of organic 

electronic materials as large crystals of OLED materials could be prohibitively difficult to 
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fabricate.  Most suppliers and the results of common synthesis and purification techniques 

result in powders or small flakes.  The second major challenge facing relevant mechanical 

measurements of organic electronic devices is due to difference in the behavior of thin film 

structures at confined length scale that does not correlate well with bulk behavior.  It has 

been shown that the growth kinetics and resulting materials structure are dependent on film 

thickness.  These surface effects could suggest that mechanical testing simply scaled from 

macroscopic observations to predict the behavior of submicron films could have very large 

error and another characterization technique that could be applied to the confined scale 

relevant to thin film organic electronics is needed. 

When a stiff material is placed in homogeneous plane compression it can become 

energetically favorable for the material to bend instead of observing the lateral compliance 

required by the substrate deformation.  Figure 18 shows two conditions where changing 

the geometry of the system can reduce the strain energy associated with plane compressive 

displacements.  

 

 

Figure 18.  Deformation mechanisms observed for rigid thin film for [a] delamination and 

[b] wrinkling 
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Here the relatively large amount of energy required to strain the stiff material is avoided 

by realizing much smaller strains at the surface of the thin film.  This phenomena 

commonly labeled bending or buckling is observed frequently for thin rigid materials.  An 

everyday example of buckling can be observed in nature when the volume of a fruit 

changes.  Figure 19 shows that it is energetically favorable for the stiff thin walls of grape 

to deform by buckling in response to compression in plane with the skin of the grape. 

  

Figure 19. A shriveled grape skin demonstrates the response of the more rigid skin to a 

compressive strain as the volume of the fruit decreases.  It becomes energetically 

favorable to wrinkle the skin in the case that delamination from the more compliant pulp 

does not occur. 

  

In 2004 the Nature Publishing Group released an article by Stafford et al. that 

demonstrated carefully controlled buckling conditions in addition to carefully quantifying 

the resulting minimum energy configuration can successfully determine mechanical 

properties of an unknown thin film polymer material.56  This method coined strain-induced 

elastic buckling instability for mechanical measurements (SIEBIMM) will be applied to 
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study the mechanical properties of thin films that are relevant to small molecule organic 

optoelectronic devices and it will become evident that SIEBIMM wrinkling can be applied 

to measure the mechanical properties of thin films used in organic electronic devices.   

1.6.1 Single Layer Film Method 

SIEBIMM wrinkling can be used to determine the modulus of thin films.  

Indentation, surface acoustic wave spectroscopy, Brillouin light scattering, and other 

traditional methods that can also be used to characterize mechanical properties are limited 

when attempting to characterize ultrathin organic materials due to the soft characteristic of 

these glassy films leading to substrate interferences especially for films below 50nm 

thicknesses.56  The wrinkling is induced by the minimization of the total strain energy in a 

system composed of a pre-strained and relatively soft substrate adjacent to the thin film of 

interest.  Upon release of the pre-strained substrate the adjacent film of interest will either 

undergo periodic buckling or delamination in order to minimize compressive strain energy 

that would otherwise dominate the system.57,58  The buckling mechanism that dominates 

will be determined by the substrate modulus and the energy required to delaminate the film.  

Films on very rigid substrates and/or with poor adhesion will delaminate while films on 

compliant substrates (Es << Ef) and/or with very good adhesion will buckle without 

delamination.58  As a condition to apply a buckling based metrology to the measurement 

of thin films, the pre-strain () of the substrate needs to be greater than a critical strain (c) 

dependent on the ratio of the plane strain moduli of the substrate to the plane strain moduli 

of the film, Ēs/Ēf, as shown in Equation 5.   
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The negative sign in equation 1 denotes compression.  A reduced modulus, Ē, that is related 

to Young’s elastic modulus, E, is defined as Ē = E/(1-n2) to simplify equations.  The 

amount of strain applied will be discussed in detail in subsequent experimental sections 

and will always be greater than or equal to the critical value.  When  >c, a stable 

equilibrium state is observed where the film on a substrate is wrinkled in a uniform 

sinusoidal form.  When the relative substrate thickness and pliability approach infinite       

(hf << hs) and (Ēf >> Ēs), any increase in the strain in addition to the critical strain results 

in increased amplitude of the wrinkles, but it does not result in any change to the 

wavelength of the wrinkles.  It is a key observation that the wavelength of the wrinkles 

remains independent of any excess strain as long as the substrate deformation is limited 

enough to remain well approximated by a simple linear elastic model.59  This strain 

invariance of the equilibrium wavelength results in an elegant relationship between the thin 

film modulus, Ēf, the modulus of the substrate, Ēs, and the film thickness, hf that can be 

exploited to measure unknown properties. 

A number of authors have derived the underlying mechanics that govern the 

wrinkling behavior of a rigid film adhered to a soft elastic substrate.60-63  It is widely agreed 

(when a strain in excess of the critical strain is applied) that the modulus of a thin film will 

be related to a characteristic wrinkle wavelength, λ, according to the relationship shown in 

equation 6. 

𝐸𝑓

1−𝜈𝑓
2 = 𝐸̅𝑓 = 3𝐸̅𝑠 (

𝜆

2𝜋ℎ𝑓
)
3

     (6) 

Accurate metrologies for determining both the film thickness, hf, and the reduced modulus 

of the substrate, Ēs, are well established and will be discussed in at length within 
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experimental details sections.  Poisson’s ratio for a glassy film and rubbery substrate are 

well reported to have typical values νf = 0.33 and νs = 0.5 respectively.  It is therefore, 

possible to determine the unknown film modulus by measuring the equilibrium 

wavelength,  .56 

1.6.2 Double Layer Film Method 

Application of the buckling metrology to small molecule organic electronic films 

has shown time dependent measurements as a result of instability at room temperature.  

The observation (that will be discussed in a later section) was first noted as a result of color 

change of the wrinkled samples and further quantified by collecting variable angle 

spectroscopic elipsometry (VASE) data vs. time for several materials systems.  A number 

of methods were applied to reduce diffusion of the deposited film into the substrate that 

included: storage of deposited samples at low temperature, different choice of substrate 

material, and inclusion of a diffusion barrier.  All methods demonstrated some reduction 

in time dependent behavior of the materials system.  The most stable results were achieved 

with the addition of a polystyrene (PS) diffusion barrier; however, the additional barrier 

film must then be accounted for when using the buckling method to determine the modulus 

of new organic electronic materials.  Figure 20 shows the proposed film stack to include a 

diffusion barrier that will contribute to the characteristic wavelength observed in the 

deformed sample. To enable SIEBIMM for materials that demonstrate substrate 

incompatibility requiring a diffusion barrier, it will be necessary to deconvolute the 

mechanical contributions from the additional barrier film. 
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Figure 20.  Schematic of film stack used to determine the unknown modulus of a thin film 

when the film of interest is not stable when directly deposited on the substrate material. 

 

When the multilayer stack deforms, both the film of interest as well as the diffusion barrier 

will contribute to the wrinkling behavior.  The sum of the individual film flexural rigidities 

has been shown to accurately describe the total resistance to buckling from the film stack 

according to equation 7. 

𝐸̅𝑡𝑜𝑡𝑎𝑙𝐼𝑡𝑜𝑡𝑎𝑙 = 𝐸̅𝑓𝐼𝑓 + 𝐸̅𝑏𝑎𝑟𝑟𝑖𝑒𝑟𝐼𝑏𝑎𝑟𝑟𝑖𝑒𝑟 =⁡
𝐸̅𝑠ℎ𝑡𝑜𝑡𝑎𝑙

4
(
𝜆

2𝜋
)
3
 (7) 

The product of the reduced modulus, Ētotal, and the second moment of area, Itotal, on the left 

side of equation 7 define the flexural rigidity of the film stack.  The flexural rigidity 

describes a material’s resistance to bending due to its mechanical properties in addition to 

the material’s distribution in space.  In the special case of a single homogenous film, the 

neutral axis is exactly the middle of the film and the symmetry of the second moment 

reduces to equation 6.  The terms in the far right of equation 7 do agree with equation 6 in 

the special single film case where Ibarrier vanishes and Ētotal Itotal = Ēf If.  In the more general 

case, the second moments of area from a multi film stack will not be symmetrical and will 

have a complex dependence on the thicknesses of both film layers.  That is, the flexural 

rigidity as a result of the heterogeneous material distribution in space will require Ētotal Itotal 
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to be a complex function of the component second moments of area (If and Ibarrier) that will 

be defined by the film thicknesses (hf and hbarrier). 

The general form mathematical description of a two plate composite solved for the 

reduced modulus of the unknown film is shown in equations 8 with the nested definitions 

of: κ, Ēeff, and ϕ shown in equation 9, equation 10, and equation 11 respectively.  The 

relationship has been applied to a variety of materials systems and has been shown to 

correlate well with empirical data.64   

𝐸̅𝑓 =

𝐸̅𝑒𝑓𝑓

4
⁡−⁡𝐸̅𝑏𝑎𝑟𝑟𝑖𝑒𝑟[(𝜙𝑏𝑎𝑟𝑟𝑖𝑒𝑟−

𝜅

2
)
3
+(

𝜅

2
)
3
]

(1−
𝜅

2
)
3
−(𝜙𝑏𝑎𝑟𝑟𝑖𝑒𝑟−

𝜅

2
)
3       (8) 

𝜅 =
1+𝜙𝑏𝑎𝑟𝑟𝑖𝑒𝑟

2 (
𝐸̅𝑏𝑎𝑟𝑟𝑖𝑒𝑟

𝐸̅𝑓
−1)

1+𝜙𝑏𝑎𝑟𝑟𝑖𝑒𝑟(
𝐸̅𝑏𝑎𝑟𝑟𝑖𝑒𝑟

𝐸̅𝑓
−1)

     (9) 

𝜙𝑏𝑎𝑟𝑟𝑖𝑒𝑟 =
ℎ𝑏𝑎𝑟𝑟𝑖𝑒𝑟

ℎ𝑡𝑜𝑡𝑎𝑙
=⁡

ℎ𝑏𝑎𝑟𝑟𝑖𝑒𝑟

ℎ𝑓+ℎ𝑏𝑎𝑟𝑟𝑖𝑒𝑟
   (10) 

𝐸̅𝑒𝑓𝑓 = 3𝐸̅𝑠 (
𝜆

2𝜋ℎ𝑡𝑜𝑡𝑎𝑙
)
3
     (11) 

 

Solving equation 8 requires an iterative numerical solution.  An initial value for κ = 1 would 

only be correct for a homogeneous film where Ēf = Ēbarrier.  Recursive substitution of the 

film reduced modulus, Ēf, obtained from equation 8 to determine a new value for κ 

converges rapidly until the values predicted no longer change with additional iterations.  A 

custom script written in MATLAB was used to iterate results to floating point precision; 

however, other authors have suggested that no more than four iterations should be 

necessary to achieve a modulus unchanging to at least the third decimal point.64 
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CHAPTER 2 

 

MONOMER AND EXCIMER EMISSION FOR WHITE ORGANIC LIGHT 

EMITTING DEVICES USING A SINGLE EMITTER 

2.1 Introduction 

White organic light emitting diodes (WOLEDs) with high power efficiency are 

candidates for the next generation of illumination devices.65,66  To date, however, the 

electroluminescent (EL) spectrum of WOLEDs is generated using multiple emitters 

embedded in a complex device structure.67-71  In this research, efficient WOLEDs with high 

quality white light are fabricated using a single emitter.  The ideal broad EL spectrum was 

realized by combining monomer and excimer emission in a 4-layer WOLED.  A forward 

power efficiency of p=37.8 lm/W was achieved with an EL spectrum yielding CIE 

coordinates of (0.37, 0.40) and CRI of 80.  The demonstration of efficient single-doped 

WOLEDs with high illumination quality presents a unique opportunity to simplify the 

device architecture and eliminate the problems of color aging and color instability for 

WOLEDs using multiple emitters.  All of these improvements will help to enable future 

commercialization of WOLEDs for lighting applications. 

Unlike rapidly maturing monochromatic OLEDs, one of greatest challenges for 

WOLEDs is the absence of a single organic emitter (fluorescent or phosphorescent 

material) that covers the entire visible spectrum.72  The broad spectrum required for white 

light in organic devices has previously been obtained from the combined emission of 

multiple emissive dopants shown in the relatively complex structures illustrated in Figure 

21.   
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[a]  [b]  [c]  

Figure 21.  Schemes for three typical WOLEDs architectures: [a] triple-doped emissive 

layer, [b] multiple emissive layers, [c] emissive layer with a single dopant species with 

both monomer and excimer emission. 

 

These structures include: a multiple-doped emissive layer (EML),68,73-75 a 

multilayer of emitters (doped films or neat films),70,71,76 multiple emissions from monomer 

and excimers or exciplexes,77-80 hybrid polymers/inorganics,81 etc.  The development of 

WOLEDs has progressed rapidly during the last decade.  The efficacy has reached over 

100 lm/W with enhanced outcoupling effect.65,66  The limited operational lifetime, which 

has previously handicapped OLED technology, has now been demonstrated to exceed 

10,000 hours.66  However, such high efficacy and long operational lifetime are achieved 

using multiple emissive dopants, which require relatively complex device structures.  More 

complex device structures then create new challenges to achieve consistent and low cost 

manufacturing processes.  The use of multiple emissive dopants also generates an unstable 

emission color for WOLEDs due to the energy transfer process between different emitters.  

It is common that the electroluminescent (EL) spectrum of WOLEDs varies with different 

driving voltages (or driving current) due to the change of ratio in blue, green, and red 

emission.82  Moreover, the different degradation rates for each emissive dopant in 



 

41 

WOLEDs could create a problem of “color aging”, i.e. the color of lighting changes 

significantly in the degradation process, resulting in a premature device failure.  In order 

to prevent the color aging and enhance the color stability, the device structures will become 

inevitably more complex and expect an increase in the manufacturing cost.  Towards 

overcoming these problems, this report will demonstrate WOLEDs using a single emitter 

with good color quality and illumination efficiency which can be realized by coupling blue-

green like monomer emission and orange like excimer emission for reported square planar 

Platinum complexes.77-79 

WOLEDs using a single emitter realized by coupling blue-green like monomer 

emission and orange like excimer emission have been reported for square planar Pt 

complexes, i.e. FPt and their analogs.77-79  In contrast to most of organic emitters, Pt 

complexes can form a broadly emitting excimer.  The strong PtPt interaction can 

destabilize the highest occupied molecular orbital (HOMO), resulting in a red-shifted 

emission spectrum for excimers shown in Figure 22.  If the excimer emission adequately 

complements monomer emission, the EL spectrum of excimer-based WOLEDs can include 

all visible wavelengths.  The ratio of monomer/excimer emission can be controlled by 

varying the dopant concentration, the morphology of host materials or the relative balance 

of hole/electron injection, providing methods to control the color of WOLEDs.77,78  

Additionally, because an excimer does not have a bound ground state, the cascade of 

energy from the “blue” (higher energy) emitter to the excimer can be prevented, leading to 

a stable emission color that is  independent of the driving voltage.  Moreover, the problem 

of “color aging” can be resolved due to the use of a single emitter.  The combination of 
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monomer and excimer emission provides a simple and elegant solution to achieve voltage-

independent, stable and broad spectrum WOLEDs. 

 

 

Figure 22.  Illustration of excimer formation for square planar Pt complexes like 

Pt(N^C^N)Cl and their analogs.  The newly formed Pt--Pt bond destabilized the highest 

occupied molecular orbital (HOMO), resulting in a red-shifted emission spectrum for 

excimer of Pt complexes. 

 

2.2 Experimental 

Synthesis of Pt-17: A mixture of bis(methyl-imidazolyl)toluene diiodide (1 mmol) 

and 0.5 mmol silver oxide was stirred in a solution of 100 ml acetonitrile for 5 h at room 

temperature before 1 equiv. platinum chloride and 1 equiv. potassium carbonate were 

added. The reaction mixture was heated to reflux for additional 24 h.  Then the mixture 
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was cooled to room temperature before 100 ml water was added.  The resulting yellow 

precipitate was filtered off and washed with excessive methanol, water and ether and dried 

under vacuum.  The light yellowish product (in 20% yield) was obtained after thermal 

evaporation under high vacuum. Nuclear magnetic resonance spectroscopy (NMR) (500 

MHz, DMSO):  9.88 (s, 2H), 8.36 (d, 2H), 8.02 (d, 2H), 3.99 (s, 6H), 2.53 (s, 3H). 

The layer sequence for WOLEDs on top of ITO substrate is: 30nm NPD as a hole-

transporting layer/10nm TAPC as an electron-blocking layer/25nm emissive layer/20-

80nm PO15 as an electron transporting layer and a hole-blocking layer/1nm LiF/90nm Al 

cathode.  The emissive layer consists of ether 26mCPy as a host or TAPC:PO15(1:1) as 

co-host materials with Pt-17 as a phosphorescent emitter.  Prior to organic depositions, the 

ITO substrates were cleaned by subsequent sonication in water, acetone, and isopropanol, 

followed by a 15 min UV−ozone treatment. PEDOT:PSS was filtered through a 0.2 μm 

filter and spin-coated on the prepared substrates, giving a 40- nm-thick film. All small 

molecular organic materials were deposited by thermal evaporation at rates of 1 +/- 0.5 Å/s 

with a working pressure of less than 10−7 Torr.  A thin 1 nm LiF layer was deposited at a 

rate of < 0.2 Å/s and aluminum cathodes were deposited at 1−2 Å/s through a shadow mask 

without breaking the vacuum.  Individual devices have areas of 0.04 cm2 . I−V−L 

characteristics were taken with a Keithley 2400 Source-Meter and a Newport 818 Si 

photodiode inside a nitrogen-filled glovebox.  Electroluminescence (EL) spectra were 

taken using a Jobin Yvon Fluorolog spectrofluorometer.  Agreement between luminance, 

optical power, and EL spectra was verified with a calibrated Photo Research PR-670 

spectroradiometer with all devices assumed to be Lambertian emitters. 
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2.3 Results 

In order to meet the requirement for solid state lighting, several factors have to be 

considered for excimer-based WOLEDs including: the emission efficiency of 

monomer/excimer, the emission colors of monomer/excimer, and the optimization of 

charge injection and recombination inside of emissive layers.  The ability to create high 

quality illumination that mimics natural light sources is particularly critical for lighting 

applications.  Two important parameters are used to define the color quality of white light 

source: the Commission Internationale de L’Éclairage (CIE) chromaticity coordinates and 

the color rendering index (CRI).  The highest quality white illumination requires sources 

with CIE coordinates close to (0.33, 0.33) and a CRI value over 80.83  The phenomenon of 

excimer formation has been observed for a long time,84 but the photophysical properties of 

excimers remain poorly understood.  For this reason, progress on phosphorescent excimers 

has depended almost entirely on the synthesis and characterization of new materials.   

2.3.1 Spectral Tuning Correlated to Dopant Concentration 

 

To evaluate the electroluminescent properties of Pt-17, a series of WOLEDs were 

fabricated in a 4-layer device structure: NPD/TAPC/Pt-17:26mCy/PO15, with the dopant 

concentration ranging from 2-26%.85  Forward viewing external quantum efficiency is 

plotted versus current density for these devices in Figure 23, with the corresponding EL 

spectra and CIE coordinates displayed in Figure 24. 
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Figure 23.  Forward viewing external quantum efficiency versus current density of the 

WOLEDs with structure (where x ranges from 2 to 26) is: 

ITO/PEDOT/NPD(30nm)/TAPC(10nm)/x%Pt17:26mCPy(25nm)/PO15(20nm)/LiF/Al  
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Figure 24.  Normalized electroluminescent spectra and the CIE coordinates (inset) of the 

WOLEDs with structure (where x ranges from 2 to 26) is: 

ITO/PEDOT/NPD(30nm)/TAPC(10nm)/x%Pt17:26mCPy(25nm)/PO15(20nm)/LiF/Al  

 

Similar to the previously reported phosphorescent excimers, the gradual increase of dopant 

concentration raises the contribution from Pt-17 excimers, tuning the color of OLEDs from 

blue (exclusive monomer emission for 2% Pt-17 device) to broad and whiter emission.  In 

contrast to both FPt and Pt-4 reported previously, all of Pt-17 devices have demonstrated 

reasonably high device efficiencies with peak values ranging from 8-13%, indicating that 

both monomer and excimer of Pt-17 are efficient phosphorescent emitters.  This presents 

a great opportunity to fabricate an efficient WOLED in addition to having ideal color 
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combination of monomer and excimer emission. Figure 24 illustrates how a simple 

variation in the dopant concentration will allow to tuning the color of WOLEDs from cool 

white (CIEx=0.31, CIEy=0.38 for 14% Pt-17 device) to warm white (CIEx=0.42, 

CIEy=0.43 for 26% Pt-17 device) while maintaining a high CRI value (>75). 
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Figure 25.  Plot of current density versus voltage for Pt 17 based WOLEDs using 

26mCPy as a host material. The device structure (where x ranges from 2 to 26) is: 

ITO/PEDOT/NPD(30nm)/TAPC(10nm)/x%Pt17:26mCPy(25nm)/PO15(20nm)/LiF/Al  

 

2.3.2 Improved Power Efficiency by Increasing Host Carrier Mobility 

Increasing the dopant concentration slightly lowers the driving voltage; however, 

it also decreases the device efficiency.  Charge carrier imbalance internal to the emissive 

layer could account for this behavior and might be resolved by employing a co-host system 
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with more balanced hole/electron transporting capabilities.  A mixed layer of TAPC:PO15 

is documented as one example, which can replace 26mCPy as host materials in a similar 

device setting.85  The energy diagram for both device structures is shown in figure 25. 

 

 

Figure 26. Energy diagrams for [a] device created with discrete codeposited emissive 

structure and [b] device fabricated with cohost structure 

 

Electrical and optical performance characteristics for device structure 

NPD/TAPC/18% Pt-17:TAPC:PO15/PO15 are shown in Figure 27 and Figure 28.  

Forward viewing external quantum efficiency and power efficiency are plotted versus 

luminance in Figure 29.  The thickness of electron transporting layer - PO15 was also 

optimized to 40nm in order to control the charge balance and maximize the device 

efficiencies (Figure 28).  A maximum forward viewing EQE of ext=15.9% was achieved 
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at a current density of J=0.3 mA/cm2, and only decreases slightly to ext=15.6% at a high 

forward viewing luminance of 500 cd/m2.  This device also gives a maximum forward 

power efficiency of p=37.8 lm/W and remains at a high p=25.2 lm/W at a practical 

luminance (500 cd/m2).  The electroluminescent spectrum of the device has a slight change 

due to the variation in a host system, yielding highly desirable CIE coordinates of (0.37, 

0.40) and CRI of 80, which also demonstrates an independence of current density.  The 

illumination quality of this WOLED is comparable or even superior to WOLEDs 

previously reported that require comparatively more complex structures. 

 

  



 

50 

[a]

0 1 2 3 4 5 6 7 8
1E-5

1E-4

1E-3

0.01

0.1

1

10

100
Thickness of PO15

 20

 40

 80

C
u

rr
e

n
t 

D
e

n
s

it
y

 (
m

A
 c

m
-2
)

Voltage (V)

 

[b]

0 2 4 6 8

0

5x10
3

1x10
4

2x10
4

Thickness of PO15

 20

 40

 80

L
u

m
in

a
n

c
e

 (
n

it
s

)

Voltage (V)

 

Figure 27.  Performance characteristics of Pt 17 based WOLEDs using TAPC:PO15 as 

co-host materials.  [a] current density versus voltage, [b] luminance versus voltage.  The 

device structure is ITO/PEDOT/NPD(30nm)/TAPC(10nm)/18%Pt17:TAPC:PO15(25nm) 

/PO15(x nm)/LiF/Al.  PO15 thickness ranges from 20nm to 80nm. 
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Figure 28.  [a]  Forward viewing external quantum efficiency versus current density, [b] 

electroluminescent spectra of WOLEDs.  The device structure is 

ITO/PEDOT/NPD(30nm)/TAPC(10nm)/18%Pt17:TAPC:PO15(25nm) /PO15(x 

nm)/LiF/Al.  PO15 thickness ranges from 20nm to 80nm. 
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The efficiency of the present co-host device can be further improved by using state-

of-the-art charge-injection materials and charge-blockers, resulting in a higher forward 

viewing EQE (20% or higher) and a higher forward power efficiency (46 lm/W or 

higher).86  The employment of higher-refractive-index substrate could extract more 

photons out of the device, leading to a two-fold increase in power efficiency according to 

demonstrated methods.65,87  Thus, a single-doped WOLED with p of 100 lm/W can be 

realized by integrating Pt-17 monomer plus excimer emission with established outcoupling 

enhancement technologies.   
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Figure 29.  Performance characteristics of Pt 17 based WOLEDs using TAPC:PO15 as 

co-host materials.  [a] Forward viewing external quantum efficiency (open squares) and 

power efficiency (filled squares) versus luminance of the WOLED.  The device structure 

is ITO/PEDOT/NPD(30nm)/TAPC(10nm)/18%Pt-17:TAPC:PO15(25nm) 

/PO15(40nm)/LiF/Al.  [b] An image of a magic cube illuminated by the WOLED 

demonstrating white color and high color rendering index value. 
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Moreover, Pt-17 is a fluorine-free blue phosphorescent emitter indicating that its design is 

aligned with molecules that have demonstrated stability for long operational lifetime.88  

Continued characterization and development should provide a viable route to develop 

stable and efficient phosphorescent excimers for lighting applications.  Demonstration of 

single-doped WOLEDs with high efficiency and high illumination quality does present a 

unique opportunity to significantly simplify the device architecture and eliminate the 

problems of color aging and color instability for WOLEDs using multiple emitters.  This 

will help to expedite the commercialization of WOLEDs for lighting applications. 

2.4 Conclusion 

 

To the Author’s knowledge, the device based on Pt-17 demonstrated the world’s 

first efficient single-doped WOLEDs with high quality of white light using a novel Pt 

complex.  As illustrated in Figure 30, FPt and Pt-4 cannot produce a satisfactory white EL 

spectra due to ether inefficient monomer emission (FPt)78 or unsuitable excimer emission 

color (Pt-4).79   
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Figure 30.  Electroluminescent spectra of OLEDs using FPt, Pt 4 and Pt 17, the chemical 

structures of which are shown in the left side of graph. 

 

Compared with FPt, both Pt-17 and Pt-4 are more efficient blue phosphorescent 

emitters due to the specific choice of the metal complex system, i.e. Pt(N^C^N)Cl, where 

N^C^N are dipyridinyl bezene and their analogs.89  Replacing pyridinyl group with methyl-

imidazolyl group could potentially weaken the intermolecular interaction, resulting in a 

blue-shifted excimer emission for Pt-17.  Thus, an ideal white EL spectrum can be 

accomplished by combining the appropriate proportion of monomer and excimer emission 

of Pt-17. 
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CHAPTER 3 

SQUARE PLANAR CYCLOMETALATED PLATINUM COMPLEXES FOR STABLE 

DEEP BLUE EMISSION 

3.1 Introduction 

The success of OLED technology for full color displays will require emitting 

materials that can produce high energy light to fulfill the blue component, while 

maintaining good efficiency and stability.  The current NTSC standard CIE coordinates for 

blue are x=0.14, y=0.09.  The increased band gap necessary for high energy emission can 

be accomplished by reduction of the HOMO energy or increase of the LUMO energy.  A 

number of studies have applied halogens to delocalize electron density with respect to the 

metal core atom.39,90-93,69  The delocalization increases the LUMO level because of the 

halogen atom’s ability to shift molecular triplet energies.  Unfortunately, device structures 

that have employed this blue shifting mechanism have proven to show significantly 

degraded luminance performance over timescales that would interfere with application to 

displays.  The potentially short operational lifetimes are attributed to the electrochemical 

reactivity of the halogen atoms.94  Irreversible oxidation or reduction behavior leading to 

device degradation cannot be tolerated in commercial application; therefore, the addition 

of fluorine or chlorine to ligand structures might not be an ideal blue shifting mechanism. 

 Another method to increase to the energy gap of phosphorescent emitters could be 

to lower the HOMO energy level.  Iridium based emitters have demonstrated that 

substitution of a five-member ring in place of a larger six-member ring can blue shift 

emitting molecules.  Specifically, substitution of methyl-benzimidazolyl (five-member 

group) in place of pyridine has been reported to shift triplet energy.  PL peak wavelengths 
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below 400 nm have been observed for blue phosphors such as fac- and mer-Ir(pmb), FIrpic, 

and Fir6.91-93,95  These molecules have been added to suitable high energy band gap host to 

demonstrate external quantum efficiencies approaching 6% with the first emission peak 

below 400 nm without the presence of halogen atoms.  Substitution of smaller five-member 

methyl-benzimidazolyl groups has been demonstrated to shift the emission of 

phosphorescent emitters towards the blue regions of interest without specifically impacting 

operational lifetime by addition of Halogens.  Here, a novel halogen-free emitter will be 

used to fabricate devices to demonstrate stable and efficient blue organic light emitting 

devices. 

3.2 Experimental 

 

Devices employing Pt-002 and fac-Ir(ppy)3 as emitters were fabricated on glass 

substrates pre-coated with a patterned transparent indium tin oxide (ITO) anode using a 

device architecture of ITO/PEDOT:PSS/20nm TAPC/25nm 8% emitter:26mCPy/10nm 

PO15/30nm BmPyPB/LiF/Al, where PEDOT:PSS = poly(3,4-ethylenedioxythiophene) 

poly- (styrenesulfonate), TAPC = 1,1-bis[4-[N,N′-di(p-tolyl)amino]- phenyl] cyclohexane, 

26mCPy = 2,6-bis(N-carbazolyl)pyridine, PO15 = 2,8-bis(diphenylphosphoryl)-

dibenzothiophene, and BmPyPB57 = 1, 3-bis[3, 5-di(pyridin-3-yl)phenyl]benzene). Prior 

to organic depositions, the ITO substrates were cleaned by subsequent sonication in water, 

acetone, and isopropanol followed by a 15 min UV−ozone treatment. PEDOT:PSS was 

filtered through a 0.2 μm filter and spin-coated on the prepared substrates, giving a 40- nm-

thick film. All small molecular organic materials were deposited by thermal evaporation at 

rates of 1 +/- 0.5 Å/s with a working pressure of less than 10−7 Torr. A thin 1nm LiF layer 

was deposited at a rate of < 0.2 Å/s and aluminum cathodes were deposited at 1−2 Å/s 
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through a shadow mask without breaking the vacuum. Individual devices that have areas 

of 0.04 cm2 . I−V−L characteristics were taken with a Keithley 2400 Source-Meter and a 

Newport 818 Si photodiode inside a nitrogen-filled glovebox. Electroluminescence (EL) 

spectra were taken using the Jobin Yvon Fluorolog spectrofluorometer. Agreement 

between luminance, optical power, and EL spectra was verified with a calibrated Photo 

Research PR-670 spectroradiometer with all devices assumed to be Lambertian emitters. 

3.3 Results 

3.3.1 Stability of Fluorine-Free Blue Phosphorescent Emitters 

Figure 31 shows the accelerated aging of resulting stability of the blue emitter.  A 

number of procedures to project OLED lifetime by utilizing accelerated aging methods 

across a statistically relevant number of devices have been documented.  This data can be 

used to tune charge balance, select stable supporting device layers, and achieve device 

lifetime that approaches the degradation rate fundamental to the stability of the emitter.  In 

the absence of these resources and quantity of units, a direct comparison using identical 

device structures and materials will be employed to compare halogen-free Pt-002 to a 

known stable emitter Ir(ppy)3.  This will provide a relative quantification to measure the 

stability of an unknown emitter when the resources for statistical descriptions and 

characterization of accelerated aging mechanisms are not available. 
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Figure 31.  Plots of (a) drive voltage vs. time and (b) initial luminance vs. time for Ir(ppy)3 

(red) and Pt-002 (black) devices operating at constant of 10mA cm-2 inside of glove box 

(oxygen<0.1ppm, water<0.1ppm).  The device structure is: ITO/NPD 

40nm/CBP:Dopant/BAlq 10nm/Alq3 30nm/LiF 1nm/Al 

 

Some theoretical and empirical evidence supporting stability makes it interesting 

to consider adopting the substitution of five member groups to increase triplet energies in 

a whole range of novel Pt based emitters.  The intensely studied Cyclometalated Ir 

complexes are typically bulky due to the 3-dimensional geometry resulting from octahedral 

coordination.  Also, Ir molecular design is somewhat limited by the constraints applied by 

the octahedral structure requiring three paired coordinating ligands.  In contrast, Pt 

complexes are typically more planar in nature due to their four independent coordination 

points.  The square structure is beneficial to allow more latitude in molecular design; 
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however, it represents a hurdle to achieve exclusive high energy emission without a 

significant excimer component.  Morphology studies have revealed that molecules with 

high aspect ratios tend to deposit with preferred orientation parallel to the substrate 

surface.96,97  This geometry tends to align multiple z-axis as well as to maximize Pi-Pi 

interactions from electrons localized above and below aromatic rings.  The result is an 

increased propensity for excimer emission in platinum as compared to octahedral iridium 

complexes that do not have such pronounced intermolecular alignment tendencies.  Figure 

32 demonstrates that Pt-002 is capable of exclusive high energy emission without a 

significant excimer component. 

3.3.2 High Energy Organic Light Emitters for Blue Display Component 
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Figure 32.  EL spectrum for device: (a) ITO/Pedot:PSS 45nm/TCTA 30nm/26mCPy:Pt-

002 (2wt%)/BCP 30nm/LiF 1nm/Al; (b) ITO/Pedot:PSS 45nm/NPD 30nm/TCTA 

10nm/26mCPy:Pt-002 (2wt%)/BCP 30nm/LiF 1nm/Al;  (c) ITO/NPD 40nm/CBP:Pt-002 

(2wt%)/BAlq 10nm/Alq3 30nm/LiF 1nm/Al  
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Energy minimization routines suggest a structure for Pt-002 that is deviated from planar as 

shown in Figure 33.  It is reasonable to associate the deviation with planarity with a reduced 

propensity for excimer emission.  Z-axis alignment of the metal atom as well as pi-pi 

overlap between aromatic rings of adjacent molecules are less geometrically favorable for 

a molecule that deviates from the most ideal stacking in a planar structure.  Devices 

fabricated with as high as 15 mass percent Pt-002 in the EML still do not show significant 

excimer emission.  

 

 

Figure 33.  Side view (left) and top view (right) of molecular structure of Pt-002.  The 

geometry is approximated by perturbing bond orientations to minimize configurational 

energy. 

   

Many iterations of device fabrication and performance optimization lead to a device 

structure based on a codeposited EML comprised of only 2% Pt-002.  TCTA provides an 

effective blocking layer to prevent charge or exciton transfer into the NPD as is 

demonstrated by the exclusive emission shown in Figure 32.  Devices that do not employ 

the TCTA blocking layer show higher energy EL emission corresponding to the larger 

HOMO-LUMO gap for the hole transporting layer, NPD.  Thus, TCTA prevents inefficient 

fluorescence in NPD and enables increased Pt-002 efficiency for application to display 
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technology.  Device performance as reported by [a] current density vs voltage and [b] 

external quantum efficiency (EQE) and luminance vs current density is shown in Figure 

34. 
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Figure 34.  Plots of (a) current density vs. voltage (b) EQE vs current density and (c) 

luminance vs current density for devices: ITO/Pedot:PSS 45nm/NPD 30nm/TCTA 

10nm/Host:Pt-002 (2wt%)/BCP 30nm/LiF 1nm/Al.  The hosts are mCP (red) and 26mCPy 
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Figure 35.  Plot of EQE vs. current density for device ITO/Pedot:PSS 45nm/NPD 

30nm/TAPC 10nm/26mCPy:Pt-002 (2wt%)/PO15 40nm/LiF 1nm/Al.  Inset shows the 

plot of current density vs voltage for the device. 

 

3.4 Conclusion 

 

In summary, Pt-002 shows promise for stability in preliminary lifetime testing.  In 

addition to reasonable stability and efficiency, Pt-002 does not indicate a particular affinity 

for the formation of aggregates and excimer emission.  This is ideal for display applications 

where a “pure deep blue” emitter could benefit from an emissive architecture that 

maximized efficiency without concern for limiting unwanted lower energy emission.  

Additional development of molecules like Pt-002 to improve CIE coordinates and EL 

efficiency could certainly hope to achieve a stable, efficient, and deep blue emitter suitable 

for new display technology. 
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CHAPTER 4 

 

THICKNESS DEPENDENT PROPERTIES OF SMALL MOLECULE ORGANIC 

ELECTRONIC THIN FILMS. 

4.1 Introduction 

The unique amorphous nature of organic electronics can be leveraged to enable 

fabrication without the need for high vacuum, ultra clean, and high temperature 

environments.  Solution based processing, roll-to-roll processing, organic vapor phase 

deposition (OVPD), and even inkjet printing methods using non-rigid substrates have all 

been proposed as potentially feasible low-cost manufacturing methods for organic 

electronics.9  Also, the long term operational stability of flexible electronics requires 

mechanical robustness of the active materials under operationally induced strain.  A direct 

fabrication of electronics on plastic substrates using inorganic active materials usually 

leads to a limited flexibility where bending can create catastrophic device failure.98  

Compared with their inorganic counterpart, it is intuitive that polymers and organic 

materials are more compliant and intrinsically compatible with flexible substrates; 

however, little is known about their specific mechanical properties.99 The lack of 

knowledge regarding mechanical properties for organic semiconductor materials results 

from their high cost and limited quantities that makes traditional tensile testing infeasible. 

Other common methods like nanoindentation have been attempted to measure the 

mechanical properties of Alq3, but the results showed a strong dependence on the substrate 

choice.100,101  This dependence is likely from convolution of the measurement with the 

underlying substrate that is commonly observed when using nanoindentation on thin 

compliant films.102  Thus, a better mechanism to measure and a better understanding of the 
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mechanical properties of organic thin films at the confined length scale can be critical to 

characterize mechanical strain within organic flexible electronics and potentially enable 

low cost manufacturing without the need for rigid substrates.  Here the mechanical 

properties of selected organic electronic materials will be investigated using a wrinkling 

based metrology. 

4.2 Experimental 

Alq3, CBP, TPD, and NPD were purchased from Sigma Aldrich.  These materials 

were then purified by sublimation in a four-zone thermal gradient furnace under a pressure 

of 10−6 Torr.  The structure for each of these molecules is shown in Figure 36.  For an 

elastic substrate, Dow Corning Sylgard 184 polydimethylsiloxane (PDMS) was cast at 

either 10:1 or 20:1 base:cure agent onto float glass and allowed to degass and gel at ambient 

for 3 prior to curing at 100C for 2 h. After cooling to ambient temperature, the PDMS sheet 

was cut into approximately 75 mm × 25 mm × 1.5 mm slabs, which function as the elastic 

substrates for the films to be evaluated.  

 

 

 

 

 

 

 

 

 

Figure 36. The chemical structures for [a] Alq3 [b] NPD [c] CBP and [d] TPD 
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The modulus of the PDMS from each batch was determined using a Texture 

Technologies model TA.XT Plus Texture Analyzer (TA). The optical constants for PDMS 

were determined using a Cauchy model to fit to data from J. A. Woollam Co. Variable 

Angle Spectroscopic Ellipsometer (VASE) over a wavelength range from 250nm to 

1700nm measured at three incident angles (67, 70, 73).  Variation in the formulation ratio 

or cure temperature can impact the mechanical properties of the PDMS, but 

characterization of each batch was performed to mitigate variation in the calculated moduli 

for the organic glass films.  The PDMS slabs where then pre-strained 3% in preparation for 

wrinkling.56  Polystyrene (PS, Mn = 9.4 kg mol−1, Polymer Laboratories) or addition 

polynorbornene (Add PENb)103 films were utilized as barrier coatings to inhibit the 

diffusion of the small molecules into PDMS.104  These polymers were spin cast onto 

cleaned silicon wafers, annealed under nitrogen at T = Tg + 20 °C and transferred to the 

pre-strained PDMS.64  The thickness of the PS or Add PENb film was determined using 

VASE over a wavelength range from 250nm to 1700nm measured at three incident angles 

(65°, 70°, and 75°) both on the silicon wafer and once transferred onto the PDMS. The 

thickness of these barrier films ranged from 24nm–26nm.   

Alq3, NPD, CBP, and TPD were deposited from a resistively heated tantalum boat 

in a vacuum deposition system from Trovato Mfg. with pressure at or below 10−7 Torr.  A 

16 mm diameter shadow mask was used to define the deposition area.  Deposition rate was 

controlled between 1–1.5 Å/s onto the pre-strained polymer-PDMS using crystal growth 

monitors. Growth rate calibrations used to report absolute thin film thicknesses ranging 

from 8nm to 100nm on elastic and silicon substrates were accomplished through agreement 

between three sources of measurement.  First, direct measurements from the film(s) on 
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Silicon and PDMS were collected before small molecule deposition using VASE. Second, 

identical depositions for thicknesses representing the full range of experimental data were 

also performed with silicon substrates loaded in place of the PDMS, and their thickness 

was measured by both VASE and a KLA-Tencore P-6 profilometer.  Profile scans were 

collected across shadow masked edges as well as ledges exposed by post-deposition 

removal of Kapton tape to enable sampling at the center of the film.  The third measurement 

was taken after small molecule depositions were complete but prior to releasing the strained 

substrates.  The thicknesses of the barrier and organic glass thin films were again modeled 

on the PDMS using VASE.  All methods to characterize variation in deposition rate and 

associated error in film thickness were shown in agreement within the bounds of reported 

experimental error.   

Surface wrinkling was induced by releasing the pre-strain at approximately 0.1 mm 

s−1 under ambient conditions (T = 21 °C +/- +/-2 °C).  The wavelength of the wrinkled 

surface was determined using Park XE-150 atomic force microscopy (AFM) in intermittent 

contact mode using a constant scan size of 10 μm by 10 μm, and Mititoyo Ultraplan FS-

110 optical microscopy (OM).  Images were analyzed using 1D Fast Fourier Transform 

(FFT). 

4.3 Results 

4.3.1 Diffusion of Small Molecule Organic Electronic Films into PDMS 

It was observed that Alq3 films deposited onto PDMS would change color as 

compared to the as-deposited film over the course of several hours.  To quantify the 

changes in the films, the ellipsometric angles for the film are obtained at an incident angle 

of 55 degrees for about 3 hours.  Figure 37 shows that Alq3 thickness on a PDMS substrate 
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as determined from VASE shows a significant reduction in the film thickness as the film 

ages at ambient conditions.  Alq3 is known to be marginally unstable in air105; however, 

the change in thickness is too great to be attributed to degradation.  PDMS formulated with 

20 : 1 base to curing  agent forms a network with a modulus of  0.7 MPa. This low modulus 

resulting from a loose polymer network enables Alq3 to diffuse into the PDMS substrate. 

After 150 min, the thickness of the Alq3 layer decreased by about 40%.  If the base to curing 

agent ratio is doubled to 10 : 1, the crosslink density of the PDMS increases leading to a 

much higher modulus of 2 MPa.  Alq3 deposited onto the higher modulus 10 : 1 PDMS 

exhibited a decrease in film thickness of 23% after 150 min consistent with relatively 

slower diffusion into a more highly linked polymer network.  Characterization of wrinkle 

wavelength from Alq3 on PDMS for SIEBIMM was not successful.  In addition to poorly 

defined structures from the diffused samples, the effective film thickness and modulus 

would all be convoluted by the absence of a crisp interface. The low glass transition 

temperature of PDMS (Tg ~ 125 C) and large free volume of PDMS106 appear to enable 

diffusion of Alq3 and potentially other small molecules into the PDMS network; this may 

lead to a poorly defined system for wrinkling analysis107.  Direct vapor deposition of small 

molecules on PDMS is likely problematic for determining their elastic moduli using 

wrinkling.  
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Figure 37.  Measured Alq3 film thickness as a function of time elapsed after deposition and 

sample loading and transfer. 

 

4.3.2 Determination of the Elastic Modulus Using a Diffusion Barrier 

It is possible to prevent diffusion of Alq3 into the PDMS substrate by addition of a 

barrier film; in this case, a PS film appears to prevent diffusion of the Alq3 into the PDMS 

substrate, as shown in Figure 37. The thickness of Alq3 film remains constant for relevant 

time scales considered suggesting that PS has sufficiently reduced free volume to reduce 

diffusion rates and eliminate the impact of diffusion on SIEBIMM measurements.  

Diffusion of small molecule films also has implications in the fabrication of organic 

devices on flexible plastic substrates as charge transport is defined by the interfacial 

morphology.  Diffusion of a small molecule film could play a significant role in the short 

or long term performance of optoelectronics.  Figure 38 shows well defined wrinkles 

resulting from the deposition of a composite Alq3/PS film stack.  The addition of a PS 

barrier results in discrete interfaces at both of the PDMS/PS and the PS/Alq3 film stack and 

alleviates the problem of diffusion of small molecule glassy films into a PDMS substrate.  

The wrinkles obtained were sufficient to determine a characteristic wavelength for 
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SIEBIMM, but the added PS layer must be included in the analysis of the wrinkling to 

deconvolute the elastic modulus of Alq3. 

 

Figure 38. [a] Image of wrinkled 36nm thick Alq3 film that corresponds to a wavelength 

3.5 +/- 0.13um captured with an optical microscope  [b] Image of a wrinkled 8nm thick 

Alq3 film that corresponds to a wavelength 2.1um +/- 0.15um thick captured with an atomic 

force microscope. 

 

The wrinkles in Figure 38 are formed by compression of the Alq3/PS composite film on a 

pre-strained PDMS substrate. The elastic properties of the composite system of PS and 

Alq3 along with their thicknesses and elastic modulus of the PDMS are correlated to the 

wavelength of the wrinkle pattern.  Thus, an effective plane-strain modulus of the Alq3/PS 

composite film (Ēeff) can be determined from the wavelength, l, as previously described 

in section 1.6.2 by equation 11. 

𝐸̅𝑒𝑓𝑓 = 3𝐸̅𝑠 (
𝜆

2𝜋ℎ𝑡𝑜𝑡𝑎𝑙
)
3
     (11) 

Where htotal is the total thickness of the Alq3/PS composite film, and Ēs is the plane-strain 

elastic modulus of the PDMS substrate.  The sum of the flexural rigidity from both 
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contributing layers of PS and Alq3 can be separated and solved iteratively to determine the 

elastic modulus for only the Alq3 component.  Modifying equations 8 through 11 

(previously discussed in section 1.6.2) to describe the Alq3/PS materials system results in 

equation 12-14 that are used to determine the mechanical properties of deposited small 

molecule Alq3 thin films. 

𝐸̅𝐴𝑙𝑞3 =

𝐸̅𝑒𝑓𝑓

4
⁡−⁡𝐸̅𝑃𝑆[(𝜙𝑃𝑆−

𝜅

2
)
3
+(

𝜅

2
)
3
]

(1−
𝜅

2
)
3
−(𝜙𝑃𝑆−

𝜅

2
)
3       (12) 

𝜅 =
1+𝜙𝑃𝑆

2 (
𝐸̅𝑃𝑆
𝐸̅𝐴𝑙𝑞3

−1)

1+𝜙𝑃𝑆(
𝐸̅𝑃𝑆
𝐸̅𝐴𝑙𝑞3

−1)

      (13) 

𝜙𝑃𝑆 =
ℎ𝑃𝑆

ℎ𝑡𝑜𝑡𝑎𝑙
=⁡

ℎ𝑃𝑆

ℎ𝐴𝑙𝑞3+ℎ𝑃𝑆
     (14) 

The Alq3 and PS film thicknesses and the moduli of the PS film and the PDMS need to be 

determined in order to calculate the unknown modulus of the Alq3 film.  A constant PS 

film thickness of 21nm +/- 2nm with a modulus of 3.61 GPa +/- 0.26 GPa was 

determined.  The PDMS substrate had modulus vary between 0.6 MPa and 0.8 MPa as a 

result of batch-to-batch variation.  Equation 12 can be iteratively solved to determine the 

modulus of the Alq3 film. The Young’s elastic modulus the Alq3 films can be determined 

from the plane-strain relation shown in equation 15.   

𝐸𝐴𝑙𝑞3 = 𝐸̅𝐴𝑙𝑞3(1 − 𝜈𝐴𝑙𝑞3
2 )     (15) 

Poisson’s ratio of the Alq3 and other small molecule organic thin films is determined to be 

similar to most organic glassy materials where ν = 0.33.  This agrees with a recent study 

where the Poisson’s ratio of vapor deposited molecular glass of indomethacin was 
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measured by BLS and determined to be 0.36.108,109  The Poisson’s ratio for small molecule 

glasses used in organic optoelectronics considered here will be approximated as ν = 0.33.  

Based upon this assumption, the Young’s modulus of the 36 nm thick Alq3 film shown in 

Figure 38 is 0.94 GPa +/- 0.18 GPa. This is significantly less than the modulus for Alq3 ~ 

100 GPa determined using 100nm thick films on silicon wafers with Nano indentation 

(NI).100  The modulus obtained from NI is extremely large for an organic molecule and 

much more likely to be related to the hard Silicon substrate with elastic modulus around 

130 GPa.  If a substantial structure difference resulting in orders of magnitude difference 

mechanical properties exists, one would expect optical and/or surface morphology to vary 

between the samples.  However, neither of optical constants for Alq3 as determined by 

VASE or surface morphology as determined by AFM between films deposited on 

PS/PDMS or silicon showed any meaningful differences.  So, it appears that the substrate 

acts to convolute the measurement rather than modify properties of the thin film.  The 

elastic modulus of the Alq3 film reported by SIEBIMM appears to be reasonable based 

upon comparison to other organic molecular glasses.  Other studies have concluded that 

thin polymer films show a decrease in elastic modulus when thickness is less than about 

50nm.110,111  It might then be possible to expect an even lower modulus for the 8nm thick 

Alq3 film if organic small molecules and polymers behave similarly at the nanoscale.  

However, the Young’s modulus of the 8nm thick Alq3 film is calculated to be 1.66 GPa +/- 

0.21 GPa.  This indicates that the modulus of Alq3 increases at confined length scale.  

Figure 39 shows the plane-strain modulus dependence on film thickness. For films thicker 

than 20nm, the modulus is independent of film thickness at approximately 1.0 GPa. This 

behavior is similar to pentacene, which has been shown to have a modulus independent of 
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films greater than or equal to 25nm.112  However, as the film thickness of Alq3 is reduced 

from 20nm to 10nm, the plane-strain modulus appears to increase significantly.  

Decreasing the thickness from 20nm to10nm results in an increase in the plane strain 

modulus from 1.01 GPa +/- 0.27 GPa to 1.69 +/- 0.32 GPa.  A nearly 70% increase in the 

elastic properties of Alq3 is observed when the structure is confined to 10nm. This large 

increase in elastic modulus contradicts typical behavior for glassy polymers where 10nm 

films can exhibit a modulus that is on order 10% of the bulk.   

 

Figure 39. Thickness dependence of Alq3 determined using 2 plate buckling method with 

PS diffusion barrier. Circles indicate PS chains (9.4 kg/mol) while squares indicate (492 

kg/mol) 

 

In the same way that diffusion of a small molecule glassy film into the underlying 

substrate has convoluted Alq3 on PDMS measurements, it is possible to suspect that 



 

77 

diffusion of Alq3 into PS could be responsible for perceived increase in modulus especially 

at confined length scales.  To investigate this possibility, two different molecular mass PS 

were applied as diffusion barriers for Alq3 wrinkling experiments. If diffusion was a 

contributing factor, a difference between barrier films constructed from relatively short PS 

chains (9.4 kg/mol) and highly entangled PS chains (492 kg/mol) might be observed.113  

Figure 39 shows no such divergence in the calculated moduli as a result of the different 

barrier films for Alq3.  The behavior supports that interdiffusion might not be responsible 

for the observed increased moduli of Alq3 for ultrathin films.  In contrast to softened thin 

film polymers, some reports have shown that materials systems like metallic glasses can 

experience increased yield strength and ductility when confined to the nanoscale.114  This 

shows that both enhanced and degraded mechanical properties upon confinement to the 

nanoscale could be expected.  It is plausible that changes in the structure of Alq3 near 

interfaces could be responsible for the deviations in mechanical properties, especially 

considering the very small length scales at which changes in the elastic moduli are 

observed.  For example, it has been reported that changing the deposition conditions for 

indomethacin and trisnaphthylbenzene films can increase Young’s modulus by 19% as a 

result of improved packing of the glass.115  Pentacene films have also been reported to 

demonstrate a change in morphology as a function of thickness from a monolayer to bulk 

dimensions.116,117  It is reported that the ordered film structure degrades to a less ordered 

structure away from the substrate interface and that optimized deposition conditions can 

extend the well-ordered structure to as thick as 19nm.118  In summary, a number of reports 

have shown materials’ properties that depend on thin film thickness.  Data is available to 

show both enhanced and degraded mechanical properties and it is particularly interesting 
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that the behavior of Pentacene films show some similarities to Alq3 above and below 

~19nm transition.  Strain-induced elastic buckling instability for mechanical measurements 

SIEBIMM appears to be an elegant and accurate way to characterize the mechanical 

properties of small molecule thin films used to build organic optoelectronics. 

4.3.3 Thickness Dependence of Mechanical Properties 

Following the success of a buckling based metrology on Alq3, the elastic moduli of 

a series of vacuum deposited triarylamines was determined using SIEBIMM.56,64  Figure 

40 illustrates a representative image of a wrinkled surface for a 64 nm thick TPD film and 

the corresponding FFT determination of λ.   

 

 

 

 

 

 

 

Periodic and well-aligned wrinkles observed occur due to the biaxial strain that is 

applied from the stretching of the PDMS.  A wavelength of 5.85 +/- 1.3 μm is determined 

from a Gaussian fit of λ, which can be used to calculate the modulus (Ēf  of 1.53 +/- 0.17 

GPa) for this film. These measurements are repeated for different triarylamines and film 

thicknesses to provide insight into the role of molecular structure on the thickness 

dependent moduli of small molecule glasses.   

Figure 40. Optical micrograph of a mechanically wrinkled 64 nm thick TPD film on a 

PS barrier film and the corresponding FFT. 
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Figure 41 illustrates the thickness dependencies in the moduli of CBP. The bulk-like 

modulus of CBP is 1.9 +/- 0.4 GPa, but films less than 20nm show a reduced value.  This 

behavior contradicts results from the previously examined Alq3 (Figure 42) where the 

modulus is found to increase at thicknesses below 20nm.104  Modifications of the CBP 

structure (NPD and TPD as shown in Figure 36) that maintain molecular similarity were 

then considered in order to identify a systematic response of the modulus to decreasing 

thickness.  TPD has a slightly higher Tg = 62 °C as compared to CBP (Tg = 60  °C), but 

both are less than NPD (Tg= 95 °C).   

 

 

 

Figure 41. Moduli of vapor deposited (a) CBP and (b) TPD as a function of film thickness. 

The error bars represent one standard deviation from uncertainty propagation of the 

measurements. 
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Figure 41 shows that CBP and TPD share the same dependence of moduli as a 

function of film thickness in addition to a similar Tg. The same behavior has been observed 

in polymers that have attributed a reduced modulus at the polymer–air interface119 that can 

be measured via indentation.120  Thus, a similar effect could be responsible for the 

decreased ultrathin modulus present in CBP and TPD; however, the mechanism for 

increased moduli of the Alq3 and NPD must then still be explained.  Figure 42 illustrates 

the thickness dependent moduli of Alq3 and NPD.  The modulus of NPD is independent of 

thickness for films greater than 20 nm thick (1.65 +/- 0.23 GPa), yet for a 10.3 nm thick 

film, the modulus of NPD increases by approximately 50% to 2.39 +/- 0.33GPa. This 

behavior is also observed in structurally dissimilar Alq3.   

For polymer thin films, it is understood that the proximity of the bulk Tg to the 

measurement temperature is a critical factor in determining the length scale at which 

deviations from the bulk modulus are observed.110  The thin film behavior of polymers has 

Figure 42. Moduli of vapor deposited (a) NPD and (b) Alq3 as a function of film thickness. 

The error bars represent one standard deviation of the data, which is taken as the experimental 

uncertainty of the measurements. 
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been shown to not only depend upon the free surface,121 but also the substrate interface.122  

For the case of vacuum deposited small molecules, molecular packing and packing density 

has been shown to depend upon deposition conditions such as temperature and the 

characteristics of substrate surface.115,123,124  Specifically, the proximity of the substrate 

temperature to bulk Tg has been found to be critical for the density, aging, and thermal 

properties of glasses with an optimal deposition temperature determined to be ~0.85Tg 

(with Tg in Kelvin).124  Temperatures close to Tg enable a monolayer of increased mobility 

that allows for configurational sampling of the molecule as it arrives at the substrate leading 

to increased molecular packing density.123  The enhanced dynamics allow molecules to 

assemble in an efficient space-utilization layer-by-layer fashion.  This mechanism is 

consistent with the 19% and 14% modulus increase reported for IMD and TNB films 

deposited at 0.85Tg as compared to the ordinary glass.115  

The room temperature deposition of CBP and TPD with Tg's of 60 °C and 62 °C 

can be determined to be 0.89Tg and 0.88Tg, which is closer to the optimum conditions of 

0.85Tg. Thus, one would expect significant rearrangement of the surface to improve 

molecular packing. The decrease of moduli for sub-20 nm CBP and TPD films can be 

attributed to the enhanced surface mobility.  An increase in molecular mobility should lead 

to a decrease in the capacity of the material to store stress and hence a decrease in modulus.  

This enhanced surface mobility in the molecular glass is similar to what has been reported 

for PS surfaces125 where a decrease in moduli for ultrathin films has been reported.119  To 

explain the thin film moduli behavior of Alq3 (Tg 175 °C) and NPD (Tg 95 °C), we can 

make a consistent argument.  At deposition temperatures below Tg (<0.85Tg), molecules 

are deposited without significant surface mobility.  This lack of rearrangement creates 
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glasses with lower packing densities, and high enthalpies.  The surface should not be 

mobile as the deposition conditions correspond to 0.66Tg and 0.78Tg for Alq3 and NPD, 

respectively.  Additionally, the deposition surface can impact the structure of the film for 

vacuum deposited molecules.  For example, hole injection barrier for NPD and pentacene 

reveals an order of magnitude difference between the materials deposited on Au or 

electronic polymer layers, which is attributed to the impact of the substrate on molecular 

packing.126  Moreover, an increase in mobility of the first monolayer of pentacene has been 

attributed to a unique packing of the first monolayer of pentacene.127  Thus, the initial 

monolayer of Alq3 and NPD may be more densely packed due to interactions with the 

substrate.  As the film grows, the lack of surface mobility of the molecules leads to a 

decrease in packing efficiency.  This proposed behavior is consistent with the thickness 

dependent moduli reported for Alq3 and NPD.  The bulk Tg of the molecule is shown to be 

a critical factor in assessing the thickness dependent behavior.  Continued mechanical 

characterization of WOLED materials will be needed as devices are implemented in non-

rigid substrate manufacturing processes and flexible devices. 

4.3.4 Thickness Dependence of Optical Properties 

The thickness dependent mechanical properties at confined length scale suggest 

that the molecular structure at the substrate surface could be different than in the bulk.  If 

the growth kinetics leading to such behavior are evident in the mechanical film 

properties, it follows that the optical properties of the film would also change at confined 

length scale.  Here, the interaction with light as measured by VASE is used to model the 

dielectric function by fitting a series of Lorentzian oscillators to match empirical 

results.128  The behavior of individual molecules can be decoupled from the thin film 
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behavior so that some conclusion can be drawn from a systematic change in the aggregate 

optical response as the film thickness decreases.  Comparing a thickness range from 

80nm to 12nm will represent the transitions from bulk towards very thin (approaching 

confinement in two dimensions).   

  

Figure 43. Absorption coefficient as modeled from Lorentz oscillators fit to VASE data 

for Alq3 films 12nm, 22nm, 40nm, and 80nm demonstrating thickness dependence of 

optical properties. 

 

Figure 43 shows the lossy coefficient, k, for a range of thin film thicknesses.  Dilute 

solution of Alq3 has been reported to have absorption peaks near at 4.77eV and 3.22eV.129  

These energies correlate well to the absorption peaks observed in thin film absorption at 

260nm and 385nm respectively.  Because the absorption in dilute solution is assumed to 

have very little molecule-to-molecule interaction, it is likely that the analogous absorption 
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in thin film can be attributed to the individual film molecules that would not have a strong 

dependence on film structure except for the case of preferential orientation of anisotropic 

molecules.  In Figure 43 a third peak that is not well explained by the optical properties of 

the individual molecules exists between 310nm and 340nm.  This absorption is then the 

likely result of aggregate interactions that would be expected to depend on the film 

structure and resulting molecule-to-molecule arrangement that has also been reported 

elsewhere.130  This intermediate energy absorption from aggregates does show a 

dependence on film thickness.  First, the behavior of the thinnest films becomes more like 

the behavior of individual molecules in solution which is consistent with reduced 

aggregation as the film approaches a monolayer.  Second, the energy of the aggregate 

absorption shifts to longer wavelengths which is in agreement with the proposed change in 

molecular packing.  Finally, a decrease in the molecular absorption peaks at 260 nm and 

385 nm could be associated with interdiffusion of Alq3 into the PS layer (diluting the 

absorption as PS is transparent in this wavelength range) as porous Alq3 films show a 

similar trend in decreased k.117  To better understand the substrate or substrate diffusion 

influence on the optical properties observed, spectra collected on both Si and PS/PDMS 

substrates were evaluated.  Figure 44 shows very little substrate dependence on the 

substrate and suggests that the changes in the absorption spectra are likely related to the 

thin film morphology. A change in morphology would also be consistent with the observed 

variation in elastic modulus previously discussed.  It is not well understood how different 

molecular packing influences the absorption energy and intensity, but the thin film 

structure appears to be influencing the observed optical properties of Alq3 in this case.  

Future work could consider of a more diverse set of materials to continue quantifying 
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differences in morphology as a function of film thickness.  It is evident from this data, 

however, that a thickness dependent morphology is supported by both of optical and 

mechanical materials properties. 
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Figure 44.  Optical properties of Alq3 thin films where the index of refraction n and 

extinction coefficient k are measured on Silicon substrates (red) and PS/PDMS substrates 

(blue) for film thicknesses equal to [a] Alq3 = 12nm [b] Alq3 = 20nm [c] Alq3 = 50nm 
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4.4 Conclusion 

The elastic moduli of a series of triarylamine films, i.e. NPD, CBP and TPD, were 

determined utilizing a two plate wrinkling instability as a function of film thickness.  The 

moduli of sub-20 nm thick films tend to depend on the bulk Tg of the material.  For 

materials with Tambient > 0.85Tg, their sub-20 nm films are observed to have a systematic 

decrease from bulk modulus.  This behavior is similar to that of polymeric thin films, which 

is attributed to the free surface effects.  Materials with higher bulk Tg (Tambient < 0.85Tg) 

exhibit an increase in sub-20nm moduli that is attributed to increased packing frustration 

due to initial surface directed packing and lower surface mobility of the material during 

film growth.   

Surface wrinkling131 has been successfully employed to determine the elastic 

moduli of pentacene132 and Alq3.
104  The low modulus of Alq3 glass (~1 GPa) suggests that 

the material could be compatible with non-rigid substrate fabrication.  Moreover, a recent 

report shows that the moduli of conjugated polymers can be well correlated with electronic 

properties such as mobility.133 Annealing of polymeric semiconductor films results in a 

two-fold increase in modulus and a four-fold increase in hole mobility.22  Both electrical 

and mechanical properties of organic electronics are strongly correlated with mass 

density.134 This result suggests that the measurement of mechanical properties can provide 

indirect information regarding the nature of mechanisms that cause a dependence of device 

performance on processing conditions.135  

The properties of organic glasses have also shown to be size dependent at the 

nanometer length scale.112,125,136-139  Moreover, material properties can be influenced by 

both a complex interplay between interfacial interactions and a loss of entropy due to 
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confinement.5  For example, the modulus of Alq3 is significantly enhanced by almost a 

factor of two as the thickness of the film is decreased to less than 20nm.104  However, this 

behavior is counter to the decrease of modulus in the order of magnitude that has been 

reported for ultrathin polymeric films.110,140  These results show the possibility for complex 

behavior of organic thin films at such small length scales, which requires additional 

investigations on a wide range of organic semiconductor materials.  In this section, several 

common hole transporting layers and host materials for OLEDs, CBP, TPD, and NPD were 

examined for their thickness dependent moduli behavior for the purpose of further 

understanding phenomena observed in Alq3. This information will help to describe the 

impact that structure has on molecular glasses at the nanoscale, potentially leading to 

improvements in design for non-rigid substrate manufacturing and flexible electronics. 
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Clavaguera-Mora MT, Rodríguez-Viejo J. Evaluation of growth front velocity in 

ultrastable glasses of indomethacin over a wide temperature interval. The Journal of 

Physical Chemistry B. 2014;118(36):10795-10801. 

109. Perez-Castaneda T, Rodriguez-Tinoco C, Rodriguez-Viejo J, Ramos MA. 

Suppression of tunneling two-level systems in ultrastable glasses of indomethacin. Proc 

Natl Acad Sci U S A. 2014;111(31):11275-11280. 

110. Torres JM, Stafford CM, Vogt BD. Elastic modulus of amorphous polymer thin 

films: Relationship to the glass transition temperature. ACS nano. 2009;3(9):2677-2685. 

111. Zhao J, Kiene M, Hu C, Ho PS. Thermal stress and glass transition of ultrathin 

polystyrene films. Appl Phys Lett. 2000;77:2843. 

112. Priestley RD, Ellison CJ, Broadbelt LJ, Torkelson JM. Structural relaxation of 

polymer glasses at surfaces, interfaces, and in between. Science. 2005;309(5733):456. 

113. Jabbari E, Peppas NA. Molecular weight and polydispersity effects on interdiffusion 

at the interface between polystyrene and poly (vinyl methyl ether). J Mater Sci. 

1994;29(15):3969-3978. 

114. Jang D, Greer JR. Transition from a strong-yet-brittle to a stronger-and-ductile state 

by size reduction of metallic glasses. Nature materials. 2010;9(3):215-219. 



 

90 

115. Kearns KL, Still T, Fytas G, Ediger M. High‐Modulus organic glasses prepared by 

physical vapor deposition. Adv Mater. 2010;22(1):39-42. 

116. Fritz SE, Martin SM, Frisbie CD, Ward MD, Toney MF. Structural characterization 

of a pentacene monolayer on an amorphous SiO2 substrate with grazing incidence X-ray 

diffraction. J Am Chem Soc. 2004;126(13):4084-4085. 

117. Bouchoms I, Schoonveld W, Vrijmoeth J, Klapwijk T. Morphology identification of 

the thin film phases of vacuum evaporated pentacene on SiO 2 substrates. Synth Met. 

1999;104(3):175-178. 

118. Ruiz R, Mayer AC, Malliaras GG, et al. Structure of pentacene thin films. Appl Phys 

Lett. 2004;85(21):4926-4928. 

119. Torres JM, Stafford CM, Vogt BD. Impact of molecular mass on the elastic modulus 

of thin polystyrene films. Polymer. 2010. 

120. Miyake K, Satomi N, Sasaki S. Elastic modulus of polystyrene film from near 

surface to bulk measured by nanoindentation using atomic force microscopy. Appl Phys 

Lett. 2006;89:031925. 

121. Mundra MK, Donthu SK, Dravid VP, Torkelson JM. Effect of spatial confinement 

on the glass-transition temperature of patterned polymer nanostructures. Nano letters. 

2007;7(3):713-718. 

122. Tsui O, Russell T, Hawker C. Effect of interfacial interactions on the glass transition 

of polymer thin films. Macromolecules. 2001;34(16):5535-5539. 

123. Dawson KJ, Kearns KL, Yu L, Steffen W, Ediger MD. Physical vapor deposition as 

a route to hidden amorphous states. Proceedings of the National Academy of Sciences. 

2009;106(36):15165. 

124. Swallen SF, Kearns KL, Mapes MK, et al. Organic glasses with exceptional 

thermodynamic and kinetic stability. Science. 2007;315(5810):353. 

125. Fakhraai Z, Forrest J. Measuring the surface dynamics of glassy polymers. Science. 

2008;319(5863):600. 

126. Koch N, Elschner A, Schwartz J, Kahn A. Organic molecular films on gold versus 

conducting polymer: Influence of injection barrier height and morphology on current–

voltage characteristics. Appl Phys Lett. 2003;82(14):2281-2283. 

127. Mayer AC, Ruiz R, Headrick RL, Kazimirov A, Malliaras GG. Early stages of 

pentacene film growth on silicon oxide. Organic electronics. 2004;5(5):257-263. 



 

91 

128. Djurii A, Kwong C, Guo W, et al. Spectroscopic ellipsometry of the optical 

functions of tris (8-hydroxyquinoline) aluminum (Alq3). Thin Solid Films. 2002;416(1-

2):233-241. 

129. Aziz A, Narasimhan K. Optical absorption in AlQ. Synth Met. 2000;114(2):133-137. 

130. Himcinschi C, Meyer N, Hartmann S, et al. Spectroscopic ellipsometric 

characterization of organic films obtained via organic vapor phase deposition. Applied 

Physics A. 2005;80(3):551-555. 

131. Stafford CM, Harrison C, Beers KL, et al. A buckling-based metrology for 

measuring the elastic moduli of polymeric thin films. Nature materials. 2004;3(8):545-

550. 

132. Tahk D, Lee HH, Khang DY. Elastic moduli of organic electronic materials by the 

buckling method. Macromolecules. 2009;42(18):7079-7083. 

133. O’Connor B, Chan EP, Chan C, et al. Correlations between mechanical and 

electrical properties of polythiophenes. ACS nano.  

134. Al-Douri Y, Abid H, Aourag H. Correlation between the bulk modulus and the 

charge density in semiconductors. Physica B: Condensed Matter. 2001;305(2):186-190. 

135. DeLongchamp DM, Vogel BM, Jung Y, et al. Variations in semiconducting polymer 

microstructure and hole mobility with spin-coating speed. Chemistry of materials. 

2005;17(23):5610-5612. 

136. Ellison CJ, Torkelson JM. Sensing the glass transition in thin and ultrathin polymer 

films via fluorescence probes and labels. Journal of Polymer Science Part B: Polymer 

Physics. 2002;40(24):2745-2758. 

137. Jackson CL, McKenna GB. The glass transition of organic liquids confined to small 

pores. J Non Cryst Solids. 1991;131:221-224. 

138. Yang Z, Fujii Y, Lee FK, Lam CH, Tsui OKC. Glass transition dynamics and 

surface layer mobility in unentangled polystyrene films. Science. 2010;328(5986):1676. 

139. O'connell P, McKenna G. Rheological measurements of the thermoviscoelastic 

response of ultrathin polymer films. Science. 2005;307(5716):1760. 

140. Stafford CM, Vogt BD, Harrison C, Julthongpiput D, Huang R. Elastic moduli of 

ultrathin amorphous polymer films. Macromolecules. 2006;39(15):5095-5099. 

 

  



 

92 

CHAPTER 5 

DEPOSITION SUBSTRATE TEMPERATURE DEPENDENT STRUCTURE AND 

PROPERTIES OF SMALL MOLECULE THIN FILMS 

5.1 Introduction 

Organic light emitting devices based on small molecule thin film materials have 

been researched for many years with most investigations looking at new materials or 

alternative device architectures to improve the efficiency and performance of these devices 

for displays and lighting.141,142  More recently, the kinetics of thin film growth is 

understood to impact the device performance as well due to varied structures achieved by 

either of preferential or random molecular orientations with in the film stacks.97,143,144  

Several methods have been reported to tune thin film structure to achieve more desirable 

charge transport or optical properties.   In the case of physical vapor deposition (PVD) 

accomplished with line-of-site vacuum evaporation that is commonly used for device 

fabrication, the thickness of layers and the orientation of the molecules will have significant 

impact to the relevant optoelectronic materials properties.97,143-145  Results have also 

demonstrated a surface effect where the elastic modulus of PVD thin films (< 20nm) is 

different in thicker films produced using the same deposition parameters.37,104  The kinetics 

of film deposition, annealing procedures, and the resulting materials performance146 are 

then dependent on both film thickness as well as the deposition parameters.147,148 

The highest elastic modulus observed as a result of optimized thickness of NPD 

and/or deposition temperature of NPD is the same and we propose that the orientation of 

packed molecules is a result of both variables.  The thickness dependent modulus could be 

explained as a result of increased mobility at the surface to enable lower energy 
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configurational states while subsequent layers observed in thicker films solidify in higher 

energy configurations because of reduced molecular mobility in the bulk glass as compared 

to the film surface.37,104  The deposition temperature dependence could then be a result of 

substrate temperature contribution to the most energetically favorable film configuration.  

This theory is consistent with reports of ultrastable glass formed by slow vapor deposition 

near the glass transition temperature (Tg) where the increased stability is correlated to 

molecular exploration of multiple configurations to achieve a lower energy configuration.  

149,150  Many studies have investigated the behavior of ultrastable glasses.108,151-154  The 

increased density is shown to improve mechanical properties in comparison to ordinary 

glasses.115  This is of particular interest for OLED because of: 1) correlations between 

mechanical, optical, and electrical properties37,104; 2) the desire for robust, flexible, and/or 

stretchable devices155; 3) the increased reliability from suppressed water uptake in higher 

density films.156,157   

Other researchers have reported controlling substrate temperature to alter molecular 

orientation from edge-on to face-on and a strong correlation between kinetic stability and 

molecular orientation for small molecule OLED films.146,158  In this chapter, the water 

uptake and mechanical properties of NPD as a function of both thickness and deposition 

temperature are reported to show that significant enhancements to the elastic moduli, 

thickness independent moduli, and significant reductions in water uptake can be obtained 

by carefully controlling the substrate temperature during deposition. Controlling substrate 

temperature is shown to be a valuable method to improve the thin film characteristics for 

materials common to small molecule organic electronic devices. 
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5.2 Experimental 

 

N,N'-di-1-naphthyl-N,N'-diphenyl-1,1'-biphenyl-4,4'diamine (NPD) was 

purchased from (Sigma Aldrich) and purified in a four zone furnace as described 

previously.37  Water uptake studies were conducted using a MHz chromium coated quartz 

crystals from (Maxtek).  The substrate crystals were cleaned for 30 seconds in UV ozone 

cleaner (model 342, Jelight, Inc.).  

Mechanical measurements of poly(dimethyl siloxane) (PDMS) from (Dow 

Corning) were taken using a Texture Analyzer (TA.XT Plus, Texture Technologies).  

PDMS was cast onto float glass at a 20:1 (volume: volume) base to curing agent ratio to an 

approximate thickness of 1.5 mm. Prior to curing, the material was degased under ambient 

conditions for 3 h. Curing was performed at 120 °C for 2 h.  The PDMS was then cut into 

75 mm x 25 mm x 1.5 mm pieces for modulus pre-characterization.  The PDMS slabs were 

then placed onto a custom built strain stage56 and pre-strained to approximately 3%. 

Polystyrene (PS, Mn = 9.4 kg/mol, Polymer Laboratories) was spin coated from toluene 

onto clean silicon wafers and the films were annealed under nitrogen at T = Tg + 20 °C. 

The polymer film was transferred onto the PDMS from the spin coated silicon wafer. The 

thickness of the polymer film was determined utilizing a UV-Vis-NIR (250 nm – 1700 nm) 

Variable Angle Spectroscopic Ellipsometer (VASE, M-2000, J.A. Woollam Co., Inc.).  PS 

was employed as a diffusion barrier for NPD into the PDMS. The purified NPD was 

vacuum deposited (Trovato Mfg.) at pressures below 10-7 Torr and deposition rates 

between 1-1.5 Å/s through a 16 mm diameter circular shadow mask onto the chromium 

coated quartz crystals for water uptake studies or onto the polymer film on PDMS for 
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mechanical measurements. The thickness of the NPD film was confirmed by VASE. The 

substrate temperature during deposition was varied from approximately 21 °C to 95 °C. 

The thickness of NPD film, hNPD, on the polymer film on the PDMS substrates was 

determined using the UV-Vis-NIR VASE. Measurements were performed in the pre-

strained state so that the ellipsometric angles could be fit to a three-layer model 

(NPD/polymer/PDMS) with fixed optical constants for the PDMS and polymer film. 

Although the optical properties of these vapor deposited films can be anisotropic,159 the 

thickness of NPD obtained from the fit was observed to be invariant (within uncertainty) 

between isotropic and anisotropic models.  Similarly, the thickness of the NPD on the 

quartz crystal was determined by VASE with the optical constants160 for each chromium 

coated crystal determined prior to deposition of NPD. 

Surface wrinkling metrology of the NPD/polymer layer on the PDMS was used to 

determine the elastic modulus of thin films.131,161,162 Wrinkling was induced by releasing 

the pre-strain in the PDMS at approximately 0.1 mm/s under ambient conditions (T = 21 

°C +/- 2 C).  The surface wrinkles were characterized by either optical microscopy (OM, 

Mitoyo Ultraplan FS-100) with an image resolution of 1024 pixels x 768 pixels or using 

atomic force microscopy (AFM, Park XE-150) in intermittent contact mode. The wrinkling 

wavelength was obtained by analyzing the images using 1D Fast Fourier Transforms. The 

wavelength, , was used to determine the plane-strain modulus of the NPD, 𝐸̅𝑁𝑃𝐷, with a 

two-plate composite model previously described:56,163 

𝐸̅𝑁𝑃𝐷 =

3𝐸̅𝑆𝜆
3
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where 𝐸̅𝑆 and 𝐸̅𝑃 are the plane strain moduli of the PDMS substrate and polymer, 

respectively, P is the height fraction of polymer for the two films (= ℎ𝑃 (ℎ𝑃 + ℎ𝑁𝑃𝐷)⁄ , 

and  is the deviation factor for the neutral axis of bending as: 

𝜅 =
1+𝜙𝑃

2(
𝐸̅𝑃

𝐸̅𝑁𝑃𝐷
−1)

1+𝜙𝑃(
𝐸̅𝑃

𝐸̅𝑁𝑃𝐷
−1)

      (17) 

Water uptake into the thin films was measured using a Maxtek quartz crystal microbalance 

(QCM) with 5 MHz chromium coated quartz crystals. All measurements were performed 

at T = 21 °C +/- 2 C with nearly saturated water vapor generated in a bubbler system. The 

amount of water absorbed was determined by previously described method according to 

the Sauerbrey equation: 

        (18) 

where ∆f is the change in frequency, ∆m is the change in mass, f is the measured resonant 

frequency, A is the electrode area (0.25 cm2), n is the harmonic at which the crystal is 

driven, Cf is the sensitivity constant of the crystal (57 Hz/g/cm2), μq and ρq are the shear 

modulus (2.95 × 106 N cm−2) and the density (2.65 g/cm3) of the quartz. All measurements 

were repeated three times. 

5.3 Results 

5.3.1 Elastic Modulus Dependence on Deposition Temperature 

The elastic modulus vs. deposition temperature are shown to be independent of the 

barrier film selected in Figure 45 for films that are 50 nm thick. The modulus increases by 

more than 50 % when increasing the substrate temperature from room temperature to 70 

°C. The maximum elastic modulus is observed at about 0.93T/Tg and decreases at 
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temperatures above this value. This maximum is a little higher than the 0.85T/Tg that was 

reported as the optimum substrate temperature for stability of indomethacin (IMC) glass.164 

It was also a little higher than the temperature that resulted in highest density of 

ethylbenzene (0.86-0.91T/Tg).
150 

 
Figure 45.  [a] Substrate temperature vs. elastic modulus for NPD () and AddPENb ()         

[b] Thickness vs. elastic modulus for NPD deposited at 22 ºC (blue) and 70 ºC (red). 

 

Figure 45b shows that the maximum modulus obtained at 70C for NPD is now thickness 

independent for the film thicknesses tested.  In contrast, room temperature depositions 

show relatively high modulus of 2.4GPa for films less than 18nm, but observe about a 50% 

reduction in modulus for films above 20nm.  This suggests a surface effect where the initial 

18nm of deposited NPD leads to packing structure that is independent of temperature and 

results in the moduli that is the highest that we have been able to obtain for NPD. In 

contrast, the films deposited at 22 ºC predict an abrupt change in the structure around 20 

nm that leads to reduced film stiffness.  The same behavior has been reported for the 
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thickness dependence of other vapor deposited glass films at ambient temperature.37,104  

Controlling the deposition temperature to 70 ºC enables the maximum and thickness 

independent modulus of the thin film to be realized in organic electronic devices.  This is 

important new information because the modulus correlated with device optoelectronic, 

mechanical, and reliability characteristics. 

5.3.2 Water Uptake Dependence on Deposition Temperature 

Water uptake for 50nm deposited films are shown in Figure 46 as compared against 

the control substrate only for deposition temperatures 22 ºC, 55 ºC and 70 ºC correlating 

to the range where maximum and minimum elastic moduli were observed.  Environmental 

control to prevent device degradation from ambient moisture is well documented.  The 

reduction in water uptake shown for films deposited correlates to enhanced mechanical 

properties and more ideal reduced absorption of water.  These results are consistent with 

the decreased equilibrium water uptake in ultrastable glasses of IMC157 previously 

reported.  The accuracy of absorption using thin films on quartz crystals can be reduced 

because of the impact of the buried interface on total uptake165,166 Accumulation of water 

at this interface 167-169 can contribute significantly to the total sorption. For the quartz 

crystals used here, the blank, uncoated crystal adsorbs more than 100 ng/cm2. This 

represents 1/3 of the sorption in the NPD film deposited at 22 ºC, while this is > 65 % of 

the total sorption into the NPD film deposited at 80 ºC.  
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Figure 46.  Water uptake for NPD films as measured by QCM at 22, 55, and 70 degrees 

Celsius 

 

 

Figure 47.  Thickness of NPD vs. water uptake 

 

The difference in uptake of the crystal interface as compared to the deposited film would 

predict a non-linear response for water uptake as a function of deposited film thickness or 

a non-zero uptake for zero extrapolated thickness.157  To measure this response, the 

sorption is measured for a series of film thicknesses. Figure 47 shows that this trend is 

indeed linear; however, a relatively large offset in the extrapolated zero thickness uptake 
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is noted.  The offset of about 115 ng/cm2 is similar to what would be expected from the 

blank sensor without film deposition and suggests that the water uptake is highly dependent 

on the interfaces and less dependent on the bulk response of the NPD film intended for 

measurement.   Still, a demonstrated qualitative reduction of uptake in NPD deposited at 

an optimized temperature could indicate a potential to increase device reliability by 

slowing oxidation of device layers from ambient moisture.  

5.4 Conclusion 

It has been demonstrated that the moduli of 50 nm thick (NPD) films can be 

increased from 1.5 GPa to 2.5 GPa by increasing the temperature of the substrate during 

deposition with a maximum in moduli found at T/Tg = 0.93. This maximum in modulus is 

the same modulus obtained for very thin (<15 nm) NPD films deposited at 295 K (T/Tg = 

0.80). However, the modulus of films deposited at this lower temperature abruptly 

decreases to approximately 1.5 GPa for thicker films; the modulus from deposition at T/Tg 

= 0.94 is thickness independent. In addition to the thin film moduli, the substrate 

temperature significantly impacts the water uptake in NPD films. From QCM, the water 

volume fraction at equilibrium with nearly saturated water vapor decreases from nearly 10 

% to less than 2 % as the substrate temperature increases from T/Tg = 0.82 to T/Tg = 0.93 

The properties of physical vapor deposited films of NPD are strongly dependent on 

the substrate temperature during deposition.  The elastic modulus increases with 

temperature to a maximum at 0.93T/Tg for NPD films showing a 50% increase as compared 

to room temperature.  In addition to a substantial change in mechanical properties, 

measurements of water uptake show a factor of 5 reduction in water solubility for films 

deposited at 0.93T/Tg as compared to room temperature.  Substrate temperature control 
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has demonstrated the potential to optimize the properties of organic electronic devices for 

higher performance, integration with flexible electronics, and increased lifetime.   
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APPENDIX A 

LABORATORY SAFETY 
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The work described in this document as well as future research will require 

attention to safety during a variety of lab activities.  Core competency operations will 

include synthesis, refining, storage, handling, thin film deposition, characterization, and 

disposal of OLED materials and/or related chemicals.  The equipment used in these 

processes require careful navigation of hazards due to electrically energized systems, 

compressed fluids, mechanical pinch points, burn hazards/hot surfaces, freeze 

hazards/cryogenic equipment, flammable and/or reactive systems.  Mitigating each of these 

hazards specific to the proposed research and enforcing a safe general laboratory 

environment will be accomplished by strict adherence to ASU’s environmental health and 

safety (EHS) programs.170  The requirements include required in-person and web based 

training, documentation of policy/procedures, assignment of a lab compliance officer, and 

periodic safety inspections.  Most importantly, each researcher should make a personal 

commitment to place their own safety and the safety of adjacent lab occupants as priority 

one.171 

Chemical safety is documented in the ASU Chemical Hygiene Plan.172  The points 

that are most directly applicable to the proposed research are: 

 Standard operating procedures for working with hazardous chemicals 

 Criteria for the use of personal protective equipment and other engineering 

controls when working with extremely hazardous substances 

 A program to ensure proper functioning of fume hoods 

 A program to ensure employee training and access to information 

 Procedures for waste disposal 

 Criteria and procedures for reviewing laboratory process hazards 
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 Chemical inventory lists and material safety data sheets 

 Provisions for medical consultations and examinations 

 Personnel responsibilities and designation of a Chemical Hygiene Officer, a 

safety coordinator and safety committees 

 Extra provisions for the safe use of select carcinogens and substances with 

high acute toxicity 

 Procedures for annual review, evaluation, and updating 

 Procedures for emergencies, evacuations, and first aid 

 Methods used to document and preserve records required by the standard 

Vacuum safety is addressed in the chemical hygiene plan.  Because of the substantial use 

of and modification to vacuum equipment required for device fabrication research in 

addition to the requirement for in-house repair and preventative maintenance of these 

systems, additional considerations are pertinent.  Working on contaminated vacuum 

equipment will require use of additional purge/exhaust ventilation systems, PPE, and 

notification to surrounding workers as compared to the requirements for general lab 

operations.173  Manufacture’s guidelines for vacuum pump should also be studied and 

observed.174  Users participating in device fabrication should have individual equipment 

specific training in addition to completion of a restricted apprenticeship period before 

unsupervised operation is permitted to ensure safe equipment operation.  Electrical safety 

is specific to OLED fabrication due to the high current and/or high voltages present in 

deposition and characterization systems.  In most cases, equipment has sufficient interlocks 

in place to protect users and maintenance/repairs can be performed in a de-energized state.  

Cases where exposure to energized sources is necessary will only be handled by qualified 
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persons as described by ASU’s EHS section 118.170  All procedures for approved research 

activities will be completed in a safe and responsible manner in accordance to ASU 

laboratory rules and regulations. 
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The proposed research will collect electrical and optical data from devices 

fabricated on glass substrates with an active area 0.04 cm2 for each of four devices.  Shadow 

masks replicate each device condition four times on a single substrate to reduce the impact 

of random variation (defects) on collected data.  The instruments used for optoelectronic 

measurements are included in table 1. 

 

Table 1. Equipment used to characterize electroluminescence of optoelectronics. 

Instrument Measurement type 

Keithley 2400 source meter Voltage (V) 

Keithley 2400 source meter Current (A) 

Keithley 6485 picoammeter Photocurrent (A) 

Keithly 4200 Voltage (V) 

Keithly 4200 Current (A) 

Ocean Optics USB2000 EL spectrum 

Ocean Optics USB2000 Radiant power (W=J/s) 

Ocean Optics HR4000 EL spectrum 

Ocean Optics HR4000 Radiant power (W=J/s) 

Photo Research PR670 EL spectrum 

Photo Research PR670 Luminance (cd/m2) 

Konica luminance meter Radiant power (W=J/s) 

Newport 818 Si photodiode Radiant power (W=J/s) 

Hamamatsu Si photodiode Radiant power (W=J/s) 

 


