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ABSTRACT

Scientific workflows allow scientists to easily model and express the entire data pro-

cessing steps, typically as a directed acyclic graph (DAG). These scientific workflows

are made of a collection of tasks that usually take a long time to compute and that

produce a considerable amount of intermediate datasets. Because of the nature of

scientific exploration, a scientific workflow can be modified and re-run multiple times,

or new scientific workflows are created that might make use of past intermediate

datasets. Storing intermediate datasets has the potential to save time in computa-

tions. Since storage is limited, one main problem that needs a solution is determining

which intermediate datasets need to be saved at creation time in order to minimize

the computational time of the workflows to be run in the future. This research thesis

proposes the design and implementation of Pingo, a system that is capable of man-

aging the computations of scientific workflows as well as the storage, provenance and

deletion of intermediate datasets. Pingo uses the history of workflows submitted to

the system to predict the most likely datasets to be needed in the future, and sub-

jects the decision of dataset deletion to the optimization of the computational time

of future workflows.
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Chapter 1

INTRODUCTION

The scientific process increasingly benefits from the use of computation to achieve

advances faster. Many times these computations can be naturally broken into steps

where each step may filter, transform or perform computations on the data it receives

as input from a previous step. Modeling and expressing these workflow computations

has been widely adopted by the scientific community as a directed acyclic graph

(DAG) of computations (see Liu et al. (2015)). These workflows (or scientific work-

flows) have many tasks that take a long time to process and that produce a consider-

able number of intermediate datasets. Because of the nature of scientific exploration,

a scientific workflow is usually modified and executed multiple times, or new scientific

workflows are created that might make use of past intermediate datasets.

Storing intermediate datasets has the potential to save time in computations.

Instead of re-computing a dataset, one could potentially use previously stored values.

Since storage is limited, one main problem that needs a solution is determining which

intermediate datasets need to be saved in order to minimize the computational time

of workflows that will be submitted to the system in the future.

Consider the example of the pulsar search workflow introduced by Yuan et al.

(2012): Swinburne Astrophysics uses a pulsar searching workflow on the observation

data from Parkes Radio Telescope (http://astronomy.swin.edu.au/pulsar/). The tele-

scope produces raw signal at a rate of one gigabyte per second. The raw data contains

the pulsar signals which are dispersed by the interstellar medium. As the potential

dispersion source is unknown, a large number of de-dispersion files is generated with

different dispersion trials. Based on the size of the input beam file, the de-dispersion
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step takes 1-13h to finish and generates up to 90GB of de-dispersion files. Based on

the generated de-dispersion files, different seeking algorithms can be applied to search

pulsar candidates. A candidate list of pulsars will be generated after the seeking step.

Furthermore, by comparing the candidates generated from different beam files in a

same time session, some interference may be detected and some candidates may be

eliminated. The de-dispersion files are frequently used intermediate data. Based on

them scientists can apply different seeking algorithms to find potential pulsar can-

didates. Furthermore, some intermediate data are derived from the de-dispersion

files, such as the results of the seek algorithms and the pulsar candidate list. The

regeneration of any intermediate de-dispersion file from raw data takes approximately

10h. The regeneration delays the scientists from conducting their experiments and

consumes a lot of computational resources. Because of that, some intermediate data

are better to be stored. Unfortunately, scientists are not very good at deciding which

datasets to keep and which to delete.

Some systems provide a solution to that problem (Yuan et al. (2012)). Also

there have been some research efforts in algorithms that determine the data sets

that need to be saved in order to optimize the computation time of the workflows

to be computed (see Zohrevandi and Bazzi (2013)). But that effort has been mainly

applied to systems that can make optimal decisions with full knowledge of the future

workflow submissions. In realistic scenarios this might not be possible, since due

to the nature of scientific exploration, researchers usually need to use the results of

current computations in order to design future workflows.

Another current issue in the field is the divide that exists between academic and

industry-level workflow systems. Academic systems are mostly responsible for the use

of directed acyclic graphs as the model to express workflows of computations. They

have also been adopting the latest research in the area of data reuse optimization
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algorithms. On the other hand, industry-level workflow systems such as Apache Oozie

(Islam et al., 2012) and Apache Airflow (Beauchemin, 2016) have mainly focused on

managing the execution of workflows of highly scalable computations that run in

the successful Hadoop ecosystem (White, 2012). Both Oozie and Airflow have great

monitoring capabilities and are very extensible. Unfortunately they do not provide

any data reuse functionality. There is a need for a system that can manage highly

scalable computations and that provides support for intermediate computations and

data reuse.

In order to tackle those two issues, I have created Pingo, a system that is capa-

ble of managing the computations of scientific workflows for the Hadoop ecosystem.

Pingo also provides a solution to the problem of optimization of data reuse without

knowledge of future submissions of workflows, since it is capable, under some general

and reasonable assumptions, of predicting what intermediate datasets will be needed

by future workflow submissions to the system. The focus of the research is not in the

predictive algorithms themselves, but on designing a plug-and-play framework that is

able to support a variety of algorithms. Pingo also takes care of the management of

storage and provenance information of the intermediate datasets. This work describes

the design and implementation of the system’s features. The need for most of those

features is established from research as well as from my experience using scientific

workflow systems in the past.

1.1 Contributions

Pingo has a commonality with previous systems (Altintas et al., 2004; Yuan et al.,

2012; Deelman et al., 2015) in that it stores intermediate datasets produced by work-

flows with the purpose of skipping the computations of future workflows. But differing

from previous systems, Pingo does it in a “reactive way”. That is, most previous sys-
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tems decide which intermediate datasets to keep in storage with foreknowledge of

the definition of the future workflows that will be submitted to the system. In this

work, I analyze the history of workflows already submitted to the system in order to

determine which datasets might be important to keep for the future. That difference

in design makes it suitable for fast-paced research environments where it is impossible

for the researcher to foresee what are the next steps to take.

Another important contribution of this work is that, to the best of my knowl-

edge, this is the first system bringing management of intermediate datasets and its

computational optimization advantages to the Hadoop ecosystem. A consequential

contribution of designing it with Hadoop in mind is that I have also designed it to be a

scalable multi-user system. There are other smaller contributions scattered through-

out the thesis. For example, in order to support data reuse, the system needs to

make use of a data provenance system that keeps track of the origin of each dataset

stored in the file system. There are many ways of implementing such system, and I

propose the use of a Merkle tree like structure as an efficient solution to determining

the provenance of datasets.

The rest of the thesis is organized as follows: Chapter 2 presents research work re-

lated to the data reuse problem and describes existing systems for managing scientific

workflows. Chapter 3 formally introduces the problem and explores the theoretical

motivations behind the design decisions and tradeoffs of the system. Chapter 4 pro-

vides a detailed description of the design and implementation of the system. Chapter

5 proposes a methodology to evaluate the performance of the decision algorithms

introduced in 3. It also reports the results of that evaluation methodology on Pingo.

And Chapter 6 talks about future directions that can improve the functionality of

the system.
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Chapter 2

RELATED WORK

2.1 Scientific workflows

A workflow is the automation of a process, during which data is processed by a

sequence of computations in a preordered way (Liu et al., 2015). From a concep-

tual point of view, workflows can be divided into two types: business workflows and

scientific workflows (Hollingsworth and Hampshire, 1995; Taylor et al., 2014). Sci-

entific workflows are typically used for modeling and running scientific experiments.

Taylor et al. (2014) defines scientific workflows as the assembly of complex sets of

scientific data processing activities with data dependencies between them. Simple

workflows can be represented as sequences (pipelines) of activities, but the most gen-

eral representation is DAG, where nodes correspond to data processing actions and

edges represent the data dependencies. Scientific workflows must be fully reproducible

(Barker and Van Hemert, 2007). That is, the same results must be obtained after

repeated executions of the computations of the workflow if the same data was used

as input. This requirement introduces the opportunity to store intermediate datasets

to optimize the execution of computations of workflows.

In a workflow, an activity describes a piece of work that forms a logical step within

the workflow representation. The associated data in an activity consists of the input

data and configuration parameters. The execution of an activity is a job or task. In

the literature, the terms activity, job and task are sometimes used interchangeably

and special attention needs to be given to the context where the term is used to

determine if they refer to the definition or to the execution of a task.

5



2.2 Scientific Workflow Management Systems

A Workflow Management System is a system that defines, creates and manages the

execution of workflows. Many seminal works on the topic of workflow management

systems began to appear in the mid 2000’s (Yu and Buyya, 2005; Fox and Gannon,

2006; Gil et al., 2007, e.g.), and many workflow systems were developed, such as

Kepler (Altintas et al., 2004), Taverna (Oinn et al., 2006) and the e-Science project

(Deelman et al., 2009). These legacy systems provided the foundations for the field

of scientific workflows, but were designed with the intent of executing computations

in local standalone machines.

A more advanced example is Pegasus (Singh et al., 2008), a workflow management

system for scientific applications. It enables workflows to be executed either locally

or in a cluster of computers. It has a rich set of application programming interfaces

that allow the construction and representation of workflows as DAGs. It also has

more advanced job scheduling and monitoring facilities than previous systems.

One important capability that has been added as a functionality to some of these

systems (see Yuan et al. (2012)) is the ability to store the computations of interme-

diate datasets with the purpose of optimizing the computation time of future work-

flows that are to be computed by the system and that make use of those intermediate

datasets. For a scientific workflow system, there are two costs associated with run-

ning workflows. On the one hand there is execution cost associated for running the

workflow and on the other hand there is the storage cost for storing intermediate

datasets. Finding a good balance is at the heart of this problem. This optimization

problem is often formulated under the realistic assumption that there is an upper

bound available for storage and trying to make the best use of the available storage.

The problem is also formulated as a cost optimization problem where there are no
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a priori bounds on storage, and costs are associated with units of computation and

storage. In this thesis I adopt the bounded-storage formulation.

Some systems research has included in their efforts research on the topic of op-

timizations for different versions of the data reuse problem. Ramakrishnan et al.

(2007) addressed the problem of minimizing the amount of space a workflow requires

by removing datasets at run-time when they are no longer required. As mentioned

previously, the research of Yuan et al. (2012) proposes a strategy to find a trade-off

between computation cost and storage cost. Also, some theoretical research has been

done on the data reuse problem itself. For example, Adams et al. (2009) proposes a

model to represent the trade-off of computation cost and storage cost, but does not

give any strategy to solve the optimization problem that can be derived from their

model. Yuan et al. (2011) presented two algorithms as the minimum cost benchmark

of the data reuse problem, one for the case of linear-structure workflows, which takes

O(n4) time (where n is the number of tasks in the workflows), and a general algorithm

for parallel structure. Cheng et al. (2015) improve on the work of Yuan et al. (2011)

by presenting a new algorithm for the “linear-structure” type of workflows that runs

in O(n3) time. Zohrevandi and Bazzi (2013) formally introduce the data reuse prob-

lem under the assumption that the workflows to optimize are known before-hand.

They model the problem using a non-linear integer programming formulation and

show that it is NP-Hard. They also propose two algorithms: a branch and bound

optimal algorithm, and a heuristic algorithm that is on average within 1% of the

optimal answer.

2.3 Parallel Processing Frameworks

The scale of computations has been growing with time, and the ability of the

systems cited above to process large amounts of data and to execute the placement
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of task execution on a distributed environment is limited or can only be done on

High Performance Computing (HPC) systems of expensive hardware. Orthogonal

to the development of workflow management systems, distributed parallel process-

ing frameworks have been designed and developed to meet the growing demands of

computation.

One of such frameworks is MapReduce (Dean and Ghemawat, 2008). It was

originally developed by Google as a proprietary product to process large amounts of

unstructured or semi-structured data clusters of machines with commodity hardware.

It is designed to scale up from single servers to thousands of machines, each offering

local computation and storage. There are multiple implementations of the framework,

the most commonly used being part of the Hadoop ecosystem (White, 2012).

Islam et al. (2012) introduced Apache Oozie, which is Apache Hadoop’s workflow

and scheduling system. Its workflow definition API rivals that of Pegasus, while it

takes advantage of the superior scalability of the Hadoop ecosystem. Unfortunately,

it does not provide any capability to optimize the computation of workflows by saving

the output of intermediate datasets in the hope of skipping the computation of future

actions submitted to the system.
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Chapter 3

THEORETICAL CONSIDERATIONS OF THE DATA REUSE PROBLEM

This chapter discusses the theoretical motivations behind data reuse systems. It intro-

duces the data reuse problem after providing necessary background. It also presents

two families of algorithms that provide solutions to the problem. The discussion is

organized from a functional standpoint, to provide the theoretical motivations and

tradeoffs that drive the design as they relate to the desirable functions of a system

that attempts to solve the data reuse problem.

3.1 Skipping Unnecessary Computations

If a user submits the description of an action A to be computed, but the system

has previously computed an action B that produced the exact same output that

action A will produce when computed, then action A does not need to be computed.

The output of action B can be returned immediately as the output of action A.

In order to achieve such functionality, there must be an equivalence relation be-

tween actions A and B. This equivalence relation is not only restricted to the de-

scription of the actions provided by the user, but also to the place of the action in

the workflow, since the output of an action is determined by both the definition of

the computations represented by the action as well as the input to that action from

previously computed actions. To define more precisely the equivalence relation be-

tween two actions, precise definitions of Actions and Workflows are needed. The

discussion follows the definitions of the model introduced by Zohrevandi and Bazzi

(2013) in their work, with some slight variations in terminology, and some additions,

such as the concept of History of Workflows.
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3.1.1 Actions

An action can be thought of as a pure function f : A → B. Suppose that the

system is asked to compute f(a). If the system has previously computed b = g(c),

and it can be determined that g = f and that c = a, then the system can skip the

computation of f(a) (if output b has not been deleted). Determining if a and c are

equal to each other is trivial, but it can be time consuming if the inputs are large.

Determining if f and g are equivalent is in general undecidable (Turing, 1937).

But comparing actions to pure mathematical functions is not completely accurate.

Gifford and Lucassen (1986) say that a pure function is a function that is ”referentially

transparent: it does not cause side-effects, its value is not affected by side-effects, and

it returns the same value each time it is evaluated.” In other words, the function result

cannot depend on any hidden or random information or state that may change while

the function executes, or across two different executions of the function. In some

cases, as next chapter shows, there will be nothing stopping actions from reading

values from the outside environment, or from using randomization. Users can also

submit binary files (instead of source code) for execution, or computations with third

party library dependencies over which the system has no control.

Because of these difficulties, a system needs a practical approach to determine

the equivalency between two actions. Instead of looking into the source code (or

executable code) of the actions to determine if they are equal or equivalent, it is more

convenient to look into the configuration file that corresponds to the actions. Those

configurations are simply a collection of parameters such as: path to input folders,

path to the executable (or source code) of the action, extra input parameters, etc.

A measure of equivalency between two actions should satisfy the following two

simple properties. The description (or configuration parameters) of an action sub-
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mitted to the system becomes then very relevant, since it is the starting point to

determine equivalence between actions.

1. If two action descriptions represent actions that produce the same output when

executed in an ideal controlled environment, they should be considered

equivalent.

2. If two action descriptions represent actions that produce different output, they

are inequivalent.

The language in the second property is absolute, since the property must be

satisfied at all times for the measure of equivalency to be considered usable. As

we have seen, a challenge of the second property is that computations performed

by actions might not be pure functions. Because of that, if the end user thinks

that the execution of an Action A might produce a different output to that of an

existing output of an equivalent previously submitted action B, then the user must

let the system know that no optimizations should be applied on action A and that

its computation must be executed.

3.1.2 Workflows

In essence, a workflow is a DAG where nodes correspond to actions or to orig-

inal datasets (datasets not derived from the computation of an action). A directed

edge from a node a to a node b means that the output of action A is used as input

by action B. Actions are identified with the lower case letter a (a1, a2, ..., an), orig-

inal datasets with the lower case letter o, and derived datasets with the lower case

letter d. Functional notation is used to represent actions’ outputs from inputs. For

example, if action a1 takes as inputs original dataset o1, derived dataset d2 and the
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output of action a3 on original dataset o2, action a1’s output d1 is represented as:

d1 = a1(o1, d2, a3(o2)).

A topological sort of the workflow dictates a possible order of execution of the

computations of the actions: actions with no parents, or actions whose parents’ out-

put are already known, can start executing whenever computational resources are

available. The fact that the workflow is a DAG guarantees that all actions in the

workflow will be computed at some point in time, given that there are no malformed

computations or failures. Chapter 4 has a complete discussion of failure handling.

Equivalence of actions in the workflow setting

Consider the previous example of the definition of action a1. What strategy can be

devised to efficiently determine if its corresponding output dataset d1 is already in

storage? As a starting point, for every dataset di kept in storage, the system needs

to keep some accounting, including the definition of the workflow that produced di.

Then it is possible to search over those definitions to find one that matches the current

workflow submitted to the system.

In order to analyze the running time complexity of such problem, let us look

at a naive search algorithm (Algorithm 1). The algorithm takes as input action a

and hypothetical procedure E, whose job is to compare two action descriptions for

equivalency, returning true if they are equivalent, and false otherwise.

The algorithm goes over each dataset di in storage, and uses a simple Breadth

First Search (BFS) strategy to compare the DAGs induced by the ancestors of both

actions a and ai (where ai is the action whose output is di). If it finds an dataset a′

whose DAG is equivalent to the DAG that produced a, it returns the output dataset

of action a′, otherwise, it returns None. Notice that for simplicity, the algorithm

assumes that parent actions of an action are given to the corresponding queue in
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Algorithm 1 Naive dataset search algorithm:

1: procedure DatasetSearch(a,E)
2: for dataset di in storage do
3: ai ← action(di) . ai is action that outputted di
4: Q← queue(), P ← queue()
5: Q.add(di), P.add(a)
6: areEqual← True
7: while Q not empty and P not empty do
8: q ← pop(Q), p← pop(P )
9: if E(q, p) then
10: Q.addAll(parents(q)) . parents of q in the workflow
11: P.addAll(parents(p)) . parents of p in the workflow
12: else
13: areEqual← False
14: Break
15: if areEqual and Q.size = 0 and P.size = 0 then return di

return None

a correct order, so that when it pops them from the queue to compare them, they

correspond to each other. Chapter 4 discusses how that assumption is valid for some

action types, but not for others.

To analyze the running time of Algorithm 1, let m be the number of datasets in

storage, and let M and N be the number of edges and of nodes of the submitted

workflow. The running time of the algorithm would then be O(m(M +N)).

The hashing alternative

Another strategy that can be used to determine if an action’s output already exists in

the storage system is hashing. Given an action node ai in a workflow, it is possible

to recursively compose the description of action ai together with the descriptions

of its parent actions to produce a hash value that “uniquely” identifies dataset di

produced by action ai as output; then compare that hash value with the hash values

corresponding to the actions of the datasets stored in the system in order to find

an equivalent dataset. This idea is similar to the concept of a Merkle tree (Merkle,

1990). Merkle trees are binary (or more generally, k-ary) trees where each non-leaf
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Figure 3.1: HYPOTHETICAL WORKFLOW AND ITS CORRESPONDING
HASH STRUCTURE

node is the hash of the concatenation of its children, and each leaf node is the hash

of one file from the collection. In general for a workflow (see Figure 3.1) its hash

structure is not a tree but a DAG. Also, for each node in the hash structure, its

corresponding hash value is not just the concatenation of its parents’ hash value but

also the configuration parameters of the action.

Algorithm 2 Action Hash

1: procedure ActionHash(O,PO, h)
2: concatenationString ← “”
3: PO.sort()
4: for action A in PO do
5: concatenationString.append(ActionHash(A,PA, h))

6: concatenationString.append(h(CO))
7: return h(concatenationString)

Algorithm 2 formally presents the procedure to find the hash value of any action in

a workflow definition. It receives as parameters action O, the set PO of parent actions

of O, and a hash function h. The algorithm refers to the configuration parameters of

an action O with notation CO. Assuming that hash function h is perfect, it is possible
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to show that Algorithm 2 produces two different hash values for actions A and B if

A and B are not equivalent.

Let A and B be to non-equivalent actions. As case 1, suppose that CA and CB

are different, then step 5 of Algorithm 2 guarantees that ActionHash(A,PA, h) 6=

ActionHash(B,PB, h).

On the other hand, consider case 2 where CA = CB. Since A and B are not

equivalent, it must be the case that one of the parent actions of A (call it C) is not

equivalent to the corresponding parent action of B (call it D). Consider case 2a

where C and D are not equivalent because CC 6= CD, then ActionHash(C,PC , h) 6=

ActionHash(D,PD, h) by the proof of case 1. Then step 4 of Algorithm 2 guarantees

that ActionHash(A,PA, h) 6= ActionHash(B,PB, h). Consider case2b where C and

D are not equivalent but CC = CD, then there must be some ancestor actions of C

and D that are not equivalent because their corresponding configuration parameters

are not equal, and the argument of case 2a also applies to case 2b.

The configuration of an action includes the path to the executable file of the

action, the input datasets, identified by the hash value of its corresponding action,

and other input parameters. Chapter 4 explains more details about the configuration

of actions.

There are enough elements that allow us to arrive at certain conclusions regarding

the viability of the approach. Firstly, comparing the hash value of action ai to the

hash values of actions whose datasets are in storage is something that can be done

in constant time with the proper indexing structure. Secondly, since it is impossible

to know beforehand the set of keys that are going to be hashed, the possibility of

perfect hashing is discarded, and at least a lower bound analysis of what would be

the probability of a clash between the hash signatures of non-equivalent actions is in

place.
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Assume that n is the number of bits of the hash signatures produced by the

hashing algorithm, and that N is the number of datasets currently in storage. First,

I provide a lower bound of the probability of a single collision on the leafs. There

are 2n possible hash values. Assuming that all of them have the same probability

of occurring (see random oracle model by Bellare and Rogaway (1993)), then the

probability that all the N hash values are different, 1− p(N) is:

1− p(N) = 1× 2n − 1

2n
× 2n − 2

2n
× ...× 2n −N + 1

2n

1− p(N) =
2n × 2n − 1× ...× 2n −N + 1

2nN

1− p(N) =
2n!

2nN (2n −N)!

(3.1)

Then p(N) is the probability that at least two of the N hash values are the same.

For n = 80 (SHA-1 function) and N = 1, 000, 000, the probability of a collision is

4.135580766728708e− 13.

Now, take for example, two simple binary trees with two leaves. Let tree 1’s leaves

be A and B, and tree 2’s leaves X and Y . The probability that the tree hashes collide

at the root is the probability that (h(A), h(B)) 6= (h(X), h(Y )) ∧ h(h(A), h(B)) =

h(h(X), h(Y )) plus the probability that (h(A), h(B)) = (h(X), h(Y )). The prob-

ability of the second part is equal to p(N)2, and the probability of the first is

p(N) ∗ (1 − p(N)2). The total probability becomes p(N) + p(N)2 − p(N)2 ∗ p(N),

which is slightly greater than p(N), the probability of a single collision. As the depth

of the tree increases, the probability of a collision on the root also increases slightly.

Coron et al. (2005) show under which conditions collision resistance of the compres-

sion function f is sufficient to obtain collision resistance of the hash function of a
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Merkle tree. Their work shows that a compression function like SHA2 is sufficient.

At any rate I introduce a verification step to the search process. The first step of

the search process finds all the datasets whose corresponding workflow’s hash value

is equal to the one of the workflow under consideration. The second step compares

the workflows themselves to determine if they are equivalent.

3.2 Bounded storage space

Placing a constraint on the amount of space available to store intermediate datasets

makes the problem more interesting. There are physical limitations and technical lim-

itations that won’t allow us to have unlimited space. Therefore, at most moments in

time, the system needs to decide which datasets to keep in storage and which datasets

to delete. The system also has enforce the decisions.

3.2.1 The History of Workflows

The concept of History of Workflows becomes useful when the constraint of

bounded storage capacity is added to the system. Since the final objective is to

optimize the time of computing future workflows, the decision system can be thought

of as an optimization problem that tries to “guess” which datasets will be more

relevant in the future. How to accurately predict which datasets are needed in the

future is an open question that has multiple valid answers. Most of the potential

valid strategies make use of the history of workflows submitted to the system up to

that point. Different strategies might need different information from the history of

workflows. Because of that, there needs to be an API layer to query the history of

workflows to obtain a diverse set of statistics over specified ranges of time and at

different resolutions.
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3.2.2 The Data Reuse Problem

A core functionality of any workflow management system that wants to tackle

the data reuse problem would be its decision system. The decision system deter-

mines which datasets need to remain and which datasets need to be deleted from

storage. It can either run each time a new workflow is submitted to the system, or

it can run only when space occupied by stored datasets reaches a certain threshold

of the total capacity. The second option makes more sense, since under it the system

remains in compliance with the bounded storage constraint, but uses less computa-

tional resources. The decision system defines an interface that can be implemented

by different decision algorithms to determine which datasets currently in storage need

to be deleted. Let D be the set of datasets currently stored in the file system. The

goal of the algorithms is to output a set B ⊂ D of datasets such that the sum of the

storage that they occupy is greater than or equal to F . Set B needs to be selected

in such a way that there is no other subset B′ of D of storage size equal or greater

than B such that if datasets of B′ instead of B are removed from storage, the system

would spend less time computing future workflow submissions.

The interface takes the following elements as input:

1. The History of Workflows submitted to the system, H = (W1,W2, ...,Wn),

where each Wi is a DAG. It is left to the algorithm to decide if it will use the

entire history or only a subset of it.

2. The set D of datasets currently stored in the file system.

3. s : D → N, where s(di) is the storage space that dataset di occupies in the file

system.
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4. cH : D → N, where cH(di) is the number of times that dataset di appears in

History of Workflows H.

5. t : A → N, where t(ai) is the computational time that it takes action ai to

compute its output di. If action ai has been computed multiple times, the

average of those times is reported.

6. F , the amount of space to free on the file system.

3.2.3 Two families of algorithms

Similar versions of the problem presented above have been studied in other areas

of Computer Science. For example similar problems appear in the operating systems

literature in the areas of memory caches (Smith, 1982) and scheduling (for a survey of

algorithms, see the work of Ramamritham and Stankovic (1994)). But I have found

the nature of the problems in the field of web caching and prefetching to be the most

similar to the data reuse problem. Web caching and prefetching techniques play a key

role in improving web performance by keeping web objects that are likely to be visited

in the near future closer to the client. They exploit both the temporal and spatial

locality for predicting revisiting objects. In their context, spatial locality is modeled

as a graph of objects. That characteristic makes their solutions more suitable for

application to the data reuse problem in workflows, since one can think of the DAG

that defines the workflows as a way of representing “spatial locality”. For excellent

surveys of web caching and prefetching algorithms, see the works of Wang (1999) and

Ali et al. (2011).

This section introduces two families of algorithms that solve the problem intro-

duced in Section 3.2.2 with varying degrees of success. They use the most basic ideas
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from the caching literature referred above. Chapter 5 introduces a methodology to

evaluate the algorithms’ performance from a practical standpoint.

Least Valuable Algorithm Family

The idea of algorithms in the Least Valuable Algorithm Family is to retain in storage

the datasets with the most valuable datasets, according to some evaluation metric.

Implementations of this base algorithm define their own evaluation metrics. For exam-

ple, Algorithm 3 defines value as the number of times the dataset is used throughout

the history of workflows times the time it takes to compute such dataset. That is a

very simple definition of value, but provides the most straightforward implementation.

Algorithm 3 is a good baseline to compare against.

Algorithm 3 Least-Valuable-Datasets Algorithm

1: procedure LeastValuable(H,D, cH , s, t, F )
2: datasetV alues← List()
3: for di in H do
4: datasetV alues.append((di, cH(di) ∗ t(di)))
5: sortedDatasetV alues← sortByV alue(datasetV alues)
6: spaceFreed← 0
7: toDelete← List()
8: for d, value in sortedDatasetV alues do
9: if spaceFreed ≥ F then
10: break
11: toDelete.append(dataset)
12: spaceFreed← spaceFreed+ s(d)

13: return toDelete

Simple Adaptive Algorithm Family

Algorithms that belong to the LeastV aluableAlgorithm family are a good starting

point, but they have the weakness that they use the entire history of workflows to

compute the value of datasets. That strategy might be out of touch with reality,

especially in fast-paced research settings where more recent datasets are more likely
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Algorithm 4 Adaptive Least-Valuable-Datasets Algorithm

1: procedure AdaptiveLeastValuable(H,D, cH , s, t, F )
2: recencyList← List()
3: n← length(H)
4: for i in from 1 to n do
5: for dataset d in Wi do
6: Wj ← previous workflow where d was used.
7: if Wj is not Null then
8: recencyList.append(i− j)
9: µ← mean(recencyList)
10: σ ← std(recencyList)
11: SH ← H.subList(max(0, int(n− µ− 2σ)), n+ 1)
12: return LeastV aluable(SH,D, cSH , s, t, F )

to be reused than less recent ones. One important question to ask is: How far back

into the history of workflows do we need to look to determine the value of datasets?

I propose a simple adaptive algorithm, given in Algorithm 4. Its strategy is that for

each workflow, for each dataset produced in that workflow, the algorithm samples

how many workflows into the past one has to look back to find the previous time that

such dataset was needed (not necessarily computed). After building that sample of

intervals, the algorithm finds its mean (µ) and standard deviation (σ). By passing

to the LeastV aluable procedure a sub-history of workflows that goes back µ − 2σ

steps into the past, it guarantees that the LeastV aluable procedure receives a history

of workflows that although not complete, its statistics reflect more accurately the

current usage trends of the system.
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Chapter 4

IMPLEMENTATION OF THE SYSTEM

4.1 Bird’s eye overview

The Pingo system is a group of independent processes that together manage sci-

entific workflow computations and their outputs. This chapter first gives a bird’s eye

overview of Pingo, and then explains each of the components with more detail.

Figure 4.1 shows a diagram that explains the interactions between all the compo-

nents in the system. From a user point of view, the interaction process proceeds as

follows: (1) The end-user defines a workflow of computation in JSON format and sub-

mits it to an endpoint of the system. But before submitting the workflow of actions

to the system, the user needs to have placed the files that contain the ”executables”

that carry those computations in a folder in a distributed file system that is accessible

to Pingo. (2) There is a Submission Manager whose function is to parse the JSON

Figure 4.1: ARCHITECTURE OF PINGO
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description of the workflow and to analyze the directed acyclic graph of computations

defined in it in order to determine which actions need to be computed (because their

outputs do not exist in the system). Those actions are assigned one of two states:

WAITING or READY . Those in the WAITING state need as input datasets that

have not been computed yet. Those in the READY state have all their dependencies

solved.

There exists a process called the Action Submitter that is (3) constantly pulling

actions that are ready to be submitted for computation. The Action Submitter

converts the JSON definition of the action into an XML definition that is understood

by Hadoop, (4) and submits the computation to Hadoop for execution (Hadoop here

means any of the supported subsystems of the Hadoop ecosystem, such as MapRe-

duce, Spark, Pig scripts, etc). There can be multiple Action Submitter processes

working at the same time. To synchronize efforts, the processes use a database as

synchronization mechanism to guarantee that no action is submitted to Hadoop twice.

Another independent piece of the system is the Callback Manager. (5) When

an action is submitted to Hadoop, a callback endpoint is provided so that Hadoop can

notify back Pingo with information about the computation: if it finished, failed or

was killed, etc. As a redundancy measure, the Callback Manager constantly polls

Hadoop for information regarding each of the actions submitted for computation. (6)

Once an action finishes computing, the Callback Manager updates the state of the

action and of the dataset produced by the action in the database. It also updates the

state of any action that depends on the output of the computation that just finished.

(7) The Decision Manager is another independent process that frequently queries

the database and the file system to determine which of the datasets produced by ac-

tions should be kept in the file system, and which ones should be deleted. The
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Decision Manager is the predictive brain of the system, and its decisions will affect

the computation time of future workflow submissions to the system.

The last independent process of the system is the Dataset Manager. The

Dataset Manager enforces the decisions of the Decision Manager. (8) It queries

the database for actions whose state has been changed to TO DELETE. (9) If

the dataset is not currently locked by any action, it sends a deletion request to the

Namenode server of Hadoop’s distributed file system.

4.2 The Workflow Definition Language

The JSON format is a good choice for the definition of workflows because its

expressiveness is sufficient for the needs of Pingo, and it is also very human readable.

Bray (2014) defines the set of formatting rules of the JSON format.

As shown in Figure 4.2, a workflow is made up of a name, an start action id,

an end action id and a list of actions.

The workflow definition in Figure 4.2 consists of two actions whose ids are 1 and 2.

In this workflow, action 2 must be executed after action 1 finishes. This is expressed

by making action 1 a parent of action 2.

These are the constraints imposed by the system on the structure of a workflow:

1. A workflow most have at least one action.

2. No two actions can have the same id in a workflow definition.

3. If an action id is referenced somewhere in the workflow definition (they can

be referenced in startActionId, endActionId, and within the array of parentAc-

tions), that action must be defined in the array of actions of the workflow.
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{
"name": "Example Workflow",
"startActionId": 1,
"endActionId": 2,
"actions": [

{
"id": 1,
"name": "action1-name",
"type": "command-line",
.
.
.

},
{

"id": 2,
"name": "action1-name",
"parentActions": [

{
"id": 1,

}
],
"type": "command-line",
.
.
.

}
]

}

Figure 4.2: WORKFLOW DEFINITION

4. The parentActions attribute of an action will define relationships among the

actions that can be represented as a directed graph. Specifically, this directed

graph must be a DAG.

If one of the constraints is not satisfied, the application will throw an error at

workflow submission time.
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4.2.1 Actions

Actions must have id, name and type attributes. They have two optional boolean

attributes: forceComputation and isManaged. If forceComputation is set to True,

it means that the action will compute its output regardless of whether its dataset

already exists in storage or not. If it is set to False, it means that the system has the

freedom to determine if the action will be computed or not. The default is False.

If the attribute isManaged is set to True, it means that the path where the output

of this action will be stored is determined and managed by the system. If isManaged

is set to False, it means that the path where the output of this action will be stored

is not determined or managed by the system, and that the path must be provided

by the user. The system needs to have Read/Write permissions to any path the user

provides, otherwise, the execution of the action will fail when attempting to store

the output. The default value for isManaged is True. The system does not apply

computation optimizations on non-managed actions.

Action names do not need to be unique. An action name is just a mnemonic

resource to help with the recall of what the action does. Also, depending on the action

type, there might be other required attributes too. Currently, Pingo has implemented

functionality for two types of actions: Command-line action and MapReduce

v1.0 action. Only Command-Line actions are fully supported. The roadmap

includes adding support for Spark actions and Sqoop actions.

Command Line Action

A Command Line action is a Java program to be executed by some machine in the

Hadoop cluster. Before the user submits a workflow with the action, they need to have

created an action folder in the Hadoop cluster’s file system that contains the Java
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jar file with the action’s executables, as well as any jars with other libraries needed

by the Java program. The JSON description of the action (Figure 4.3), includes the

main class of the action, as well as any command line parameters that are passed

as arguments to the main class. For each kind of action, there is a contract that

defines the order on which parameters in the action’s JSON description are passed

as arguments to the executables. For Command-Line actions the contract is that the

Main class reads first the configuration parameters given in the field additionalInput

in the order given, and then the rest of the arguments are the paths to the output of

its parent actions, ordered by the id of the parent action.

4.2.2 Determining Action’s output path

There must a one-to-one relationship between an action and its output path,

therefore the output path can also serve as the identifier of an action. As described

in Section 3.1.2, it is better to search for equivalent actions using hashes of actions.

A hash will derive from an action’s description and from its lineage (the hashes of its

parents). Algorithm 5 describes the procedure to produce a unique string. It takes

as input parameters ps and a, where ps is a list with the generated unique string of

parents, and a is the action description. Depending on the type of action a, Algorithm

5 uses a different subroutine to analyze the action’s description. Algorithm 6 shows

the subroutine for the Command Line Action type.

Considerations to keep in mind to design subroutines for new types of

actions

A hash subroutine for an action type behaves like a hash function of that action’s

description. Only the description fields that make that action unique need to be

used. Some of the fields of the JSON description are sequences. Consider, for ex-
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{
"actionFolder": "/user/hadoop/examples/apps/workflows",
"actionId": 1,
"additionalInput": [
{
"key": "sizeInMB",
"value": "306"

},
{
"key": "timeInSeconds",
"value": "199"

},
{

"key": "nameNode",
"value": "hdfs://ec2-23-32.compute-1.amazonaws.com:8020"

},
{

"key": "uniqueRandomInput",
"value": "SNI31N35RS"

}
],
"forceComputation": false,
"mainClassName": "io.biblia.workflows.job.Main",
"name": "action1",
"parentActions": [

0,
2,
3

],
"type": "COMMAND_LINE"

I}

Figure 4.3: COMMAND LINE ACTION DEFINITION

Algorithm 5 Action Hashing from Description and Lineage

1: procedure ActionHashing(ps, a)
2: concatenationString ← “”
3: for parentString in ps do
4: concatenationString.append(parentString)
5: concatenationString.appendSeparator()

6: if a.type is COMMAND LINE then
7: concatenationString.append(CommandLineActionHashing(a))
8: else
9: throw NotSupportedOperation exception

10: return hash(concatenationString)
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Algorithm 6 Command Line Action Hashing

1: procedure CommandLineActionHashing(a)
2: concatenationString ← “”
3: concatenationString.append(a.name)
4: concatenationString.appendSeparator()
5: for key, value in additionalInputs do
6: concatenationString.append(key)
7: concatenationString.appendSeparator()
8: concatenationString.append(value)
9: concatenationString.appendSeparator()

10: return concatenationString

ample, the additionalInput field in Figure 4.4. In the case of a COMMAND LINE

action, the order of additional input parameters matters, since they are designed to

be passed as arguments to the Main class of the action. Since order matters, the two

examples of Figure 4.4 represent two actions that are not equivalent. In the case of

a MAP REDUCE action, order in a sequence field does not matter, and both exam-

ples represent actions that are equivalent. For sequence fields where order does not

matter, the hash subroutine needs to order the elements of the list alphabetically by

key and then value, so that the hash value that corresponds to the action description

is the same, no matter the order of the elements in the list.

4.3 The Action Manager

The Action Manager’s purpose is to submit individual actions to the Hadoop

cluster for computation. Its current implementation in the Pingo system uses Apache

Oozie (Islam et al., 2012) as an intermediary. The Action Manager is safe for use

in a distributed manner, since it has synchronization mechanisms that allow multiple

action managers to work together. This is a description of its functionality:

1. It maintains a synchronized queue Q with the actions to be submitted to the

Hadoop cluster. The queue is capacity bounded and supports operations that
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{
.
.
.
"additionalInput": [
{
"key": "sizeInMB",
"value": "306"

},
{
"key": "timeInSeconds",
"value": "199"

}]
.
.
.

}

{
.
.
.
"additionalInput": [
{
"key": "timeInSeconds",
"value": "199.156048492"

},
{
"key": "sizeInMB",
"value": "306.709032093"

}]
.
.
.

}

Figure 4.4: EXAMPLE WITH TWO DIFFERENT ORDERINGS OF INPUT PA-
RAMETERS

wait for it to become non-empty when retrieving an element and that wait for

space to become available in the queue when storing an element. All operations

are thread safe.

2. The queue is filled by an Action Scraper entity that queries the database for

actions that are ready to be submitted.

3. The Action Manager pops new actions from queue Q and hands them to a

pool of Action Submitter threads that will submit the actions to Hadoop and

will also update the state of those actions in the database.

4.3.1 Action States

In order to support a cluster of servers working as action managers and to avoid

the need to add a dependency to a distributed coordination server such as Apache

Zookeper (The Apache Software Foundation, 2010), the system implements syn-
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Figure 4.5: ACTION STATE TRANSITION DIAGRAM

chronization using the database as a shared resource. It defines a synchronization

oriented semantic for each of the different states of an action.

Actions can be in one of the following states: WAITING, READY, PROCESSING,

SUBMITTED, RUNNING, FINISHED, FAILED, and KILLED. Table 4.1 provides

a complete reference and Figure 4.5 provides the transition diagram of the action

states.

4.3.2 The Action Scraper

Every certain amount of time, the Action Scraper queries the database to find

available actions and adds them to queue Q. Available actions are actions that are in

the READY state, or actions that have been in the PROCESSING state for a long

time. The reason why it queries for actions that have been in the PROCESSING

state for a long time is to account for the rare case where another Action Manager

began processing those actions, but because of some failure the process died before

it finished to process them.
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Action State Description

WAITING The action has been submitted as part of a workflow and is waiting

for parent actions to finish before it can be submitted to Hadoop.

READY The action is ready to be submitted to Hadoop because it either

does not depend on any other action, or because all the actions on

which it depends have finished their computations.

PROCESSING The Action Scraper found a READY action in the database and

has placed it in the actions’ queue of the actions to be submitted.

SUBMITTED The Action Manager removed the action from the queue and

submitted it to Hadoop.

RUNNING Hadoop is running the computations that correspond to the action.

FINISHED Hadoop has finished executing the action successfully.

FAILED A run time error has occurred and the action did not finish execut-

ing.

KILLED The user killed the action after it started executing.

Table 4.1: ACTION STATE DESCRIPTIONS.

Before adding the action to Q, the Action Scraper attempts to update the

state of the action to PROCESSING. If the update fails because the action entity

has changed after it was queried by the scraper, then the scraper drops the action

and does not add it to the Action Manager’s queue. Otherwise, if the update is

successful, it adds the action to the queue. To illustrate how this synchronization

technique is valid, consider the following example with action scrapers A and B and

their corresponding action managers. Both scrapers A and B query the database

for ready actions and both find action a1 to be in the READY state. Without loss

of generality, assume that A is the first scraper to update the state of action a1 to
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PROCESSING. When B also attempts to update the state of action a1, it will realize

that action a1 has already been updated by someone else, and it will immediately

drop it.

The synchronization technique described and exemplified in the above paragraph

is used by other components of the system. In general, that synchronization pattern

can be applied in situations where multiple processes can potentially move an object

o from state S1 to state S3 (in the previous example S1 would be equivalent to the

READY state, and S3 to the SUBMITTED state) but only one of the processes

should be allowed to do it. In order to solve the problem, there is an intermediate

state S2 (PROCESSING in this case). All the processes compete to be the first one

to change the state of o to S2. All the loosing processes drop the processing of object

o, and the winning process carries on.

4.3.3 The Action Submitter

The Action Manager is constantly taking new elements from the queue and

passing them to the Action Submitter threads that submit the actions to Hadoop.

The decision to add actions that have been in the PROCESSING state for a long time

to the queue makes the design of the Action Submitter more careful. The submitter

first attempts to update the state of the action to SUBMITTED. If it succeeds, then

it actually submits the action to Hadoop. If there is an error while submitting the

action, then it changes the state of the action back to READY, which gives that

action the opportunity to be picked again by an Action Scraper at some time in

the future. As an area of future improvement, a ceiling should be imposed over the

number of times that a failing action is resubmitted to the cluster, or otherwise, the

system will keep trying to submit the action forever.
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4.4 The Workflow Manager

The Workflow Manager receives the workflows submitted to the system and

determines which of the actions from the workflow need to actually be submitted

to Hadoop for computation. Those actions are inserted into the database and can

initially be in one of two states: WAITING or READY. If they are in a READY

state, any active Action Manager will pick them up and submit them to the cluster

for computation. If they are in a WAITING state, it means that some of their

dependencies have not been computed yet. The actions will eventually be submitted

for execution once their parents finish executing. The process of how actions in the

WAITING state are notified that their parents finish executing is discussed later in

section 4.5.

4.4.1 Datasets

The Workflow Manager queries for the state of the output dataset of an action

to determine if the action needs to be computer or not. A dataset entity is an

entry of a dataset information in the database; its dataset file is the physical file

in the distributed file system. A dataset entry is always linked in the database to

its corresponding action definition since the dataset path is the same as the hash of

its corresponding action description. Dataset entities can be in one of the following

states at any given time: TO DELETE, TO STORE, TO LEAF, STORED, LEAF ,

STORED TO DELETE, PROCESSING, DELETING and DELETED. Table

4.2 provides a complete reference and Figure 4.6 provides the transition diagram of

the dataset states.

The Workflow Manager processes all the actions of the submitted workflow,

starting from the leaf actions in a Breadth-First-Search manner. If by analyzing
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Dataset State Description

TO DELETE The dataset file does not exist in the file system, but once it does, its

dataset entry will be transitioned to state STORED TO DELETE.

TO STORE The dataset file does not exist in the file system, but once it does,

its dataset entry state will be transitioned to STORED.

TO LEAF The dataset file does not exist yet in the file system, but once it

does, its dataset entry state will be transitioned to the LEAF state.

STORED The dataset file is stored in the filesystem and it corresponds to

an intermediate action. The dataset file will be stored in the file

system until the decision algorithm determines in the future that

is not optimal for the system to keep storing it anymore.

LEAF The dataset file is stored in the filesystem and it corresponds to

a leaf action. The system never removes datasets of leafs actions.

The end-user can manually remove them.

STORED TO DELETE The dataset file is stored temporarily until all other actions that

have claims to it as a dependency finish computing. Once all those

actions finish computing, the system removes the dataset.

PROCESSING The dataset entry is being processed with the purpose of deleting

its dataset file. This is a synchronization state.

DELETING The dataset file is being deleted. This is another synchronization

state.

DELETED The dataset file has been deleted.

Table 4.2: DATASET STATE DESCRIPTIONS.
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Figure 4.6: DATASET STATE TRANSITION DIAGRAM

the action it determines that the action needs to be computed, it calls the prepare-

ForComputation procedure on that action. The prepareForComputation procedure

first creates an action object P in the WAITING state and inserts it to the database.

Also, for each children C of action P that also needs to be computed, the system

marks on the database that C is depending on P , so that C will need to wait for P ’s

output dataset before being ready to be computed. At last, the procedure adds all

the parents of the action P to the queue if they have not already being added.

The Workflow Manager makes the determination if an action needs to be com-

puted as described in Algorithm 7

Three different behaviors of the algorithms described above deserve closer at-

tention. First, on the prepareForComputation procedure, the system marks on the

database that an action C is depending on an action P . This is needed so that the

Callback Mechanism (which will be described later) can find which are the actions

depending on action P when action P finishes computing.
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Algorithm 7 Workflow Manager Algorithm

1: procedure WorkflowManager(Q, W)
2: A← Q.pop() . A is the next action to be processed
3: if A.isManaged==False OR A.forceComputation == True then
4: prepareForComputation(A)
5: else
6: D ← dataset(A)
7: if D == null OR D.state is one of [DELETED, DELETING, PROCESS-

ING, TO DELETE, STORED TO DELETE] then
8: prepareForComputation(A)
9: else
10: if D.state is one of [STORED, LEAF] then
11: if A is a leaf action but D.state == STORED then
12: D.state← LEAF
13: for each child C of action A do
14: if C was marked for computation when processed then
15: addClaim(C,D)
16: if addClaim(C, D) fails because D.state has changed then
17: prepareForComputation(A)

18: else
19: if D.state is in [TO STORE or TO LEAF] then
20: prepareForComputation(A)

Secondly, on the Workflow Manager algorithm, there is a command described as

addClaim(C,D). That command adds a claim from child C to the dataset entity D

in the database, so that the Dataset Deletor system (to be described later) does

not delete dataset D while there is an action that depends on it whose computation

has not been carried yet.

Thirdly, for the sake of correctness of the overall state of the system, I have intro-

duced an inefficiency in the Workflow Manager’s algorithm. Notice that if a dataset

D is in TO STORE or TO LEAF state, the algorithm still prepares action A for

computation. A dataset D is in TO STORE or TO LEAF state if its corresponding

action is currently computing given dataset. This means that some other workflow

submitted to the system is currently computing dataset D. To make the system more

efficient, instead of asking the system to recompute action A, one could make all the

children actions of A to depend on A′ (the equivalent action to action A, but from
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another workflow), and add a claim from the child actions of A to dataset D. The

problem with this approach is that both action A′ and dataset D could be having

their states changed to something contrary to the current situation at the same time

that the state of the children of action A is being changed with outdated information

on the states of A′ and D. Trying to handle that situation would translate into the

introduction of more complex synchronization mechanisms across multiple compo-

nents of the system. For now the benefits of simplicity outweight the efficiency gains

of trying to improve a situation that happens rarely.

4.5 The Callback System

The submission of an action to the Hadoop cluster includes three callbacks.

Hadoop can use them to notify back to the system of any relevant event regard-

ing the execution of the action’s computations. The three callbacks are designed in

such a way that the state of the action remains the same even after multiple calls to

the same callback.

4.5.1 The Success Callback

The first thing the Success Callback does is to change fromWAITING toREADY

the state of any child actions of the currently finished action that are not waiting

for any other parent action to finish. It also changes the state of the currently

finished action to FINISHED. The callback also removes any claims the cur-

rently finished action may have had over datasets. Finally, the callback updates

the state and metadata of the dataset outputted by the currently finished action,

changing it from TO STORE, TO LEAF or TO DELETE to STORED, LEAF

or STORED TO DELETE accordingly. Also, it updates the size the dataset oc-
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cupies in the filesystem. That size is an important metric used by the optimization

algorithm.

4.5.2 The Action Failed Callback

The Action Failed callback is simpler than the success callback. It removes any

claims that the failed action may have had over any datasets. If the action that

failed produced any output or partial output, it changes the output dataset’s state

to STORED TO DELETE regardless of the previous state of the dataset. Also, it

changes the state of the action itself to FAILED.

4.5.3 The Action Killed Callback

The Action Killed callback removes any claims that the killed action may have

had over any datasets. If the action that was killed produced any output or partial

output, it changes that output’s dataset state to STORED TO DELETE regardless

of the previous state of the dataset. Also, the state of the action itself is changed to

KILLED.

4.6 The Dataset Manager

The Dataset Manager handles the deletion of datasets from the file system. Its

architecture is similar to the architecture of the Action Manager:

1. The Dataset Manager maintains a synchronized queue L with the datasets

that need to be deleted from the cluster. The queue is capacity-bounded and

supports operations that wait for the queue to become non-empty when re-

trieving an element, and wait for space to become available in the queue when

storing an element. All operations are thread save.
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2. The queue is filled by a Dataset Scraper process that queries the database

for datasets ready to be deleted.

3. The Dataset Manager takes dataset entries inserted to queue L and hands

them to a pool of Dataset Deletor threads that remove the datasets from the

cluster and update those datasets’ states accordingly.

4.6.1 The Dataset Scraper

Every certain time, the Dataset Scraper queries the database to find available

datasets to be deleted and add them to the queue. Datasets to delete are those in

the STORED TO DELETE state, or datasets that have been in the DELETING

or PROCESSING state for a long time. The reason why it queries for datasets

that have been in the DELETING or PROCESSING state for a long time is to

account for the rare case where another Dataset Manager in another process could

have began processing those datasets, but that process died before finishing to process

them.

Before adding the dataset to queue L, the Dataset Scraper attempts to update

the state of the dataset in the database to PROCESSING. If the update fails

because the dataset entity has changed in the database after it was queried by the

scraper, then the scraper drops the dataset and does not add it to the Dataset

Manager queue. Otherwise, if the update is successful, the action is added to the

Dataset Manager queue.

4.6.2 The Dataset Deletor

The Dataset Manager constantly takes new elements from the queue to pass

them to the Dataset Deletor threads that remove them from the distributed filesys-

tem. The deletor first attempts to update the state of the dataset to DELETING.
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If it succeeds, then it actually deletes the dataset from the file system and up-

dates its state to DELETED. If it does not succeed, or if some other error occurs

while deleting so that it cannot delete, it changes the state of the dataset back to

STORED TO DELETE and stops processing it.

4.7 The Decision Manager

The Decision Manager determines which of the datasets currently stored in the

filesystem should be deleted. The manager has three main components that work

together: A filesystem utility that determines how much space is available at the

time, an Action Rolling Window system and a Decision Algorithm. The Decision

Manager is implemented in such a way that the decision algorithm is a plug and

play piece that can be substituted, with different algorithms optimizing for different

evaluation metrics.

The first step of the decision process is to query the file system utility to obtain

the amount of space currently in use by the intermediate datasets managed by the

system. If the space exceeds a certain threshold, then the decision engine begins its

process:

1. First it obtains a list of the last N submitted actions to the system from the

Action Rolling Window. Using this list of actions, it rebuilds the graph of the

workflows to which this actions belonged to in a special data structure called

Simplified Workflow History.

2. It passes the Simplified Workflow History that comprises the last N submitted

actions to the decision algorithm, together with the amount of space that needs

to freed, and the decision algorithm returns a list of datasets to delete. The
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sum of the storage space of the returned datasets will be at least the amount

of space to be freed.

3. The Decision Manager changes the state of the datasets returned by the decision

algorithm to STORED TO DELETE, leaving in the hands of the Dataset

Manager the actual execution of the deletion of the datasets.
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Chapter 5

EVALUATION METHODOLOGY OF THE DECISION ALGORITHMS AND

RESULTS

This chapter proposes an evaluation methodology for the decision algorithms of Pingo.

It also reports on the evaluation of the two families of algorithms introduced in

Chapter 3.

It is very difficult to obtain enough real-world workflows logs to do an statistically

meaningful evaluation of the system. Bharathi et al. (2008) have one of the few works

in the area of datasets for the evaluation of the performance of workflow systems.

They provide a characterization of workflows from five diverse scientific applications,

describing their composition and data and computational requirements. They also

created a workflow generator that produces synthetic, parameterizable workflows that

closely resemble the workflows that they characterize. Unfortunately, the generator

system does not know of the concept of history of workflows. Each workflow that is

generated by their system is independent of previously generated workflows. Because

of that, their generator is not useful to evaluate the performance of the algorithms

proposed in Chapter 3.

An alternative I have found is to create a new probabilistic generator of workflows

with the ability to generate histories of workflows, albeit not guaranteed to look like

the workflows characterized by Bharathi et al. (2008). Even if the data is not ideal, it

still provides a well defined alternative that allows the comparison of the performance

of the two proposed families of algorithms.
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5.1 Evaluation Methodology

The strategy to evaluate the Decision System is:

1. Probabilistically generate a history H of workflows.

2. Submit the history H to Pingo for computation and record the actual execu-

tion time using the two different algorithm families.

3. Compare the execution time of each family of algorithms.

5.1.1 Workflows generator

The workflow generator creates sequences of workflows in a probabilistic way given

certain parameters. The actions of the generated workflows take as parameters the

size of an output in megabytes and the time of execution of that action in seconds.

The task of those actions is to output a file with random contents and of size specified

by the first parameter and to take for such task the amount of time specified by the

second parameter.

The sequence generator is composed of two probabilistic generators that work

together to produce the history of of workflows. See Appendix A for information on

how to use the generator.

The Action Generator

The first of the generators is the Action Generator. It takes as input the number of

actions to generate and the mean and variance parameters of two normal distributions,

one for the size of outputs and another one for the computational time of the action.

It generates a list of actions, each one with a unique id and its corresponding randomly

generated parameters. The workflow generator uses this list of actions as a pool of

actions from where to select the actions to compose the workflows.
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The Workflow Generator

The Workflow Generator is a little more complex than the Action Generator. Its

purpose is to generate a workflow (DAG) selecting nodes from the pool of actions

created by the Action Generator. Roughly, the algorithm does the following:

1. It selects n nodes from the composition of all previous workflows up to that point

in the history of workflows. It takes good care that if any pair of nodes nodes

a, b among the n nodes are related between each other (antecesor/succesor)

relationship, then the nodes in between them are also included among the n

nodes.

2. It randomly selects workflow size − n new actions from the pool of actions

that are not nodes in the DAGs of the workflows already generated..

3. It creates two normal distributions with parameters provided in the configura-

tion. Let one distribution be the childrenDist and the other one parentDist.

For each action a selected to be part of the new workflow, if action a was se-

lected from previous workflows, use childrenDist to generate the number of

children that this action will have. Otherwise if action a is a new action, use,

childrenDist and parentDist to generate the number of children and the num-

ber of parents that this action will have, respectively.

4. Use a greedy algorithm to create a directed acyclic graph that satisfies the

constraints on the number of children and number of parents a node will have

in the best possible way and return the corresponding workflow.

The parameters used to define the structure of the DAGs are good enough to

produce most of the varieties of histories of workflows possible to imagine. For ex-

ample, Figure 5.1 shows how to generate tree DAGs with very high probability if the
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Figure 5.1: EXAMPLE OF A TREE WORKFLOW

number of parents that an action can have is restricted to only one. (The DAG in

Figure 5.1 was generated with parameters: nb children.mean = 2, nb children.std =

1, nb parents.mean = 1, nb parents.std = 0.00001). Figure 5.2 shows how to gener-

ate DAGs with more complex dependency relationships between nodes. (The DAG in

Figure 5.2 was generated with parameters: nb children.mean = 2.1, nb children.std =

0.0001, nb parents.mean = 2.1, nb parents.std = 0.0001.) Last, Figure 5.3 shows an

example of the varieties of graph produced when the variance of the distributions is in-

creased. (The DAGs in Figure 5.3 were produced with parameters: nb children.mean

= 2.1, nb children.std = 4.5, nb parents.mean = 2.1, nb parents.std = 4.5).

5.1.2 Ideal Execution Time calculation

This section does its little contribution to the evaluation methodology of scien-

tific workflow systems. It defines what is ideal execution time of a history of

workflows. It also discusses an algorithm on how to compute it.
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Figure 5.2: EXAMPLE OF A MORE COMPLEX DAG

Figure 5.3: EXAMPLE OF FOUR DAGS WITH VARIANCE OF DISTRIBU-
TIONS INCREASED
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Consider a sequence H = (W1, ...,Wn) of n workflows that have been submitted

to the system over time, and let S be the storage capacity of the file system. In

sequence H time will be a discrete magnitude with n time steps, and we say that

t = i corresponds to the time when workflow Wi is submitted to the system. The

effective life of dataset d in sequence H is defined as a tuple of time steps (t1, t2),

with t1 being the time step corresponding to the first workflow that creates dataset

d, and t2 being the time step corresponding to the last workflow that makes mention

of dataset d in H. See Figure 5.4 for an example of the effective life diagram of an

hypothetical history of workflows. Time steps are represented by vertical blue lines,

and datasets are represented by horizontal black lines. Dotted ranges in the black

lines (as in dataset d3 and d15 in the figure) mean that the datasets were not part of

the workflows submitted at the corresponding time steps.

An ideal system would only keep datasets in storage exactly for the duration of

their effective life. Let DH be the set of all datasets of a history H. In our analysis,

let s : DH → (N) be a function where s(di) represents the storage that dataset di

occupies on the filesystem. Let also c : DH → (N) be a function where c(di) represents

the average time that it takes to compute dataset di by its corresponding action. At

any given time t there will be a set Mt of datasets in storage, occupying an space

S ′ =
∑

d∈Mt
s(d). S ′ must be less than S, otherwise, it is needed to remove some of

the datasets present at that time to satisfy space constraint S.

Let b(d) and e(d) be the start time and end time, respectively of the effective life

time of dataset d. Since every dataset needs to exist for at least one time step (the

time step corresponding to the workflow that created the dataset), it is only possible

to consider removing datasets from Nt ⊆Mt, where d ∈ Nt if b(d) < t. If the storage

occupied by datasets in Nt is less than S ′ − S, this will lead to a system failure that
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Figure 5.4: EFFECTIVE LIFE DIAGRAM OF DATASETS OF HYPOTHETICAL
HISTORY OF WORKFLOWS

can only be effectively prevented by increasing S or making the submitted workflow

smaller. For simplicity, this analysis ignores such situation.

Determining which datasets to keep and which ones to delete so as to optimize the

total execution time of the history of workflows is an NP-Hard problem. For an ex-

ample reference, see the analysis of the problem of optimizing workflow computations

with constrained storage for the case of two workflows as presented by Zohrevandi

and Bazzi (2013). Because of that, we relax the constraints a little bit and ignore

dependencies among datasets, so that what we call an ideal solution will not be an
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optimal solution. Algorithm 8 describes how to compute the ideal computational

time of a sequence of workflows. Note that it uses Algorithm 9 as a subroutine.

Algorithm 8 Ideal Computation Time algorithm

1: procedure IdealComputationTime(S,H = (W1, ...,Wn), b, e, c)
2: totalT ime← 0
3: for t from 1 to n do
4: Let Mt = {d | b(d) ≤ t ∧ e(d) ≥ t}
5: Let Nt = {d | b(d) < t ∧ e(d) ≥ t} . Nt ⊆Mt

6: Let Pt = {d | d ∈ Wt} . d ∈Mt 6=⇒ d ∈ Wt

7: Let MH = (M1, ...,Mn)
8: Let NH = (N1, ..., Nn)
9: Let PH = (P1, , , , , Pn)
10: for t from 1 to n do
11: Find subset A of Nt such that

∑
d∈A s(d) ≤ S and∑

d∈A computationT imeLeft(d, PH , t, n) is maximum among all possible subsets
of Nt. (This is the classic Knapsack problem which has pseudopolynomial
solutions and good approximations).

12: Let et be the time that workflow Wt will take to compute its actions,
assuming that A is the set of datasets currently present in storage.

13: totalT ime← totalT ime+ et
14: return totalT ime

Algorithm 9 Computation Time Left Subroutine

1: procedure ComputationTimeLeft(d, PH ,m, n, c)
2: timeLeft← 0
3: for t from m to n do
4: if d ∈ Pt then
5: timeLeft← timeLeft+ c(d)

6: return timeLeft

There are to ways in which Algorithm 8 does not find a global optimal value:

1. It does not take into account dependencies among datasets (as defined by the

DAGs that represent the workflows).

2. At each time step t, it greedily finds a local minimum time that is added to

the total result.
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But most good heuristic algorithms that can be proposed to find an ideal com-

putation time of a sequence of workflows will be valid for our purposes, for as long

as they provide results that are always lower than the real computation times taken

by Pingo in computing those sequences of workflows. As further research improves

the Decision System of Pingo so that its prediction capabilities begin to improve,

further research will be needed in order to close the gap between the concepts of the

ideal and the optimal computation time.

5.2 Evaluation Experiments

In evaluation experiments, the main focus becomes evaluating the simple and

adaptive algorithm families under different parameters. All the experiments follow

the same process: (1) Generate a history of workflows using the generator that we

have designed. (2) Submit that history of workflows to the system, one workflow at

a time, and see how much computation time does the system take using different

algorithms. (3) When submitting the workflows to the system, always wait for the

previous submitted workflow to compute in order to submit the next workflow. The

purpose of that practice is to measure the gains in decrease of computation time

that the algorithms provide under the most ideal circumstance. (4) Estimate the

computation time it would have taken the system if we had used no algorithm.

Each experiment was run 5 times using the same configuration parameters and

the results were averaged. The first experiment explores the effect of changing the

storage constraint in the total computation time of a history of workflows. It should

be expected that as the the storage in the system increases, the computation time

reduces. In the second experiment the storage constrain remains fixed. The second

experiment explores instead how the different algorithms behave under different kinds
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of workflows, focusing on changing the percentage of actions from previous workflows

that are included in new workflows.

The experiments run in the Hadoop distribution service provided by Amazon

Cloud Computing, with the default settings, with the only difference that we also

include Apache Oozie among the packages to install (it is not included by default).

Because of the limitations in time to run the experiments, and in storage (more

storage costs more money), the computations of the actions that we run take only

a few seconds, and their output is also relatively small. The main interest running

the experiments is to compare how different algorithms will compare against each

other under different types of loads. I ran a couple of experiments with more real-life

computation time and output sizes and confirmed that the results stay consistent.

5.2.1 How computation time is affected by the amount of storage in the system

This experiment reports how the computation time is affected by the amount of

storage space available in the system. The complete report of the parameters used

to configure Pingo and the workflows’ generator is in Appendix ??. The number

of actions for the experiment is 300, with an average of 10 actions per workflow,

and each workflow repeating half the actions from previous workflows. This means

that on average, a workflow produced by the generator uses 5 new actions from the

300 possible actions it can choose, making the length of the generated sequences of

workflows to be around 60.

Since each action will take an average of 10 seconds to finish, and its output will

have an average size of 10MB, the total average time of our workflows should be 3000

seconds, and the average storage needed to save all of the actions is 3000MB. In the

experiment, the available space of the system is modified at increments of 500MB,

starting at 500MB.
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Figure 5.5 reports the computation time of the runs as a percentage of the compu-

tation time of the runs if all computations are performed. The normalized standard

deviation of the multiple runs was 0.05. There are many interesting comments and

conclusions that are obtained from those results. First of all, as expected, the com-

putation time of the history of workflows decreases as the available storage in the

system increases. The effect can be more easily seen in the simple algorithm. An-

other noticeable result is that as the storage capacity of the system increases, the

simple algorithm approaches the performance of the adaptive algorithm.

Another important conclusion that is derived from the results reported in Figure

5.5 is that the adaptive algorithm is fairly robust. Its performance is not affected

as much by the available storage in the system as it is the case with the simple

algorithm. It is remarkable to see how it achieves excellent performance even with

storage capacity at 500MB. To place the result in perspective, in the runs with storage

capacity at 500MB, the adaptive algorithm performed 6 percent worse than in the

runs with storage capacity at 2000MB, where it achieved its best results.

5.2.2 How computation time is affected by the types of workflows in the history of

workflows

It is possible to produce many different kinds of workflows by playing with the

parameters of the workflow generator. This experiment only focuses in the parameter

that determines the percentage of actions from previous workflows submitted to the

system that are used by new workflows submitted to the system. In the experiment

the parameter changes at 10 percent increments, starting at 5 percent, and ending

at 55 percent. The amount of available space of the system is fixed at 500MB.

The complete report of the parameters used to configure Pingo and the workflows’

generator in Appendix ??.
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Figure 5.5: COMPUTATION TIME AS STORAGE INCREASES

There are no surprises in the results of Figure 5.6. Both, the simple and adaptive

algorithms decrease their computation time as the percentage of previous actions that

a workflow includes increases. This result was expected, since the more previously

computed actions a workflow includes, the more opportunities the Pingo system has

to skip those computations since is likely that the outputs of those computations are

available in storage.

5.3 Conclusions of our evaluations

From the evaluations of the algorithms it can be concluded that the adaptive

family of algorithms will perform better in the most basic scenarios than the simple

algorithms by themselves. In both algorithms, the definition used to assign value to

each action was very simple, and it did not take into account the computation time
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Figure 5.6: COMPUTATION TIME PERCENTAGE AS PERCENTAGE OF AC-
TIONS FROM PREVIOUS WORKFLOWS INCREASES

of an action, only its frequency of usage. Because of that, there is still room for

improvements on the already promising results.

For future evaluations, I propose the creation of more complex adaptive algo-

rithms. The current algorithm works well when the look back parameter does not

probabilistically change much. In real life scenarios, more complex adaptive algo-

rithms should be able to detect the rate at which the look back parameter might be

changing, and adapt to it.

I also want to warn that the evaluation results should be taken with a grain of

salt. The workloads used were synthetically generated. More efforts should be done

in the future to collect workloads that correspond to real-life scenarios.
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Chapter 6

FUTURE RESEARCH

There are many areas where the Pingo system can improve. The first great improve-

ment can happen in the evaluation methodology. All the workflows used to evaluate

Pingo were probabilistically generated. The generation system is designed with flexi-

bility in mind so that it can generate different kinds of workflow loads to the system.

But there is no substitute to real data. Unfortunately, the amount of real data avail-

able to the researcher was not enough and was not completely relevant to the specific

problem that Pingo attempts to solve. More real data needs to be gathered in order

to produce more accurate evaluations on the performance of the decision algorithms

of the system.

Another area of research is the implementation of more sophisticated adaptive

decision algorithms that can handle the most diverse types of workloads submitted

to the system. In this respect, this area of research is very much interlinked to the

previous proposition to gather a more diverse dataset of workflows.

Most of the research done in the area of scientific workflows becomes relevant

and applicable, not in the context of the Decision System of Pingo, but in the

context of the metrics to evaluate the Decision System. Most of the previous

research has focused in finding optimal and near-optimal solutions to the problem

of scientific workflows with constrained space, assuming that we know the entire

history of the workflows that will be submitted to the system from the beginning. In

Pingo, the Decision System does not know the end from the beginning. Instead, it

only uses the previous workflows submitted to the system to predict how the future

workflows might look like. This different approach makes sense in fast-paced research
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settings where researchers don’t know from the start the exact process (and hence

the workflow) that they will follow in their research.

For evaluation purposes it is possible to know the end from the beginning and all

the research from Chapter 2 becomes more directly relevant to our problem. As a

future endeavor, it would be good to do a more throughout exploratory work on the

scientific workflows research literature in order to apply the most relevant produced

results to the evaluation of the Pingo system.

Another important area of future research has to do with the design of the system.

As we have seen, the system is nothing more than a composition of smaller indepen-

dent subsystems that poll data from Hadoop or from a database that keeps the state

of actions and datasets. More research is needed on how to tune the parameters

that control the frequency of this polling events, so that each independent subsystem

carries its own processing computations as effectively as possible without putting to

much strain in the underlying database cluster.

I am sure that the avid reader of this report will have identified some other op-

portunities in which the system can be improved or expanded. I gladly accept any

related commentaries and suggestions about it. The most rewarding news for me as

a researcher is that the system I have created is used and expanded and adapted to

different needs by others. I certainly have attempted to design it with that goal in

mind.
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APPENDIX A

SYSTEMS’ USER GUIDE
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For a complete reference on how to install and use the system, please see the
documentation at http://github.com/jadielam/scientific-workflows.
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APPENDIX B

IMPLEMENTATION OF WORKFLOW GENERATOR ALGORITHM
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import numpy as np
import networkx as nx
import random
import string

def workflow_generator(previous_workflows_union, workflow_size,
nb_previous_actions, total_nb_actions, conf):

#1. Algorithm to determine which are the previous actions to include.
top_sort = nx.algorithms.dag.topological_sort(previous_workflows_union)
previous_actions_indexes = random.sample(range(len(top_sort)),

min(nb_previous_actions, len(top_sort)))
previous_actions_to_include = []
C = list(previous_actions_indexes)
while len(C) > 1:

new_C = []

for i in range(1, len(C)):
source = top_sort[C[0]]
target = top_sort[C[i]]
try:

shortest_path =
nx.algorithms.shortest_paths.shortest_path(previous_workflows_union,
source, target)

if len(shortest_path) > 1:
previous_actions_to_include.extend(shortest_path)

else:
new_C.append(i)

except:
new_C.append(i)

C = new_C

if len(C) == 1:
previous_actions_to_include.append(top_sort[C[0]])

#2. Algorithm to determine the parameters of both the previous actions
#and the new actions to include.
actions_params = {}
nb_children_mean, nb_children_std = conf[’nb_children’][’mean’],

conf[’nb_children’][’std’]
nb_parent_mean, nb_parent_std = conf[’nb_parent’][’mean’],

conf[’nb_parent’][’std’]

for action_id in previous_actions_to_include:
nb_children = int(abs(np.random.normal(nb_children_mean,

nb_children_std)))
actions_params[action_id] = { ’nb_children’: nb_children }

new_actions_lower_bound = len(previous_workflows_union.node)
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new_actions_upper_bound = min(new_actions_lower_bound + workflow_size
- nb_previous_actions, total_nb_actions)

new_actions = range(new_actions_lower_bound, new_actions_upper_bound)
for action_id in new_actions:

nb_children = int(abs(np.random.normal(nb_children_mean,
nb_children_std)))

nb_parents = int(abs(np.random.normal(nb_parent_mean,
nb_parent_std)))

actions_params[action_id] = { ’nb_children’: nb_children,
’nb_parents’: nb_parents}

#3. Create workflow graph
#3.1 Add subgraph from previous workflows
workflow =

nx.DiGraph(previous_workflows_union.subgraph(previous_actions_to_include))

#3.2 Add new items
for action_id in previous_actions_to_include:

nb_children = actions_params[action_id][’nb_children’]
i = 0
j = 0
index_permutations = np.random.permutation(range(len(new_actions)))
while i < nb_children and j < len(new_actions):

tentative_id = new_actions[index_permutations[j]]
nb_parents = actions_params[tentative_id][’nb_parents’]
if nb_parents > 0:

actions_params[tentative_id][’nb_parents’] = nb_parents - 1
workflow.add_edge(action_id, tentative_id)
i = i + 1
j = j + 1
continue

else:
j = j + 1
continue

for action_id in new_actions:
nb_children = actions_params[action_id][’nb_children’]
i = 0
j = 0
index_permutations = np.random.permutation(range(len(new_actions)))
workflow.add_node(action_id)
while i < nb_children and j < len(new_actions):

tentative_id = new_actions[index_permutations[j]]
nb_parents = actions_params[tentative_id][’nb_parents’]
if nb_parents > 0 and tentative_id != action_id and

tentative_id not in nx.algorithms.dag.ancestors(workflow,
action_id):
actions_params[tentative_id][’nb_parents’] = nb_parents - 1
workflow.add_edge(action_id, tentative_id)
i = i + 1
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j = j + 1
continue

else:
j = j + 1
continue

#5. Return workflow
return workflow
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APPENDIX C

PARAMETERS OF EXPERIMENTS

67



{
"nb_actions": 300,
"action_size": {
"mean": 10,
"std": 3
},
"action_time": {
"mean": 10,
"std": 3
},
"workflow_size": {
"mean": 10,
"std": 4
},
"previous_actions": {
"mean": 0.5,
"std": 0.1
},
"nb_children": {
"mean": 2.1,
"std": 4.5
},
"nb_parent": {
"mean": 2.1,
"std": 4.5
},
"workflow": {
"name": "workflow",
"version": "1.0",
"main_class_name": "io.biblia.workflows.job.Main",
"action_folder": "/user/hadoop/examples/apps/scientific-workflows",
"nameNode": "hdfs://ec2-54-80-213-20.compute-1.amazonaws.com:8020"
}
}

Figure C.1: PARAMETERS OF WORKFLOWS’ GENERATOR IN EXPERI-
MENT 1
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{
"nb_actions": 300,
"action_size": {
"mean": 10,
"std": 3
},
"action_time": {
"mean": 10,
"std": 3
},
"workflow_size": {
"mean": 10,
"std": 4
},
"previous_actions": {
"mean": [0.5, 0.15, 0.25, 0.35, 0.45, 0.55],
"std": 0.1
},
"nb_children": {
"mean": 2.1,
"std": 4.5
},
"nb_parent": {
"mean": 2.1,
"std": 4.5
},
"workflow": {
"name": "workflow",
"version": "1.0",
"main_class_name": "io.biblia.workflows.job.Main",
"action_folder": "/user/hadoop/examples/apps/scientific-workflows",
"nameNode": "hdfs://ec2-54-80-213-20.compute-1.amazonaws.com:8020"
}
}

Figure C.2: PARAMETERS OF WORKFLOWS’ GENERATOR IN EXPERI-
MENT 2
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