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ABSTRACT

I study the design of two different institutions to evaluate the welfare implications

of counterfactual policies. In particular, I analyze (i) the problem of assigning

students to colleges (majors) in a centralized admission system; and (ii) an auction

where the seller can use securities to determine winner’s payment, and bidders

suffer negative externalities. In the former, I provide a novel methodology to

evaluate counterfactual policies when the admission mechanism is manipulable.

In the latter, I determine which instrument yields the highest expected revenue

from the class of instruments that combines cash and equity payments.
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Chapter 1

INTRODUCTION

Many economic applications involve institutions in which a planner is interested

in maximizing a certain objective function, but cannot force the agents to (i)

participate, and (ii) take the “right” actions that maximize its objective. Instead,

it has to design the adequate “rules of the game” such that when the agents take

the actions that satisfy their own interest, the final outcome is the one desired by

the planner. In some situations the planner can establish side payments amongst

the participant agents to achieve its objective (e.g. an auction, implementation

of a public project, etc), whereas in others, it is legally and socially impossible

to do so (e.g. allocation of students to colleges, assignment of kidney transplant

donors to patients, etc). The former problems are studied under the literature of

mechanism design, whereas the analysis of the latter have resulted in the emerging

literature of market design.

The design of such institutions have a clear impact on the welfare of agents

who participate, and therefore, it is very important to count with theoretical

and empirical tools that permit to (i) rigorously analyze the current institutions,

(ii) to design which would be the optimal frameworks, and (iii) provide policy

recommendation to practitioners. This dissertation aims to this objective in two

different environments: in the assignment of students to colleges (majors), and in

an auction under securities and externalities.

In the first two chapters we analyze the problem of assigning students to col-

leges (majors) in a centralized system. This is relevant because in many countries

around the world, university seats are allocated using a centralized protocol where
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students report preferences over colleges (majors) to a planner, and the planner

uses such reports -a long with an admission score- as the inputs of a serial dicta-

torship mechanism to assign students to colleges (majors).

The design of such admission systems are under the scrutiny of policy makers,

because the mismatch between students and colleges (majors) have an impact of

the productivity of individuals and the economy itself. However, little is known

of how different admission policies affect assignments. The first chapter addresses

this important question. It provides a new methodology to evaluate counterfactual

admission policies with respect to students’ welfare.

As a sub-product, we introduce a novel methodology to recover students’ pref-

erences from their reports. The importance of this observation lies in the fact that

normally, students are constrained to report fewer options than the total of options

available, and hence they do not have a weakly dominant strategy. In fact, for

many students their optimal strategy involves the manipulation of their reports

(i.e report something different to their true preferences), which imposes a chal-

lenge for the inference problem. That is, how to obtain students’ true preferences

from the manipulated reports.

We implement our methodology using a unique data set from the University

of Costa Rica. In particular we examine different counterfactuals such as the

welfare effects of (i) increasing the number of options to report, (ii) reallocating

seats across majors, and (iii) implementing different affirmative action programs.

Finally, we go beyond the serial dictatorship algorithm and introduce a mechanism

based on a simultaneous ascending auction.

The second chapter aims to answer a design question of the latter environment:

Why do planners around the world restrict the students’ choice? In other words,

why do planners do not let students to report the full list of preferences? This
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question is relevant because when students can report the full list of preferences

the serial dictatorship mechanism is well known to have desirable properties. For

instance, it is a weakly dominant strategy for students to report the truth. More-

over, the final allocation is Pareto optimal and free of envy. However, as soon as

students are restricted, these desirable properties disappear. The puzzle comes

from the fact that with nowadays resources, the cost of letting students to report

the full list is negligible.

The second chapter provides an answer to this puzzle. It establishes that when

the planner itself has preferences over the assignment of students, and students are

sufficiently risk averse, then it is optimal for the planner to restrict students’ choice;

provided that planner and students preferences are completely misaligned (i.e.

the most preferred option from students’ perspective is the worst from planner’s

perspective and viceversa.)

The last chapter analyzes an auction when the final payment from the winner

to the seller is contingent to the realization of the project or asset being auctioned

off by the seller, or the so-called, auctions under securities. In this context we

introduce negative externalities to investigate how the interaction of the securities

and the externalities impact seller’s expected revenue. To simplify the analysis,

we center our attention to second price auctions and four instruments (i) cash,

(ii) equity (i.e where the bids are shares over future project’s revenue), (iii) a

fixed-equity hybrid, where the seller fixes the amount of cash he will request from

the winner, but let the bidders to compete in cash in the auction; and (iv) a

fixed-cash hybrid, where the seller fixes the equity that he will request from the

winner, but let the bidders to compete in equity in the auction. We show that

the fixed-equity hybrid is the instrument that yields the highest expected revenue,

whereas equity yields the lowest. Absent of the externality, equity give the highest
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expected revenue, a result well known in the literature. That is, we show that when

externalities are present, the conclusion that securities that are more sensitive to

bidders’ true types (i.e steeper securities) do not necessarily yield the highest

expected revenue.
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Chapter 2

CENTRALIZED ASSIGNMENT OF STUDENTS TO MAJORS: EVIDENCE

FROM THE UNIVERSITY OF COSTA RICA

Many countries use a centralized admission system, by which students are ad-

mitted to a university. Examples include Chile, China, Costa Rica, Hungary, Iran,

Turkey, The Netherlands, Spain, etc. Typically, students report preferences over

colleges to a social planner, and the planner allocates students to colleges. Such

admission systems are under constant scrutiny by policy makers, because ineffi-

ciencies in the assignments can have negative consequences on students’ careers

and, so, on economic productivity.

Countries exhibit variation in these centralized admissions policies. (For in-

stance, there is variation in the number of options a student can report, as well

as in the affirmative action programs considered.) However, little is known about

how changes to such policies impact the allocation of students to colleges. This

paper uses a novel dataset from the University of Costa Rica’s (UCR’s) 2008 ad-

missions process, to evaluate the impact of different admissions policies on how

students are assigned to majors. In doing so, we propose a new methodology to

recover students’ preferences, and conduct several counterfactual analyses.

In UCR, each student is assigned a score based on the results of a standardized

test and high school grades. Students privately observe their score and then report

an ordered list of majors to the Registrar Office (henceforth, RO). The RO uses

the serial dictatorship mechanism to allocate students to majors. This mechanism

assigns students to majors based on their scores and reported preferences. Roughly

speaking, it orders students by their scores and assigns them to their best major,
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among those with available seats.

If students were allowed to report their complete preferences over all available

majors, then they would have a weakly dominant strategy to report truthfully. In-

deed, for any given reported list, the serial dictatorship mechanism starts revising

the major in the highest position reported to try to allocate the student to that

major. If it is not possible, it turns to the second highest major reported, and

so on. Therefore, there is nothing better than report the true preferences when

students can express preferences over all options available. However, UCR only

allows students to report two options. As such, students may have an incentive

to misreport their true preferences over majors.

This raises a challenge for the inference problem: To evaluate alternate policies,

the researcher needs to obtain students’ preferences over majors. Because the

students are constrained to report only two options, there are two challenges.

First, students report an ordered list over two majors, which can be manipulated.

Second, even if the reports were truthful, the researcher only observes a truncated

order over majors.

We address this challenge by introducing a multi-agent decision approach. The

crucial observation is that the student’s decision problem is conceptually simple.

To understand why, we first note that the outcome of the admissions process

induces a threshold score associated with each major. A threshold is a value such

that students with lower scores cannot obtain a seat in the given major. UCR

publishes information about past threshold scores. In the data, these scores are

stable from year to year. Students can use this information along with their own

scores to estimate the probability of admission to any major. Armed with this

information, students report an ordered list that maximizes their expected utility.

This multi-agent decision approach is founded on the idea that students act
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in a large population of applicants. Therefore, they do not believe that their own

reports affect their probability of admission to any given major.

We use the multi-agent decision approach to recover students’ preferences.

This is done in two steps. First, we recover the students’ ordinal preferences over

majors. Second, we use the ordinal preferences to recover the students’ cardinal

preferences. (The cardinal preferences are necessary, because students maximize

their expected utility given the estimated probabilities.)

First, we provide a “revealed preference algorithm” to recover a minimal set

of ordinal preferences that are compatible with the data. To do so, we assume

that preferences are independent of scores. In addition, we impose two axioms of

rationality on the student’s choice: no cycles and no-dominated choice. This allows

us to use the students’ reports and past threshold scores to obtain their ordinal

preferences. In particular, students with scores above the highest threshold are

guaranteed admissions to any major. As a consequence, they have an incentive to

report truthfully. Their report, thus, constitutes the beginning of a specific ordinal

preference. We then look at students with scores just below the highest threshold,

and use their reports to continue reconstructing ordinal preferences. This process

is continued using the reports of students with lower and lower scores.

Second, we use the recovered ordinal preferences to obtain cardinal preferences.

Specifically, we assign initial cardinal values based on the ordinal preferences ob-

tained in the previous step. Then, we solve the student’s utility maximization

problem to obtain the set of optimal reports. With these reports in hand, we ap-

ply the serial dictatorship mechanism to simulate the assignments in each major.

If, in each major, the simulated assignment matches the actual assignment, then

the process is complete. If, in any given major, the simulated assignment is differ-

ent from the actual assignment, then cardinal utilities are adjusted according to

7



a simple rule. Importantly, the adjusted values have to respect the initial ordinal

preference assignment.

An important caveat is in order: The procedure recovers a set of cardinal prefer-

ences that is consistent with the data. However, these preferences are not uniquely

identified. There may be several preference profiles that are observationally equiv-

alent. The non-uniqueness can arise in either of the two steps. Nonetheless, we

show that our procedure is robust to alternate specifications of preferences.

Overview of the Results We apply our methodology to the UCR dataset. It

contains information of approximately 10,000 students who applied for admission

in any of the 82 majors offered on the main campus.

We can trivially match both the students’ reports and assignments by allowing

each student to have a different preference profile. (For instance, we can give

each student a preference profile where their assigned major has a very large

cardinal utility in comparison with the others.) However, that approach would be

agnostic about the students ordinal preferences over the non-reported majors. As

a consequence, it cannot be used to conduct counterfactuals and evaluate policies.

Instead, we use the revealed preference algorithm. In doing so, we recover 205

different ordinal preferences. These are used to match the aggregate assignments

per major. We show that the recovered cardinal preferences fit the aggregate

assignments with 94% accuracy. This finding has merit per se, since the total

number of possible preference profiles is of the order of 10122.

We compare policies to a benchmark in which the RO uses a serial dictatorship

mechanism and allows the students to report their complete ordinal preferences.

This benchmark has three desirable properties. First, reporting truthfully is a

weakly dominant strategy (Dubins and Freeman

For any given policy, we compare the assignment under that policy to the
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assignment under the benchmark. We do so by focusing on three measures of how

the assignments differ. The first is the fraction of students that obtain a different

assignment from they would obtain under the benchmark. The second is the

euclidean norm between the cardinal utilities associated with the two assignments.

The third is the cardinal aggregate welfare.

Within the context of the serial dictatorship mechanism, we evaluate three

changes in policy: (i) an increase in the number of options to reports, (ii) affir-

mative action programs, and (iii) a reallocation of seats across majors. Later, we

depart from the serial dictatorship and allow the RO to employ a broader class of

mechanisms.

First, we look at the counterfactual in which the RO varies the number of

option that can be reported. When the RO limits the list of options to two, 72%

of the students receive a different allocation than they would obtain under the

benchmark. Increasing the number of options to report decreases the differences

in assignments. Likewise, it decreases the euclidean norm between the cardinal

utilities of the two assignments and it increases the cardinal welfare. The fact

that the cardinal welfare is increasing is non-trivial. When the RO increases the

number of options that can be reported, it both increases the probability that

middle-score students are assigned and decreases the probability that low-score

students are assigned. So, there could be a loss in welfare if middle-score students

are assigned to unpopular majors, for which low-score students have a higher

cardinal utility. In fact, because of this potential loss in welfare, Miralles

Second, we look at the impact of two affirmative action programs. The first

program sets quotas for the target population, and the second provides the target

population with a bonus in their admissions scores. We find that the bonus is

more effective in admitting students from the target population. However, it also
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produces larger distortions in the assignment of the overall population.

Third, we look at the effect of reallocating wasted seats (i.e. seats that were

not filled). We consider allocating these seats in three different ways: (i) to the

ten most demanded majors, (ii) to the five most demanded majors, or (iii) the

most demanded major (medicine). The simulations show that the first scheme

dominates the others. This likely indicates that there is high variability in the

students’ preferences.

Finally, we look at the effect of changing the mechanism, beyond the realm of

the serial dictatorship mechanism. We study two of such mechanisms. The first is,

what we call, the Posting Scores Upfront mechanism (PSU) and the second is an

Ascending Auction mechanism (AA). In the PSU, the RO announces a minimum

threshold required for admissions to any given major. Importantly, the RO com-

mits to this threshold, even if this requires creating additional seats. In the AA,

the RO announces a preliminary-threshold for admission to any given major, and

the students submit their “demand” for a seat. The planner then computes the

“excess demand” in each major, and adjusts the thresholds of some major with

maximal excess demand. The process is repeated until there are no majors with

excess demand. We show that the AA is highly desirable. In particular, under the

AA, only 5% of the students receive a different assignment from the benchmark.

Moreover, it delivers higher cardinal welfare than the benchmark.

Related Literature In a seminal paper, Balinski and Sonmez

There is also a growing literature that addresses the school choice problem

empirically. See, e.g., Hwang

In the college assignment problem (or the problem of assigning students to ma-

jors) a student’s priority is entirely determined by a score. Moreover, preferences

10



are more idiosyncratic and can depend on both unobserved variables (e.g., taste)

and observed variables (e.g., wages, attrition rates, etc). These features make it

difficult to obtain unique identification, even if a parametric model were used. For

this reason, we introduce a non-parametric methodology based on the multi-agent

decision approach.

The multi-agent decision approach is based on the observation that students

act in a large population. As such, they take the probabilities of admission as

given. In other words, students do not believe that their own reports affect their

admission probabilities. Sönmez and Unver (2010) take a similar approach to

analyze the allocation of courses in business schools. The approach is also related

to the literature that analyzes admission systems as large economies. See, e.g.,

Chade, Lewis and Smith

Organization of the Paper The paper is organized as follows. Section 2

presents the background about the higher education system in Costa Rica. Sec-

tion 3 outlines the model and points to comparative statics. Section 4 introduces

and implements the multi-agent decision approach. Section 5 describes the data

and presents descriptive statistics. Section 6 shows the simulation results. Section

7 conducts counterfactual analyses in the realm of the serial dictatorship mecha-

nism. Section 8 conducts counterfactuals beyond the serial dictatorship. Section

9 concludes.

2.1 Background

Higher Education in Costa Rica There are sixty three institutions of higher

education in Costa Rica, of which five are public, fifty three are private and five

11



are international. 1 All public universities absorbs roughly 60% of the total en-

rollment in the country, and the UCR about 25%. 2 Altogether, higher education

institutions offer around 1,100 programs, but the academic offer is highly concen-

trated in the areas of social sciences, economic sciences and education. Moreover,

all the majors in hard sciences, and the majority of majors in arts and natural

resources are only offered in public universities. For instance, crucial majors for

the technological development of the country such as: pure mathematics, physics

and statistics are only offered by the UCR.

The admission process for the public universities is decentralized among uni-

versities but centralized within each university. That is, each institution uses their

own admission system, but the allocation of majors is centralized. In particular

the UCR uses a serial dictatorship mechanism to allocate students to majors. 3

All public universities have well established systems of scholarships that give

tuition waiver and financial assistance to all students who meet the requirements.

Among them, the program of the UCR stands out. As an illustration, in 2013

the UCR transferred around 23 million dollars in scholarships, that benefited 50%

of the enrolled population. The fraction of the beneficiaries increased to 60%

if the stimulus scholarships (i.e. those granted to students who participate in

athletic and cultural groups, or to students with excellent academic performance)
1The five public universities are: The University of Costa Rica (UCR) founded in 1940, the

Costa Rica Institute of Technology (ITCR) founded in 1971, the National University (UNA)
founded in 1973, the University of Distance Education (UNED) founded in 1977, and the Tech-
nical National University (UTN) founded in 2015. The UCR and UNA are comprehensive
universities which offer a large menu of majors in all academic areas, while ITCR and UTN
are specialized in engineering and technical majors. UNED is the main institution of distance
education.

2For more details see http://www.estadonacion.or.cr/educacion2015
3The UNA shares the same admission standardized exam with UCR, but uses a complicated

statistical-mathematical model that stratifies students by region and high-school of origin. The
ITCR applies its own exam and a similar admission system to the UCR. Meanwhile, the other
public universities, and all private universities do not require an admission exam.
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are considered. The tuition for students who do not receive financial assistance

is approximately 315 dollars per semester (for a maximum of twelve credits),

irrespectively of the major enrolled. This amount is considerably lower than the

mean cost of a semester in a private university, which is approximately 800 dollars

in majors that belongs to education or economic sciences; but can ascend up to

4,000 dollars in the case of medicine. 4

Finally, the UCR stands as the main actor in the production of innovation and

scientific knowledge in the region. It concentrates more than 51% of the main

researchers of the country -measured by the number and impact factor of their

publications, counts with forty six research centers, and edits thirty two academic

journals, covering all the academic areas. In contrast, private universities are

mainly focused in instruction, and their participation in the research life of the

country is negligible. 5

In summary, the UCR offers the most comprehensive menu of majors, give

scholarships to all students who meet the requirements, and is perceived as the

best university in the country. As a consequence, the seats it offers in almost

all majors are over demanded. Therefore, it has to use a mechanism to assign

students into majors that respect sutdents’ preferences and priorities.

Admission Process in the University of Costa Rica The admission pro-

cess at UCR is a centralized nationwide process that takes approximately eleven

months. For the academic year starting in March, the procedure starts in April

of the previous year, when potential incoming students pay the fee and register

to take the Academic Aptitude Test (APT); a standardized test that includes
4Recovered from http://www.nacion.com/archivo/Matricula-cursos-privadas. The

amounts were converted to dollar using the average exchange rate of 2013.
5For more details see http://www.estadonacion.or.cr/estado-ciencia-tecnologia
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logical-mathematical and verbal reasoning items. In June, students receive an ap-

pointment and practice material is distributed. The test is administered around

the country during August and September. Admission scores –which determine

students’ priorities in the admission mechanism- are privately communicated to

each student in November. 6

Only students with a score greater than 442 points are considered eligible,

and advance to the next phase in December, where they are asked to report an

ordered list of two major choices. 7 These are the reports that are considered by

the RO to run the admission mechanism and to generate the assignments, which

are publicized in January. Students who are not assigned a major are out of the

university

Once students are assigned a major they have to consolidate the courses they

will take in the incoming semester, since being enrolled in a major is a sine qua non

condition to take courses in the university. In fact, this requirement make many

students to apply to less desired majors but with high probability of admission,

with the sole purpose of being enrolled at the university, and thus able to take

courses. 8

6Admission scores are an equally weighted average of the GPA obtained in high school, and
of the score in the APT. Its range is 200-800 points. There are some majors with special require-
ments like music, painting or architecture, where students also need to approve a specialized
pretest in order to be eligible.

7Technically speaking, students have an additional option if they are willing to list his first
option in two different campuses, but this option is valid for the reduced menu of majors that
are also offered off the central campus. Moreover, students have also the possibility of deferring
his score for at most the next two years.

8In particular, they can take the courses in humanities that are part of the program of study
in all majors. Then, they could transfer to other majors retaking the APT, or taking part of a
very competitive internal process based on the GPA obtained in the first year of study.
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2.2 Theoretical Framework

We index students by s, s = 1, 2, · · · , S, and by an abuse of notation let

S represent the set of students; thus s ∈ S. Likewise, we index majors by m,

m ∈ {1, 2, · · · ,M}, and by the same convention let M also represent the set of

majors; thus m ∈ M . Each major m has a capacity of qm, given by the number

of seats available. We assume that ∑M
m=1 qm ≤ S, that is, at most there are as

many slots as needed to exactly accommodate all students. We let ∅ denotes the

no-major option, which vacuously satisfies q∅ = S.

Student s has private information about his score xs and his preferences over

majors �s. The score xs is a scalar, whereas preferences �s are represented by a

vector us = (u1
s, · · · , uMs ), where u`s represents the utility of student s if he gets

major `.

The score of each student is observed by the RO, who utilizes them to prioritize

students in the admission process. Without loss of generality, we sort students in

decreasing order with respect to their scores. Thus, xs > xs′ if and only if s < s′.

Under this convention, the index of each student determines his priority, and so,

a student s has a priority higher than or equal to k if s ≤ k.

The RO has to choose a procedure to assign students into majors, such that

priorities are not violated. The standard procedure used by many universities

around the world works as follows. Students report an order of preferences to

the RO, which normally allows to list fewer options than the total number of

majors. Then, the RO runs a predefined algorithm to allocate majors, such that

if a student is not assigned he is given the no-major option. This process involves

a large degree of uncertainty for students, because they are given few options to

report, and their assignment depends on preferences and priorities of all other
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students.

A feasible allocation in this environment corresponds to a many-to-one match-

ing, namely a rule that assigns each student to at most one major, and such

that the number of students assigned to a given major is less than or equal to

its capacity. Here, each student’s report corresponds to a k-tuple over the set of

majors M , where 1 ≤ k < M . Thus, ms ∈ Mk. Therefore, given a profile of

reports m = (m1, · · · ,mS), the matching mapping φ gives the allocation φs(m)

to student s.

For each student s we writems(`) to refer the `th major reported inms. When

we want to make clear the dependence of the report to a specific parameter b, we

write m[b](`), nonetheless we omit this notation when it can be inferred from the

context.

Finally, we denote os as the vector that orders the majors according to student’s

true preferences us, and os(`) as his `th preferred major. Therefore, lettingm∗s be

the optimal report of student s, we say that an admission mechanism is strategy-

proof if m∗s(`) = os(`) for all ` = 1, · · · , k < M , s ∈ S and us.

Many of the countries listed in the introduction apply a serial dictatorship

mechanism. The description of the algorithm is as follows:

In step 1. The student with the highest score is considered. He is assigned a

seat at the major reported in the first position.

In step 2. The student with second highest score is considered. He is assigned

a seat at the major reported in the first position if there are available seats;

otherwise, he is assigned a seat at the major reported in the second position.
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In step ` (` > 2). The student with the `th highest score is considered. He is as-

signed a seat at the major reported in the highest position that has available seats.

The algorithm terminates when the reports of all students have been considered

or all the seats have been allocated.

When students are allowed to report a complete order over preferences, the

serial dictatorship mechanism is strategy-proof. However, when students are con-

strained, they have an incentive to misreport. That is the reason for using the

qualifier reported, instead of preferred, in the description of the serial dictatorship

above. Furthermore, without constraints, the serial dictatorship is Pareto-efficient

and free of justified envy. That is, no student with higher score prefers the assign-

ment of a student with lower score over his own assignment.

Despite of these desirable properties, many universities do not let students to

report a full list of preferences, and hence the game of incomplete information

induced by the mechanism does not have an equilibrium in dominant strategies.

In fact, the only players that have a dominant strategy are the students with a

priority higher than or equal to the number of options to report. For the rest of

students we have to model a sophisticated decision problem, as we show in the

appendix 4.4.

2.2.1 Student’s Decision Problem

One important characteristic of this process is that students participate under

the same rules year after year, and so the series of equilibrium outcomes can

reveal information about population preferences and scores. Although not all the

information is available to students, normally the RO publicizes past threshold

scores in each major, which arguably encompasses all the relevant information
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about preferences and scores contained in previous admission processes. If such

data is available to students, it can be used along with their own current scores

to compute their vector of admission probabilities to each possible major.

Fixing the history of past threshold scores in each major, we denote η(m,x)

the ex-ante probability of getting admission into major m given a score of x.

Probabilities are non-decreasing in the score, that is, if s < s̃, then η(m,xs) ≥

η(m,xs̃).

Given a vector of cardinal utilities us and a score xs, student s chooses to

report an ordered k-tuple of majors to maximize his expected utility.

Notice that for a given report of student s, ms, either he gets into the first

major reported or he does not. If he is rejected, either he gets into the second

major reported or does not; and so on. Hence, define

r`−1(ms, xs) =


∏`−1
j=1 1− η(ms(j), xs) for ` = 2, · · · , k

1 for ` = 1

as the probability of not getting admission in any of the first ` − 1 majors listed

in the report ms. Notice that the order matters, since any major chosen imposes

an externality on the following majors in the order.

Thus, the expected utility of each student s can be written recursively as:

V (us, xs) = max
ms∈Mk

k∑
`=1

r`−1(ms, xs)η`su`s (2.1)

The structure of the decision problem is the same as in Chade and Smith

(2006), hence, the solution can be obtained using a greedy algorithm.

We denote m∗s a typical element of the arg max of V (us, xs). Once all stu-

dents solve their respective decision problem, it is possible to construct the profile

of optimal reports m∗ = (m∗1, · · · ,m∗S), which along with the selected mecha-

nism, endogenously determines assignments φ(m∗) = (φ1(m∗), · · · , φS(m∗)) and

18



threshold scores t∗ = (t∗1, · · · , t∗M), where

t∗` = min{xs : φs(m∗) = `}, ∀` ∈M (2.2)

2.2.2 Comparative Statics

In this section we analyze what is the optimal behavior of a student if his

vector of admission probabilities “improves” or if he is allowed to report a higher

number of options.

Definition 1. The report ms is more aggressive than the report m̃s if ms 6= m̃s

and ms(`) � m̃s(`) for all ` = 1, · · · , k.

Theorem 1 (Chade and Smith . Assume that ηs and η̃s are two vector of ad-

mission probabilities such that (i) ηos(`)s ≥ η̃os(`)s for all ` = 1, · · ·M , and (ii)
η

os(`)
s

η̃
os(`)
s

> η
os(`+1)
s

η̃
os(`+1)
s

for all ` < M . Then, m∗s is more aggressive than m̃∗s.

Suppose there are two vector of admission probabilities for student s, η̃s and

ηs, such that the latter offers a higher probability of admission in each major, and

relatively favors the more preferred majors by student s. Theorem two states that

the optimal report of student s is more aggressive under ηs that under η̃s. That

is, he will report a weakly preferred major in each of the k slots given, and will

report a strictly preferred option in at least one of the positions. Notice that this

result is relative just to student s, since even though η̃s favors the more preferred

majors by student s, it does not necessarily hold for all students s̃ 6= s.

Proposition 1. Fix a vector of admission probabilities ηs and let k < k̃ be two

different number of options to report. Then, the optimal report ms,[k̃] truncated to

the first k majors is more aggressive than the report ms,[k].

Proof. Follows immediately from Theorem 1 in Chade and Smith
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Proposition 1 says that given a vector of probabilities ηs, if the number of

options increases, student s will become more aggressive using the first k slots to

report weakly preferred majors. The intuition for this result resides in the fact

that if an additional option is given then the student either (i) will use it to report

a safety school in the marginal slot given, which does not change the report of the

first k positions, or (ii) will report a better option in the first k slots with respect

to his previous report, and will use the marginal slot to report a safety option (i.e.

a major with higher probability of admission).

2.2.3 Justified Envy and Strtegy Proofness in the Large

As we discussed in the introduction, when students are not allowed to report

the complete list of preferences, the mechanism induced by the serial dictatorship

algorithm is not strategy-proof. We now investigate if it satisfies a weaker notion

of strategy-proofness called strategy-proofness in the large (SP-L).

The SP-L concept was introduced by Azevedo and Budish

As the authors point it out, this concept is stronger than a Bayesian Nash

equilibrium, because truthful reporting is a best response against any probabil-

ity distribution, and not only the distribution associated with the corresponding

Bayesian Nash equilibrium. In fact, Budish and Azevedo show that several well

known mechanisms that are not strategy-proof are SP-L.

In our realm, the admission mechanism would be SP-L if for any vector of

admission probabilities, saying the truth were a dominant strategy. It is clearly

not the case. Consider for example a student with cardinal utilities that strictly

order all the majors, but such that the difference between the maximum and

minimum cardinal utility is sufficiently small. Furthermore, suppose probabilities

are strictly increasing in the reverse order of the students’ preferences (i.e. the
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most preferred major has the lowest admission probability, and so on). Then,

the student has an incentive to report the majors with higher probabilities of

admission even though they are not the most preferred.

Another recurrent concept in the analysis of the admission mechanism is the

no-justified envy property (cf. Balinski and Sonmez

Our admission mechanism also fails the no-justified envy test. Indeed, suppose

that students are only allowed to report two options as in the UCR, and that being

out of college is strictly worse than studying any major. Then, take two students

s and s̃ with low adjacent scores (hence very similar probabilities of admission)

but such that student s has very strong cardinal utilities for very popular (over

demanded) majors, whereas student s̃ is indifferent among all majors. Then, it is

very likely that, ex-post, the student s envies the allocation of student s̃. In fact,

in section 4.4 we compute the proportion of students with ex-post justified envy

in our simulation.

2.3 Multi-agent Decision Approach

In this section, we present how to implement the multi-agent decision prob-

lem when the researcher has access to a data set that contains admission scores,

reports, assignments and threshold scores.

The main goal of this exercise is to recover the crucial non-observable variable

of our model: students’ preferences over majors. One uninteresting case is to assign

a different profile of preferences to each student. In that way, for a given vector

of probabilities it is always possible to properly select very high cardinal utilities

for the majors reported, so that the solution of (2.1) coincides with the observed

report. This option would violate the fact that some students tend to have similar

preferences, and so that a few preference profiles can capture the decision process
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in a parsimonious way. Moreover, the preferences recovered would be useless to

conduct counterfactual analysis in a robust way.

We propose the following algorithm to recover cardinal preferences.

2.3.1 Admission Probabilities

The distinctive feature of the model introduced in section 3.2 is that students

take into account past threshold scores to compute their admission probabilities

to each major: η(m,xs).

Let Tm be the series of past threshold scores. We assume that Tm follows a

truncated normal distribution for each major m, and check such assumption by

conducting a Jarque-Bera and a Wilk-Shapiro test on the series of values corre-

sponding to the period 2000 − 2014. In almost all the majors without missing

values, the null hypothesis of normality is not rejected.

Now, given the normality assumption, students compute admission probabili-

ties as follows

η(m,xs) = Φ((xs − µm))/σm)− Φ((tmin
m − µm))/σm)

Φ((tmax
m − µm))/σm)− Φ((tmin

m − µm))/σm)

Here, Φ denotes the cumulative distribution function of standard normal vari-

able, whereas µm, σm, tmin
m and tmax

m correspond –respectively– to the mean, stan-

dard deviation, minimum and maximum of Tm for each major m. 9

2.3.2 Students’ Optimal Portfolio

Once probabilities are obtained from the data, we solve student’s decision prob-

lem stated in (2.1). In general, this problem is fairly complicated, since it entails
9The computed probabilities do not vary significantly if we assume that the series of past

threshold scores follows a uniform distribution instead.
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the maximization of a submodular function over a finite set of alternatives –an

NP hard problem (Lovász, 1982). However, we can use the Marginal Improve-

ment Algorithm (MIA) introduced by Chade and Smith (2006). In short, MIA

is a greedy algorithm that looks for the option that yields the highest marginal

increment in the expected utility at each stage. First, for given student s it sets

the initial portfolio m0
s = ∅ and searches for the option with the largest expected

utility. That is, it chooses a major m1
s ∈ arg maxm∈M η(m,xs)ums and then up-

dates the optimal portfolio to m1
s = m0

s ∪ {m1
s}. In step `, ` ≥ 2 it chooses the

option m`
s ∈ arg maxm∈M\{m`−1

s } η(m,xs)ums and updates the optimal portfolio to

m`
s = m`−1

s ∪ {m`
s}. In other words, at each stage the algorithm picks the major

that yields the largest marginal benefit over the portfolio of majors constructed so

far, and updates the optimal portfolio recursively. It stops when it has chosen the

k locally optimal options. The authors show that the optimal solution provided

by MIA coincides with the global solution of the original maximization problem,

and moreover, that it reaches its solution in a quadratic number of steps.

As pointed out by Fack et al.

To study the assignment problem of students to secondary schools in Ghana,

Ajayi

2.3.3 Allocations and Threshold Scores

Now, when students’ optimal reports m∗ are computed as described above,

they are considered the inputs of a serial dictatorship mechanism, whose solution

becomes the final assignment. Given the final assignments, the threshold score for

major m corresponds to the score obtained by the last student admitted to this

major, as shown in equation (2.2).
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2.3.4 Adjustment of Preferences

The initial cardinal utilities are adjusted according to the performance of the

algorithm with respect to the actual assignment in the data. Specifically, for each

major we compute the difference between the simulated aggregate assignment and

the actual aggregate assignment. If for a given major such difference is positive,

it means that the simulation is assigning more students than desired. Then, pref-

erences of all students for such major are adjusted down by a factor of δ > 0 .

That is, if for a given student s the preference for major m is given by ums , the

new preferences would be ũms = ums − δ after the adjustment. If on the other hand

the difference is negative, the new preferences would be ũms = ums + δ.

The adjustment procedure has to satisfy one additional requirement: it has

to preserve the order of the majors in the profile (such order is obtained by the

algorithm described in section 2.3.5). That is, it is not possible to adjust upward

the cardinality of a major such that it surpasses the position of his neighbor above.

Likewise, the cardinality cannot be adjusted downward so that is falls below its

neighbor underneath.

In general, the process continues until the assignments observed in data are

perfectly matched or ten thousand iterations are run, whatever happens first.
10 The final preferences of such numerical exercise are considered the students’

preferences that rationalize choices, and thus they become the primitives of the

model to conduct future counterfactual analysis. The algorithm 1 displays the

pseudocode of the procedure described above.
10The number of iterations is not binding, since the algorithm converges in seven thousand

iterations.

24



Algorithm 1 Recovering Students’ Cardinal Preferences
1: Set probabilities of admission for each student: {ηs}Ss=1

2: Set initial preferences for each student: {u0
s}Ss=1

3: Set aggregated assignments from actual data: {am}Mm=1

4: Set the maximum number of iterations N

5: Set the preference adjustment parameter δ > 0

6: Set optimal preference {u∗s}Ss=1 = {u0
s}Ss=1

7: Set the initial error: ε0 =∞

8: while j < N and εj 6= 0 do

9: Apply MIA to obtain each student optimal portfolio: {m∗s,j}Ss=1

10: Run a serial dictatorship algorithm using {m∗s,j}Ss=1 as reports

11: Determine simulated assignments: {φs,j(m∗)}Ss=1

12: Compute the assignment error per major εm,j = |∑S
s=1 1{φs,j(m∗) = m}−

am|

13: Compute the total assignment error: εj = ∑M
m=1 εm,j

14: if εj < εj−1 then

15: Set Optimal preferences u∗s ← us,j

16: end if

17: if εm < 0 then

18: ums,j = ums,j−1 + δ if and only if the order in u0
s is not violated

19: else if εm > 0 then

20: ums,j = ums,j−1 − δ if and only if the order in u0
s is not violated

21: end if

22: j ← j − 1

23: end while
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2.3.5 Initial Preferences: “Revealed Preference” Algorithm

We use the students’ reported preferences and the history of past threshold

scores to recover students preferences. I propose an algorithm to do so. One

assumption underlying the algorithm is that students’ preferences and scores are

independent.

To understand why independence is a natural assumption, note that the score

is determined partly by a grades in high school and partly by a standardized exam.

There is evidence that students are still forming their preferences over majors, at

the point where they are taking the admissions test. 11

To present our argument we suppose that students are allowed to report only

two majors, as it is the case in the UCR. We construct different tiers based on the

information of past threshold scores to categorize students into classes. Because

we have a series of past threshold scores instead of a single value, we take the t̃m

as the maximum of the past threshold scores in major m. We say that if a student

s has a score greater than the highest maximum threshold score, he belongs to the

first tier. Students in the first tier can “afford” any major. Students with scores

between the second highest and the highest maximum threshold score belong to

the second tier, and they can afford all the majors but the major with the highest

maximum threshold score. We classify all students into different tiers following

the same procedure.

Students in tier 1 are the students for which there is certainty to get admission

into any of the majors. Hence, for them it is a strictly dominant strategy to report

their most preferred option in the first position, and a weakly dominant strategy
11According to university authorities, many students attend the Center of Vocational Orien-

tation between September and November. The Center helps students discern their aptitudes
towards each major. They take the exam in September and they have to report their preferences
in November.
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to report the truth in the second position. We use the reports of these students,

as the beginning of all the potential ordinal preferences that students can have.

By the assumption of preferences and scores, for any student s in tier 1 there

exist a student s̃ in tier 2 that shares the same preference profile. However, student

s̃ does not necessarily report the same ordered list as student s, because he has

lower priority, and so reporting less preferred colleges but with lower historical

threshold scores could be optimal. Nonetheless, we can use his report to complete

the report of student s, provided that two consistency conditions –namely, no

dominated choice and no cycles in preferences– are satisfied. We can proceed

recursively for the succeeding tiers in the same fashion.

Recall that for a any tier `, a report of student s in tier `, m`
s, is an ordered

pair. Now, let o` be a preference profile constructed by using the students’ reports

up to tier `. That is, o` is formed by concatenating the selected reports in each of

the previous tiers, whenever it is “feasible”. Hence, the dimension of o` is weakly

increasing in the index of the tier.

The concatenation procedure works as follows. We pick a report m1 in tier

1 (we will avoid to write the identity of the student for simplicity, and instead

will use a superscript to keep track of the tier), and set it as the beginning of an

ordinal preference profile. That is, o1 = m1. Then, if the report m2 in tier 2 is a

“feasible” continuation of the profile o1, the new profile would be o2 = o1 ⊕m2,

where ⊕ stands for concatenation. In general, o` = o`−1 ⊕m` for ` ≥ 2.

The report m` is a feasible successor to the profile o`−1 if two conditions of

minimum rationality are satisfied: (i) no-dominated choice and (ii) no cycles.

Definition 2 (No-dominated choice). We say that a report m`
s in tier ` satisfies

the no-dominated choice relative to the preference profile o`−1, if for all majors

reported in m`
s there is not a major in o`−1 that is strictly preferred, and whose
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threshold score is lower than the student score xs.

In other words, it says that a student in tier ` will not choose to report a less

preferred major whenever a major in the profile o`−1 is “affordable.”

Definition 3 (No cycles). We say thatm` satisfies the no-cycles property relative

to the preference profile o`−1 if no major in o`−1 ⊕m` forms a cycle in the order

of preferences.

For a given report m` in tier `, we define the set of its antecessors, A(m`),

as the set of all profile preferences o`−1, for which it can be a feasible successor.

The set of feasible successors for a given preference profile o`−1 can be defined in

a similar manner.

The following example illustrates how the algorithm operates.

Example Suppose there are ten students and five majors: Medicine (M), Law

(L), Engineering (E), History (H) and Arts (A). Each major has exactly one seat

available. Students can be assigned at most one seat in each college. If a student

is not assigned a seat in any college, we say he is out college, and denote this

option by ∅.

Students are categorized in tiers, constructed from the historical maximum

scores, as follows:

M L E H A

800 710 685 615 590 515 442

τ1 τ2 τ3 τ4 τ5 τ6

Figure 2.1: Definition of Tiers

Students’ information is summarized in table 2.1.
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Table 2.1: Students’ Scores and Reports

Student Score Tier Report

1 750 1 (M,L)

2 735 1 (M,E)

3 705 2 (L,M)

4 690 2 (E,H)

5 650 3 (E,A)

6 620 3 (H,A)

7 600 4 (L,A)

8 570 5 (A,H)

9 550 5 (A,E)

10 525 5 (L,A)

By the procedure described above, the two reports in tier 1, (M,L) and (M,E),

are set as the commencement of the different preference profiles students can have.

The next step is to determine the feasible antecessors for each of the reports

in tier 2, which are,

A[(L,M)] = ∅ and A[(E,H)] = {(M,E)}

Notice that (M,L) cannot be a valid antecessor of (L,M) because it would form

a cycle in preferences. Likewise, (M,E) would violate the no-dominated choice

property, because the agent would be choosing to report L, as his first option,

while E is still affordable and is preferred. For the same reason (M,L) can not

be a valid antecessor of (E,H). Hence, the only possibility is to concatenate the

profile (M,E) with the report (E,H); to discard the report (L,M); and to carry

29



over the profile (M,L) to the next tier. Thus, the preference profiles up to tier 2

would be (M,L) and (M,E,H)

Using the reports in tier 3 we have that

A[(E,A)] = {M,L} and A[(H,A)] = {(M,L), (M,E,H)}

Although the profile (M,L) is a feasible antecessor for both reports, we give

priority in the assignment of antecessors to the reports submitted by students with

higher score. Then, (M,L) is assigned to (E,A), and thus the only possibility is

to assign (M,E,H) to (H,A). Therefore, the preference profiles up to tier 3 would

be (M,E,H,A) and (M,L,E,A).

Continuing in the following fashion, we can show that the final ordinal prefer-

ence profiles would be (M,E,H,A) and (M,L,E,A,H). To utilize such profiles

in the general algorithm it is necessary to assign cardinal utilities to both profiles.

As an illustration, we assign a value of 2, 000 utils to the most preferred major in

each profile, and then decrease the intensity in 400 utils until reaching the last.

Notice that Law (L) is not ranked in the first profile, and so it can be assigned

any value lower than 400 and greater than 0. We assign it a value of 100. There-

fore, letting u = (uM , uL, uE, uH , uA) be the vector of cardinal utilities, we can

construct the following two vectors from the procedure above

u′ = (2, 000; 200; 1, 600; 1, 200; 800) and u′′ = (2, 000; 1, 600; 1, 200; 1, 200; 800; 400)

Finally, each student is assigned any of these profiles with equal probability,

and independently of their score.

In general, the algorithm to concatenate the reports across tiers is as follows.

We identify all the reports in tier 1 and set them as the commencement of the

different preference profiles students can have. Then, we sort the reports in tier
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2 in decreasing order with respect to students’ score, and determine the set of

feasible antecessors for each report. To continue, we pick the first report and

assign a preference profile randomly from the set of feasible antecessors. The new

preference profile is constructed by concatenating the chosen antecessor with the

current report.

We exclude the chosen antecessor from the set of antecessors of other reports,

and continue recursively for the rest of the profiles in tier 2. Finally, we repeat

the procedure for all tiers. If a profile cannot be continued by a report in tier `,

then it is carried over intact to the next iteration in tier `+1. Furthermore, if in a

particular tier `, there exist more reports than the potential profiles constructed up

to tier `− 1, we discard the reports that cannot be matched. This is fundamental

to maintain the number of profiles equal to the ones encountered in tier 1.

Once we determine the different ordinal profiles, we need to assign a cardinal

utility to them, so that they can be utilized as the initial preferences in the algo-

rithm described below. In order to do so, we define a vector of cardinal utilities

based on the position of each major in the profile. That is, we assign the maxi-

mal cardinal utility for the major in the first position, the second highest for the

second position, and so on. Clearly, each major in each profile will be attached a

different cardinal utility depending on the position it holds in the profile. Finally,

by the assumption of independence between preferences and profiles, we assign

the cardinal profile of preferences to each student uniformly random.

2.3.6 Evaluation of Equilibrium Assignments

To evaluate the different policies considered, we compare the resultant assign-

ments with the ones obtained when students are allowed to report preferences over

all the majors available. The reason to use the latter case as a benchmark lies in
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the fact that it has three desirable properties: (i) it is a strategy-proof mechanism,

(ii) its final assignment is Pareto-optimal, and (iii) its final assignment is free of

justified envy.

We use three measures to capture the dissimilarity between the assignments of

the case under consideration and the benchmark. The first is the fraction of stu-

dents with a different assignment from the benchmark. The second is the euclidean

norm between the vectors of cardinal utilities associated to the assignments. The

third is the aggregate welfare obtained by adding the cardinal utility associated to

each student’s assignment. Here, the relevance is the direction of the effect more

on its magnitude, since it involves interpersonal comparisons of utilities that are

hard to interpret.

2.4 Data Overview

We have data from the admission process at UCR in 2008, which includes all

students who applied for admission. In particular. each student’s record contains

information such as: gender, age, high school of procedence, admission score,

majors reported as first and second option, and the final assignment given by the

admission algorithm.

Population There are three stages of the admission process at which students

can be identified: (i) those who take the test, (ii) those who take the test and

become eligible and (iii) those who become eligible and submit a report to the

RO. Our data set corresponds to the population at the second stage in 2008,

which corresponds to 19, 621 students. From these, 9, 930 -around 51%- did not

apply to any major. From 9, 691 students who applied to some major (i.e. those

who submit a report of preferences to the RO), 2, 470 of them -around 13%- did
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not get a seat in any major. It implies that 7, 221 students were assigned to some

major in one of the campuses around the country, and specifically, 5, 212 were

assigned to the main campus.

Academic offer The UCR counts with a central campus located in the capital,

and five branches around the country. The main campus offered eighty two majors

in 2008, which can be grouped in nine academic areas: (i) Arts, (ii) Literature,

(iii) Hard Sciences, (iv) Education, (v) Economic Sciences (vi) Social Sciences,

(vii) Engineering, (viii) Health, and (ix) Agro-alimentary Sciences. Some majors

(e.g. piano, composition, physics and pure mathematics) are offered exclusively by

UCR at the main campus. Although in recent years the UCR has made an effort

to augment the menu in peripheral campuses, the academic offer continues to be

restricted in comparison to the main campus, and historically has been designed

to fulfill a requirement of professionals in region-specific economic activities.

We consider the main campus as the “main target” for students who apply

to the UCR. In fact, from the 9, 691 students who applied for admission, 7, 584

listed a major in the main campus as their first option. This number increases

to 8, 219 if considered those who put a major in the main campus as the second

option. Moreover, given the different reasons introduced in section 2.1, for many

students the UCR constitute the only option of higher education in Costa Rica.

To support this assertion, table (4) shows the fraction of students who accepted

to be enrolled in their second option.

Threshold Scores We have access to the series of threshold scores for all majors

offered in the main campus for the period 2000-2014. Notice that if this informa-

tion is stable over time, it provides a student with a notion of what are his chances
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to get admission in a particular major, given his current score. We plot in figure

?? the series of past threshold for selected majors.

2.5 Simulation Results

In this section we discuss the main results of applying the methodology intro-

duced in section 2.3 to the data described in section 2.4.

First, we present the results of the auxiliary “revealed preference” algorithm

implemented to determine the initial preferences of the general algorithm. We

use the historical maximum score in each major to construct the different tiers,

whose distribution is presented in figure 7 in the appendix 4.4. As it can be

seen, there are 205 students in tier 1, whose reports are the first step to form the

different ordinal preference profiles. After applying the procedure explained in

section 2.3.5 to concatenate the reports, we obtain that the median length of the

preference profiles (i.e. the number of majors the algorithm is capable to order) is

42, whereas the maximum is 50 and the minimum is 35. The standard deviation

is 3.45. The reason for which it is not possible to order all majors within a profile

is because the two rationality conditions are binding. All majors that were not

ordered within a profile are considered the least preferred in such profile.

The next step is to assign the cardinal utilities to the ordinal profiles con-

structed. We assign 2075 utils to the most preferred major in each profile, and

then decrease 25 utils to the next option below, until assigning a cardinal utility to

the last major ranked in the profile. All majors that were not ranked by the profile

are given 5 utils. The way of assigning cardinal utilities is chosen by convenience,

however, the main insights that we obtain do not depend on it.

Given these preference profiles, and the admission probabilities obtained from

the data, we run our general algorithm to recover the cardinal preference profiles
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Figure 2.2: Assignment Error in the Baseline Model.

that rationalize the total assignments in each major. As such, we compute the

absolute and relative error. The former is the absolute difference between the

actual aggregate assignment and the simulated aggregate assignment in each ma-

jor. Likewise, the latter is computed as the absolute error divided by the total

of seats in each major. Following our two-step methodology, we find an absolute

error of 300 seats, and a relative error of approximately 6%. Figure 2.2 depicts

the difference between the simulated assignment and the actual assignment in the

data, for each of the 82 majors. As it can be seen the maximum absolute error

is bounded above by 32. Therefore, the algorithm not only shows a very good fit

in the aggregate, but also when considering each major separately. Meanwhile,

Figure 10 in appendix 4.4 shows the simulated threshold scores.

Robustness As a robustness check, we repeat the same exercise for different

specifications of the initial preferences, as presented in table 2.2. For instance, in
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Table 2.2: Results for Different Specification of Preferences

Specification Absolute Relative

Error Error

(1) All Profiles (205) 300 5.8%

(2) Truncated: 20 options 482 9.2%

(3) Random Profiles 1263 24.2%

(4) 80 profiles: First 415 7.8%

(5) 80 profiles: Random 633 12.1%

(6) 40 profiles: First 687 13.2%

(7) 40 profiles: Random 661 12.7%
Note: (1) All profiles obtained in the algorithm described in sec-

tion 2.3.5 are utilized. (2) The number of profiles is the same as

in (1) but they are truncated to the first 20 majors ranked. (3)

The number of profiles is the same as in (1), but majors within

each profiles are randomly ordered. (4,5) Only 80 profiles from

205 are considered, chosen as the first or randomly. (6,7) The

same procedure as in (4,5) but only for 40 profiles.

the second line we truncate all the 205 preference profiles to the first 20 majors

ordered. That is, we assume that the individual is only able to rank the first 20

majors in each profile, and is indifferent among the remaining.

Meanwhile, in the third line we keep the original 205 profiles, but permute

randomly the order within each profile. Notice that unlike the previous exercise

we keep the number of major each profile ranks.

In lines four to seven, we reduce the number of profiles to investigate how

sensible are the results when students are more homogeneous in their preferences.

Specifically, instead of using the complete 205 profiles, we only use a selection of
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them. In lines four and five we select 80 profiles, whereas in lines six and seven

we choose only 40 profiles. In both cases we use two criteria of selection: (i) using

the first profiles ranked, and (ii) choosing the profiles uniformly random.

As we can see, using all profiles delivers the best adjustment among all spec-

ifications, as well as it maximizes the welfare and the caliber of the students

admitted. On the other hand, using a random permutation in each of the original

profiles produces the highest absolute error and the lowest level of welfare and

innovation. We can observe that the lost in accuracy of passing from 205 profiles

to 80 is lower than passing from 80 to 40, since the degree of heterogeneity in pref-

erences is not sufficient to induce students to apply to all the majors. Moreover,

given a particular number of profiles, using the first profiles is better than choosing

them randomly. The explanation comes from the fact that the first reports are

those from students with the highest scores, and so they are the most reliable to

report truthfully.

Achieving a good fit of adjustment for the aggregated assignment with 205

has merit per se, because when the number of majors is 82, the total possible

orderings –including the option of truncating the list at any point– is given by the

expression
81∑
j=1

82!
(82− j)! = 8.37× 10122

These expression counts all possible preference profiles when the length of each

profile varies. For example, when the index of the sum is equal to two, we are

counting how many ordered pairs can be constructed. Such case corresponds to

a situation when the student prefers to be out of college if he is not admitted to

their two first options reported. Proceeding analogously for all possible lengths of

the report, we get the number of all possible preference profiles students can have:

a gigantic number.
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2.6 Counterfactual Analysis

Once we recover the preferences that rationalize students’ choices from the

numerical simulation, the natural step is to conduct counterfactual exercises about

different admission policies. The results of these analyses are vital to understand

better how to organize the general admission process in order to produce more

efficient allocations. In practice, authorities normally do not count with tools to

conduct a rigorous study, and decision about policies are normally made, either

based on conjectures or by inferences of related “markets”.

With the theoretical and empirical tools developed in the previous sections

we can be precise over how to evaluate the different tradeoffs present in the im-

plemetation of different admission policies. In particular, we can evaluate what is

the gain of letting students to report more options, how to reallocate seats across

majors, or how to implement a second-best affirmative action program. Those are

topics under high scrutiny by policy makers.

2.6.1 Augmenting the Options to Report

The RO controls how many options each student can report, and this parameter

affects equilibrium allocations. Here, we evaluate to which extent the restriction

makes students to adopt a different strategy from truth-telling, and how it is

reflected in the final assignments.

Figure 2.3a shows that the fraction of students with different assignment from

the benchmark is decreasing in k, as expected. That is, as the number of op-

tions to report increases, students report closer to their true order of preferences.

Allowing students to report only two options implies that 72% of the students

have a different assignment from the benchmark. Likewise, figure 2.3b shows that
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Figure 2.3: Dissimilarity with respect to the Benchmark

the euclidean norm is also decreasing in k, which implies that the dissimilarity in

utilities is reduced as k approaches to the total of majors available.

We also investigate the effect to the aggregate welfare of increasing the number

of options. Here, there are two effects to consider. First, a higher number of

options k makes the students more aggressive in virtue of Proposition 1, and so

if they get into college they will be admitted in a weakly preferred major, which

increases their welfare. Second, augmenting k also has the effect of decreasing the

probability of admission of students with lower priority, which can be detrimental

for aggregated welfare. Such negative effect is magnified if the RO has some

consideration of affirmative action programs.

Restricting the number k also introduces more uncertainty in students’ decision

problem, and forces students with high priority to play protective strategies by

choosing options less desired but with higher probabilities of admission. At the

same time, it may increase the probabilities of admission for students with low

priority, which has the potential to increase welfare by the same argument as

before.
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Figure 2.4: Welfare and Innovation for Different Rearrangements Scenarios

Figure 2.4b depicts the fraction of winners and losers as k increases. A winner

[loser] is a student who is assigned a more [less] preferred major with respect to his

assignment in the original mechanism with k = 2 options. The intersting finding

here is that the difference between the fraction of winners and losers is obtained

around a value of k = 20.

Another measure of welfare we can utilize is the proportion of students assigned

to his most preferred option, which can be different from the first option reported.

Increasing k decreases the uncertainty over the admission process, and so induces

more students to report their first option truthfully, which a priori should increase

the number of students assigned to their most preferred option. Nonetheless, as

we can observe in Figure 9 the proportion of students assigned to their first major

remains very stable when varying the number of options to report.

2.6.2 Reallocation of Seats across Majors

In the admission process of 2008, several majors did not fill all the seats that

were available, whereas many others were highly over demanded. It happened

mostly in the college of arts where all of the 13 majors wasted some their capacity.
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This phenomenon has been persistent according to university authorities. Here,

we analyze what would be the impact on students’ welfare and caliber, if all wasted

seats were proportionally reallocated to: (i) the top 10 most demanded majors,

(ii) the top 5 most demanded majors, and (iii) the most demanded major, which

is medicine. 12 In the case of (i) and (ii) we use the ratio of each major’s demand

–defined as how many students place the major as their first option– to the total

demand within the correspondent group, as a weight to assign the extra seats.
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Figure 2.5: Welfare and Innovation for Different Rearrangements Scenarios

Figure 2.5 shows that the most effective policy in terms of welfare and inno-

vation is to redistribute the wasted seats in the top ten most-demanded majors.

Allocating all the seats in the most popular career, medicine, would not produce

a cascade effect, like the one commented above, which reflects the fact that pref-

erences exhibit a sufficient degree of variation.
12Proportions are computed as the number of students who lists a particular major in the first

position, with respect to the total of reports being considered. Then we renormalize the weights,
so they can add up to one.
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2.6.3 Affirmative Action Programs

Affirmative action in higher education refers to the aim of reaffirming the rights

of groups under-represented in the student body due to social, ethnic, gender

or economic reasons. There are many ways to implement an affirmative action

program, but in this section we will analyze two popular programs: (i) quotas (ii)

and a bonus over the admission score (i.e. a “subsidy” over the score obtained).

Students who come from high schools that have been historically under-represented

in enrollment constitute our target population. We use the list of high schools

provided by the RO to identify such students.

Quotas This program proposes to secure a predefined number of seats to the

target population. In that sense, students within the target group will compete

with their equals for a seat in a major. To implement this policy, the admission

process is carried over via two sequential serial dictatorship algorithms. In the

first, only students from the not favored population participate, and the number

of seats in each major corresponds to the predefined quota. Those students who

were not assigned in the first stage, will participate in a second serial dictatorship

mechanism over the remaining seats, along with those students who do not meet

the affirmative action condition. The assignments after this second stage are

considered final assignments.

Notice form panel 2.6c that when the quota is lower than 10%, the proportion

of targeted students admitted do not vary dramatically from the one obtained

when such affirmative action is absent. As soon as it gets higher than 10% the

fraction starts to increase sharply. However, notice that it is always under the

quota reserved. For instance, notice that when the quota reserved is 20% of the

spaces, the fraction admitted is lower than 20%. It happens because, although
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Figure 2.6: Counterfactual Analysis for a System of Quotas

with a quota all target students only compete with their equals for a seat, there

still some majors that are over-demanded, and hence some students do not get

admission in any of the two majors reported to the RO. Students that are not

assigned in the first stage are hardly assigned in the second stage, since now they

have to compete with all regular students who have higher scores.

Figures 2.6a and 2.6b show the distortive effect of introducing the quotas. The

first computes how the introduction of different quota levels affect the fraction

of students that receive a different assignment from the benchmark. The second

computes the respective euclidean norm. Both graphs are u-shape. It suggests
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that some students from the target population who have high score, are choosing

very popular majors when given two options. When the RO starts using the

quota, they are admitted at the major they would have been admitted if given the

possibility to report the full list. When the quota start to increase beyond 10%,

students who would not be admitted under the full list, are now admitted because

the quota is sufficiently high. The similar intuition holds for the euclidean norm.

Bonus in the Admission Score The second program intends to give a bonus

α in the admission score to all students from the target population, to later run a

serial dictatorship mechanism over the adjusted scores. Specifically, if a student

from the not favored population has a score of xs points, his adjusted admission

score would be (1 + α)xs. A similar exercise is analyzed in Chade et. al. (2014),

when each college “discounts” the standard requested to admit a student from the

target population.

Unlike the quota, the bonus scheme in panel 2.7c produces an immediate effect

in increasing the admission of students from the target population. The explana-

tion is that students who have the benefit of the bonus become more competitive

with respect to all regular students. In particular, notice that when the planner

uses a quota, the less competitive students from the target population are likely

to lose their seat with their more competitive equals, and even more likely with

the students from the regular population. Nonetheless, when the planner uses a

bonus, those candidates become stronger and capable to compete with the less

competitive students from the regular population for a seat. This effect makes

that the proportion of students admitted be higher when using a bonus scheme

relative to a quota.

With respect to the distortive effect of the bonus, we can see in figures 2.7a
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Figure 2.7: Counterfactual Analysis for a Bonus System

and 2.7b that the bonus is more distortive than the quota, if the target of the RO

is admitting a high fraction of the students from the target population.

2.7 Alternate Mechanisms

Alternatively to the use of an admission algorithm, where the student faces

uncertainty over his possibilities to get admission in each major, the RO can

use procedures where the threshold required to be admitted in each major are

announced before students’ make their decision. Here, we investigate two different

mechanisms: the Posting Scores Upfront (PSU) and the Ascending Auction (AA)
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mechanisms.

2.7.1 Posting Scores Upfront (PSU)

The PSU is a mechanism akin to competitive equilibrium where the RO an-

nounces upfront the vector of threshold scores necessary to be admitted into a

major, t = (t1, · · · , tM); and commit to give a seat to every student who demands

a seat in a particular major, and has a score greater than the posted score. Un-

der this procedure, students observe posted scores, compute their set of feasible

majors, and choose the best option within this set according to their true prefer-

ences. Unlike the matching mechanism, in the PSU mechanism a student knows

ex-ante which majors are feasible, and hence, there is no uncertainty involved in

his decision problem. All the uncertainty is transferred to the planner, whose

decision problem becomes more cumbersome –since now it is the agent that has

to form beliefs about students’ preferences– whereas student’s decision problem is

simplified dramatically. The relevance of this trade-off should not be overlooked,

because normally it is argued that the objective of the RO is to maximize stu-

dents’ welfare. Hence, using a mechanism where students face the highest level of

uncertainty could be contradictory.

Students’ Decision Problem Once a vector of scores t is announced by the

RO, and admission scores are realized, the decision problem of student s consists

of picking a maximal element with respect to his preferences, in the set of feasible

majors. That is,

V (us, xs, t) = max
m∈{M(xs,t)∪{∅}}

ums (2.3)

where M(x, t) = {m ∈ M : x ≥ tm} is precisely the set of feasible majors. We

denote ψs(us, xs, t) the arg max of V (us, xs, t), and let
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Ψm(u,x, t) =
(

S∑
s=1

1(ψs(us, xs, t) = m)
)

be the aggregate demand for major m.

Remark 1 (Law of demand). Let t and t̃ be two posted admission scores vectors

such that t ≤ t̃. If t` = t̃` for all ` 6= m and tm < t̃m, then Ψm(u,x, t) ≥

Ψm(u,x, t̃). That is, ceteris paribus if the posted score of major m increases its

demand cannot increase.

Notice that since students have single-unit demands there are no wealth effects

in their decision problem. Moreover, for a given student s all majors but his most

preferred can be considered as inferior goods. That is, ψs(us, x̃s, t) �s ψs(us, xs, t)

for all x̃s ≥ xs.

The RO’s problem in the PSU mechanism The RO can have different

objectives at the time of designing an admission policy. One of this could be

the maximization of students’ aggregate welfare (i.e. the sum of the cardinal

utilities associated to each student’s assignment). In that sense the RO would

be a benevolent planner that only cares about students well being. Alternatively,

the RO could be interested in maximizing the caliber of the students admitted

(i.e. maximizing the sum of the test score of the students admitted) under the

assumption that better students produce higher innovation in any major. Such

innovation produces spillovers to the rest of the economy, and then it as way to

retribute tax payers for financing public education.

Therefore, the maximization problem of the RO resides in choosing the vector

of admission scores t to maximize the predefined objective function, subject to a

capacity constraint. Let u = (u1, · · · ,uS) ∈ US be a profile of preferences, which
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are drawn according to the density f , and let x = (x1, · · · , xS) ∈ [x, xM ] be a

profile of scores. Then, the problem of the RO is given by

max
t∈[x,x]M

∫
US

(
S∑
s=1

γ[uψs(us,xs,t)s ] + (1− γ)[xs · 1{ψ∗s(us, xs, t) 6= ∅}]
)
f(u)du (2.4)

subject to

Ψm(u,x, t) ≤ qm ∀m ∀u (2.5)

where γ ∈ {0, 1}. When γ = 1 the RO maximizes the aggregate welfare,

whereas when γ = 0 it maximizes the aggregate caliber.

Condition 2.5 establishes that threshold scores have to be such that for any

major, and any realization of the preferences, the aggregate demand is lower than

or equal the number of seats in each major.

Now, suppose that the planner has the ability to create new seats in each

major m at a cost cm, and that he has a budget of B. Then, letting zm(u,x, t) =

max{Ψm(u,x, t)−qm, 0} be the excess demand in majorm, planner’s optimization

problem can be reconsidered as to maximize the objective in 2.4 subject to the

budget constraint,

M∑
m=1

zm(u,x, t)cm ≤ B ∀u (2.6)

Definition 4. The allocation ψ∗ = (ψ∗1, · · · , ψ∗S) and vector of threshold scores

t∗ = (t∗1, · · · , t∗M) constitutes an equilibrium of the posting admission mechanism

if

i) Given threshold scores t∗, ψ∗s solves student’s s decision problem, for each s.

ii) Given students’ demands ψ∗, threshold scores t∗ solves the RO’s decision

problem, subject to the capacity constraint (2.5), or the budget constraint

(2.6).
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The option of establishing threshold akin to a competitive market seems very

appealing for three reasons (i) students’ problem is reduced to choose the best

option out of a finite set of feasible majors, (ii) demands are expressed simultane-

ously and (iii) infra-marginal points of the test are valuable, because the points

earned in the test act like a budget constraint.

Simulating the PSU Mechanism Using the past threshold scores in each ma-

jor, we simulate the equilibrium assignments under the PSU mechanism, for three

different announcements of the threshold scores in each major: (i) the historical

mean, (ii) the historical median, and (iii) the historical maximum. Figure 11 shows

the excess demand per major, for the three scenarios considered before. As we

can see, there are large excess demand in many majors, which suggests that none

of these configuration constitute an equilibrium for the –degenerate case– when

preferences are equal to the ones recovered in the previous section. We provide an

algorithm to compute clearing market threshold scores in the next section.

2.7.2 Ascending Auction Mechanism

The main advantage of the PSU is that it removes completely the uncertainty

from students’ decision problem, but the planner needs to guarantee that either

the capacity constraint (2.5), or the (2.6) has to be satisfied. This restriction may

induce the planner to set thresholds scores conservatively high, which can reduce

students’ welfare.

An alternative to the PSU is to use an Ascending Auction mechanism (AA).

Here, the planner sets an initial asking threshold for getting a seat in a given

major, and students determine their optimal demand given their score and the

asking thresholds. Once individual demands are submitted, the planner computes
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the aggregated demand in each major, and adjusts upward the asking price for

a major with maximal demand. If there is more than one major with maximal

demand, a major is selected randomly. Once thresholds are adjusted, students

recompute their optimal demand. This process continues until no major has an

excess of demand. This mechanism retains the advantage of removing students’

uncertainty, but guarantees that the aggregated demand never exceeds the supply.

Our procedure resembles closely the algorithm introduced by Demange et al.

Proposition 2. For a given vector of scores x and preferences u, there exists an

equilibrium of the AA mechanism t∗ = (t∗1, · · · , t∗M).

Proof. Fix a profile of cardinal utilities u = (u1, · · · ,uS), and a profile of scores x.

Let the initial vector of scores be t0 = (t01 · · · , t0M) = (x, · · · , x). That is, the RO

the initial asking price is equal to the lowest score in all of the majors. Given this

information, it is possible to compute the excess demand function zm(u,x, t0).

Once the excess demand functions are computed for each major, a major with

maximal excess demand is selected from the set,

Z(u,x, t0) := {m ∈M : zm(u,x, t0) ≥ zm̄(u,x, t0) > 0 ∀m̄ ∈M}

and its score is adjusted by an ε > 0 sufficiently small. Therefore, in the step `+1,

t`+1 = (t`1, · · · , t`m̃) + ε, · · · , t`M), where m̃ ∈ Z(u,x, t`).

Formally, fix 0 < ε < min{|xs − xs̃| : s 6= s̃ ∈ S} and define the operator

ξ : [x, x]M × US 7→ [x, x]M by

ξ(t,u) = {y ∈ [x, x]M : ym = tm+ε for m ∈ Z(u,x, t), and y` = t` for all ` 6= m}

Notice that [x, x]M is a complete lattice and ξ(·,u) is an isotone operator with

respect to the natural order in Rn. Then, by Tarki’s fixed point theorem, there

exists t ∈ ξ(t,u). Moreover, ξ(t,u) is a complete lattice, and then we can see
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that ∧ξ(·,u) and ∨ξ(·,u) are the lowest and largest equilibrium, respectively.

Let zm(u,x, t) be the excess demand in major m, and let Z(u,x, t) be the

set of majors with maximal demand. The algorithm 2 displays the pseudocode to

find the equilibrium threshold and assignments.

Simulating the AA Equilibrium We use the 205 preference profiles recovered

from the matching model to simulate the alternative AA mechanism. Once we

obtain the new assignments we compare them with the full-list benchmark. The

main finding is that only 5% of the students receive a different assignment under

the auction than under the matching model when students can report the full list.

We can observe whether equilibrium scores produced by the PSU mechanism

are higher than the endogenous scores obtained by the matching algorithm. Figure

12 depicts the equilibrium threshold scores in the AA and shows for all the unpop-

ular majors the PSU determines a higher threshold score, whereas for the most

popular it produces slightly lower threshold scores, which reflects the distortions

introduced by increasing the uncertainty in students’ decision process.

2.8 Conclusions

We study a major assignment problem where students report preferences over

majors the Register Office (RO), and assignments are determined based on stu-

dents’ priorities and reports, via a serial dictatorship mechanism. Preferences and

priorities are private information, and students are allowed to report fewer options

than the total of majors available. Hence, the admission mechanism is manipula-

ble, in the sense that reporting true preferences is not a weakly dominant strategy

for every student. Under this environment we propose a tractable methodology
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Algorithm 2 Finding Equilibrium Scores in the AA Mechanism
1: Set initial threshold scores: t0m = x for all m

2: Set students’ preferences: {us}Ss=1

3: Set students’ scores in the test: {xs}Ss=1

4: Set the adjustment factor of the threshold ε > 0

5: Set the maximum number of adjustment steps Nε

6: while j < Nε and Z(u,x, tj) 6= ∅ do

7: Obtain students’ demand {ψs(us, xs, tj)}Ss=1

8: Compute aggregated demand in each major {Ψm(u,x, tj)}Ss=1}Mm=1

9: Compute excess demand function in each major {zm(u,x, tj))}Mm=1

10: Construct the set of majors with maximal excess demand: Z(u,x, tj)

11: Select randomly a major m from Z(u,x, tj)

12: Adjust the threshold score: tjm = (1 + ε)tj−1
m

13: end while

14: j ← j − 1

for conducting several counterfactual analyses, without imposing truth-telling as

an equilibrium.

We depart from a game theoretic approach, and propose a multi-agent decision

approach, in which, given their cardinal utilities and admission probabilities, each

student has to choose which majors to report in order to maximize their expected

utility. Here, each student combines the history of past threshold scores with

their own score, to obtain their conditional vector of admission probabilities. Past

threshold scores are publicized by the RO, and let students to draw inferences

about the preferences and priorities of other students in a robust way.

Following this approach, we calibrate students’ preferences to match the ag-
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gregated assignments per major. That is, for a given vector of probabilities and

cardinal utilities for each student, we solve their decision problem. Then we run

the serial dictatorship mechanism and confront the simulated data with the actual

assignment. If the simulated assignment is higher [lower] than the current assign-

ment, we decrease [increase] the cardinal utility of this major in each profile of

preferences. We proceed recursively until fitting exactly the data or convergence

is reached.

Given that the computation is sensitive to the choice of the initial preferences,

we use a “revealed preference” algorithm to recover the initial ordinal profiles.

The key assumption in the procedure is the independence between scores and

preferences. In addition, we impose two minimal consistency conditions to con-

struct the profiles, namely, that students do not choose dominated options when

a better option is available, and that profiles do not form cycles in preferences.

Using this procedure, we recover 205 preference profiles and fit the data with an

error of approximately 6% (around 300 seats). This finding has merit, because the

number of preference profiles that students can have is of the order of 10122. We

check the robustness of our finding for different configuration of the preferences.

In all cases, the fitness to the data is significantly worse.

We consider that using a calibration in a major assignment problem is more

reasonable than estimating a random utility model, which is standard in the recent

empirical literature that tries to recover underlying preferences in school assign-

ment problems. The reason is that students’ cardinal preferences over majors are

mostly idiosyncratic, and it is difficult to obtain data over the covariates that

could affect students’ decisions. Furthermore, priorities are derived from the score

in a test, and are not related with the residence of the student, which does not

make possible to use location as a shifter regressor to identify preferences.
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Once we recover students’ preferences we conduct several counterfactual anal-

yses. First, we find that when students are allowed to report only two options,

72% percent of the students receive a different allocation from what they would

have gotten in the absence of constraints. Second, we find that redistributing the

wasted seats among the ten majors more demanded is better than a more concen-

trated policy of transferring all the seats to the most demanded major. Third, we

find that a bonus scheme –where students from the target population are given

a relative bonus in their admission score– is more effective. Nonetheless, it pro-

duces a higher distortion, with respect to the benchmark, in the overall population

assignment.

Finally, we propose two alternative mechanisms that eliminate students’ uncer-

tainty. In the first, the RO posts upfront the threshold scores to be admitted into

each major, and each student chooses the best option within their set of feasible

majors. In the second, the RO uses an ascending auction. Using the preferences

recovered in the matching mechanism, we show that the ascending auction pro-

duces an assignment where only 5% of the students receive a different major from

the case without constraints.
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Chapter 3

ON THE OPTIMALITY OF CONSTRAINED CHOICE IN COLLEGE

ASSIGNMENT PROBLEMS

In many countries around the world the admission process to public universities

is organized through a centralized mechanism that places students into colleges,

taking into account students’ preferences over colleges and their scores in an ad-

mission test. A recurrent feature in such mechanisms is to let students to report

fewer options than the total of colleges available, or in other words, to constrain

students’ choice. Nonetheless, the intensity of the constraint varies from country

to country. For instance, in Turkey and Chile students can report, respectively,

up to thirty and ten options; whereas in other countries like in Costa Rica and the

Netherlands they are allowed to report, respectively, as few as two and one op-

tions. Furthermore, in some cases like Hungary students can report three options

but have to pay a fee starting the fourth reported option.

Despite of the burden a constrained choice imposes on students, as we will

see later, it happens to be the rule rather than the exception in the design of

admission mechanisms to public universities. One potential explanation for its

pervasiveness could be the higher computational cost it demands. However, given

the fact that universities count with modern computational resources to process

all the relevant information, the marginal cost of increasing the quota bestowed

to students would be negligible.

This series of observations open the question of why univerity authorities would

be interested in constraining the number of options students can report. In this
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article we provide a rationale for this behavior, assuming that there is a planner

(the Registrar Office) that has preferences over students’ allocations, expressed

through the innovation they can produce in their colleges assigned. Here, the

innovation students produce can be conceived as the outcome of the research

projects they undertake while enrolled at the university. Reasonably enough, we

assume it is an increasing function of students’ cognitive ability.

The reason of why a planner might care of this measure lies in the social

role that public universities are meant to play in many countries. Actually, in the

discussion between public universities and government authorities when bargaining

about how to finance higher education institutions, it is mentioned frequently that

one responsibility of public universities shall be the production of public goods to

retribute to the society part of the cost incurred by taxpayers. 1 Precisely, one

of such public goods is the production of the “innovation” realized through the

projects that students undertake as part of their research programs. These projects

produce spillovers to the rest of the economy but are normally “managed” by

public universities under a no-seeking-rents policy. However, not all the innovation

is equally valued by the planner. In fact, there could be strategic areas that

the planner may want to incentivize because they have a high potential (e.g.

nanotechnology, nuclear physics and computer science), whereas there are other

(e.g. law and medicine) it may want to de-incentivize due to congestion.

The intuition of why constraining the choice may benefit the planner to max-

imize the expected innovation produced is as follows. Suppose students are risk

averse and their preferences over colleges are private information. Moreover, as-

sume that planner’s preferences over colleges are completely misaligned with re-
1This retribution is more relevant in countries where public universities have bigger enroll-

ment, higher quality and where students of higher income are overrepresented, and so the low-
income taxpayers, subsidizes the upper tail of the income distribution.
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spect to students’ preferences, in the sense that the most preferred college by the

students is the least preferred by the planner, the second most preferred college

by students is the second least preferred by the planner, and so on. If the planner

lets students to report the full list, they have an incentive to report their true

preferences, which implies that in equilibrium the students with the highest scores

will be seated in their most preferred colleges, but in the least preferred from the

planner’s perspective. If the planner constrains the choice, it introduces a higher

risk, since the probability of being out of college increases. Under this scenario,

students would report their less preferred, yet safer colleges, since they are risk

averse. Hence, from planner’s perspective, the probability to seat the best students

in more preferred colleges increases with respect to the unconstrained case.

As an illustration, suppose all students prefer medicine to engineering, and

in turn engineering to physics, but the planner values more the innovation pro-

duced in physics to engineering to medicine, perhaps because there is congestion

in medicine and there are promising projects in physics that could boost the eco-

nomic growth of the country. Thus, in the first best the planner would like to

assign the best students to physics, the second set of students to engineering and

the third set of students to medicine. However, it cannot be done if students are

given the possibility to list all the possible colleges and priorities and preferences

have to be respected in the assignment process. Nonetheless, given that students

are risk averse and preferences are private, by constraining the choice the planner

makes that, more often, better students choose physics over medicine to secure a

seat in the university. In other words, it induces students to choose colleges that

are more aligned with its preferences.

The latter mechanism seems reasonable, since public universities are crucial

agents in the development of a country, and can use admission policies to induce
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allocations that seat the best students in strategic colleges. However, this approach

differs from standard matching literature, which implicitly assumes that the agent

that organizes the market is totally indifferent with respect to final assignments;

and limits its role to set the “right” institutions to guarantee that the induced

equilibrium allocations satisfy properties such as strategy-proofness and stability.

However, this dictum is frequently violated, since most of the universities use

a serial dictatorship mechanism, which is not strategy-proof when students are

constrained in the number of options to report (c.f. Haeringer and Klijn). This

feature demands from students to increase the sophistication of their strategic

thinking in order to maximize the value of their final assignment.

The fact that constraining choice destroys strategy-proofness is not irrelevant.

Indeed, strategy-proofness is normally considered as a desired property in any

admission mechanism, to the point that sometimes designers recommend to give up

other desirable properties like stability and Pareto-efficiency in order to guarantee

its existence. 2 Therefore, it would be difficult to justify the use of a constrained

mechanism on the light of standard matching literature.

Finally, it is important to remark that we do not pursue an optimal mechanism

approach in this paper. Our endeavor is more humble, since we do not evaluate

all possible admission mechanisms to determine which is the one that maximizes

preferences over students’ innovation. Instead, we fix the serial dictatorship mech-

anism, which is ubiquitous in the centralized admission systems around the world,

and try to find the conditions such that, relative to the objective of maximizing

planner’s preference over innovation, giving the students the opportunity to report
2For instance, the admission system used in the school public system of Boston, called the

Boston mechanism, was changed in favor of the Deferred Acceptance, under the idea that a
strategy-proof algorithm tends to minimize the “damage” produced on decision-takers that do
not strategize so well.
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the full list is suboptimal.

Related Literature Our paper contributes to the literature of college-school as-

signment problems initiated by Balinski and Sönmez (1999), and Abdulkadiroğlu

and Sönmez (2003). They introduced a mechanism design approach to formalize

the admission process to public schools and public universities, in an environ-

ment where students’ preferences and priorities are common knowledge. Their

model has been known as the canonical school choice model, and later endeavors

have been centered in validating its equilibrium properties under different set of

assumptions. Nonetheless, and despite of its importance and recurrence, few pa-

pers have been interested in analyzing the implications of constraining students’

choice. From those that occupy on this, Haeringer and Klijn (2009) analyze the

implications for strategy-proofness and stability under the Deferred Acceptance

and Boston Mechanism when preferences and priorities are public. Meanwhile,

Casalmiglia, Haeringer and Klijn (2010) test the robustness of the constrained

choice in the laboratory. They find that when the admission mechanism is the

Deferred Acceptance, the proportion of individuals that behave rationally aug-

ments with the constraint, since the problem is more complex and students tend

to think harder to understand the mechanism.

Our paper also contributes to the matching literature that considers private

preferences and solve the induced Bayesian game, as in Abdulkadiroğlu, Che and

Yasuda (2011) and Troyan, (2012). However, these papers assume that students

coincide in the ranking of the schools, and only differ in the level of cardinal

utility each college yields, whereas in our case, students differ in the way they

rank colleges. We believe this is an important assumption, since in a college choice

-rather than in a school choice- problem preferences are mostly idiosyncratic.

Furthermore, we assume students are risk averse expected utility maximizers.
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A feature normally considered in insurance and auctions literature, but generally

disregarded in the college choice literature. A related paper in this matter is

Klijn et al. (2013) who study how constraining the choice affects equilibrium

properties through the indirect effect caused by students’ risk aversion. They

show in the laboratory that more risk averse individuals are more likely to play a

protective strategy (i.e. report a school less preferred but with a higher probability

of admission) under the Deferred Acceptance than under Boston Mechanism. In

our model students’ incentive to play a safe strategy is precisely the key element

that make useful the restriction of the number of options to the planner.

Organization of the Paper The rest of the paper is organized as follows.

Section 2 illustrates the main insights of the problem at hand through a detailed

example. Section 3 lays out the model. Section 4 presents the main result of

the paper, under an assumption on preferences. Section 5 constructs a class of

preferences that endogeneizes such assumption. Section 6 concludes.

3.1 A Motivating Example

In this section we develop a detailed example that illustrates how restricting

the number of options can help the Registrar Office -RO hereafter- to maximize

its preferences over students’ assignments.

We assume there are four students indexed by 1, 2, 3, 4, and four colleges named

X, Y,W,Z. Each college has exactly one seat available. Students can be assigned

at most one seat in each college. If the student is not assigned a seat in any college,

we say he is out college, and denote this option by ∅.

Students are prioritized by the RO with respect to their score in an admission

test. Without loss of generality, we assume their priority is decreasing in their
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index. Specifically, the vector x = (x1, x2, x3, x4) = (0.9, 0.7, 0.5, 0.3) represents

their score in the test.

Own preferences over colleges are known by each student, but the preferences

of other students are private information. Nonetheless, it is common knowledge

that they are drawn, identically and independently, from the set V = {v′ =

(1, 0.9, 0.6, 0.3), v′′ = (0.6, 0.9, 1, 0.3)}, according to the probabilities: Pr(v =

v′) = 3/4 and Pr(v = v′′) = 1/4. Notice for example, that in v′, X is preferred

to Y , but in v′′, Y is preferred to X. Students’ utility over the college assigned c

is given by a constant relative risk aversion, von Neumann-Morgenstern function

u(c, v, ρ) = v1−ρ
c /(1 − ρ) , uc. Here, ρ corresponds to students’ risk aversion

parameter, which is also common knowledge, and we assume is equal to 0.7.

We suppose the RO uses a serial dictatorship mechanism to determine final

allocations based on the reports provided by the students. The description of the

algorithm is as follows:

In step 1. The student with the highest score is considered. He is assigned a

seat at the major reported in the first position.

In step 2. The student with second highest score is considered. He is assigned

a seat at the major reported in the first position if there are available seats;

otherwise, he is assigned a seat at the major reported in the second position.

In step ` (` > 2). The student with the `th highest score is considered. He is as-

signed a seat at the major reported in the highest position that has available seats.

A relevant observation is that, as the students are given fewer options to report,

the uncertainty over final assignments increase.
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Given the latter environment, we analyze how equilibrium assignments change

when students are not allowed to report the full list, but instead are constrained

in their choice. 3

When students are entitled to report the full list, it is a well-known result in

the literature that a serial dictatorship mechanism is strategy-proof (c.f. Dubins

and Freeman, 1981; and Roth, 1982). Therefore, equilibrium assignments depend

solely on the realization of preferences.

Denote µ a matching between students and colleges. Thus, the ex-ante dis-

tribution of equilibrium assignments when students are entitled to report four

colleges, corresponds to

Pr(µ(1) = (X, Y,W,Z)) = 9/16 (3.1)

Pr(µ(2) = (X,W, Y, Z)) = 3/16

Pr(µ(3) = (W,X, Y, Z)) = 3/16

Pr(µ(4) = (W,Y,X,Z)) = 1/16

First, notice that when students are allowed to report the full list, a student

with priority `th will receive at least his `th preferred college in any equilibrium.

The first term in (3.1) corresponds to the case where students 1 and 2 draw the

preference profile v′. By independence, this event occurs with probability 9/16.

Now, because the assignment algorithm is a serial dictatorship, and all students

report truthfully, student 1 gets his most preferred college, in this case college X,

whereas the student 2 gets his second choice, college Y . Student 3 gets college W ,

independently of his preference profile; because W is strictly preferred than Z in

both profiles. Likewise, the second term in (3.1) corresponds to the case where
3For the rest of the example we will focus in the case of weakly undominated strategies to

analyze the respective equilibria of the admission game.
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student 1 draws the preference profile v′ and student 2 draws the profile v′′. The

probability of this event is 3/16. Here, since preferences of both students do not

coincide, both get their best option, college X in the case of student 1, and college

W in the case of student 2. It immediately secures a seat in college Y to student

3, independently of his preference profile, because Y is strictly preferred to Z. We

can recover the other two terms following the same analysis.

Suppose now that the RO allows students to report only two options. Students

1 and 2 continue to report truthfully, because their priority is greater than or equal

to the number of options to report, and so there will be a seat available for them

in some of these colleges with certainty. Students affected by the restriction are

students 3 and 4, who now do not have a trivial best response.

Denote by σ∗s(s, vs) the optimal pure strategy of student s when his type is vs,

and ηs(σ∗−s) = (ηs(X, σ∗−s), · · · , ηs(Z, σ∗−s)) as his vector of admission probabilities;

given that other students are following the profile of equilibrium strategies σ∗−s.

Using the information over the distribution of preferences for students 1 and

2, we have that

η3(σ∗−3) = (1/16, 3/8, 9/16, 1)

Hence, we can convert the problem of finding the optimal response of student 3

into an individual decision problem in which, given his preferences and vector of

admission probabilities, he finds the combination of colleges that maximizes his

expected utility. In this case,

σ∗3(3, v′) = (Y, Z); σ∗3(3, v′′) = (W,Z)

That is, student 3 protects himself incorporating college Z in their “optimal port-
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folio” when he has only two options to report. Recall that under the full list case,

college Z was never reported among the first two options by student 3.

Taking into account the best response of student 3, it is possible to proceed in

the similar fashion for student 4. His corresponding vector of admission probabil-

ities would be

η4(σ∗−4) = (1/16, 6/64, 27/64, 27/64)

Notice that since student 3 is now moving college Z up in his report, the

probability of student 4 to get admission there reduces to 27/64.

Now, his optimal response corresponds to

σ∗4(4, v′) = σ∗4(4, v′′) = (W,Z)

which implies he reports the two colleges with the highest probability of admission.

In summary, the ex-ante distribution over equilibrium outcomes when students

can report only two options is given by

Pr(µ(1) = (X, Y,W,Z)) = 9/64 (3.2)

Pr(µ(2) = (X, Y, Z,W )) = 27/64

Pr(µ(3) = (X,W, Y, Z)) = 3/64

Pr(µ(4) = (X,W,Z, ∅)) = 9/64

Pr(µ(5) = (W,X, Y, Z)) = 9/64

Pr(µ(6) = (W,X,Z, ∅)) = 3/64

Pr(µ(7) = (W,Y, Z, ∅)) = 1/16

Observe that under the restriction, students 1 and 2 will be given the same ex-

ante probability to receive colleges X, Y and W as in the full list case. However,

student 3, who is never assigned to college Z under the full list case, has now a
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probability of 5/8 of being assigned there under the constrained choice. Likewise,

student 4, who always –and only– gets a seat in college Z under the full list case,

has now a probability of 27/64 of being assigned college W , and a probability 1/4

of being out of college.

Suppose further that the RO has preferences over the assignment of students.

In particular, suppose it would like to seat the best student in college Z, the

second best in college W , and so on, until seating the worst student in college X.

Hence, ceteris paribus, the RO would be better off if it can switch assignments of

two students, so that a better student get a seat in a more preferred college from

its perspective.

In fact, by comparing the distribution of matchings under both scenarios, we

can see that µ(1) and µ(2) in (3.2) corresponds to µ(1) in (3.1). However, in the

second matching of the constrained case, students 3 and 4 switch positions, placing

the student with higher score in a more preferred college by the RO. Likewise,

matchings µ(3) and µ(4) in (3.2) correspond to µ(2) in (3.1). Here, in the second

matching, student 3 is switched to college Z but at the expense of wasting a seat

in college Y . The analysis is the same for the rest of the assignments.

Notice that, if the differences in the RO’s cardinal preferences over the assign-

ment of students are sufficiently big, the RO would be better off by restricting

students’ choice even at the expense of wasting a seat in one of the colleges.

Although a planner would rarely have preferences for students assignments

per se, it is reasonable to assume that it has preferences over an indirect measure.

Here, we consider the RO has the objective to maximize the aggregated innovation

a student produce when he is seated in a given college c. Specifically, we assume

that a student s assigned to college c will produce ξcxαs units of innovation for

the planner, where ξ = (ξX , ξY , ξW , ξZ) = (0.2, 0.6, 1, 1.8) represents the RO’s
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preferences. The parameter α is set equal to 0.5. As introduced before, the way

the RO ranks the colleges is inversely related with the most probable preference

type in the support of students’ preferences.

Using the information provided by (3.1) and (3.2), and given the functional

form of the innovation measure, it is possible to see that the RO would be better

off by constraining the choice to two options. In this case, the expected aggregated

innovation would be 2.47, which is higher than 2.28, the one obtained in the full

list case. In fact, it can be shown that allowing students to report two options, is

the level of the restriction that maximizes the RO’s objective.

3.2 The Model

Students, Colleges. A student-college assignment problem consists of a finite set

of colleges C = {1, 2, · · · ,M}, each with one seat available, and a finite set of

students, S = {1, 2, · · · , N}. We assume that M ≤ N , and thus that, at most,

there are many slots to accommodate exactly all students into a college. The

outside option of students who do not attend college is denoted by ∅.

Scores. Students are prioritized by the score they obtained in a standardized test.

The vector x denotes the list of scores obtained by students in such admission test,

which belongs to the set X , {x = (x1, · · · , xN) ∈ RN
++ : xs 6= x` for all s 6= `}.

That is, any profile of scores induces a unique priority order in the admission

process. We assume scores are public information to all agents. Moreover, without

loss of generality, we sort students in decreasing order with respect to their score.

Thus, xs > x` if and only if s < `. Under this convention, the index of each

student determines his priority, and so a student s has a priority higher than or
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equal to K if s ≤ K. 4

Students’ Preferences. Students’ preferences over colleges in C are represented by

a vector of cardinal utilities, vs, that belongs to set V , {v′ = (v1
′, · · · vM ′), v′′ =

(v1
′′, · · · vM ′′) ∈ [v, v]M : vc 6= v` for all c 6= `}. We assume that the utility of the

outside option, v∅, is equal to zero for all students. We write o`(v) to denote the

`th preferred college, according to v. Without loss of generality, we assume that

oc(v′) = c for all c ∈ C. In that sense, under the profile v′, c has a higher cardinal

utility than c̃, if and only if c < c̃.

Different colleges are ranked according to the utility function u(·, ρ) : C ×

V → R, where ρ represents student’s uniform level of risk aversion. A profile of

preferences is denoted by V = (v1, · · · , vN) ∈ VN . Likewise, for all V ∈ VN , V−s ≡

(v1, · · · , vs−1, vs+1, · · · , vN) denotes the projection of V over VS\{s}. We assume

that each student’s preference vs is private information, and drawn identically and

independently with probabilities Prs(v′) = p ∈ (0, 1) and Prs(v′′) = 1− p. Hence,

Pr(V ) = ∏N
s=1 Prs(vs) denotes the probability of drawing a profile of preferences

V .

Planner’s Preferences. Finally, the RO has cardinal preferences over students

assignments given by ξ = (ξ1, · · · , ξM), which satisfies two properties: (i) ξ <

ξ1 < ξ2, · · · , ξM−1 < ξM < ξ and (ii) ξc+1 − ξc increasing for 2 ≤ c ≤ M . That

is, RO’s preferences are completely misaligned with students preference profile v′,

and display strict increasing differences.

Assignment Mechanism. Let µ denote amatching, namely a rule that assigns each

student to at most one college, and such that the number of students assigned to
4Notice that as the index of the student becomes higher, his priority decreases.

67



a given college is less than or equal to the numbers of seats available. Denoting

M as the space of all matchings; an assignment mechanism is then a function

ψ : (R)N →M, where R represents the space of all rank order lists over C.

A mechanism ψK is called K-constrained mechanism if its domain is the set

of all ranked ordered lists over C truncated to the first K < M positions. In this

case, we have ψK : (RK)N →M. We consider constrained mechanisms to reflect

the fact that normally students are not allowed to submit a full list, but instead

are given limited options to report.

Every mechanism ψK induces a game of incomplete information in which the

students report a rank order list of length K, and given this profile of reports,

assignments are given according to ψK . Here, the mechanism ψk is a constrained

serial dictatorship.

Timing. Figure 3.1 depicts the timeline of the game. First, nature draws pref-

erences and scores for all students. Because scores are public information, each

student can determine his priority in the assignment process. Preferences, on the

other hand, are private information, and hence, students form beliefs over them

according to the common prior. Second, the RO announces the number of options

students are allowed to report, K. Once students observe this parameter, they

sumbit the rank order list of preferences -of length K- to the RO. Finally, the RO

runs a serial dictatorship algorithm and assignments and payoffs are realized.

3.2.1 Students Equilibrium Behavior

Given the environment introduced above, a pure strategy σs for each student

is a mapping σs : S ×V → RK . That is, given his index s and type preference vs,

a student chooses to report a rank order list to the RO. For simplicity, we denote
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The RO
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Assignments

and payoffs

are realized

Figure 3.1: Timing of the admission game

σs(s, us) = rs. Hence, a profile of reports is denoted by R = (r1, · · · , rN).

When the profile of pure strategies (σs, σ−s) is played, the expected utility of

student s under the mechanism ψk, corresponds to:

EUs(σs, σ−s) =
∑
v∈VS

u(ψKs (R), vs, ρ)Pr(V ) (3.3)

A student with type vs reports truthfully if r`s = o`(vs) for any 1 ≤ ` ≤ K.
5 We say that a mechanism is strategy proof if truthfully reporting is a weakly

dominant strategy for every student s and every type vs ∈ V .

When students are not allowed to report a complete order over C the serial

dictatorship mechanism is not strategy proof (c.f. Haeringer and Klijn (2009)).

Hence, it is not possible to use a dominant strategy equilibrium as a solution con-

cept. Instead, we rely on the Bayesian Nash equilibrium in undominated strategies

to solve the game.

Although there is no equilibrium in dominant strategies, the hierarchical na-

ture of the admission decision process has the characteristic that, students with

priority higher than K have always a weakly dominant strategy, as presented in

the following proposition.

5Analogously with true preferences, for any pure strategy σ, we denote by r` the college
reported in the `-th position by a student with type vs.
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Proposition 3. Fix 1 ≤ K < M . For any student s ≤ K truthfully reporting is

a weakly dominant strategy.

Proof. Fix a student s ≤ K and type vs. First, notice that for any belief on the

strategy profile of other students, reporting the first K preferred colleges consti-

tutes a weakly dominant strategy. We have to show that for any non-truthful

strategy σ̃s there exists a full support belief such that report according to σ̃s is

dominated.

Fix an index ` ≤ s ≤ K, and suppose that the preference type of all students

with higher priority than s rank the first `−1 colleges in the same way as student s,

an event that has strict positive probability. Moreover, assume that such students

report truthfully their preferences.

Now, suppose student s reports according to the pure strategy σ̃s(s, vs) = r̃s,

such that:

r̃js =


oj(vs) ∀ j < `

oh(vs) for j = ` and some h > `

Under this strategy, student s will be assigned to his hth preferred college, whereas

if he reports truthfully he would be assigned to his `th preferred college.

Proposition 3 establishes that students with priority higher than or equal to K

will always report truthfully. This results simplifies substantially the analysis of

equilibrium, since for any value of the restriction K it is only necessary to inspect

the behavior of the students with lower priority than K: those without a trivial

best response.

We need to first find the best response of student s = K + 1. Toward this

aim, let δ : S × (RK)N−1 → {0, 1}M be an operator such that δ(s, R−s) returns a

vector with an entry of one in the `-th position if college ` has an available seat

for student s, when his fellow students report R−s, and zero otherwise.
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Thus, we can compute the vector of ex-ante admission probabilities for student

s as follows

ηs(σ−s) =
∑

v−s∈VS−1

δ(s, R−s)Pr−s(V−s) (3.4)

Hence, ηs(c, σ−s) denotes the probability that student s gets admission into

college c, when the profile of strategies σ−s is played. Then, for any two students

s and s̃ such that s < s̃, ηs(c, σ−s) ≥ ηs̃(c, σ−s̃), for all c ∈ C and for any profile σ.

Even though for presentation purposes we consider the profile of strategies

played by all fellows of student s, the reports of individuals with lower priority

than him are irrelevant to calculate his chances to get admission in any college.

Let q`−1
s (rs, σ−s) be the probability that the student s have been rejected by

the first `−1 colleges reported in rs, given that the rest of the students are playing

according to σ−s. Such probability is computed as follows 6

q`−1
s (rs, σ−s) =


∏`−1
j=1 1− ηs(rjs, σ−s) for ` = 2, · · · , K

1 for ` = 1

Once we derive the vector of admission probabilities, we can convert the prob-

lem of finding student s’s optimal strategy into an individual decision problem

where he solves an expected utility maximization problem. Specifically, the strat-

egy σs is a best response to the profile σ−s, if σs(s, vs) solves

max
r∈RK

K∑
`=1

q`−1
s (rs, σ−s)ηs(r`s, σ−s)u(r`s, vs, ρ) (3.5)

6For instance, recall from the example in section 3.1 that when students are allowed to report
only two options and they follow the equilibrium strategy prescribed there, student 3 has the
following admission probabilities

η3(σ∗−3) = (1/16, 3/8, 9/16, 1)

Thus, if he reports the tuple (X,W ) to the RO, his expected utility would be (1/16)(9/16)uX3 +
(1−1/16)uW3 . In this case, since K = 2, the rejection function is only defined for the first option:
q1((X,W ), σ∗−3) = (1− 1/16).
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We can proceed inductively, in the same fashion, to recover the best response

of all succeeding students.

Once students find their optimal rank order list, they report it to the RO, who

runs the algorithm and assign students to colleges. How the planner values such

allocation is the matter of the next section.

3.2.2 Planer’s Maximization Problem

As highlighted in the introduction and the example, one of the differences of the

present paper with respect to standard matching literature, is that the planner (in

this case the RO) evaluates students’ assignments with respect to its preferences

over the innovation produced by admitted students. Therefore, it is interested

in designing an admission mechanism to maximize the value of the innovation

produced. Formally, we assume that a student with score xs who is assigned

to college c produces ξcφ(xs) units of innovation, where ξc is a parameter that

denotes RO’s preferences over colleges, or in other words, how the RO values the

innovation produced in each of the colleges; and φ(xs) represents the productivity

of student s. 7 We assume the function φ(xs) is strictly increasing.

Hence, fixing K, and assuming that students will report according to the equi-

librium strategies σ∗ = (σ∗1, · · ·σ∗N), planner’s expected innovation corresponds

to

I(K) =
N∑
s=1

∑
v∈VN

ξψKs (R∗)φ(xs)Pr(V ) (3.6)

The main result of the paper, outlined in the next section, shows that the
7A planner might prefer to bring more capable students to certain colleges that it deems as

crucial for the development of the economy, even though they are not the most preferred by the
student body. In the definition of innovation we implicitly assume that a student with score xs
produces the same amount of innovation in all colleges. We could make it dependent on the
specific college, but to maintain tractability we assume homogeneity.
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optimal level of K is strictly lower than the total number of colleges M .

3.3 Optimal Constrained Choice

In this section we will show that under some conditions on preferences, dis-

tributions and students’ risk aversion, letting students to report fewer options

than the total of colleges available (i.e. constraining the choice) is optimal for the

planner.

First, we will identify the set of values K that induce a different equilibrium

assignment from the full list case. Then, restricting K to this set, we will show

that if students are sufficiently risk averse, they will choose the K colleges with

highest probability of admission, but will order them with respect to their true

preference profile. Finally, we will show that if the differences in the intensity of

planner’s preferences are decreasing and sufficiently high, the higher probability

to seat a better student in a more preferred college more than compensates the

small probability of wasting a seat.

The first step consists in determining the number of options K that would

induce a different allocation from the full list case. The relevant values to consider

are those that effectively imposes a binding constraint for at least one student

with priority lower than K.

Let Γs = {c ∈ C : ηs(c, σ∗−s) > 0} be the set of colleges with positive admission

probability for student s under the profile of equilibrium strategies σ∗.

Lemma 1. The values of the restriction that potentially induce a different equi-

librium allocation with respect to the full list case are those K ≤ K, where

K = max{K : there exists s > K with |Γs| > K}.

Proof. Suppose that the planner sets a value of K such that |Γs| < K for all
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students with priority lower than K (i.e. all students s > K). Then, best strategy

for those students with lower priority is to report all the colleges with positive

probability according to his true preference profile, whereas the students with

priority higher than K will report truthfully. Hence, there is no change in the

equilibrium allocation with respect to the full-list case, which is a contradiction.

Lemma 1 says that setting the value of K close to the number of colleges avail-

ableM , is not useful for the planner, because he will be “imposing a restriction” on

students who do not have enough options with positive probability, and therefore,

it will not have any effect on their decision problem.

Once the planner sets the restriction according to lemma 1, students have to

choose the optimal portfolio of colleges given the collection of probabilities implied

by the equilibrium played.

Proposition 4. Fix K ≤ K̄. If students with priority lower than K are suffi-

ciently risk averse, their best response corresponds to the following pure strategy:

Choose the K colleges with the highest probability of admission, and report them

truthfully using their true preference profile.

Proof. Given the vector of admission probabilities and cardinal utilities, each stu-

dent solves his correspondent optimization problem stated in equation (3.5), since

for students with a priority lower than K reporting truthfully is not a weakly

dominant strategy.

By theorem 1 in Chade and Smith (2006), we can proceed sequentially to find

the solution of each student’s combinatorial problem. Specifically, in the first

stage we choose the option that yields the largest expected utility, and then in

step `, ` ≥ 2, we select the option that yields the largest marginal benefit over the
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portfolio of colleges constructed so far. 8

The goal is to find a sufficiently high level of the risk aversion parameter, that

leads student s to choose the portfolio consisting of the colleges with the K highest

probabilities of admission.

Pick a student s with priority lower than K (i.e. s > K) and let ΓKs be the

set of his K colleges with the highest probability of admission. Denote r1
s(v′s) =

arg max{u(c, v′s, ρ)·ηs(c, σ∗−s), c ∈ C} It can be shown that there exists a sufficiently

high level of risk aversion ρ1
s(v′s), such that r1

s(v′s) ∈ ΓKs . In the same fashion define

recursively rjs(v′s) = arg max{u(c, v′s, ρ) · ηs(c, σ∗−s), c ∈ C\{r1
s(v′s), · · · rj−1

s (v′s)}} for

j = 2, · · · , K. As before, we can find a sufficiently high level of risk aversion ρjs(v′s)

such that rjs(v′s) ∈ ΓKs . Thus, there would be a collection of risk aversion parame-

ters such that the optimal portfolio consists on the K colleges with higher proba-

bility of admission. Then, take ρs(v′s) = max{ρ1
s(v′s), · · · , ρKs (v′s)}. We can proceed

analogously for the profile v′′s to find ρs(v′′s ). Finally, take ρs = max{ρ′s, ρ′′s}. Hence,

if ρ > maxs>K{ρs} the optimal strategy for those students where the constraint

binds, is the prescribed in the proposition. 9

For the moment we will assume that preferences v′, v′′ and the probability p

of drawing the profile v′, are such that, for the marginal student s = K + 1 the

minimum probability of being admitted to any of the K least preferred colleges

under v′, is higher than the probability of being admitted into any of the other

colleges. In the next section we will construct a class of preferences that satisfies

this endogenous property. Recall that the profile v′ is completely misaligned with
8Chade and Smith call this procedure the Marginal Improvement Algorithm (MIA) and show

that it reach the same global solution as the original combinatorial problem in a quadratic
number of steps.

9Later on we will assume that the preference profile v′ is the most popular profile, and so,
computing the risk aversion level ρs(v′s) would suffice.
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planner’s preferences ξ, and so this condition says that it is safer for the marginal

student to apply to the colleges that are more preferred by the RO.

Denote Λ` the set of the 1 ≤ ` ≤ M least preferred colleges under the profile

v′.

Assumption 1. Let s = k+1 be the marginal student. We assume that min{ηs(c, σ∗−s), c ∈

ΛK} ≥ max{ηs(c, σ∗−s), c ∈ C\ΛK}.

Assumption 1 merely says that colleges preferred by the RO have higher prob-

abilities of admission. In the same line, it is possible to define which report of

majors is more aligned with RO’s preferences. Recall that for any two colleges c

and c̃ such that c > c̃, we have ξc > ξc̃. In other words, the RO prefers colleges

with higher index.

Let rs , min{r`s : 1 ≤ ` ≤ K} and rs , max{r`s : 1 ≤ ` ≤ K}. That is, rs is

the college with lowest index chosen by rs, and likewise for rs.

Definition 5. The report rs is more aligned with planner’s preferences than r̃s

(viz. rs � r̃s), if r̃s ≤ rs and r̃s ≤ rs, with at least one strict inequality.

Now, we have all the necessary pieces to set our main result: constraining the

choice is optimal for the Registrar Office.

Theorem 2. Suppose that assumption 1 is satisfied. Then, if students are suffi-

ciently risk averse, there exist planner preferences ξ, such that I(K) > I(M) for

some K ≤ K̄.

Proof. Denote Ω = {s > K : |Γs| > K}. That is, Ω denotes the set of students

with priority lower than K, who have more than K colleges with positive probabil-

ity of admission, and thus affected by setting the number of options in K instead
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of M . This is the relevant set of students where the restriction induces a different

assignment equilibrium.

Furthemore, there exists a subset Ω̂ ⊆ Ω, such that for all s, s̃ ∈ Ω̂, with s > s̃,

we have that rs � rs̃. Indeed, by proposition 4 and assumption 1 student s = K+1

will report the K least preferred colleges under preference v′, which represents the

maximum level of alignment with planner’s preferences. Now consider, student

s = K + 2. Suppose by contradiction that rK+2 � rK+1. Then, by assumption

1 and the fact that ηs(c, σ∗) ≥ ηs+1(c, σ∗) for all c, it would imply that student

s = K + 1 is not choosing the K colleges with highest probability of admission,

which is a contradiction. Therefore, the best students in Ω̂ report colleges more

aligned with the planner.

For all students s ∈ Ω\Ω̂ it is possible to see that, in the worst case scenario

for the RO, they will report according to the full list case.

Therefore, since planner’s preferences satisfy increasing differences, and ad-

mission probabilities are decreasing in Ω, there exists a preference profile ξ such

that the gains of seating better students in a more preferred college, more than

compensates the potential loss of wasting a seat.

3.4 Justifying Monotnocity in Probabilities

In this section we will show a class of preferences for which assumption 1 is

plausible. It is a class where the profile v′ (the one misaligned with planner’s pref-

erences) is pivotal, and the profile v′′ just rearranges the order of v′ by segments.

The intuition behind this construction resides in the fact that normally students

agree on which groups of colleges are preferred to others, but may disagree in

the way the rank colleges within each group. Such description is captured by the

following assumption.
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Assumption 2. The profile v′′ is obtained from v′ as follows

oc(v′′) =



π1(c) if c ∈ [1, z]

π2(c) if c ∈ [z + 1, 2z]
...

πn(c) if c ∈ [(n− 1)z + 1, nz]
...

(3.7)

where z is the length of the each partition, and {π1, π2, · · · , πn, · · · } is a collection

of permutations defined over the relevant domains. 10

1 2 3 4 5 6 7 8 9 10 11 12v′:

v′′: 3 2 4 1 8 6 5 7 10 12 9 11

π1 π2 π3

Figure 3.2: An example for the construction of preferences.

Here, there are 12 colleges divided in three partitions of three colleges each,

and ordered increasingly under the pivotal profile v′. The alternative profile v′′ is

constructed from v′ as a permutation in each partition. Specifically, both profiles

agree in that colleges 1− 4 are better than colleges 5− 8, and in turn that these

are better than colleges 9 − 12. However, within the first partition the profile v′′

ranks college 3 as the best and college 1 as the worst. Likewise, in the second

parition, college 8 is the worst under v′ but the best under v′′.

That is, v′′ is a piecewise permutation of v′. As mentioned before, the intervals

of colleges can be interpreted as “academic areas” and the elements within that

interval as colleges in such area. Hence, we assume that both preference profiles
10We assume that the number of partitions is greater than two, and that at least one permu-

tation is different from the identity, such that the new order o(v′′) is different from o(v′).
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rank the academic areas in the same way, but within each area the order of the

colleges can vary. Furthermore, we assume that the cardinal utility associated

with each position in the preference relation is fixed but the colleges that occupy

each position can vary. For instance, in both profiles the cardinal utility of the

third most preferred college is the same, but with respect to the profile v′ such

college is college 3, while with respect to the profile v′′ it is the college given by

oπ
−1(3)(v′).

This assumption is essential to guarantee that the least preferred colleges with

respect to v′ have always a positive probability of admission for the marginal

student affected by the restriction.

Given that for students with priority higher than or equal to K, reporting

truthfully is a weakly dominant strategy, the admission probabilities for all stu-

dents with priority higher than K only depend on the distribution of preferences.

Denoting M(c, v′) be the number of colleges preferred to college c with respect

to v′, and analogously for M(c, v′′); admission probabilities can be computed as

shown in the following lemma.

Lemma 2. For any student s ≤ k + 1, if M(c, v′) +M(c, v′′) ≥ s− 1 the ex-ante

probability that such student s get into college c, corresponds to

ηs(c, σ∗−s) =



min{s−1,M(c,v′)}∑
j=max{0,s−1−M(c,v′′)}

(
s− 1
j

)
pj(1− p)s−1−j if M(c, v′) ≥M(c, v′′)

min{s−1,M(c,v′′)}∑
j=max{0,s−1−M(c,v′)}

(
s− 1
j

)
ps−1−j(1− p)j if M(c, v′) < M(c, v′′)

(3.8)

otherwise if it is equal to zero.

Proof. By the result of proposition 3 any student with priority higher than or equal

to K will report truthfully. Moreover, since the acceptance algorithm is a serial
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dictatorship, at least one student will be assigned to the college c if M(c, v′) +

M(c, v′′) < s− 1.

Now, ifM(c, v′)+M(c, v′′) ≥ s−1 it is possible to choose the preference profiles

of all predecessors of student s in such a way that -taking into account they will

report truthfully- leaves a seat open in college c. Clearly, we have to choose at

mostM(c, v′) students to assign them the profile v′ and at mostM(c, v′′) to assign

them the profile v′′. Moreover, ifM(c, v′) ≥M(c, v′′), we have to assign the profile

v′ to at least s − 1 −M(c, v′′) students whenever this number is positive. Since

the profile v′ occurs with probability p, the probability that student s gets a seat

in college c is given by

min{s−1,M(c,v′′)}∑
j=max{0,s−1−M(c,v′′)}

(
s− 1
j

)
pj(1− p)s−1−j

Likewise if M(c, v′) < M(c, v′′).

Assuming this chracterization of preferences, notice that ifK ∈ [(n−1)z+1, nz]

(i.e if K is in the nth partition), then for the marginal student the probability of

getting admission into any college c > nz is equal to one. It follows because

no predecessor will be seated in any of those colleges, given their equilibrium

strategies. If there are more than K of such colleges, or in other words ifM−nz ≥

K, the condition in 1 is satisfied.

Now, suppose that M − nz < K. In this case the result cannot be guaranteed

from the sole configuration of preferences, however if p > p̄ and z ≤ z̄ for suitably

chosen p̄ and z̄, the result is guaranteed. That is, if the degree in the variability of

the profile v′′ with respect to the pivotal profile v′ -capture by the length of each

partition- is sufficiently low; and the probability of the pivotal profile is sufficiently

high, the assumption 1 can be guaranteed, and so the argument in section 3.3.
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3.5 Concluding Remarks

In centralized admission mechanisms, where a registrar office assigns seats in

colleges to students -given preferences and priorities, a customary practice is to

constrain the number of options students are able to report. That is, students

are not authorized to report a full list over the set of available colleges. It is well

known in the literature, however, that such practice distort many of the desirable

properties of the mechanisms utilized, such as strategy-proofness, and yet the

computational cost of letting students report the full list is negligible.

The present article reconciles this discrepancy by assuming that there is a plan-

ner that has preferences over the innovation students can produce in their assigned

colleges. Innovation is a simple measure captured by an increasing function of stu-

dents’ cognitive ability, which is approximated in the model by students’ score in

the admission test. The crucial factor is that the planner does not value equally

the innovation produced in the different colleges, and so is in their benefit to seat

the best students in its preferred colleges.

Restricting the number of options to report serves the purpose of maximiz-

ing the expected aggregated innovation under two fundamental assumptions: (i)

students are sufficiently risk averse, and (ii) planner preferences over colleges are

misaligned with students’ preferences. These two assumptions combined, assures

that students will apply to the colleges with the higher probability of admission,

which happen to be the least preferred from students’ perspective, but the most

preferred for the planner.

One important caveat is that a higher restriction also increases the probability

of wasting a seat, however, if planner’s preferences exhibit increasing differences,

the gain of seating a better student in a more preferred college more than offset
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this potential loss.

Now, as suggested above, our main result is driven by the fact that admssion

probabilities have to be higher for the less popular colleges among students, but

the most preferred by the planner. This condition is sufficient to generate our

result, however, it is not clear which assumptions over the model’s primitives

could generate it. To correct this weakness, we construct a class of preferences

that generates this property. It is a class with two preference profiles, where

one is pivotal, and the other is constructed from it by permutting the ranking

of the colleges within intervals. The argument is that in both profiles students

agree over which academic areas are preferred, but disagree in the way they rank

colleges within each area.

Under the latter constuction we show that if the pivotal profile is sufficiently

high, and the planner preferences are completely misaligned with respect to the

pivotal (more popular) profile, letting students to report the full list is dominated

with respect to the objective of maximizing the expected aggregated innovation.

82



Chapter 4

BIDDING WITH SECURITIES IN PROJECTS UNDER NEGATIVE

EXTERNALITIES (WITH ANDRES FIORITI)

Over the last two decades, the sector of technological firms have witnessed a

flourishment without precedence, boosted among others, by the presence of inter-

net and a robust market of patents. The role of this market has been twofold.

From one hand, it has allowed companies to monetize their inventions by auction-

ing them to a pool of interested firms, but at the same time has permitted the

same companies to acquire patents to develop their own products. Such environ-

ment has made possible for start-up companies -unlike in any other market- to

evolve into strong competitors, with a large market capitalization, in short time.

Remarkable examples include Uber -which reached a capitalization of $41 billion

in less than six years, the fastest in history- WhatsApp and Spnapchat. 1

Therefore, if a competitor acquires “the right” portfolio of patents, an operating

firm in a specific niche might promptly see its market share reduced, because it

would enable the competitor to develop its own innovation. For this reason, many

large firms acquire patents as a protective strategy: to preclude the development

of nascent companies that may change the status quo of its market participation.

Examples here include Facebook, Yahoo and Microsoft. 2 In addition, Hall and

Ziedonis (2001) find that after 1982, the US semiconductor firms started patent

portfolio races, not to appropriate R&D revenue, but to prevent other firms from
1For more details see http://www.wsj.com/articles/uber and

http://www.wsj.com/articles/snapchat.
2Recently Facebook acquired a portfolio of 750 patents to defend itself from a lawsuit from

Yahoo and other companies. See http://techcrunch.com/2012/03/23/facebook
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getting these patents.

This scenario raises many interesting questions. First, if a start-up is selling

its project -or innovation- through a standard second price auction and wants to

maximize revenue, we could ask what the optimal method of payment is. Should

the seller conduct the auction in cash, or should he use a security, contingent

on project’s return? This dichotomy has relevance, because if the innovation is

allotted to a firm that intends not to implement the project, the seller would

receive a payoff of zero if he uses a security. On the other hand, if the project

only has value for the winner when he implements it, the seller might be better

off using a contingent payment as it is more sensitive to bidder’s true valuation

(c.f. DeMarzo, Kremer and Skrzypacz, 2005).

A related question is how bidders’ optimal strategies behave under the presence

of a negative externality, given the method of payment. Here, the key observation

is that the presence of a negative externality increases the eagerness of the bidders

to win the auction, even when they attach a very low valuation to the project.

To answer these questions, we build a model where the seller sells the rights of

a project through a standard second price auction, but where he can utilize two

hybrids as methods of payment: (i) a fixed-equity hybrid where the seller fixes the

fraction of equity requested, and let bidders compete in cash, and (ii) a fixed-cash

hybrid, where the seller fixes the amount of cash the winner has to pay, and let

bidders compete in equity. Notice that the former embeds pure cash whereas the

latter embeds pure equity.

The reason for which including a fixed payment in the instruments may be

beneficial for the seller, resides in the problem of adverse selection associated with

the incentives of a buyer to participate in the auction. Specifically, a buyer may

want to participate in the auction either to try to implement the project (because
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it is profitable to do so), or just to attempt to block the allocation of his rival. If

the seller is paid upon the implementation of the project, allocating it to a buyer

of the second class (i.e. “the bad type”) would be detrimental for his revenue.

In the absence of a fixed payment, the bad type have always an incentive to

participate in the auction to try to destroy the equilibrium where the project is

implemented. Thus, the fixed payment acts as a screening device among bidders.

However, the seller faces a clear trade-off in his aim, because introducing a fixed

payment decreases the profitability of the project for all buyers, which in turn

leads to a lower probability of implementation. The goal of the present article

is to determine the optimal fixed payment for both hybrids, and rank them with

respect to seller’s expected revenue.

Certainly, our article is not the first interested in exploring the relation be-

tween revenue and the method of payment used in an auction. In fact, De Marzo,

Kremer and Skrzypacz (2005) has shown that if there are no externalities, the

methods of payment can be ranked in revenue by their “steepness”, or the sensi-

tivity of bidder’s true type to the instrument utilized. An insight first hinted by

Hansen (1985) and Riley (1988). They also show that the auction format has only

an impact on revenue by its ability of modifying the steepness of the particular

instrument utilized. Nonetheless, to arrive to their conclusions it is crucial that

bidders operate in an environment free of negative externalities. When we incor-

porate them into the model, their main result does not hold anymore, precisely

because a winner of the auction may acquire the project not to implement it.

In order to isolate the effect produced by the interaction of the externalities

with the method of payment, we focus on a simple model of two bidders, where the

loser of the auction suffers a commonly known negative externality if the winner
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implements the project. 3 This framework arises naturally in industries where

bidding firms are similar ex-ante, and the project gives a comparative advantage

in the downstream market to the winner. Surprisingly, many of the insights can

be captured with this simple version. First, we consider a simple model where

both, externalities and valuations are public information. Even in this simple

framework the characterization of equilibria is not trivial, because it depends

on the interaction of the externality, the cost of the project and bidder’s own

valuation.

Our main result, stated in theorem 3, shows that under some mild technical

conditions, the following is satisfied. First, the optimal fixed-equity requires a

strictly positive equity payment, and the optimal fixed-cash hybrid involves a

strictly positive payment in cash. Second, the optimal fixed-equity hybrid is the

instrument that yields the highest expected revenue, followed by cash, which in

turn is followed by the optimal fixed-cash hybrid. Equity is the worst instrument

in the menu, despite of being the steepest.

The intuition of the latter results lies in the fact that with equity, a bidder

will pay zero if he does not implement the project, but his bid will affect the

profitability of implementing the project for his opponent. In that sense, a partic-

ular buyer can effectively use the threatening-power equity equips bidders with,

to destroy the equilibria when the other buyer finds profitable to implement the

project. When the seller uses cash as the instrument, this problem is mitigated

by the fact that all payments are made upfront, rather than conditional on the

implementation of the project. Therefore, the optimal instrument for the seller

would be one that simultaneously features the screening benefits offered by cash,
3One important clarification is that we use the word implementation, because if an agent

wins the object but does not implement it, no agent suffer any externality.
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and the ability of equity to extract surplus. This design is precisely at the heart of

the fixed equity hybrid. On the other hand, when the seller sets the fixed payment

in terms of cash, and let buyers use equity to screen themselves, buyers conserve

part of their power to block the implementation of the project, and so the adverse

selection motive dominates. Surprisingly, this effect is so powerful that the optimal

fixed-cash hybrid performs worse than cash for a sufficiently low implementation

cost and a sufficiently high negative externality.

The ranking of the instruments is robust to the structure of information, as

it is preserved for a large class of log concave distributions over private buyers’

valuation. In particular, equity continues to deliver zero revenue despite of being

the steepest instrument in the menu. Even though, we cannot deliver a general

theorem as in the case of public information, we obtain very similar results via a

simulation.

Finally, in a comparative statics exercise, theorem 4 finds that the fixed por-

tion of both instruments is weakly increasing with respect to an improvement in

the distributions, in the sense implied by the Monotone Likelihood Ratio (MLR)

property. This result is clearly intuitive: as the probability of drawing higher

valuation increases, the seller is less concerned of inducing participation, and can

commit himself to extract a higher portion of revenue before the competition in

the auction takes place.

Related Literature Our article is related to the literature of auctions with

securities and to the literature of auctions with externalities. Nonetheless, as

far as we know this is the first article connecting both strands of literature, to

analyze how the interaction of negative externalities and securities impact bidding

strategies and seller’s expected revenue. Moreover, as we discussed before, due to

the implementability incentives of buyers, our model can also be framed in the
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literature of auctions under adverse selection.

The literature of auctions with securities started with the seminal articles of

Hansen (1985) and Riley (1988), who basically showed that a second price auction

run in equity yields higher expected revenue to the seller than one run in cash.

More recently, De Marzo, Kremer and Skrzypacz (2005) -hereafter DKS- gener-

alize this framework by providing a methodology to rank securities with respect

to revenue. Specifically, they characterize the “steepness” or sensitivity of several

instruments via a single crossing property argument, and show that steeper in-

struments yield a higher revenue for the seller. Furthermore, they argue that the

auction format is only relevant as long as it modifies the steepness of the instru-

ment utilized. 4 Although DKS analyze a larger class of securities than what

we do in this article, the main essence of their analysis is retained, because the

distinction of the payment condition (i.e. contingent vs non-contingent) is the

key ingredient to obtain our main result. As mentioned before, we focus in two

hybrid instruments that are used in practice, and which include cash and equity

as particular cases. 5

Abishek, Hajek and Williams (2013) analyzes profit sharing contracts between

a seller and the winning bidder, much in the spirit of our fixed-equity hybrid.

Nonetheless, they conduct their analysis in a more general setting. In their model,

signals over project’s realized value can be interdependent, and bidders can be

risk averse. They consider two types of securities, one where the seller shares only

profits with the wining bidder, and one where the seller shares both profits and
4In particular, they prove that when the seller uses securities the Revenue Equivalence The-

orem may not hold.
5Our fixed-equity hybrid resembles the way writers sell the rights of their books because there

is a fixed royalty rate and publishers compete on cash. On the other side our fixed-cash hybrid
captures the main feature of the oil rights auction in Mexico where buyers pay a fixed amount
and compete on equity.
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loses with the winner.

Abhishek et al. show that both securities yield a higher expected revenue to

the seller than using a one-time payment in cash, which is also consistent with

our findings. Furthermore, they show that using a security where the seller shares

profits and loses, also yields a higher revenue than their counterpart with only

profit sharing. This result does not necessarily depends on bidders’ risk aversion.

In fact, as long as signals are interdependent, it can also be generated with risk

neutral bidders.

Extensions to this literature include the works of Gorbenko and Malenko (2011)

and Che (2010). The former analyzes the predictions of a DKS model when the

set of bidders is finite and many sellers compete for them. Their main result shows

that sellers will not use the steepest instrument because they would not attract

enough bidders. We also obtain the same result but for different reasons. In our

case, using a pure security is detrimental for seller’s revenue because it allows

buyers, who do not intend to implement the project, to destroy the equilibria

where good-type buyers would have implemented it otherwise.

Meanwhile, Che and Kim (2010) modify DKS framework by assuming that

buyers with higher valuations also have a higher cost to implement the project.

This simple modification leads to an adverse selection problem when the seller

uses a security, because buyers with high valuation would bid a lower amount, and

therefore, more often such buyers will win the auction. As the revenue of the seller

is tied to bidders’ true type when he uses a security, this adverse selection problem

cause the revenue to decrease. We found that using securities when externalities

are present can lead to the same result. Here, the low-valuation buyers would bid

more aggressively because they want to avoid the negative externality, and can

block implementation at no cost when the seller uses pure securities. Nonetheless,
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whereas Che and Kim (2010) makes assumptions on the cost structure of the

model, we make assumptions on the after-market behavior of firms, which we

consider more significant in many patent auctions where securities are normally

utilized.

Our article also contributes -in minor extent- to the literature of auctions

with externalities, initiated by Jehiel, Moldovanu and Stacchetti (1996, 1999).

However, rather than proposing an optimal mechanism under an environment

with externalities, we analyze a small but widely used class of instruments, which

unlike Jehiel et al. also incorporates securities as a method of payment. We are

able to show that under negative externalities, a second price auction in cash is

no longer an optimal mechanism, because in our model we find that the best

instrument is a fixed-equity hybrid.

Organization of the article The rest of the article is structured as follows.

Section 4.1 states the environment of the model. In section 4.2 we introduce the

case of complete information, derive the equilibrium bidding strategies, and rank

the instruments with respect to revenue. Section 4.3 presents a robustness exercise

for the case of private information. Section 4.4 concludes. Some of the proofs are

relegated to the appendix.

4.1 The Environment

A seller is interested in allocating an indivisible asset -which can be thought

as the rights of a project or innovation- among two different buyers. The winner

is required to pay a cost of c > 0 in order to implement the project, which is

considered as the initial investment to run the project, and is commonly known.

We index buyers by i = 1, 2 whereas the seller is designated as player i = 0. Buyer
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i’s valuation vi is drawn identically and independently from [v, v̄], according to the

distribution F which corresponding non-atomic density f .

If the project is implemented by a competitor, buyer i suffers a negative ex-

ternality of e ∈ [ē, 0], which we assume is symmetric and publicly known among

buyers. One important aspect of our model is that externalities are contingent

to the implementation of the allotted buyer. Second, private valuation refers to

the gross return of the project, and so a rational winner i will only implement it

if vi − c > 0. Third, even if a buyer does not want to implement the project it

would be beneficial for him to acquire it to preclude the implementation by other

competitors, and thus avoiding the potential negative externality he might suffer.

The seller commits to use a second price auction to sell the project, but we

assume he can utilize two different instruments: a fixed-equity hybrid and a fixed-

cash hybrid. In the former the seller fixes the equity over project’s return requested

from the winner, and let bidders to compete in cash. The winner is the buyer who

submits the highest bid in cash but pays the bid of his opponent. Clearly, a

standard second price auction with cash corresponds to the case when the seller

request zero equity. On the other hand, when the seller uses a fixed-cash hybrid,

he fixes an amount in cash the winner of the auction has to pay, and let buyers to

compete in equity. As before, the winner of the auction is the buyer who submits

the highest equity bid, but pays the lowest bid. In this case, when the seller asks

a fixed cash of zero, the auction is conducted in pure equity.

All players are risk neutral, and buyers’ utility is additively separable. Let zi be

the return buyer i derives from the project after his implementation decision. That

is, zi = vi − c if he implements the project and zero otherwise. Thus, if buyer

i, with type vi, wins the auction his payoff is given by zi − ti(vi), where ti(vi)

represents the payment to the seller, which potentially depends on his valuation.
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On the other hand, if the seller allocates the object to buyer j, then buyer i’s

payoff corresponds to e, provided his competitor implements the project; and zero

otherwise. The value of the project for the seller is zero, and hence in any trade

with buyer i his utility is ti(vi). 6 If no trade occurs, the payoff is zero for all

players.

Figure 4.1 depicts the timing of the game. First, seller chooses a payment

instrument and commits to run a second price auction under this format. Then,

buyers learn their valuations and submit their bids to the seller, who determines

the winner of the auction. Next, the winner determines if he wants to implement

or not the project. Finally, payoffs are realized contingent on the implementation

decision.

Seller

chooses an

instrument

Buyers

learn their

valuations

Bids are

submitted

Winner

decides upon

implementation

Payoffs

are

realized

Figure 4.1: Timing of the auction

4.2 Public Buyer’s Valuation

In this section we assume that before participating in the auction, each buyer

learns his own valuation as well as the valuation of his opponent. Without loss

of generality we will assume v1 > v2. The seller, on the other hand, only knows

the distribution where buyers’ valuations come from. Nonetheless, the negative

externality is public information for all players. This setting plausibly corresponds
6Think for example in a seller who owns a patent over a specific productive process that by

itself cannot be monetized, but can potentially enhance the productivity of the current technology
held by the buyers.

92



to a situation where both buyers have been operating in a market for long time

and have learned the technology of each opponent, but where a seller is an outsider

of the industry who has developed an innovation that can enhance the technology

of both buyers, but cannot evaluate to which extent.

The seller wants to maximize the ex-ante revenue and for that purpose has

to choose which instrument to utilize. Once the seller chooses an instrument he

commits to it. Thus, bidders are engaged in a game of public information, where

they have to choose their bid bi in the correspondent security space. In the case

of the fixed-equity hybrid bi ∈ R+, whereas in the case of the fixed-cash hybrid

bi ∈ [0, 1].

A Motivating Example In this section we will go through an easy example

that will highlight the main results of the article.

A. No Externalties Consider an auction in which two buyers, Alice and Bob,

compete for a project. The project requires an initial fixed investment of c > 0

which can be interpreted as the minimum up-front cash payment required by

the seller. Alice expects that if she undertakes the project, it would yield her a

return of va, whereas Bob expects a cash flow of vb. Without loss of generality,

c < vb < va. We assume that both valuations are common knowledge to both

buyers. As the seller commits to use a second price auction, the weakly dominant

strategy for both buyers is to bid their reservation value. As a result, Alice would

bid ba(va) = va − c and Bob would bid bb(vb) = vb − c. Hence, Alice wins the

auction and pays Bob’s bid, which implies seller’s revenue would be Πca = vb − c.

Now, suppose that rather than bidding with cash, the buyers compete by

offering equity over the return of the project. As we discuss later, in this case it
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is also a weakly dominant strategy for both buyers to bid their reservation value.
7 Thus, Alice would make aa equity bid of ba(va) = va−c

va
, whereas Bob would

make an equity bid of bb(vb) = vb−c
vb

. As a result, Alice wins the auction and

pays according to Bob’s bid. Seller’s revenue would be Πeq = vb−c
vb
va. By an easy

algebraic manipulation, it is possible to see that sellers revenue under equity is

higher than under cash, as

Πeq = vb − c
vb

va = (vb − c)
va
vb
> vb − c = Πca

B. Externalities Consider the same auction as before but now with the modi-

fication that if buyer i wins the auction and implements the project, the payoff of

buyer −i will be e < 0.

Cash. When the payment instrument is cash, bidding the reservation value

continue to be a weakly dominant strategy for both buyers. Nonetheless, it now

should include the externality. Thus, ba(va) = va − c− e and bb(vb) = vb − c− e.

Seller’s revenue becomes Πca = vb − c− e.

Equity. If buyers compete by offering equity the analysis is more interesting.

Here, Alice knows that if she bids ba(va) = va−c
va

then Bob has no incentives to

implement the project in case he wins, because (1 − va−c
va

)vb − c < 0. 8 This

implies that Alice will be willing to make the same offer as without externalities.

For Bob, the incentives in the auction change. On one hand, he can bid his

reservation value, lose the auction, let Alice implement the project, and obtain a

payoff of e < 0. On the other hand, he can bid higher than Alice, win the auction,

shut down the project, and obtain a payoff of 0. By comparing both scenarios, it
7The reservation value of buyer i is when his payoff equals 0: (1 − bi(vi))vi − c = 0 thus

bi(vi) = vi−c
vi

.
8As (1− va−c

va
)va − c = 0 and vb < va.
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is clear that Bob’s optimal strategy is to bid anything on the interval (ba(va), 1]

and secure for himself a payoff of 0. Seller’s revenue becomes Πeq = 0 in this case.

Fixed-Equity and Fixed-Cash. To conclude the example we will provide

a rationale for introducing a fixed-equity and a fixed-cash hybrid as methods of

payment. By definition, the revenue collected by both instruments depends on the

selection of the fixed component. The challenge for the seller resides in choosing

such fixed components when he only knows the distribution of valuations. For

instance, if the seller sets a very high fixed equity ᾱ, buyers may lose the incentive

to participate in the auction. Likewise, if he sets a very low fixed cash b̄, he would

not be extracting as much surplus as possible from the winner.

The following table shows the values of ᾱ∗, Πfe, b̄∗, Πfc, Πca and Πeq for

different distributions of types when the cost of implementing the project is c = 0.1

and the externality is e = −0.2.

Table 4.1: Seller expected revenue under optimal securities: Public Info

Expected Seller Revenue

Distribution ᾱ∗ b̄∗ Πfe(ᾱ∗) Πca Πfc(b̄∗) Πeq

U [0, 1] 0.51 0.53 0.56 0.44 0.32 0

B[2, 2] 0.49 0.43 0.57 0.47 0.3 0

B[2, 7] 0.1 0.16 0.24 0.23 0.09 0

IB[2, 7]9 0.73 0.63 0.90 0.80 0.56 0

By looking at the distributions and the revenues some facts can be highlighted:
9The Inverse-Beta distribution is computed from a former Beta distribution. If f(x) repre-

sents the PDF of a Beta then the PDF of an Inverse-Beta would be g(y) = f(−x + 1). If the

former Beta distribution had a right tail then the Inverse-Beta associated to it will have a left

tail. When the former Beta is symmetric then the Inverse-Beta is exactly the same.
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• When comparing symmetric distributions ᾱ∗, b̄∗, Πfe(ᾱ∗), Πca, and Πfc(b̄∗)

are very similar.

• When the relative likelihood of high types to low types increases, ᾱ∗, b̄∗,

Πfe(ᾱ∗), Πca, and Πfc(b̄∗) increase as well.

• Given c = 0.1 and e = −0.2 the rank of the instruments with respect to

revenue is as follows Πfe(ᾱ∗) > Πca > Πfc(b̄∗) > Πeq.

In the succeeding section we will formally introduce the instruments, charac-

terize the equilibrium bidding strategies, and obtain seller’s expected revenue.

4.2.1 Fixed-Equity Hybrid

In the fixed-equity hybrid, seller fixes the equity ᾱ the winner of the auction has

to pay over the return of the project. Knowing this information buyers compete in

cash for the allocation of the project. Thus, winner’s payment to the seller consists

of the lowest bid in cash, plus the fixed-equity fraction over projects’ return.

Proposition 5. The dominant-strategy equilibrium of the second price auction

under a fixed-equity hybrid is characterized as follows:

i) If (1− ᾱ)v1 − c < 0, then b1 = b2 = 0.

ii) If (1 − ᾱ)v1 − c > 0 and (1 − ᾱ)v2 − c < 0, then b1 = (1 − ᾱ)v1 − c and

b2 = −e.

iii) If (1− ᾱ)v2 − c ≥ 0, then b1 = (1− ᾱ)v1 − c− e and b2 = (1− ᾱ)v2 − c− e.

Proof. In case i) the project is not profitable to implement for any of the buyers,

and thus, their best strategy is to submit a bid of zero. On the other hand, in case

ii) the project is profitable to implement for buyer 1 but not for buyer 2; hence,

96



the best strategy for buyer 1 is to bid his reservation value, and implement the

project if he is allocated. Given buyer 1’s strategy, the best response of buyer 2 is

to bid his reservation value, which in this case is the negative externality he knows

will suffer if buyer 1 wins the auction. Finally, if the project is profitable for both

bidders, both will bid their reservation value, which includes the avoidance of the

externality.

There are several interesting observations that can be highlighted from propo-

sition 5. First, the likelihood of allocations and payments are not necessarily

weakly increasing in buyer’s type. For instance, if buyer 2 -the one with the low-

est valuation- bids the absolute value of the externality, wins the auction, and pays

the reservation value of buyer 1. Moreover, if both buyers find profitable to im-

plement the project, there cannot be an equilibrium in which buyer 2 implements

the project, and therefore, his incentives to participate in the auction reside in

avoiding the externality if he can win the auction at a price lower than the value

of the externality e.

Figure 4.2 shows the bidding strategy of bidder 1 as a function of the valuation

of bidder 2, given that v1 >
c

1−ᾱ , and thus when only cases ii) and iii) are possible.
10

It can be observed from figure 4.2 that as soon as the project becomes profitable

for buyer 2 (i.e. when v2 ≥ c
1−α) buyer 1 increases his bid by −e, to reflect the

fact that he would suffer the externality in case he loses the auction.

The expected revenue generated by the fixed-equity hybrid under these equi-

librium strategies correspond to
10If v1 <

c
1−ᾱ then he will bid b1(v1) = 0 when v2 <

c
1−ᾱ , otherwise b1(v1) = −e.
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v2

b1(v2)

10 c
1−ᾱ

b′1(v2)

b′′1(v2)

−e

(1− ᾱ)(v′′1 − v′1)

Figure 4.2: Bidding strategies with fixed-equity for buyer 1

Πfe(ᾱ) = 2F ( c

1− ᾱ)
∫ c−e

1−ᾱ

c
1−ᾱ

((1− ᾱ)v1 − c)f(v1)dv1 (4.1)

+ 2F ( c

1− ᾱ)
∫ v̄

c−e
1−ᾱ

(ᾱv1 − e)f(v1)dv1

+
∫ v̄

c
1−ᾱ

∫ v̄

c
1−ᾱ

[(1− ᾱ) min{v1, v2} − c− e+ ᾱmax{v1, v2}]f(v1)f(v2)dv1dv2

First, notice that if the project is not profitable for any buyer, the auction will

generate zero revenue. In the case it is profitable for buyer 1 but not for buyer

2, we need to identify two sub-cases: one when 0 < (1 − ᾱ)v1 − c < −e, and the

other one when −e < (1− ᾱ)v1 − c. In the former, buyer 2 wins the auction but

does not implement the project, therefore the seller does not collect revenue from

the equity portion of the hybrid, but will get a transfer of (1 − ᾱ)v1 − c, which

is the lowest bid in cash. This case corresponds to the first term in equation (1).

Now, in the other case, buyer 1 will win and implement the project, which means

the seller will collect a contingent revenue of ᾱv1 plus a transfer in cash of −e.

This corresponds to the second term. Finally, when both buyers find profitable

to implement the project, the seller collects the lowest reservation value in cash,
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plus the fraction of equity corresponding to the highest type. This is precisely the

third term.

4.2.2 Fixed-Cash Hybrid

When the seller uses a fixed-cash hybrid he fixes the amount in cash the winner

of the auction has to pay, b̄. Knowing this information, bidders compete in equity

for the allocation of the project, and it is allocated to the buyer with the highest

bid in equity. Therefore, winner’s final payment to the seller corresponds to the

lowest bid in equity, times the return of the project when it is implemented by

him, plus the fixed-amount in cash.

Proposition 6. The Nash Equilibrium of the second price auction under a fixed-

cash hybrid is characterized as follows:

i) If v1 − c− b̄ < 0; then b1 = b2 = 0.

ii,a) If v1 − c− b̄ > 0 and −b̄ ≤ e; then b1 = v1−c−b̄
v1

and b2 = 0.

ii,b) If v1 − c− b̄ > 0 and −b̄ > e; then b1 = v1−c−b̄
v1

and b2 = (v1−c−b̄
v1

, 1].

Proof. In the first case the project is not profitable for any of the buyers and then

no one will suffer the externality in case the project is allocated to his opponent.

Moreover, bidding a positive equity will give the buyers a positive probability of

winning the auction, which will force them to pay the amount b̄ to the seller.

Therefore, the best strategy for both buyers is to stay out of the auction. If the

project is profitable for buyer 1 but not for buyer 2, and the fixed amount of cash

b̄ is higher or equal to the value of avoiding the externality −e, buyer 2 prefers to

stay out of the auction and suffer the externality. On the other hand, if −b̄ > e,

buyer 2 has an incentive to participate in the auction to bid high enough in order
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to destroy the incentives of buyer 1 to implement the project in case he wins the

auction. In both cases, the best response of buyer 1 is to bid his reservation value,

which does not take into account the avoidance of the externality, because he

knows buyer 2 never will implement the project if he has the opportunity to do

so. Finally if the project is profitable for both, there is no equilibrium in which

buyer 2 wins the auction and implements the project. The reason is that as the

reservation value of buyer 2 is lower than the one of buyer 1, if buyer 1 is not the

winner then there is a profitable deviation in which he offers a slightly higher bid

than buyer 2, wins the auction, and avoid the negative externality. Given that

situation, the best response for buyer 2 is to bid 0 if −b̄ ≤ e, or otherwise bid high

enough to destroy the incentive of buyer 1 to implement the project in case he

wins the project. Following the strategy of buyer 2, the best strategy for buyer 1

is to submit his reservation value.

Equity represents the particular case in which b̄ = 0. In this case implementa-

tion never takes place and blocking is always the best response of the weak buyer.

Notice that this is true for any e < 0 and moreover this is one of the possible

equilibrium for e = 0, being this equilibrium particularly robust. In figure 4.3 we

present the bidding strategy of bidder 1 as a function of the valuation of bidder

2, given that it is profitable for him to implement (i.e. when v1 > c+ b̄). In other

words, we restrict attention to cases ii,a) and ii,b. 11

Figure 4.3 shows that as v1 increases b1(v1, ·) increases as well (v′′1 > v′1), which

implies that the region of parameters under which buyer 1 just block the allocation

decreases. 12

11If v1 < c + b̄ then he will bid b1(v1) = 0 when v2 < c + b̄ or b̄ > −e, otherwise he will bid
anything between 1 and the reservation value of buyer 2.

12Under v′1 he will block the allocation at the dashed plus dotted region whereas under v′′1 he
will block only at the dotted region.
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Figure 4.3: Bidding strategies with fixed-cash for buyer 1

The revenue generated by these equilibrium strategies corresponds to

Πfc(b̄) = (1− F (c+ b̄)2)b̄ (4.2)

It states that the seller will collect the fixed amount of cash b̄ as long as at least

one of the buyers find profitable to implement the project. The clear tradeoff for

the seller is that increasing b̄ diminishes the probability of implementation, but

increases the surplus extracted conditional on implementation.

Once we considered the expected revenues of both instruments given by ex-

pressions (4.1) and (4.2), the natural following step is to determine how do they

rank. This is precisely the matter of the following theorem.

Theorem 3. For any log-concave density f , there exists a cutoff values c̄ and e,

such that if c ∈ (0, c̄) and e < e the instruments can be ranked in expected revenue
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as follows:

Πfe(ᾱ∗) > Πfe(0) > Πfc(b̄∗) > Πfc(0) (4.3)

Theorem 3 states that if the cost of the project and the negative externality

are sufficiently low, the seller is globally better off using a fixed-equity hybrid.

The reason of this result is that, as we discussed before, when payments are made

upfront in cash buyers have to face a sunk cost if they want to block the imple-

mentation of his opponent. Therefore, the willingness of a “bad type” to pay is

bounded above by the absolute value of the negative externality. If the externality

is so large that the bad type wins the auction, the seller secures for himself the

reservation value of the highest type; otherwise, he receives the fixed equity from

the good type, plus the value of the externality in cash. On the other hand, when

buyers can bid in equity they can destroy more often the equilibrium in which

the project is implemented. The effect is particularly dramatic when the seller

uses a pure security, because blocking can be done at no cost. This problem can

be mitigated by incorporating a fixed cash component b̄; however as the theorem

shows, its presence is not sufficient to offset the perverse incentives of the “bad

type” buyers. The result holds for any log concave density, which suggests that the

interaction between buyers is strong enough to hold under different distributional

assumptions.

Figure 4.4 illustrates the result of theorem 3 when valuations are drawn inde-

pendently and identically from a uniform distribution with support [0, 1], with a

negative externality of e = −0.2 and a cost of c = 0.1. As it can be seen, there

is a large range for the parameter ᾱ such that the fixed-equity hybrid renders a

higher revenue than cash, which in turn yields a higher revenue than the fixed-

cash hybrid. Noticeably, the revenue obtained by cash is 50% higher than the one
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Figure 4.4: Revenue as a function of ᾱ and b̄ for U [0, 1]

yielded by the optimal fixed-cash hybrid. 13

Monotone Comparative Statics Now we will inspect what happens to the

optimal fixed parameters b̄∗ and ᾱ∗ when the distribution improves in the sense

of the Monotone Likelihood Ratio property. This analysis will provide an insight

of how different distributions affect the design of both hybrids

Theorem 4. Suppose f1 dominates f0 in the Monotone Likelihood Ratio (MLR),

then b̄∗1 ≥ b̄∗0. If additionally,
F1(y)
F0(y) >

f1(y)
f0(y) for all y ∈ [c, v̄], then ᾱ∗1 ≥ ᾱ∗1

Proof. See the appendix.

Theorem 4 says that for a fixed cost and an externality, if the likelihood of

getting higher values improve in the sense of MLR, the optimal fixed cash amount

in its respective hybrid cannot decrease. If in addition the ratio of the densities is

majorized by the ratio of the distributions for all values greater than the cost, the

optimal fixed equity portion in its respective hybrid cannot decrease. It implies

that when the seller is using the fixed-equity hybrid he will apply a higher equity

portion over a higher expected return of the project. Likewise, when the seller

uses a fixed-cash hybrid, it means that now the barrier a bad type has to surpass
13Similar figures for different distributions are presented in the appendix.
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to enter the auction and block implementation is higher. Naturally, in both cases

expected seller’s revenue increases.

4.2.3 Other Variations

Deposit Insurance Notice that depending on the security design, the seller

can collect a payment from buyers in two stages: after a buyer wins the auction,

and after a winner implements the project. As mentioned before, the idea of

introducing a payment in cash was a device to screen the low type buyers who

otherwise would always have an incentive to enter into the auction to destroy

the implementation incentives of the high type buyers. In particular, the fixed-

cash hybrid forces the winner to make a payment in cash right after winning the

auction. A variant of this instrument, is to introduce a cash deposit (or insurance).

This device would work as follows. The seller fixes an amount each buyer has to

deposit to participate in the auction. Then, a second price auction in equity is

run. The loser gets the deposit back. If the winner implements the project, he has

to pay the correspondent equity over project’s return but the seller gives back the

cash deposit. On the other hand, if the winner does not implement the project

the seller retains the cash deposit. 14 Although the cash transfer is determined

in a different stage, it can be shown that bidding strategies are the same as in

the fixed-cash hybrid, and therefore the revenue for the seller does not change.

In other words: If the cash deposit is below −e then the “bad type” will block

implementation, otherwise his bid will be zero thus revenue is the same as in the

fixed-cash hybrid.
14Another way of doing the same is by fixing the size of the deposit the winner should pay

upon winning the auction (only the winner pays) and he can claim it back upon implementation.
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Unconstrained Bids The two hybrids presented before share the characteristic

that the seller determines ex-ante the bid in one of the securities. For instance,

in the fixed-equity hybrid, the seller fixes the fraction of equity asked but let

buyers to compete in cash. Meanwhile, in the fixed-cash hybrid, the seller fixes

the possible bids of cash but let buyers to compete in equity. Alternatively, one

can think in a format where the seller decides to run a second price auction but

without imposing any restriction on buyers’ bids. Thus, each player bid consists

on a tuple bi = (αi, βi) ∈ R × [0, 1], where αi represents the equity promised on

the return of the project and βi corresponds to an upfront payment in cash. The

critical difference of this approach with respect to the former is that now there is

no trivial way to rank bids and determine the winner of the auction. Suppose the

seller uses an order ψ such that (R× [0, 1], ψ) constitutes a linearly ordered set.

Proposition 7. Fix an arbitrary ψ. The dominant strategy equilibrium of the

second price auction under unconstrained bids corresponds to: b1 = (0, v1 − c− e)

if v1 − c > 0 and b1 = (1, 0) otherwise; b2 = (1, 0).

Proof. If the project is not profitable for buyer 2 his dominant strategy is to bid

the whole equity and nothing in cash. Following this strategy, he makes sure the

project is never implemented at no cost, and so, he never suffers the externality.

When the project is profitable for both, bidder 1 offers his reservation value in the

cheapest way, which involves only cash, as he is the highest type and any marginal

fraction he bids in equity is only valued by the seller with respect to the expected

type. Given this strategy, bidder 2 offers the whole equity and no cash, to block

the allocation in which buyer 1 wins the auction and implements the project.

Notice that this equilibrium is obtained irrespectively of the order ψ the seller

uses to rank the bids. The result follows because equity is the instrument that
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permits to avoid the externality without paying any cost. This is the worst case

scenario for the seller, as the revenue under unconstrained bids is Πub = 0. The

critical assumption is that the auction is a second price, because the buyer is

forced to pay each component of his opponent bid.

4.3 Robustness: Private Buyer’s Valuations

In this section we will analyze the set of securities under the assumption that

buyers do not longer know the valuation of his opponent, which turns our model

into a standard private values auction model. We will analyze how the information

structure affects our main result.

4.3.1 Fixed-Equity Hybrid

Analogously to section 4.2.1 we characterize the equilibrium under private

information. We use the Bayes-Nash equilibrium as the solution concept.

Proposition 8. Bayes-Nash equilibrium bidding strategies of the second price auc-

tion when the seller uses fixed-equity, ᾱ, are characterized by

i) bi(vi) = 0 if (1− ᾱ)vi − c < 0.

ii) bi(vi) = (1− ᾱ)vi − c+ (1− F ( c
1−ᾱ))(−e) if (1− ᾱ)vi − c > 0.

Proof. As the seller utilizes a second price auction, and buyers bid in cash, the best

strategy for a buyer who finds profitable to implement the project is to bid their

reservation value. Now, buyer i’s reservation value depends on the implementation

decision of his opponent. Thus, with probability F ( c
1−ᾱ) it is not profitable for

the other buyer to implement the project, and so buyer i’s reservation value is

equal to the net payoff of implementing the project: (1 − ᾱ)vi − c. On the other

hand, with probability 1−F ( c
1−ᾱ) it is profitable for the other buyer to implement
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the project, which implies that in case buyer i loses the auction he will suffer the

externality e, and thus, such expected loss has to be added to his bid. For the

buyer who does not want to implement the project his reservation value is given

by 1− F ( c
1−ᾱ)(−e). If he bids his reservation value, he will lose with probability

one if he faces an opponent who wants to implement the project. In such case his

payment will be e. On the other hand, when he faces an opponent who does not

want to implement the project neither, his expected payoff will be 1
2(1−F ( c

1−ᾱ))(e).

Hence, there is clearly a profitable deviation to zero. By doing this the buyer will

continue losing the auction when facing an opponent who wants to implement the

project, and then will obtain the same payoff, but now will obtain a zero payoff if

he faces an opponent who does not want to implement.
Following the same reasoning as with the public case, seller’s ex-ante revenue

is given by

Πfe(ᾱ) = 2F ( c

1− ᾱ )
∫ v̄

c
1−ᾱ

(ᾱv1)f(v1)dv1

+
∫ v̄

c
1−ᾱ

∫ v̄

c
1−ᾱ

[(1− ᾱ) min{v1, v2} − c+ (1− F ( c

1− ᾱ ))(−e) + ᾱmax{v1, v2}]f(v1)f(v2)dv1dv2

The first term in the integral corresponds to the case when one buyer finds

profitable to implement the project and the other does not. In this scenario, the

seller collects the fixed equity portion from the highest type and receives zero in

cash. Meanwhile, the second term represents the expected revenue when both

buyers want to implement the project. Here the seller receives the equity portion

from the highest type, plus the cash embedded in the lowest bid.

4.3.2 Fixed-Cash Hybrid

In a similar fashion to section 4.2.2 we characterize the equilibrium under

private information. We show that the existence of a Bayes-Nash equilibrium in

pure strategies depends on the relationship between the fixed amount of cash b̄

107



and the value of the externality e.

Proposition 9. There are no equilibria in pure strategies in the fixed-cash hybrid

if:

i) −b̄ > e and (1− F (c+ b̄))e < −b̄.

ii) −b̄ > e and (1− F (c+ b̄))e > −b̄.

Proof. The problem to reach an equilibrium on case (i) resides in the optimal

strategy of the buyer’s type who does not want to implement the project: the “bad

type.” If both buyers of such type bid zero, any of them would find profitable to

deviate and bid the smallest amount that guarantees him to be the winner of the

auction. In such case the deviant buyer would get a payoff of −b̄ which is greater

than (1 − F (c + b̄))e. For the same reason, the other buyer also deviates to the

same bid, which yields a payoff of F (c+ b̄)(− b̄
2)(1−F (c+ b̄))(−b̄) to both buyers.

Notice that in such situation both buyers block the implementation with certainty

and share the cost. Nonetheless, as soon as both buyers bid the same amount,

any of them -say buyer i- has an incentive to bid an arbitrarily lower amount. It

guarantees to suffer the externality with a very low probability in case he faces

the good type of buyer −i, but saves his portion of the fixed amount of cash when

faces his fellow bad type. The moment buyer i deviates, buyer −i has two possible

deviations, either to bid lower than buyer i, or returning to the initial bid. The

former deviation is more profitable. Continuing with this analysis, some buyer

will reach a level at which there is no downward deviation for his rival. That is,

a point where if his opponent submits a lower bid, he will suffer a payoff lower

than −b̄. Or in other words, a bid k ∈ (0, 1) such that F (b−1(k))(e) = b̄. Under

this scenario, if buyer i bids k, the best deviation for buyer −i is to return to

the initial bid, which will start again the cycle of deviations. In order to prove
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case (ii) it is worth noting that “bad buyers” will make a bid of zero. Now the

problem resides on the “good buyers”. Consider the type vi = c + b̄. If he bids

bi(vi) = vi−c−b̄
vi

he wins against all the types that do now want to implement the

project getting a payoff of zero but loses against all the other types that want

to implement the project (it is clear that no bidder who wants to implement the

project has incentives to bid below his reservation value without considering the

externality). Whenever he loses, he gets e for sure (he only loses against types that

are willing to implement at his reservation value) which is worse than paying b̄ and

not implementing. Hence, he is better off blocking every possible implementation:

bidding the smallest amount that guarantees him to be the winner of the auction.

Sufficiently many types will deviate to this bid as long as −b̄ > e, because they

can block potential implementation. At this point the cyclical logic of case (i)

comes into place, not for the “bad types” now but for the “good types”, and no

equilibrium is reached in pure strategies.

Proposition 10. Bayes-Nash equilibrium bidding strategies of the second price

auction under the fixed-cash hybrid, when −b̄ ≤ e, are characterized by

i) bi(vi) = vi−c−b̄
vi

, if vi − c− b̄ > 0.

ii) bi(vi) = 0 if vi − c− b̄ < 0.

Proof. In case (ii) the project is not profitable for the buyer, and moreover, the

negative externality e is lower than the loss he would get by winning the auc-

tion and not implementing the project, −b̄. As there is no way to prevent the

implementation of the project by his competitor without winning the auction,

the best strategy of the “bad type” is to bid zero in equity. In case (i), the

buyer finds profitable to implement the project, and his best strategy is to bid his

reservation value -which does not depends on the implementation decision of his
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opponent. If bi(vi) > vi−c−b̄
vi

he will win whenever bi(vi) > b−i(v−i) but there are

two different situations. When b−i(v−i) < vi−c−b̄
vi

buyer i will win the auction and

implement the project, guaranteeing for himself a payoff of at least zero. When

bi(vi) > b−i(v−i) > vi−c−b̄
vi

buyer i will win the auction but cannot implement the

project, thus his payoff is −b̄. By deviating to bi(vi) = vi−c−b̄
vi

he keeps the positive

payoffs (wins and implements in all the cases he wants to do so) and at most

suffers a payoff of e upon losing which is better than −b̄.

Once we have derived the equilibrium strategies we can state the expression

for seller’s expected revenue. Given we have equilibrium whenever −b̄ < e we can

state the revenue just for this particular case.

Πfc(b̄) = 2(1− F (c+ b̄))F (c+ b̄)b̄

+
∫ v̄

c+b̄

∫ b̄

c+b̄
(min{v1 − c− b̄

v1
,
v2 − c− b̄

v2
}max{v1, v2}+ b̄)f(v1)f(v2)dv1dv2

4.3.3 Equity

To analyze equity, we cannot simply take bidding strategies as particular cases

of the fixed-cash hybrid, because now even for very low valuations the buyer can

bid sufficiently high, and still avoid a positive payment to the seller.

Proposition 11. Equilibrium bidding strategy when the seller uses equity is uniquely

characterized by bi(vi) = 1.

Proof. Clearly, if vi − c < 0 buyer i will not implement the project if he wins, so

winning the project only has value as long as it prevents the other agent to win and

implement the project, because in this case buyer i avoids the negative externality

it would entail. Now if vi − c > 0, in principle buyer i optimal strategy is to

bid his reservation value, as now he has the normal trade-off any buyer faces in

110



an auction: increasing the bid increases the probability of winning but decreases

the surplus. However, the presence of the externality biases buyer’s incentives

towards winning the auction. In concrete, if vi− c > 0 but small, the buyer might

be better off by bidding one in equity and avoiding the externality with certainty,

than gambling on winning the auction and suffering the externality with positive

probability.

vi

bi(vi)

1− c− b̄− e

1

10 ṽ

Figure 4.5: Threshold equilibrium under Equity

This behavior may give room for the possibility of having a cut-off strategy. If

this were the case, there would exist a value ṽ such that if vi < ṽ then bi(vi) = 1 and

if vi ≥ ṽ then buyers bid their reservation value -which includes the externality

he would suffer in case of his opponent implements the project. In such case

the strategy of buyer i would have a discontinuity at ṽ, as shown in figure 4.5.

However, if it were the case, at ṽ the bid of the agent will be the lowest possible,

which implies he loses the auction for sure and will suffer the externality with

positive probability. Thus, bidding one is a profitable deviation. This observation

holds for any value ṽ < 1. Therefore, both agents will bid one in equilibrium and
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the project is never implemented.

4.3.4 Example Revisited

Following the example presented in section 4.2 we show the values of ᾱ∗, Πfe, b̄∗,

Πfc, Πca and Πeq for different distributions of types when the cost of implementing

the project is c = 0.1 and the externality is e = −0.2.

Table 4.2: Seller expected revenue under optimal securities: Private Info

Expected Seller Revenue

Distribution ᾱ∗ b̄∗ Πfe(ᾱ∗) Πca Πfc(b̄∗) Πeq

U [0, 1] 0.67 0.42 0.54 0.39 0.35 0

B[2, 2] 0.58 0.32 0.55 0.45 0.34 0

B[2, 7] 0.23 ∗∗ 0.18 0.17 ∗∗ 0

IB[2, 7] 0.75 0.2 0.91 0.80 0.68 0

**: b̄ is in the no equilibrium range

Even though the table computes Πfc only for the case where we have an equi-

librium in pure strategies, our results are robust: Most of the entries on table 4.2

are similar to the ones presented on table 4.1. The only difference is b̄ for the

IB[2, 7] because now the seller can force bidders to bid in equity without consid-

ering the externality and he seems willing to do so. 15 However the payoff he

obtains is similar to the case of public information.
150.2 is the ᾱ∗ that maximizes revenue on ᾱ∗ ∈ [0.2, 1] but it is still possible (although unlikely)

that ᾱ∗ < 0.2.
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4.4 Concluding Remarks

We analyzed a simple two-buyer second price auction, where the seller can

use two different hybrids and the buyers suffer negative externalities upon the

implementation of the project by their opponent. In particular, we consider a

fixed-equity hybrid, where the seller fixes a portion of equity over project’s return

and buyers compete in cash; and a fixed-cash hybrid, where the buyers compete in

equity and the winner has to pay an amount in cash predetermined by the seller.

Our main observation lies in the fact that pure securities equip low-valuation

buyers (those who do not want to implement the project, or bad types) with a

powerful tool to block the implementation from the good types, which impacts

revenue negatively. Then, we find that in order to circumvent this problem the

seller has to incorporate a fixed payment in the instruments to be used as a device

to prevent “bad types” from blocking. However, mitigating this adverse selection

problem poses a tradeoff on the seller: by increasing the fixed portion of the

hybrid utilized, the project becomes less profitable for buyers, and thus, induces

less participation.

The fixed-equity hybrid conducts the screening in cash, whereas the fixed-cash

hybrid conducts the screening in equity. If the seller decides to use the latter,

buyers retain the power of blocking the implementation, conditional on the fact

that they decide to participate in the auction -which now depends on the fixed-

amount of cash requested by seller to the winners. On the other hand, when the

seller uses the former, the screening is realized in cash, which is the cheapest way

“good types” can use to distinguish themselves. Therefore, the screening realized

is more effective, and the seller ends up trading with the good types more often.

This is the intuition that justifies the preeminence of the fixed-equity hybrid as
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the best instrument in the menu. At the same time, that is the reason why equity

is the worst. More surprisingly is the result that the optimal fixed-cash hybrid

performs worse than cash, if the value of the externality is sufficiently high (in

absolute value). However, it reflects the fact that when buyers want to avoid a

sufficiently high negative externality, their willingness to pay upfront more than

offsets the potential extraction through equity.

An interesting feature of our result is that it seems to be robust to the structure

of the information. That is, even when buyer’s valuations are private information,

the fixed-equity hybrid continues to be the best, and equity continues to be the

worst. However, the fixed-equity instrument now does not always have an equi-

librium in pure strategies, which increases the uncertainty over seller’s revenue in

the more general case.

Finally, we analyze what would happen to the optimal fixed-payment portion

in both hybrids when the distribution improves in the Monotone Likelihood Ratio

property. Intuitively, we obtain that the amount of cash in the fixed-cash hybrid

is non-decreasing, and that under some condition of the distributions, the equity

portion in the fixed-equity hybrid is also non-decreasing. These results state that

when buyers draw better valuations, the seller is less concerned about inducing

participation, and can extract a higher surplus from the winner of the auction.
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APPENDIX A - ASSIGNMENT PROBLEM AS A GAME OF
INCOMPLETE INFORMATION
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Assuming that the only piece of information students have at the time to
make their decision is their preferences and scores, they are engaged in a game of
incomplete information in which the ulterior objective is to maximize the expected
utility derived of their major assigned in equilibrium. The space of actions of
this game is Mk -the set of k-tuples defined over the set of majors- and so, a
strategy σ for each student is a mapping σ : [x, x]S × U → ∆(Mk), where ∆(Mk)
denotes the set of probability distributions overMk. Alternatively, we can express
any mixed strategy as a randomization over the set of pure strategies. That is,
letting B be the space of functions β : [x, x] × U → Mk, a mixed strategy σ
corresponds to a probability distribution of ∆(B). Moreover, for a profile of mixed
strategies (σ1, · · · , σS) ∈ ∆(B)S, the density assigned by the mixed strategy σs to
the pure strategy βs is given by λσs(βs). Then, for any profile of pure strategies
β = (β1, · · · , βS), λσ(β) = ∏S

s=1 λσs(βs) denotes the density of playing the pure
strategy (β1, · · · , βS) under the mixed strategy σ.

Hence, when the profile of mixed strategies (σs,σ−s) is played, the expected
utility of student s under the mechanism φ, corresponds to:

EUs(σ) =
∫
BS

(∫
US

∫
[x,x]M

u(φs(β(x,u))h(u,x)d(u,x)
)
λσ(β)dβ (4)

When students are not allowed to report a complete order over majors the
mechanism is not strategy proof. Hence, it is not possible to use a dominant
strategies equilibrium as a solution concept; instead, we rely on the Bayesian
Nash equilibrium in un-dominated strategies to solve the game. However, not
even the equilibrium can be guaranteed since the space of preferences and scores
is a continuum, and therefore it could be the case that (4) is not well defined.
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APPENDIX B - DATA ANALYSIS
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Table 3: Assigned Seats in Each Area by High School Type and Sex

High school type Gender
Academic Area Private Public Male Female Total
Arts 44 57 39 62 101
Literature 202 236 167 271 438
Hard Sciences 195 284 282 197 479
Education 195 447 211 431 642
Economics Sciences 441 491 512 420 932
Social Sciences 378 424 353 449 802
Engineering 499 510 724 285 1,009
Health 285 269 200 354 554
Agroalimentary Sciences 115 140 141 114 255
Total 2,354 2,858 2,629 2,583 5,212
(%) 45.2% 54.8% 50.4% 49.6%

Table 3 shows the distribution by gender and high school type among the
different academic areas. There are not remarkable differences at the aggregate
level between public and private high schools, since approximately 50% and 55% of
the student body are male and from public schools, respectively. However, within
areas it is possible to observe a pattern of this sort in education and engineering.
In the former, 67% are women, while in the latter 71% are men. Education also
presents a bias towards public high schools, with a representation over 69%.
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Table 4: Students who Accepted Admission at their Second Option

Group Total Percentage
Arts 8 8%
Literature 191 42%
Hard Sciences 206 43%
Education 316 47%
Economics Sciences 392 37%
Social Sciences 325 38%
Engineering 250 23%
Health 194 35%
Agro alimentary Sciences 135 45%

Third column presents the percentage of students who where admitted, and
consolidated their enrollment, at a major that was ranked second in their submit-
ted report to the RO.
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Figure 6: Distribution of Scores for Students who Applied for Admission.

Figure 6 shows the distribution of the admission scores for those students
were admitted and for those who applied but were not admitted. As expected,
the distribution of students who were not admitted is skewed to the left. One
interesting aspect is that there is a non-negligible mass to the right of 600 under
the non-admitted curve, and to the left of 500 under the admitted curve. The
former group is the students who probably took “too much risk” and the latter
is the group of played a protective strategy at the time to report his options to
the RO. The figure presents clear evidence that the restriction in the number of
options affects the caliber of the students admitted.
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APPENDIX C - SIMULATION RESULTS
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Figure 7: Distribution of Students in Tiers.

This figure shows the distribution of students in each of the tiers constructed
from the maximum threshold scores. The reports of the students in the first
tier are used as the commencement of the preference profiles. The frequency of
students in the last tiers increase since we use the historical maximum scores to
construct the tiers.
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Figure 8: Ranking of the Assignments with respect to Students’ Preferences.

The figure shows the fraction of cases of “justified envy” with respect to the
total of possible pairwise comparisons. For example, taking the student with the
highest score, we analyze if he envies the allocation of the student with second
highest score, the third highest score, and so on, until to the student with the
lowest score. Then, we repeat the process for all students. All possible comparisons
conform the total of possible pairwise comparisons.
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Figure 9: Ranking of the Assignments with respect to Students’ Preferences.

This figure shows the distribution of the assignment with respect to students’
true preferences, as a function of the number of options to report.
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0 10 20 30 40 50 60 70 80

Major

0

50

100

150

200

A
bs

ol
ut

e 
E

xc
es

s 
D

em
an

d

(c) Absolute Excess Demand: Median
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Figure 11: Excess Demand in the PSU Mechanism for Selected Threshold Scores

This panel shows the excess demand in the different majors when the planner
announces three different configurations of the thresholds scores. In particular,
figure 11a shows the absoulte excess demand when the planner announces the
mean of the past threshold scores in each major. Likewise, figure 11b shows the
excess demand relative to the number of seats offered in each major. Figures 11c
to 11f do the same when the planner announces the median and the maximum of
the past threshold scores.
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APPENDIX D - OMITTED PROOFS

134



Proof of Theorem 3. We will prove the theorem following three steps. First we
will prove that the optimal fixed-equity hybrid involves a portion of equity ᾱ∗ ∈
(0, 1), which immediately implies that the hybrid dominates pure cash in revenue.
Analogously, in the second step we will show that the optimal fixed-cash hybrid
involves a positive amount of cash (i.e. b̄∗ > 0), which in turn implies that it
dominates pure equity in revenue. Finally, we will prove that the revenue under
cash is higher than the revenue under the optimal fixed-cash hybrid.

Step 1 We take first order conditions by applying Leibniz’ rule to the three
different terms in (4.1). First derivative D1(ᾱ, c, e) corresponds to:

2F ( c

1− ᾱ)[ (c− e)e
(1− ᾱ)2f( c− e

(1− ᾱ))−
∫ c−e

1−ᾱ

c
1−ᾱ

v1f(v1)dv1]−2f( c

1− ᾱ) c

(1− ᾱ)2

∫ c−e
1−ᾱ

c
1−ᾱ

((1−ᾱ)v1−c)f(v1)dv1

Likewise, second derivative D2(ᾱ, c, e) is given by

2F ( c

1− ᾱ)[(ᾱc− e)1− ᾱ
(c− e)

(1− ᾱ)2f( c− e
(1− ᾱ))+

∫ v̄

c−e
1−ᾱ

v1f(v1)dv1]−2f( c

1− ᾱ) c

(1− ᾱ)2

∫ c−e
1−ᾱ

c
1−ᾱ

(ᾱv1−e)f(v1)dv1

Finally, applying Leibniz rule twice in the third term and using the fact
that valuations are independently and identically distributed, the third deriva-
tive D3(ᾱ, c, e) becomes:

2[
∫ v̄

c
1−ᾱ

(ᾱv1−e)f(v1)dv1] c

(1− ᾱ)2f( c

1− ᾱ)+
∫ v̄

c
1−ᾱ

∫ v̄

c
1−ᾱ

(max{v1, v2}−min{v1, v2})f(v1)f(v2)dv1dv2

Letting D̃(α, c, e) = D1(α, c, e) +D2(α, c, e) +D3(α, c, e) we have that

D̃(0, c, e) = 2F (c)[
∫ v̄

c−e
v1f(v1)dv1 −

∫ c−e

c
v1f(v1)dv1]

− 2f(c)c[
∫ c−e

c
(v1 − c)f(v1)dv1]− e(1− 2F (c) + F (c− e))]

+
∫ v̄

c

∫ v̄

c
(max{v1, v2} −min{v1, v2})f(v1)f(v2)dv1dv2

Now, we will explore the behavior of the first order condition when the cost
tends to zero.

lim
c↓0

D̃(0, c, e) =
∫ v̄

0

∫ v̄

0
(max{v1, v2} −min{v1, v2})f(v1)f(v2)dv1dv2 > 0 ∀e < 0

Notice that for a given e, as D̃(0, c, e)) is continuous, there exists a cut-off in
the cost
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c̄1 := sup{c̃ > 0 : D̃(0, c, e) > 0 for all c ∈ (0, c̃)}
Moreover,

lim
ᾱ→1

Πfe(ᾱ) = 0
and,

Πfe(0) = 2F (c)[
∫ c−e

c
(v − c)f(v)dv +

∫ v̄

c−e
(−e)f(v)dv]

+
∫ v̄

c

∫ v̄

c
(min{v1, v2} − c− e)f(v1)f(v2)dv1dv2 > 0

Therefore, because revenue is strictly increasing at ᾱ = 0 and Πfe(0) > Πfe(1)
for all e, the optimal fraction of equity ᾱ∗ ∈ (0, 1).

Step 2 Now we will prove that the optimal portion of cash in the fixed-cash
hybrid is positive. That is, b̄∗ > 0.

Taking first order conditions of (4.2) with respect to b̄ we have that

b̄∗ = 1− F (c+ b̄∗)
f(c+ b̄∗)

1 + F (c+ b̄∗)
2F (c+ b̄∗)

= 1
λ(c+ b̄∗)

1 + F (c+ b̄∗)
2F (c+ b̄∗)

(5)

where λ(·) is the hazard ratio associated with f .
Now, as the density f is log-concave, by theorem 3 in Bagnoli and Bergstrom

(2005) the hazard rate λ of F is an increasing function. Therefore, the second
derivative of (4.2) is negative for all b̄, and the expression in (5) corresponds to its
unique global solution. Intuitively, if the seller raises marginally the fixed amount
b̄, his revenue increases by this amount only with probability 1− F (c+ b̄), which
is the likelihood that the project is profitable for a particular buyer. On the other
hand, f(b̄), measures the loss in implementation the seller will cause by rising
the fixed amount of cash requested. That is, the seller will gain the marginal
amount in the cash requested except in those cases where the winner was already
indifferent between implementing or not the project. In those cases, if the seller
raises b̄ now the project is not profitable for the winner, and the seller will reduce
participation. This expression is scaled by the factor at the right.

Step 3 In the last step we will show that the revenue under cash is higher than
the revenue under the optimal fixed-cash hybrid.

Let b̄∗ be the optimal fixed-cash amount when the cost is zero, and thus b̄∗ =
1−F (b̄∗)
f(b̄∗)

1+F (b̄∗)
2F (b̄∗) . Hence,

lim
c↓0

Πfe(0, c, e) = −e+
∫ v̄

0

∫ v̄

0
min{v1, v2}f(v1)f(v2)dv1dv2

> −e+
∫ v̄

b̄∗

∫ v̄

b̄∗
min{v1, v2}f(v1)f(v2)dv1dv2
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That is, when the cost approaches to zero from above, the expected revenue
when the seller uses cash is higher than the expected revenue under the best
fixed-cash hybrid.

Now, fix c ∈ (c, c̄). Using the expressions of revenue for fixed-equity (4.1) and
fixed-cash (4.2) hybrids, we need to show that

Πfe(0, c, e) = 2F (c)[
∫ c−e

c
(v1 − c)f(v1)dv1 +

∫ v̄

c−e
(−e)f(v1)dv1]

+
∫ v̄

c

∫ v̄

c
[min{v1, v2} − c− e]f(v1)f(v2)dv1dv2

is greater than

Πfc(b̄∗, c, e) = 2
∫ c+b̄∗(c)

0

∫ v̄

c+b̄∗(c)
b̄∗f(v1)f(v2)dv1dv2

+
∫ v̄

c+b̄∗(c)

∫ v̄

c+b̄∗(c)
b̄∗f(v1)f(v2)dv1dv2

Or rearranging terms, we need that

2F (c)[
∫ c−e

c
(v1 − c)f(v1)dv1 +

∫ v̄

c−e
(−e)f(v1)dv1] + (1− F (c))2(−c− e)

+
∫ v̄

c+b̄∗(c)

∫ v̄

c+b̄∗(c)
[min{v1, v2} − b̄∗(c)]f(v1)f(v2)dv1dv2∫ c+b̄∗(c)

0

∫ c+b̄∗(c)

0
min{v1, v2}f(v1)f(v2)dv1dv2

be greater than

(1− F (c+ b̄∗(c))2)
f(c+ b̄∗(c))

(1 + F (c+ b̄∗(c)))

where the last expression is obtained by replacing the functional form of b̄∗(c).
Hence, to show that Πfe(0) > Πfc(b̄∗(c)) is sufficient that

−e > 1 + F (c+ b̄∗(c))
f(c+ b̄∗(c))

+ c− 2
(1− F (c))2

∫ c+b̄∗(c)

0
(1− F (v1))f(v1)v1dv1

Therefore we can define

−e = arg max
c∈(0,c̄)

{1 + F (c+ b̄∗(c))
f(c+ b̄∗(c))

+ c− 2
(1− F (c))2

∫ c+b̄∗(c)

0
(1−F (v1))f(v1)v1dv1}

Figure 13 shows the behavior of c̄ as a function of |e|. If c < c̄ then theorem 3
holds thus Πfc(0) > Πfc(b̄∗), otherwise the reverse is true.
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Figure 13: Upper bound of the cost for different distributions

Table 5: Revenue in Cash and Fixed-Cash as a function of e

Expected Seller Revenue
Distribution e Πfe(0) Πfc(b̄∗) b̄∗ e

U [0, 1]
−0.001 0.334333

0.3849 0.57735 −0.0512−0.01 0.343333
−0.1 0.433333

B[2, 2]
−0.001 0.372429

0.375 0.5 −0.0036−0.01 0.381429
−0.1 0.471429

B[2, 7]
−0.001 0.15002

0.152539 0.222329 −0.0035−0.01 0.15902
−0.1 0.24902

IB[2, 7]
−0.001 0.705575

0.656547 0.718398 @−0.01 0.714575
−0.1 0.804575

On table 5 we explore theorem 3 by showing the value of e for different dis-
tributions. Alongside, we present the values of Πfe(0) and Πfc(b̄∗) for different
values of e, to confirm why the bound is needed although it is rather low.
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Proof of Theorem 4. We will prove the result using techniques of monotone com-
parative statics on lattice programming, for which we need to introduce some the
definitions and results of this theory.
Definition 6 (Milgrom and Shannon (1994)). Let X and T be non-empty subsets
of R and let g : X × T → R. We say g satisfies the strict single crossing
property (SSCP) in (x, t) if for every x′′, x′ in X and t′′, t′ in T , with x′′ > x′

and t′′ > t′

g(x′′, t′) ≥ g(x′, t′) implies g(x′′, t′′) > g(x′, t′′) (6)
and we write g(·, t′′) �SSCP g(·, t′).
Definition 7 (Quah and Strulovici (2009)). Let X and T be non-empty subsets
of R, and let {g(·, t)}t∈T be a family of real valued functions defined on X, we say
that g(·, t′) is interval order dominated by g(·, t′′) -with the notation g(·, t′′) �IDO
g(·, t′′)- if equation (6) holds for all x′ < x′′ whenever g(x, t′) < g(x′′, t′′) for all
x ∈ [x′, x′′].
Proposition 12 (Quah and Strulovici (2009)). Let X and T be respectively an
interval and a non-empty subsets of R, and suppose that {g(x, ·)}t∈T is a family
of real valued functions, which are also absolutely continuous in intervals of X;
and that there is a positive an increasing function h : X → R such that g′(x, t′′) >
h(x)g′(x, t′) a.e. Then, g(·, t′′) �IDO g(·, t′)
Theorem 5 (Quah and Strulovici (2009)). Let X and T be non-empty subsets of
R and let g(·, t′′), g(·, t′) be two real valued functions defined on X, with t′′, t′ ∈ T
such that t′′ > t′. If g(·, t′′) �IDO g(·, t′) then

argmaxx∈Jg(·, t′′) > argmaxx∈Jg(·, t′) for any interval J of X. (7)

Furthermore, if (7) is satisfied then g(·, t′′) �IDO g(·, t′)
Suppose f1 dominates f0 in the monotone likelihood ratio (MLR) and rewrite

(??) as

Πfe(ᾱ, t) = 2Ft(
c

1− ᾱ)
∫ c−e

1−ᾱ

c
1−ᾱ

((1− ᾱ)v1 − c)ft(v1)dv1 (8)

+ 2Ft(
c

1− ᾱ)
∫ v̄

c−e
1−ᾱ

(ᾱv1 − e)ft(v1)dv1

+
∫ v̄

c
1−ᾱ

∫ v̄

c
1−ᾱ

[(1− ᾱ) min{v1, v2} − c− e+ ᾱmax{v1, v2}]ft(v1)ft(v2)dv1dv2

with t ∈ {0, 1}. It is sufficient to show that there exists a positive and increasing
function h(α) such that Πfe

α (α, 1) > h(α)Πfe
α (α, 0) to show that α∗1 ≥ α∗0, in virtue

of proposition 12 and theorem 5.
Define h(α, c) = f1( c−e1−ᾱ )

f0( c
1−ᾱ ) and g(α, c) = F1( c

1−ᾱ )
F0( c

1−ᾱ ) . Notice that h(α, c) is increasing
in α for all c, and hence, if we show that Πfe

α (α, 1)− h(α, c)Πfe
α (α, 0) > 0 we can

conclude that Πfe(α, 1) �IDO Πfe(α, 0) In order to show that, we can proceed
separately as we did with the derivative the proof of theorem 3.
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Thus, for the first term we have

2(c− e)e
(1− ᾱ)2 f( c

(1− ᾱ)) [g(α, c)− h(α, c)]− 2
∫ c−e

1−ᾱ

c
1−ᾱ

v1[g(α, c)f1(v1)
f0(v1) − h(α, c)]dv1

(9)

Likewise, the second term corresponds to

2(ᾱc− e)
1− ᾱ

c− e
(1− ᾱ)2 [g(α, c)− h(α, c)] + 2

∫ v̄

c
1−ᾱ

v1[g(α, c)f1(v1)
f0(v1) − h(α, c)]dv1 (10)

The third term is equal to

2c
(1− ᾱ)2

∫ v̄

c
1−ᾱ

(ᾱv1 − e)[
f1(v)
f0(v1) − h(α, c)]dv1 (11)

+
∫ v̄

c
1−ᾱ

∫ v̄

c
1−ᾱ

(max{v1, v2} −min{v1, v2})[
f1(v1)f1(v2)
f0(v1)f0(v2) − h(α, c)]dv1dv2

Grouping the first terms in (9) and (10), respectively, we get

2ᾱ(c− e)2

(1− ᾱ)3 [g(α, c)− h(α, c)] (12)

Likewise, adding the second terms in (9) and (10) we obtain

2
∫ v̄

c−e
1−ᾱ

v1[g(α, c)f1(v1)
f0(v1) − h(α, c)]dv1 (13)

Terms (11)-(13) imply the result because we assume that g(α, c) > h(α, c), f0
is dominated in MLR by f1, and the inferior limit of all the integrals involved is
greater than or equal to c

1−ᾱ .
Applying the same argument, we can see that b̄∗1 > b̄∗0 if and only if

− 2b̄+ 1
λ0(c+ b̄)

1 + F0(c+ b̄)
F0(c+ b̄)

> h(b̄)[−2b̄+ 1
λ1(c+ b̄)

1 + F1(c+ b̄)
F1(c+ b̄)

] (14)

for h(·) increasing and positive.
Notice that as f1 dominates f0 in MLR then the hazard ratio is decreasing (i.e

λ0 < λ1). Moreover, it implies that F1 dominates F0 in first stochastic dominance
order (FOSD), which in turn implies that 1+F0(c+b̄)

F0(c+b̄) < 1+F1(c+b̄)
F1(c+b̄) . Therefore the

condition in (14) is satisfied for h(·).
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APPENDIX E - SIMULATION FOR DIFFERENT
DISTRIBUTIONS
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Following the results presented on figure 4.4, here we show the behavior of
revenue as a function of ᾱ and b̄ for the main distributions considered in this
article. Figure 14 has the functions for a Beta[2, 2], figure 15 has the functions for
a Beta[2, 7] and figure 16 has the functions for an InverseBeta[2, 7]
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Figure 14: Revenue as a function of ᾱ and b̄ for B[2, 2]

Cash

Fixed-Equity

0.2 0.4 0.6 0.8 1.0
α

0.05

0.10

0.15

0.20

Revenue

Equity

Fixed-Cash

0.2 0.4 0.6 0.8 1.0
b

0.02

0.04

0.06

0.08

Revenue

Figure 15: Revenue as a function of ᾱ and b̄ for B[2, 7]
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Figure 16: Revenue as a function of ᾱ and b̄ for IB[2, 7]
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