
Identification, Decomposition and Analysis of Dynamic Large-Scale Structures

in Turbulent Rayleigh-Bénard Convection

by

Philip John Sakievich

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved April 2017 by the
Graduate Supervisory Committee:

Yulia Peet, Chair
Ronald Adrian
Kyle Squires

Marcus Herrmann
Eric Kostelich

ARIZONA STATE UNIVERSITY

May 2017

ABSTRACT

The central purpose of this work is to investigate the large-scale, coherent structures

that exist in turbulent Rayleigh-Bénard convection (RBC) when the domain is large

enough for the classical ”wind of turbulence” to break down. The study exclusively

focuses on the structures that from when the RBC geometry is a cylinder. A series

of visualization studies, Fourier analysis and proper orthogonal decomposition are

employed to qualitatively and quantitatively inspect the large-scale structures’ length

and time scales, spatial organization, and dynamic properties. The data in this study

is generated by direct numerical simulation to resolve all the scales of turbulence in a

6.3 aspect-ratio cylinder at a Rayleigh number of 9.6× 107 and Prandtl number of

6.7. Single and double point statistics are compared against experiments and several

resolution criteria are examined to verify that the simulation has enough spatial and

temporal resolution to adequately represent the physical system.

Large-scale structures are found to organize as roll-cells aligned along the cell’s side

walls, with rays of vorticity pointing toward the core of the cell. Two different large-

scale organizations are observed and these patterns are well described spatially and

energetically by azimuthal Fourier modes with frequencies of 2 and 3. These Fourier

modes are shown to be dominant throughout the entire domain, and are found to be

the primary source for radial inhomogeneity by inspection of the energy spectra. The

precision with which the azimuthal Fourier modes describe these large-scale structures

shows that these structures influence a large range of length scales. Conversely, the

smaller scale structures are found to be more sensitive to radial position within the

Fourier modes showing a strong dependence on physical length scales.

Dynamics in the large-scale structures are observed including a transition in the

global pattern followed by a net rotation about the central axis. The transition takes

i

place over 10 eddy-turnover times and the subsequent rotation occurs at a rate of

approximately 1.1 degrees per eddy-turnover. These time-scales are of the same order

of magnitude as those seen in lower aspect-ratio RBC for similar events and suggests

a similarity in dynamic events across different aspect-ratios.

ii

DEDICATION

In memory of Jim Miner.

Ever the engineer and forever a friend.

iii

ACKNOWLEDGMENTS

First and foremost, I wish to acknowledge my parents Mark and Gina Sakievich.

With out your love, patience, support and guidance I would never have come close to

where I am today. All children owe their parents a great debt for giving them life, but

I owe you one greater for the quality of life you have bestowed upon me. Next, I wish

to acknowledge and thank my loving wife, Annie, for her patience and support over

the past four years. You have been with me through every up and down during this

process, and my love for you has grown exponentially in this time period.

I would also like to acknowledge my advisors and academic mentors Dr. Yulia

Peet and Dr. Ronald Adrain. You have both been incredibly kind, patient and

supportive of me as I have worked to understand the nuances of thermal convection

and turbulence. I have enjoyed working with both of you, and I appreciate the way

you have helped me to develop as a researcher. Dr. Peet thank you for seeing the

potential in me and offering me a research position at the end of my master’s degree.

Dr. Adrian, thank you for your generosity to me and my growing family. Your wisdom,

mentorship and kindness have been greatly appreciated. I have enjoyed our many long

discussions. Under you’re tutelage I have come to appreciate the value of declaring

precise mathematical definitions and expressing equations in their continuous form. I

have also learned an incredible amount from you in arenas that extend well beyond

the realm of academia. Your boundless optimism and kindness have provided lessons

I will never forget.

My other committee members have also played a large roll in reaching this position.

Dr. Herrmann, your exceptional courses inspired me to pursue CFD and taught me to

love the power and beauty of numerical methods. Dr. Squires, you have been a part of

my academic career since my very first semester at ASU over 9 years ago, and I have

iv

always found your instruction and feed back to be concise, well posed and incredibly

insightful. Dr. Kostelich your course introduced me to one of my favorites subjects,

high-performance computing, and you have been a continual resource and support

to me during my research. I am truly fortunate to have such an amazing committee

where every member has played a foundational roll in shaping my academic course

and bringing me to my current position.

I would also like to acknowledge the amazing graduate students that I have been

privileged to work with over the years. Brandon Merrill, YiQin Xu, Daniel Coxe and

my other colleagues in the Integrative Simulations and Computational Fluids Lab,

you have been great colleagues, and I have enjoyed working with everyone of you. I

would like to give a special thanks to Tanmoy Chatterjee for the long and engaging

conversations, and your keen insight into turbulence. You have a brilliant mind and I

am certain you will continue to do great work in the future. I am also thankful for my

colleagues in the Laboratory for Energetic Flow and Turbulence: Liuyang, Heather

and Rafeed. You have been great friends, and I have been inspired by your work.

I also wish to recognize the many other friends and family members who have

supported and encouraged me over the years. There are too many people to thank

individually, but I acknowledge that a large portion of my success is due to the support

system and positive influences in my life. In the coming years I hope to pay forward

the kindness and consideration that have been shown to me by so many individuals.

Finally, I would like to acknowledge U.S. National Science Foundation Grants

CBET-1335731 and CMMI-1250124, XSEDE allocations TG-ENG140002 and TG-

CTS150039, and the Arizona State University Dean’s Fellowship (2013/2017-MAE-

105) for supporting my work.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1 INTRODUCTION . 1

1.1 Research Questions . 1

1.2 Novel Contributions . 6

1.3 Rayleigh-Bénard Background . 7

1.3.1 General Information . 7

1.3.2 Large Aspect-Ratio . 12

1.3.3 Equations and Scales . 14

1.3.3.1 Conduction Scaling . 14

1.3.3.2 Free Fall Scaling . 15

1.3.3.3 Deardorff Scaling . 16

1.3.4 Experiments of Fernandes . 18

1.3.5 Analogy to Shear Flows . 19

1.4 Document Outline . 22

2 NUMERICAL METHODOLOGY . 25

2.1 Introduction to the Spectral Element Method 26

2.1.1 Galerkin Method and Weak Formulation 28

2.2 Post Processing Techniques . 31

2.2.1 Global Mapping and Projection Operations 31

2.2.2 Merging Nek5000, FFTW and VTK . 34

2.2.3 Python Scripting . 37

vi

CHAPTER Page

3 LARGE-SCALE THERMAL MOTIONS OF TURBULENT

RAYLEIGH-BÉNARD CONVECTION IN A WIDE ASPECT-RATIO

CYLINDRICAL DOMAIN . 39

3.1 Introduction . 40

3.2 Numerical Methodology. 43

3.2.1 Numerical Resolution . 45

3.3 Comparison with Experiments . 48

3.3.1 Differences between Experimental and Numerical Data Col-

lection Protocols . 49

3.3.1.1 Differences in Temporal Averaging 49

3.3.1.2 Differences in Spatial Dimensions 50

3.3.1.3 Differences in Scaling . 52

3.3.2 Statistics Results . 54

3.3.2.1 Two-Point Statistics . 54

3.3.2.2 Single-Point Statistics . 56

3.4 Structure of the Flow . 60

3.5 LSC Extraction by Smoothing in Time . 62

3.5.1 Short-Time Filtering (T=1 tε) . 62

3.5.2 Medium-Time Filtering (T=10 tε) . 65

3.5.3 Long-Time Filtering (T=20 tε) . 68

3.6 Summary and Conclusions . 70

BIBLIOGRAPHY . 73

vii

CHAPTER Page

4 MITIGATING THE INFLUENCE OF VERY LONG-LIVED STATIS-

TICS TO IMPROVE STATISTICAL CONVERGENCE IN FINITE-

TIME SIMULATION OF RAYLEIGH-BÉNARD CONVECTION 77

4.1 Introduction . 77

4.2 Additional States in Larger Aspect-Ratio Cylinders 80

4.3 State Switching Techniques . 83

4.4 Summary and Conclusions . 87

5 AZIMUTHAL FOURIER DECOMPOSITION . 89

5.1 Introduction . 89

5.2 Numerics, Nomenclature and Definitions . 90

5.2.1 Domain and Scaling . 90

5.2.2 General Numerics . 92

5.2.2.1 Fourier Decomposition . 93

5.3 The Mean Field . 94

5.4 Spatial Description of the Large-Scale Structure 96

5.5 Temporal Description of the Large-Scale Structure 101

5.5.1 Temporal Evolution of the Flow Field . 101

5.5.2 Integral Time Scale . 104

5.6 Effects of the Inhomogeneous Spatial Directions 110

5.6.1 Spatial Inhomogeneity’s Effect on Time Scales 110

5.6.2 Spatial Inhomogeneity’s Effect on Length Scales 113

5.6.2.1 Variations in Radial Location . 115

5.6.2.2 Variations in Vertical Location . 116

5.7 Discussion and Conclusions . 117

viii

CHAPTER Page

6 PROPER ORTHOGONAL DECOMPOSITION OF FOURIER MODES 122

6.1 Method of Snapshots . 124

6.2 Choosing Snapshots . 125

6.3 Temporal Evolution of the POD Projections . 135

6.4 Spatial Structure of the POD Modes . 138

6.5 Summary and Conclusions . 143

7 SUMMARY AND CONCLUSIONS . 146

7.1 The Best Estimate for an Infinite Time Averaged Field for

Rayleigh-Bénard Convection in Cylindrical Cells 146

7.2 Properties of the Large-Scale Coherent Structures in Rayleigh-

Bénard Convection When the Domain is a Moderate Aspect-Ratio

Cylinder . 147

7.3 Physical Insights can be Obtained about the Large-Scale Structures

through a Modal Representation of the Flow Field inside the

Cylindrical Domain . 148

7.4 Concluding Remarks and Future Work . 150

7.5 Extended Impact . 151

REFERENCES . 153

APPENDIX

A POD MODE DOCUMETATION . 160

B POST PROCESSING CODE . 211

C CONSENT TO USE PUBLISHED MATERIAL . 265

ix

LIST OF TABLES

Table Page

1 Nusselt Number Calculations in Row Order: Average Planar Nusselt Number

(Nu(Z)) and the Associated Standard Deviation, Nu at the Bottom Plate,

Nu at the Top Plate, Nu from Volume Averaged Kinematic Heat Flux, Nu

from Volume Averaged Kinematic Dissipation, Nu from Volume Averaged

Thermal Dissipation . 48

2 A Select List of RBC DNS Studies. Total Averaging Times Are Listed in the

4th Column. 50

3 Area Averaged Integral Time Scale for the Total Field and a Selection of

Fourier Modes in Terms of tf . 108

x

LIST OF FIGURES

Figure Page

1 Illustration of the Domain and Boundary Conditions that Are Associated

with Rayleigh-Bénard Convection . 2

2 Illustration of the Thermal Life Cycle as Outlined by Zocchi Et Al. 8

3 Illustration of the Experimental Device and the Field of View for Velocity

Measurements (z∗ = 0.5ZD). Image Reproduced from Adrian Et Al. (1986)

with Permission from the Author. 19

4 Comparison between the Small Scale (a), Large Scale (B) and Very Large

Scale (C) Coherent Structures Seen in Shear Flows (1) and Rayleigh-Bénard

Convection (2). 22

5 Distribution of 7th Order Basis Functions Using Equally Spaced Points (a)

and the Gauss-Lobatto-Legendre Distribution (B) . 27

6 Images of the Grid Used to Calculate the Flow Field (a) and a Sample Grid

for Post Processing in Cylindrical Coordinates (B). 32

7 Visual Representation of the Domain Decomposition and Wave Number

Assembly Process. Each Colored Azimuthal Ring Is Stored and Operated on

by an Individual Processor and the Light Red Plane Illustrates the Assembly

across All Processors for a Particular Wave Number. 36

8 Resolution Tests for This Simulation: Kinetic Energy Dissipation Profile (a),

Thermal Dissipation Profile (B), Horizontal Plane Nusselt Number Profile

(C), Vertical Length Scales: Kolmogorov (Stars) and Batchelor (Circles) (D).

All Time Averages Were Calculated from 205 Instantaneous Snapshots with

3 Free-Fall Times between Each Snapshot. Open Circles in (a) and (B) Are

Placed at the Element Boundary Locations. 47

xi

Figure Page

9 Contour Plot of the Vertical, Two-Point Correlation of the U-Velocity Compo-

nent (left) < ur(Z)ur(Z
′) >A, t and W-Velocity Component < w(Z)w(Z ′) >A

, t(Right), All Values Normalized by w∗2: (a) and (B) Experimental Results

at Ra = 2 × 108 (Averaged within ΩE)(Ra = 2 × 108 Is the Closest Ra

to Our Simulations, for Which Two-Point Correlation Is Presented in the

Experiments), (C) and (D) DNS at Ra = 9.6× 107 (Averaged within ΩSV) . . 55

10 Ensemble and Horizontally Averaged Mean (left) and R.m.s. (right) Vertical

Velocity Profile Normalized by w∗: DNS: Ra = 9.6× 107, Averaging Domain

ΩF (--) and Averaging Domain ΩSV (- -); Experiment: Ra = 6× 107 (4),

Ra = 2× 108 (�), Ra = 1× 109 (◦) . 56

11 Ensemble and Horizontally Averaged Mean (left) and R.m.s. (right) Hori-

zontal Velocity Profiles Normalized by w∗: DNS: Ra = 9.6× 107, Averaging

Domain ΩF (--) and Averaging Domain ΩSV (- -); Experiment: Ra = 6× 107

(4), Ra = 2× 108 (�), Ra = 1× 109 (◦). 58

12 Ensemble and Horizontally Averaged Mean Temperature Profile (left) and

R.m.s Temperature Fluctuations (right) Normalized by ∆T : DNS: Ra =

9.6 × 107, Averaging Domain ΩF (--) and Averaging Domain ΩSV (- -);

Experiment: Ra = 2× 108 (�), Ra = 5× 108 (◦) . 59

13 Instantaneous Temperature Data Scaled between 0.45− 0.55∆T at the Hori-

zontal Cut Plane at z/h = 0.5 and Vertical Cut Planes at 30°, 150° from the

X-Axis . 60

14 Instantaneous Temperature Data in the x − Y Plane at Z/h=0.5 for Two

Different Time Instances 5.9tε Apart. 61

xii

Figure Page

15 Thermal Field at the Mid-Plane Scaled from 0.45− 0.55∆T (left); Vertical

Velocity Field at the Mid-Plane Scaled between -1.5 & 1.5 W* with Velocity

Vectors in the x− Y Plane at Z/h=0.92 Superimposed (right); All Results

Are Time Averaged over the 1st tε of Data . 63

16 Temperature Field Averaged over One tε at to = 2 tε(A), 5 tε(B), 8 tε(C), 11

tε(D), 14 tε(E), and 17 tε(F) in the x− Y Plane at z/h = 0.5 Scaled between

0.45-0.55∆T , the Color Panel Is the Same as in Figure 8 (Left) 64

17 Temperature Field Averaged over 0-10 tε (left) and 10-20 tε (right) in the

x− Y Plane at z/h = 0.5 Scaled between 0.45-0.55∆T . 65

18 Conceptual Diagrams of the Large-Scale Organization in the Flow Field

Averaged over the 0-10 tε (left) and 10-20 tε (right). The Light Circles

Represent Updrafts, the Dark Circles Represent Downdrafts and the Vectors

Represent Vortex Lines. 66

19 In Plane Vorticity Plotted on Top of Temperature in the Flow Field Averaged

over the 0-10 tε (left) and 10-20 tε (right) in the x− Y Plane at z/h = 0.5

(Temperature Scaled between 0.45-0.55∆T , the Color Panel Is the Same as

in Figure 10) . 67

20 Images of the Temperature Field Scaled between 0.45-0.55∆T (the Color

Panel Is the Same as in Figure 10) Averaged over 0-20 tε: a Horizontal Cut

Plane at z/h = 0.5 and Vertical Cut Planes at 40°, 100°, and 160° from the

X-Axis (a), Detailed View of the Horizontal Cut Plane at z/h = 0.5 (B),

and Detailed View of the Vertical Cut Plane 160° from the X-Axis with the

Average, In-Plane Velocity Vectors Superimposed (C). 69

xiii

Figure Page

21 Conceptual Diagram of the Wind of Turbulence in a Γ = 1 Cell. The Dotted

Plane Illustrates the One of the Infinite Possibilities for the Azimuthal

Orientation of the LSC. The Yellow Vectors Indicate the Directions for

Azimuthal Drift. 79

22 Possible Patterns at Γ = 6.3. This Pattern Is Characterized by Large-Scale

Updraft in the Center, and Six Large-Scale Drafts of Alternating Direction

along the Cell’s Side Walls. Three Dimensional Roll-Cells Are Created by

Connecting Each Updraft with the Neighboring Downdrafts. 81

23 Temporal Evolution of the Volume Average Kinetic Energy (a), and Nusselt

Number (B) Are Shown in the Plots above. state− (- -) Was Initialized from

the Last Time Step of state+ (--). 85

24 Ensemble and Horizontally Averaged Mean (left) and R.m.s. (right) Vertical

(Top) and Radial (Bottom) Velocity Profiles Normalized by Deardorff’s

Velocity Scale w∗: DNS: Ra = 9.6× 107, Averaging Domain ΩF Where Red

(−·) Is state+, Blue (- -) Is state− and Black (--) Is the Average of state+

and state−; Experiment: Ra = 6× 107 (4), Ra = 2× 108 (�), Ra = 1× 109

(◦) . 86

25 Azimuthal and Temporally Averaged Mean Fields. The Color Scheme in (a)

Corresponds to < ϑ >θ, t >and in (B) It Corresponds to < uθ >θ, t > 95

26 Volume and Time Averaged Energy Spectra (T ∈ [0 : 3054tf]). 97

27 Volume Averaged Energy Spectra for the Temporally Filtered Temperature

Field. Filtering Is Performed by Applying a Running Time Average with a

Period of 600tf . The Legend Entries Refer to the Averaging Period of Each

Instance. 98

xiv

Figure Page

28 Temperature at the Mid-Plane of the Cell after Temporally Filtering over a

Period of 600tf with a Running Time Average. The Time Ranges Covered by

Each Subplot Are: a) [0,600), B) [600,1200), C) [1200,1800), D) [1800,2400),

E) [2400,3000). Temperature Is Scaled from [−0.05 : 0.05] in All Subplots. . . . 99

29 Individual Fourier Modes for the Temporally Filtered Temperature Field that

Has Been Averaged over the Interval t ∈ [0, 600): (A)-(D) Corresponding to

k = 0 to 3 Respectively. Summation of Fourier Modes k = 0 (E), k = 0 : 1

(F), k = 0 : 2 (G) and k = 0 : 3 (H). Temperature Is Scaled from [−0.05 : 0.05]

in All Subplots and All Plots Are at the Mid-Plane. 100

30 Individual Fourier Modes for the Temporally Filtered Temperature Field that

Has Been Averaged over the Interval t ∈ [2400, 3000): (A)-(D) Corresponding

to k = 0 to 3 Respectively. Summation of Fourier Modes k = 0 (E), k = 0 : 1

(F), k = 0 : 2 (G) and k = 0 : 3 (H). Temperature Is Scaled from [−0.05 : 0.05]

in All Subplots and All Plots Are at the Mid-Plane. 100

31 Temporal Evolution of the Area Integrated Fourier Coefficients Plotted on

the Complex Plane for k = 2 (a) and k = 3 (B). The Temperature Field’s

Area Integrated Fourier Coefficients Are Also Plotted in Terms of Phase (Φ)

and Amplitude (| · |) for k = 2 and k = 3 in Subplots (C) and (D) Respectively.102

32 Temporal Evolution of the Area Integrated Fourier Coefficients for k = 4 (a),

k = 5 (B), k = 10 (C) and k = 100 (D) Plotted on the Complex Plane. 103

33 Spatially Varying Integral Time Scale Based on the Kinetic Energy (a),

Temperature Fluctuations (B) and Total Turbulent Energy (C). 107

xv

Figure Page

34 Modal Integral Time Scales for Each of the Mode Number Integrated over

the Domain. Modes Are Plotted vs k + 1 to Make the k = 0 Mode Visible

on the Log-Scale Plot. 109

35 Temporal Correlation at Select Points Throughout the Domain. Subplot (a)

Shows the Correlation, and Subplot (B) Marks Where the Plotted Correlations

Are with Respect T (R, z). 111

36 Spatially Varying Integral Time Scale Based on Total Turbulent Energy for

Modes k = 1 (a), 2 (B), 3 (C) ,4 (D), 10 (E) and 20 (D) 112

37 Time Averaged Energy Spectra for Each of the Components in the Total

Turbulent Energy Vector at Various Locations in the Flow Field. Subplots

(a) and (B) Are for the Temperature Field, (C) and (D) Are for the Radial

Velocity Component, (E) and (F) Are for the Azimuthal Velocity Component

and (G) and (H) Are the Vertical Velocity Component. Subplots on the left

(A,c,d and E) Are at a Fixed Height of z = −0.4, and Plots on the right

(B,d,f and G) Are at a Fixed Radius r = 2.0. 114

38 Eigenvalues (a) and Normalized Eigenvalues (B) Corresponding to the POD

Modes for Fourier Wave Numbers k = 1 (◦), 5 (�), 10 (4) and 100 (?). The

Dashed Lines Represent the Modes from Sampling Snapshots at 2T and the

Solid Lines Are from Sampling at 6tf . 127

39 Comparison of POD Modes Generated from Different Sampling Rates (2T

left, 6tf right): m = 1 (A,b), m = 2 (C,d), m = 3 (E,f), m = 4 (G,h) and

m = 5 (I,j). These Modes Are Generated from the Fourier Coefficients for

Wave Number k = 1, and Total Turbulent Energy in the r-z Plane Is the

Plotted Quantity. 129

xvi

Figure Page

40 Comparison of POD Modes Generated from Different Sampling Rates (2T

left, 6tf right): m = 1 (A,b), m = 2 (C,d), m = 3 (E,f), m = 4 (G,h) and

m = 5 (I,j). These Modes Are Generated from the Fourier Coefficients for

Wave Number k = 5, and Total Turbulent Energy in the r-z Plane Is the

Plotted Quantity. 130

41 Comparison of POD Modes Generated from Different Sampling Rates (2T

left, 6tf right): m = 1 (A,b), m = 2 (C,d), m = 3 (E,f), m = 4 (G,h) and

m = 5 (I,j). These Modes Are Generated from the Fourier Coefficients for

Wave Number k = 10, and Total Turbulent Energy in the r-z Plane Is the

Plotted Quantity. 131

42 Absolute Value of the L2 Norm between First 10 POD Modes Sampled at 6tf

and 2T . The Snapshots Are Taken from the Fourier Wave Numbers k = 1

(a) and k = 3 (B). 132

43 Absolute Value of the L2 Norm between First 10 POD Modes Sampled at 6tf

and 2T . The Snapshots Are Taken from the Fourier Wave Numbers k = 4

(a) and k = 5 (B). 132

44 Absolute Value of the L2 Norm between First 10 POD Modes Sampled at 6tf

and 2T . The Snapshots Are Taken from the Fourier Wave Numbers k = 10

(a) and k = 20 (B). 133

45 Absolute Value of the L2 Norm between First 10 POD Modes Sampled at 6tf

and 2T . The Snapshots Are Taken from the Fourier Wave Numbers k = 60

(a) and k = 100 (B). 133

xvii

Figure Page

46 Eigenvalue Spectrum for POD Modes (Snapshot Sampling Rate of 2T) for a

Selection of Fourier Modes (a), and the Normalized Eigenvalue Spectrum for

the Same Selection of Fourier Modes (B) . 134

47 Projection of the Time Series onto the First POD Mode (M = 1) for k = 2

and k = 3 Fourier Modes Expressed in the Complex Plane (a) and as Phase

and Amplitude (B). 136

48 Projection of the Time Series onto POD Modes for k = 3 Fourier Modes

Expressed in the Complex Plane (a) and as Phase and Amplitude (B). 137

49 Projection of the Time Series onto POD Modes for k = 5 Fourier Modes

Expressed in the Complex Plane (a) and as Phase and Amplitude (B). 137

50 Velocity Streamlines Colored by Temperature for the First POD Mode

Transformed to Real Space for the k ∈ [1 : 9] Fourier Modes Corresponding

to Subplots [(A):(I)] Respectively. 139

51 Total Turbulent Energy Distribution in the r-z Plane for the First POD

Mode for k = 1 (a), 3 (B), 6 (C), 10 (D), 20 (E), 40 (E), 100 (F) and 1000 (G).141

52 Total Turbulent Energy Distribution in the r-z Plane for the Second POD

Mode for k = 1 (a), 3 (B), 6 (C), 10 (D), 20 (E), 40 (E), 100 (F) and 1000 (G).142

53 Total Turbulent Energy Distribution in the r-z Plane for the Third POD

Mode for k = 1 (a), 3 (B), 6 (C), 10 (D), 20 (E), 40 (E), 100 (F) and 1000 (G).143

xviii

Chapter 1

INTRODUCTION

This is a numerical study of turbulent Rayleigh-Bénard convection (RBC) in

cylinders when the aspect-ratio is large enough to permit several persistent, three-

dimensional roll-cells. RBC studies are most commonly conducted in rectangular

and cylindrical domains, but this study will exclusively focus on the structures that

form in cylindrical domains. The emphasis of this work is on understanding the

spatial and temporal properties of these large-scale of motions within the flow field.

In many ways this is a companion study to the experimental work conducted by

Richard Fernandes [22]. The boundary conditions, spatial domain and physical

properties of the flow field in this work are set to mirror his experiments. Utilizing

fully resolved numerical simulations in this study provides additional insight into the

spatial structure of the turbulent flow field that Fernandes was not able to capture with

experimental techniques. This chapter introduces the high-level research questions

that are guiding this work, provides background information on the physics, and

describes the organization for the rest of the document.

1.1 Research Questions

Thermal convection, which is often referred to as natural convection, plays an

important role in atmospheric science, astrophysics and several engineering applications.

Thermal convection occurs when unstable thermal stratification induces fluid flow

through buoyancy forces. When the forces generated by buoyancy are smaller than

1

the diffusive forces all heat is transported through the fluid via molecular diffusion.

However, once the buoyant forces become sufficient enough for a flow to be generated

the rate of heat transfer increase dramatically.

At the onset of convection the flow is laminar, but a transition to turbulence occurs

as the strength of the internal buoyancy forces grow. Several different forms of thermal

convection exist [2], but the most popular form to study is Rayleigh-Bénard convection

(RBC). Turbulent RBC is considered an ideal problem for investigating the complex

phenomenon of turbulent thermal convection because the simple boundary conditions

make it manageable to study experimentally and numerically without sacrificing the

core complexity of thermal convection. An illustration of the domain and boundary

conditions for a standard RBC cell are provided in figure 1.

Figure 1: Illustration of the domain and boundary conditions that are associated with
Rayleigh-Bénard convection

The production of turbulence by buoyancy in RBC is one of the more easily

conceptualized mechanisms among all of the canonical flows. However, the analysis of

turbulent RBC is still very complicated, and many of the tools that are used to study

the canonical shear flows do not fully cross over to the study of RBC. For example,

2

canonical shear flows such as pipe flow, channel flow and flow over a flat plate can

be analyzed with only one inhomogeneous direction. This reduces the complexity

of analysis significantly because the turbulent fluctuations and mean flow can be

analyzed with respect to only one spatial variable.

Ideally, turbulent RBC should only have a single inhomogeneous direction as well.

In this case the convection cell would have a fixed height and the horizontal boundaries

would extend toward infinity. The aspect-ratio (Γ), or the ratio of the horizontal and

vertical length scales would be infinite and the flow would only be inhomogeneous in

the vertical direction. The majority of RBC applications which are well represented

by wide horizontal layers [2], and so the infinite Γ case is of significant interest, but

creating a domain to approximate Γ =∞ is not straight forward. Since this scenario

is impossible to create experimentally most investigations of RBC are performed with

sidewalls. Adding side walls makes the analysis more complicated because it gives

the flow a minimum of two inhomogeneous direction, it adds in additional physics

through wall effects, and it bounds the lowest frequencies that can be seen inside the

convection cell [7]. Through direct numerical simulations with horizontal periodicity

the wall effects can be removed, but the frequency limitation is still present. Within

the limit of Γ approaching infinity there must come a point where the central region of

an RBC cell will become free from finite Γ effects but, this Γ has yet to be identified.

An additional problem that occurs in the analysis of turbulent RBC is identifying

an appropriate mean with which to perform Reynolds decomposition. True Reynold’s

decomposition requires an infinite time average which is equal to the infinite ensemble

average, or in other words the mean should be statistically stationary. In the canonical

shear flows a mean can be found by averaging over the homogenous directions. For

RBC where Γ = ∞ the flow can be averaged across horizontal layers in the same

3

manner, and the resulting mean flow must be zero for all velocity components at all

spatial locations. This is because the buoyancy force is parallel to the vertical axis of

the convection cell. However, in the case where Γ is limited due to side walls planar

averaging can no longer be considered a completely valid method for determining the

stationary mean flow, and it can no longer be assumed that the mean flow will be

zero at all points in the domain. This leads to the first major research question of

this study:

1) What is the best estimate for an infinite time averaged field for Rayleigh-Bénard

convection in cylindrical cells?

Answering this question provides a basis to quantify the length and time-scale of the

large-scale structures which have very long-life cycles and can mistakenly be considered

part of the mean flow field.

There are two reasons why this study is being restricted to cylindrical cells. The

first is because the azimuthal direction is periodic in cylindrical domains. This makes

the mathematical analysis more tractable, and it only restricts the horizontal motions

of large scale structures to the radial direction allowing for a closer approximation

to the infinite Γ case than a geometry with corners. The second reason is that the

majority of simulations and experiments in RBC are performed in cylindrical domains.

The next item of interest in this study is to identify the coherent structures in

the field. Coherent structures can be defined by repeated patterns in the flow that

last for a significant but finite amount of time. A significant amount of time in this

context is a coherence time several times larger than the localized temporal scales.

Since these structures have a finite life cycle it is impossible for them to reside in the

mean flow field and they must reside completely in the fluctuating field. This is why

4

it is important to first identify a proper mean field that is robust and accounts for

any instance of the field that may be seen in an ensemble.

Coherent structures are important because they occur on various scales of the

flow and encapsulate the principle mechanisms of turbulence in an idealized model

that is physical, visual and intuitive. This fundamental level of understanding and

observation provides an important foundation for data analysis, as well as advancing

theories and models. This leads to the next major research question of this study:

2) What are the properties of the large-scale coherent structures in Rayleigh-Bénard

convection when the domain is a moderate aspect-ratio cylinder?

The emphasis on large-scale structures is because they tend to be the least homo-

geneous and most energetic structures in the flow field. These properties make them

an attractive choice for characterizing and describing the properties of turbulent flows.

Additionally, there is quiet a bit of evidence that the large-scale structures are created

by assembly of small-scale structures [3, 4, 76]. A more complete discussion of this

matter is provided later in the chapter.

While coherent structures are of great interest, they are often hard to identify and

characterize. A common technique for overcoming these issues is to decompose the

flow field (or portions of the flow field) into a set of linearly independent modes. Modal

decomposition is a mathematically sound technique that is used across a wide range

of applications. There are several different forms of modal decomposition that can be

used such as Fourier, Chebyshev, Legendre, proper orthogonal decomposition, dynamic

mode decomposition, among others. The modes have a mathematical definition that

filters the structure in the flow field into narrow bands where the energy can be

quantified. However, a looming question persists when modal decomposition is used to

describe a stochastic, chaotic systems such as turbulence: are the modes well aligned

5

with the physical properties of the flow field such as coherent structures? If the modes

are not well aligned with the physical properties of the flow then their results may

not provide any additional insight into the physics. Understanding the strengths and

limitations of modal analysis leads to the final research question for this study:

3) What physical insights can be obtained about the large-scale structures through a

modal representation of the flow field inside the cylindrical domain?

This work utilizes Fourier analysis and proper orthogonal decomposition to extract

physical insight from the flow field with varying success. The modal analysis results

are contained in the later chapters of this document.

1.2 Novel Contributions

One of the important requirements of this work is to provide a novel contribution

to the fields of science and engineering. This section outlines the contributions this

work provides to these fields, and specifically the RBC community. A list of these

contributions is provided below.

1. Provides an original, high-fidelity, direct numerical simulation that has the

following unique characteristics

• It represents one of the few studies with moderately high aspect-ratio

• It contains one of the longest RBC direct numerical simulations in this tur-

bulent regime with a total run time of 3054 free-fall times, or approximately

100 eddy-turnovers

• It is one of the very few numerical studies to compare velocity measurements

with experiments

6

2. Addresses the impact of improper averaging on moderate aspect-ratio RBC that

has not previously been evaluated.

3. To the best of the author’s knowledge, it is the first numerical study that

utilizes resolved azimuthal Fourier modes to quantify the length and time scales

associated with the large-scale structures, and the spatially variance of the

integral time-scale within the flow field.

4. To the best of the author’s knowledge, it is the first study to verify that moderate

aspect-ratio RBC experiences global dynamics in the large-scale structures

including a net rotation that is similar to the rotation events observed in unit

aspect-ratio RBC.

1.3 Rayleigh-Bénard Background

1.3.1 General Information

Classical RBC occurs when a fluid is heated from below and cooled from above

in a uniform manner, and the vertical axis is aligned with the pull of gravity (see

figure 1). RBC is considered to be one of the canonical turbulent flows, and it has

been a subject of interest in the thermal turbulence community for decades. A large

portion of recent research has focused on how the global statistics and mean profiles of

RBC scale throughout the turbulent regime. Noticeably less work has been published

on the characterization and life cycle of the coherent structures, despite the fact that

production of turbulence by buoyancy in RBC is one of the more easily conceptualized

mechanisms among all of the canonical flows. One of the most detailed descriptions

of turbulent RBC structures is provided by Zocchi et al. [76]. They describe five

7

characteristic structures: plumes, thermals, waves, swirls and a large-scale circulation

(LSC). The plumes are either thermal columns that rise out of the thermal boundary

layers or sheets near the boundary layer. The sheet-like plumes have a tendency to

merge when they are in close proximity to one another [57]. Shishkina et al. [66]

performed an extensive computational study of the sheet-like plumes to provide

detailed descriptions of their geometric and physical characteristics.

Figure 2: Illustration of the thermal life cycle as outlined by Zocchi et al.

Thermals are detached packets of fluid, or blobs that ascend or descend depending

upon their temperature. These structures generally form when the stem of a thermal

mushroom becomes too thin, and the head of the plume breaks off. Zocchi also

identified another structure known as swirls where the thermal emission would curl

back on itself. Models suggest that swirls arise from the same instability as plumes,

but that the swirl has more shear acting in the upwind direction [65]. When plumes

and thermals impact the opposing boundary layer a wave is generated that propagates

out from the point of impact. Zocchi shows that these waves tend to propagate toward

areas where the horizontal velocities decrease and vertical velocities dominate. The

regions of large vertical motion generate LSC [58] which are sometimes described as

”roll-cells.”

8

These structures can be classified by their spatial size and coherence times. Thermal

plumes, mushroom thermals and swirls can be considered small scale structures with

relatively short coherence times. The roll-cells or large-scale-circulations are aptly

named since they are a much larger structures with coherence times that significantly

exceed those of thermal plumes. The thermal sheets can be considered an intermediate

structure since they form as a result of the interaction between roll-cells and the small-

scale thermals. This range of fine, intermediate and large-scale structures provides

an interesting analogy to the range of coherent structures found in shear-flows. This

analogy will be discussed in detail later in this chapter.

Typical RBC experiments are conducted in either cylindrical or rectangular con-

tainers where the side walls are insulated to approach the adiabatic limit and the top

and bottom plates are kept at either constant mean temperature or constant mean

heat flux. The investigations are conducted in a range where the Oberbeck-Boussinesq

(OB) approximation can be considered valid. The OB approximation states that fluid

density can be considered a linear function with respect to temperature and that all

other material properties can be considered constant over the given temperature range.

Under these conditions the RBC problem can be characterized by the shape of the

domain and three dimensionless control parameters: Rayleigh number (Ra), Prandtl

number(Pr) and aspect-ratio (Γ).

Ra =
βg∆Th3

αν
(1.1)

Pr =
ν

α
(1.2)

Γ =
L

h
(1.3)

The Rayleigh number is comprised of the thermal coefficient of expansion (β),

9

gravitational constant (g), mean temperature difference between the top and bottom

plates (∆T), vertical height of the cell (h), thermal diffusivity (α) and kinematic

viscosity (ν). The Prandtl number is the ratio of kinematic viscosity and thermal

diffusivity and the aspect-ratio (Γ) is the ratio between a defining horizontal length

(L) i.e. the diameter of a cylindrical cell, and the vertical height of the cell.

Of necessity both physical and numerical experiments are conducted in domains of

finite horizontal extent i.e. finite Γ. The vast majority of experiments and numerical

simulations have been conducted in low aspect-aspect ratio domains (Γ ≤ 2). There

are several compelling reasons for studying turbulent RBC in low Γ domains. In terms

of general turbulence studies the fluid motion becomes increasingly turbulent as the

Ra number is increased and the Pr number is decreased. More specifically, one of the

current goals of the RBC community is to identify and characterize the transition

to the “Ultimate” regime of turbulent RBC at high Rayleigh numbers. This regime

was originally predicted by Kraichnan in 1963 [46] and a more recent review of the

community’s progress was provided by He, Funfschilling, Nobach, Bodenschatz and

Ahlers in 2012 [35]. Numerically and experimentally it is less expensive to reach a

higher Ra by increasing the height of the domain at a fixed diameter i.e. by decreasing

Γ.

This focus on small Γ has lead to a relatively strong understanding of the heat

transfer scaling prior to the ultimate regime. The Grossmann-Lohse (GL) theory [32,

31, 30, 29] has been presented as a unifying model for determining the scaling of the

Nusselt (Nu) and Reynolds (Re) numbers over a large range of Ra and Pr.

Nu =
Qoh

α∆T
(1.4)

Re =
UL

ν
(1.5)

The Nusselt number includes the kinematic heat flux (Qo) and can be considered

10

the ratio of heat transported by convection and conduction. The Reynolds number

depends upon the velocity and length scales that are selected. Typically h is selected

as the Re length scale in RBC, but the velocity scale is not well defined since the flow

is generated by internal forces. The GL theory defines its scaling predictions with

a central assumption that there is only one characteristic mean velocity scale, and

they use this scale to define Re. This scale is associated with a mean “wind,” or a

single circulation that travels across the bounding walls while leaving the core of the

convection cell relatively homogeneous and well mixed. This velocity scale is often

referred to as the “wind of turbulence” and it has a clear physical meaning in these

small Γ cells. An excellent review of the GL theory, its successful predictive power,

and the general status of turbulent RBC research can be found in the 2009 review by

Ahlers, Grossmann and Lohse [5]. Clearly, a mean wind cannot occur in horizontally

isotropic RBC because it would imply a preferred horizontal direction. The existence

of a mean flow is a puzzling and vexing shortcoming of all finite Γ experiments. This

is one identified short coming of the GL theory because it currently does not account

for Γ effects in its scaling predictions.

The small Γ dominated work of the last few decades has greatly increased our

understanding of thermal convection, and while there has been a steady increase in

the Rayleigh numbers that are reached in experiments and simulations there is still a

wide gap with respect to the enormous Rayleigh numbers that are seen in the geo and

astro physical realms such as the Earth’s atmosphere. This might be seen as sufficient

justification to continue focusing virtually all research efforts on small aspect-ratio

RBC cells, but there are compelling reasons to focus on wide aspect-ratio (Γ > 2)

RBC as well. The background and justification for wide Γ studies will be discussed in

the next section.

11

1.3.2 Large Aspect-Ratio

There are several compelling reasons to study RBC at larger Γ. First and foremost,

the vast majority of RBC applications are not constrained by sidewalls, but are

more appropriately modeled by wide, horizontal, fluid layers having large, but not

necessarily infinite Γ [2]. This is important because adding side walls does two things.

First, it adds in additional physics through wall effects, and second, it bounds the

lowest frequencies that can be seen inside the convection cell [7]. Through direct

numerical simulations with horizontal periodicity the wall effects can be removed, but

the frequency limitation is still present. Within the limit of Γ approaching infinity

there must come a point where the central region of an RBC cell will become free

from finite Γ effects. However, this Γ and its relationship to Ra and Pr has yet to be

identified.

When the aspect-ratio (Γ) of a convection cell is small (Γ ≤ 2), a single LSC is the

largest observable structure in the flow. However, when the Γ exceeds roughly 4 the

LSC becomes a three-dimensional, multi-roll structure [56, 74]. This is an important

observation, since the smaller scale structures are believed to be intricately tied to the

roll-cells. However, little is known about the properties of the multi-roll cell because

most analyses of coherent structures in RBC have been performed in small Γ domains

(Γ ≤ 2).

The most comprehensive study of Γ dependence for RBC in cylindrical domains

was performed by Bailon-Cuba et al. [7]. Bailon-Cuba et al. studied how the heat

transport and the LSC patterns vary as a function of Γ and Ra at a fixed Pr of

0.7. They observed a notable difference in the heat transfer as the LSC evolves from

a single roll to a multi roll state. Bailon-Cuba et al. found that the global heat

12

transfer in the cell dips to a minimum during this transitionary regime, and that it

saturates at a constant value as Γ exceeds 8. These results are in contrast to the earlier

experimental work of Funfschilling et al. [28] where no Γ dependence was found for the

global heat transport. However, there are several possible reasons why these results

do not match up. The work of Funfschilling et al. was performed at a higher Prandtl

number (Pr = 4.38), and was performed with a coarser sampling of Γ. Additionally,

the some of the experimental results required adjustments due to the finite thermal

conductivity of the test cell’s walls. Therefore it is very reasonable to assume that

the experiments of Funfschilling et al. may not have fully captured the fluctuations

in Nusselt number, or that there is a Prandtl number dependence for the scaling of

global heat transfer with respect to Γ.

Bailon-Cuba et al. [7] also observed that as Γ grows the LSC patterns favor

pentagonal and hexagonal shapes and that these patterns did not display transient

behavior in their analysis. However, in the more recent work of Emran and Schumacher

(2015) an estimated time scale for the drift of these large-scale mean patterns was

extracted from simulations of RBC in very wide aspect ratios (Γ = 50) and at relatively

low Ra (5× 105) [21]. Emran and Schumacher estimate that the characteristic time

scale for the large-scale drift in the very wide Γ case is on the order of 103 free-fall

time units which is well beyond the analysis time used in Bailon-Cuba’s study.

While less is known about the physics of large aspect-ratio RBC, it has clearly been

shown that important changes in the physics occur as Γ is increased. Understanding

these changes and their implications are critical as we interpret the data that has

already been collected, plan future experimental studies and move towards modeling

large complex systems like the atmosphere or the oceans.

13

1.3.3 Equations and Scales

Turbulent RBC is governed by the Navier-Stokes equations, and any given instance

of the flow can be characterized by Ra, Pr, Nu and Γ provided the OB approximation

is valid. Virtually all analysis in RBC is performed with respect to these 4 dimensionless

quantities, but their significance in the actual governing equations depends upon the

scales that are selected for dimensional analysis. In this study three major scales have

been used to perform analysis and they are the conduction, free fall, and Deardorff

scales.

1.3.3.1 Conduction Scaling

As the title states, the conduction scales are derived from the conduction phe-

nomenon. The scales are based off the time that it will take for heat to be transported

across the layer depth and the resulting length (zc), time (tc) and temperature (Tc)

scales are as follows:

zc = h (1.6)

tc =
h2

α
(1.7)

Tc = ∆T (1.8)

These scales are similar to the Townsend scales that Adrian et al. [2] analyzed. The

main difference between Townsend’s scales and the conduction scales defined in this

section are their length scales. Townsend’s length scales are based off a conduction

layer thickness which is significantly smaller than the layer depth. Inside Townsend’s

14

conduction layer thermal diffusion dominates the heat transport. While Townsend’s

scales are physically appropriate for analyzing conduction, and thermal boundary

layers, the conduction scales defined in this section are presented because they were

the first scales used in this study. The conduction scales were initially selected because

the example simulations for RBC in the research code Nek5000 use this scaling.

When the Navier-Stokes equations are nondimensionalized by the Conduction

scales the momentum and temperature equations take the following form:

ut + (u · ∇)u = −∇P + Pr∇2u +RaPrθ (1.9)

θt + (u · ∇)θ = ∇2θ (1.10)

In this form the diffusive and advection terms in the remain of the same order and

the forcing term due to buoyancy is scaled with Rayleigh number.

1.3.3.2 Free Fall Scaling

The next set of scales to be analyzed are the so called “free fall” scales. These

scales get their name from their velocity scale (wf) which is defined as the velocity

that the fluid would travel at if it were freely driven by the buoyancy force across the

layer depth without any other limitations. The parallel is similar to the Newtonian

description for the velocity a ball will reach if it is dropped from a given height. The

velocity scale and accompanying length (zf) and temperature (Tf) scales are defined

below.

zf = h (1.11)

TF = ∆T (1.12)

wf =
√
zfβgTf (1.13)

15

Additionally, a free fall time (tf) can be defined by dividing the free fall velocity

by the layer depth. The free fall scales become pertinent for the large scales as the

flow becomes increasingly turbulent and viscosity plays a smaller role. When the

Navier-Stokes equations are non-dimensionalized by the free fall scales the momentum

and thermal equations take the following forms.

ut + (u · ∇)u = −∇P +

√
Pr

Ra
∇2u + θ (1.14)

θt + (u · ∇)θ =

√
1

RaPr
∇2θ (1.15)

Equations 1.14 and 1.15 show scaling that is similar to the classic forms seen in

shear flows. The Prandtl and Rayleigh number combinations reduce the role of the

diffusion terms and allow the advection and forcing terms to become more dominant. It

is probably a combination of this familiar form and the simple physical interpretation

of the scales that has lead these scales to be one of the most popular for flow analysis

in the RBC community.

1.3.3.3 Deardorff Scaling

Deardorff [18] proposed a set of scales that are similar to the free fall scales. The

primary difference is that the temperature and velocity scales are defined around the

kinematic heat flux (Qo) instead of ∆T . The Deardorff length (zD), temperature (TD)

and velocity (wD) scales are defined as follows:

zD = h (1.16)

TD =
Qo

wD
(1.17)

wD = (QoβgzD)1/3 (1.18)

16

Adrian et al. [2] found that vertical velocity and temperature rms profiles taken from

thermal convection data collected via laboratory experiments, numerical simulations

and the atmospheric measurements collapse on top of each other when they are scaled

by the Deardorff scales. This universal scaling across a very wide spectrum of Rayleigh

numbers makes them an ideal selection for analysis. When the Navier-Stokes equations

are non-dimensionalized by the Deardorff scales they take the following form:

ut + (u · ∇)u = −∇P + (
Pr2

RaNu
)1/3∇2u + θ (1.19)

θt + (u · ∇)θ = (
1

RaPrNu
)1/3∇2θ (1.20)

A challenge for numerical simulations presents itself when the Navier-Stokes take

the form of equations 1.19 and 1.20 because the Rayleigh and Nusselt numbers

both appear in the equations. The Rayleigh number is partially defined by ∆T

and is associated with Dirichlet boundary conditions. The Nusselt number relies on

knowledge of the heat flux or Neumann boundary conditions. Defining both types of

boundary conditions is not possible in numerical analysis since this would over define

the problem. Therefore running a simulation with the Deardorff scaling requires the

Rayleigh number to be predefined and the Nusselt number to be calculated in-situ or

vice-versa. As the in-situ quantity varies the constants in front of the diffusions terms

in equations 1.19 and 1.20 would need to be adjusted.

Even though there are challenges with running a simulation based off the Deardorff

scales, their properties for scaling analysis are very useful. Richard Fernandes also

used the Deardorff scales to compare experimental RBC data with atmospheric data

as part of his PhD thesis [22]. His experiments are of particular interest since they

were conducted at a relatively large Γ, and his results are the primary validation

source for this numerical study. A brief introduction to his work is provided in the

next section.

17

1.3.4 Experiments of Fernandes

Fernandes [22] performed a series of turbulent RBC experiments in a Γ = 6.3

test cell with Ra ranging from 105 − 109. These experiments used particle image

velocimetry (PIV) to explore the spatial structure of turbulent RBC with water as the

working fluid (Pr ≈ 4.0− 6.7). The walls of the test cell had a viewing window cut

into them so that two PIV cameras could be used to capture images. These cameras

were placed in a side-by-side configuration to extend the field of view inside the test

cell. This configuration was only able to capture two dimensional velocity data. A

diagram illustrating the field of view with respect to the total diameter of the test cell

can be found in figure 3. Further details on the experimental apparatus can be found

in Fernandes’ thesis.

It was noted in the previous section that Fernandes used the Deardorff scales for

his analysis of the flow. However, he defined a length scale z∗:

z∗ = 0.5× zD (1.21)

Fernandes used this length scale to facilitate easier comparison with atmospheric data

since this was also part of his thesis work. His definitions of the other dimensionless

variables (Ra,Nu,Γ) are equivalent to those provided in this work.

One of the most unique characteristics of Fernandes’ experiments was the extremely

long averaging times that were used. Fernandes’ statistics were generated from sets of

statistically independent, two-dimensional snapshots which were obtained over very

long averaging times. These snapshots were collected in groups of 15 with ∼30-40

seconds between each snapshot. The heat source was periodically turned off for 30

minutes to an hour between sets of snapshots, then turned back on and allowed to

18

Figure 3: Illustration of the experimental device and the field of view for velocity
measurements (z∗ = 0.5zD). Image reproduced from Adrian et al. (1986) with
permission from the author.

settle for 4-12 hours. This perturbing of the flow was done to keep the large-scale-

motions from developing any preferential direction so the horizontal planes could be

considered statistically homogeneous in the cell’s core. The total time for each of

these experimental runs was on the order of hundreds of hours. The long averaging

times and periodic perturbations employed in these experiments provide one of the

closest approximations to an infinite time average in turbulent RBC. The single and

double point statistics along with the mean data from Fernandes work is serving as a

resources for validation for this study which is found in chapter 2.

1.3.5 Analogy to Shear Flows

Coherent structures occur on various scales of turbulent flow and they encapsulate

the principle mechanisms of turbulence in an idealized model that is physical, visual

and intuitive. This fundamental level of understanding and observation provides an

important foundation for data analysis, as well as advancing theories and models. The

study of coherent structures has become a large part of the field of turbulence because

19

of these reasons. A strong analogy can be drawn between the coherent structures that

are observed in shear flows to those that are seen in turbulent RBC.

In shear flows it has been documented that small scale vortices very near the wall

often take the form of hair pins [73]. Adrian et al. [3] has shown that as the hair

pin vortices move down stream they tend to grow and spawn additional hair pins

in their wake. Adrian classifies these hairpins as small scale structures see figure 4

(1a). These vortices combine into large scale structures as they align along a central

axis and form a packet of hairpins [3]. Hairpin packets are classified as large scale

structures because they can grow to significant size, and are one explanation for the

bulges that are often seen in the instantaneous turbulent boundary layer profile [4].

An illustration of this is provided in figure 4(2a) These hairpin packets also have a

tendency to self align and when they do noticeable low speed streaks occur along

the central axis’ of these structures [4]. This occurs because the hairpin rotation is

such that the direction of flow between its legs opposes the direction of mean flow.

High speed streaks are also observed in the boundary layers which are thought to

occur between the series of low speed streaks as a consequence to the rotation between

hairpins traveling in parallel. “Very large-scale motions” (VSLM) are characterized by

structures that exceed the characteristic boundary layer length scales by a factor of 3

in the stream wise direction [45]. Adrian [4] has suggested that the VLSMs could be

composed of a series of large hairpin packets that have self aligned see figure 4 (3a).

Guala et al. [34] showed that in pipe flow these VSLM’s can actually grow to lengths

exceeding 3 pipe diameters. In this sense they are certainly “very-large” and can be

considered some of the largest scales in the flow.

Turbulent RBC also has a rich set of coherent structures that span a wide range

of length and time scales. On the smallest scales thermal plumes and sheets will rise

20

out of the boundary layers to transport heat across the vertical domain, see figure 4

(2a). At the onset of convection these thermal emissions are on the order of the layer

depth, but as the level of turbulence increases they become smaller and increase in

number. These small scale thermal structures tend to congregate in groups. One

possible cause for this congregation is because the dynamics of opposing thermals

from the opposite side of the convection cell impacting the boundary layer herds the

thermals into concentrated areas. In areas where the density of thermal structures

leaving the boundary layer is significantly high the plumes collectively cross the full

layer depth and form a large scale up or down draft, see figure 4 (2b). These structures

bear a strong resemblance to the large scale structures of shear flows because they are

comprised of a series of small scale structures that self organize into a structure with

greater coherence times and length scales. Additionally these large scale structures

interact with one another generating a pattern of large scale circulations, see figure 4

(3a). Emran and Schumacher [21] have shown that these large scale patterns contain

a dynamic scale, but the dynamics occur on such a long time scale that they have yet

to be fully observed or understood. The dynamics and patterns of these large scale

motions make a compelling analogy to the VLSM that have been identified in shear

flows because they represent a structure that evolves on scales that are significantly

greater than the large scale motions themselves.

This striking analogy hints at a universal nature for the life cycle of turbulence.

In this life cycle small scales congregate to form larger structures and these larger

structures form even larger structures still. The large scales also influence the small

scales which forms a self perpetuating cycle as the different scales influence one another.

The large scale genesis is dependent upon the small scale organization and the small

scale organization is dependent upon the large scale interactions. Studying turbulent

21

Figure 4: Comparison between the small scale (a), large scale (b) and very large scale
(c) coherent structures seen in shear flows (1) and Rayleigh-Bénard convection (2).

RBC with this cycle in mind may help us to uncover a universal relation that can be

applied to all turbulent flows.

1.4 Document Outline

This chapter (chapter 1) is focused on providing the background motivation for this

work. Chapter 2 is also an introductory chapter, but its emphasis is on introducing

the numerical methods and post processing techniques that are used throughout

this study. The purpose of chapter 2 is to outline the numerical procedures and

22

document the development work that has been performed to generate the results in

the proceeding chapters. The source code that accompanies the author’s development

work is provided in Appendix B.

Chapter 3 is containts the text from a previously published work by the author

and two members of the committee in the International Journal of Heat and Fluid

Flow [60]. It provides validation with experiments for the computational work and

outlines the persistent large-scale structures that are seen in the flow field. In terms

of the research questions presented earlier in this chapter, chapter 3 is predominantly

directed towards laying the ground work for answering questions 1 and 2. Approval

from the other authors to include the text from the journal paper in this document is

provided in Appendix C.

Chapter 4 is primarily focused on answering the first research question of this

work, what is the best estimate of the infinite time average? The chapter is written

to address the broad need in the turbulence community to use careful averaging

procedures to ensure the optimal estimation of the Reynolds average is obtained.

RBC data is presented as an example for when care must be applied to the averaging

techniques.

Chapter 5 is dedicated to studying the azimuthal decomposition of the flow field via

Fourier modes. The physical interpretation of the modes is investigated by studying

the average energy distribution across the modes, the temporal characteristics and

evolution of the modes, and by comparing the spatial structure of the modes with

total flow field. Affect of the inhomogeneous r and z directions are also investigated

by studying how the energy content changes across these spatial dimensions.

Chapter 6 directly builds upon chapter 5 by performing proper orthogonal decom-

position (POD) on the Fourier modes. The goal of this chapter is to see if additional

23

physically relevant structure can be drawn from performing a decomposition across

the two inhomogeneous directions. A discussion on the merits and variables of POD

as a tool for interpreting physics is also provided. Appendix A is a dictionary of POD

mode visualizations that is provided as a companion to chapter 6. The number of POD

modes is very large and only results from a small selection are presented in chapter

6. Chapters 5 and 6 are directed toward answering the second and third research

questions and chapter 7 is dedicated to summarizing the findings and conclusions of

the work.

24

Chapter 2

NUMERICAL METHODOLOGY

The flow fields that are being analyzed in this study are supplied from direct

numerical simulation (DNS) of the Navier-Stokes equations. DNS simulations resolve

all the length and time scales in the fluid domain and do not employee any form

of modeling while computing the flow field. There are several numerical methods

available for solving the Navier-Stokes equations including finite difference, finite

volume, global spectral methods and the spectral element method. Finite difference

and global spectral methods work on computational grids where the nodes must be

ordered and spaced in a specific manner for the methods to work i.e. they require

structured grids. Finite element, finite volume and spectral element methods work

with unstructured grids where the computational grid can be subdivided into smaller

cells, or elements which allows for added geometric flexibility. In this study the spectral

element method is used to compute the flow field using the research code Nek5000.

The cylindrical geometry in this work makes it difficult to use global spectral methods

such as Chebyshev, or a Fourier Chebyshev combination. Global spectral methods

are better suited for box domains and one such example in RBC is the classic DNS

performed by Kerr in 1996 [44]. Adapting the computational methods into cylindrical

coordinates leads to a large spatial resolution disparity between the center of the

domain and the outer region, and this disparity increases quadratically with domain

size. The spectral element method provides a higher-order accuracy and geometric

flexibility. These qualities make SEM the truly ideal numerical method to perform this

study’s DNS computations in moderate aspect-ratio cylinders. This chapter serves

25

as a primer for the spectral element method, and it provides an overview of the post

processing methodologies and routines that were developed specifically for this work.

2.1 Introduction to the Spectral Element Method

Nek5000 is based on high-order spectral element discretization and is highly-

scalable on massively-parallel computers [25, 42]. It supports incompressible and

low Mach number fluid dynamics (more than 200 published scientific papers), heat

transfer, magneto-hydrodynamics (MHD), combustion [43, 6], and has been recently

extended to include linear elasticity [54]. Nek5000 is maintained through an svn

and git repositories and is freely available for download through the svn checkout

command, or github. The repository contains all the source files and subroutines, as

well as auxiliary tools for pre/post processing and several benchmark examples.

The spectral element method (SEM) combines the geometric flexibility of finite

elements with the exponential convergence of global spectral methods. This is accom-

plished by solving equations with the continuous Galerkin method. Galerkin’s method

is a form of the method of weighted residuals. The method of weighted residuals

requires the equation’s variables to be approximated with a set of trial functions.

The inner product of the trial functions with another set of functions known as the

test functions produces an error norm that can then be minimized. With Galerkin’s

method the trial and test functions are the same and are often referred to as the shape

or basis functions. Some restrictions exist for the basis functions when Galerkin’s

method is employed. The basis functions must be orthogonal to one another at the

sampling points i.e. element nodes, and they must sum to 1 between the nodes.

26

Lagrange interpolating polynomials exhibit these characteristics and are a common

choice for basis functions.

Figure 5: Distribution of 7th order basis functions using equally spaced points (a) and
the Gauss-Lobatto-Legendre distribution (b)

The most crucial differentiator between SEM and the more traditional Galerkin

formulation of the finite element method is that SEM can support high order polynomial

basis functions and remain stable. Any polynomial basis function must have p+1

nodes to represent it, where p is the polynomial order. The traditional finite element

method places these nodes at equally spaced locations. This works for low order

polynomials, but as the order is increased the basis functions become highly oscillatory

near the element boundaries as seen in figure 5. This leads to computational problems

with the solutions becoming unstable. SEM uses a non-uniform distribution of nodes

which clusters nodes toward the boundaries to alleviate this problem. As a result SEM

solvers are able to reach significantly higher order polynomials than the traditional

27

finite element formulations. This polynomial or p-type refinement is what allows SEM

to obtain convergence that is similar to global spectral methods.

2.1.1 Galerkin Method and Weak Formulation

It was stated in the previous section that Galerkin’s method is a flavor of the

method of weighted residuals. In Galerkin’s method variables are represented by trial

function which is comprised of a characteristic set of basis functions and a set of

coefficients. The method of weighted residuals constructs an error norm by taking the

inner product of the trial functions with another set of functions known as the test

functions. The minimization of this norm leads to the approximate solution of the

equations that are being solved. In the Galerkin method the trial and test functions

are constructed from the same basis. The definitions and examples will be presented

with only 1 spatial dimension in this section for simplicity’s sake.

uδ =
N∑
i=0

ûiθi(x)→ Trial Function (2.1)

vδ =
N∑
j=0

v̂jθj(x)→ Test Function (2.2)

(F (uδ), vδ) =

∫
Ω

F (uδ)vδdΩ = 0 (2.3)

The δ super script in equations 2.1 and 2.2 signifies the basis representation of

the functions which is an approximation of the exact function. Evaluating the inner

product of the trial and test function requires integration over the solution domain

(see equation 2.3) and this process is greatly simplified through numeric integration.

Numeric integration is ideal since it can be handled discretely and it has a high level

of accuracy. To make the process uniform for all types of problems the integration is

28

performed in local coordinates that range from -1 to 1 and the problem is transformed

into its actual (or global) coordinates by a simple change of coordinates. Numeric

integration is performed by multiplying the function at set of given set of points

in the local coordinates by an accompanying set of weights and then summing the

results. The characteristic integration points and weights are often referred to as the

quadrature. In the SEM the integration points and the trial function coefficients are

defined at the same locations.

Consider the 1D Poisson equation with a constant right hand side (G) and homo-

geneous Dirichlet boundary conditions:

∇2u(x) = G, x ∈ a : b (2.4)

Taking the inner product of both sides with respect to the test function leads to the

following:

(
d2u

dx2
, v) = (G, v) (2.5)∫ b

a

d2u

dx2
v(x)dx =

∫ b

a

v(x)Gdx (2.6)

The derivative on the left hand side of the equation can be recast into the weak

form through integration by parts.

v
du

dx
|ba −

∫ b

a

du

dx

dv

dx
dx =

∫ b

a

v(x)Gdx (2.7)

An additional property of the test function that was not mentioned previously is

that it will have a value of zero at all Dirichlet boundary conditions. This is because

the exact solution is known at Dirichlet boundary conditions, and so a way to ensure

that the inner product is zero at these locations is to require the test function to be

zero at these points. If this problem had Nuemann boundary conditions then this

term would not completely disappear. With this understanding the boundary term in

29

2.7 can be set to zero. Now the problem can be expressed in its discrete form and

transformed to local coordinates.

−
∫ 1

−1

P∑
i=0

P∑
j=0

ûiv̂j
dθi(ξ)

dξ

dθj(ξ)

dξ

dξ

dx
dξ =

∫ 1

−1

P∑
j=0

v̂jθj(ξ)G
dx

dξ
dξ (2.8)

The value P in equation 2.8 is the polynomial order of the basis that is being

used. To cast the problem in a completely discrete form the continuous integrals must

now be converted into discrete numeric summations with weights from the selected

quadrature.

−
P∑
k=0

P∑
i=0

P∑
j=0

wkûiv̂j
dθi(ξk)

dξ

dθj(ξk)

dξ

dξk
dx

=
P∑
k=0

P∑
j=0

wkv̂jθj(ξk)G
dx

dξk
(2.9)

The final step that will be shown in this section is to reorder the sums and cancel

the test function coefficients.

−
P∑
k=0

P∑
i=0

wkûi
dθi(ξk)

dξ

dθj(ξk)

dξ

dξk
dx

=
P∑
k=0

wkθj(ξk)G
dx

dξk
(2.10)

Equation 2.10 represents the most general form of the solution through the

Galerkin method. Further simplification requires specific knowledge of the basis

functions. After applying the boundary conditions it can be cast into a matrix form

with P-1 equations and P-1 unknowns and solved using standard numerical techniques.

This section is meant to serve as a primer to the basic, continuous Galerkin method

and additional topics such as handling multiple elements, various boundary condition

combinations, the solution to other ordinary and partial differential equations, and

advanced topics such as the discontinuous Galerkin formulation can be found in any

of the numerous texts devoted to finite element theory. One final comment on the

implementation of the Galerkin method in SEM is that solutions are guaranteed

to be C0 continuous. This means that solutions are guaranteed to be continuous

30

across element boundaries for the primary variables, but not the primary variables’

derivatives. When higher order polynomials are implemented in the SEM method the

solution can converge towards continuous derivatives significantly faster than if the

solution were calculated with lower order polynomials. This is one of the significant

advantages of SEM.

2.2 Post Processing Techniques

This section of the chapter focuses on the post processing techniques that are

utilized throughout the work. The applications and analysis that accompany these

techniques are not the emphasis of this section because those subjects are thoroughly

discussed in the following chapters. This section serves primarily as a source to

document the development work and implementation of the post processing techniques.

It is a high level guide to the implementation of the methodologies that are used

throughout the work, and the source code is also provided in Appendix B. The source

code is also hosted on github at https://github.com/psakievich/DissertationCode and

freely available to the public.

2.2.1 Global Mapping and Projection Operations

The initial and foundational step for post processing in this work is a global

projection from Nek5000’s computational grid (unstructured, cartesian coordinate

system) to a structured grid in cylindrical coordinates. Computationally advancing the

Navier-Stokes equations in the cartesian coordinate system with an unstructured grid

is favorable from a mesh resolution stand point, but the natural frame of reference for

31

https://github.com/psakievich/DissertationCode

(a) (b)

Figure 6: Images of the grid used to calculate the flow field (a) and a sample grid for
post processing in cylindrical coordinates (b).

analysis of the physics is in cylindrical coordinates. Performing a projection operation

between the two coordinate systems in post-processing mode ensures that the data is

from a fully resolved field, even if the regions of the cylindrical coordinate system are

not sampled at a fine enough rate for DNS computations. An example of grids from

each of the coordinate systems is provided in figure 6.

Development of the global projection routines occurred in three stages. The first

stage was to sample points at various r, θ and z locations over a small portion of

the domain, specifically the central region of the cell. A simple matlab script was

developed to write the desired points to an ASCII file that can be read by Nek5000’s

native spectral interpolation routine hpts. hpts reads the ASCII file, divides the points

between processors, performs a global search to find the specified points, and then

stores the processor, element, and local coordinate locations of each of the points.

Storing this locating data allows the routine to efficiently interpolate the data with

the same order of accuracy as the underlying basis function, and communicate across

32

processors via the highly scalable crystal router algorithm [25]. This matlab based

method is sufficient for sampling small portions of the domain, but it is ill-suited

for interpolating across the entire domain because hpts writes data to a single file in

ASCII format. As the desired number of points and the number of snapshots both

increased this format was deemed unsuitable for continued analysis.

The second stage was to modify the native hpts routine and the subroutines called

within hpts so that the results were output in binary format with Nek5000’s native

input/output (IO) formats *.fld* and *0.f*. The original routines were copied into a

separate file, and renamed with the prefix ps to signify modifications by the author.

Defining a series of independent routines ensured that the old routines could still be

called and all dependencies within the source code were maintained. These routines

are documented in Appendix B in the file PhilFuncs.f.

The second stage routines still required an ASCII input file, but the output

became a series of independent binary files that could be post processed with the

open source visualization software Visit [15]. However, post processing with other

software packages and detailed scripting with these routines was not available without

substantial additional development. This isbecause the Nek5000 output files are not

widely supported, and do not follow the conventions of other, more standard, file

formats. Further more, the Nek5000 format is designed to output unstructured grids

with higher-order elements that have the same number of points in each principle

direction. This proved to be very restrictive when trying to output data that was

sampled to capture physics, and further complicated other operations such as Fourier

transforms in the azimuthal direction. Several efforts were made to allow for non-

uniform sampling within an element, but on each attempt the errors propagated

further into the source code. Eventually it was determined that the best course of

33

action would be to incorporate an entirely separate IO format with wide support

across multiple software platforms.

After researching the options it was decided that the Visualization Tool Kit (VTK)

library [63] would provide the most flexibility, power and portability for the interpolated

datasets. VTK is a mature, open source, C++ library that is primarily used to analyze

scientific data. The VTK file formats are supported by a wide range of post processing

tools, and large library of file conversion functions are available to translate VTK

files into other formats (HD5, ensight, etc). VTK file formats also include support

for many data types including rectilinear, curvilinear, and unstructured grids. Thus

developing an interface between VTK and Nek5000 lays the foundation for many

additional geometries that extend beyond the cylindrical grids in this study. Another

major advantage of the VTK library is that wrappers have been developed to support

additional programming languages such as Java, Python and TCL. Access to scripting

languages such as Python and TCL expand the post processing possibilities and reduce

the development time needed to generate post processing routines. Developing the

VTK interface also involved a sizable set of Fortran routines on the Nek5000 side.

These additional routines serve as an interface between interpolation storage variables

in Nek5000, and the C++ VTK routines. The details and rational of this development

project are documented in the next section.

2.2.2 Merging Nek5000, FFTW and VTK

In addition to adding in IO support through VTK, another key objective was to

integrate fast Fourier transforms (FFT’s) in the cylinder’s azimuthal direction. In

fact, the main reason the high resolution global projections are required in this work

34

is to facilitate the use of spatial FFT’s. These two objectives were resolved during

a single development project because they are interrelated, and a description of the

resulting data pipeline for processing datasets is provided below.

Projections between coordinate systems and Fourier transforms are accomplished

by decomposing the domain into azimuthal rings so that Fourier transforms can be

performed within the Nek5000 subroutines. The files that contain these subroutines

are MYFFT, IntPntsFFT.f, psVtkOutput.cpp, and psVtkOutput.h, and all of these

routines are included in Appendix B. MYFFT contains a list of parameters that the

other routines use at compile time to determine the size of the arrays, the number of

processors to use when performing FFT’s, the azimuthal resolution, and the number

of FFT’s each processor will perform. IntPntsFFT.f contains the fortran subroutines

that are used for the interpolation process, FFT setup and execution as well as the

companion declarations for the C++ routines in the psVtkOutput files. The code

that actually executes the FFT operations is the FFTW library [27] whose specific

documentation can be found online.

A high level description for how the fortran subroutines within IntPntsFFT.f

operate is provided below.

1. Declare the global sampling based on the domain description in MYFFT

2. Assign the portion of the domain to each processor, and declare the points

3. Find the points in the global domain using the base routines from hpts

4. Perform the interpolation

5. Set up the FFTW plan

6. Transform the velocity and spatial points to their respective cylindrical repre-

sentation

7. Perform the FFT

35

Figure 7: Visual representation of the domain decomposition and wave number
assembly process. Each colored azimuthal ring is stored and operated on by an
individual processor and the light red plane illustrates the assembly across all processors
for a particular wave number.

8. Gather each wave number to a single processor

9. Call C++ routines to output a two-dimensional plane of complex Fourier

coefficients

A visualization of the domain decomposition and wave number reconstruction process is

provided in figure 7. Reassembling the decomposed data into a series of files containing

the Fourier coefficients for a given wave number generates smaller individual files for

linearly independent datasets. This facilitates highly parallel batch processing of the

data, and it partitions the data to a size where multiple files can easily be analyzed on

a laptop. The routines can also be utilized to output the spatial decomposition of the

domain by having each processor export the azimuthal ring in an individual VTK file.

The C++ routines in the psVtkOutput files use VTK’s object oriented framework

36

to receive pointers to the array storing the complex Fourier coefficients for a given

wave number and another array containing the spatial locations. Individual objects are

created to store the points and Fourier coefficients, with individual objects allocated

for real and complex portions of the Fourier coefficients. These objects are populated

with the actual values, and then high level objects for the overall grid and file writer

are created. The grid is populated with the data, which is followed by the writer being

populated with the grid and then finally the file is written to disk. A second set of

routines is also provided for outputting the raw, untransformed data. These routines

are independent of the geometry and so they can reused for any structured grid in

future studies.

2.2.3 Python Scripting

One of the major benefits of using the VTK library is the ability to directly access

and process the data within Python. Python has a very large number of libraries, and

incredible versatility. It can be used to perform shell scripting, perform calculations

in parallel (via mpi4py), file manipulation, scientific plotting and a myriad of other

applications.

A key python tool that is used heavily throughout this work is the modred li-

brary [10]. Modred is an open source library for performing modal decomposition and

analysis such as proper orthogonal decomposition (POD), dynamic mode decompo-

sition (DMD), balanced POD (BPOD) and many others. The library is abstracted

in such a way that any dataset can be used to perform these analysis as long as the

user defines a class that supports the fundamental linear algebra operations of vector

addition, vector scalar products and an inner product between two vectors. This

37

abstraction has proven useful for lots of additional post processing routines beyond

the framework of modal analysis. Two modules containing modred vector classes were

developed for this work and are documented in Appendix B: MrImaginaryVtk and

MrRealVtk. As the names suggest, these modules are differentiated by their ability to

handle complex or real datasets.

Python has been utilized for a large chunk of the post processing in this work,

and there are additional modules for performing the inverse Fourier transforms on

the VTK files that contain Fourier coefficients, calculating statistics and integral

time scales from the Fourier coefficients, and POD calculations. Samples of these

calculations are also provided in the appendix, however no additional details will be

provided in this section since the formulas that define these quantities receive detailed

discussions in later chapters.

38

Chapter 3

LARGE-SCALE THERMAL MOTIONS OF TURBULENT RAYLEIGH-BÉNARD

CONVECTION IN A WIDE ASPECT-RATIO CYLINDRICAL DOMAIN

Abstract

The large-scale structures that occur in turbulent Rayleigh-Bénard convection

in a wide-aspect-ratio cylindrical domain are studied by means of direct numerical

simulation. The simulation is performed in a 6.3 aspect-ratio cylindrical cell with

a Rayleigh number of 9.6×107 and Prandtl number equal to 6.7. Single-point and

double-point statistics compare well against experimental results under nearly

identical conditions. Large-scale thermal motions with coherence times exceeding

20 eddy-turnovers (∼600 free-fall time units) are seen in the instantaneous fields.

Temporally filtering them by integrating over approximately one eddy-turnover

time scale reveals a clear pattern consisting of seven discrete thermal structures:

three warm, rising sectors, three cool, falling sectors and a single plume of warm,

rising fluid that wanders around the center of the cylindrical cell. Smoothing

over still longer times (10 and 20 eddy turn-over time scales) yields a clear

hub-and-spoke pattern of warm and cool sectors in a dominantly 120 degree

periodic pattern separated by concentrations of radial vortex lines (the spokes)

plus a nearly circular plume at the center of the test section (the hub). The

similarity of the patterns in the instantaneous fields and the long-time smoothed

fields demonstrates long persistence of these structures, a defining characteristic

of coherent structures in turbulence. The warm and cool sectors are intimately

linked with conical roll-cells rotating about the spokes, and these circulations

39

are likely the analogs of the ’wind of turbulence’ found in low-aspect-ratio RBC

experiments.

3.1 Introduction

Thermal convection plays an important role in many natural and engineered sys-

tems. Of the many different forms of thermal convection Rayleigh-Bénard convection

(RBC) is by far the most studied [1, 4, 2]. It is one of the canonical turbulent flows,

and it has been a subject of interest in the thermal turbulence community for decades.

RBC occurs when a fluid between parallel, horizontal planes is heated from below

and cooled from above by horizontally uniform boundary temperatures or heat fluxes.

Despite this seemingly simple configuration many outstanding questions regarding

the nature of turbulent RBC remain unanswered.

Recent research on RBC has focused on how the global statistics and mean profiles

in small aspect-ratio cells scale throughout the turbulent regime. Less work has been

done on the characterization and life cycle of the coherent structures, despite the

fact that production of turbulence by buoyancy in RBC is one of the more easily

conceptualized mechanisms among all of the canonical turbulent flows. One of the

most detailed descriptions of turbulent RBC structures in low aspect-ratio cells is

provided by Zocchi, Moses and Libchaber [27]. They describe five characteristic

structures: plumes, thermals, waves, swirls and a large-scale circulation (LSC).

Plumes are either thermal columns or sheets that rise out of the near-wall thermal

boundary layers. The sheet-like plumes have a tendency to merge when they are in

close proximity to one another [17]. Shishkina and Wagner [22] performed an extensive

40

computational study of the sheet-like plumes to provide detailed descriptions of their

geometric and physical characteristics.

Thermals are transient detached packets of fluid, or blobs that ascend or descend

depending upon their temperature. These structures begin as small protrusions from

the near-wall viscous-conductive layer and assume a characteristic mushroom shape as

they grow. Zocchi et al. [27] also identified another structure known as swirls where

the thermal emission curls back on itself. Models suggest that swirls arise from the

same instability as thermals and plumes, but that the swirl has more shear acting in

the upwind direction [21]. When plumes and thermals impact the boundary layer of

the opposing wallside, a wave is generated that radiates out from the center of impact.

The work of Zocchi et al. [27] shows that these waves tend to propagate toward

areas where the horizontal velocities decrease and vertical velocities dominate. The

regions of large vertical motion generate LSC [18] which are sometimes described as

”roll-cells.” Aside from the waves, similar motions have been observed in relatively wide

aspect-ratio (Γ=width/height) convection cells by Adrian, Ferriera and Boberg [1]

among others.

When the aspect-ratio of a convection cell is small (Γ ≤ 2), a single LSC is the

largest observable structure in the flow. However, when Γ exceeds roughly 4 the LSC

becomes a three-dimensional, multi-roll structure as noted by du Puits, Resagk and

Thess [16], as well as Xia, Sun and Cheung [25]. This is an important observation,

since the smaller scale thermals and plumes are believed to be advected horizontally

by the roll-cells. Little is known about the properties of the multi-roll cell because

most studies of coherent structures in RBC have been concerned with small Γ domains

(Γ ≤ 2).

Thus far, the most comprehensive study of Γ dependence for RBC in cylindrical

41

domains was performed by Bailon-Cuba, Emran and Schumacher [3]. In this work

they studied how the heat transport and the LSC patterns vary as a function of Γ

and Rayleigh number (Ra) at a fixed Prandtl number (Pr) of 0.7. They observed a

notable difference in the heat transfer as the LSC evolves from a single roll to a multi

roll state. They also observed that as Γ grows the LSC patterns favor pentagonal and

hexagonal shapes. In a more recent work Emran and Schumacher [9] estimate the

time scale for the drift of these large-scale mean patterns from simulations of RBC in

very wide aspect ratios (Γ = 50), but at relatively low Ra (5× 105). Their estimate

of the characteristic time scale for the large-scale drift in the very wide Γ case was on

the order of 103 free-fall time units, well beyond the computational analysis time in

their work or Bailon-Cuba’s [3] study.

The goal of this paper is to elucidate the geometrical structure and organization

of LSCs in a cylindrical domain having moderately wide aspect-ratio (Γ = 6.3) This

is accomplished by direct numerical simulation (DNS) using a spectral element code.

Among the various methods of numerically simulating turbulent RBC we prefer DNS

over RANS, LES, and hybrid RANS-LES [14, 13, 6, 24, 26] because the governing

equations of DNS do not depend on semi-empirical parameters. We use temporal

filtering on several different time-scales to extract the large, coherent structures from

an otherwise chaotic turbulent field. We study a single, but representative case at

Γ = 6.3, Rayleigh number = 9.6× 107 and Prandtl number= 6.7, values that permit

highly resolved DNS so detailed that the nature and organization of turbulence can

be observed with accuracy throughout the entire domain. The parameters for this

study were selected to facilitate direct comparison of statistics with the experiments

of Fernandes [10].

The paper is organized as follows: Section 2 presents the numerical methodology,

42

Section 3 presents comparisons of double- and single-point statistics with the experi-

ments of Fernandes [10], Section 4 introduces the flow structures, Section 5 describes

their organization and temporal coherence more carefully by applying temporal filters

to the flow-fields, and in Section 6 we draw the conclusions.

3.2 Numerical Methodology

Direct numerical simulation (DNS) of RBC in a cylindrical cell with an aspect-ratio

(Γ = width/height) of 6.3 was performed using the spectral element code Nek5000.

Nek5000 is a highly-parallelizable, well-vetted code for solving the incompressible,

Navier-Stokes equations, and it currently has over 225 world-wide users [11]. The

non-dimensional form of the Boussinesq equations for thermal convection is:

∇ · u = 0, (3.1)

ut + (u · ∇)u = −∇p+

√
Pr

Ra
∇2u + θẑ, (3.2)

θt + (u · ∇)θ =
1√
RaPr

∇2θ, (3.3)

where u, p and θ are velocity, pressure and temperature. Equations 3.1-3.3 were

scaled spatially by the height of the cell (h), thermally by the temperature difference

between the top and bottom plates (∆T), and the velocity was scaled by the ”free-fall

velocity,”

wf =
√
hgβ∆T . (3.4)

The Rayleigh (Ra) and Prandtl (Pr) numbers in equation 2 are defined as:

43

Ra =
βg∆Th3

αν
, (3.5)

Pr =
ν

α
, (3.6)

where β, g, α and ν are the coefficients of thermal expansion, gravitational constant,

thermal diffusivity and kinematic viscosity respectively. The parameters of this

simulation were selected to allow direct comparison with the experiments of Fernandes

[10]. Fernandes conducted a series of experiments in a 6.3 Γ test cell with cylindrical

side-walls. These experiments used water as the working fluid with Prandtl number

ranging from 4.0 to 6.7 and Rayleigh numbers ranging from 5.8× 107− 1.1× 109. Our

simulation was conducted with Prandtl and Rayleigh numbers of 6.7 and 9.6× 107

respectively. The simulation’s boundary conditions were no-slip at all walls, constant

temperature at the top and bottom plates and zero heat-flux along the side walls.

In our simulation Ra was gradually ramped from the edge of the turbulent regime

(Ra = 5 × 105) to the target Rayleigh number, and then allowed to reach a stable,

fully-developed state before data was collected. The simulation was judged to be fully

developed after 8 eddy-turnovers because the volume-averaged, kinetic energy in the

cell began oscillating about a steady value. The eddy-turnover time for the roll-cells

(tε) was estimated as the time it takes for a particle to cross the layer-depth twice:

tε =
2h

< wrms >V

(3.7)

where < wrms >V is the volume-averaged, vertical, r.m.s. velocity. For reference,

each eddy-turnover is roughly 30 free-fall time units (h/wf). The DNS data used

for analysis in this paper spanned approximately 20 of these eddy-turnover’s, or 615

free-fall time units, and accounts for approximately 41 minutes in dimensional time.

Brown, Nikolaennko and Ahlers [5] identified a random reorientation of the LSC

44

in a unit Γ cell that occurred on a time scale of approximately 10 eddy-turnovers.

Fernandes [10] also identified coherence in the large-scale structures that met or

exceeded 10 eddy-turnovers. Based off these observations 10 tε was determined to

be a scale of interest, and in the context of this paper it is treated as a medium, or

intermediate temporal scale.

3.2.1 Numerical Resolution

The spatial domain was discretized with hexahedral elements and a marginal

amount of biasing toward the upper and lower plates was applied to the element

distribution. The spectral element method (SEM) used in this simulation also applies

a Gauss-Lobatto-Legendre (GLL) quadrature which clusters points inside each element

toward the boundaries and greatly improves resolution at the walls. Ninth order

polynomials were used for the quadrature resulting in roughly 44 million grid points.

Fernandes calculated the Kolmogorov length for this scenario to be approximately

1.2× 10−2h and our simulation’s grid had 5 points within this range at the wall. We

also determined that this grid satisfies the spatial resolution criteria of Grötzbach

[12]. The temporal resolution for each time step was approximately tε × 10−4 with a

corresponding CFL range of ∼ 0.6− 0.7.

We have conducted an a-posteriori analysis to evaluate the resolution of our results

utilizing the techniques outlined by Scheel, Emran and Schumacher [20]. Scheel et

al. [20] performed the majority of their analysis using Nek5000, and provided several

specific methods for determining adequate resolution in SEM simulations of RBC [20].

One of their methods evaluates the vertical profiles of kinetic energy dissipation (ε)

and thermal dissipation (εT) which are defined below:

45

ε =
1

2

√
Pr

Ra
(∇u +∇uT)2 (3.8)

εT =

√
1

PrRa
(∇θ)2 (3.9)

Profiles of these two scalar quantities are a good metric for judging convergence in

SEM simulations because they are comprised of the derivatives of primary variables

(u, θ). SEM results are guaranteed to be C0 continuous, or continuous in the primary

variables, within the elements and across element boundaries. The derivatives of these

terms, or secondary variables are guaranteed to be continuous within the elements,

but not across element boundaries [8]. Thus, discontinuities in the derivatives across

element boundaries are commonly used to detect under-resolved simulations. Profiles

for both dissipation terms are presented in the top two panels of figure 8. To illustrate

smoothness and continuity of the present computations, the dissipation profiles and

element boundaries are shown in the near-wall region, where the gradients are largest.

These profiles were generated through area and time averages in the same manner

as Scheel et al. [20]. The smoothness of the dissipation profiles testifies that the

simulations are well resolved according to this criterion.

Another methodology, initially proposed by Bailon-Cuba et al. [3] and utilized by

Scheel et al. [20], is to define height dependent Kolmogorov (ηk) and Batchelor (ηB)

scales by averaging over horizontal planes and time.

< ηK(z) >A,t=
Pr3/8

Ra3/8
< ε(z)−1/4 >A,t (3.10)

< ηB(z) >A,t=
1

Pr1/8Ra3/8
< ε(z)−1/4 >A,t (3.11)

From here the original Grötzbach criterion can be modified to the following [3, 20]:

∆z(z)

< η(z) >A,t

< π (3.12)

46

where ∆z(z) is the vertical gird spacing and η is either the Batchelor or Kolmogorov

scale. We have plotted this criterion for both the Kolmogorov and Batchelor scales in

the lower right panel of figure 8 where it can be seen that we are adequately resolved

according to this criterion.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

<
ε
>

A
,t

x 10
−2

0.02 0.04 0.06

1

2

3

4
x 10

−3

(a)

0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

<
ε

T
>

A
,t

0.02 0.04 0.06

1

2

3

4

5

6
x 10

−3

(b)

0.0 0.1 0.2 0.3 0.4 0.5
 0.0

 5.0

10.0

15.0

20.0

25.0

30.0

35.0

z/h

N
u

(z
)

(c)

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

∆
 z

 (
z
)/

 <
η

>
A

,t

z/h

(d)

Figure 8: Resolution tests for this simulation: kinetic energy dissipation profile (a),
thermal dissipation profile (b), horizontal plane Nusselt number profile (c), vertical
length scales: Kolmogorov (stars) and Batchelor (circles) (d). All time averages
were calculated from 205 instantaneous snapshots with 3 free-fall times between each
snapshot. Open circles in (a) and (b) are placed at the element boundary locations.

The final resolution criterion that we wish to comment on is convergence of

the Nusselt number which can be defined on individual planes (eq. 3.13 below), by

volumetric averaging of the kinematic heat flux (eq. 3.14 below) , or by balancing

dissipation inside the convection cell (eqs. 3.15 and 3.16 below) [20].

47

< Nu(z) >z ±σ Nubot Nutop NuQo Nuε NuεT
30.89± 0.08 30.83 30.85 30.87 30.83 30.12

Table 1: Nusselt number calculations in row order: average planar Nusselt number
(Nu(z)) and the associated standard deviation, Nu at the bottom plate, Nu at the
top plate, Nu from volume averaged kinematic heat flux, Nu from volume averaged
kinematic dissipation, Nu from volume averaged thermal dissipation

Nu(z) =
√
RaPr < wθ >A,t −

∂ < θ >A,t

∂z
(3.13)

NuQo = 1 +
√
RaPr < wθ >V,t (3.14)

Nuε = 1 +
√
RaPr < ε >V,t (3.15)

NuεT =
√
RaPr < εT >V,t (3.16)

Nu(z) is plotted in the lower left panel of figure 8, and a summary of the different

calculations of Nu is included in table 1.

These results show that we have good agreement between the different methodologies

for computing Nu and that the majority of these methodologies give a Nu within

0.2% of each other. The only outlier is NuεT which is about 2.5% lower than the

others.

3.3 Comparison with Experiments

This section compares two-point and single-point statistics computed from the DNS

data with the corresponding quantities found in the experiments of Fernandes [10].

Quantitative comparisons of the velocity and temperature fields of RBC simulations

and experiments have been rare to date, and we hope that the present comparison

and discussion will provide useful guidelines for future studies. The agreement one

should expect from this comparison is tempered by certain differences inherent to

48

DNS and experiment, despite our best efforts to numerically recreate the environment

of Fernandes’ experiment. First, DNS yields data from every grid point in the

domain, but over a temporal duration that is limited by the cost of computation.

In contrast, experiments yield data from a limited subset of points in the volume,

but they can be performed over very long durations. These factors lead to different

time averaging protocols. Second, differences between the data sampling domains and

assumptions concerning horizontally homogeneous statistics lead to different spatial

averaging protocols. Third, the experimental and DNS data were non-dimensionalized

using different, albeit related scales for velocity and temperature. Fourth, although

both flow fields occur in geometrically similar cylindrical domains with constant

temperature horizontal boundaries, differences exist between the ideal, mathematically

perfect boundary conditions of the DNS and the realistic, imperfect thermal boundary

conditions of the experiment.

3.3.1 Differences between Experimental and Numerical Data Collection Protocols

In the following sections we discuss the foregoing differences and the steps taken

to minimize their effects on the statistical comparison.

3.3.1.1 Differences in Temporal Averaging

Fernandes’ [10] statistics were generated from a set of 300 statistically independent

snapshots which were obtained over very long averaging times. These snapshots were

collected in groups of 15 with 4z∗/w
∗ (∼30-40 seconds) between each snapshot in a

group (z∗ = 0.5h is half the layer depth, w∗ is the Deardorff velocity scale precisely

49

Group O(Ra) Pr Free-Fall Times Γ
Kerr (1996) [15] 107 0.7 116 6.0
Shishkina & Thess (2009) [23] 108 − 109 4.38 290 1.0
Bailon-Cuba et al. (2010) [3] 107 − 109 0.7 ∼ 80− 300 0.5-12.0
Scheel et al. (2012) [19] 105 − 108 0.7 ∼ 480 1.0
Scheel et al. (2013) [20] 106 − 109 0.7 ∼ 75 1.0 & 3.0
Emran & Schumacher (2015) [9] 105 0.7-10 ∼ 600 50
Current Work 108 6.7 615 6.3

Table 2: A select list of RBC DNS studies. Total averaging times are listed in the 4th
column.

defined later). The heat source was periodically turned off for 30 minutes to an

hour between sets of snapshots, then turned back on and allowed to settle for 4-12

hours. This perturbing of the flow was done to keep the large-scale-motions from

developing any preferential direction. The data between the perturbations was treated

as independent realizations of the order of O(1000) free-fall times in duration and

resulted in an averaging procedure that included temporal and ensemble averaging.

At each Ra the total procedure took hundreds of hours which is O(105) free-fall

time units. Recreating a DNS data set that spans a similar amount of time and/or

incorporates a similar number of realizations would be prohibitively expensive. For

comparison, table 2 displays the total runtimes of a selection of the representative

numerical simulations in RBC to illustrate this wide gap. The next section illustrates

how the additional spatial data available through DNS can help narrow this gap.

3.3.1.2 Differences in Spatial Dimensions

As previously mentioned, we designed our DNS to match the experiments of

Fernandes [10] as close as possible, and we define the spatial domain for both studies

in cylindrical coordinates as ΩF .

50

ΩF (r, φ, z) : r ∈ 0 : 3.15h;φ = 0 : 2π; z ∈ 0 : h (3.17)

However, Fernandes did not utilize the entire volume for his velocity measurements.

Instead, he chose to take measurements in the center of ΩF far enough from the side

walls so he could apply the assumption of horizontal homogeneity to the velocity

statistics [10]. Fernandes obtained velocity measurements through the use of two-

dimensional, particle image velocimetry (PIV) at a vertical plane in the center of the

cell with a field of view 1.85 h in length and h in height. We shall refer to this as the

experimental window ΩE.

ΩE(r, φ, z) : r ∈ 0 : 0.925h;φ = 0, π; z ∈ 0 : h (3.18)

One notable advantage that our DNS data set has over the experimental results

of Fernandes is a third spatial dimension from which to draw data. Fernandes [10]

applied horizontal-line averages on his 2D PIV data sets to examine the velocity

statistics in the plane ΩE. To utilize the extra dimension in the DNS results we

defined a sub-volume within ΩF that can be generated by rotating ΩE about the

central axis:

ΩSV (r, φ, z) : r ∈ 0 : 0.925h;φ = 0 : 2π; z ∈ 0 : h (3.19)

We then projected the instantaneous DNS results within ΩSV onto evenly spaced

points in cylindrical coordinates, and performed horizontal, planar averages to the

data to mimic the line-averaging performed by Fernandes. For example, the mean

vertical velocity averaging procedure we used in ΩSV is defined as follows:

< w(z) >A,t=
1

NTNP

NT∑
i=1

NP∑
j=1

2rj
R
w(rj, φj, zj, ti) (3.20)

where NT is the number of instantaneous snapshots in time, NP is the number of

points in the plane, the subscript A stands for the “area-averaged”, and R = 0.925h

51

is the radius of a circular cross-section of ΩSV . We also collected statistics along

horizontal planes that spanned the full DNS domain (ΩF) using numerical averaging

procedures native to Nek5000.

Another notable difference in the DNS and experimental data sets is in the

horizontal velocity components. The DNS calculations were performed in cartesian

coordinates where u and v correspond to the x and y axis. However, the domain is

cylindrical and so cartesian velocity components do not properly reflect the periodicity

found in the cylindrical domain. Additionally, since Fernandes collected 2D velocity

fields in a plane intersecting the central axis of ΩSV the horizontal component in

his data sets can be interpreted as a radial velocity component. Based on these two

observations we chose to compare radial velocity statistics from the DNS with the

horizontal velocity statistics Fernandes published. The DNS radial velocity component

(ur) was extracted from the two horizontal velocity components using the simple

transformation in eq. 3.21.

φ = tan−1 (x/y)

ur(x, y, z, t) = u(x, y, z, t) cosφ+ v(x, y, z, t) sinφ (3.21)

In the remainder of the paper, radial velocity will be implied for our DNS results

whenever horizontal velocity is referred to.

3.3.1.3 Differences in Scaling

It should be noted that Fernandes non-dimensionalized variables using the Deardorff

scales of velocity and temperature [7], and a vertical length equal to one-half the layer

depth (z∗ = 0.5h). The excellent scaling properties of Deardorff’s scales have been

shown to collapse, to within ±15%, the profiles of second and third order turbulence

52

moments measured in laboratory experiments at Pr = 6.8, Ra = 107 onto atmospheric

measurements of convective boundary layers at Pr = 0.7 and Ra ∼ 1014 − 1016 by

Adrian, Ferreira and Boberg [1]. Correlation of the scaled data over such a huge range

is testimony to the power of this scaling. Moreover, the non-dimensional variables are

O(1), indicating that the scales themselves are representative of the physical variables.

The Deardorff velocity and temperature scales are defined below, where Qo is the

kinematic heat flux whose units are [K·mm/s]. Qo can be determined by dividing

the standard heat flux at the wall (Ho [W/mm2]) by the density (ρ [kg/mm3]) and

specific heat (cp [J/(kg·K)]).

Qo = Ho/(ρcp) (3.22)

w∗ = (βgQoh)1/3 (3.23)

θ∗ =
Qo

w∗
(3.24)

However, the DNS procedure used the ”free-fall” scales during the calculations

because they provide better accommodation for the constant temperature boundary

conditions. To provide a one-to-one comparison of velocity statistics with Fernandes

and to take advantage of the compelling properties of Deardorff scales discussed above,

all computational velocity data presented in this paper was rescaled to the Deardorff

scales. This was accomplished by multiplying the DNS field by wf and then dividing

by w∗. w∗ was determined by calculating Nu in the simulation and then scaling it

against Fernandes values of Nu and w∗ at this Ra (9.6× 107). These were Nu = 27.9

and w∗ = 2.5mm/s respectively [10].

The simulated value of Nu for Ra = 9.6 × 107 (see table 1) was approximately

10% higher and lead to w∗ = 2.6mm/s. Our simulation shows well converged results

(see Section 2.1), and Fernandes demonstrated that heat loss through the side walls

53

was kept to under 2% for his experiments [10], so it seems that the usual suspects of

in sufficient numerical resolution and heat loss through the side walls are not to blame.

One possible culprit for the discrepancy in Nu is the differences between experimental

and numerical boundary conditions. The no-slip velocity boundary conditions were

identical between the two cases, but the thermal boundary conditions were not.

The numerical simulation explicitly enforced constant temperature boundaries while

the experiment maintained an average constant heat flux through resistive heaters.

Additionally, the simulation provided sidewalls that are perfectly insulated while the

experiment had sidewalls with finite thermal conductivity.

3.3.2 Statistics Results

3.3.2.1 Two-Point Statistics

In this section the two-point, correlation functions of the velocity field for vertical

separation are compared against the published results of Fernandes in figure 9. This

statistic is a useful mechanism for analyzing similarity in the spatial structure of

the velocity field, and it is a good metric to judge how the organization of our DNS

velocity field compares with the experiment’s.

Visual inspection of figure 9 shows the contour shapes and amplitudes between

the results are qualitatively in good agreement. This indicates that the large-scale

velocity structure in the numerical field matches the experiment within the specified

sub-volume ΩSV . The two-point correlation does not tell us that the velocity structures

have the same azimuthal orientation or vertical direction, but rather that their shape

and size are very similar. We note that in the DNS contours the horizontal velocity

54

­0
.4

­0
.4

­0
.2

­0
.2

­0.2

0.
0

0.
0

0
.0

0.
2

0.
2

0.2

0.2

0.
2

0
.2

0.4

0.
4

0.4

0
.4

0.
4

0.
4

0.4

0.6

0.6

0.
6

0.6

0.
8

z/z
*

z
′/

z
*

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0
(a)

0
.2

0
.2

0.2

0.2

0
.2

0
.2

0.2

0.2

0
.4

0.4

0.4

0
.4

0.
4

0.4

0.
6

0.6

0
.6

0.60
.8

0.8

0.8

z/z
*

z
′/

z
*

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0
(b)

(c)

0
.2

0
.2

0.2

0.2

0
.2

0
.2

0.2

0.2

0
.2

0
.4

0.4

0.4

0
.4

0
.4

0.4

0.4

0
.6

0.6

0.6

0
.6

0.6

0.6

0
.8

0.8

0
.8

0.8

1

z/z
*

z
’/
z

*

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

(d)

Figure 9: Contour plot of the vertical, two-point correlation of the u-velocity component
(left) < ur(z)ur(z

′) >A,t and w-velocity component < w(z)w(z′) >A,t(right), all values
normalized by w∗2: (a) and (b) experimental results at Ra = 2× 108 (averaged within
ΩE)(Ra = 2× 108 is the closest Ra to our simulations, for which two-point correlation
is presented in the experiments), (c) and (d) DNS at Ra = 9.6× 107 (averaged within
ΩSV)

correlations are slightly larger at the vertex (2,2) and the experimental results are

slightly larger around the origin (0,0). We also observe a similarity in the shape of the

contours at the opposing corners in the experimental and DNS plots. This indicates

that the DNS’ horizontal velocity structure within ΩSV is similar to a reflection across

the mid-plane of the velocity structure observed in the experiments. A more quantitive

comparison of velocity statistics is provided through the single-point statistics in the

next section.

55

3.3.2.2 Single-Point Statistics

In this section the single-point vertical and horizontal velocity statistics as well as

the temperature fluctuations are compared against those of Fernandes [10]. Separate

profiles are presented for DNS statistics that are averaged on horizontal planes that

span the sub-volume ΩSV and the entire volume ΩF . We also note that the r.m.s

velocity profiles in this section are the full velocity components, and not the fluctuations.

This was done to match the results of Fernandes [10] who assumed a zero-mean velocity

field for his r.m.s. calculations.

−0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z
/h

<W(z)>
A,t

/w*
0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z
/h

<σ
W

(z)>
A,t

/w*

Figure 10: Ensemble and horizontally averaged mean (left) and r.m.s. (right) vertical
velocity profile normalized by w∗: DNS: Ra = 9.6 × 107, averaging domain ΩF (–)
and averaging domain ΩSV (- -); Experiment: Ra = 6× 107 (4), Ra = 2× 108 (�),
Ra = 1× 109 (◦)

Figure 10 displays the mean and r.m.s. profiles for the vertical velocity component.

The r.m.s vertical velocity profile within ΩSV over predicts the magnitude by ∼ 11%

when compared to the experimental results. This over prediction is based on a

pointwise comparison between the numerical results and a profile interpolated between

56

the experimental data sets at Ra = 5 × 107 and 2 × 108 to the DNS Ra number.

Additionally, a notable bias is present in the upper half of the numeric profile. However,

when the horizontal averaging is extended to span all of ΩF the profile’s symmetry

about the mid-plane improves and the profile’s magnitude reduces to within 5% of

the expected value. A similar trend is seen in the mean vertical velocity profiles.

The mean vertical velocity profile from sampling points within ΩSV is dramatically

larger than if averaged over the full domain ΩF (which is identically zero as expected).

It is also larger than the experimental profiles which were averaged over ΩE, and it

has a sign difference. The difference in sign between the experimental and numerical

results we attribute to the lack of preferred direction in RBC systems. There is nothing

in the geometry, boundary conditions or governing equations to give preference to

a positive or negative vertical velocity making up-drafts and down drafts of equal

probability in the LSC. The sign difference between the experimental and numerical

profiles suggests that while our DNS results clearly indicate a central up-draft, a

central down-draft has likely prevailed in the experiments. This sign difference is also

consistent with the reflection of structure we observed in the two-point correlations

for the horizontal velocity components (figure 9).

The trends in r.m.s. horizontal velocity profiles in figure 11 are similar to the trends

in vertical velocity profiles. The r.m.s profile from within ΩSV is slightly larger than

the profile averaged across the entire domain, but both of these profiles are very close

to the experimental results at similar Ra. We also see a continuation of the reflection

for the horizontal velocity structure that was observed in the two-point statistics.

The experimental profiles have slightly larger peaks near the lower boundary, and the

numerical profiles have larger peaks toward the top boundary. This follows the trend

57

−0.5 0 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z
/h

<U
r
(z)>

A,t
/w*

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z
/h

<σ
U

r
(z)

>
A,t

/w*

Figure 11: Ensemble and horizontally averaged mean (left) and r.m.s. (right) horizontal
velocity profiles normalized by w∗: DNS: Ra = 9.6× 107, averaging domain ΩF (–)
and averaging domain ΩSV (- -); Experiment: Ra = 6× 107 (4), Ra = 2× 108 (�),
Ra = 1× 109 (◦)

seen in figure 9 and supports our observations regarding the vertical profiles displayed

in figure 10.

The mean horizontal velocity profiles have a slightly different behavior than their

vertical velocity counterparts. Inside ΩSV the mean takes a similar shape and direction

when compared to the experimental profiles. The mean inside ΩSV is notably larger

in magnitude than the expected profile that lies between experimental profiles at

Ra = 5 × 107 and 2 × 108 in the upper half of the domain (z/h ≥ 0.5), and the

overshoot is similar in magnitude to the mean vertical velocity profile in figure 10.

When the horizontal averaging is extended to span ΩF the mean horizontal profile

changes direction and substantially reduces in magnitude. We attribute this change

to the organization of the LSC in the moderately large Γ domain. This structure will

be reviewed extensively in the next section.

Finally, we present statistics from the temperature field in figure 12. Fernandes

58

0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

z
/h

<θ(z)>
A,t

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

z
/h

<σ
θ’
(z)>

A,t

Figure 12: Ensemble and horizontally averaged mean temperature profile (left) and
r.m.s temperature fluctuations (right) normalized by ∆T : DNS: Ra = 9.6 × 107,
averaging domain ΩF (–) and averaging domain ΩSV (- -); Experiment: Ra = 2× 108

(�), Ra = 5× 108 (◦)

didn’t provide mean temperature profiles to compare against, but the slightly higher

bulk temperature in the ΩSV mean profile is consistent with the mean, vertical velocity

profile from figure 10. This indicates a net updraft of warm fluid within ΩSV . When

the horizontal averaging is extended to the entire domain the mean profile’s bulk

temperature value returns to the expected value of 0.5 outside of the thermal boundary

layer. The r.m.s. profiles for the temperature fluctuations are consistent with this

interpretation, and the simulated r.m.s. profiles display slightly larger magnitudes

than experimental profiles in the bulk of the flow, corresponding to a preferential

central up-draft (higher temperatures) in the simulations as opposed to a probable

slight down-draft (lower-temperatures) in the experiments.

Overall, we find that the statistics from our simulation compare well with the

experimental results of Fernandes. We see good agreement in shape, direction, and

magnitude for the various profiles despite only having a single realization of the flow

field and a much smaller averaging time. The profiles tend to have larger magnitudes

59

when they are constructed from averages within ΩSV . However, when the averaging

domain is increased to span ΩF the profiles are, for the most part, within ± ∼ 5% of

the experimental results.

3.4 Structure of the Flow

The remainder of the paper focuses on analyzing the large-scale thermal structures

and their relationship to the pattern of the large-scale circulation. Figure 13 displays

several cut planes of the instantaneous temperature field. The color scale of the

temperature field spans ±5% of ∆T to highlight the structures within the bulk region

where the large-scale structures reside.

Figure 13: Instantaneous temperature data scaled between 0.45 − 0.55∆T at the
horizontal cut plane at z/h = 0.5 and vertical cut planes at 30°, 150° from the x-axis

Large concentrated areas of warm and cool fluid can be discerned in the instantaneous

temperature field on the horizontal plane in figure 13. The vertical planes in figure 13

60

show that the warm and cool regions consist of concentrations of smaller structures

(plumes and sheets) crossing the bulk layer. The mid-plane is a favorable location to

investigate structures that span the entire layer depth because the mean horizontal

velocity components are minimal, and the up (warm thermal) and down (cool thermal)

motions have comparable strength due to symmetry about the mid-plane.

Figure 14 shows a more detailed view of the mid-plane to better illustrate the

concentrated thermal areas. The left panel is from the same time instance displayed

in figure 13, and the right panel displays results 5.9 tε (117 free-fall times) later to

illustrate that these thermal concentrations can be observed for extended periods

of time. The similarities between these two instances suggest that an underlying

large-scale structure exists, but it’s hard to discern the structures precise form with

such a high level of noise from the back ground turbulence.

Figure 14: Instantaneous temperature data in the x − y plane at z/h=0.5 for two
different time instances 5.9tε apart.

61

3.5 LSC Extraction by Smoothing in Time

In the following section we use running, temporal averages to filter noise from the

flow field and reveal properties about the large-scale structures for relatively large Γ,

turbulent RBC. This averaging procedure smooths the signal and it is defined as:

< u(x, y, z) >t=
1

T

∫ to+T

to

u(x, y, z, t)dt (3.25)

where T is the averaging period or filter width, and to is the starting point in time for

each filtering operation. In this section we will use the terms “averaging,” “filtering”

and “smoothing” interchangeably since the purpose of our running average procedure

is to remove small scale fluctuations and preserve the larger scale structures who have

longer life cycles.

3.5.1 Short-Time Filtering (T=1 tε)

When the temperature field is averaged over a period of 1 tε seven discrete thermal

concentrations begin to emerge. These large-scale thermal structures can be identified

by studying the left panel of figure 15. Six of the seven thermals are connected to the

cell’s side walls, and are alternately arranged by temperature. The seventh thermal is

a warm updraft located in the central region of the cell, but noticeably off center. A

significant portion of the central thermal resides within the volume where we collected

the sub-domain statistics (figures 9-12). This central thermal structure partially

explains the differences between statistics in the sub-domain (ΩSV) and those that

spanned the entire domain (ΩF) because it would create a bias for warm fluid and up

flow within ΩSV .

62

Figure 15: Thermal field at the mid-plane scaled from 0.45− 0.55∆T (left); vertical
velocity field at the mid-plane scaled between -1.5 & 1.5 w* with velocity vectors in
the x− y plane at z/h=0.92 superimposed (right); all results are time averaged over
the 1st tε of data

Coupling between the large-scale thermal field and the velocity roll-cells is illus-

trated by comparing the spatial locations of the mean velocity up/down drafts and

the vector field connecting these drafts. The right panel in figure 15 displays the

vertical velocity component at the mid-plane to illustrate the location of the mean

vertical drafts, and a vector field at the plane z = 0.92h, corresponding to the local

maxima in the mean horizontal velocity profile (figure 11), to show how the drafts are

interconnected by flow near the boundaries. A comparison of the left and right panels

in figure 15 clearly shows that the warm thermals represent velocity sources and the

cool thermals represent velocity sinks from the top-down perspective. Connecting the

warm and cool thermals creates a complete roll-cell. This basic method can be used

to conceptualize the 3D multi-roll-cell pattern in a simple and intuitive manner.

The short-time-averaged temperature fields in figure 16 can be used to interpret

the fluctuation level still present in the large-scale structures after the short-time

averaging. These instances were taken 3 tε apart to increase the dynamic effect through

static visualizations. Very little change is observed in the thermal field which shows

63

(a) (b)

(c) (d)

(e) (f)

Figure 16: Temperature field averaged over one tε at to = 2 tε(a), 5 tε(b), 8 tε(c), 11
tε(d), 14 tε(e), and 17 tε(f) in the x−y plane at z/h = 0.5 scaled between 0.45-0.55∆T ,
the color panel is the same as in figure 8 (left)

that the large-scale thermals are relatively stationary over the averaging time of this

data set. The up and down drafts near the walls show little change in spatial location,

however there is some noticeable fluctuation in their individual sizes.

64

Qualitatively, we observe the central thermal in figure 16 moving from left to right

during the time series. It is difficult to be certain if the structure is approaching a

steady state, or if a secondary fluctuation with even slower dynamics is dominating

the flow. However, we can be certain that the smoothing from this short time average

does not bring the field to a steady state, and that a pattern of seven large-scale

thermals is persistent across the entire range of our data set.

3.5.2 Medium-Time Filtering (T=10 tε)

In this section we increase our averaging time to 10 tε (300 free-fall times) to

smooth out the fluctuations that were still present after short-time averaging. This

“medium” averaging time is effectively half of our data set resulting in two instances

to observe, see figure 17.

Figure 17: Temperature field averaged over 0-10 tε (left) and 10-20 tε (right) in the
x− y plane at z/h = 0.5 scaled between 0.45-0.55∆T

The results in figure 17 show a striking set of triangular patterns for the large-scale

thermal field that are manifest at the mid-plane. The seven discrete thermals that

were identified in the previous section have clearer boundaries and are now visibly

65

obvious. From figure 17 we see the emergence of a dominant low order mode with 120°,

azimuthal periodicity. There are several interesting departures from pure periodicity

that can be observed in medium-time average data such as the central thermal residing

off the central axis and the size variation amongst the thermals along the outer wall.

The significant change in the central thermal location between the two panels in figure

17 illustrates that the central plume still moves around the center at these time scales.

However, the large-scale organization that is revealed through 10 tε of temporal

smoothing is similar for both instances. Figure 18 illustrates how the large-scale

organization can be interpreted as a hub and spoke pattern with roll-cells forming

between alternating thermals around the outer wall and vortex lines located between

the thermals. The central, uprising thermal creates in-plane, azimuthal vorticity due

to the shearing effects, manifested as a circular vortex ring around it. This vorticity

acts to reinforce the interaction of the large-scale thermal with the side thermals of

opposing temperature and to strengthen the global large scale motions observed in

the simulations.

Figure 18: Conceptual diagrams of the large-scale organization in the flow field
averaged over the 0-10 tε (left) and 10-20 tε (right). The light circles represent
updrafts, the dark circles represent downdrafts and the vectors represent vortex lines.

The right panels in figures 17 and 18 represent a symmetric pattern, the one which

66

will also likely persist over longer averaging times. The left panels in figures 17 and 18

illustrate the strong effect the central thermal can have on the velocity structure.

When the location of the central thermal moves off the center axis it comes closer to

two other thermals with similar temperatures. This shift breaks some of the symmetry,

enhances the interaction between the central thermal and the nearest thermals of

opposing temperature, and can cause the other two vortex lines to break and reform

as drawn in the left panel of figure 18.

Figure 19: In plane vorticity plotted on top of temperature in the flow field averaged
over the 0-10 tε (left) and 10-20 tε (right) in the x−y plane at z/h = 0.5 (temperature
scaled between 0.45-0.55∆T , the color panel is the same as in figure 10)

To test the validity of the concepts presented in figure 18 we computed the in-plane

vorticity at the mid-plane for each of these realizations and the results are displayed in

figure 19. The lines of vorticity in figure 19 verify that the spokes in the temperature

field between large-scale thermals are indeed regions of strong vorticity, and that the

central thermal has a vortex encircling it which interacts with the spokes. These

similarities give weight to the conceptual basis of the right hand diagram in figure 18.

However, the conceptual diagram fails to replicate the fact that the warm regions are

narrower than the cool regions. This can be remedied by recognizing that the width

67

of the vortex loops need not be equal, which would amount to squeezing of the vortex

lines closer to the warm thermals (because the central thermal is an updraft) that

reside in the outer region of the convection cell, in the right diagram of figure 18.

It is recognized that the pattern of large scale motions is most likely a function of

Γ and that additional patterns may exist at other Γ’s and in other domains. However,

there is a strong resemblance between the pattern in the left panel of figure 17 and the

pattern shown by Bailon-Cuba et al. [3] at similar values of Γ and Ra even though

Pr was smaller by a factor of 10. During the initialization stage of this simulation

we incrementally increased Ra and allowed the initial transients to settle after each

discrete jump in Ra. During this process we qualitatively observed a transition in the

large-scale thermals organization from a pattern that is more indicative of a single

roll cell to the multi-roll cell state we have presented. From this we speculate that the

characteristic size of the large-scale thermals will vary with Ra; however, this concept

warrants a more thorough investigation.

3.5.3 Long-Time Filtering (T=20 tε)

We conclude our investigation of the large-scales structures at moderately large Γ

by evaluating the full time averaged field from our DNS data set. Figure 20 provides

a time average over the complete 20 tε. Figure 20(a) displays multiple cut planes of

the average field to show the level of symmetry of the structure. The angles of the

3 vertical cut planes were chosen in an attempt to maximize intersection between

large-scale thermals that are positioned directly across from one another in the cell.

We observe that thermals directly across from one another are not perfectly aligned.

Careful observation of figure 20(b) will show that the central thermal is still not

68

(a) (b)

(c)

Figure 20: Images of the temperature field scaled between 0.45-0.55∆T (the color
panel is the same as in figure 10) averaged over 0-20 tε: a horizontal cut plane at
z/h = 0.5 and vertical cut planes at 40°, 100°, and 160° from the x-axis (a), detailed
view of the horizontal cut plane at z/h = 0.5 (b), and detailed view of the vertical cut
plane 160° from the x-axis with the average, in-plane velocity vectors superimposed
(c).

completely centered in the cell, and that the outer thermals are still not uniform in

size. However, the dominance of the 120° mode can’t be denied when inspecting these

figures.

One of the cell’s vertical cross-sections can be seen in detail in figure 20(c) and

the in-plane, temporally-averaged, velocity vectors are superimposed onto the scalar

temperature field. Here we see a single elongated roll-cell on the right side of the

cross-section with a width approximately equal to the radius of the domain. On the left

side of the cross-section two updrafts exist side-by-side. These two updrafts are able to

exist in such close proximity because the flow is able to redirect itself toward the cool

thermals on either side, thus establishing the spoke-like vortices illustrated in figure 18.

Virtually all of the flow from the thermal on the far left wall of figure 20(c) must

contribute to these spoke like structures while the central thermal also contributes

69

toward the roll-cell in the right half of the figure. These two updrafts display signs

of a small recirculation region directly between each other, and we suspect that this

interaction plays a significant role in perturbing and relocating the central, large-scale

thermal. However, further investigation into this phenomenon would require a longer

time series.

3.6 Summary and Conclusions

Large scale circulations are known to exist in low aspect-ratio (Γ < 2) experiments

having rectangular and cylindrical shapes [27, 5]. Experiments and DNS in large

aspect ratio domains at Ra above transition [16, 25, 3] have shown that the planform

pattern of the convective cells consists of random 3,4,5,6-sided polygons. This DNS

study was conducted to explore the structural patterns that characterize RBC in a

circular domain of moderate aspect ratio by performing highly resolved simulations in

a circular domain of aspect ratio 6.3 at Pr=6.7 and Ra=9.6× 107. The comparison

of several resolution criteria in our simulations with the recommended values for RBC

confirms that our study is well resolved [3], [12], [20].

The referred geometry and set of parameter values were chosen to allow direct

comparison with a PIV experiment [10] in which many different states of the convection

were sampled over several independent realizations, with at least 100 eddy turnover

duration per realization, and in which line averaging and time averaging could be done

to improve statistical convergence. In the DNS convergence was improved by averaging

over time and horizontal planes. In lieu of the absence of a similar comparison in the

previously documented numerical studies of Rayleigh-Bénard convection, the current

comparison carries a substantial value. We show that good agreement in temperature

70

and velocity statistics can be obtained between DNS and experimental studies in

spite of a large difference in averaging times. In this study we also elucidate on the

methodologies allowing for a meaningful comparison between DNS and experimental

data obtained with rather different data collection techniques.

Comparison with the experiment confirmed the validity of the DNS with accuracy

of 5% for the temperature and vertical velocity statistics when the statistics were

averaged over horizontal planes that spanned the entire domain. The velocity field

averaged within a central sub-volume was more sensitive, even showing mean vertical

velocity of sign opposite to the experiment, indicating an effect of the large scale

structures.

The large-scale thermals for this particular configuration organized into a pattern

with a high level of symmetry in the azimuthal direction. The pattern of the dominant

mode is a 120 degree periodic arrangement of radially oriented up and down motions

caused by roll cells that extend across the depth of the domain. This spoke-shaped

pattern of period-three persists over the entire duration of the simulation, 615 free-fall

times. These patterns are very similar to the ones observed by Bailon-Cuba et al. [3]

at a similar Γ and Ra despite the difference in Pr.

Instantaneously the spoke pattern is imbedded in small scale turbulence, but

still not totally obscured. To extract the spoke pattern from the full turbulent field

temporal smoothing over different time-scales was employed. The structure clearly

becomes 3 pairs of alternating up and down motions plus a hot rising column in the

center of the domain. This pattern persists even after smoothing over 20 tε, the entire

run time of the simulation. The persistence of the azimuthal orientation implies that

reorientations of the spokes occur on extremely slow time scales such that in any

single experiment or DNS of moderate duration, the underlying circulation biases the

71

results. Moreover, the persistence of the direction of the central column indicated

that the pattern does not “flip” during the DNS, a condition that is needed to sample

all of the states of the RBC.

72

BIBLIOGRAPHY

[1] R. J. Adrian, R. T. D. S. Ferreira, and T. Boberg. “Turbulent thermal convection

in wide horizontal fluid layers”. In: Experiments in Fluids 4 (1986), pp. 121–141.

[2] Guenter Ahlers, Siegfried Grossmann, and Detlef Lohse. “Heat transfer and

large scale dynamics in turbulent Rayleigh-Benard convection”. In: Reviews of

Modern Physics 81.2 (2009), pp. 503–537.

[3] J. Bailon-Cuba, M. S. Emran, and J. Schumacher. “Aspect ratio dependence

of heat transfer and large-scale flow in turbulent convection”. In: Journal of

Fluid Mechanics 655 (July 2010), pp. 152–173. issn: 1469-7645. doi: 10.1017/

S0022112010000820.

[4] Eberhard Bodenschatz, Werner Pesch, and Guenter Ahlers. “Recent develop-

ments in Rayleigh-Bénard convection”. In: Annual review of fluid mechanics

32.1 (2000), pp. 709–778.

[5] E. Brown, A. Nikolaenko, and G. Ahlers. “Reorientation of the Large-Scale

Circulations in Turbulent Rayleigh-Benard Convection”. In: Physical Review

Letters 95.084503 (2005).

[6] Laltu Chandra and Günther Grötzbach. “Analysis and modelling of the turbulent

diffusion of turbulent heat fluxes in natural convection”. In: International Journal

of Heat and Fluid Flow 29.3 (2008), pp. 743–751.

73

http://dx.doi.org/10.1017/S0022112010000820
http://dx.doi.org/10.1017/S0022112010000820

[7] James W Deardorff. “Convective velocity and temperature scales for the unstable

planetary boundary layer and for Rayleigh convection”. In: Journal of the

Atmospheric Sciences 27.8 (1970), pp. 1211–1213.

[8] Michel O Deville, Paul F Fischer, and Ernest H Mund. High-order methods for

incompressible fluid flow. Vol. 9. Cambridge University Press, 2002.

[9] Mohammad S Emran and Jörg Schumacher. “Large-scale mean patterns in

turbulent convection”. In: Journal of Fluid Mechanics 776 (2015), pp. 96–108.

[10] R. L. Fernandes. “The spatial structure of turbulent Rayleigh-Benard convection”.

PhD thesis. Urbana, IL: University of Illinois, 2001.

[11] Paul F Fischer, James W Lottes, and Stefan G Kerkemeier. “nek5000 Web page”.

In: Web page: http://nek5000. mcs. anl. gov (2008).

[12] Günther Grötzbach. “Spatial resolution requirements for direct numerical simu-

lation of the Rayleigh-Bénard convection”. In: Journal of Computational Physics

49.2 (1983), pp. 241–264.

[13] S Kenjereš and K Hanjalić. “LES, T-RANS and hybrid simulations of thermal

convection at high Ra numbers”. In: International journal of heat and fluid flow

27.5 (2006), pp. 800–810.

[14] S Kenjereš and K Hanjalić. “Transient analysis of Rayleigh–Bénard convection

with a RANS model”. In: International journal of heat and fluid flow 20.3 (1999),

pp. 329–340.

74

[15] Robert M Kerr. “Rayleigh number scaling in numerical convection”. In: Journal

of Fluid Mechanics 310 (1996), pp. 139–179.

[16] Ronald du Puits, Christian Resagk, and André Thess. “Breakdown of wind in

turbulent thermal convection”. In: Physical Review E 75.1 (2007), p. 016302.

[17] B. A. Puthenveettil and J. Arakeri. “Plume strucutre in high Rayleigh-number

convection”. In: Journal of Fluid Mechanics 542 (2005), pp. 217–249.

[18] X-L Qiu and P Tong. “Large-scale velocity structures in turbulent thermal

convection”. In: Physical Review E 64.3 (2001), p. 036304.

[19] J. D. Scheel, E. Kim, and K. R. White. “Thermal and viscous boundary layers

in turbulent Rayleigh-Benard convection”. In: Journal of Fluid Mechanics 711

(2012), pp. 281–305.

[20] Janet D Scheel, Mohammad S Emran, and Jörg Schumacher. “Resolving the

fine-scale structure in turbulent Rayleigh–Bénard convection”. In: New Journal

of Physics 15.11 (2013), p. 113063.

[21] M. J. Shelly and M. Vinson. “Coherent structures on a boundary layer in

Rayleigh-Benard turbulence”. In: Nonlinearity 5 (1992), pp. 323–351.

[22] O. Shishkina and C. Wagner. “Analysis of sheet-like thermal plumes in turbulent

Rayleigh-Benard convection”. In: Journal of Fluid Mechanics 599 (2007), pp. 383–

404.

75

[23] Olga Shishkina and André Thess. “Mean temperature profiles in turbulent

Rayleigh–Bénard convection of water”. In: Journal of Fluid Mechanics 633

(2009), pp. 449–460.

[24] DR Wilson, TJ Craft, and H Iacovides. “Application of RANS turbulence

closure models to flows subjected to electromagnetic and buoyancy forces”. In:

International Journal of Heat and Fluid Flow 49 (2014), pp. 80–90.

[25] Ke-Qing Xia, Chao Sun, and Yin-Har Cheung. “Large scale velocity structures

in turbulent thermal convection with widely varying aspect ratio”. In: Proc. 14th

Int. Symp. on Applications of Laser Techniques to Fluid Mechanics. 2008.

[26] Claudia Zimmermann and Rodion Groll. “Computational investigation of ther-

mal boundary layers in a turbulent Rayleigh–Bénard problem”. In: International

Journal of Heat and Fluid Flow 54 (2015), pp. 276–291.

[27] G. Zocchi, E. Moses, and A. Libchaber. “Coherent structures in turbulent

convection, an experimental study”. In: Physica A 166 (1990), pp. 387–407.

76

Chapter 4

MITIGATING THE INFLUENCE OF VERY LONG-LIVED STATISTICS TO

IMPROVE STATISTICAL CONVERGENCE IN FINITE-TIME SIMULATION OF

RAYLEIGH-BÉNARD CONVECTION

4.1 Introduction

A hallmark of turbulent flow is the random, chaotic spatial structure in the

instantaneous flow field. Within the chaos the field also contains recurrent organized

motions that are temporally coherent on various time scales ranging from very short to

very long. Over an infinite-time turbulent flow manifests an infinite number of states,

where a state in this sense is any spatial organization of the flow’s primary variables

i.e. velocity, pressure, and scalar fields. In addition to observations of instantaneous

states and the evolution and interaction of motions contained therein, studies of

turbulence also rely heavily on statistical averaging. Most theories of turbulence

assume the flow is statistically stationary so that averages over infinite times converge

to the ensemble average of an infinite number of random realizations. This makes the

infinite-time average calculable in principle. In experiments and numerical simulations

the infinite-time average is unreachable, and time averages over finite times often fail

to converge well. Supplemental spatial averages over regions of homogeneous statistics

or supplemental ensemble averages over additional realizations are often invoked to

improve convergence of the finite-time average.

The majority of the turbulent flows contain some kind of large-scale, seemingly

chaotic turbulent motion, and in some flows these large-scale motions organize into

77

very-large-scale motions that evolve on extremely large time scales compared to the

viscous time scales of the smallest eddies [45, 8]. One example is turbulent Rayleigh-

Bénard convection (RBC) in a wide-aspect-ratio, cylindrical domain [60]. The slowly

evolving coherent motions make it very difficult to use conventional time averaging

procedures to obtain statistically-converged results over the finite-time of numerical

simulations. Spatial averaging over homogeneous directions helps somewhat, as will be

shown below, but it does not completely cure the problem. The purpose of this letter

is to propose a new technique that accounts for the influence of multiple states in

large-scale organization of coherent structures and combines temporal and a specially-

constructed ensemble averaging to significantly improve the statistical convergence in

finite-time simulations of Rayleigh-Bénard convection.

RBC occurs when fluid between horizontal plates is heated from below and cooled

from above. The unstable temperature stratification generates buoyancy forces within

the fluid layer which then drive the flow. The Rayleigh number Ra = βg∆Th3/αν,

(where β is the coefficient of thermal expansion, g is the gravitational constant, ∆T

is the temperature difference between the two heated plates, h is the plates’ vertical

separation, α is the thermal diffusivity and ν is the kinematic viscosity), is the primary

dimensionless parameter and the Prandtl number Pr = ν/α is often of less importance.

Ra is heavily dependent upon the vertical length scale h. A horizontal length scale

(L) is also very important for determining the structure of the flow. The ratio of these

two length scales is the aspect-ratio (Γ = L/h).

The majority of numerical and experimental studies have been performed in unit

Γ boxes and cylinders. The “wind of turbulence” concept is often used to describe the

flow structure in these small Γ domains. The “wind of turbulence” is characterized

by a single roll-cell, or large-scale circulation (LSC), which spans the height and

78



g

-T/2

T/2

h Large Scale Circulations

Figure 21: Conceptual diagram of the wind of turbulence in a Γ = 1 cell. The dotted
plane illustrates the one of the infinite possibilities for the azimuthal orientation of
the LSC. The yellow vectors indicate the directions for azimuthal drift.

width of the cell, see figure 21. This roll-cell creates boundary layers along the side

walls and thermally active top and bottom plates which are well described by the

Prandtl-Blasius profiles according to the Grossmann and Lohse theory [32]. The

core of these small Γ cells is well-mixed and shows statistical properties in line with

homogeneous turbulence [64].

In boxes the LSC may align with the side-walls, but in cylinders circular symmetry

of the side-walls and verticality of the gravitational vector combine to imply that there

can be no preferred horizontal direction, i.e. structures can align in any horizontal

direction, and the infinite-time mean of any quantity must be independent of the

azimuthal direction (azimuthal homogeneity). In particular, the LSC is allowed to

flow in any direction. Experiments and numerical simulations show that the direction

of the LSC (and presumably the azimuthal orientation of any flow pattern) drifts in

79

time [12, 51], so that over an infinite time all azimuthal orientations become equally

probable, implying statistical homogeneity in the azimuthal direction and suggesting

the azimuthal averaging as a means to accelerate statistical convergence to an infinite

time-average in this flow. In horizontal RBC cells the anti-symmetry of the thermal

boundary conditions on the horizontal surfaces also implies anti-symmetry of statistical

means for quantities involving temperature or heat flux with respect to reflection

about the horizontal mid-plane.

The anti-symmetry about the mid-plane is due to the vertical direction of the

gravitational vector and the equal and opposite temperatures (with respect to the

mean value) of the thermally active boundaries. There is nothing in the equations

or boundary conditions to give preference to updrafts or down-drafts, so thermal

plumes rise (fall) from the lower (upper) boundary with equal likelihood. Referring to

figure 21, the updraft on the left hand side of the flow has an equal probability of being

a down-draft over an infinite time. When the large-scale circulation is a single roll-cell

180° rotation about the central axis changes the updraft on the left to a down-draft.

However, as Γ is increased the flow’s structure acquires a more complicated form than

the relatively two dimensional “wind of turbulence” and azimuthal homogeneity can

diverge from anti-symmetry in the vertical direction.

4.2 Additional States in Larger Aspect-Ratio Cylinders

In our recent work we studied the large-scale structures in a 6.3 Γ RBC cell via

direct numerical simulation (DNS) [60]. This simulation was setup to mirror an

experiment conducted by Fernandes [22]. After smoothing out the small-scales with a

running time average we observed that the flow organized itself into a hub and spoke

80

Figure 22: Possible patterns at Γ = 6.3. This pattern is characterized by large-scale
updraft in the center, and six large-scale drafts of alternating direction along the cell’s
side walls. Three dimensional roll-cells are created by connecting each updraft with
the neighboring downdrafts.

like pattern with an updraft in the central region of the cell, and 6 alternating up- and

down-drafts near the outer wall. The hub in this pattern is the central thermal and

the spokes are the vortex lines that form between drafts of opposing direction along

the outer wall. A conceptual illustration of the observed pattern’s thermal signature

is provided in figure 22. Very similar patterns were seen in the numerical study by

Bailon-Cuba et al [7]. The large-scale patterns in our recent work [60] and the work

of Bailon-Cuba et al [7] showed no azimuthal drift or vertical reversal over at least

600 free fall time units (tf =
√
h/βg∆T) in numerical simulations. From this we can

infer that the large-scale patterns in turbulent RBC are remarkably stable at large Γ.

We will refer to the observed pattern in figure 22 as state+ because the central

column of fluid is an updraft. The persistence of the central column destroys the

statistical homogeneity at the center of the cell over the set of realizations in state+.

This stands in direct conflict with the idea that as Γ is increased the central region

of the cell should approach the infinite Γ case which is statistically homogeneous

over horizontal planes. Clearly, additional states must exist in the infinite ensemble

of realizations for this flow, and these states are not represented in this data set

81

even though it was sampled over more than 600tf . If the temporal sampling were

sufficiently extended to truly approach the infinite-time average then an event must

occur that will drive the flow into other states. Possible states should, at the very

least, include rotations about the central axis, and a reorganization of the large-scales

to where the central region of the cell is characterized by a downdraft. We will refer

to downdraft organization as state−.

As was mentioned earlier, states that are simply a shift in the pattern’s orientation

can easily be accounted for by averaging in the homogenous azimuthal direction, as

would be sufficient in a low Γ case. However, the downdraft pattern in large Γ case

will require another state of the flow to be sampled. Without this additional state the

data set can be considered a conditional average of the infinite time field based on

the updraft large-scale organization. The realizations of the flow in this data set can

not be truly statistically independent because the large-scale structures remain highly

correlated throughout the time scales achievable in the simulations.

Traditionally, numerical simulations have relied on temporal averaging for obtaining

flow statistics with the expectation that the statistically independent states will be

naturally sampled over the duration of the simulation. This assumption has two

drawbacks: first, as we see in our RBC example, time-scales on which coherent

structures evolve can be very significant, so that the amount of run time needed

to follow this evolution through many transitions between up- and down-states can

be prohibitively large; second, the mechanisms triggering the transitions between

the states are still unknown and might not be easily reproducible in continuously

executed numerical simulations. For example, carefully conducted experiments in

Rayleigh-Bénard convection involved periodically switching the heat source off and on

82

to produce significant perturbations to trigger statistically independent realizations [22,

23].

The idea that ensemble averaging, instead or an addition to temporal averaging,

is a promising way to improve statistics and models in the simulations has been

recognized [13, 17]. In these works, initial conditions were selected randomly with the

presumption that this initial randomness would yield significantly different realizations.

Although intuitively appropriate, this approach might still fail, since the dependence

of large-scale structural organization on initial conditions is little understood. It might

happen that all initial conditions chosen at random will produce the same state (for

example, state+ as in our simulations). A very large number of random realizations

might still be biased to one state or another.

4.3 State Switching Techniques

In this chapter, we propose a simple modification of the conventional sampling

and averaging procedures that allows us to select initial conditions for the effective

ensemble averaging in a controlled way. With this technique, the additional states

that will be sampled are created to possess certain properties (for example, a central

downdraft versus updraft) that are missing in the “base” realization. By deliberately

constructing and sampling specifically manufactured conditions that sample all states,

we ensure that the statistics converge to an unbiased estimate of the infinite-time

average using a relatively small number of realizations. For example, in this chapter

we achieve significantly improved statistics with only two realizations, sampling over

state+ and state− as discussed below. This technique can be used to expand the

statistical significance of numerical data sets and extend the number of independent

83

realizations that can be studied. We will illustrate this technique using our RBC data

set, but it can potentially be applied to other flows where there are symmetries that

allow solutions in multiple states.

The main idea behind our technique is to transform an instantaneous realization

from the numerical data set into an initial condition for a different state that possesses

a desired large-scale structure. For this, we explore symmetries in the inhomogeneous

directions. In addition, we require that the transformed data set evolves according

to the governing equations. Our central goal for the manipulation performed in this

chapter is to reverse the flow direction in a central column (updraft versus down-draft)

corresponding to state+, identified in figure 2, and its reflection, state−. We recognize

that other symmetries (for example, based on the direction of the azimuthal rotation)

can also produce other turbulent states.

To reverse the flow direction in the central column, we recast the field so that

the structures falling from the cool top plate appear as structures rising from the

warm bottom plate and vice versa. Switching states is performed by transforming

the vertical velocity component, vertical coordinate and temperature of a developed

turbulent data set at every grid point in the simulation. The formulas for performing

this switch are as follows:

z−(x, y, z+) = zt + zb − z+(x, y, z+) (4.1)

θ−(x, y, z−) = θt + θb − θ+(x, y, z+) (4.2)

w−(x, y, z−) = −w+(x, y, z+) (4.3)

where the subscripts t and b refer to the values at the top and bottom boundaries, the

superscripts + and − refer to the flow states, z, θ and w are the vertical coordinate,

dimensionless temperature and vertical velocity, respectively. The transformation pro-

84

0 200 400 600 800 1000 1200
5

6

7

8 x 10−3

<K
E>

V

t/tf

0 200 400 600 800 1000 1200
28

30

32

34
N

u

t/tf

a)

b)

Figure 23: Temporal evolution of the volume average kinetic energy (a), and Nusselt
number (b) are shown in the plots above. state− (- -) was initialized from the last
time step of state+ (–).

vided by equations (4.1)-(4.3) reflects all variables in the flow about the midplane and

preserves the Navier-Stokes equations with the Boussinesq approximation, continuity

equation and thermal energy equation exactly.

The plots in figure 23 show identical signatures in the volume averaged kinetic

energy and Nusselt number as the transition from state+ to state− takes place.

These results verify that this methodology preserves the continuity in volume average

quantities, such as kinetic energy and total heat flux, during the state transition.

Utilizing this technique to transition between converged states with long term statistical

significance has the potential to improve statistical convergence in DNS studies of

RBC at a significant reduction in computational expense.

To illustrate this point we have included a comparison with the statistical profiles

from experiments of Fernandes [22] and our previous work [60] in figure 24. These

85

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

z/
h

<W(z)>A,t/w*
0 0.5 1
0

0.2

0.4

0.6

0.8

1

z/
h

<σW(z)>A,t/w*

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

z/
h

<Ur(z)>A,t/w*
0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

z/
h

<σU
r
(z)>A,t/w*

Figure 24: Ensemble and horizontally averaged mean (left) and r.m.s. (right) vertical
(top) and radial (bottom) velocity profiles normalized by Deardorff’s velocity scale w∗:
DNS: Ra = 9.6 × 107, averaging domain ΩF where red (−·) is state+, blue (- -) is
state− and black (–) is the average of state+ and state−; Experiment: Ra = 6× 107

(4), Ra = 2× 108 (�), Ra = 1× 109 (◦)

profiles have been normalized by Deardorff’s velocity scale w∗ = (βgQoh)1/3 [18]

where Qo is the kinematic heat flux.

The profiles generated in figure 24 are taken from within the core region of the

6.3 Γ RBC cell with a radius of 0.925h. It should be noted that the experimental

mean vertical velocity profiles decrease in magnitude and the r.m.s vertical velocity

profile’s magnitude increases with Ra. Since the forcing within the cell increases

86

with Ra the characteristic instantaneous velocity increases as the vertical r.m.s profile

indicates. We hypothesize that the reason for the decay of the mean velocity in the

experimental profiles is that the antisymmetric states were more evenly accounted for

in Fernandes ensemble averages with higher Ra [22]. When the original DNS results

(state+ only) are compared against the experiment we see that the r.m.s profiles fall

within ∼ 11% in a pointwise comparison and that the mean profiles are dramatically

over predicted. However, when the state+ and state− are averaged together, the

mean velocity profiles are very close to the expected (zero) value of the infinite-time

average and the r.m.s profiles show an excellent match with the experimental results.

This is truly remarkable when one considers that each instance of Fernades’ ensemble

average (with the total of 300 instances) was also temporally averaged over a greater

time period than our entire simulation. By our estimates it would take us O(108)

CPU hours to recreate Fernandes experiment on our current grid (and the ability to

recreate the desired uncorrelated large-scale patterns with just random initializations

still could not be guaranteed). However, the results presented in this chapter took

O(105) CPU hours to produce. Perhaps the most exciting observation is that the

profiles in figure 24 clearly show that we were able to obtain a net downdraft in the

central region of the cell over the sampling time of our second state. This shows that

we were able to perform a targeted manipulation of instantaneous data to trigger a

new state of the large-scale structures.

4.4 Summary and Conclusions

In summary we have discussed the challenges in obtaining the flow statistics that

would converge to an infinite-time average in numerical simulations of turbulent flows

87

and the bias that can be introduced due to insufficient sampling of flow states. Failure

to recognize insufficient sampling can lead to variance in the statistics of stationary

processes which are due to the correlation of slowly evolving large-scale structures

that can persist well beyond the standard integral time scales. We used our recent

numerical simulation of a 6.3 Γ RBC cell to provide an example of how this can

occur. The results from this simulation were obtained with a high-order method

and were numerically well resolved, as well as yielded longer than average temporal

sampling [60], but the central region of the cylinder showed inhomogeneous nature

due to a large-scale updraft persisting in the cell’s core. The only way to resolve this

issue is to average these results with another state of the flow field with a downdraft

in the center. We then presented a methodology for triggering this state using the

inherent symmetries in the inhomogeneous vertical direction that didn’t alter the net

kinetic or thermal energy in the fully developed turbulent field. The application of

this methodology showed that a net downdraft was indeed created in the region of

interest and that this downdraft remained dominant over at least the same temporal

averaging period that was used to collect the first flow state. This method has the

potential for application to other flows that have multiple, long-lived states and an

exploitable symmetry.

88

Chapter 5

AZIMUTHAL FOURIER DECOMPOSITION

5.1 Introduction

The primary objective of this chapter is to quantify and characterize the properties

of the large-scale structures that have been described in the previous chapters. It has

already been shown that the large-scale structures evolve over very long times [60, 7,

21], and so the computations in this chapter are evaluated over a length of time that

is a factor of five longer than the analysis presented in chapter 3 for a total simulation

time of 3054tf .. This time extension was selected based off the estimate of Emran and

Shumacher [21] that the large-scale structures for large Γ should drift on a timescale

of O(103)tf .

This chapter will utilize Fourier analysis to answer the following research questions.

• How well do the Fourier modes align with the physical structures within the

flow field?

• What are the length scales that describe the multi-roll cell large-scale structure

in this flow?

• How is the flows structure effected by inhomogeneity in the r and z directions?

• How persistent are these structures? What are their time-scales?

• Are there similarities among the other scales that do not directly describe the

large-scale structure, if so what are they?

The chapter is written so that it can be read as an independent work, and is the

foundation for a journal article that will be submitted shortly after the defense process

89

is completed. As such, it provides an outline of the numerics, governing equations and

analysis methodology. This is followed by the data analysis which includes defining

and commenting on the mean flow, spatially and temporally averaged energy spectra,

temporal evolution of the Fourier modes, spatially varying integral time scales for

the total flow field and the individual Fourier modes, as well as the effects of spatial

inhomogeneity on the energy spectra. The chapter concludes with a discussion and

summary of the results as they pertain to the chapter’s research questions.

5.2 Numerics, Nomenclature and Definitions

This work relies heavily on Fourier decomposition to analyze the structure of

turbulent RBC in a domain where multiple roll-cells are present. This section’s

primary purpose is to provide an overview of the domain, normalizing scales, governing

equations and notation used throughout this work. A small primer on Fourier

decomposition is also provided in this section.

5.2.1 Domain and Scaling

The computation domain Ω in this study is a cylinder with height H and diameter

D. Ω can be expressed in cylindrical coordinates that are normalized by H and

symmeterized about the mid-plane (H/2→ z = 0) such that normalized Ω is defined

as

Ω(r, θ, z)→ r ∈ [0,Γ/2], θ ∈ [0, 2π), z ∈ [−1/2, 1/2] (5.1)

where Γ is the aspect ratio (D/H) of the cylinder. Ω is also aligned with the

gravitational vector (g) such that g
|g| = −êz where êz is the unit normal z-direction.

90

Velocity and temporal units are normalized by the ”free-fall” velocity (wf =
√
βg∆TH) and time (tf = H/wf) where β is the coefficient of thermal expansion, g is

the gravitational constant, and ∆T is the temperature difference between the top and

bottom plates of the convection cell. ∆T is also used to normalize the temperature

field.

Utilizing the outlined scales the non-dimensional form of the Boussinesq equations

for RBC can be expressed as:

∇ · u = 0 (5.2)

ut + (u · ∇)u = −∇p+

√
Pr

Ra
∇2u + ϑêz (5.3)

ϑ+ (u · ∇)ξ =
1√
RaPr

∇2ϑ (5.4)

where u, p and ϑ are the dimensionless velocity, pressure and temperature. The

Rayleigh (Ra) and Prandtl (Pr) numbers in equations 5.3 and 5.4 are defined as:

Ra =
βg∆Th3

αν
(5.5)

Pr =
ν

α
(5.6)

where g, α and ν are the gravitational constant, thermal diffusivity and kinematic

viscosity respectively.

In this study Γ = 6.3, Ra = 9.6 × 107, Pr = 6.7 and the boundary conditions

are no-slip on all surfaces, constant temperature on the top and bottom plates, and

adiabatic side-walls. Additionally, the individual components of the velocity field are

expressed in their cylindrical components such that ui = {ur, uθ, uz}.

91

5.2.2 General Numerics

The data in this study is produced from a direct numerical simulation (DNS) using

the open source spectral element code Nek5000. Nek5000 is an extensivly validated

research code that has been used to publish hundreds of scientific papers, and details

regarding the code can be found at [24]. Additional details regarding resolution,

convergence, and comparison with experiments for the specific computations in this

work can be found in the prior work ([60]).

The dataset in this work used the results from [60] as initial conditions and contains

3054tf of temporal data sampled every 3tf . Each snapshot is projected onto cylindrical

coordinates using spectral interpolation routines native to Nek5000, and the velocity

components are transformed from cartesian to cylindrical. This was previously done

on a smaller scale ([60]), but in this work it has been extended to the entire domain.

Cylindrical coordinates is the logical choice for analyzing the dataset and facilitates

operations along the domain’s periodic, azimuthal direction.

The DNS snapshots are sampled with [160,64,2048] points in r, θ and z respectively

to generate the cylindrical grids used for analysis. Non-uniform, Gauss-Legendre

(GL) quadrature is used to sample in the r and z directions, but the θ direction uses

equispaced sampling points to facilitate Fourier transforms. GL quadrature does

not include the end points and is defined on the standard interval x ∈ (−1, 1). GL

quadrature is selected to facilitate high accuracy numerical integration and removes

sampling to the along the walls and of cell where the information holds little value.

The boundaries in the z direction are defined with Dirichlet boundary conditions, and

so sampling on them for post-processing purposes is trivial. In the r direction points

along the central axis (r = 0) are at a spatial singularity in the cylindrical coordinates

92

representation and will provide no additional data when Fourier transforms in θ and

integration over the r-z plane are applied. The points along r = Γ/2 have Neumann

boundary conditions in the temperature field but virtually no information is lost since

gradient at the wall is zero (adiabatic) and the GL quadrature samples very close to

the boundaries.

5.2.2.1 Fourier Decomposition

In this work Fourier decomposition in the azimuthal direction is heavily relied

on to gain insight into the structure of the flow field. Fourier modes are an ideal

choice because the azimuthal direction is analytically periodic, and Fourier modes

are analytically defined since the flow is incompressible and there for smooth and

continuous. These modes are orthogonal and are an optimal basis for decomposing a

continuous, smooth periodic signal. Several studies documented in [9] have also shown

that applying Fourier analysis to periodic or statistically homogeneous directions will

significantly improve the convergence of POD.

Fourier decomposition provides additional benefits in this study that extend beyond

the mathematical significance of the modes. For example, azimuthal motions for RBC

in cylinders tend to evolve on extremely long time scales, and the azimuthal velocity

signals are relatively weak ([12], [51]). Performing an analytical decomposition such

as Fourier analysis allows the azimuthal evolution of the flow to be studied in a well

understood format.

Throughout this work Fourier coefficients are indicated by the û accent, the Fourier

operator is indicated by F [u] and the Fourier mode numbers are referred to by integer

their frequency over the interval [0 : 2π) k. All averages will be noted by the brackets

93

<> and subscripts will be listed by the order in which the averaging operations

were applied. For instance, < uz(z, t) >θ,r is the time varying vertical profile of the

vertical velocity field after averaging in the azimuthal and radial directions. Additional

subscripts that indicate averaging operators are: V for volume averaged, A for area

averaged, and E for ensemble averaged.

5.3 The Mean Field

The primary interest of this study is to investigate the properties of structures

ranging from the largest scales to the integral scales of the flow field. These structures

all have a finite life span and therefore reside in the fluctuating field with respect

to Reynolds decomposition. However, a fluctuation is a relative quantity that must

be defined with respect to some mean value. Therefore it is essential to define the

mean field and the averaging operators that create the mean field about which the

fluctuations occur.

In this work the mean field will be defined by <>θ,t. The azimuthal average is

extracted via Fourier decomposition by the zeroth order mode, and so the mean flow

in this work is defined as:

< ui(r, z) >θ,t=

 < ûi(r, k, z) >t when k = 0

0 when |k| > 0
(5.7)

where the index k indicates the mode number. Conversely this also means that the

fluctuating field contains all wave numbers except for zero, and ûi(r, k, z, t)|k=0− <

ûi(r, k, z) >t |k=0.

Since the flow is statistically stationary in time (see [60]) and periodic in θ these

operators represent the best estimate of the true Reynolds average or infinite time-

94

(a)

(b)

Figure 25: Azimuthal and temporally averaged mean fields. The color scheme in (a)
corresponds to < ϑ >θ,t>and in (b) it corresponds to < uθ >θ,t>

while the vector field in both plots is of the two dimensional vector of
{< ur >θ,t, < uz >θ,t}

average for this flow field. With an infinite number of realizations or an infinite amount

of time it is expected that the mean will converge to an axisymmetric representation

due to the symmetry of the domain. While the total temporal sampling period in this

study is not sufficient to confidently approach the true Reynolds average field, the

use of these averaging operators represents a good approximation. The mean field is

displayed in figure 25.

The mean field in figure 25 displays several interesting characteristics. Starting at

the sidewalls (r = Γ/2), two counter rotating roll cells can be observed with stagnation

95

point at z = 0 where the two roll cells meet. Additionally, a thermal boundary layer

can be seen along the adiabatic sidewalls. These roll cells and the accompanying

boundary layers are inline with the vertical antisymmetry of the convection cell, and

thus are most likely present in the true Reynolds averaged flow field. Conversely,

the dominant up-draft in the center of the cell does not conform to the inherent

symmetries of the RBC cell. The boundary conditions make it equally likely that a

down-draft could be present over this region, and so the structures that are described

in this study should be interpreted as a subset of the true Reynolds decomposition

where an updraft is present in the central region of the cell. The mean azimuthal

velocity component shows that a preferential direction for rotation or drift is not

consistently present across the entire time series for this data set.

5.4 Spatial Description of the Large-Scale Structure

In this section the largest scales of the flow field are investigated. These scales

are of interest because they tend to contain the majority of the energy in the flow

field, persist for a long periods of time, and are responsible for a large portion of the

inhomogeneity. Figure 26 shows the volume and time averaged energy spectra for the

various flow variables. Volume and time averaging were applied to energy coefficients

to smooth out transients so the most dominant structures can be seen.

The spectra in figure 26 indicate that the k = 2 Fourier mode is the single most

dominant mode over the range of the simulation. The peak is very pronounced in the

temperature and azimuthal velocity fields, but more subtle in the radial and vertical

velocity components.

While the spectra in figure 26 indicates the dominant structure over the life-span

96

100 101 102 103 104

k

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

<
|

ˆ
u
(r
,k
,z
,t

)|
2
>

t,
V

ûr

ûθ

ûz

ϑ̂

Figure 26: Volume and time averaged energy spectra (t ∈ [0 : 3054tf]).

of the simulation, it is also possible that the structure evolves throughout the course of

the simulation. In the authors’ previous work ([60]) and the work of [7] no significant

evolution of the large-scale structures were observed. However, in the more recent

work of [21] it was predicted that the large-scale structures will evolve on time scales of

O(103tf), and both [7] and [60] only conducted simulations for time scales of O(102tf).

In the present work the simulation time has been extended to the order where temporal

evolution of the large-scale structures should occur.

Figure 27 contains the energy spectra for the temporally filtered temperature

field. Temporal filtering removes the majority of the small-scale structures leaving the

highly correlated large-scale structures and it is a good technique for observing the

slowly evolving large-scale dynamics. The temperature field spectrum is selected for

comparison because it contains the most distinguished peak in figure 26. The period

for the temporal filter was selected to be 600tf which is inline with the time scale of

the prior works where no major evolution was observed ([60, 7, 21]). A visualization

97

100 101 102 103 104

k

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

<
|F

[<
ϑ
(r
,k
,z
,t

)
>

t]
|2
>

V

[0, 600)

[600, 1200)

[1200, 1800)

[1800, 2400)

[2400, 3000)

Figure 27: Volume averaged energy spectra for the temporally filtered temperature
field. Filtering is performed by applying a running time average with a period of
600tf . The legend entries refer to the averaging period of each instance.

of the temporally filtered temperature fields is provided in figure 28, and the instances

in figure 28 correspond to the energy spectra in figure 27.

Figure 27 shows that over the first 600tf k = 3 is the dominant mode, but that the

dominant mode transitions to the k = 2 over the next 600tf . The first instance of the

filtered field also shows a larger distribution of energy in the other low order modes,

but by k = 12 the energy content is about the same for all instances of the filtered

field. The second instance of the filtered field shows higher energy content in modes

k = 1 and 3, but by the third instances the energy has concentrated itself in k = 2.

One possible interpretation of this transition is that the k = 3 dominant structure is

less stable than the structure corresponding to k = 2 because the turbulent thermal

energy is distributed among a larger number of low order modes.

Looking at the individual modes can help explain their contribution to the over

all flow field. The first few low order modes and their cumulative summations

98

(a) (b) (c)

(d) (e)

Figure 28: Temperature at the mid-plane of the cell after temporally filtering over
a period of 600tf with a running time average. The time ranges covered by each
subplot are: a) [0,600), b) [600,1200), c) [1200,1800), d) [1800,2400), e) [2400,3000).
Temperature is scaled from [−0.05 : 0.05] in all subplots.

corresponding to temperature fields in figure 28(a) and figure 28(d) are provided in

figure 29 and 30.

The modes in figure 29 can be interpreted with the following rolls: k = 0 establishes

a central, warm column, k = 1 and 2 shift the central column and bias the structure

along the edge of the convection cell and k = 3 finalizes the hub-and-spoke like

structure that was outlined in [60]. A qualitative comparison of figure 29(h) and

figure 28(a) show that the total structure is well described by the first 4 Fourier modes.

However, examination of the modes displayed in figure 30 show that the structure

for this case is almost fully described by k = 2. This convergence of energy and

structure toward a single mode seems to indicate a stabiliazation for the system as a

99

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 29: Individual Fourier modes for the temporally filtered temperature field that
has been averaged over the interval t ∈ [0, 600): (a)-(d) corresponding to k = 0 to 3
respectively. Summation of Fourier modes k = 0 (e), k = 0 : 1 (f), k = 0 : 2 (g) and
k = 0 : 3 (h). Temperature is scaled from [−0.05 : 0.05] in all subplots and all plots
are at the mid-plane.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 30: Individual Fourier modes for the temporally filtered temperature field that
has been averaged over the interval t ∈ [2400, 3000): (a)-(d) corresponding to k = 0
to 3 respectively. Summation of Fourier modes k = 0 (e), k = 0 : 1 (f), k = 0 : 2 (g)
and k = 0 : 3 (h). Temperature is scaled from [−0.05 : 0.05] in all subplots and all
plots are at the mid-plane.

100

whole. This presents a reasonable argument for k = 2 being the long term structure

of the flow field at this Γ, Ra and Pr, but because the k = 3 structure remained

coherent for approximately 1/5th the total simulation time, nothing definitive can

be determined. It is still possible that the system could undergo another transition

and modulate back to a k = 3 dominated structure. However, it is worth noting the

length of time in which this transient evolved for future studies of RBC in Γ where

multi-roll cell structures persist.

5.5 Temporal Description of the Large-Scale Structure

5.5.1 Temporal Evolution of the Flow Field

The previous section relied on the smoothing properties of time averaging to

investigate the spatial structure of the large-scale structures in the flow field. In this

section the temporal evolution of a few select Fourier modes will be investigated in

detail to shed further light on the temporal evolution of the large-scale structures.

The investigation is performed by plotting the area integrated Fourier coefficients for

a given mode on the complex plain (see eq. 5.8).

û(k, t) =

∫
z

∫
r

F [u(r, θ, z, t)]r∂r∂z (5.8)

Area integration removes the localized spatial variations of the mode and allows the

temporal evolution to be investigated from a macro perspective. Even though the area

integrated Fourier coefficients only depend on time, they are still complex variables.

The phase and amplitude of the volume integrated coefficient can simultaneously

change. Plotting on the complex plane allows an intuitive way to view the changes in

amplitude and phase for a given wave number.

101

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06
Re

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

Im

ûr

ûz

ϑ̂

(a)

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06
Re

0.06

0.04

0.02

0.00

0.02

0.04

Im

ûr

ûz

ϑ̂

(b)

0 500 1000 1500 2000 2500 3000 3500
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

|û
|

ϑ̂

0 500 1000 1500 2000 2500 3000 3500
t

4
3
2
1
0
1
2
3
4

Φ

(c)

0 500 1000 1500 2000 2500 3000 3500
0.00

0.01

0.02

0.03

0.04

0.05

|û
|

ϑ̂

0 500 1000 1500 2000 2500 3000 3500
t

4
3
2
1
0
1
2
3
4

Φ

(d)

Figure 31: Temporal evolution of the area integrated Fourier coefficients plotted on
the complex plane for k = 2 (a) and k = 3 (b). The temperature field’s area integrated
Fourier coefficients are also plotted in terms of phase (Φ) and amplitude (| · |) for
k = 2 and k = 3 in subplots (c) and (d) respectively.

Figure 31(a) and (b) shows the evolution of modes k = 2 and k = 3 for ûr, ûz

and ϑ̂. ûθ was not included in these plots because it has a behavior that is very

similar to ûr. It is probably difficult for the reader to tell exactly how these plots are

behaving in time since the data is still somewhat chaotic. To assist in comprehension

a supplemental narrative is provided for both plots from the perspective of ϑ̂.

ϑ̂ in figure 31(a) begins near the origin and as time progresses it tracks up along the

complex plane and then begins to drift into quadrant 2 of the real-complex plane. It

moves rather chaotically but maintains a somewhat constant radius as it drifts in the

counter clock-wise direction. ϑ̂ in figure 31b) begins in quadrant 3 of the real-complex

plane. As time progresses it moves its way to the origin and then oscillates randomly

102

0.04 0.02 0.00 0.02
Re

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

Im

ûr

ûz

ϑ̂

(a)

0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.04 0.05
Re

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

Im

ûr

ûz

ϑ̂

(b)

0.03 0.02 0.01 0.00 0.01 0.02
Re

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Im

ûr

ûz

ϑ̂

(c)

0.0015 0.0010 0.0005 0.0000 0.0005 0.0010
Re

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

Im

ûr

ûz

ϑ̂

(d)

Figure 32: Temporal evolution of the area integrated Fourier coefficients for k = 4 (a),
k = 5 (b), k = 10 (c) and k = 100 (d) plotted on the complex plane.

about the origin. When the mode is the dominant mode in the large-scale structure

ϑ̂ drifts away from the origin, and when it loses its dominance it becomes centered

around the origin with an amplitude scattered between zero and a maximum radius.

This is further illustrated in figure 31(c) and (d) where ϑ̂ is plotted in terms of its

amplitude (|û|) and phase (Φ) for the k = 2 and k = 3 modes respectively.

Further inspection of the subplots in figure 31 shows some similarities between the

two modes represented by each subplot. In both cases ur is centered about the origin

and is relatively evenly dispersed out to a given radius, and ûz follows the evolution of

ϑ̂ albeit somewhat more dispersed. The complex plain evolution of several additional

modes is plotted in figure 32.

All the modes in figure 32 show that the area integrated Fourier coefficients for all

103

the other modes display the same sort of scatter as ûr in figure 31. Similar scattering

is also seen for ûz and ϑ̂ in figure 31(b) when the k = 3 is not the dominant mode. The

scattering seen in non-dominant modes indicates that these modes behave as random

processes from a global perspective. The dominant modes (k = 2 and k = 3) show

additional structure that is not seen in the other cases implying a more deterministic

nature exists for these modes.

Perhaps one of the most interesting things in the dominant modes is that a net

rotation at a relatively fixed radius in the k = 2 mode is observed in figure 31a).

Careful inspection of figure 28 also shows that a very slow rotation is starting to

occur in the large-scale structure. However, it is hard to discern by just looking at the

structure because the individual lobes of the large-scale structure modulate and shift

in size. Figure 31a) gives a much clearer indication rotation is indeed occurring in the

large-scale structure of the flow. However, the direction and magnitude of rotation in

figure 31a) is different from that seen in figure 28.

5.5.2 Integral Time Scale

Now that temporal evolution of the large-scale structure has been verified, the next

logical question to ask is: what are the time scales, or coherence times? An important

quantity that can be used to measure the coherence times within the flow field is the

integral time scale (T). T is a metric for determining the temporal correlation of the

flow field and the common metric for determining the appropriate spacing for two

statistically independent instances for a stationary turbulent flow such as RBC is 2T .

T is defined in terms of the auto-correlation (Rii) which is defined as

Rii(Ω, τ) =< Vi(Ω, t+ τ)Vi(Ω, t) > (5.9)

104

where V is a vector containing variables of interest and τ is the temporal offset

between the two instances of the flow field, or snapshots. V is often the turbulent

velocity field (V = {u′r, u′θ, u′z}) where the prime indicates the fluctuating field. An

autocorrelation based of this particular vector will determine a turbulent kinetic

energy based correlation. In the case of RBC, another quantity of interest is the total

turbulent energy, and in this case V is defined as V = {u′r, u′θ, u′z, ϑ′}. Additionally,

the averaging operator in equation 5.9 should be the same averaging operator that is

used to define the mean field.

The classical definition of T , and the one used in this work, can be expressed in

terms of Rii as

T (Ω) =

∫ ∞
0

Rii(Ω, τ)

Rii(Ω, 0)
dτ (5.10)

In this work the interest isn’t just in the global time-scales, but also the time

scales of the Fourier modes since the structures can be expressed in terms of Fourier

decomposition. As such a definition of Rii can be provided in terms of the Fourier

coefficients as follows

Rii(r, θ, z, τ) =<

∫ ∞
−∞

∫ ∞
−∞

V̂i(r, k, z, t+ τ)V̂i(r, k
′, z, t)ej(k+k′)θ∂k∂k′ > (5.11)

where j =
√
−1. Equation 5.11 contains a convolution integral over the Fourier spectra

of the two different snapshots. However, the expensive convolution computation can

be avoided since the averaging operator includes the azimuthal averaging operator.

Only the terms where the wave numbers sum to zero are included in the convolution

integral since the exponent of the Fourier basis must equal zero to contribute to the

azimuthal mean. Using these properties equation 5.11 can be expressed as

Rii(r, z, τ) =<

∫ ∞
−∞

∫ ∞
−∞

V̂i(r, k, z, t+ τ)V̂i(r, k
′, z, t)δk,−k′∂k∂k

′ >t (5.12)

105

Since all the flow variables are real signals the negative Fourier mode −k can be

expressed as the complex conjugate of the the positive Fourier mode k. Therefore

the dirac-delta in equation 5.12 shows that all wave numbers will contribute to the

correlation, but only when they are multiplied by their complex conjugates. This

also ensures that the correlation will be comprised entirely of real numbers which is

required since this flow fields are defined in real space. The discrete representation of

equation 5.12 is

Rii(r, z, τ) =<

Nθ/2−1∑
k=0

<[akV̂i(r, k, z, t+ τ)V̂ ∗i (r, k, z, t)] >t (5.13)

where Nθ is the sampling rate for the Fourier transform in the θ direction, ∗ indicates

the complex conjugate, and ak = 1 if k = 0 and ak = 2 other wise. <[] is an

operator indicating that the real portion of the coefficient product. This operator

along with the coefficient ak are employed to use symmetry in the Fourier spectrum

to reduce the calculation from two sums ranging from [−Nθ/2− 1 : Nθ/2− 1] to one

sum over the range [0 : Nθ/2 − 1]. Technically the wave numbers are defined from

k ∈ [−Nθ/2 : Nθ/2 − 1] for the discrete Fourier transform, but the odd-ball wave

number has been left out of the computations in this work because of it’s incredibly

small value (see figure 26). Rii(r, z, τ) can also be interpreted as a weighted sum

of the individual wave number correlations by defining a wave number correlation

Rii(r, k, z, τ). Rii(r, k, z, τ) is defined in equation 5.14 by interchanging the linear

summation and temporal averaging operators in equation 5.13

Rii(r, k, z, τ) =< V̂i(r, k, z, t+ τ)V̂ ∗i (r, k, z, t) >t (5.14)

Figure 33(a),(b) and (c) shows T for the entire field when v is defined as the

turbulent kinetic energy, the turbulent thermal energy and the total turbulent energy

106

0.0 0.5 1.0 1.5 2.0 2.5 3.0

r

0.4

0.2

0.0

0.2

0.4

z

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

r

0.4

0.2

0.0

0.2

0.4
z

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

r

0.4

0.2

0.0

0.2

0.4

z

0 50 100 150 200 250 300 350 400 450 500
T

(c)

Figure 33: Spatially varying integral time scale based on the kinetic energy (a),
temperature fluctuations (b) and total turbulent energy (c).

respectively. The r-z plots of T also give insight into the structure of the flow field by

indicating which regions of the flow field have longer correlation times, and also by

how much the correlation times vary.

Figure 33a) and figure 33(b) show very different behavior between the correlation

of the kinetic and turbulent thermal energy fields. The two fields have very little

overlap between regions with very long correlation times. The kinetic energy field

has very long boundary layer correlation times, and the turbulent thermal energy

field has very long bulk correlation times. The differing characteristics of the thermal

107

Mode (k) Turb. Kinetic Energy Turb. Thermal Energy Total Turb. Energy
All 211 348 225
0 25 521 258
1 17.5 90.1 19.9
2 741 1050 786
3 181 226 181
4 47.1 34.4 47.0
5 17.2 11.9 16.4
6 47.1 46.9 45.6
7 12.7 9.34 12.2
8 7.61 6.47 7.83
9 11.7 7.30 11.3
10 11.9 6.54 11.4
11 7.53 5.04 7.31
12 5.20 4.41 5.22
13 3.72 3.21 3.69

Table 3: Area averaged integral time scale for the total field and a selection of Fourier
modes in terms of tf

and kinetic energy fields can be explained by their different properties. Virtually no

temperature fluctuations occur within the thermal boundary layers and so it makes

sense that there would be very little correlation in these regions. Conversely, the

boundary layers along the top and bottom plates are are very highly correlated.

The regions where thermal and kinetic energy field fluctuations persist is inline

with the location of the large-scale structures observed in figure 28. The turbulent

thermal energy field in figure 33b) shows a large T in the region near the sidewalls

where the up- and down-drafts occur and a fainter peak in the core region where

the central up-draft resided when mode k = 3 dominated the large-scale structure.

Since there has only been a small shift in the phase of the large-scale structures (see

figure 31) these regions remain highly correlated.

The effect of the dominant Fourier modes is further illustrated in table 3 and figure 34

108

100 101 102 103 104

K+1

100

101

102

103

104

<
T
>

r,
z

{
ûi, ϑ̂

}{
ûi
}{

ϑ̂
}

Figure 34: Modal integral time scales for each of the mode number integrated over the
domain. Modes are plotted vs k + 1 to make the k = 0 mode visible on the log-scale
plot.

where < T >A is shown per mode number. The differences seen in table 3 and

figure 34 show that thermal and kinetic energy based correlations differ in global

magnitude as well as spatial structure.

Table 3 and figure 34 show that the turbulent thermal energy vector has a much

higher correlation time for modes k ∈ [0 : 3] than the kinetic energy field, but that

the kinetic energy field has a larger correlation time for modes k ∈ [4 : 12]. Figure 34

also shows that T decays to a value of approximately 3tf for all three energy vectors

after the first 12 Fourier modes. This is the minimum limit that can be obtained with

this data set since the snapshots were sampled 3tf apart and much shorter T ’s are

probable for the higher wave numbers.

In general, the total turbulent energy based T biases toward the kinetic energy

based T since the kinetic energy vector comprises 3 of the 4 components in the

total turbulent energy. However, the total turbulent energy vector still accounts for

109

contributions from the kinetic and turbulent thermal energy vectors and it will be

used as the metric for determining T for the rest of this study.

5.6 Effects of the Inhomogeneous Spatial Directions

In the previous sections the effects of spatial inhomogeneity have been seen and

lightly discussed. The large-scale structures that are so dominant in this flow are a

result of spatial inhomogeneity and so any discussion of the large-scale structure is a

discussion on inhomogeneity. However, in this section the effects will be analyzed more

carefully by looking at the r-z variations in the autocorrelation, T and the Fourier

spectra.

5.6.1 Spatial Inhomogeneity’s Effect on Time Scales

In the previous sections T ’s tie to the large-scale structures in the flow field is

discussed for various vectors (kinetic energy, turbulent thermal energy and total

turbulent energy). The total turbulent energy based T in figure 33c) varies in both

the r and z directions. To gain further insights into the extent of the variability the

normalized autocorrelation is plotted vs snapshot spacing in figure 35 at a selection of

points in the r-z plane.

Recall that the definition of T in this work is an integral of the normalized of the

autocorrelation function (see equation 5.10) and so T (r, z) is equal to the area under

the curve for each of the plots in figure 35(a). Figure 35(a) shows that the two probes

in the highly correlated viscous boundary layer appear to be monotonically decaying,

but have remained correlated over the entire data set.

110

0 200 400 600 800 1000 1200 1400 1600
τ

0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
ii

r=0.128 z=-0.036

r=1.284 z=-0.036

r=1.896 z=0.343

r=3.034 z=0.343

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

r

0.4

0.2

0.0

0.2

0.4

z x x

x x

0 50 100 150 200 250 300 350 400 450 500
T

(b)

Figure 35: Temporal correlation at select points throughout the domain. Subplot (a)
shows the correlation, and subplot (b) marks where the plotted correlations are with
respect T (r, z).

The other two probes are taken at the mid-plane. The probe at r = 1.284 is at a

local minimum in T and shows sufficient decay in Rii to indicate the values become

uncorrelated during this computation. The other probe at r = 0.128 is near a local

maxima in T . It shows signs of a long-lived transient as the correlation decays to zero

with a separation time of approximately 800tf , but then begins to grow again. These

results show a wide variation in behavior and convergence of T across the r-z plane

due to the different the different physics that occur in the inhomogeneous directions.

Individual Fourier modes contain a different range of length scales and thus

111

0.0 0.5 1.0 1.5 2.0 2.5 3.0

r

0.4

0.2

0.0

0.2

0.4

z

0 5 10 15 20 25 30 35 40 45 50
T

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

r

0.4

0.2

0.0

0.2

0.4

z

0 100 200 300 400 500 600 700 800 900 1000
T

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

r

0.4

0.2

0.0

0.2

0.4

z

0 20 40 60 80 100 120 140 160 180 200
T

(c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

r

0.4

0.2

0.0

0.2

0.4

z

0 5 10 15 20 25 30 35 40 45 50
T

(d)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

r

0.4

0.2

0.0

0.2

0.4

z

0 5 10 15 20 25 30 35 40 45 50
T

(e)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

r

0.4

0.2

0.0

0.2

0.4

z

0 5 10 15 20 25 30 35 40 45 50
T

(f)

Figure 36: Spatially varying integral time scale based on total turbulent energy for
modes k = 1 (a), 2 (b), 3 (c) ,4 (d), 10 (e) and 20 (d)

contribute to different portions of energy across the r-z plane. Additional insight into

the spatial variance of T (r, z) can be found by investigating the contribution from

the various Fourier modes. Recall that Rii(r, z, τ) can be defined as a summation of

Rii(r, k, z, τ) over all k’s. A T (r, k, z) field can be calculated for each Fourier mode

giving an indication as to how the individual modes contribute in the total correlation.

Plots of the total turbulent energy based T (r, k, z) for a selection of Fourier modes is

provided in figure 36.

One observation of the subplots in figure 36 is that the globally dominant, highly

correlated modes (subplot’s b and c) show a high level of symmetry about the mid-

plane, but the other modes do not. Subplots a,d,e and f also show much smaller peak

112

values for T . The lack of spatial symmetry and smaller range of T indicate that these

modes describe rare events in the flow field who have life spans much less that the

length of the simulation, but much longer than the sampling rate of 3tf .

5.6.2 Spatial Inhomogeneity’s Effect on Length Scales

In this section the spatial inhomogeneity’s effects on length scales will be investi-

gated by evaluating the time-averaged energy spectra at different r-z locations. Up

to this point in the paper all data has been presented with respect to the azimuthal

Fourier modes. The Fourier modes are identified by the mode number k which is the

azimuthal frequency, and the energy from the Fourier modes at a given r-z location is

essentially the integral with respect to θ along an azimuthal ring with constant radius.

Therefore examining Fourier coefficients at different radii corresponds to different

physical length scales and energy densities per unit length. A more consistent way to

compare the flow structure at various locations in the flow field is to normalize the

energy spectra and frequency with respect to a geometric length scale λH = 2πr/k.

This is done by premultiplying the energy spectra with the radial location and plotting

against λH ’s corresponding frequency 1/λH . A sampling of the spectra at 7 different

locations is provided in figure 37. These locations are at various points within the

boundary layers (bottom plate and side walls) and bulk regions of the flow field to

observe how the energy distribution changes in the regions where different physical

phenomena dominate the flow field. z = −0.45 and r = 3.1 are within the viscous

boundary layers for the bottom and and side walls respectively while z = −0.4 is just

out side the viscous boundary layer in the vertical direction.

113

10-2 10-1 100 101 102 103 104

k/(2πr)

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

<
r|
ϑ̂
|2
>

t

 r=0.1

 r=1.0

 r=2.0

 r=3.1

(a)

10-2 10-1 100 101 102

k/(2πr)

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

<
r|
ϑ̂
|2
>

t

 z=-0.45

 z=-0.4

 z=-0.35

 z=0.0

(b)

10-2 10-1 100 101 102 103 104

k/(2πr)

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

<
r|
û
r
|2
>

t

 r=0.1

 r=1.0

 r=2.0

 r=3.1

(c)

10-2 10-1 100 101 102

k/(2πr)

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

<
r|
û
r
|2
>

t

 z=-0.45

 z=-0.4

 z=-0.35

 z=0.0

(d)

10-2 10-1 100 101 102 103 104

k/(2πr)

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

<
r|
û
θ
|2
>

t

 r=0.1

 r=1.0

 r=2.0

 r=3.1

(e)

10-2 10-1 100 101 102

k/(2πr)

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

<
r|
û
θ
|2
>

t

 z=-0.45

 z=-0.4

 z=-0.35

 z=0.0

(f)

10-2 10-1 100 101 102 103 104

k/(2πr)

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

<
r|
û
z
|2
>

t

 r=0.1

 r=1.0

 r=2.0

 r=3.1

(g)

10-2 10-1 100 101 102

k/(2πr)

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

<
r|
û
z
|2
>

t

 z=-0.45

 z=-0.4

 z=-0.35

 z=0.0

(h)

Figure 37: Time averaged energy spectra for each of the components in the total
turbulent energy vector at various locations in the flow field. Subplots (a) and (b) are
for the temperature field, (c) and (d) are for the radial velocity component, (e) and
(f) are for the azimuthal velocity component and (g) and (h) are the vertical velocity
component. Subplots on the left (a,c,d and e) are at a fixed height of z = −0.4, and
plots on the right (b,d,f and g) are at a fixed radius r = 2.0.

114

5.6.2.1 Variations in Radial Location

Sampling at various radial locations with a fixed height shows excellent collapse

across virtually all length scales for the spectra associated with ϑ, uθ and uz (see

figure 37(a),(c),(e) and (h)). ϑ and uθ show a poorer collapse for length scales that

are greater than Γ (λH > Γ), and this behavior is also seen in the ur plot. In fact, the

collapse in ur is also quite good when it is away from the geometric singularity r = 0

and the side wall. The lack of collapse in these two regions is not unexpected since ur

analytically must decay in these regions. It should also be noted that the same scaling

behavior with respect to shifts in the r direction is also observed at z = −0.45,−0.35

and 0.0 as well.

Failure to collapse in the larger length scales can be attributed to the dominance of

low order Fourier modes that have been shown to describe the flow field’s large-scale

structure. Fourier mode k = 2 contains a large amount of energy throughout the

entire domain it will disrupt the collapse of the spectra since it affects a different

length scale at each radii. In fact, if the spectra were to collapse across all length

scales for all variables then it would be horizontally homogenous as in the canonical

form of RBC with infinite Γ. In a sense the side walls of the convection cell act as

a high pass filter because they limit the size of the largest length scales that can be

observed in the flow. The fact that the k = 2 mode dominants the energy spectra

at multiple length scales indicates that the underlying structure has a modal nature,

and that it is the principle cause for radial inhomogeneity. This is most likely due

to the confining, geometric effects of the cylinder. As Γ is increased it is expected

that the various lower frequencies peaks in figure 37 will smooth out because more

energy can be transported to larger length scales. This will allow the patterns to form

115

at their natural length scales, and become free from the geometric effects of the side

walls. This presents itself as a metric to answer one of the basic questions regarding

turbulent RBC: ”how wide must Γ be to approximate the infinite Γ case?” The answer

for RBC in a cylindrical domain being: ”when the azimuthal spectra across all length

scales collapses with respect to shifts in r.”

5.6.2.2 Variations in Vertical Location

When the spectra is sampled over various heights at a fixed radius the behavior

is virtually opposite to the fixed heigh case (see figure 37(b),(d),(f) and (g)). In the

previous case ϑ and uz’s spectra showed the best collapse, but when the shift is vertical

their collapse is considerably worse than ur and uθ. Additionally, ur and uθ show the

best collapse at the lowest frequencies, and a poorer collapse at higher frequencies. In

fact, divergence at high frequencies is seen for all three velocity components and the

energy content decreases as the vertical position approaches the mid-plane. This is

because the dissipative scales are removing more energy in the near wall region.

The spectrum for ϑ shows a strong collapse at the frequency associated with the

k = 2 Fourier mode but a decay with increasing height for all other frequencies. The

decay in the other frequencies is most likely due to the fact that the temperature

fluctuations get increasingly weaker as they approach the mid-plane due to diffusion

and turbulent mixing. The similar shape at each height indicates that the structure is

not changing dramatically, but the energy content is. Conceptually this behavior is in

line with a diffusion dominated process.

The spectra for uz in figure 37g) shows some special characteristics that deserve a

discussion of their own. Perhaps the most notable is that the spectra at the mid-plane

116

transitions from the smallest energy at high frequencies to the largest energy at

lower frequencies. This inflection point occurs at a frequency of approximately 8.5

corresponding to a physical length scale of 0.118H. Beyond the point of inflection

there is a region where the spectra collapse for the vertical positions that are outside

the viscous boundary layer. This region of collapse starts to break apart at a frequency

of 2 corresponding to a length scale of 0.5H and the energy in frequencies less than 2

are the energy increases with vertical position.

5.7 Discussion and Conclusions

One of the primary questions of this work is how well Fourier modes represent the

underlying physics of turbulent RBC. In a cylindrical domain Fourier decomposition

can be applied in the azimuthal direction because it is analytically periodic. It has

been shown that the large-scale structures in this study are very well described by a

small selection of low-order Fourier modes across the entire domain. The azimuthal

Fourier modes represent a different physical length scale at different radii, and this

shows that the large-scale structures are strongly related to the modes because they

are not restricted to one length-scale. The fact that the large-scale structure has an

almost perfect alignment with the k = 2 Fourier mode as the simulation progresses is

particularly telling.

As the Fourier wave number increases the relationship to the physical structures

begins to decay. Evidence of this can be seen by examining the energy spectra in

terms of physical length scale instead of mode number. It has been shown that the

spectra collapses with respect to shifts in r across virtually every length scale below a

threshold value that is approximately equal to Γ. This indicates a similarity among

117

the smaller length scales that is not dependent upon the mode number, and is less

influenced by the cylindrical geometry. Based off these findings it can be concluded

that the low-order, azimuthal Fourier modes are well aligned with the physics in

the system, but the high-order modes are not. It can also be concluded that the

large-scale structures have a large range of length scales associated with them and

that are imposed by the nature of the cylindrical geometry.

Additional supporting evidence for the alignment of the large-scale structures

and the low order Fourier modes is found in the area integrated Fourier coefficients.

Examining these coefficients clearly indicates when a mode is responsible for the

majority of the large-scale structure, and even provides insight into it’s temporal

behavior. For example, the transition between k = 3 and k = 2 dominate structures

is clearly identifiable by the transition in the area integrated coefficients from having

a constant magnitude and measurable phase, to a random phase and magnitude (or

vice-versa). Also, the rotation that begins when the k = 2 mode becomes dominant is

clearly depicted by the phase of the area integrated coefficients.

Additional insights into the effects of spatial inhomogeneity are identified by

representing the energy spectra with respect to the physical length scales. The

collapse of all variables with respect to shifts in r is across a much larger range of

length scales than is necessary to enforce the modeling assumptions of for filtering

methodologies such as large-eddy simulation. This indicates a connection between

the horizontally homogeneous infinite Γ case and the inhomogeneous, horizontally

confined case in this study. The small range of large length-scales that do not collapse

indicates that the inhomogeneity is weak, and that as Γ increases the energy content

will eventually saturate for large length-scales. It is predicted that the Γ for which

this occurs will be sufficient to represent the infinite Γ case.

118

Vertical shifts for horizontal velocity components show a collapse for the energy

spectra at small length-scales and a different scaling at large scales that is inline

with the concept of a shear dominated boundary layer. The temperature and vertical

velocity component spectrums show a behavior more inline with the conceptualization

of plume generation through buoyancy. The temperature spectra decays as a function

of height for all length-scales except the one that matches the dominant Fourier mode.

The conceptual interpretation of this spectra is that as temperature transport is a

diffusion dominated process across the layer depth except in the large-scale structures

where the kinetic energy is sufficient to carry a large amount thermal energy across

the layer depth. The vertical velocity component shows a decay with height for small

length-scales, an increase with height for large length-scales and a region of collapse

between these two regions. Decaying with height near the boundary layer aligns

with the concept of the diffusion dominated near-wall regions, and the length scales

where collapse begins to occur is approximately equal to the height of the viscous

boundary layer. The region of collapse covers length-scales that range in size from the

height of the boundary layer to half the layer depth and can be interpreted as the

sizes corresponding to eddies that are not diffusion dominant, but also are too small

to be associated with the large-scale structures. Obviously the larger length-scales

must be associated with the large-scale structures and the increase in energy with

vertical position can be conceptualized as the acceleration process that occurs while

the collection of thermally charged plumes crosses the convection cell.

The correlation times associated with the large-scale structure have proven to

extend well beyond the temporal range of this simulation. This has been shown

by calculating the temporal correlations with respect to turbulent kinetic energy,

turbulent thermal energy and turbulent total energy for the entire field as well as

119

the individual Fourier modes. The correlation times based on these three metrics

shows differing magnitudes and structure with in the flow field indicating a strong

dependence on spatial location. It has been shown that the integral time scale can vary

by at least three orders of magnitude depending on the spatial location of the flow field

which is the maximum separation that can be measure from the sampling rate and

total time period of this study. The strongest correlations for the velocity components

is in the boundary layers that are created by the large-scale structures. Conversely,

the thermal correlation is strongest in the bulk region, but clearly both are associated

with the large-scale structures. Based off the structure of the spatially varying integral

time-scale and the observed rotation it seems that the unresolved correlation time

aligns with the rate of rotation for the large-scale structure. This indicates that

rotation of the large-scale structure must occur to sufficiently approximate the true

Reynolds average when Γ is small enough that the geometric effects of the sidewalls

affect the global organization of the structure. It is possible to imagine that at

sufficiently large Γ global rotation is not required because the structures can shift in

an out of phase on a local scale. Another mechanism that could speed up this process

is the cessations noted by Brown et al. [12] and Mishra et al. [51]. The transition

between k = 3 and k = 2 dominated structures is similar in nature to the cessations

because a dramatic change in the global structure occurred over a very short time.

However no other evidence of this sort of mechanism has been observed in this dataset

or other large Γ studies to date.

In summary, it has been determined that the low order Fourier modes are well

aligned with the physics of the large-scale structures in turbulent RBC, that the very

largest length scales are responsible for inhomogeneity across the horizontal layers

and that spatially varying correlation times support a need for global rotation of the

120

large-scale structures to generate uncorrelated samples of the flow field with respect

to the true Reynolds average.

121

Chapter 6

PROPER ORTHOGONAL DECOMPOSITION OF FOURIER MODES

Proper orthogonal decomposition (POD) or the Karhunen-Loéve method is a tech-

nique that has been adopted by the turbulence community to decompose complicated

turbulent signals into a series of linearly independent modes. The modes generated

by POD are often referred to as empirical modes. This is because POD modes are

not controlled by the governing equations or the boundary conditions of the problem,

but rather from the data itself. POD is essentially an eigenvalue problem where

the associated eigenvectors and eigenvalues are generated from a correlation matrix.

There are two methods of POD that are often applied to fluid mechanics problems:

classical (often referred to as the direct method) and the method of snapshots. Both

methods maximize the energy over a series of instances of the flow with respect to

a user defined norm. The two methods are mathematically equivalent for a finite

number of snapshots, but the actual implementations differ significantly. Classical

POD decomposes the time averaged two point spatial correlation while the method

of snapshots decomposes a symmetric matrix formed from the inner-product of the

various snapshots. In other words, classical POD forms modes from a spatial correla-

tion, while the method of snapshots uses a temporal correlation. An extensive source

on POD, dynamical systems and other related subjects can be found in the text of

Holmes et al. [37].

This is not the first work to utilize POD for analyzing turbulent thermal convection,

see Sirovich and Park [68] and Bailon-Cuba et al. [7] among others. What sets this

work apart from the previous cases is that POD is employed on the individual Fourier

122

modes to further investigate the structure and energy content within the flow field.

The goal of performing POD independently on each set of Fourier coefficients is to

provide additional insight into structure of flow field in the inhomogeneous r and z

directions. If POD is solely used to evaluate the entire three-dimensional flow field

for RBC in a cylinder then the unsurprising result is a series of low order modes that

strongly resemble Fourier modes. This is because POD only seeks to maximize the

energy over the supplied domain with respect to a given norm, and as shown in the

previous chapter, Fourier modes describe the highly-energetic large-scale structures

very well.

However, proceeding the POD with a Fourier decomposition in this geometry

focuses the POD process entirely onto the structures that reside in the inhomogeneous

r-z plane, and because both forms of decomposition are linear, the modes can still

be summed with appropriate weighting coefficients to recreate the original field. One

item of interest is to see if POD will reveal further global structure in the dominant

Fourier modes k = 2 and 3, or if it extract unseen structure from the other Fourier

modes which show a higher degree of randomness in the temporal evolution of the area

integrate Fourier coefficients. Another item of interest in this chapter is to identify

structures and length scales in the r-z plane, and both topics are addressed in the

later sections of the chapter.

Since the POD modes are a subset of the Fourier modes the symbol m will be used

to indicate the POD mode number, and k will continue to be used for the Fourier mode

number. The method of snapshots is employed, and a brief introduction to its nuances

is provided in the following paragraphs. The POD calculations are performed using

the open source python library modred (see Belson et al [10]) whose documentation

also serves as a short primer to POD and other, similar techniques.

123

6.1 Method of Snapshots

The method of snapshots was first introduced by [69]. The basic premise of the

method of snapshots is that the empirical POD modes (φi(Ω)) can be interpreted

as a weighted sum of M statistically independent snapshots of a given vector field

(V(Ω, ti)). The vector field in V is not a physical vector field such as velocity, but

rather the linear algebra sense. In other words V is a list of the degrees of freedom

that are being studied.

φj(Ω) =
M∑
i=1

AijV(Ω, ti) (6.1)

Determining the A coefficients in equation 6.1 is done by finding the eigenvalues

and vectors of the correlation matrix Q whose entries are the inner-products of the

snapshots with one another.

Qij =
M∑
i=1

M∑
j=1

(V(Ω, ti),V(Ω, tj)) (6.2)

From here the eigenvalue problem in equation 6.3 can be solved:

Qijψij = λiψij (6.3)

where ψij and λi are the respective eigenvectors and eigenvalues of Qij. Note that if

the values of V are real then Qij is symmetric, and in the most generalized sense Qij

is Hermitian. This symmetry property is due to the nature of Qij’s construction and

as a result all of its eigenvalues must real.

The coefficients A in 6.1 are generated from the eigenvectors from equation 6.3.

Orthonormality can be ensured in the modes by using the relationship between the

eigenvectors, eigenvalues and snapshot matrix shown in equation 6.4.

124

φi = V(Ω, tj)ψij(Mλj)
−1/2 (6.4)

The modes generated by equations 6.1-6.4 are driven by three critical parameters:

1) the definition of the vector V, 2) the implementation of the inner product, and 3)

the choice of snapshots. Since the method of snapshots maximizes the energy in terms

of the inner product (V,V), the choice of V is critical to determining the shape of

the modes and requires little explanation. In this work the method of snapshots is

employed independently on each Fourier mode using the total turbulent energy for V.

The inner product over a finite interval is formally defined as,

(V,V′) =

∫
Ω

V∗V′∂Ω (6.5)

and so the manner in which the spatial integral is evaluated has a large impact on the

construction of the Qij. In this work the inner product is defined by equation 6.6

(V,V′) =
Nz∑
j=1

Nr∑
i=1

wiwjV(r, k, z, t)∗V′(r, k, z, t′)rJ (6.6)

where the w’s are the Gauss-Legende quadrature weights, and J is the Jacobian

associated with the transformation from the unit interval [−1 : 1] to the physical

domain size. However, the choice of snapshots is a less clear issue and is discussed in

the next section.

6.2 Choosing Snapshots

When Sirovich first introduced the method of snapshots in 1987 he clearly stated

that the snapshots should be sampled at a time approximatly equal to or greater

than the correlation time of the flow and that a sufficiently large number of snapshots

should be included [69]. The time-averaged, two-point correlation (K(x,x′)) generated

from these snapshots can be used to approximate the classical POD kernel. However,

125

in practice K(x,x′) is degenerate and so its eigenvectors can be represented as a linear

combination of the original vectors [69]. This degeneracy is where the method of

snapshots finds its origin.

Sirovich’s two requirements for POD snapshots, uncorrelated and sufficient quantity,

are in direct competition for numerical simulations because the cost of generating a

sufficient number of uncorrelated snapshots is very high.

The common metric used to determine if snapshots are far enough apart is a

temporal spacing of 2T . It has been shown in the previous chapter that T varies by

large amounts through out the domain and that choice of vector will also affect T

(see section 5.5.2). Since the snapshot correlation matrix is constructed from an inner

product over the spatial domain, the varying levels of correlation will have a global

impact on the computation. This makes the question of what spacing to employ some

what less clear.

Two different snapshot spacings are compared to evaluate the sensitivity of the

modal structure to this parameter. The first snapshot spacing is defined using T as

defined in equation 6.7. This definition of T corresponds to the values in table 3 and

figure 34.

T (k) =<

∫
τ

Rii(r, k, z, τ)

Rii(r, k, z, 0)
∂τ >r,z (6.7)

This definition acts as a global estimate for T which is inline with the global correlation

metric used by the method of snapshots. The second is an ad-hoc spacing of 6tf which

accounts to every other stored data point in the dataset. Each of these sampling

rates has complementary advantages and disadvantages. Spacing the snapshots 2T

apart provides the most assurance that the snapshots are uncorrelated, but there is a

concern about if a sufficient number of snapshots are present. For example, snapshots

from k = 2 will need to be spaced 1572 tf apart based on the estimate of T in table 3.

126

100 101 102 103

m

10-6

10-5

10-4

10-3

10-2

10-1

100

λ
m

(k
)

(a)

100 101 102 103

m

10-5

10-4

10-3

10-2

10-1

100

λ
m

(k
)/
∑ m
λ
m

(k
)

(b)

Figure 38: Eigenvalues (a) and normalized eigenvalues (b) corresponding to the POD
modes for Fourier wave numbers k = 1 (◦), 5 (�), 10 (4) and 100 (?). The dashed
lines represent the modes from sampling snapshots at 2T and the solid lines are from
sampling at 6tf .

This represents the most extreme case, and it is clear that this is not a sufficient

number of snapshots to compute converged POD modes. Spacing the snapshots 6tf

apart ensures that a sufficient number of snapshots are provided, but the correlation

between snapshots is in question. Comparison between these two sampling rates is

performed for Fourier wave numbers that span three orders of magnitude so that the

difference between 2T and 6tf also spans a large range.

Figure 38 shows a sample of the eigenvalues for POD modes calculated from the

two different sampling rates. The un-normalized modes in figure 38(a) show that the

largest eigenvalues from the 6tf sampling rate have a larger magnitude, but when

the eigenvalues are normalized by the total energy in the two cases collapse on top

of one another perfectly. It is not surprising that the 6tf sampled case has higher

magnitude eigenvalues since it effectively spans a higher dimensional space than the

2T sampled data set. In fact, the correlation matrix for the 2T sampled dataset (QT)

is a subspace of the 6tf correlation matrix (Qtf). Since both correlation matrices

127

are Hermitian it can be shown via the Courant-Fischer minimax principle that the

eigenvalues of QT are related to the eigenvalues of Qtf by

λk(Qtf) ≤ λk(QT) ≤ λk+n−r, 1 ≤ k ≤ r (6.8)

where r is the rank of QT , n is the rank of Qtf , and λk(·) represents the k smallest

eigenvalue of the correlation matrix. Equation 6.8 proves that the eigenvalues of a

Hermitian space will always bound the eigenvalues of a principle subspace so that the

nesting behavior of figure 38(a) will be repeated for a reduction in sampling frequency

over a given interval.

However, the collapse of the normalized eigenvalues seen in figure 38(b) is not

assured by equation 6.8,. This shows that the relative energy distribution between

modes is the same between both cases and this collapse is a sign that the modes

generated by both datasets might be similar. It should also be noted that this collapse

is observed for all values of k, but only a small sample are shown in figure 38(b).

A side by side comparison of the first 5 POD modes from three different Fourier

wave numbers is presented in figures 39-41. The total turbulent energy is compared

since this is the quantity that POD is maximizing. Visual inspection shows that there

is strong agreement between the spatial structure and magnitude between the modes

even though the sampling rate is different.

A more quantitative comparison can be performed by projecting the POD modes

from the two different sampling rate sets onto one another. The projection is performed

by taking the inner product of the modes from each dataset and because both datasets

are orthonormal basis the projection is already normalized. This serves as an estimate

128

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 39: Comparison of POD modes generated from different sampling rates (2T
left, 6tf right): m = 1 (a,b), m = 2 (c,d), m = 3 (e,f), m = 4 (g,h) and m = 5 (i,j).
These modes are generated from the Fourier coefficients for wave number k = 1, and
total turbulent energy in the r-z plane is the plotted quantity.

129

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 40: Comparison of POD modes generated from different sampling rates (2T
left, 6tf right): m = 1 (a,b), m = 2 (c,d), m = 3 (e,f), m = 4 (g,h) and m = 5 (i,j).
These modes are generated from the Fourier coefficients for wave number k = 5, and
total turbulent energy in the r-z plane is the plotted quantity.

130

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 41: Comparison of POD modes generated from different sampling rates (2T
left, 6tf right): m = 1 (a,b), m = 2 (c,d), m = 3 (e,f), m = 4 (g,h) and m = 5 (i,j).
These modes are generated from the Fourier coefficients for wave number k = 10, and
total turbulent energy in the r-z plane is the plotted quantity.

131

1 2 3 4 5 6 7 8 9 10
mtf

1

2

3

4

5

6

7

8

9

10

m
T

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05(a)

1 2 3 4 5 6 7 8 9 10
mtf

1

2

3

4

5

6

7

8

9

m
T

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05(b)

Figure 42: Absolute value of the L2 norm between first 10 POD modes sampled at
6tf and 2T . The snapshots are taken from the Fourier wave numbers k = 1 (a) and
k = 3 (b).

1 2 3 4 5 6 7 8 9 10
mtf

1

2

3

4

5

6

7

8

9

10

m
T

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05(a)

1 2 3 4 5 6 7 8 9 10
mtf

1

2

3

4

5

6

7

8

9

10

m
T

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05(b)

Figure 43: Absolute value of the L2 norm between first 10 POD modes sampled at
6tf and 2T . The snapshots are taken from the Fourier wave numbers k = 4 (a) and
k = 5 (b).

of the L2 norm between any two modes. The resulting value is complex and so there

is a representative amplitude and phase shift for the inner product of any two modes.

The amplitude, |(φT , φtf)|, is plotted in figures 42- 44 since this quantity is indicative

of the spatial alignment of energy in the r-z plane which is the primary quantity of

interest in this study.

132

1 2 3 4 5 6 7 8 9 10
mtf

1

2

3

4

5

6

7

8

9

10

m
T

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05(a)

1 2 3 4 5 6 7 8 9 10
mtf

1

2

3

4

5

6

7

8

9

10

m
T

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05(b)

Figure 44: Absolute value of the L2 norm between first 10 POD modes sampled at
6tf and 2T . The snapshots are taken from the Fourier wave numbers k = 10 (a) and
k = 20 (b).

1 2 3 4 5 6 7 8 9 10
mtf

1

2

3

4

5

6

7

8

9

10

m
T

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7(a)

1 2 3 4 5 6 7 8 9 10
mtf

1

2

3

4

5

6

7

8

9

10

m
T

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56(b)

Figure 45: Absolute value of the L2 norm between first 10 POD modes sampled at
6tf and 2T . The snapshots are taken from the Fourier wave numbers k = 60 (a) and
k = 100 (b).

Figures 42- 45 show varying alignment between the POD modes that are calculated

over the two datasets. The low-order Fourier modes that have relatively small values

for T show strong alignment between the both sampling sets. High-order Fourier

modes and Fourier modes where T is large show much poorer alignment. One might

expect the higher-order Fourier modes to have good alignment since the sampling

rate is very close between both sets. However, a closer inspection of the eigenvalues

provides an explanation for this departure.

133

0 20 40 60 80 100

m

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

λ
m

(k
)

k=3

k=6

k=20

k=100

k=1000

(a)

0 20 40 60 80 100

m

10-3

10-2

10-1

100

λ
m

(k
)/
∑ m
λ
m

(k
)

k=3

k=6

k=20

k=100

k=1000

(b)

Figure 46: Eigenvalue spectrum for POD modes (snapshot sampling rate of 2T) for a
selection of Fourier modes (a), and the normalized eigenvalue spectrum for the same
selection of Fourier modes (b)

Figure 46 shows the POD eigenvalues for different values of k. The eigenvalues for

k = 100 and k = 1000 are very flat indicating that a very large number of POD modes

are necessary to represent a significant portion of the energy. This also indicates

that the POD modes are not very distinct and so a slight difference in sampling can

dramatically affect the structure of the modes.

Inspection of the modes generated from both sampling rates indicates that the 2T

modes appear to be similar too the 6tf modes, but less converged. Since the method

of snapshots constructs its correlation matrix from the inner product of the individual

snapshots if the spacing is too close it will lead to a poorly conditioned, or singular

matrix. However, the only Fourier wave numbers that have a truely large T are k = 2

and 3. Since the POD for these two wave numbers is inherently suspect, the author

has decided to use the 6tf spacing for the rest of this chapter and to document a

selection of modes in Appendix B to take advantage of the increased convergence.

134

6.3 Temporal Evolution of the POD Projections

One of the objectives that has been outlined for the POD analysis in this chapter

is to determine if additional structure exists in the temporal evolution of the Fourier

modes. Structure is found in a global sense for Fourier modes 2 and 3 when the

spatially integrated Fourier coefficients are plotted as a function of time (see figure 31).

In a similar sense the POD modes can be used to see how the global structure evolves

in time by projecting the time series data onto the POD modes. This projection is

performed by taking the inner product of a Fourier mode’s snapshot with its associated

POD modes and the corresponding value is the amount of energy represented by the

POD mode at that instance in time.

Ei(k, t) = (V(r, k, z, t), φi(r, k, z)) (6.9)

Equation 6.9 represents a global quantity that is akin to the spatial integrated Fourier

coefficients in figures 31 and 32. The first Fourier modes to be investigated via POD

are the two that were determined to be globally dominant i.e. k = 2 and 3. Figure 47

shows the projection of POD mode m = 1 onto the time series for k = 2 and 3 Fourier

modes. Figure 47 shows that the m = 0 POD mode bears a strong similarity to the

spatially integrated Fourier coefficients. It should also be noted that the transition

time between k = 3 to k = 2 dominance in the large-scale structure takes almost

exactly 10 eddy-turnover time units to complete.

The key difference between the equation 6.9 and the spatial integrated Fourier

coefficients is that the r-z structure from the POD projection will not change over

time because it is a fixed mode. Even though POD mode m = 1 for k = 2 is not

a converged POD mode, it can still be used as a template to quantify the rate of

135

0.10 0.05 0.00 0.05 0.10
Re

0.10

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Im

E1(k= 3, t)

E1(k= 2, t)

(a)

0 500 1000 1500 2000 2500 3000 3500
t

0.00

0.02

0.04

0.06

0.08

0.10

0.12

|E
|

0 500 1000 1500 2000 2500 3000 3500
t

4
3
2
1
0
1
2
3
4

Φ

(b)

Figure 47: Projection of the time series onto the first POD mode (m = 1) for k = 2 and
k = 3 Fourier modes expressed in the complex plane (a) and as phase and amplitude
(b).

rotation when k = 2 dominates the large-scale structure. The spatially integrated

Fourier coefficients are not as well suited for quantifying the rotation of the large-scale

pattern because the r-z structure changes with time. Using a least-squares regression

to measure the rate of change in the phase of k = 2, m = 1 it is estimated that the

large-scale structure rotates at a rate of approximately 3.7× 10−2deg/tf or 1.1deg/tε.

Unfortunately, T for the k = 2 mode is very large and only two snapshots are

considered uncorrelated over the available time series by the metric in equation 6.7

and so no additional insight into the structure of the Fourier mode can be trusted.

However, T for the k = 3 Fourier mode is a bit better with 9 uncorrelated snapshots.

Figure 48 displays projections of the first 4 POD modes for k = 3 onto the time series

data.

The results in figure 48 show that the structure in the complex plain provided

by the temporal evolution of the Fourier mode k = 3 is strictly contained in the

first POD mode, and that all other POD modes for k = 3 exhibit the characteristic

distribution of the non-dominant Fourier modes. Additionally, no obvious structure

136

0.04 0.02 0.00 0.02 0.04 0.06 0.08 0.10
Re

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

Im

E4(k= 3, t)

E3(k= 3, t)

E2(k= 3, t)

E1(k= 3, t)

(a)

0 500 1000 1500 2000 2500 3000 3500
t

0.00

0.02

0.04

0.06

0.08

0.10

|E
|

0 500 1000 1500 2000 2500 3000 3500
t

4
3
2
1
0
1
2
3
4

Φ

(b)

Figure 48: Projection of the time series onto POD modes for k = 3 Fourier modes
expressed in the complex plane (a) and as phase and amplitude (b).

0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.04
Re

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

Im

E4(k= 5, t)

E3(k= 5, t)

E2(k= 5, t)

E1(k= 5, t)

(a)

0 500 1000 1500 2000 2500 3000 3500
t

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045

|E
|

0 500 1000 1500 2000 2500 3000 3500
t

4
3
2
1
0
1
2
3
4

Φ

(b)

Figure 49: Projection of the time series onto POD modes for k = 5 Fourier modes
expressed in the complex plane (a) and as phase and amplitude (b).

in the temporal evolution of the non-dominant Fourier modes is revealed through the

POD, and this illustrated in figure 49 for Fourier mode k = 5. The net conclusion

from this analysis is that the POD does not expose any macro dynamics that were

not already seen in the individual Fourier modes, and that the dynamics that were

seen are fully contained in the m = 1 POD modes.

137

6.4 Spatial Structure of the POD Modes

The next area of investigation is the spatial structure of the individual POD modes.

Since all the POD modes are a decomposition of Fourier coefficients, they can be

projected back into real space by performing an inverse Fourier transform. Figure 50

provides a visualization of the first POD mode for Fourier modes k = 1 : 9. The

visualizations in figure 50 are useful for understanding the global structure of the

modes in terms of the primary variables (velocity and temperature). A dictionary has

been provided in Appendix A for a larger sampling of POD modes.

A single striking feature throughout all m = 1 modes in figure 50 is the prevalence

of roll cells. All modes except the k = 1 feature roll-cells along the side walls.

Interestingly, the mode corresponding to k = 1 contains a roll-cell in the center

of the domain that resembles the familiar ”wind of turbulence” which is prominent

feature in smaller Γ domains. This singular roll-cell in k = 1, m = 1 extends to a

radius of approximately 1.5H and the nodes of the roll cells are located at a radius

approximately equal to H. The fact that the most energetic POD mode for k = 1 is

almost identical to the dominant large-scale structure seen in the low Γ studies shows

that the structure of the unit Γ case is still present at larger Γ. This indicates that

there may be a natural length scale for each of the modes, and that the energetic

structures are not required to attach to the sidewalls as seen in all the other m = 0

modes. However, the spectra in figures 26 and 37 clearly shows that the majority of

the energy has migrated toward larger wave numbers and longer length scales.

As the Fourier mode increase the POD modes in figure 50 show finer scales in the

central region. This is not entirely surprising since the length scales associated with

the Fourier wave number are directly proportional to r and inversely proportional

138

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 50: Velocity streamlines colored by temperature for the first POD mode
transformed to real space for the k ∈ [1 : 9] Fourier modes corresponding to subplots
[(a):(i)] respectively.

139

to k. However it is worth noting that the distinct seperation of scales first starts to

take place with k = 4 which is the first Fourier wave number after the geometrically

dominant modes. These finer velocity scales also have smaller temperature ranges

showing a similitude to the thermal plumes, and as k grows large enough the velocity

structures cease to exist.

The dictionary in Appendix A shows 1 period of each mode so that the detailed

structure can be seen more clearly. While the images of streamlines in figure 50

are excellent at communicating the global structure of the velocity and temperature

fields, it is still difficult to see the r-z variations across the domain in each mode due

to the complicated nature of the plots. Plots of the total turbulent energy such as

figures 39-41 provided a compact way to visualize the r-z variations across the entire

domain. The r-z distribution of total turbulent energy in the first three POD modes

are provided in figures 51-53 for a sample of Fourier wave numbers.

Some general observations can be drawn from the visualizations in figures 39-41

and 51-53. First, the m = 1 POD modes in this data set feature a large amount of

energy in the boundary layers. For the m = 1 modes associated with higher k the

energy is clustered near the side wall, and for lower k it is clustered near the top

and bottom plates. As m increases the energy begins to be concentrated in the bulk

region, and the number of concentrations tends to increase with m. In general the

division of energy in the r direction seems to be favored over divisions in z.

Physically, it makes sense for the highest energy POD modes to focus on the

boundary layers because that is where kinetic energy has its highest concentration.

The boundary layers are where the horizontal velocity components are strong, and it

140

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 51: Total turbulent energy distribution in the r-z plane for the first POD mode
for k = 1 (a), 3 (b), 6 (c), 10 (d), 20 (e), 40 (e), 100 (f) and 1000 (g).

is also where plumes are gain and deposit their kinetic energy. Subsequently, POD

modes with less energy are concentrated in the bulk, where less energy resides. The

increase of division in the bulk region’s energy concentrations as the mode number

increases is inline with a physical concept. This is the concept of an energy cascade

where the energy from larger scales is transported to smaller scales. The fact that

the division tend to favor the r direction is also inline with the physics because the r

direction sees little viscous effects from the wall, and is less inhomogeneous than the

z direction.

141

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 52: Total turbulent energy distribution in the r-z plane for the second POD
mode for k = 1 (a), 3 (b), 6 (c), 10 (d), 20 (e), 40 (e), 100 (f) and 1000 (g).

Finally, it is worth pointing out that the concentrations of energy in the k = 100

and 1000 POD modes appear to only be associated with small scale structures near

the wall i.e. plumes. The genesis of plumes in the boundary layer has been shown to

be a log-normal distribution process [57, 53] that organizes into larger scales as the

plumes rise and are swept up in the large circulatory currents. Therefore it is logical

that the POD eigenspectra associated with the higher Fourier numbers is flat, because

there is little organization at the length scales and spatial locations that these modes

are associated with.

142

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 53: Total turbulent energy distribution in the r-z plane for the third POD
mode for k = 1 (a), 3 (b), 6 (c), 10 (d), 20 (e), 40 (e), 100 (f) and 1000 (g).

6.5 Summary and Conclusions

This chapter is focused on using proper orthogonal decomposition (POD) to

extract additional physics from the azimuthal Fourier modes of turbulent Rayleigh-

Bénard convection in a cylinder. The specific items of interest are understanding the

r-z distribution of the most energetic structures in each of the Fourier modes, and

determining if additional insights can be found in the temporal evolution of the global

structures through the lens of POD.

143

It has been found that the global shifts in phase and amplitude of the Fourier

modes is fully captured by the first POD mode and does not subdivide into the

additional higher-order POD modes. The behavior of the first POD mode is very

similar to the area integrated Fourier coefficients that are described in the previous

chapter. This shows that the structure responsible for the most energy over time for

the dominant Fourier modes is well represented by the first POD mode. Using the

projection of the k = 2, m = 1 mode onto the time series an estimate for the speed of

the azimuthal drift is measured by fitting the phase change with a linear regression.

The rotation rate has been determined to be approximately 1.1 degrees per eddy

turnover. This is an order of magnitude faster than the long-time drift reported by

Brown et al., but an order of magnitude slower than the medium-time drift event

reported in the same work [12].

It has also been shown that energy in the boundary layers is encapsulated in the

first few POD modes. This shows that the majority of the energy in the flow field

is contained in the boundary layers. The three-dimensional, spatial structure of the

first few POD modes are dominated by large-scale roll-cells crossing the entire layer

depth. This is evidence that the most energetic structures in the flow field are the

large-scale roll-cells. Interestingly, the roll-cell associated with k = 1, m = 1 is the

only m = 1 structure not connected to the side walls. It resembles the ”wind of

turbulence” phenomena seen in unit Γ convection cells since it has the same general

dimensions. This indicates that there may be a natural length scale associated with

this structure, and that it could be present at even higher values of Γ. However, it is

a very weak structure in terms of energy percentage, and is not discernible without

the modal decomposition.

While the low order POD modes show boundary layer dominated structures, the

144

higher order POD modes correspond to structures in the bulk of the flow field. The

higher order POD modes also show a division of structures represented by energy

concentrations in the bulk. This division process is consistent with the well known

concept that energy cascades from large scales to small scales.

These results show that the physics of the system can be well represented by POD

of Fourier modes, and that additional insights into the physical composition of the

flow field can be drawn by this decomposition process. However, this connection to

physics decays as the Fourier wave number increases. It has been shown that the

POD eigenspectra for large Fourier wave numbers becomes increasingly flat, and that

the individual POD modes structure becomes very sensitive to the snapshot selection

process. It is believed that this is due to the fact that the length scales represented

by these modes are in a range where there is little distinction between the physical

structures with respect to the total integration domain of the inner product i.e. the

genesis of plumes within the viscous boundary layer. The lack of distinguishable

and/or significant physical structures makes limits the ability of POD to capture

meaningful physics, and so POD is not a good tool to analyze structures on these

length scales. A possible correction for studying these phenomena would be to sample

over a smaller portion of the domain, such as the near wall region, so that these

structures represent a larger portion of the energy with respect to the L2 norm.

145

Chapter 7

SUMMARY AND CONCLUSIONS

The main objective of this work is to examine the three-dimensional structure of

turbulent Rayleigh-Bénard convection (RBC) in cylindrical domains at an aspect-ratio

where the large-scale structures differs from the unit aspect-ratio case. The data

for this work has been generated using direct numerical simulation with the code

Nek5000 to simulate RBC at a Rayleigh number of Ra = 9.6× 107, Prandtl number

of Pr = 6.7 and aspect-ratio of Γ = 6.3. The simulation was initialized at a lower

Rayleigh number with small perturbations added to a conduction profile, and then this

was gradually ramped up to the target Rayleigh number over 5 discrete intervals. The

flow field was judged to be at steady state when the volume averaged kinetic energy

stabilized. Good statistical agreement with experiments has been demonstrated, and

the numerics have been shown to meet modern standards for resolution in turbulent

RBC. Three high-level research questions have been used to focus the analysis of this

study, and the answer to these questions that have been obtained in this body of work

are provided in the sections below.

7.1 The Best Estimate for an Infinite Time Averaged Field for Rayleigh-Bénard

Convection in Cylindrical Cells

It has been shown that the best estimate for the infinite time averaged field is one

where all available symmetries in the flow field have been accounted for. In the case

of RBC in cylinders this includes an azimuthal average and an additional symmetry

146

arguments that accounts for the vertical antisymmetry. It has also been acknowledged

that an additional symmetry may exist that accounts for the net rotations observed

in cylindrical convection cells.

This is at odds with the concept of a mean wind, or the ”wind of turbulence” that

is oft referenced in the Rayleigh-Bénard literature. This singular roll-cell does not

obey the geometric symmetry of the system and extends across the entire diameter

of the convection cell, and it changes its azimuthal orientation indicating a dynamic

nature. The multi-roll cell structures observed throughout this work also show similar

properties. While there is no denying the existence of and dominant nature of roll-cells

in turbulent RBC, the fundamental properties of these roll-cells are such that they

must reside in the fluctuating field.

The time scales over which these fluctuations evolve are very long and so it is

often favorable to study the flow field in reference to the large scale circulations. On

time scales where the roll-cells azimuthal orientation is constant the time-averaged

field is actually a conditional average where the specified condition is the azimuthal

orientation. This can also be extended to a phase-average over longer time-scales by

aligning the orientation of the large scale structure.

7.2 Properties of the Large-Scale Coherent Structures in Rayleigh-Bénard Convec-

tion When the Domain is a Moderate Aspect-Ratio Cylinder

The large-scale structures in this study have proven to be roll-cells that are

periodically aligned along the side walls. These roll-cells extend radially from the

wall to the center of the cell and show that the domain is not yet wide enough to

approximate the infinite aspect-ratio case. This conclusion is also supported by the fact

147

that the azimuthal energy spectra shows a radial dependence for energy distribution

with respect to length-scales. The radial dependence is small, and only affects the

very largest length scales of the flow that are directly related to the orginizatinonal

frequency of the large-scale structures.

Over the evolution of O(102) eddy-turnovers, or O(103) free-fall times, a major

shift in the large-scale structure takes place and the spatial organization goes from a

three pronged hub-and-spoke pattern, where the spokes are a lines of vorticity and

the hub is a central updraft, to a two roll-cell structure. This transition occurred over

a time scale of 10 eddy-turnovers which is the same time-scale of reorientation events

at lower aspect-ratios. This similarity suggests that 10 eddy-turnover time units is an

important scale for dynamic events in turbulent RBC.

7.3 Physical Insights can be Obtained about the Large-Scale Structures through a

Modal Representation of the Flow Field inside the Cylindrical Domain

It has been shown that the structure of large-scale structure is well described by

a small selection of low-order azimuthal Fourier modes. A single, dominant Fourier

mode represents the each of the two large-scale patterns that were observed in the time

series. These dominant modes are the obvious peaks in the energy spectra and they

have been used to quantify the transition time between the patterns by integrating the

Fourier coefficients across the r-z plane. This shows that there is a physical connection

between the large-scale structures and the Fourier modes in this study. The azimuthal

Fourier modes contain a radial dependency in the length scales that they describe

and from this it can be concluded large-scale structures are modal in nature. In other

148

words the organizational large-scale structures are not associated with a single length

scale, but rather a pattern, or mode.

The Fourier modes associated with the non-dominant modes do not show the

same type of global temporal behavior, but rather show a more random distribution

of energy and amplitude. This is not surprising since the large-scale structures are

described so well by the dominant Fourier modes, and it shows that the smaller

scale structures are more dependent on length scales. The Fourier modes are further

evaluated with proper orthogonal decomposition (POD) to investigate the structures

based on their r-z dependence. POD reveals that the first mode for each Fourier

number has a concentration of energy in the boundary layers which indicates that

the most energetic structures with respect to total turbulent energy are found in the

boundary layers of the flow field. These structures manifest themselves as roll-cells

that span the entire layer depth. Additional distinct bands of smaller scale structures

can be seen in the first POD modes, and as the Fourier number increases these bands

shift in radial position toward the wall. This is a manifestation of distinct length

scales for the small-scale structures that is not easily identifiable by just looking at

the Fourier modes.

Higher order POD modes show bulk dominant structures which are not as easily

examined via visual inspection of streamlines. However, the bifurcation of concentra-

tions of total turbulent energy in the modes indicates that the structures in the bulk

experience an energy cascade from large to small structures.

149

7.4 Concluding Remarks and Future Work

In conclusion, this work has explored turbulent RBC in a manner that is only

available today through numerical simulation. By decomposing the flow field with

modal techniques rich insight into the underlying structure of the fluid dynamics has

been gained. The code and that has been used to perform this analysis is documented

in Appendix B and at https://github.com/psakievich/DissertationCode to ensure that

others can perform similar analysis in the future. Particular studies of interest would

be repeating these analysis over a large range of Γ, Rayleigh numbers and Prandtl

numbers.

There are still a multitude of opportunities for analysis and additional physical

insights with this dataset alone. For example, only a small section of the POD modes

were analyzed as part of this document. In total there are several thousand POD

modes available, and a dictionary of modes has been provided in Appendix B for future

study. This dictionary only represents is still a subset of the total modes available,

but its a more comprehensive resource than what could reasonably be included in

the main chapters of this document. In general, there is still much to learn from the

POD. Since POD on the Fourier wave numbers that are not directly related to the

large-scale structures show better resolution, and a strong dependence on physical

length scales, the POD results could possibly be made more conceptually tractable

by filtering out the large-scale structures in Fourier space and then performing a 3D

method of snapshots on the remaining field. A similar study could also involve filtering

out Fourier modes based on their local radius so that resulting field only contains a

narrow band of physical lengths scales. This would facilitate a detailed analysis of the

150

https://github.com/psakievich/DissertationCode

small scale structures within the flow field and provide a complete description of the

turbulent structures’ life-cycle within the convection cell.

Additional future studies that are more applied to engineering applications could

also include the introduction of pillars in the flow field, or modifications to the local

temperature field at the boundaries to attempt to enhance heat transport.

7.5 Extended Impact

The results of this work have the potential to impact other research fields beyond

RBC. In the first chapter of this document an outline is provided that shows how the

hierarchical organization of coherent structures in RBC is similar to the structures

observed in shear flows. The identification of very-large-scale motions (VSLM’s) or

superstructures [45, 8, 38, 9] in turbulent boundary layers, channel flow and pipe flow,

has received increased interest in the shear flow community. These parallels suggest

an important crossover between the two fields of study, and that additional insights

into the nature of turbulence can be found by directing attention to these similarities.

For example, the similarity between the structures in this study and the VLSM’s

measured in pipe flow [36] has been acknowledged by authors from both studies in

personal conversation. This is of interest because the mechanism by which production

of turbulent energy is created differs substantially between the two flows and yet the

organization of the turbulent structures are very similar.

This work also has the potential to impact specific engineering applications. Two

examples where results from this work could be applied are cooling of electronics

and HVAC designs that optimize circulation currents in wide enclosures. Modern

design trends such as thin electronic devices and open concept floor plans must

151

increasingly rely on buoyancy driven convection to achieve efficient, cost effective

thermal management. The demand for energy efficiency and compactness increases

the demand for well engineered thermal convection systems. Understanding the details

of the physical mechanisms within turbulent thermal convection through studies like

this becomes increasingly important as the engineering process becomes more refined.

For example, the modal framework used in this work (Fourier and POD) provide

insight that can be useful for heat transfer optimization and control. Understanding

the modal structure of the flow field can help designers modify the geometry and/or

boundary conditions to enhance the modes that transport the most heat. Additionally,

low-order models can be derived from the modal representation of the flow field to

reduce the cost of running design iterations [50].

152

REFERENCES

[1] R. J. Adrian, K.T. Christensen, and Z.C. Liu. “Analysis and interpretation of
instantaneous turbulent velocity fields”. In: Experiments in Fluids 29.3 (2000),
pp. 275–290.

[2] R. J. Adrian, R. T. D. S. Ferreira, and T. Boberg. “Turbulent thermal convection
in wide horizontal fluid layers”. In: Experiments in Fluids 4 (1986), pp. 121–141.

[3] R. J. Adrian, C. D. Meinhart, and C. D. Tomkins. “Vortex organization in the
outer region of the turbulent boundary layer”. In: Journal of Fluid Mechanics
422 (Nov. 2000), pp. 1–54. issn: 1469-7645. doi: 10.1017/S0022112000001580.

[4] Ronald J Adrian. “Hairpin vortex organization in wall turbulencea)”. In: Physics
of Fluids (1994-present) 19.4 (2007), p. 041301.

[5] Guenter Ahlers, Siegfried Grossmann, and Detlef Lohse. “Heat transfer and
large scale dynamics in turbulent Rayleigh-Benard convection”. In: Reviews of
Modern Physics 81.2 (2009), pp. 503–537.

[6] C Altantzis et al. “Detailed numerical simulations of intrinsically unstable two-
dimensional planar lean premixed hydrogen/air flames”. In: Proceedings of the
Combustion Institute 33.1 (2011), pp. 1261–1268.

[7] J. Bailon-Cuba, M. S. Emran, and J. Schumacher. “Aspect ratio dependence
of heat transfer and large-scale flow in turbulent convection”. In: Journal of
Fluid Mechanics 655 (July 2010), pp. 152–173. issn: 1469-7645. doi: 10.1017/
S0022112010000820.

[8] BJ Balakumar and RJ Adrian. “Large-and very-large-scale motions in channel
and boundary-layer flows”. In: Philosophical Transactions of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences 365.1852 (2007),
pp. 665–681.

[9] J Baltzer, R Adrian, and X Wu. “Turbulent boundary layer structure identifica-
tion via POD”. In: Proceedings of the summer program. 2010, p. 55.

[10] Brandt A Belson, Jonathan H Tu, and Clarence W Rowley. “Algorithm 945:
modred—a parallelized model reduction library”. In: ACM Transactions on
Mathematical Software (TOMS) 40.4 (2014), p. 30.

153

http://dx.doi.org/10.1017/S0022112000001580
http://dx.doi.org/10.1017/S0022112010000820
http://dx.doi.org/10.1017/S0022112010000820

[11] Eberhard Bodenschatz, Werner Pesch, and Guenter Ahlers. “Recent develop-
ments in Rayleigh-Bénard convection”. In: Annual review of fluid mechanics
32.1 (2000), pp. 709–778.

[12] E. Brown, A. Nikolaenko, and G. Ahlers. “Reorientation of the Large-Scale
Circulations in Turbulent Rayleigh-Benard Convection”. In: Physical Review
Letters 95.084503 (2005).

[13] D. Carati, A. Wray, and W. Cabot. Ensemble averaged dynamic modeling. Center
for Turbulent Research, Proceedings of the Summer Program. 1996, pp. 237–248.

[14] Laltu Chandra and Günther Grötzbach. “Analysis and modelling of the turbulent
diffusion of turbulent heat fluxes in natural convection”. In: International Journal
of Heat and Fluid Flow 29.3 (2008), pp. 743–751.

[15] Hank Childs et al. “Extreme scaling of production visualization software on
diverse architectures”. In: IEEE Computer Graphics and Applications 3 (2010),
pp. 22–31.

[16] Emily SC Ching. Statistics and scaling in turbulent Rayleigh-Benard convection.
Springer, 2014.

[17] G. N. Coleman, J. Kim, and P. R. Spalart. “A numerical study of strained
three-dimensional wallbounded turbulence”. In: Journal of Fluid Mechanics 417
(2000), p. 025112.

[18] James W Deardorff. “Convective velocity and temperature scales for the unstable
planetary boundary layer and for Rayleigh convection”. In: Journal of the
Atmospheric Sciences 27.8 (1970), pp. 1211–1213.

[19] Michel O Deville, Paul F Fischer, and Ernest H Mund. High-order methods for
incompressible fluid flow. Vol. 9. Cambridge University Press, 2002.

[20] Andrew Duggleby et al. “Dynamical Eigenfunction Decomposition of Turbulent
Pipe Flow”. In: Journal of Turbulence 8.43 (2007), pp. 1–24.

[21] Mohammad S Emran and Jörg Schumacher. “Large-scale mean patterns in
turbulent convection”. In: Journal of Fluid Mechanics 776 (2015), pp. 96–108.

[22] R. L. Fernandes. “The spatial structure of turbulent Rayleigh-Benard convection”.
PhD thesis. Urbana, IL: University of Illinois, 2001.

154

[23] R. L. Fernandes and R. J. Adrian. “Scaling of velocity and temperature fluc-
tuations in turbulent thermal convection”. In: Exp. Thermal Fluid Science 26
(2002), pp. 355–360.

[24] Paul F Fischer, James W Lottes, and Stefan G Kerkemeier. “nek5000 Web page”.
In: Web page: http://nek5000. mcs. anl. gov (2008).

[25] Paul Fischer et al. “Petascale algorithms for reactor hydrodynamics”. In: Journal
of Physics: Conference Series. Vol. 125. 1. IOP Publishing. 2008, p. 012076.

[26] Matteo Frigo. “A fast Fourier transform compiler”. In: Acm sigplan notices.
Vol. 34. 5. ACM. 1999, pp. 169–180.

[27] Matteo Frigo and Steven G Johnson. “FFTW: An adaptive software architecture
for the FFT”. In: Acoustics, Speech and Signal Processing, 1998. Proceedings of
the 1998 IEEE International Conference on. Vol. 3. IEEE. 1998, pp. 1381–1384.

[28] Denis Funfschilling et al. “Heat transport by turbulent Rayleigh–Bénard con-
vection in cylindrical samples with aspect ratio one and larger”. In: Jour-
nal of Fluid Mechanics 536 (Aug. 2005), pp. 145–154. issn: 1469-7645. doi:
10.1017/S0022112005005057.

[29] S. Grossmann and D. Lohse. “Fluctuations in turbulent Rayleigh-Benard con-
vection: The role of plumes”. In: Physics of Fluids 16 (2004), pp. 4462–4472.

[30] S. Grossmann and D. Lohse. “Prandtl and Rayleigh number dependece of
the Reynolds number in turbulent thermal convection”. In: Physics Review E
66.016305 (2002).

[31] S. Grossmann and D. Lohse. “Thermal convection for large Prandtl numbers”.
In: Physical Review Letters 86 (2001), pp. 3316–3319.

[32] Siegfried Grossmann and Detlef Lohse. “Scaling in thermal convection: a unifying
theory”. In: Journal of Fluid Mechanics 407 (2000), pp. 27–56.

[33] Günther Grötzbach. “Spatial resolution requirements for direct numerical simu-
lation of the Rayleigh-Bénard convection”. In: Journal of Computational Physics
49.2 (1983), pp. 241–264.

[34] M Guala, SE Hommema, and RJ Adrian. “Large-scale and very-large-scale
motions in turbulent pipe flow”. In: Journal of Fluid Mechanics 554 (2006),
pp. 521–542.

155

http://dx.doi.org/10.1017/S0022112005005057

[35] Xiaozhou He et al. “Transition to the Ultimate State of Turbulent Rayleigh-
Benard Convection”. In: Physical Review Letters 108.024502 (Jan. 2012).

[36] Leo HO Hellström, Aman Sinha, and Alexander J Smits. “Visualizing the very-
large-scale motions in turbulent pipe flow”. In: Physics of Fluids 23.1 (2011),
p. 011703.

[37] Philip Holmes, John L Lumley, and Gal Berkooz. Turbulence, coherent structures,
dynamical systems and symmetry. 2nd ed. Cambridge university press, 2012.

[38] N Hutchins and Ivan Marusic. “Evidence of very long meandering features in the
logarithmic region of turbulent boundary layers”. In: Journal of Fluid Mechanics
579 (2007), pp. 1–28.

[39] E. Jeyapal, G. N. Coleman, and C. L. Rumsey. Assessment of Higher-order
RANS Closures in a Decelerated Planar Wall-bounded Turbulent Flow. AIAA
Paper 2014-2088. 44th AIAA Fluid Dynamics Conference, Atlanta, GA. 2014.

[40] S Kenjereš and K Hanjalić. “LES, T-RANS and hybrid simulations of thermal
convection at high Ra numbers”. In: International journal of heat and fluid flow
27.5 (2006), pp. 800–810.

[41] S Kenjereš and K Hanjalić. “Transient analysis of Rayleigh–Bénard convection
with a RANS model”. In: International journal of heat and fluid flow 20.3 (1999),
pp. 329–340.

[42] S. Kerkemeier and S. Parker. PFF, 2010. Scalability of the NEK5000 spectral
element code. Jülich Blue Gene/P Extreme Scaling Workshop 2010. Tech. rep.
Technical Report, 2010.

[43] Stefan Georg Kerkemeier. “Direct numerical simulation of combustion on petas-
cale platforms: application to turbulent non-premixed hydrogen autoignition”.
PhD thesis. ETH, 2010.

[44] Robert M Kerr. “Rayleigh number scaling in numerical convection”. In: Journal
of Fluid Mechanics 310 (1996), pp. 139–179.

[45] KC Kim and RJ Adrian. “Very large-scale motion in the outer layer”. In: Physics
of Fluids 11.2 (1999), pp. 417–422.

[46] R. H. Kraichnan. “Turblent thermal convection at arbitrary Prandtl number”.
In: Physics of Fluids 5 (1962), pp. 1374–1389.

156

[47] Z. Liu, R.J. Adrian, and T. J. Hanratty. “Large-scale modes of turbulent channel
flow: transport and structure”. In: Journal of Fluid Mechanics 448 (2001), pp. 53–
80.

[48] Brandon E Merrill et al. “A spectrally accurate method for overlapping grid so-
lution of incompressible Navier–Stokes equations”. In: Journal of Computational
Physics 307 (2016), pp. 60–93.

[49] Brandon Merrill and Yulia Peet. “High-Order Moving Overlapping Grid Method-
ology for Aerospace Applications”. In: 53rd AIAA Aerospace Sciences Meeting.
2015, p. 1743.

[50] Elia Merzari, W David Pointer, and Paul Fischer. “A POD-based solver for the
advection-diffusion equation”. In: ASME-JSME-KSME 2011 Joint Fluids Engi-
neering Conference. American Society of Mechanical Engineers. 2011, pp. 1139–
1147.

[51] Pankaj Kumar Mishra et al. “Dynamics of reorientations and reversals of large-
scale flow in Rayleigh–Bénard convection”. In: Journal of Fluid Mechanics 668
(2011), pp. 480–499.

[52] Ronald L Panton. Incompressible flow. Third. John Wiley &; Sons, 2006.

[53] Antonio Parodi et al. “Clustering of plumes in turbulent convection”. In: Physical
review letters 92.19 (2004), p. 194503.

[54] YT Peet and PF Fischer. “Legendre spectral element method with nearly
incompressible materials”. In: European Journal of Mechanics-A/Solids 44 (2014),
pp. 91–103.

[55] K. Petschel et al. “Kinetic energy transport in Rayleigh-Bénard convection”. In:
Journal of Fluid Mechanics 773 (2015), pp. 395–417.

[56] Ronald du Puits, Christian Resagk, and André Thess. “Breakdown of wind in
turbulent thermal convection”. In: Physical Review E 75.1 (2007), p. 016302.

[57] B. A. Puthenveettil and J. Arakeri. “Plume strucutre in high Rayleigh-number
convection”. In: Journal of Fluid Mechanics 542 (2005), pp. 217–249.

[58] X-L Qiu and P Tong. “Large-scale velocity structures in turbulent thermal
convection”. In: Physical Review E 64.3 (2001), p. 036304.

157

[59] P. J. Sakievich, Y. T. Peet, and R. J. Adrian. “Large scale coherent structures
in wide-aspect-ratio, turbulent, Rayleigh-Benard convection”. In: Int Symp on
Turbulence and Shear Flow Phenomena 9 (2015).

[60] PJ Sakievich, YT Peet, and RJ Adrian. “Large-scale thermal motions of turbulent
Rayleigh–Bénard convection in a wide aspect-ratio cylindrical domain”. In:
International Journal of Heat and Fluid Flow 61 (2016), pp. 183–196.

[61] J. D. Scheel, E. Kim, and K. R. White. “Thermal and viscous boundary layers
in turbulent Rayleigh-Benard convection”. In: Journal of Fluid Mechanics 711
(2012), pp. 281–305.

[62] Janet D Scheel, Mohammad S Emran, and Jörg Schumacher. “Resolving the
fine-scale structure in turbulent Rayleigh–Bénard convection”. In: New Journal
of Physics 15.11 (2013), p. 113063.

[63] William J Schroeder and Kenneth M Martin. “The Visualization Toolkit-30”. In:
(1996).

[64] Jörg Schumacher et al. “Small-scale universality in fluid turbulence”. In: Pro-
ceedings of the National Academy of Sciences 111.30 (2014), pp. 10961–10965.

[65] M. J. Shelly and M. Vinson. “Coherent structures on a boundary layer in
Rayleigh-Benard turbulence”. In: Nonlinearity 5 (1992), pp. 323–351.

[66] O. Shishkina and C. Wagner. “Analysis of sheet-like thermal plumes in turbulent
Rayleigh-Benard convection”. In: Journal of Fluid Mechanics 599 (2007), pp. 383–
404.

[67] Olga Shishkina and André Thess. “Mean temperature profiles in turbulent
Rayleigh–Bénard convection of water”. In: Journal of Fluid Mechanics 633
(2009), pp. 449–460.

[68] L Sirovich and H Park. “Turbulent thermal convection in a finite domain: Part
I. Theory”. In: Physics of Fluids A: Fluid Dynamics 2.9 (1990), pp. 1649–1658.

[69] Lawrence Sirovich. “Turbulence and the dynamics of coherent structures. I.
Coherent structures”. In: Quarterly of applied mathematics 45.3 (1987), pp. 561–
571.

[70] Troy R. Smith, Jeff Moehlis, and Philip Holmes. “Low-Dimensional Modelling of
Turbulence Using Proper Orthogonal Decomposition: A Tutorial”. In: Nonlinear
Dynamics 41 (2005), pp. 275–307.

158

[71] Richard JAM Stevens, Roberto Verzicco, and Detlef Lohse. “Radial boundary
layer structure and Nusselt number in Rayleigh–Bénard convection”. In: Journal
of Fluid Mechanics 643 (2010), pp. 495–507.

[72] DR Wilson, TJ Craft, and H Iacovides. “Application of RANS turbulence
closure models to flows subjected to electromagnetic and buoyancy forces”. In:
International Journal of Heat and Fluid Flow 49 (2014), pp. 80–90.

[73] Xiaohua Wu and Parviz Moin. “Direct numerical simulation of turbulence in
a nominally zero-pressure-gradient flat-plate boundary layer”. In: Journal of
Fluid Mechanics 630 (July 2009), pp. 5–41. issn: 1469-7645. doi: 10.1017/
S0022112009006624.

[74] Ke-Qing Xia, Chao Sun, and Yin-Har Cheung. “Large scale velocity structures
in turbulent thermal convection with widely varying aspect ratio”. In: Proc. 14th
Int. Symp. on Applications of Laser Techniques to Fluid Mechanics. 2008.

[75] Claudia Zimmermann and Rodion Groll. “Computational investigation of ther-
mal boundary layers in a turbulent Rayleigh–Bénard problem”. In: International
Journal of Heat and Fluid Flow 54 (2015), pp. 276–291.

[76] G. Zocchi, E. Moses, and A. Libchaber. “Coherent structures in turbulent
convection, an experimental study”. In: Physica A 166 (1990), pp. 387–407.

159

http://dx.doi.org/10.1017/S0022112009006624
http://dx.doi.org/10.1017/S0022112009006624

APPENDIX A

POD MODE DOCUMETATION

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

APPENDIX B

POST PROCESSING CODE

211

PhilFunc.f Page 1

c−−−
c SUBROUTINES DEVELOPED BY PHIL SAKIEVICH
c FOR RAYLEIGH−BENARD CONVECTION ANALYSIS
c
c−−−
c
 subroutine ps_Test
c TEST that the file compiles correctly
c with the nek make routines
 write(6,*),"PHIL ROUTINES ARE WORKING"
 end subroutine ps_Test
c−−−
 subroutine ps_GridSpacing(gMin,gMax,gMean)
c
c This routine finds and returns the global min max and mean grid spacing
c
 include 'SIZE'
 include 'TOTAL'
 real gMin(ndim), gMax(ndim), gMean(ndim)
c
 real lMin(ndim), lMax(ndim), lMean(ndim)
 real dX(lx1−1),dY(lx1−1),dZ(lx1−1)
 integer ncount,lcount;

 lMin=10000.;
 lMax=0;
 lMean=0;
 lcount=0;

c find the mean for each processor
 do i=1,nelv
 do j=2,lx1
c x spacing
 dX(j−1)=sqrt((xm1(j,1,1,i)−xm1(j−1,1,1,i))**2+
 $ (ym1(j,1,1,i)−ym1(j−1,1,1,i))**2+
 $ (zm1(j,1,1,i)−zm1(j−1,1,1,i))**2)
 if(dX(j−1).gt.lMax(1))lMax(1)=dX(j−1)
 if(dX(j−1).lt.lMin(1))lMin(1)=dX(j−1)
 lMean(1)=lMean(1)+dX(j−1)
c y spacing
 dY(j−1)=sqrt((xm1(1,j,1,i)−xm1(1,j−1,1,i))**2+
 $ (ym1(1,j,1,i)−ym1(1,j−1,1,i))**2+
 $ (zm1(1,j,1,i)−zm1(1,j−1,1,i))**2)
 if(dY(j−1).gt.lMax(2))lMax(2)=dY(j−1)
 if(dY(j−1).lt.lMin(2))lMin(2)=dY(j−1)
 lMean(2)=lMean(2)+dY(j−1)
 if(ndim.eq.3)then
c z spacing
 dZ(j−1)=sqrt((xm1(1,1,j,i)−xm1(1,1,j−1,i))**2+
 $ (ym1(1,1,j,i)−ym1(1,1,j−1,i))**2+
 $ (zm1(1,1,j,i)−zm1(1,1,j−1,i))**2)
 if(dZ(j−1).gt.lMax(3))lMax(3)=dZ(j−1)
 if(dZ(j−1).lt.lMin(3))lMin(3)=dZ(j−1)
 lMean(3)=lMean(3)+dZ(j−1)
 endif
c add to counter
 lcount=lcount+1
 enddo
 enddo
c
c find global mean
 call gop(lMean,gMean,'+ ',nDim)
 call igop(lCount,ncount,'+ ',1)
 do i=1,ndim
 gMean(i)=gMean(i)/dble(nCount)
 enddo
c
c find global min
 call gop(lMin,gMin,'m ',nDim)
c
c find global max
 call gop(lMax,gMax,'M ',nDim)

212

PhilFunc.f Page 2

 return
 end subroutine ps_GridSpacing
c−−−
 subroutine ps_T_Diss(psi)
c this subroutine computes the thermal dissipation grad T:grad T at each
c grid point
c
c
 include 'SIZE'
 include 'TOTAL'
c
 integer psi !which passive scalar to use to store variable
 real dTx(lx1,ly1,lz1,lelt),
 $ dTy(lx1,ly1,lz1,lelt),
 $ dTz(lx1,ly1,lz1,lelt)
c
 nt=nx1*ny1*nz1*nelt
c compute gradients
 call gradm1(dTx,dTy,dTz,T(1,1,1,1,1))
c
c zero out the passive scalar
 call rzero(T(1,1,1,1,psi),nt)
c
c
 call add2col2(T(1,1,1,1,psi),dTx,dTx,nt)
 call add2col2(T(1,1,1,1,psi),dTy,dTy,nt)
 call add2col2(T(1,1,1,1,psi),dTz,dTz,nt)
 return
 end subroutine ps_T_Diss
c−−−
 subroutine ps_KE_Diss(psi)
c this subroutine computes (grad U+ grad U^T)^2 at each grid point
c *note additional scaling will be required based on dimensional form
c of equations and puts dissipation in passive scalar #psi
c
c
 include 'SIZE'
 include 'TOTAL'
 integer psi
c derivatives of velocity field
 real ddux(lx1,ly1,lz1,lelt),
 $ dduy(lx1,ly1,lz1,lelt),
 $ dduz(lx1,ly1,lz1,lelt),
 $ ddvx(lx1,ly1,lz1,lelt),
 $ ddvy(lx1,ly1,lz1,lelt),
 $ ddvz(lx1,ly1,lz1,lelt),
 $ ddwx(lx1,ly1,lz1,lelt),
 $ ddwy(lx1,ly1,lz1,lelt),
 $ ddwz(lx1,ly1,lz1,lelt),
 $ work(lx1,ly1,lz1,lelt)
 integer nv
c
 nv=nx1*ny1*nz1*nelv
 nt=nx1*ny1*nz1*nelt
 call rzero(T(1,1,1,1,psi),nt) ! zero out epsilon
c
c compute velocity gradients
 call gradm1(ddux,dduy,dduz,vx)
 call gradm1(ddvx,ddvy,ddvz,vy)
 call gradm1(ddwx,ddwy,ddwz,vz)
c sum up terms that contribute to dissipation
 call add2col2(T(1,1,1,1,psi),ddux,ddux,nt) !ux^2
 call add2col2(T(1,1,1,1,psi),ddvy,ddvy,nt) !vy^2
 call add2col2(T(1,1,1,1,psi),ddwz,ddwz,nt) !wz^2
 call add2col2(T(1,1,1,1,psi),dduy,ddvx,nt) !u_y*v_x (12*21)
 call add2col2(T(1,1,1,1,psi),ddvz,ddwy,nt) !v_z*w_y (23*32)
 call add2col2(T(1,1,1,1,psi),ddwx,dduz,nt) !w_x*u_z (31*13)
c terms above contribute twice
 call cmult(T(1,1,1,1,psi),2.0,nt)
c add the rest of the terms !(ij)
 call add2col2(T(1,1,1,1,psi),dduy,dduy,nt) !(12)
 call add2col2(T(1,1,1,1,psi),dduz,dduz,nt) !(13)
 call add2col2(T(1,1,1,1,psi),ddvx,ddvx,nt) !(21)

213

PhilFunc.f Page 3

 call add2col2(T(1,1,1,1,psi),ddvz,ddvz,nt) !(23)
 call add2col2(T(1,1,1,1,psi),ddwx,ddwx,nt) !(31)
 call add2col2(T(1,1,1,1,psi),ddwy,ddwy,nt) !(32)
c
c call rzero(T(1,1,1,1,psi),nt) ! zero out epsilon
 return
 end subroutine ps_KE_Diss
c−−−
 subroutine ps_Dissipation(eps,n)
c this subroutine computes (grad U+ grad U^T)^2 at each grid point
c *note additional scaling will be required based on dimensional form
c of equations
c
c parameters: eps− real array for storing the dissipation
c n − integer for size of eps
c
 include 'SIZE'
 include 'TOTAL'
 integer n
 real eps(n)
c derivatives of velocity field
 real dux(lx1,ly1,lz1,lelv),
 $ duy(lx1,ly1,lz1,lelv),
 $ duz(lx1,ly1,lz1,lelv),
 $ dvx(lx1,ly1,lz1,lelv),
 $ dvy(lx1,ly1,lz1,lelv),
 $ dvz(lx1,ly1,lz1,lelv),
 $ dwx(lx1,ly1,lz1,lelv),
 $ dwy(lx1,ly1,lz1,lelv),
 $ dwz(lx1,ly1,lz1,lelv),
 $ work(lx1,ly1,lz1,lelv)
 integer nv
c
 nv=nx1*ny1*nz1*nelv
 if(n.ne.nv)then
 write(6,*)"Error in divergence input size",n,nv
 return
 endif
 call rzero(eps,n) ! zero out epsilon
c
c compute velocity gradients
 call gradm1(dux,duy,duz,vx,nv)
 call gradm1(dvx,dvy,dvz,vy,nv)
 call gradm1(dwx,dwy,dwz,vz,nv)
c sum up terms that contribute to dissipation
 call add2col2(eps,dux,dux,nv) !ux^2
 call add2col2(eps,dvy,dvy,nv) !vy^2
 call add2col2(eps,dwz,dwz,nv) !wz^2
 call add2col2(eps,duy,dvx,nv)
 call add2col2(eps,dvz,dwy,nv)
 call add2col2(eps,dwx,duz,nv)
c terms above contribute twice
 call cmult(eps,2.0,nv)
c add the rest of the terms
 call add2col2(eps,duy,duy,nv)
 call add2col2(eps,duz,duz,nv)
 call add2col2(eps,dvx,dvx,nv)
 call add2col2(eps,dvz,dvz,nv)
 call add2col2(eps,dwx,dwx,nv)
 call add2col2(eps,dwy,dwy,nv)
c
 return
 end subroutine ps_Dissipation
c−−−
c
c
c−−−
 subroutine ps_hpts(prefix)
c **
c ***** MODIFIED VERSION OF HPTS IN REPO******
c **
C
c evaluate velocity, temperature, pressure and ps−scalars

214

PhilFunc.f Page 4

c for list of points (read from hpts.in) and dump results
c into a file (hpts.out).
c note: read/write on rank0 only
c
c ASSUMING LHIS IS MAX NUMBER OF POINTS TO READ IN ON ONE PROCESSOR

 include 'SIZE'
 include 'TOTAL'

 parameter(nfldm=2*ldim+ldimt+1)

 common /c_hptsr/ pts (ldim,lhis)
 $, fieldout (nfldm,lhis)
 $, dist (lhis)
 $, rst (lhis*ldim)

 common /c_hptsi/ rcode(lhis),elid(lhis),proc(lhis)

 common /scrcg/ pm1 (lx1,ly1,lz1,lelv) ! mapped pressure
 common /outtmp/ wrk (lx1*ly1*lz1*lelt,nfldm)
 character*3 prefix

 logical iffind

 integer icalld,npoints,npts
 save icalld,npoints,npts
 data icalld /0/
 data npoints /0/

 save inth_hpts

 nxyz = nx1*ny1*nz1
 ntot = nxyz*nelt
 nbuff = lhis ! point to be read in on 1 proc.

 if(nio.eq.0) write(6,*) 'dump history points'

 if(icalld.eq.0) then
 npts = lhis ! number of points per proc
 call ps_hpts_in(pts,npts,npoints) !npoints is initially zero
 call intpts_setup(−1.0,inth_hpts) ! use default tolerance
 endif

 call prepost_map(0) ! maps axisymm and pressure

 ! pack working array
 ! modified to dump out corrdinates as well
 nflds = ndim
 if(ifvo) then
 call copy(wrk(1,ndim+1),vx,ntot)
 call copy(wrk(1,ndim+2),vy,ntot)
 if(if3d) call copy(wrk(1,ndim+3),vz,ntot)
 nflds = ndim+ndim
 endif
 if(ifpo) then
 nflds = nflds + 1
 call copy(wrk(1,nflds),pm1,ntot)
 endif
 if(ifto) then
 nflds = nflds + 1
 call copy(wrk(1,nflds),t,ntot)
 endif
 do i = 1,ldimt
 if(ifpsco(i)) then
 nflds = nflds + 1
 call copy(wrk(1,nflds),T(1,1,1,1,i+1),ntot)
 endif
 enddo

 ! interpolate

215

PhilFunc.f Page 5

 if(icalld.eq.0) then
 call findpts(inth_hpts,rcode,1,
 & proc,1,
 & elid,1,
 & rst,ndim,
 & dist,1,
 & pts(1,1),ndim,
 & pts(2,1),ndim,
 & pts(3,1),ndim,npts)

 do i=1,npts
 ! check return code
 if(rcode(i).eq.1) then
 if (dist(i).gt.1e−12) then
 nfail = nfail + 1
 IF (NFAIL.LE.5) WRITE(6,'(a,1p4e15.7)')
 & ' WARNING: point on boundary or outside the mesh xy[z]d^2:'
 & ,(pts(k,i),k=1,ndim),dist(i)
 endif
 elseif(rcode(i).eq.2) then
 nfail = nfail + 1
 if (nfail.le.5) write(6,'(a,1p3e15.7)')
 & ' WARNING: point not within mesh xy[z]: !',
 & (pts(k,i),k=1,ndim)
 endif
 enddo
 icalld = 1
 endif
 if(nflds.ne.nfldm.and.nid.eq.0)write(6,*)"Error nflds ",nflds,
 $ nfldm
 ! evaluate input field at given points
 do ifld = ndim+1,nflds
 call findpts_eval(inth_hpts,fieldout(ifld,1),nfldm,
 & rcode,1,
 & proc,1,
 & elid,1,
 & rst,ndim,npts,
 & wrk(1,ifld))
 enddo
 !copy coordinates
 do i=1,ndim
 do ii=1,npts
 fieldout(i,ii)=pts(i,ii)
 enddo
 enddo

 ! write interpolation results to file
c call ps_hpts_out(fieldout,nflds,nfldm,npoints,nbuff)
 call ps_hpts_out_fld(prefix,fieldout,nflds,nfldm,
 $ npoints,nbuff)

 call prepost_map(1) ! maps back axisymm arrays

 if(nio.eq.0) write(6,*) 'done :: dump history points'

 return
 end
c−−−
 subroutine ps_buffer_in(buffer,npp,npoints,nbuf)

 include 'SIZE'
 include 'PARALLEL'

 common/hpts_to_elm/NELGH,NXH,NYH,NZH !sizes from hpts_fld
 real buffer(ldim,nbuf)

 ierr = 0
c read in the total number of history points from hpts.in
 if(nid.eq.0) then
 write(6,*) 'reading ps_hpts.in'
 open(50,file='ps_hpts.in',status='old',err=100)
 read(50,*,err=100) npoints,NELGH,NXH,NYH,NZH
 goto 101

216

PhilFunc.f Page 6

 100 ierr = 1
 101 continue
 endif
c check all processors for an error
 ierr=iglsum(ierr,1)
 if(ierr.gt.0) then
 write(6,*) 'Cannot open ps_hpts.in in
 $ subroutine hpts()'
 call exitt
 endif
c send total number of points to all processors and
c check to see if there is enough memory allocated
 call bcast(npoints,isize)
 call bcast(nelgh,isize)
 call bcast(nxh,isize)
 call bcast(nyh,isize)
 call bcast(nzh,isize)
 if(npoints.gt.lhis*np) then
 if(nid.eq.0) write(6,*) 'ABORT: Too many pts to read in hpts()!'
 call exitt
 endif
 if(nid.eq.0) write(6,*) 'found ', npoints, ' points'

c nbuf=2*lx1*ly1*lz1*lelt
 npass = npoints/nbuf +1 !number of passes to cover all pts
 n0 = mod(npoints,nbuf)!remainder
 if(n0.eq.0) then
 npass = npass−1
 n0 = nbuf
 endif

 len = wdsize*ndim*nbuf
c put all processors except processor 0 into receive mode
 if (nid.gt.0.and.nid.lt.npass) msg_id=irecv(nid,buffer,len)
 call nekgsync
c read in data with processor 0 from hts and send to other
c processors
 npp=0
 if(nid.eq.0) then
 i1 = nbuf
 do ipass = 1,npass
 if(ipass.eq.npass) i1 = n0
 do i = 1,i1
 read(50,*) (buffer(j,i),j=1,ndim)
 enddo
 if(ipass.lt.npass)call csend(ipass,buffer,len,ipass,0)
 enddo
 close(50)
 npp = n0
c open(50,file='hpts.out')!,status='new')
c write(50,'(A)')
c & '# time vx vy [vz] pr T PS1 PS2 ...'
 elseif (nid.lt.npass) then !processors receiving data
 call msgwait(msg_id)
 npp=nbuf
 endif

 return
 end
c−−−
 subroutine ps_hpts_in(pts,npts,npoints)
c npts=local count; npoints=total count

 include 'SIZE'
 include 'PARALLEL'

 parameter (lt2=2*lx1*ly1*lz1*lelt)
 common /scrns/ xyz(ldim,lt2)
 common /scruz/ mid(lt2) ! Target proc id
 common/hpts_to_elm/NELGH,NXH,NYH,NZH !sizes from hpts_fld
 real pts(ldim,npts)

c I think that if this conditional is false the routine

217

PhilFunc.f Page 7

c puts all of the points on processor 0
 if (lt2.gt.npts) then

 call ps_buffer_in(xyz,npp,npoints,lt2) !lt2 is the size of buffer
 if(npoints.gt.np*npts) then
 if(nid.eq.0)write(6,*)'ABORT in hpts(): npoints > NP*lhis!!'
 if(nid.eq.0)write(6,*)'Change SIZE: ',np,npts,npoints
 call exitt
 endif
 if(npoints.ne.NELGH*NXH*NYH*NZH)then
 if(nid.eq.0)write(6,*)'HPNTS dosnt match the given dims'
 $,npoints,NELGH*NXH*NYH*NZH
 call exitt
 endif

 npmax = (npoints/npts)
 if(mod(npoints,npts).eq.0) npmax=npmax+1

 if(nid.gt.0.and.npp.gt.0) then
 npts_b = lt2*(nid−1) ! # pts offset(w/o 0)
 nprc_b = npts_b/npts ! # proc offset(w/o 0)

 istart = mod(npts_b,npts) ! istart−−>npts pts left
 ip = nprc_b + 1 ! PID offset
 icount = istart ! point offset
 elseif(nid.eq.0) then
 npts0 = mod1(npoints,lt2) ! Node 0 pts
 npts_b = npoints − npts0 ! # pts before Node 0
 nprc_b = npts_b/npts

 istart = mod(npts_b,npts)
 ip = nprc_b + 1
 icount = istart
 endif

 do i =1,npp
 icount = icount + 1
 if(ip.gt.npmax) ip = 0
 mid(i) = ip
 if (icount.eq.npts) then
 ip = ip+1
 icount = 0
 endif
 enddo

 call crystal_tuple_transfer
 & (cr_h,npp,lt2,mid,1,pts,0,xyz,ldim,1)

 call copy(pts,xyz,ldim*npp)
 else
 call ps_buffer_in(pts,npp,npoints,npts)
 endif
 npts = npp

 return
 end
c−−−
 subroutine ps_hpts_out(fieldout,nflds,nfldm,npoints,nbuff)
c **
c *** MODIFIED VERSION OF HPTS_OUT IN REPO****
c **

 include 'SIZE'
 include 'TOTAL'
 common/hpts_to_elm/NELGH,NXH,NYH,NZH !sizes from hpts_fld
 real buf(nfldm,nbuff),fieldout(nfldm,nbuff)
 character*80 filename
 character*1 excode(30)
 integer iFileNum
 save iFileNum
 data iFileNum /0/

218

PhilFunc.f Page 8

 len = wdsize*nfldm*nbuff

 npass = npoints/nbuff + 1
 il = mod(npoints,nbuff)
 if(il.eq.0) then
 il = nbuff
 npass = npass−1
 endif
 !setup the header
 call BLANK(EXCODE,30)
 IF(IFXYO) then
 EXCODE(1)='X'
 EXCODE(2)=' '
 EXCODE(3)='Y'
 EXCODE(4)=' '
 i = 5
 IF(IF3D) THEN
 EXCODE(i) ='Z'
 EXCODE(i+1)=' '
 i = i + 2
 ENDIF
 ENDIF
 IF(IFVO) then
 EXCODE(i) ='U'
 EXCODE(i+1)=' '
 i = i + 2
 ENDIF
 IF(IFPO) THEN
 EXCODE(i)='P'
 EXCODE(i+1)=' '
 i = i + 2
 ENDIF
 IF(IFTO) THEN
 EXCODE(i)='T '
 EXCODE(i+1)=' '
 i = i + 1
 ENDIF
 do iip=1,ldimt1
 if (ifpsco(iip)) then
 write(excode(iip+I) ,'(i1)') iip
 write(excode(iip+I+1),'(a1)') ' '
 i = i + 1
 endif
 enddo

 if(nid.eq.0)then
 write(filename,"('udfpnts.fld',I2.2)")iFileNum+1
 open(unit=50,file=filename)!,status='new')
 WRITE(50,'(4i4,1pe14.7,I5,1X,30A1,1X,A12)')
 $ NELGH,NXH,NYH,NZH,TIME,iFileNum,(EXCODE(I),I=1,30),
 $ 'NELT,NX,NY,N'
 CDRROR=0.0
 WRITE(50,'(6G11.4)')(CDRROR,I=1,NELGH) ! dummy

 endif
 call nekgsync
 do ipass = 1,npass

 if(ipass.lt.npass) then
 if(nid.eq.0) then
 call crecv(ipass,buf,len)
 do ip = 1,nbuff
 write(50,'(1p20E14.6)'),
c & (pts(i,ip), i=1,ndim),
 & (buf(i,ip), i=1,nflds)
 enddo
 elseif(nid.eq.ipass) then
 call csend(ipass,fieldout,len,0,nid)
 endif

 else !ipass.eq.npass

219

PhilFunc.f Page 9

 if(nid.eq.0) then
 do ip = 1,il
 write(50,'(1p20E14.6)'),
c & (pts(i,ip), i=1,ndim),
 & (fieldout(i,ip), i=1,nflds)
 enddo
 endif

 endif
 enddo
 call nekgsync
 if(nid.eq.0)then
 close(unit=50)
 iFileNum=iFileNum+1
 endif
 return
 end
c−−−
 subroutine ps_hpts_out_fld(prefix,fieldout,nflds,
 $ nfldm,npoints,nbuff)

c output .fld file

 include 'SIZE'
 include 'TOTAL'
 include 'RESTART'
C
C Work arrays and temporary arrays
C
 common /scrcg/ pm1 (lx1,ly1,lz1,lelv)
 common/hpts_to_elm/NELGH,NXH,NYH,NZH
c
c note, this usage of CTMP1 will be less than elsewhere if NELT ~> 3.
 parameter (lxyz=lx1*ly1*lz1)
 parameter (lpsc9=ldimt1+9)
c parameter (lxyz=NXH*NYH*NZH)
c common /cbuff1/ tbuf(lxyz,lpsc9)
 real*4 tbuf(NXH*NYH*NZH,lpsc9)

 real*4 test_pattern

 character*3 prefix
 real buf(nfldm,nbuff),fieldout(nfldm,nbuff)!from hpts_out
 character*1 fhdfle1(132)
 character*132 fhdfle
 equivalence (fhdfle,fhdfle1)
 character*1 fldfile2(120)
 integer fldfilei(60)
 equivalence (fldfilei,fldfile2)

 character*1 excode(30)
 character*10 frmat

 common /nopenf/ nopen(99)

 common /rdump/ ntdump
 data ndumps / 0 /

 logical ifxyo_s
 integer ncount,hxyz
 hxyz=NXH*NYH*NZH
 len = wdsize*nfldm*nbuff!from hpts_out
 npass = npoints/nbuff + 1
 il = mod(npoints,nbuff)
 if(il.eq.0) then
 il = nbuff
 npass = npass−1
 endif

c Write to logfile that you're outputting data
 if(nio.eq.0) then
 WRITE(6,1001) istep,time
 1001 FORMAT(/,i9,1pe12.4,' Write checkpoint:')

220

PhilFunc.f Page 10

 endif
 call nekgsync()

c Check for file type
c If filetype =6 then use multi−file−output
 p66 = abs(param(66))
c p66=0
c if (p66.eq.6) then
c call mfo_outfld(prefix)
c call nekgsync ! avoid race condition w/ outfld
c return
c endif

 ifxyo_s = ifxyo ! Save ifxyo

c Check given prefix against the database of prefixes
 iprefix = i_find_prefix(prefix,99)

 ierr = 0
 if (nid.eq.0) then

c Open new file for each dump on /cfs
 nopen(iprefix)=nopen(iprefix)+1

 if (prefix.eq.' '.and.nopen(iprefix).eq.1) ifxyo = .true. ! 1st file

 if (prefix.eq.'rst'.and.max_rst.gt.0)
 $ nopen(iprefix) = mod1(nopen(iprefix),max_rst) ! restart

 call file2(nopen(iprefix),prefix)
c if file type is 0 or negative then open using statement for ASCII
 if (p66.lt.1.0) then
 open(unit=24,file=fldfle,form='formatted',status='unknown')
 else
c open binary file
 call izero (fldfilei,33)
 len1 = ltrunc (fldfle,131)
 call chcopy (fldfile2,fldfle,len1)
 call byte_open (fldfile2,ierr)
c write header as character string
 call blank(fhdfle,132)
 endif
 endif
c broadcast if you are dumping the grid
 call bcast(ifxyo,lsize)
c check to see if there was an error when byte_open was called
 if(p66.ge.1.0)
 $ call err_chk(ierr,'Error opening file in outfld. Abort. $')

C Figure out what goes in EXCODE (header)
 CALL BLANK(EXCODE,30)
 NDUMPS=NDUMPS+1
 i=1
 if (mod(p66,1.0).eq.0.0) then !old header format
 IF(IFXYO) then
 EXCODE(1)='X'
 EXCODE(2)=' '
 EXCODE(3)='Y'
 EXCODE(4)=' '
 i = 5
 IF(IF3D) THEN
 EXCODE(i) ='Z'
 EXCODE(i+1)=' '
 i = i + 2
 ENDIF
 ENDIF
 IF(IFVO) then
 EXCODE(i) ='U'
 EXCODE(i+1)=' '
 i = i + 2
 ENDIF
 IF(IFPO) THEN
 EXCODE(i)='P'

221

PhilFunc.f Page 11

 EXCODE(i+1)=' '
 i = i + 2
 ENDIF
 IF(IFTO) THEN
 EXCODE(i)='T '
 EXCODE(i+1)=' '
 i = i + 1
 ENDIF
 do iip=1,ldimt1
 if (ifpsco(iip)) then
 write(excode(iip+I) ,'(i1)') iip
 write(excode(iip+I+1),'(a1)') ' '
 i = i + 1
 endif
 enddo
 else
 !new header format
 IF (IFXYO) THEN !dumping grid information
 EXCODE(i)='X'
 i = i + 1
 ENDIF
 IF (IFVO) THEN !dumping velocity information
 EXCODE(i)='U'
 i = i + 1
 ENDIF
 IF (IFPO) THEN !dumping pressure information
 EXCODE(i)='P'
 i = i + 1
 ENDIF
 IF (IFTO) THEN !dumping Temperature information
 EXCODE(i)='T'
 i = i + 1
 ENDIF
 IF (LDIMT.GT.1) THEN !dumping passive scalar information
 NPSCALO = 0
 do k = 1,ldimt−1
 if(ifpsco(k)) NPSCALO = NPSCALO + 1
 enddo
 IF (NPSCALO.GT.0) THEN
 EXCODE(i) = 'S'
 WRITE(EXCODE(i+1),'(I1)') NPSCALO/10
 WRITE(EXCODE(i+2),'(I1)') NPSCALO−(NPSCALO/10)*10
 ENDIF
 ENDIF
 endif

c^^^^^^^^^^^^^^^^^^^^^^No changes necessary^^^^^^^^^^^^^^^^^^^^^^^^^^^^
c !!!!!!!!!!!!!!!!!!!!!Begin Changes!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
c
c Begining from hpts_out set up amount to pass
c npass = npoints/nbuff + 1
c il = mod(npoints,nbuff)
c if(il.eq.0) then
c il = nbuff
c npass = npass−1
c endif
C Dump header based on phil files
 ierr = 0
 if (nid.eq.0) call ps_dump_header(excode,p66,ierr)
 call err_chk(ierr,'Error dumping header in outfld. Abort. $')

c Get number of fields to write to file (xyzuvwpTt1 etc)
 call get_id(id)

 ierr = 0
 ncount=1
c Dump out hpts in terms of elements
 call nekgsync
 do ipass = 1,npass

 if(ipass.lt.npass) then
 if(nid.eq.0) then
 call crecv(ipass,buf,len)

222

PhilFunc.f Page 12

 do ip = 1,nbuff
 do i=1,nflds
 tbuf(ncount,i)=buf(i,ip)
 enddo
 ncount=ncount+1
c if(ncount−1.eq.lxyz.or.ip.eq.nbuff)then
 if(ncount−1.eq.hxyz)then
 call ps_out_buff(id,p66,tbuf,ierr)
 ncount=1
 endif
 enddo
 elseif(nid.eq.ipass) then
 call csend(ipass,fieldout,len,0,nid)
 endif

 else !ipass.eq.npass

 if(nid.eq.0) then
 do ip = 1,il
 do i=1,nflds
 tbuf(ncount,i)=fieldout(i,ip)
 enddo
 ncount=ncount+1
c if(ncount−1.eq.lxyz.or.ip.eq.il)then
 if(ncount−1.eq.hxyz)then
c call ps_out_buff(id,p66,ncount−1,ierr)
 call ps_out_buff(id,p66,tbuf,ierr)
 ncount=1
 endif
 enddo
 endif

 endif
 enddo
 call nekgsync

 call err_chk(ierr,'Error writing file in outfld. Abort. $')

 ifxyo = ifxyo_s ! restore ifxyo

 if (nid.eq.0) call close_fld(p66,ierr)
 call err_chk(ierr,'Error closing file in outfld. Abort. $')

 return
 end
c−−−
 subroutine ps_dump_header(excodein,p66,ierr)

 include 'SIZE'
 include 'TOTAL'
 common/hpts_to_elm/NELGH,NXH,NYH,NZH

 character*30 excodein

 character*30 excode
 character*1 excode1(30)
 equivalence (excode,excode1)

 real*4 test_pattern

 character*1 fhdfle1(132)
 character*132 fhdfle
 equivalence (fhdfle,fhdfle1)

 write(excode,'(A30)') excodein

 ikstep = istep
 do ik=1,10
 if (ikstep.gt.9999) ikstep = ikstep/10
 enddo

 call blank(fhdfle,132)

223

PhilFunc.f Page 13

c write(6,111) ! print on screen
c $ nelgt,nx1,ny1,nz1,time,istep,excode
c
 if (mod(p66,1.0).eq.0.0) then ! old header format
 if (p66.lt.1.0) then !ASCII
 if(nelgh.lt.10000) then
 WRITE(24,'(4i4,1pe14.7,I5,1X,30A1,1X,A12)')
 $ NELGH,NXH,NYH,NZH,TIME,ikstep,(EXCODE1(I),I=1,30),
 $ 'NELT,NX,NY,N'
 else
 WRITE(24,'(i10,3i4,1pe18.9,I9,1X,30A1,1X,A12)')
 $ NELGH,NXH,NYH,NZH,TIME,ikstep,(EXCODE1(I),I=1,30),
 $ 'NELT,NX,NY,N'
 endif
 else !Binary
 if (nelgh.lt.10000) then
 WRITE(fhdfle,'(4I4,1pe14.7,I5,1X,30A1,1X,A12)')
 $ NELGH,NXH,NYH,NZH,TIME,ikstep,(EXCODE1(I),I=1,30),
 $ 'NELT,NX,NY,N'
 else
 write(fhdfle,'(i10,3i4,1P1e18.9,i9,1x,30a1)')
 $ nelgh,nxh,nyh,nzh,time,istep,(excode1(i),i=1,30)
 endif
 call byte_write(fhdfle,20,ierr)
 endif
 else ! new header format
 if (p66.eq.0.1) then
 write(24,111)
 $ nelgh,nxh,nyh,nzh,time,istep,excode
 else
 write(fhdfle,111)
 $ nelgh,nxh,nyh,nzh,time,istep,excode
 call byte_write(fhdfle,20,ierr)
 endif
 111 FORMAT(i10,1x,i2,1x,i2,1x,i2,1x,1P1e18.9,1x,i9,1x,a)
 endif

 if(ierr.ne.0) return

 CDRROR=0.0
 if (p66.LT.1.0) then ! formatted i/o
 WRITE(24,'(6G11.4)')(CDRROR,I=1,NELGH) ! dummy
 else
C write byte−ordering test pattern to byte file...
 test_pattern = 6.54321
 call byte_write(test_pattern,1,ierr)
 endif

 return
 end
c−−−
c−−−
 subroutine ps_out_buff(id,p66,tbuf,ierr)

 include 'SIZE'
 include 'TOTAL'

 common/hpts_to_elm/NELGH,NXH,NYH,NZH
 parameter (lpsc9=ldimt1+9)
 parameter (lxyz=lx1*ly1*lz1)
c common /cbuff1/ tbuf(lxyz,lpsc9)
 real*4 tbuf(NXH*NYH*NXH,lpsc9)
 integer nxyz
 character*11 frmat

 nxyz=NXH*NYH*NZH
 call blank(frmat,11)
 if (id.le.9) then
 WRITE(FRMAT,1801) ID
 1801 FORMAT('(1p',I1,'e14.6)')
 else
 WRITE(FRMAT,1802) ID
 1802 FORMAT('(1p',I2,'e14.6)')

224

PhilFunc.f Page 14

 endif

 if (p66.lt.1.0) then
C formatted i/o
 WRITE(24,FRMAT)
 $ ((TBUF(I,II),II=1,ID),I=1,nxyz)
 else
C C binary i/o
 do ii=1,id
c call byte_reverse(tbuf,id,ierr)
 call byte_write(tbuf(1,ii),nxyz,ierr)
 if(ierr.ne.0) goto 101
 enddo
 endif
 101 continue

 return
 end
c−−−
cc**
c subroutine ps_hpts_create_vtk(nIter, bBinary, chFileNameBase)
cc ROUTINE DEFINITION
cc This routine writes out the data from hpts in an
cc curvilinear vtk file format
cc
c !COMMON BLOCKS
c include 'SIZE'
c include 'TOTAL'
c !INPUT VARIABLE DEFINITIONS
c character*50 chFileNameBase
c integer nIter
c logical bBinary
c !LOCAL VARIABLE DEFINITIONS
c character*80 chFileNameFull
c !STEP 1) OPEN VTK FILE
c if(nid.eq.0)
c write(chFileNameFull,"(A50,I0,'.vtk')")chFileNameBase,nIter
c if (bBinary) then
c call byte_open(chFileNameFull,ierr)
c else
c open(unit=50,file=chFileNameFull,form='formatted',
c $ status='unknown')
c endif
c endif
c !STEP 2) WRITE HEADER
c !STEP 3) WRITE MESH INFO
c !STEP 4) WRITE VARIABLES
c !STEP 4a) WRITE SCALARS
c !STEP 4b) WRITE VECTORS
c !STEP 5) CLOSE FILE
c if(bBinary) then
c call byte_close(ierr)
c else
c close(50)
c endif
c end subroutine
c**
c−−−
c This subroutine is used to retreive the specific z values for the mesh
 subroutine ps_GetZVal
c
 include 'SIZE'
 include 'TOTAL'
 include 'mpif.h'
 common /nekmpi/nid_,np_,nekcomm,nekgroup,nekreal
 common /myzval/ zval,zvaltol
c
c variable list
c INTEGERS:
c −− i,j −− counter variables
c −− n −− number of gll points
c −− NumVals−− number of values per each spatial location size levels
c −− levels−− number of spatial locations

225

PhilFunc.f Page 15

c −− last −− place holder for last value to be updated in vector
c REALS:
c −− rmax −− max radius to average out to
c −− r −− radius of current value
c −− ztest −− temp value for comparing
c −− zval −− array of spatial locations size levels
c −− scalar−− array of scalars to output size levels
c
c variable declerations
 integer,parameter:: levels=24*(lz1−1)+1
 integer:: n,i,j,k,last,dest,sita,npes
 integer:: oddball, buffSize
 character(13):: filename
 logical::used
 real*8:: ztest,zvaltol
 real*8,dimension(levels)::zval,tempArray
 real::locMax,locMin
 character*80::fout
c
c 1) initialize values
c call MPI_Comm_Size(nekcomm,npes,ierr)
 npes=np_
 oddball=npes−npes/2*2
 write(filename,"('node',I0,'.dat')")nid
c open(unit=nid,file=filename)
c
 n=nx1*ny1*nz1*nelv
 zvaltol=1.e−9
 buffSize=levels*8
c
 do i=1,levels
 tempArray(i)=0.0
 zval(i)=−10.0
 enddo
c
c 2) intialize zval
c
 last=0
c −2a) initialize local zval
 do i=1,nelv!nz1*nelv
 do k=1,nz1
 ztest=zm1(1,1,k,i)
 do j=1,levels
c if (zval(j,me).eq.ztest)then
 if (abs(zval(j)−zm1(1,1,k,i)).lt.zvaltol)then
 !repeated value, exit loop
 exit
 elseif(j.gt.last)then
 !original value add to the end of the vector
 zval(j)=zm1(1,1,k,i)
 last=j
 exit
 endif
 enddo
c write(6,*),"ACTVAL",zm1(1,1,k,i)
 enddo
 enddo
c −2aa) Set all unused values to zero
 last=last+1
 do i=last,levels
 zval(i)=0.0
 enddo
 last=last−1

c −2b) MPI communication to send zval to all processors
c −2b1) Set up give and receive processors
 if(nid.gt.npes/2−1)then
 dest=nid−(npes/2−1)
 dest=nid−2*dest+1
 else
 dest=npes/2−nid
 dest=nid+2*dest−1
 endif

226

PhilFunc.f Page 16

c call nekgsync
 do sita=1,npes/2+oddball
c
 if(dest.ge.npes.and.nid.lt.npes/2)then
 dest=dest−npes/2−oddball
 endif
 if(dest.ge.npes/2.and.nid.ge.npes/2)then
 dest=0−oddball
 endif
c write(6,*),"ME",nid,"DEST",dest,npes

c call nekgsync
 if(nid.le.npes/2−1)then
 call csend(dest,zval,buffSize,dest,dest)
 elseif(dest.gt.−1)then
 call crecv(nid,tempArray,buffSize)
 endif
 call nekgsync
 if(nid.gt.npes/2−1.and.dest.gt.−1)then
 call csend(dest,zval,buffSize,dest,dest)
 else
 call crecv(nid,tempArray,buffSize)
 endif
 call nekgsync

c −2c) Sort values and remove duplicates
 do j=1,levels
 used=.false.
 do k=1,last
 if(abs(zval(k)−tempArray(j)).lt.zvaltol)then
 used=.true.
 exit
 endif
 enddo
 if(used.eqv..false.)then
 zval(last+1)=tempArray(j)
 last=last+1
 endif
 enddo
c
 dest=dest+1
c
 enddo
c −2d) Bubble sort values to put them all in the same order on each processor
 do i=1,levels
 do j=1,i
 if(zval(i).lt.zval(j))then
 tempArray(1)=zval(i)
 zval(i)=zval(j)
 zval(j)=tempArray(1)
 endif
 enddo
 enddo
c do i=1,levels
c if(nid.eq.0)then
c write(6,*),"ZVAL", i, zval(i)
c endif
c write(nid,*),"ZVAL", i, zval(i)
c enddo
c call nekgsync
c close(unit=nid)
 end
c**
 subroutine ps_PlanarAverage(iter,pwr,prefix)
 include 'SIZE'
 include 'TOTAL'
 include 'mpif.h'
 common /nekmpi/ nid_,np_,nekcomm,nekgroup,nekreal
 common /myzval/ zval,zvaltol
 common /mystuff/ tx(lx1,ly1,lz1,lelt)
 $, ty(lx1,ly1,lz1,lelt)
 $, tz(lx1,ly1,lz1,lelt)

227

PhilFunc.f Page 17

 integer,parameter:: levels=24*(lz1−1)+1
 real*8:: zvaltol
 real*8,dimension(levels)::zval

 real,dimension(levels,7)::scalar,tempScalar
 real,dimension(levels,1)::flucs,tempFlucs
 real,dimension(levels):: wght,tempWght
 real::myWght,dTheta
 integer::e,i,j,k,ii,n,nt
 integer::f,nflds,nflucs,iter,pwr
 character*80 filename
 character*3 prefix

 n=nx1*ny1*nz1*nelv
 nt=nx1*ny1*nz1*nelt
 nflds=7
 nflucs=1

 do i=1,levels
 do j=1,nflds
 scalar(i,j)=0.
 tempScalar(i,j)=0.
 enddo
 wght(i)=0.
 tempWght(i)=0.
 enddo

 do i=1,levels
 do j=1,nflucs
 flucs(i,j)=0.
 tempFlucs(i,j)=0.
 enddo
 enddo
 do e=1,nelv
 !−−−Find the desired face via normal
 f=1
 do while(unz(1,1,f,e).ne.−1.0.and.f.lt.6)
 f=f+1
 enddo
 !−−−March over horizontal planes of face
 do k=1,nz1
 !−−−−−Find the appropriate height
 ii=1
 do while(abs(zval(ii)−zm1(1,1,k,e))
 $.gt.zvaltol.and.ii.lt.levels)
 ii=ii+1
c if(nid.eq.0)then
c write(6,*)f,ii,zval(ii),zm1(1,1,k,e),zvaltol
c $,abs(zval(ii)−zm1(1,1,k,e))
c endif
 enddo
c if(nid.eq.0)then
c write(6,*)f,ii,zval(ii),zm1(1,1,k,e),zvaltol
c $,abs(zval(ii)−zm1(1,1,k,e))
c endif
 !−−−−−March over the face and weight the points
 do i=1,nx1*ny1
 if(xm1(i,1,k,e).ne.0.)then
 dTheta=atan(ym1(i,1,k,e)/xm1(i,1,k,e))
 else
 dTheta=0.
 endif
 myWght=area(i,1,f,e)
 wght(ii)=wght(ii)+myWght
 scalar(ii,1)=scalar(ii,1)+(vx(i,1,k,e)*cos(dTheta)
 $ +vy(i,1,k,e)*sin(dTheta))**pwr*myWght
 scalar(ii,2)=scalar(ii,2)+vz(i,1,k,e)**pwr*myWght
 scalar(ii,3)=scalar(ii,3)+t(i,1,k,e,1)**pwr*myWght
 scalar(ii,4)=scalar(ii,4)+t(i,1,k,e,2)**pwr*myWght
 scalar(ii,5)=scalar(ii,5)+t(i,1,k,e,3)**pwr*myWght
 scalar(ii,6)=scalar(ii,6)+(t(i,1,k,e,1)*
 $ vz(i,1,k,e))**pwr*myWght
 scalar(ii,7)=scalar(ii,7)+tz(i,1,k,e)**pwr*myWght

228

PhilFunc.f Page 18

 enddo!−−i−loop
 enddo!−−k−loop
 enddo!−−−e−loop
 !−−−Sum over procesors
 call gop(scalar,tempScalar,'+ ',levels*nflds)
 call gop(wght,tempWght,'+ ',levels)
 call nekgsync
 !−−−Area average
 do j=1,nflds
 do i=1,levels
 scalar(i,j)=scalar(i,j)/wght(i)
 enddo
 enddo
 !−−−−Compute Fluctuations
 do e=1,nelv
 !−−−Find the desired face via normal
 f=1
 do while(unz(1,1,f,e).ne.−1.0.and.f.lt.6)
 f=f+1
 enddo
 !−−−March over horizontal planes of face
 do k=1,nz1
 !−−−−−Find the appropriate height
 ii=1
 do while(abs(zval(ii)−zm1(1,1,k,e))
 $.gt.zvaltol.and.ii.lt.levels)
 ii=ii+1
 enddo
 !−−−−−March over the face and weight the points
 !−−−!!!MAKE SURE YOU DOUBLE CHECK SIGNS ON MEAN PROFILE!!!
 do i=1,nx1*ny1
 myWght=area(i,1,f,e)
 flucs(ii,1)=flucs(ii,1)+(t(i,1,k,e,1)−scalar(ii,3)**
 $ (1.0/dble(pwr)))**pwr*myWght
 enddo!−−i−loop
 enddo!−−k−loop
 enddo!−−−e−loop

 !−−−Sum over processors
 call gop(flucs,tempFlucs,'+ ',levels*nflucs)
 call nekgsync
 !−−−Area average
 do j=1,nflucs
 do i=1,levels
 flucs(i,j)=flucs(i,j)/wght(i)
 enddo
 enddo
 !−−−−Dump to File
 if(nid.eq.0)then
 write(filename,"(A3,'prof',I0,'.dat')")prefix,iter
 open(unit=10,file=filename)
 do i=1,levels
 write(10,*) zval(i)
 $,scalar(i,1)
 $,scalar(i,2)
 $,scalar(i,3)
 $,scalar(i,4)
 $,scalar(i,5)
 $,scalar(i,6)
 $,scalar(i,7)
 $,flucs(i,1)
 $,wght(i)
 enddo
 close(10)
 endif
 end
c***
 subroutine psLoadProfile(dProfile,chFilename)
 !PARAMETERS
 integer,parameter:: nLevels=217
 !IO VARIABLES
 real*8 dProfile(nLevels)
 character*32 chFilename

229

PhilFunc.f Page 19

 !LOCAL VARIABLES
 integer i
 write(6,*),"Loading profile from ",chFileName
 open(unit=30,file=chFileName)
 do i=1,nLevels
 read(30,*)dProfile(i)
 enddo
 close(30)
 end

c***
 subroutine psInitStateMinus(chProfile)
 include 'SIZE'
 include 'TOTAL'
 include 'mpif.h'
 common /nekmpi/ nid_,np_,nekcomm,nekgroup,nekreal
 common /myzval/ zval,zvaltol
 character*32 chProfile
 integer,parameter:: levels=24*(lz1−1)+1
 real*8,dimension(levels)::zval,dProfile,dWork

 integer i,j,k,nt,nv

 !Initialize
 do i=1,levels
 dProfile(i)=0.
 dWork(i)=0.
 enddo

 nt=lx1*ly1*lz1*lelt
 nv=lx1*ly1*lz1*lelv

 !Get position
 if(nid.eq.0) write(6,*)"Get Zvals"
 call ps_GetZVal
 !Get Profile on rank 0
 if(nid.eq.0) call psLoadProfile(dProfile,chProfile)

 if(nid.eq.0) then
 write(6,*)"Mean Profile"
 do i=1,levels
 write(6,*)zval(i),dProfile(i)
 enddo
 endif

 !Send profile to all ranks
 if(nid.eq.0) write(6,*)"Send profile to all ranks"
 call gop(dProfile,dWork,'+ ',levels)
 !Compute changes
 if(nid.eq.0) write(6,*)"Flip Velocity"
 do i=1,nv
 vx(i,1,1,1)=−vx(i,1,1,1)
 vy(i,1,1,1)=−vy(i,1,1,1)
 vz(i,1,1,1)=−vz(i,1,1,1)
 end do
 if(nid.eq.0) write(6,*)"Flip temperature"
 do i=1,nt
 do j=1,levels
 if(abs(zval(j)−zm1(i,1,1,1)).lt.zvaltol)then
 t(i,1,1,1,1)=2.0*dProfile(j)−t(i,1,1,1,1)
 exit
 end if
 end do
 end do

 end subroutine
c***
 subroutine psStateTransform
 include 'SIZE'
 include 'TOTAL'
 include 'mpif.h'

 !LOCAL VARIABLES

230

PhilFunc.f Page 20

 integer nt, nv, nelp !points in t field, v field and p field
 integer i,j,k
 !DEFINE VARIABLES
 nt=lx1*ly1*lz1*nelt
 nv=lx1*ly1*lz1*nelv
 nelp=lx2*ly2*lz2*nelv

 !BEGIN CALCULATIONS
 do i=1,nelt
 !temperature shift and 180 degree rotation
 t(i,1,1,1,1)=−1.0*(t(i,1,1,1,1)−0.5)+0.5
 enddo
 do i=1,nelv
 !velocity shift and 180 degree rotation
 vx(i,1,1,1)=−vx(i,1,1,1)
 vy(i,1,1,1)=−vy(i,1,1,1)
 vz(i,1,1,1)=−vz(i,1,1,1)
 enddo
 do i=1,nelp
 !temperature shift and 180 degree rotation
 pr(i,1,1,1)=−pr(i,1,1,1)
 enddo
 call outpost(vx,vy,vz,pr,t(1,1,1,1,1),'FL1')
 !call prepost(.true.,'FLP')
 call exitt
 end subroutine
c−−−
 subroutine ps_usr_dt

c Change timestep if courno exceeds specified limits

 include 'SIZE'
 include 'TOTAL'

 common /orthbi/ nprv(2)

 real dtmax,p93,p94,p95,p14
 save dtmax,p93,p94,p95,p14

 real mycourno,dtprev,mycmax,mycmin,myctarg,dt_temp
 real mycfl

 MYCTARG = 0.7
 MYCMAX = 0.8
 MYCMIN = 0.6

c Save initial parameter
 IF (istep.le.5) THEN
 IF (istep.eq.0) THEN
 DTMAX = abs(param(12))
 p93 = param(93)
 p94 = param(94)
 p95 = param(95)
 p14 = param(14)
 ENDIF
 param(14)=0.0

 DT = 3.E−03
 param(12) = −DT
 return
 ENDIF

 call compute_cfl(MYCOURNO,vx,vy,vz,DT)
C call compute_ale_cfl(mycfl,vx,vy,vz,wx,wy,wz,1.0)
C MYCOURNO = mycfl*DT
 IF (nid.eq.0) write(6,28) istep,time,"C=",mycourno,
 $ 'My CFL ',session
 28 format(i7,1p1e14.7,2x,a3,2x,0p1F7.3,2x,a7,2x,a7)

 DTPREV = DT

231

PhilFunc.f Page 21

 IF(MYCOURNO.lt.1e−3)then
 DT=DTPREV*2.0
 param(14)=0
 go to 101
 else
 param(14)=p14
 END IF

 IF (MYCOURNO.GE.MYCMAX .OR. MYCOURNO.LE.MYCMIN) THEN
 DT_TEMP=DT*(MYCTARG/MYCOURNO)
 IF (DT_TEMP.LT.DTMAX) THEN
 DT = DT_TEMP
 ELSE
 DT = DTMAX
 ENDIF
 ENDIF
 101 continue
c write(6,*) 'DTCALC',istep,dt,myctarg,mycourno,DT_TEMP

c Synchronize time step for multiple sessions
 if (ifneknek) dt=uglmin(dt,1)

c Turn off projection if DT changed
 IF (ABS(DT−DTPREV).GT.1e−7) THEN
 param(93) = 0
 param(94) = 0
 param(95) = 0
 p95 = istep
 nprv(:) = 1
 IF (NID.eq.0) WRITE(6,39) "Change: DT = ",DT,session
 ELSE
 param(93) = p93 ! turn projection back on
 param(94) = p94
 param(95) = p95
 ENDIF
 param(12) = −DT

 39 FORMAT(A13,1pE14.7,2X,A10)

 return
 end
c−−−

232

PntTrans.f Page 1

c−−−
c SUBROUTINES DEVELOPED BY PHIL SAKIEVICH
c FOR TRANSFORMATIONS OF GRID
c
c−−−
c−−−
 subroutine SymFlip(symConstant)
c **
c ***** MODIFIED VERSION OF HPTS IN REPO******
c flips all fields about the mid plane of the simulation
c **
C
c evaluate velocity, temperature, pressure and ps−scalars
c for list of points (read from hpts.in) and dump results
c into a file (hpts.out).
c note: read/write on rank0 only
c
c ASSUMING LHIS IS MAX NUMBER OF POINTS TO READ IN ON ONE PROCESSOR

 include 'SIZE'
 include 'TOTAL'

 parameter(nfldm=5)
 parameter(lSYM=lx1*ly1*lz1)

 real pts (ldim,lSYM)
 $, fieldout (nfldm,lSYM)
 $, dist (lSYM)
 $, rst (lSYM*ldim)

 integer rcode(lSYM),elid(lSYM),proc(lSYM)

 common /scrcg/ pm1 (lx1,ly1,lz1,lelv) ! mapped pressure
 common /outtmp/ wrk (lx1*ly1*lz1*lelt,nfldm)
 character*3 prefix

 logical iffind
 real symConstant
 integer icalld,npoints,npts,nelmNum
 integer iEnd,iEndTotal
 save icalld,npoints,npts
 data icalld /0/
 data npoints /0/

 nxyz = nx1*ny1*nz1
 ntot = nxyz*nelt
 nbuff = lhis ! point to be read in on 1 proc.
 npts = nxyz
 if(nio.eq.0) write(6,*) 'swap points based on symmetry'
 call prepost_map(0) ! maps axisymm and pressure
 ! pack working array
 ! modified to dump out corrdinates as well
 nflds = ndim
 if(ifvo) then
 call copy(wrk(1,1),vx,ntot)
 call copy(wrk(1,2),vy,ntot)
 if(if3d) call copy(wrk(1,3),vz,ntot)
 nflds = ndim
 endif
 if(ifpo) then
 nflds = nflds + 1
 call copy(wrk(1,nflds),pm1,ntot)
 endif
 if(ifto) then
 nflds = nflds + 1
 call copy(wrk(1,nflds),t,ntot)
 endif
 do i = 1,ldimt
 if(ifpsco(i)) then
 nflds = nflds + 1
 call copy(wrk(1,nflds),T(1,1,1,1,i+1),ntot)

233

PntTrans.f Page 2

 endif
 enddo

 if(nflds.ne.nfldm.and.nid.eq.0)write(6,*)"Error nflds ",nflds,
 $ nfldm
 call intpts_setup(−1.0,inth_hpts) ! use default tolerance
 nelmNum=1 !initialize element
 iEnd=0 !set flag for end of elements to zero
 iEndTotal=0
c
c BEGIN ELEMENT BASED LOOP
c
 do while (nelmNum.le.nelt.and.iEnd.eq.0)

 call load_element(pts,npts,npoints,nelmNum,symConstant)

 ! interpolate
 call findpts(inth_hpts,rcode,1,
 & proc,1,
 & elid,1,
 & rst,ndim,
 & dist,1,
 & pts(1,1),ndim,
 & pts(2,1),ndim,
 & pts(3,1),ndim,npts)

 do i=1,npts
 ! check return code
 if(rcode(i).eq.1) then
 if (dist(i).gt.1e−12) then
 nfail = nfail + 1
 IF (NFAIL.LE.5) WRITE(6,'(a,1p4e15.7)')
 & ' WARNING: point on boundary or outside the mesh xy[z]d^2:'
 & ,(pts(k,i),k=1,ndim),dist(i)
 endif
 elseif(rcode(i).eq.2) then
 nfail = nfail + 1
 if (nfail.le.5) write(6,'(a,1p3e15.7)')
 & ' WARNING: point not within mesh xy[z]: !',
 & (pts(k,i),k=1,ndim)
 endif
 enddo
 ! evaluate input field at given points
 do ifld = 1,nflds
 call findpts_eval(inth_hpts,fieldout(ifld,1),nfldm,
 & rcode,1,
 & proc,1,
 & elid,1,
 & rst,ndim,npts,
 & wrk(1,ifld))
 enddo

 !Write results back to the current element
 do i=1,nxyz
 vx(i,1,1,nelmNum)=fieldout(1,i)
 vy(i,1,1,nelmNum)=fieldout(2,i)
 vz(i,1,1,nelmNum)=−fieldout(3,i)
 pm1(i,1,1,nelmNum)=−fieldout(4,i)
 t(i,1,1,nelmNum,1)=symConstant−fieldout(5,i)
 end do

 if(nelmNum.lt.nelt) then
 nelmNum=nelmNum+1
 else
 iEnd=1
 end if

 call igop(iEnd,iEndTotal,'* ',1)
 if(nid.eq.0)then
 write(6,*),"Elm num",nelmNum,"of",nelt,"iEnd equals",iend
 end if

234

PntTrans.f Page 3

 end do

 call prepost_map(1) ! maps back axisymm arrays

 if(nio.eq.0) write(6,*) 'done :: swap points based on symmetry'

 return
 end
c−−−
 subroutine load_element(pts,npts,npoints,nelmNum,symConstant)
c npts=local count; npoints=total count

 include 'SIZE'
 include 'TOTAL'
 !include 'PARALLEL'

 parameter (lt2=2*lx1*ly1*lz1*lelt)
 common /scrns/ xyz(ldim,lt2)
 common /scruz/ mid(lt2) ! Target proc id
 integer, INTENT(in):: nelmNum
 real pts(ldim,npts)
 real symConstant
 integer i

 !load pnts
 do i=1,lx1*ly1*lz1
 pts(1,i)=xm1(i,1,1,nelmNum)
 pts(2,i)=ym1(i,1,1,nelmNum)
 pts(3,i)=symConstant−zm1(i,1,1,nelmNum)
 end do

 return
 end

235

MYFFT Page 1

C**
C VARIABLES USED IN MYFFT ROUTINE
C**
 include "fftw3.f" !lib with FFTW type definitions

C*****BOOLEAN DATA**
 ! Variable names and definitions
C−−
 !Physical dimensions to perform FFT
 logical bFFTd2t(3)
C−−
C−−−−−−−−−−User Input Start
C DETERMINE WHICH DIRECTIONS YOU WANT TO TRANFORM HERE:
 data bFFTd2t /.True.,.False.,.False./
C−−−−−−−−−−User Input End

C*****COMMON BLOCK FOR INTEGERS**
 ! Variable names and definitions
C−−
C−−−−−−−−−−−−−−Start user input for parameters
C−−−
 !Number of processors that will use FFT
 integer, parameter::nFFTp2c=32
 !Number of blocks you domain is divided into in each direction
 integer, parameter::nFFTblX=1,nFFTblY=8,nFFTblZ=nFFTp2c/nFFTbly

 !Local sampling of field (any FFT dim must span global domain)
 integer, parameter::nFFTlx1=32,nFFTly1=8,nFFTlz1=16
 !Order of FFT (1d,2d,3d)=1,2,3
 integer, parameter::nFFTorder=1
 !Number of fields to perform FFT on
 integer, parameter::nFFTflds=ldim+1+ldimt !plus 1 is for pressure
 !Total number of points in the local FFT domain
 integer, parameter::nFFTtotal=nFFTlx1*nFFTly1*nFFTlz1
 !Destroy fftw plan manually (1) or automatically (anything else)
 integer, parameter::nFFTdmanual=0
C−−−
C−−−−−−−−−−−−−−−End user input for parameters
C−−−
 !Parameter for error codes in findpnts
 integer nFFTrcode(nFFTtotal)
 !Parameter for global domain size
 integer, parameter::nFFTGx=nFFTblX*nFFTlx1,nFFTGy=nFFTblY*nFFTly1,
 $ nFFTGz=nFFTblZ*nFFTlz1
 !Refernce for dimensions of FFT grid in vector form
 integer nFFTdims(3)
 !Array for element id's where points exist
 integer nFFTelid(nFFTtotal)
 !Array for which processor the points are stored on
 integer nFFTproc(nFFTtotal)
 !Handle for intpts routines
 integer nFFTitp_handle
 !FFT plan used by FFTW
 integer*8 nFFTplan

 COMMON /INTMYFFT/ nFFTrcode,nFFTelid,nFFTproc,
 $ nFFTitp_handle
 COMMON /INT8MYFFT/ nFFTplan
C−−

C*****COMMON BLOCK FOR REALS***
 ! Variable names and definitions
C−−
 !Spatial localtion of points for interpolated values
 real rFFTpts(ldim,nFFTtotal)
 !Working array for findpnts
 real rFFTwrk(lx1*ly1*lz1*lelt,nFFTflds)
 !Values that are stored from findpnts
 real rFFTvals(nFFTflds,nFFTtotal)
 !Distance away from point
 real rFFTdist(nFFTtotal)

236

MYFFT Page 2

 !Location of point in the local coordinates for the given element
 real rFFTrst(nFFTtotal*ldim)

C−−
 COMMON /REALMYFFT/ rFFTpts, rFFTwrk,rFFTvals, rFFTdist, rFFTrst
C−−

C*****COMMON BLOCK FOR COMPLEX***
 ! Variable names and definitions
C−−
 double complex cFFTvals(nFFTtotal,nFFTflds)
C complex(8) cFFTvals(nFFTtotal,nFFTflds)
C−−
 COMMON /COMPMYFFT/ cFFTvals
C−−
 data nFFTdims /nFFTlx1,nFFTly1,nFFTlz1/

237

IntPtsFFT.f Page 1

C***
C ROUTINES FOR PERFORMING FFT's INSIDE NEK5000
C REQUIRES FFTW (www.fftw.org), BUILT AND TESTED WITH v3.3.4
C
C CODE WRITEN BY PHIL SAKIEVICH (psakievi@asu.edu)
C
C UTILIZES DEFINITIONS IN fftw3.f by Matteo Frigo and Steven Johnson
C (http://people.sc.fsu.edu/~jburkardt/f77_src/fftw3/fftw3.html)
C
C INCLUDE FILE: fftw3.f
C LINK LIBS: −lfftw3 −lw
C
C IMPORTANT DOCUMENTATION:
C http://www.fftw.org/fftw3_doc/Calling−FFTW−from−Legacy−Fortran.html#Calling−FF
TW−from−Legacy−Fortran
C***

C OVERVIEW:
C These subroutines are designed to allow one to set up a set of
C points on a given processor get their values from somewhere in the
C parallel envirnoment using intpts and then perform FFT's on them
C locally using routines from fftw3.3.4.
C
C It is the users responsibility to ensure that the:
C
C 1) The way the points are defined are compatible with the FFT they
C intend to perform.
C++
C SUBROUTINE MYFFT
 subroutine MyFFT()
 include 'SIZE'
 include 'TOTAL'
 include 'MYFFT'

 character*32 chFilename
 integer nFFTSetup !variable to determine if setup has been called
 integer nFFToutstep
 data nFFTSetup,nFFToutstep /0,0/ !initialize value to zero
 save nFFTSetup,nFFToutstep !save value between subsequent calls

 ! 1) Make sure a valid number of processors are present
 if(nFFTp2c.gt.np) then
 if(nid.eq.0)write(6,*),"ERROR FFT: FFTp2c> Total processors"
 call exitt()
 end if

 ! 2) Perform setup procedures
 if(nFFTSetup.eq.0) then
 call FFT_Define_Points()
 ! call FFT_Find_Points()
 end if
 !if(nFFTdmanual.ne.1.or.nFFTsetup.eq.0)then
 ! call FFT_Create_Plan()
 !endif
 nFFTSetup=1
 ! 3) Perform Interpolation
 call FFT_Find_Points()
 ! call FFT_Interp_Points()
 if(nFFTdmanual.ne.1.or.nFFTsetup.eq.0)then
 call FFT_Create_Plan()
 endif
 if(nid.lt.nFFTp2c)then
 write(chFilename,"(A4)")"test"
 call dwritevts(nid,nFFTdims,nFFTflds,rFFTpts,rFFTvals,chFilename)
 endif
 ! 3a) Convert velocity to cylindrical coordinates
 call FFT_Cart2Cyl_Vel()
 ! 4) Perform Transform
 call FFT_Transform()
 ! 5) Destroy Plan
 if(nFFTdmanual.ne.1)then
 call FFT_Destroy_Plan()

238

IntPtsFFT.f Page 2

 end if
 ! 6) If desired write to file
 ! call FFT_ASCII_PRINT()
 call FFT_OUTPUT_WAVENUMBERS(nFFToutstep)
 call FFT_ENERGY_REPORT(nFFToutstep)
 nFFToutstep=nFFToutstep+1
 return
 end
C++
C SUBROUTINE DEFINE POINTS
C Users should use this to define the sampling points they want for
C their FFT's. This example will be for points in a cylinder with
C FFT in the theta direction
 subroutine FFT_Define_Points()
 include 'SIZE'
 include 'TOTAL'
 include 'MYFFT'
 common /myDomainRange/rMax,zMax,zMin,rRPnt,rRWgt,rZPnt,rZWgt
 real PI

 real rRPnt(nFFTGy),rRWgt(nFFTGy),rZPnt(nFFTGz),rZWgt(nFFTGz)
 integer i,j,k,ii,ntot
 integer iG,jG,kG
 real dR,dTheta,dZ,Rval,Tval,Zval,Xval,Yval
 real rMax,zMax,zMin

 ntot=lx1*ly1*lz1*lelv
 zMax=glmax(zm1,ntot)
 zMin=glmin(zm1,ntot)
 rMax=glmax(xm1,ntot)
 PI=4.0*atan(1.0)

 !Determine R locations
 call ZWGJD(rRPnt,rRWgt,nFFTGy,0.,0.)
 !Determin Z locations
 call ZWGJD(rZPnt,rZWgt,nFFTGz,0.,0.)
C dR=xMax/(nFFTly1*nFFTbly−1)
 dTheta=2.0*PI/(nFFTlx1*nFFTblx)
C dZ=1.0/(nFFTlz1*nFFTblZ−1)

 ! Good idea to zero out any thing that won't be using an FFT
 if(nid.ge.nFFTp2c) then
 do i=1,nFFTtotal
 rFFTpts(1,i)=0.0
 rFFTpts(2,i)=0.0
 if(if3d) rFFTpts(3,i)=0.0
 end do
 else !Initialize fields for processors of interest
 do k=1,nFFTlz1
 do j=1,nFFTly1
 do i=1,nFFTlx1
 ii=i+(j−1)*nFFTlx1+(k−1)*nFFTlx1*nFFTly1
 call FFT_L2G(i,j,k,iG,jG,kG,nid)

 Rval=rMax*(0.5*rRPnt(jG)+0.5)
 Tval=dTheta*(i−1)
 Zval=zMin+(zMax−zMin)*(0.5*rZPnt(kG)+0.5)

 rFFTpts(1,ii)=Rval*cos(Tval)
 rFFTpts(2,ii)=Rval*sin(Tval)
 rFFTpts(3,ii)=ZVal

 end do
 end do
 end do
 end if

 if(nid.eq.0) write(6,*) 'done::FFT points declared'

 return
 end
C++
C SUBROUTINE FIND POINTS

239

IntPtsFFT.f Page 3

C Find the points that will be used for the FFT and interpolate them
C to the array rFFTvals. Note that rFFTvals is type real, and when
C the FFT is performed the complex values will be held in cFFTvals.
C DO NOT confuse rFFTvals and cFFTvals
 subroutine FFT_FIND_POINTS()
 include 'SIZE'
 include 'TOTAL'
 include 'MYFFT'
 common /scrcg/ pm1 (lx1,ly1,lz1,lelv) ! mapped pressure
 integer nxyz, nflds, iCalled
 integer ntot
 save iCalled
 data iCalled/0/

 nxyz=nx1*ny1*nz1
 ntot=nxyz*nelt

 nFFTitp_handle=0
 nFlds=0
 !Map pressure to grid1
 call prepost_map(0)

 !Perform setup on first call
 if(iCalled.eq.0)call intpts_setup(−1.0,nFFTitp_handle)

 ! pack working array
 if(ifvo) then
 call copy(rFFTwrk(1,1),vx,ntot)
 call copy(rFFTwrk(1,2),vy,ntot)
 if(if3d) call copy(rFFTwrk(1,3),vz,ntot)
 nflds = ndim
 endif

 if(ifpo) then
 nflds = nflds + 1
 call copy(rFFTwrk(1,nflds),pm1,ntot)
 endif

 if(ifto) then
 nflds = nflds + 1
 call copy(rFFTwrk(1,nflds),t,ntot)
 endif

 do i = 1,ldimt
 if(ifpsco(i)) then
 nflds = nflds + 1
 call copy(rFFTwrk(1,nflds),T(1,1,1,1,i+1),ntot)
 endif
 enddo

 !find points
 if(icalled.eq.0)then
 call findpts(nFFTitp_handle,nFFTrcode,1,
 & nFFTproc,1,
 & nFFTelid,1,
 & rFFTrst,ndim,
 & rFFTdist,1,
 & rFFTpts(1,1),ndim,
 & rFFTpts(2,1),ndim,
 & rFFTpts(3,1),ndim,nFFTtotal)
 !check return codes
 do i=1,nFFTtotal
 ! check return code
 if(nFFTrcode(i).eq.1) then
 if (rFFTdist(i).gt.1e−12) then
 nfail = nfail + 1
 IF (NFAIL.LE.5) WRITE(6,'(a,1p4e15.7)')
 & ' WARNING: point on boundary or outside the mesh xy[z]d^2:'
 & ,(rFFTpts(k,i),k=1,ndim),rFFTdist(i)
 endif
 elseif(nFFTrcode(i).eq.2) then
 nfail = nfail + 1
 if (nfail.le.5) write(6,'(a,1p3e15.7)')

240

IntPtsFFT.f Page 4

 & ' WARNING: point not within mesh xy[z]: !',
 & (rFFTpts(k,i),k=1,ndim)
 endif
 enddo
 icalled=1
 endif
 !Map pressure back to grid2
 !call prepost_map(1)

 if(nid.eq.0) write(6,*) 'done::FFT points found'

 !return
 !end
C++
C SUBROUTINE FFT INTERP POINTS
C This is the routine where the actual interpolation takes place
 !subroutine FFT_INTERP_POINTS()

 !include 'SIZE'
 !include 'TOTAL'
 !include 'MYFFT'

 !common /scrcg/ pm1 (lx1,ly1,lz1,lelv) ! mapped pressure

 !Map pressure to grid1
 !call prepost_map(0)

 !evaluate field at given points
 do ifld = 1,nFFTflds
 call findpts_eval(nFFTitp_handle,rFFTvals(ifld,1),nFFTflds,
 & nFFTrcode,1,
 & nFFTproc,1,
 & nFFTelid,1,
 & rFFTrst,ndim,nFFTtotal,
 & rFFTwrk(1,ifld))
 do j=1,nFFTtotal
 !cFFTvals(j,ifld)=DCMPLX(rFFTwrk(j,ifld),0.d0)
 cFFTvals(j,ifld)=DCMPLX(rFFTvals(ifld,j),0.d0)
 end do
 enddo

 !Map pressure back to grid2
 call prepost_map(1)
 if(nid.eq.0) write(6,*) 'done::FFT points interpolation'

 return
 end
C++
C SUBROUTINE FFT CREATE PLAN
C FFTW requires plans for performing FFT's to be generated. These
C must also be destroyed later. Documenation can be found in the
C fftw resources online.
 subroutine FFT_CREATE_PLAN()

 include 'SIZE'
 include 'TOTAL'
 include 'MYFFT'

 ! I will use one of the most general plans fftw_plan_many_dft_r2c
 ! it requires the following parameters:

 integer rank,n(nFFTorder),howmany, idist, odist, istride, ostride,
 $ inembed(nFFTorder), onembed(nFFTorder), swap

 !This shares the memory for n and the embedding. My routine
 !does not function with embedded FFT for padding etc. If you need
 !embedding you will need to modify this routine
 equivalence (n,inembed)
 equivalence (n,onembed)

 !Set up FFT plan parameters
 rank=nFFTorder !order of FFT 1d, 2d, 3d

241

IntPtsFFT.f Page 5

 ! 1−D FFT parameters−−
 if(rank.eq.1)then
 if(bFFTd2t(1))then
 n(1)=nFFTlx1 !size of FFT
 istride=1 !distance between points in memory
 idist=nFFTlx1 !dist between first elements of different FFTs
 howmany=nFFTtotal/nFFTlx1*nFFTflds !total num FFTs
 else if(bFFTd2t(2)) then
 n(1)=nFFTly1
 istride=nFFTlx1
 idist=1
 howmany=nFFTtotal/nFFTly1*nFFTflds
 else if(bFFTd2t(3)) then
 n(1)=nFFTlz1
 istride=nFFTlx1*nFFTly1
 idist=nFFTtotal
 howmany=nFFTtotal/nFFTlz1*nFFTflds
 else
 go to 100
 endif
 else
 go to 100
 end if

 ostride=istride
 odist=idist
 if(nid.eq.0)then
 write(6,*)"FFT rank:",rank
 write(6,*)"FFT n:",n
 write(6,*)"FFT howmany:",howmany
 write(6,*)"FFT inembed:",inembed
 write(6,*)"FFT istride:",istride
 write(6,*)"FFT idist:",idist
 write(6,*)"FFT onembed:",onembed
 write(6,*)"FFT ostride:",ostride
 write(6,*)"FFT odist:",odist
 ! write(6,*)"FFT rVals:",rFFTvals
 endif
 call dfftw_plan_many_dft(nFFTplan,rank,n,howmany,cFFTvals,
 $ inembed,istride,idist,cFFTvals,
 $ onembed,ostride,odist,
 $ FFTW_FORWARD,FFTW_ESTIMATE)

 if(nid.eq.0) write(6,*) 'done::FFT plan creation'
 return
 100 if(nid.eq.0) write(6,*) 'ERROR:: unsupported bFFTd2t entry'
 call exitt()
 return
 end
C++
C SUBROUTINE PERFORM FFT
 subroutine FFT_TRANSFORM()

 include 'SIZE'
 include 'TOTAL'
 include 'MYFFT'

 call dfftw_execute_dft(nFFTplan,cFFTvals,cFFTvals)
 if(nid.eq.0) write(6,*) 'done::FFT transform'

 return
 end
C++
C SUBROUTINE DESTROY FFT PLAN
 subroutine FFT_DESTROY_PLAN()

 include 'SIZE'
 include 'TOTAL'
 include 'MYFFT'

 call dfftw_destroy_plan(nFFTplan)
 if(nid.eq.0) write(6,*) 'done::FFT plan destroyed'
 return

242

IntPtsFFT.f Page 6

 end
C++
C SUBROUTINE PRINT FFT DATA TO TEXT FILE
 subroutine FFT_ASCII_PRINT()

 include 'SIZE'
 include 'TOTAL'
 include 'MYFFT'

 integer nFileNum,nFileErr
 character*32 filename
 data nFileNum /1/
 save nFileNum

 !Each processor will write to the same file one at a time
 do i=1,nFFTp2c
 !if i=my rank then write data
 if(nid.eq.i−1) then
 write(filename,"('myFFT',I0,'.dat')")nFileNum

 !if rank=0 create new file, else open old file
 if(i.eq.1)then
 open(unit=10,file=filename,iostat=nFileErr,status='REPLACE')
 else
 open(unit=10,file=filename,iostat=nFileErr,status='OLD',
 $ access='APPEND')
 end if

 do j=1,nFFTtotal
 write(10,*) nid,GetAngle(rFFTpts(1,j),rFFTpts(2,j)),
 $ (real(cFFTvals(j,ii)),ii=5,5)
 end do

 close(unit=10)
 endif
 call nekgsync()
 end do
 if(nid.eq.0) write(6,*) 'done::FFT results printed to file'
 return
 end
C++
C subroutine FFT_OFFSET
C Determines local to global array offset based on lexigraphical
C ordering i.e. x+y*nX+z*nX*nY
C Must use even number of processors divisible for 1d
 subroutine FFT_OFFSET(nMyR,nXoff,nYoff,nZoff)
 include 'SIZE'
 include 'TOTAL'
 include 'MYFFT'
 !INPUT
 integer nMyR
 !OUTPUT
 integer nXoff,nYoff,nZoff

 nXoff=0
 nYoff=0
 nZoff=0

 if(nFFTblX.gt.1) nXoff=mod(nMyR,nFFTbLX)
 if(nFFTblY.gt.1.and.nFFTblX.gt.1) then
 nYoff=nMyR/nFFTblX
 else
 if(nFFTblY.gt.1) nYoff=mod(nMyR,nFFTblY)
 endif
 if(nFFTblz.gt.1) nZoff=nMyR/(nFFTblX*nFFTblY)

 end
C++
C SUBROUTINE FFT_OUTPUT_WAVENUMBERS()
C This subroutine is to output the data for each wave number in a
C seperate file. Data is collected onto rank0 and written there
 subroutine FFT_OUTPUT_WAVENUMBERS(nFFToutstep)
 include 'SIZE'

243

IntPtsFFT.f Page 7

 include 'TOTAL'
 include 'MYFFT'

 integer,parameter::nInFFT=nFFTlx1
 integer,parameter::nInSlice=nFFTly1*nFFTbly*nFFTlz1*nFFTblZ

 !Define Size of array for wave number
 real dataOutReal(nFFTflds,nInSlice)
 real dataOutComp(nFFTflds,nInSlice)
 real dataWork(nFFTflds,nInSlice)
 !TODO determine parameters for size
 real dataOutPts(3,nInSlice)
 real dataWrkPts(3,nInSlice)
 real theta
 !Define number of wave numbers to output
 integer nMyWave,nFFToutstep
 integer iG,jG,kG
 integer,dimension(3):: nDimension
 character*32 chFileName

 data nDimension /nFFTGy,1,nFFTGz/
 !Loop over the wave numbers
 do i=1,nInFFT/2+1
 !Zero out workign arrays
 call rzero(dataOutReal,nInSlice*nFFTflds)
 call rzero(dataOutComp,nInSlice*nFFTflds)
 call rzero(dataWork,nInSlice*nFFTflds)
 call rzero(dataOutPts,nInSlice*3)
 call rzero(dataWrkPts,nInSlice*3)
 !populate local spot in the array
 if(nid.lt.nFFTp2c)then
 do k=1,nFFTlz1
 do j=1,nFFTly1
 call FFT_L2G(i,j,k,iG,jG,kG,nid)
 !kg=(k)+mod(nid,nFFTblY)*nFFTly1
 !jg=(j)+(nid/nFFTblY)*nFFTlz1
 iii=(i)+(j−1)*nFFTlx1+(k−1)*nFFTlx1*nFFTly1
 ii=(jg)+(kg−1)*nFFTly1*nFFTbly
 ! if(nid.eq.1) write(6,*) i,j,k,ii,iii,"INDEX"
 if(i.lt.nInFFT/2)then
 nMyWave=i−1
 else
 nMyWave=nInFFT−i
 endif
 ! theta=GetAngle(rFFTpts(1,iii),rFFTpts(2,iii))
 !Convert to cylindrical coordinates
 dataOutPts(1,ii)=sqrt(rFFTpts(1,iii)**2+rFFTpts(2,iii)**2)
 dataOutPts(2,ii)=0.d0
 dataOutPts(3,ii)=rFFTpts(3,iii)

 do jj=1,nFFTflds
 dataOutReal(jj,ii)=real(cFFTvals(iii,jj))/dble(nInFFT)
 dataOutComp(jj,ii)=dimag(cFFTvals(iii,jj))/dble(nInFFT)
 end do

 enddo
 enddo
 endif
 !gather procedure
 call gop(dataOutPts,dataWrkPts,'+ ',3*nInSlice)
 call gop(dataOutReal,dataWork,'+ ',nInSlice*nFFTflds)
 call gop(dataOutComp,dataWork,'+ ',nInSlice*nFFTflds)
 !write data to file on rank0
 write(chFileName,"('./Snaps/',I0,'/SymS1_',I0,'_TSTEP')")
 $ i−1,nMyWave
 if(nid.eq.0) call dwritevtsc(nFFToutstep,nDimension,nFFTflds,
 $ dataOutPts,
 $ dataOutReal,dataOutComp,chFileName)
 end do
 return
 end
C++
 subroutine FFT_Cart2Cyl_Vel()

244

IntPtsFFT.f Page 8

 include 'SIZE'
 include 'TOTAL'
 include 'MYFFT'

 real locTheta,velX,velY

 do i=1,nFFTtotal
 velX=cFFTvals(i,1)
 velY=cFFTvals(i,2)
 locTheta=getangle(rFFTpts(1,i),rFFTpts(2,i))
 cFFTvals(i,1)=velX*cos(locTheta)+velY*sin(locTheta)
 cFFTvals(i,2)=−velX*sin(locTheta)+velY*cos(locTheta)
 end do

 return
 end
C++
 real function GetAngle(x,y)
 real x,y
 if(x.gt.0.0)then
 GetAngle=atan(y/x)
 else
 if(x.lt.0.0)then
 GetAngle=atan(y/x)+4.0*atan(1.0)
 else
 if(y.ge.0.0)then
 GetAngle=2.0*atan(1.0)
 else
 GetAngle=−2.0*atan(1.0)
 end if
 endif
 endif
 return
 end
C++
 subroutine FFT_ENERGY_REPORT(nFFToutstep)
C OUTPUT THE ENERGY FOR EACH WAVE NUMBER INEGRATED OVER THE R−Z
C PLANE USEING NUMERICAL INTEGRATION
C −−−> \int_0^R\int_0^H A(r,z)*A(r,z) r dr dz (*is complex conj)
 include 'SIZE'
 include 'TOTAL'
 include 'MYFFT'
 common /myDomainRange/rMax,zMax,zMin,rRPnt,rRWgt,rZPnt,rZWgt
 real rRPnt(nFFTGy),rRWgt(nFFTGy),rZPnt(nFFTGz),rZWgt(nFFTGz)
 real EnergyWave(nFFTflds,nFFTlx1),EnergyWork(nFFTflds,nFFTlx1)
 real radius
 integer nFFToutstep,ii,iii,iG,jG,kG
 character*80 fileName
 call rzero(EnergyWave,nFFTflds*nFFTlx1)
 do ii=1,nFFTlz1
 do j=1,nFFTly1
 do i=1,nFFTlx1
 do k=1,nFFTflds
 call FFT_L2G(i,j,ii,iG,jG,kG,nid)
 iii=(j−1)+(ii−1)*nFFTly1
 radius=sqrt(rFFTpts(1,i+iii*nFFTlx1)**2+
 $ rFFTpts(2,i+iii*nFFTlx1)**2)

C Ek=sum_z sum_r phi(r,z)*CC[phi(r,z)] *wr*R/2*wz*H/2
C Divide by nFFTlx1 to normalize the Fourier Coefficient
 EnergyWave(k,i)=EnergyWave(k,i)+
 $ real(dconjg(cFFTvals(i+iii*nFFTlx1,k)/dble(nFFTlx1))
 $ *(cFFTvals(i+iii*nFFTlx1,k)/dble(nFFTlx1)))
 $ *radius*rRWgt(jG)*rZWgt(kG)
 $ *0.25*rMax*(zMax−zMin)
 end do
 end do
 end do
 end do
 call gop(EnergyWave,EnergyWork,'+ ',nFFTflds*nFFTlx1)

 write(fileName,"('./Snaps/EnergyReport_',I0,'.dat')")nFFToutstep
 if(nid.eq.0)then

245

IntPtsFFT.f Page 9

 open(unit=10,file=fileName,status='REPLACE')
 do i =1,nFFTlx1/2
 write(10,*)i−1,(EnergyWave(k,i),k=1,nFFTflds)
 end do
 do i =nFFTlx1/2+1,nFFTlx1
 write(10,*)i−(nFFTlx1+1),(EnergyWave(k,i),k=1,nFFTflds)
 end do
 close(unit=10)
 end if
 return
 end
C++
 subroutine FFT_L2G(iL,jL,kL,iG,jG,kG,me)
C MAP LOCAL INDEX IN GRID TO GLOBAL INDEX
C I−Innermost loop corresponding to nFFTlx1
C J−Middle loop corresponding to nFFTly1
C K−Outermost loop corresponding to nFFTlz1
C me−mpi rank
 include 'SIZE'
 include 'MYFFT'
 integer iL,jL,kL,iG,jG,kG,me
c write(6,*)'INSIDE FFT_L2G',nFFTbly,me
c write(6,*) iL,jL,kL,iG,jG,kG,me
 kG=kL+(me/nFFTblY)*nFFTlz1
 jG=jL+mod(me,nFFTblY)*nFFTly1
 iG=iL
c write(6,*) iL,jL,kL,iG,jG,kG,me
 return
 end
C++
 real function CGL_POINT(N,I)
C Chebyshev−Gauss−Lobatto quadrature point
 !N is total number of points (N−1 polynomial)
 !I is current point in series from 1:N
 integer N,I
 CGL_POINT=−cos(4.0*atan(1.0)*dble(I−1)/dble(N−1))
 return
 end
C++
 real function CGL_WEIGHT(N,I)
C Chebyshev−Gauss−Lobatto quadrature weight
C i from 1:N
 integer N,I
 if(I.eq.1.or.I.eq.N)then
 CGL_WEIGHT=4.0*atan(1.0)*0.5/dble(N−1)
 else
 CGL_WEIGHT=4.0*atan(1.0)/dble(N−1)
 end if
 CGL_WEIGHT=CGL_WEIGHT*sqrt(1.0−CGL_POINT(N,I)**2)
 return
 end
C++
 real function CG_POINT(N,I)
C Chebyshev−Gauss quadrature point
C i from 1:N
 integer N,I
 PI=4.0*atan(1.0)
 CG_POINT=−cos((2.0*i−1)*PI/(2.0*dble(N)))
 return
 end
C++
 real function CG_WEIGHT(N,I)
 integer N,I
 CG_WEIGHT=4.0*atan(1.0)/dble(N)*sqrt(1.0−CG_POINT(N,I)**2)
 return
 end
C++
 real function QuadPnt(N,I)
 integer N,I
 QuadPnt=CG_POINT(N,I)
 !QuadPnt=CGL_POINT(N,I)
 return
 end

246

IntPtsFFT.f Page 10

C++
 real function QuadWgt(N,I)
 integer N,I
 QuadWgt=CG_Weight(N)
 !QuadWgt=CGL_Weight(N,I)
 return
 end
C++

247

psVtkOutput.cpp Page 1

#include <iostream>
#include <string>
#include <sstream>
#include "vtkVersion.h"
#include "vtkDoubleArray.h"
#include "vtkFloatArray.h"
#include "vtkPointData.h"
#include "vtkPoints.h"
#include "vtkXMLStructuredGridWriter.h"
#include "vtkXMLPStructuredGridWriter.h"
#include "vtkStructuredGrid.h"
#include "vtkSmartPointer.h"
#include "psVtkOutput.h"

void cpphello_()
{
 std::cout<<"hello world from cpp \n";
}

void dwritevtsc_(int* nPartition, int* nSize, int* nFlds, double* dPnts, double* dRF
lds,double* dCFlds, char* chFileName, int nLenFN)
{
 int nTotal=(nSize[0]*nSize[1]*nSize[2]);
 //Assign filename to string, trim white spaces and then add .vts
 chFileName[nLenFN−−]='\0'; //null terminate string
 std::string stFileName,stPFileName;
 std::stringstream ss;
 for(int i=0;i<nLenFN;i++)
 {
 if(chFileName[i]!=' ')
 stFileName+=chFileName[i];
 else
 break;
 }
 stPFileName=stFileName;
 ss<<*nPartition;
 stFileName+="_";
 stFileName+=ss.str();
 stFileName+=".vts";
 //std::cout<<"nTotal: "<<nTotal<<", "<<*nFlds<<", "<<*nPartition<<" "+stFileName<<
"\n";
 //std::cout<<"nSize: "<<nSize[0]<<", "<<nSize[1]<<", "<<nSize[2]<<" "+stFileName<<
"\n";

 //Step 1: setup grid, points and variable objects
 vtkSmartPointer<vtkStructuredGrid> sGrid =
 vtkSmartPointer<vtkStructuredGrid>::New();
 vtkSmartPointer<vtkPoints> points =
 vtkSmartPointer<vtkPoints>::New();
 vtkSmartPointer<vtkDoubleArray> R_velocity =
 vtkSmartPointer<vtkDoubleArray>::New();
 vtkSmartPointer<vtkDoubleArray> R_pressure =
 vtkSmartPointer<vtkDoubleArray>::New();
 vtkSmartPointer<vtkDoubleArray> R_temperature =
 vtkSmartPointer<vtkDoubleArray>::New();
 vtkSmartPointer<vtkDoubleArray> C_velocity =
 vtkSmartPointer<vtkDoubleArray>::New();
 vtkSmartPointer<vtkDoubleArray> C_pressure =
 vtkSmartPointer<vtkDoubleArray>::New();
 vtkSmartPointer<vtkDoubleArray> C_temperature =
 vtkSmartPointer<vtkDoubleArray>::New();

 //Step 2: Set Grid dimensions and variable tuples
 sGrid−>SetDimensions(nSize[0],nSize[1],nSize[2]);
 points−>Allocate(nTotal);
 R_velocity−>SetNumberOfComponents(3);
 R_pressure−>SetNumberOfComponents(1);
 R_temperature−>SetNumberOfComponents(1);
 R_velocity−>SetNumberOfTuples(nTotal);
 R_pressure−>SetNumberOfTuples(nTotal);
 R_temperature−>SetNumberOfTuples(nTotal);
 R_velocity−>SetName("R_velocity");
 R_pressure−>SetName("R_pressure");

248

psVtkOutput.cpp Page 2

 R_temperature−>SetName("R_temperature");
 C_velocity−>SetNumberOfComponents(3);
 C_pressure−>SetNumberOfComponents(1);
 C_temperature−>SetNumberOfComponents(1);
 C_velocity−>SetNumberOfTuples(nTotal);
 C_pressure−>SetNumberOfTuples(nTotal);
 C_temperature−>SetNumberOfTuples(nTotal);
 C_velocity−>SetName("C_velocity");
 C_pressure−>SetName("C_pressure");
 C_temperature−>SetName("C_temperature");

 //Step 3: Copy data into vtk Objects
 int j=0;
 for(int i=0;i<nTotal*3;i+=3)
 {
 // std::cout<<"i="<<i<<"\n";
 points−>InsertPoint(j,&dPnts[i]);
 j++;
 }

 //std::cout<<"Points allocated succesfully\n";
 j=0;
 for(int i=0;i<nTotal*(*nFlds);i+=(*nFlds))
 {
 // std::cout<<"i="<<i<<"\n";
 R_velocity−>InsertTuple(j,&dRFlds[i]);
 R_pressure−>InsertTuple(j,&dRFlds[i+3]);
 R_temperature−>InsertTuple(j,&dRFlds[i+4]);
 C_velocity−>InsertTuple(j,&dCFlds[i]);
 C_pressure−>InsertTuple(j,&dCFlds[i+3]);
 C_temperature−>InsertTuple(j,&dCFlds[i+4]);
 j++;
 }
 //std::cout<<"Fields allocated succesfully\n";

 //Step 4: Assign values to grid
 sGrid−>SetPoints(points);
 sGrid−>GetPointData()−>AddArray(C_velocity);
 sGrid−>GetPointData()−>AddArray(C_pressure);
 sGrid−>GetPointData()−>AddArray(C_temperature);
 sGrid−>GetPointData()−>SetVectors(R_velocity);
 sGrid−>GetPointData()−>AddArray(R_pressure);
 sGrid−>GetPointData()−>SetScalars(R_temperature);
 //std::cout<<"Grid allocated succesfully\n";

 //Step 5: Setup writer object and write file
 vtkSmartPointer<vtkXMLStructuredGridWriter> writer =
 vtkSmartPointer<vtkXMLStructuredGridWriter>::New();
 writer−>SetFileName(&stFileName[0]);
 writer−>SetInputData(sGrid);
 writer−>Write();
 //Step 6: If partition zero write pvts vile
 //if(*nPartition==0)
 /*{
 stPFileName+=".pvts";
 vtkSmartPointer<vtkXMLPStructuredGridWriter> pwriter =
 vtkSmartPointer<vtkXMLPStructuredGridWriter>::New();
 pwriter−>SetFileName(&stPFileName[0]);
 pwriter−>SetInputData(sGrid);
 pwriter−>SetNumberOfPieces(8);
 //pwriter−>SetUpdateExtent(ext);
 pwriter−>Write();
 }*/
}
void dwritevts_(int* nPartition, int* nSize, int* nFlds, double* dPnts, double* dFld
s, char* chFileName, int nLenFN)
{
 int nTotal=(nSize[0]*nSize[1]*nSize[2]);
 //Assign filename to string, trim white spaces and then add .vts
 chFileName[nLenFN−−]='\0'; //null terminate string
 std::string stFileName,stPFileName;
 std::stringstream ss;
 for(int i=0;i<nLenFN;i++)

249

psVtkOutput.cpp Page 3

 {
 if(chFileName[i]!=' ')
 stFileName+=chFileName[i];
 else
 break;
 }
 stPFileName=stFileName;
 ss<<*nPartition;
 stFileName+="_";
 stFileName+=ss.str();
 stFileName+=".vts";
 //std::cout<<"nTotal: "<<nTotal<<", "<<*nFlds<<", "<<*nPartition<<" "+stFileName<<
"\n";
 //std::cout<<"nSize: "<<nSize[0]<<", "<<nSize[1]<<", "<<nSize[2]<<" "+stFileName<<
"\n";

 //Step 1: setup grid, points and variable objects
 vtkSmartPointer<vtkStructuredGrid> sGrid =
 vtkSmartPointer<vtkStructuredGrid>::New();
 vtkSmartPointer<vtkPoints> points =
 vtkSmartPointer<vtkPoints>::New();
 vtkSmartPointer<vtkDoubleArray> velocity =
 vtkSmartPointer<vtkDoubleArray>::New();
 vtkSmartPointer<vtkDoubleArray> pressure =
 vtkSmartPointer<vtkDoubleArray>::New();
 vtkSmartPointer<vtkDoubleArray> temperature =
 vtkSmartPointer<vtkDoubleArray>::New();

 //Step 2: Set Grid dimensions and variable tuples
 sGrid−>SetDimensions(nSize[0],nSize[1],nSize[2]);
 points−>Allocate(nTotal);
 velocity−>SetNumberOfComponents(3);
 pressure−>SetNumberOfComponents(1);
 temperature−>SetNumberOfComponents(1);
 velocity−>SetNumberOfTuples(nTotal);
 pressure−>SetNumberOfTuples(nTotal);
 temperature−>SetNumberOfTuples(nTotal);
 velocity−>SetName("velocity");
 pressure−>SetName("pressure");
 temperature−>SetName("temperature");

 //Step 3: Copy data into vtk Objects
 int j=0;
 for(int i=0;i<nTotal*3;i+=3)
 {
 // std::cout<<"i="<<i<<"\n";
 points−>InsertPoint(j,&dPnts[i]);
 j++;
 }

 //std::cout<<"Points allocated succesfully\n";
 j=0;
 for(int i=0;i<nTotal*(*nFlds);i+=(*nFlds))
 {
 // std::cout<<"i="<<i<<"\n";
 velocity−>InsertTuple(j,&dFlds[i]);
 pressure−>InsertTuple(j,&dFlds[i+3]);
 temperature−>InsertTuple(j,&dFlds[i+4]);
 j++;
 }
 //std::cout<<"Fields allocated succesfully\n";

 //Step 4: Assign values to grid
 sGrid−>SetPoints(points);
 sGrid−>GetPointData()−>SetVectors(velocity);
 sGrid−>GetPointData()−>AddArray(pressure);
 sGrid−>GetPointData()−>SetScalars(temperature);

 //Step 5: Setup writer object and write file
 vtkSmartPointer<vtkXMLStructuredGridWriter> writer =
 vtkSmartPointer<vtkXMLStructuredGridWriter>::New();
 writer−>SetFileName(&stFileName[0]);
 writer−>SetInputData(sGrid);

250

psVtkOutput.cpp Page 4

 writer−>Write();
 //Step 6: If partition zero write pvts vile
 //if(*nPartition==0)
 /*{
 stPFileName+=".pvts";
 vtkSmartPointer<vtkXMLPStructuredGridWriter> pwriter =
 vtkSmartPointer<vtkXMLPStructuredGridWriter>::New();
 pwriter−>SetFileName(&stPFileName[0]);
 pwriter−>SetInputData(sGrid);
 pwriter−>SetNumberOfPieces(8);
 //pwriter−>SetUpdateExtent(ext);
 pwriter−>Write();
 }*/
}

251

psVtkOutput.h Page 1

#ifndef PSVTKOUTPUT_
#define PSVTKOUTPUT_

extern "C" {
void cpphello_();
void dwritevtsc_(int* nPartition, int* nSize, int* nFlds, double* dPnts, double* dRF
lds,double* dCFlds,char* chFileName, int nLenFN);
void dwritevts_(int* nPartition, int* nSize, int* nFlds, double* dPnts, double* dFld
s,char* chFileName, int nLenFN);
}

#endif

252

MrImaginaryVtk.py Page 1

−*− coding: utf−8 −*−
"""
Created on Sat Oct 29 11:16:59 2016

@author: psakievich
"""
import modred as mr
import numpy as np
import Quadratures
#VTK RELATED STUFFS
from vtk import vtkXMLStructuredGridReader,vtkXMLStructuredGridWriter, \
 vtkStructuredGrid
from vtk.numpy_interface import dataset_adapter as dsa
'''
Vector class
This class operates on the flow field variables
as a single, flattened vector. The vector
interfaces with the VTK structured grid.
Scalar*Vector, Vector+Vector and
(Vector,Vector). The actual variables that
are used in the in the inner product are defined
by the variables __MyRealData and __MyImagData.
'''
class MrVtkVector(mr.Vector):
 #use to define which datasets for inner product
 __MyRealData=[3,5]
 __MyImagData=[0,2]
 def __init__(self,vtkStrGrid):
 self.data=vtkStrGrid
 def __add__(self, other):
 """Return an object that is self+other for all fields
 """
 new_data=vtkStructuredGrid()
 new_data.DeepCopy(self.data)
 math_me=dsa.WrapDataObject(self.data)
 math_data=dsa.WrapDataObject(new_data)
 math_other=dsa.WrapDataObject(other.data)
 numFlds=len(math_me.PointData.keys())
 for i in range(numFlds):
 math_data.PointData[i][:]= \
 math_me.PointData[i][:]+ \
 math_other.PointData[i][:]

 return MrVtkVector(new_data)

 def __mul__(self,scalar):
 """Return an object that is self*scalar for all fields
 """
 new_data=vtkStructuredGrid()
 new_data.DeepCopy(self.data)
 math_data=dsa.WrapDataObject(new_data)
 math_me=dsa.WrapDataObject(self.data)
 numFlds=len(math_me.PointData.keys())
 numReal=int(numFlds/2)
 for i in range(numReal):
 math_data.PointData[i+numReal][:]= \
 math_me.PointData[i+numReal][:]*np.real(scalar)− \
 math_me.PointData[i][:]*np.imag(scalar)
 math_data.PointData[i][:]= \
 math_me.PointData[i][:]*np.real(scalar)+ \
 math_me.PointData[i+numReal][:]*np.imag(scalar)
 return MrVtkVector(new_data)

 def inner_product(self,other):
 weighted_me=self.weighted_copy()
 math_me=dsa.WrapDataObject(weighted_me.data)
 math_other=dsa.WrapDataObject(other.data)
 IP=0.0
 for i in range(len(self.__MyImagData)):
 IP=IP+np.vdot(math_me.PointData[self.__MyRealData[i]][:]+ \
 1j*math_me.PointData[self.__MyImagData[i]][:], \
 math_other.PointData[self.__MyRealData[i]][:]+ \
 1j*math_other.PointData[self.__MyImagData[i]][:])

253

MrImaginaryVtk.py Page 2

 return IP

 def complex_conjugate(self):
 new_data=vtkStructuredGrid()
 new_data.DeepCopy(self.data)
 math_data=dsa.WrapDataObject(new_data)
 math_me=dsa.WrapDataObject(self.data)
 numFlds=len(math_me.PointData.keys())
 for i in range(numFlds/2):
 math_data.PointData[i][:]*=−1.0
 return MrVtkVector(new_data)

 def integrated_values(self):
 weighted_me=self.weighted_copy()
 math_me=dsa.WrapDataObject(weighted_me.data)
 numFlds=len(math_me.PointData.keys())
 k=0
 for i in range(numFlds):
 if(len(math_me.PointData[i].shape)>1):
 k=k+math_me.PointData[i].shape[1]
 else:
 k=k+1
 result=np.empty(k)
 j=0
 for i in range(numFlds):
 if(len(math_me.PointData[i].shape)>1):
 for k in range(math_me.PointData[i].shape[1]):
 result[j]=np.sum(math_me.PointData[i][:,k])
 j=j+1
 else:
 result[j]=np.sum(math_me.PointData[i][:])
 j=j+1
 return result

 def get_rc_lists(self):
 return (self.__MyRealData,self.__MyImagData)

 def weight_matrix(self,QD=Quadratures.GaussLegendre()):
 '''
 Weighting matrix for the numerical integration. Different
 Quadratures can be specified
 '''
 dims=self.data.GetDimensions()
 bounds=self.data.GetPoints().GetBounds()
 B=np.array([bounds[1]−bounds[0],bounds[3]−bounds[2],bounds[5]−bounds[4]])
 wz=QD.Weights(dims[2])
 wr=QD.Weights(dims[0])
 weights=np.outer(wz,wr) #r is fastest varying in dataset
 weights=np.reshape(weights,dims[0]*dims[2])
 math_me=dsa.WrapDataObject(self.data)
 weights=weights*math_me.Points[:,0] #multiply by R
 weights=weights*0.25*B[0]*B[2] #multiply by jacobian
 return weights

 def weighted_copy(self):
 new_data=vtkStructuredGrid()
 new_data.DeepCopy(self.data)
 math_new=dsa.WrapDataObject(new_data)
 w=self.weight_matrix()
 nFields=len(math_new.PointData.keys())
 for i in range(nFields):
 if(len(math_new.PointData[i].shape)>1):
 for j in range(math_new.PointData[i].shape[1]):
 math_new.PointData[i][:,j]=math_new.PointData[i][:,j]*w
 else:
 math_new.PointData[i][:]=math_new.PointData[i][:]*w
 return MrVtkVector(new_data)
'''
Vector handle
'''
class MrVtkVecHandle(mr.VecHandle):
 def __init__(self, vec_path, base_handle=None, scale=None):
 mr.VecHandle.__init__(self,base_handle,scale)

254

MrImaginaryVtk.py Page 3

 self.vec_path=vec_path

 def _get(self):
 reader=vtkXMLStructuredGridReader()
 reader.SetFileName(self.vec_path)
 reader.Update()
 return(MrVtkVector(reader.GetOutput()))

 def _put(self,vec):
 writer=vtkXMLStructuredGridWriter()
 writer.SetInputData(vec.data)
 writer.SetFileName(self.vec_path)
 writer.Write()
class MrVtkVecHandleCreateFluctuation(mr.VecHandle):
 def __init__(self, vec_path_inst, vec_path_mean,base_handle=None, scale=None):
 mr.VecHandle.__init__(self,base_handle,scale)
 self.vec_path=vec_path_inst
 self.vec_path_mean=vec_path_mean

 def _get(self):
 reader=vtkXMLStructuredGridReader()
 reader.SetFileName(self.vec_path)
 reader.Update()
 hMean=MrVtkVecHandle(self.vec_path_mean)
 return(MrVtkVector(reader.GetOutput())+ \
 −1.0*hMean.get())

 def _put(self,vec):
 writer=vtkXMLStructuredGridWriter()
 writer.SetInputData(vec.data)
 writer.SetFileName(self.vec_path)
 writer.Write()

class MrVtkVecHandleOperateOnFluctuation(mr.VecHandle):
 def __init__(self, vec_path_inst, vec_path_mean,base_handle=None, scale=None):
 mr.VecHandle.__init__(self,base_handle,scale)
 self.vec_path=vec_path_inst
 self.vec_path_mean=vec_path_mean

 def _get(self):
 reader=vtkXMLStructuredGridReader()
 reader.SetFileName(self.vec_path)
 reader.Update()
 hMean=MrVtkVecHandle(self.vec_path_mean)
 return(MrVtkVector(reader.GetOutput())+ \
 −1.0*hMean.get())

 def _put(self,vec):
 hMean=MrVtkVecHandle(self.vec_path_mean)
 vec+=hMean.get()
 writer=vtkXMLStructuredGridWriter()
 writer.SetInputData(vec.data)
 writer.SetFileName(self.vec_path)
 writer.Write()
'''
 Namespace functions
'''
def inner_product(v1,v2):
 return v1.inner_product(v2)

def point_product(v1,v2):
 new_data=vtkStructuredGrid()
 new_data.DeepCopy(v1.data)
 math_new=dsa.WrapDataObject(new_data)
 math_v1=dsa.WrapDataObject(v1.data)
 math_v2=dsa.WrapDataObject(v2.data)
 nFields=len(math_new.PointData.keys())
 offset=nFields//2
 for i in range(nFields//2):
 math_new.PointData[i+offset][:]= \
 math_v1.PointData[i+offset][:]*math_v2.PointData[i+offset][:]− \
 math_v1.PointData[i][:]*math_v2.PointData[i][:]
 math_new.PointData[i][:]= \

255

MrImaginaryVtk.py Page 4

 math_v1.PointData[i][:]*math_v2.PointData[i+offset][:]+ \
 math_v1.PointData[i+offset][:]*math_v2.PointData[i][:]
 return MrVtkVector(new_data)

def point_division(v1,v2):
 new_data=point_product(v1,v2.complex_conjugate())
 divisor=point_product(v2,v2.complex_conjugate())
 math_new=dsa.WrapDataObject(new_data.data)
 math_div=dsa.WrapDataObject(divisor.data)
 nFields=len(math_new.PointData.keys())
 offset=nFields//2
 for i in range(offset):
 math_new.PointData[i+offset][:]= \
 math_new.PointData[i+offset][:]/math_div.PointData[i+offset][:]
 math_new.PointData[i][:]= \
 math_new.PointData[i][:]/math_div.PointData[i+offset][:]
 return new_data

256

MrRealVtk.py Page 1

−*− coding: utf−8 −*−
"""
Created on Wed Nov 9 13:30:09 2016
Class for interacting with vtk files where all data is R space
@author: psakievi
"""
import modred as mr
import numpy as np
from vtk import vtkStructuredGrid, vtkXMLStructuredGridReader, \
 vtkXMLStructuredGridWriter
from vtk.numpy_interface import dataset_adapter as dsa
#import MrImaginaryVtk as miv

class MrVtkVector(mr.Vector):
 def __init__(self,vtkStrGrid):
 self.data=vtkStrGrid
 def __mul__(self,scalar):
 new_data=vtkStructuredGrid()
 new_data.DeepCopy(self.data)
 math_me=dsa.WrapDataObject(self.data)
 math_new=dsa.WrapDataObject(new_data)
 numFlds=len(math_me.PointData.keys())
 for i in range(numFlds):
 math_new.PointData[i][:]=math_me.PointData[i][:]*scalar
 return MrVtkVector(new_data)
 def __add__(self, other):
 """Return an object that is self+other for all fields
 """
 new_data=vtkStructuredGrid()
 new_data.DeepCopy(self.data)
 math_me=dsa.WrapDataObject(self.data)
 math_data=dsa.WrapDataObject(new_data)
 math_other=dsa.WrapDataObject(other.data)
 numFlds=len(math_me.PointData.keys())
 for i in range(numFlds):
 math_data.PointData[i][:]= \
 math_me.PointData[i][:]+ \
 math_other.PointData[i][:]

 return MrVtkVector(new_data)
 def inner_product(self,other):
 weighted_me=self.weighted_copy()
 math_me=dsa.WrapDataObject(weighted_me.data)
 math_other=dsa.WrapDataObject(other.data)
 numFlds=len(math_me.PointData.keys())
 IP=0.0
 for i in range(numFlds):
 IP=IP+np.vdot(np.transpose(math_me.PointData[i][:]), \
 math_other.PointData[i][:])
 return IP
 def power(self,power):
 new_data=vtkStructuredGrid()
 new_data.DeepCopy(self.data)
 math_me=dsa.WrapDataObject(self.data)
 math_new=dsa.WrapDataObject(new_data)
 numFlds=len(math_me.PointData.keys())
 for i in range(numFlds):
 math_new.PointData[i][:]=math_me.PointData[i][:]**power
 return MrVtkVector(new_data)
class MrVtkVecHandle(mr.VecHandle):
 def __init__(self, vec_path, base_handle=None, scale=None):
 mr.VecHandle.__init__(self,base_handle,scale)
 self.vec_path=vec_path

 def _get(self):
 reader=vtkXMLStructuredGridReader()
 reader.SetFileName(self.vec_path)
 reader.Update()
 return(MrVtkVector(reader.GetOutput()))

 def _put(self,vec):
 writer=vtkXMLStructuredGridWriter()
 writer.SetInputData(vec.data)

257

MrRealVtk.py Page 2

 writer.SetFileName(self.vec_path)
 writer.Write()

def point_product(v1,v2):
 new_data=vtkStructuredGrid()
 new_data.DeepCopy(v1.data)
 mv1=dsa.WrapDataObject(v1.data)
 mv2=dsa.WrapDataObject(v2.data)
 mvN=dsa.WrapDataObject(new_data)
 numFlds=len(mv1.PointData.keys())
 for i in range(numFlds):
 mvN.PointData[i][:]=mv1.PointData[i][:]*mv2.PointData[i][:]
 return MrVtkVector(new_data)
def point_division(v1,v2):
 new_data=vtkStructuredGrid()
 new_data.DeepCopy(v1.data)
 mv1=dsa.WrapDataObject(v1.data)
 mv2=dsa.WrapDataObject(v2.data)
 mvN=dsa.WrapDataObject(new_data)
 numFlds=len(mv1.PointData.keys())
 for i in range(numFlds):
 mvN.PointData[i][:]=mv1.PointData[i][:]/mv2.PointData[i][:]
 return MrVtkVector(new_data)

258

Quadratures.py Page 1

#!/usr/bin/env python3
−*− coding: utf−8 −*−
"""
Created on Fri Nov 11 19:23:32 2016

Quadratures for numerical integration

@author: psakievich
"""
import numpy as np
import scipy.special as ss

class GaussLobattoChebyshev():
 def Point(self,n,i):
 return −np.cos(np.pi*i/(n−1.0))
 def Weight(self,n,i):
 n1=int(n)
 i1=int(i)
 if (i1==0 or i1==n1−1):
 return np.pi/(n−1)*0.5*np.sqrt(1.0−self.Point(n,i)**2)
 else:
 return np.pi/(n−1)*np.sqrt(1.0−self.Point(n,i)**2)
 def Points(self,n):
 a=np.empty(int(n))
 for i in range(int(n)):
 a[i]=self.Point(n,i)
 return a
 def Weights(self,n):
 a=np.empty(int(n))
 for i in range(int(n)):
 a[i]=self.Weight(n,i)
 return a
class GaussChebyshev():
 def Point(self,n,i):
 return −np.cos((2.0*float(i)+1.0)*np.pi/(2.0*float(n)))
 def Weight(self,n,i):
 p=self.Point(int(n),i)
 w=np.pi/float(n)*np.sqrt(1.0−p**2)
 return w
 def Points(self,n):
 a=np.empty(int(n))
 for i in range(int(n)):
 a[i]=self.Point(n,i)
 return a
 def Weights(self,n):
 w=np.empty(int(n))
 for i in range(int(n)):
 w[i]=self.Weight(n,i)
 return w
class GaussLegendre():
 def Points(self,n):
 p,w=ss.p_roots(n)
 return p
 def Weights(self,n):
 p,w=ss.p_roots(n)
 return w
 def Point(self,n,i):
 return self.Points(n)[i]
 def Weight(self,n,i):
 return self.Weights(n)[i]
class GaussLobattoLegendre():
 '''
 pg. 61 Karniadakis and Sherwin "Spectral/hp Element Methods for
 Computational Fluid Dynamics" Secion Edition
 '''
 def Points(self,n):
 p=np.empty(n)
 w=np.empty(n)
 p[1:n−1],w[1:n−1]=ss.j_roots(n−2,1.0,1.0)
 p[0]=−1.0
 p[n−1]=1.0
 return p
 def Weights(self,n):

259

Quadratures.py Page 2

 w=np.empty(n)
 p=self.Points(n)
 for i in range(n):
 w[i]=2.0/(n*(n−1)*ss.eval_legendre(n−1,p[i])**2)
 return w
 def Point(self,n,i):
 return self.Points(n)[i]
 def Weight(self,n,i):
 return self.Weights(n)[i]

def Converge(QuadratureClass,start=5,stop=50,inc=5):
 error=[]
 pnts=[]
 for i in range(start,stop,inc):
 pnts.append(i)
 exact=2.0/3.0 #x^2
 test=np.sum(QuadratureClass.Points(i)**2*QuadratureClass.Weights(i))
 error.append(abs(exact−test))
 return pnts,error

260

ModeTransforms.py Page 1

−*− coding: utf−8 −*−
"""
Created on Thu Oct 20 10:21:45 2016

@author: psakievich
"""

from vtk import vtkStructuredGrid, \
vtkXMLStructuredGridReader, \
vtkXMLStructuredGridWriter, \
vtkPoints, \
vtkDoubleArray
import numpy as np
from vtk.numpy_interface import dataset_adapter as dsa
'''
Routine for documenting individual modes
Transform Fourier coefficients back to real
space. One period of the mode is documented
over a user specified angle
'''
def FourierToRealDoc(fileName,iFFTsize,outputFile,ang,modeNumber=1):
 reader=vtkXMLStructuredGridReader()
 #load the grid into memory
 reader=vtkXMLStructuredGridReader()
 reader.SetFileName(fileName)
 reader.Update()
 fourierGrid=(dsa.WrapDataObject(reader.GetOutput()))
 #clean up
 del reader
 #print(modeNumber)
 #setup mesh dimensions
 nR=fourierGrid.GetDimensions()[0]
 nTheta=iFFTsize+1
 nZ=fourierGrid.GetDimensions()[2]
 nTotal=nR*nZ*nTheta
 keys=fourierGrid.PointData.keys()
 theta=np.linspace(0,ang,nTheta)
 #Create 3D grid
 grid3d=vtkStructuredGrid()
 grid3d.SetDimensions(nTheta,nR,nZ)

 points=vtkPoints()
 points.Allocate(nTotal)
 for k in range(nZ):
 for j in range(nR):
 for i in range(nTheta):
 x=fourierGrid.Points[j+k*nR,0]*np.cos(theta[i])
 y=fourierGrid.Points[j+k*nR,0]*np.sin(theta[i])
 z=fourierGrid.Points[j+k*nR,2]
 #print(x,y,z,theta[i],sGrid.Points[j+k*nR,1],sGrid.Points[j+k*nR,2])
 points.InsertNextPoint(x,y,z)
 #Set Up 3D grid
 grid3d.SetPoints(points)
 vel3d=vtkDoubleArray()
 tem3d=vtkDoubleArray()
 pre3d=vtkDoubleArray()

 vel3d.SetName('velocity')
 tem3d.SetName('temperature')
 pre3d.SetName('pressure')

 vel3d.SetNumberOfComponents(3)
 tem3d.SetNumberOfComponents(1)
 pre3d.SetNumberOfComponents(1)

 vel3d.SetNumberOfTuples(nTotal)
 tem3d.SetNumberOfTuples(nTotal)
 pre3d.SetNumberOfTuples(nTotal)
 #Set up iffts and populate 3d Grid
 for k in range(nZ):
 for i in range(nR):
 temp=np.zeros(iFFTsize/2+1,dtype=complex)
 v=np.array([temp.copy(),temp.copy(),temp.copy()])

261

ModeTransforms.py Page 2

 press=temp.copy()
 #set up vectors for ifft

 for ii in range(3):
 v[ii,modeNumber]=complex(\
 fourierGrid.PointData[keys[3]][i+k*nR,ii], \
 fourierGrid.PointData[keys[0]][i+k*nR,ii])
 press[modeNumber]=complex(\
 fourierGrid.PointData[keys[4]][i+k*nR], \
 fourierGrid.PointData[keys[1]][i+k*nR])
 temp[modeNumber]=complex(\
 fourierGrid.PointData[keys[5]][i+k*nR], \
 fourierGrid.PointData[keys[2]][i+k*nR])
 #scale by grid size
 #print(i,k,temp)
 v=v*iFFTsize
 press=press*iFFTsize
 temp=temp*iFFTsize
 temp1=np.zeros(nTheta)
 press1=np.zeros(nTheta)
 v1=np.array([np.zeros(nTheta),np.zeros(nTheta),np.zeros(nTheta)])
 #conduct iFFT's
 for ii in range(3):
 v1[ii,0:nTheta−1]=np.fft.irfft(v[ii,:])
 v1[ii,nTheta−1]=v1[ii,0]
 press1[0:nTheta−1]=np.fft.irfft(press)
 temp1[0:nTheta−1]=np.fft.irfft(temp)
 press1[nTheta−1]=press1[0]
 temp1[nTheta−1]=temp1[0]
 #Translate data to cartesiant coordinates for visualization purposes
 for jj in range(nTheta):
 index=jj+i*nTheta+k*nR*nTheta
 vx=v1[0,jj]*np.cos(theta[jj])−v1[1,jj]*np.sin(theta[jj])
 vy=v1[0,jj]*np.sin(theta[jj])+v1[1,jj]*np.cos(theta[jj])
 vel3d.SetTuple3(index,vx,vy,v1[2,jj])
 tem3d.SetTuple1(index,temp1[jj])
 pre3d.SetTuple1(index,press1[jj])
 grid3d.GetPointData().SetVectors(vel3d)
 grid3d.GetPointData().AddArray(pre3d)
 grid3d.GetPointData().SetScalars(tem3d)

 writer=vtkXMLStructuredGridWriter()
 writer.SetFileName(outputFile)
 writer.SetInputData(grid3d)
 writer.Write()
'''
Transform a list of Fourier modes back to real space.
Multiple input files are specifie through fileNames
and output as one file outputFile.

fileNames must be a list i.e. []
iFFTsize must be 2 times larger than the largest
wave number.
'''
def FourierToReal(fileNames,iFFTsize,outputFile):
 numModes=len(fileNames)
 fourierGrids=[]
 modeNumber=[]
 reader=vtkXMLStructuredGridReader()
 #load each of the grids into memory
 for i in range(numModes):
 reader=vtkXMLStructuredGridReader()
 reader.SetFileName(fileNames[i])
 reader.Update()
 fourierGrids.append(dsa.WrapDataObject(reader.GetOutput()))
 tempVar=fileNames[i].split('_')
 modeNumber.append(int(tempVar[1]))
 #clean up
 del reader, tempVar
 #print(modeNumber)
 #setup mesh dimensions
 nR=fourierGrids[0].GetDimensions()[0]
 nTheta=iFFTsize+1

262

ModeTransforms.py Page 3

 nZ=fourierGrids[0].GetDimensions()[2]
 nTotal=nR*nZ*nTheta
 keys=fourierGrids[0].PointData.keys()
 theta=np.linspace(0,2*np.pi,nTheta)
 #Create 3D grid
 grid3d=vtkStructuredGrid()
 grid3d.SetDimensions(nTheta,nR,nZ)

 points=vtkPoints()
 points.Allocate(nTotal)
 for k in range(nZ):
 for j in range(nR):
 for i in range(nTheta):
 x=fourierGrids[0].Points[j+k*nR,0]*np.cos(theta[i])
 y=fourierGrids[0].Points[j+k*nR,0]*np.sin(theta[i])
 z=fourierGrids[0].Points[j+k*nR,2]
 #print(x,y,z,theta[i],sGrid.Points[j+k*nR,1],sGrid.Points[j+k*nR,2])
 points.InsertNextPoint(x,y,z)
 #Set Up 3D grid
 grid3d.SetPoints(points)
 vel3d=vtkDoubleArray()
 tem3d=vtkDoubleArray()
 pre3d=vtkDoubleArray()

 vel3d.SetName('velocity')
 tem3d.SetName('temperature')
 pre3d.SetName('pressure')

 vel3d.SetNumberOfComponents(3)
 tem3d.SetNumberOfComponents(1)
 pre3d.SetNumberOfComponents(1)

 vel3d.SetNumberOfTuples(nTotal)
 tem3d.SetNumberOfTuples(nTotal)
 pre3d.SetNumberOfTuples(nTotal)
 #Set up iffts and populate 3d Grid
 for k in range(nZ):
 for i in range(nR):
 temp=np.zeros(iFFTsize/2+1,dtype=complex)
 v=np.array([temp.copy(),temp.copy(),temp.copy()])
 press=temp.copy()
 #set up vectors for ifft
 for kk in range(numModes):
 for ii in range(3):
 v[ii,modeNumber[kk]]=complex(\
 fourierGrids[kk].PointData[keys[3]][i+k*nR,ii], \
 fourierGrids[kk].PointData[keys[0]][i+k*nR,ii])
 press[modeNumber[kk]]=complex(\
 fourierGrids[kk].PointData[keys[4]][i+k*nR], \
 fourierGrids[kk].PointData[keys[1]][i+k*nR])
 temp[modeNumber[kk]]=complex(\
 fourierGrids[kk].PointData[keys[5]][i+k*nR], \
 fourierGrids[kk].PointData[keys[2]][i+k*nR])
 #scale by grid size
 #print(i,k,temp)
 v=v*iFFTsize
 press=press*iFFTsize
 temp=temp*iFFTsize
 temp1=np.zeros(nTheta)
 press1=np.zeros(nTheta)
 v1=np.array([np.zeros(nTheta),np.zeros(nTheta),np.zeros(nTheta)])
 #conduct iFFT's
 for ii in range(3):
 v1[ii,0:nTheta−1]=np.fft.irfft(v[ii,:])
 v1[ii,nTheta−1]=v1[ii,0]
 press1[0:nTheta−1]=np.fft.irfft(press)
 temp1[0:nTheta−1]=np.fft.irfft(temp)
 press1[nTheta−1]=press1[0]
 temp1[nTheta−1]=temp1[0]
 #Translate data to cartesiant coordinates for visualization purposes
 for jj in range(nTheta):
 index=jj+i*nTheta+k*nR*nTheta
 vx=v1[0,jj]*np.cos(theta[jj])−v1[1,jj]*np.sin(theta[jj])

263

ModeTransforms.py Page 4

 vy=v1[0,jj]*np.sin(theta[jj])+v1[1,jj]*np.cos(theta[jj])
 vel3d.SetTuple3(index,vx,vy,v1[2,jj])
 tem3d.SetTuple1(index,temp1[jj])
 pre3d.SetTuple1(index,press1[jj])
 grid3d.GetPointData().SetVectors(vel3d)
 grid3d.GetPointData().AddArray(pre3d)
 grid3d.GetPointData().SetScalars(tem3d)

 writer=vtkXMLStructuredGridWriter()
 writer.SetFileName(outputFile)
 writer.SetInputData(grid3d)
 writer.Write()

264

APPENDIX C

CONSENT TO USE PUBLISHED MATERIAL

265

I, Philip John Sakievich, declare that consent as been obtained from co-authors
Dr. Yulia Peet and Dr. Ronald Adrian to use the published work in chapter 3 of this
document.

Chapter 3 was published in the International Journal of Heat and Fluid Flow in
2016 with the title Large-scale thermal motions of turbulent Rayleigh-Bénard convection
in a wide aspect-ratio cylindrical domain.

Additional permission has been obtained from Dr. Ronald Adrian to reuse an
image from his 1986 paper Turbulent thermal convection in wide horizontal fluid layers
in the journal Experiments in Fluids.

266

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 Introduction
	2 Numerical Methodology
	3 Large-Scale Thermal Motions of Turbulent Rayleigh-Bénard Convection in a Wide Aspect-Ratio Cylindrical Domain
	Bibliography
	4 Mitigating the Influence of Very Long-Lived Statistics to Improve Statistical Convergence in Finite-Time Simulation of Rayleigh-Bénard Convection
	5 Azimuthal Fourier Decomposition
	6 Proper Orthogonal Decomposition of Fourier Modes
	7 Summary and Conclusions
	References

	Appendix
	A POD Mode Documetation
	B Post Processing Code
	C Consent to Use Published Material

