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ABSTRACT  
   

Environmental remote sensing has seen rapid growth in the recent years and 

Doppler wind lidars have gained popularity primarily due to their non-intrusive, high 

spatial and temporal measurement capabilities.  While lidar applications early on, relied 

on the radial velocity measurements alone, most of the practical applications in wind 

farm control and short term wind prediction require knowledge of the vector wind field. 

Over the past couple of years, multiple works on lidars have explored three primary 

methods of retrieving wind vectors viz., using homogeneous windfield assumption, 

computationally extensive variational methods and the use of multiple Doppler lidars. 

Building on prior research, the current three-part study, first demonstrates the 

capabilities of single and dual Doppler lidar retrievals in capturing downslope 

windstorm-type flows occurring at Arizona’s Barringer Meteor Crater as a part of the 

METCRAX II field experiment.  Next, to address the need for a reliable and 

computationally efficient vector retrieval for adaptive wind farm control applications, a 

novel 2D vector retrieval based on a variational formulation was developed and applied 

on lidar scans from an offshore wind farm and validated with data from a cup and vane 

anemometer installed on a nearby research platform.  Finally, a novel data visualization 

technique using Mixed Reality (MR)/ Augmented Reality (AR) technology is presented 

to visualize data from atmospheric sensors.  MR is an environment in which the user's 

visual perception of the real world is enhanced with live, interactive, computer generated 

sensory input (in this case, data from atmospheric sensors like Doppler lidars).  A 

methodology using modern game development platforms is presented and demonstrated 

with lidar retrieved wind fields.  In the current study, the possibility of using this 
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technology to visualize data from atmospheric sensors in mixed reality is explored and 

demonstrated with lidar retrieved wind fields as well as a few earth science datasets for 

education and outreach activities. 
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CHAPTER 1 

INTRODUCTION 

Lidar (acronym for ‘Light detection and ranging’) is a remote sensing device that 

works by emitting laser radiation and analyzing the backscattered light. Among the 

different types of lidars, pulsed-coherent Doppler lidars (referred as Doppler Lidar from 

now on) measure, range resolved, line of sight wind velocity in the atmosphere. There is 

a growing body of literature, ranging from meteorology (e.g. Banta et al., 1996; 

Choukulkar et al., 2012; Newsom & Banta, 2003), wind resource assessment (Frehlich & 

Kelley, 2008; Krishnamurthy, et al. 2013) and aviation safety (Shun & Chan, 2008; Shun, 

2003) ever since Doppler lidars were first used in environmental remote sensing for 

measuring wind fields. With the recent commercial availability & affordability of 

compact solid state lidars, the use of multiple lidars in Dual-Doppler and multiple-

Doppler modes is becoming more feasible.  In this chapter, a brief description of the 

measurement principle of Doppler lidars, along with the description of popular vector 

retrievals is presented. 

1.1 Coherent Doppler Lidar Working Principle 

As the name suggests, a Doppler lidar obtains the line of sight velocity by 

measuring the Doppler shift of particles (aerosols) in the atmosphere.  A coherent 

Doppler lidar first sends an eye-safe infrared laser pulse into the atmosphere. Due to the 

particular wavelength regime (i.e., in the infrared range ~1.5µm – 2 µm), this laser beam 

is scattered back by aerosols (e.g., dust, pollen, sea salt etc.) transported by the wind, as 

the pulse travels through the atmosphere.  Backscattered light is collected by a transceiver 
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(a transmitter and a receiver in a single unit) and optically mixed with a continuous wave 

laser (Local Oscillator, LO) from which the initial laser pulses were derived (See Figure 

1).  This mixing process (heterodyning) results in an optical signal with a frequency 

corresponding to the difference between the LO frequency and the backscattered field 

(i.e., beat frequency) which is then passed onto a photo detector with a pass band 

corresponding expected range of Doppler shift frequencies.  The resulting signal from the 

photo detector will be of the form  

𝑠 𝑡 ∝ cos 𝛿𝜔67889:; + 𝜔=;>?@AB==:6 + 𝜔B?=:;A:6B>=: − 𝜔DE 𝑡 + ∆𝜑 						(1.1) 

where, 𝛿𝜔67889:; is the Doppler shift in frequency (the main quantity of interest) 

(Newsom, 2012).  In an ideal case, 𝜔=;>?@AB==:6(frequency of the transmitted pulse) will 

be equal to 𝜔DE (frequency of the local oscillator) and they cancel each other out. 

𝜔B?=:;A:6B>=: is a small frequency shift added to the outgoing pulse.  At this stage, one of 

the popular methods to obtain 𝛿𝜔67889:; is from the Fourier transform of the 

autocovariance of the signal given in Eq. (1.2).  Since the signal from the atmosphere is 

inherently noisy, to reduce the effect of noise, the complex autocovariance at each range 

gate is accumulated/averaged over a number of pulses prior to the Doppler frequency 

detection stage.  Although increasing the averaging reduces the frequency of 

measurement, the SNR of the Doppler spectrum increases as the square root of the 

number of pulses that are averaged (Cariou & Boquet, 2011).  From the Doppler shift 

frequency, the velocity is determined by  

𝑉; = −
𝜆
2 .
𝛿𝜔67889:;

2𝜋 																																																				(1.2) 
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 where,  𝜆 is the wavelength of outgoing laser radiation, 𝑉; is the line of sight 

velocity (referred to as radial velocity from this point forward) (Newsom, 2012).  In the 

absence of 𝜔B?=:;A:6B>=: (See Eq (1.1)), both positive and negative Doppler shifts would 

result in the same Fourier spectrum due to the cosine term encompassing 𝛿𝜔67889:;.  By 

adding this known frequency (𝜔B?=:;A:6B>=:) to the outgoing pulse, positive and negative 

Doppler shifts could be uniquely determined about this intermediate frequency.  

In addition to the velocity along the line of sight, most of the commercially 

available Doppler lidars report signal to noise ratio (A measure of signal strength to noise 

strength in the spectral domain), backscatter (most simply, SNR adjusted for the signal 

degradation with range) and spectral width (width of the spectrum around the Doppler 

shift frequency peak, e.g., full width at half the maximum value).  By means of mirrors 

Figure 1.  Working principle of a coherent Doppler lidar 
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fixed in a rotating scanning head, the lidar beam can be pointed in any direction in the 

hemisphere, to map the surrounding winds.  Three fundamental scan configurations can 

be set up to map the domain of interest: (a) Range Height Indicator scans (RHI scans): 

where in the azimuthal angle is fixed and the lidar performs a scan in the vertical plane, 

Figure 2. Common scan configurations- PPI, RHI and stare scan.  θ is the azimuth 

angle (angle measured in the horizontal plane) and φ is the elevation angle (angle 

measured in the vertical plane).  V$, V% and V& are the three velocity components at a 

point ‘P’ in the lidar’s spherical coordinate system. The lidar measures V$. The dots 

along the beam represent range gates. 
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(b) Plan Position Indicator scans (PPI scans): where the elevation angle is fixed and the 

lidar performs a conical scan along the azimuthal direction, and (c) Stare: where the lidar 

fixes both the azimuth and elevation angle to obtain the time varying LOS velocity 

measurement (See Figure 2). 

1.2 What Is Radial Velocity? 

Consider a Doppler lidar positioned at some location and scanning the atmosphere 

around it. At any given instant of time, the pointing direction of the scanning head (and 

the lidar beam) can be determined using the azimuth and elevation angles (𝜃, 𝜑).  For 

instance, a value of (0°,0°) would correspond to the lidar beam directed parallel to the 

ground pointing to the East (See Figure 2).  Let (u,v,w) be the Cartesian velocity 

components of the wind vector at some point (P) in space (see Figure 2). The Cartesian 

velocity components and their spherical counterparts (𝑉;, 𝑉S, 𝑉T), at this location, are 

related by the following equations:  

𝑉; = 𝑢. 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑 + 𝑣. 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 + 𝑤. 𝑠𝑖𝑛𝜑																																(1.3𝑎) 

𝑉S = −𝑢. 𝑠𝑖𝑛𝜃 + 𝑣. 𝑐𝑜𝑠𝜃																																																(1.3𝑏) 

𝑉T = −𝑢. 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑 − 𝑣. 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 + 𝑤. 𝑐𝑜𝑠𝜑																															(1.3𝑐) 

where, 𝑉; is the component of velocity along the lidar’s line of sight, 𝑉S is the 

tangential component of velocity in the azimuthal direction, and 𝑉T is the tangential 

component of velocity perpendicular to both 𝑉;	and 𝑉S.  As mentioned earlier, a lidar can 

only measure the Doppler shift corresponding to the radial velocity component (𝑉;, See 

Eq (1.3a)) and thus, 3D-wind field reconstruction from a single measurement results in an 
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underdetermined linear system with infinite number of solutions necessitating additional 

models or assumptions regarding the flow to close the linear system. 

1.3 Wind Retrievals 

Most of the existing flow field reconstruction algorithms rely on one of the 

following: a) Homogeneous wind field assumption, b) Variational methods based on 

computational fluid dynamics (CFD) models, c) Use of multiple Doppler lidars.  

1.3.1 Retrievals based on homogeneous wind field assumption.   

By far the most popular and widely used retrievals, in these retrievals, the velocity 

field is assumed to be horizontally homogeneous/uniform within a certain analysis 

region.  This facilitates the vector wind field reconstruction by combining radial velocity 

measurements from multiple look angles to determine the vector field which fits best 

with the measurements. Velocity azimuth display (VAD), sector-VAD, Volume Velocity 

Processing, and Doppler Beam Swing (DBS) retrievals fall in this category. 

a) Velocity Azimuth Display (VAD).  Velocity Azimuth Display (VAD) is named 

after the plot used to visualize the radial velocity product from a 360° PPI scan at 

a fixed range gate (Figure 3a). For a given elevation angle ‘𝜑’ the lidar is 

configured to perform a full 360°, conical scan.  When the flow is assumed to be 

horizontally homogeneous in the area swept by the scan and the lidar is perfectly 

leveled with the ground, the radial velocity measurements from any fixed height 

can be expressed as a function of azimuth alone (Figure 3b).  This radial velocity 

equation has a characteristic of a sinusoid (Lehremitte and Atlas, 1961) whose 
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amplitude corresponds to the horizontal wind speed, phase corresponds to the 

wind direction and the DC shift corresponds to the vertical velocity component.   

Thus, the algorithm basically involves determining the sinusoid that best fits the 

given radial velocity measurements and repeating the process for each range gate 

Figure  3. a) A 360° azimuth coverage PPI scan at a fixed elevation angle showing 

the velocity azimuth display (VAD) plot (b).  In the red dots depict radial velocity 

measurements for each line of sight and the vector field which best fits the equation 

is shown with a black dotted line.  The amplitude, phase and DC offset of the best fit 

sinusoid correspond to the horizontal wind speed, wind direction and vertical 

velocity respectively. 

a) 

b) 
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to produce vertical profiles of the three components of wind velocity.  VAD was 

first developed for Doppler radars and different methods for obtaining the best fit 

sinusoid were explored by previous works including Fourier series expansion 

(Browning & Wexler, 1968; Lehermitte & Miller, 1970), Least squares approach 

(Boccippio, 1995), quadratic curve fitting at the maximum (Siemen & Holt, 2000) 

and combining scans from multiple elevation (Extended VAD or EVAD- 

Srivastava et al., 1986).  

The main disadvantage of VAD stems from the homogeneity assumption 

which only holds when in stable atmospheric conditions.  Also, there is a trade-off 

between shorter sampling time and the stability of the algorithm.  Due to the 

presence of turbulence and lidar data being noisy, the stability of the retrieval is 

dependent on the number of radial velocity measurements at each elevation (i.e., 

number of lines of sight).  However, increasing the density typically involves 

either reducing the pulse averaging (which could increase the noise in the 

measurements) or decreasing the scan speed (which could invalidate the 

homogeneity assumption).   

a) Doppler Beam Swing (DBS).  Doppler beam swinging (DBS) is an extension of 

VAD which could be used to retrieve vertical profiles of the wind vector from 

only a few beams as opposed to a full 360° conical scan. The measurements must 

be taken from at least two orthogonal azimuths and the vertical to retrieve all the 

components (e.g. Lane et al., 2013, Lundquist et al., 2015).  DBS has an 

advantage of having shorter acquisition times thereby reducing the errors caused 
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due to the deviation from the uniform wind field assumption.  However, DBS 

retrieval is more sensitive to noise than VAD and a least squares minimization is 

typically implemented to obtain the best fit primarily due to it stability in noisy 

conditions.   

b) Volume Velocity Processing (VVP).  VVP works on a similar principle as VAD 

to retrieve 2D and 3D vector fields from multiple PPI scans.  The algorithm 

involves decomposing the spatial region covered by the lidar scan(s) into 2D (or 

3D) sections and fitting the radial velocity measurements within each volume to a 

simple linear wind model (Eq. (1.3a)) to obtain the three components of velocity 

(Koscielny et al., 1982; Doviak & Zrnic, 1993, Boccippio, 1995). Arc scans, work 

on a similar formulation like VVP, but applied on PPI sectors (Wang et al., 2015) 

as opposed to a full volume.  The sectors (or analysis volumes) must be chosen 

such that the rage of azimuth angles of individual lines of sight span at least 30°, 

for the fluctuations in radial velocity caused by the change in look angle to be 

higher than the turbulent fluctuations (Clifton, 2015).   

1.3.2  Retrievals based on variational methods.   

Variational methods obtain the vector wind field by minimizing a cost function 

comprising of constraint equations deduced from the observations.  These methods have 

an advantage of handling some degree of inhomogeneity of the wind field (Clifton et al., 

2015).  2D/3D-VAR, 4D-VAR and Optimal Interpolation fall in this category.  The in 

depth literature pertaining to these methods is given in Chapter 3. 
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1.3.3 Use of simultaneous multiple Doppler lidars.   

The idea behind multiple Doppler configuration is to setup different lidars such 

that each lidar probes, concurrently, the same volume in space from three different 

directions (ideally, three orthogonal directions) to reconstruct the 3D velocity vector 

using:  

𝑉;B = 𝑢. 𝑐𝑜𝑠𝜃B𝑐𝑜𝑠𝜑B + 𝑣. 𝑠𝑖𝑛𝜃B𝑐𝑜𝑠𝜑B + 𝑤. 𝑠𝑖𝑛𝜑B																									(1.4) 

where,	𝑉;B is the radial velocity measured from the ith lidar, 𝑖 =1,2(Dual Doppler) 

or 3 (triple doppler) correspond to each Lidar.   The three equations in Eq (1.4) can be 

solved for the three unknowns (𝑢, 𝑣, 𝑤).  Multiple lidars could be used for high temporal 

measurements at a single point (rather a pulse volume) in space (Mann et al., 2008, 

Mikkelsen et al., 2008, Newman et al., 2015), along a vertical line (Calhoun et al., 2006) 

and 2D spatial measurements (Rothermel et al., 1985, Newsom et al., 2008).  The 

majority of previous works have been limited to two Doppler lidars due to the higher 

costs associated with the operating multiple units.   

One of the first Dual-Doppler Lidar analyses using periodic coordinated scans 

was described by Rothermel et al. (1985) in the context of the Joint Airport Weather 

Studies (JAWS) experiment.   A configuration described in Collier et al. (2005) sought to 

intersect the two lidar beams at precise points in space to obtain turbulence measurements 

with short time averages.  Calhoun et al. (2006) devised a method to obtain mean vertical 

profiles of velocity at a large number of intersections (“virtual towers”) using two 

Doppler lidars in Joint Urban 2003 atmospheric dispersion study (JU 2003).  Coplanar 

PPI scans (Newsom et al., 2008) and coplanar RHI scans (Hill et al., 2010) were used to 
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extract wind fields in the scan overlap region giving new insights into the flow structures.  

An analysis of errors associated with dual-Doppler lidar turbulence measurements was 

described in Davis et al., (2005).  Stawiarski et al., (2013) gave an overview of the errors 

caused by non-optimal scanning techniques and instrument configuration.  Another 

advantage of using multiple Doppler lidars is that, 3D wind components and their 

statistics could be retrieved with high temporal resolution making them ideal for 

turbulence studies is the atmosphere (Mann et al. 2008, Newman et al. 2015). 

Since, the present study focuses on vector wind retrievals, works related to the 

measurement of turbulence statistics from single Doppler lidars were not included in the 

previous section.  A detailed review of turbulence measurements using ground based 

Doppler lidars is presented by Sathe & Mann (2013) and Sathe et al. (2015).  In general, 

the measurement of turbulence statistics from single Doppler lidars remains to be a 

challenging field due to the inherent averaging involved in obtaining the radial velocity 

from a 30m-100m probing volume (range gate).  Due to this most of the previous works 

involved determining unfiltered turbulence statistics by combining raw lidar 

measurements with an isotropic turbulence model (Krishnamurthy et al., 2011, Sathe et 

al., 2011).  Alternate methods involve retrieving the Reynolds stress components by 

combining multiple VAD type scans (Eberhard et al., 1989), combining data from two 

orthogonal RHI scans to retrieve dissipation and other turbulence statistics (Gal-Chen et 

al., 1992) and a six beam method to obtain the Reynolds stress components from the 

radial velocity variances obtained from five equally spaced azimuthal stare scans and a 

vertical stare (Sathe et al., 2015). 
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Table 1.1  

Popular retrieval algorithms 

Retrieval Scans Advantages Limitations 

Vertical Profiles 

Velocity 

Azimuth 

Display (VAD) 

A full 360° 

conical scan at a 

fixed elevation 

angle 

• Retrieves vertical 

profiles of velocity 

• Fast runtime 

• Stable, Reliable 

estimates in 

simple flows 

• Horizontal 

homogeneity 

assumption of the wind 

field 

• Long acquisition time 

Doppler Beam 

Swing (DBS) 

Combination of 

stare scans 

• Retrieves vertical 

profiles of 

velocity 

• Faster than VAD 

• Horizontal 

homogeneity 

assumption of the wind 

field 

• More sensitive to noise 

than VAD 

*Virtual Towers 

Two RHI scans/ 

two RHI scans 

and a vertical 

stare in the scan 

intersection 

region 

• Can produce 

vertical profiles of 

wind in complex 

flow conditions 

• Requires atleast two 

lidars 

• The angle subtended 

by any to lines of sight 

from each lidar must 

be atleast 30° 

6-beam method 

5 equally spaced 

azimuth scans 

and one vertical 

stare and uses 

• Can measure TKE 

and velocity 

variances 

• Probe volume 

averaging affects the 
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radial velocity 

variance 

measurement 

• Measurement 

errors and bias are 

independent of 

height 

turbulence 

measurements 

Turbulence 

retrievals from 

conical scans 

VAD type 

conical scans 

with a vertical 

stare 

• Can retrieve 

velocity variances, 

TKE and 

covariances 

• Measurements are less 

reliable and biased for 

low elevation scans 

2D, 3D vector fields 

Retrieval Scans Advantages Limitations 

Volume 

Velocity 

Processing 

(VVP) 

Stack of PPIs 

• Can retrieve 

2D,3D vector 

fields 

• Only valid when the 

flow field is 

horizontally 

homogeneous within 

each retrieval volume 

Sector VAD/ 

Arc scans 
PPI scans 

• Can retrieve 

vectors along a 

sector for each 

range gate 

• Comparatively 

fast 

• Only valid when the 

flow field is 

horizontally 

homogeneous 

• Angle limitation 

2D,3D-VAR; 

Optimal 

Interpolation 

(OI) 

PPI scans/ Stack 

of PPI scans 

• Can retrieve 

vectors along a 

plane or 3D 

space 

• Depending on the 

optimization scheme 

used, the retrieval 

could be slow 
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• Can handle 

complex flow 

situations 

• Limited by the 

validity of the 

constraints used 

• OI can be used only 

scans at low elevation 

angles 

• OI in the current 

formulation is not 

fully automated and 

needs user input for 

the weights which 

vary based on the type 

of flow 

4D-VAR 
PPI/ Stack of 

PPI scans 

• High spatial 

and temporal 

resolution 

retrievals  

• Computationally 

expensive 

• Accuracy is 

limited by the 

assumptions of 

the underlying 

model 

*Co-planar dual 

Doppler scans 

Two RHI/PPI 

scans 

• 2D profiles with 

comparatively 

high spatial 

resolutions can 

be obtained 

• Higher 

operational cost 

• Might be difficult 

to coordinate the 

lidars 
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*Triple Doppler 

lidar scans 

Combination of 

stare scans 

Or 

Virtual tower 

with a stare at 

the scan 

intersection 

• Suitable for 

turbulence 

measurements 

• Very high 

temporal 

resolution 

• Higher operational 

cost 

• Difficult to 

coordinate the three 

lidars 

• Might not be 

suitable for all 

deployments 

depending on the 

surrounding 

topography 

 * Dual/ Multiple Doppler lidar technique 
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1.4 Objectives of The Present Study 

 This dissertation has three sections aimed at exploring the capabilities of existing 

retrieval algorithms in capturing complex atmospheric phenomenon, the development of 

a novel fast 2D-VAR algorithm to address the need for an efficient vector retrieval for 

complex flows, and the demonstration of a novel Mixed reality/Augmented Reality based 

data visualization technique for atmospheric data.  The objectives of each of these 

sections are given below. 

Section I.  Various single and dual Doppler lidars along with a suite of other 

weather sensors were used to capture downslope windstorm-type flows occurring at 

Arizona’s Meteor Crater as a part of the second Meteor Crater Experiment (METCRAX 

II) during calm, undisturbed nights. A description of the methodology, scan patterns and 

the error analysis are given in chapter 2.  

The research objectives of this section are: 

• To design a coplanar dual-Doppler lidar scan strategy to capture downslope 

windstorm-type flows occurring in Arizona’s Barringer Meteor Crater 

• To design single Doppler lidar scan strategies required to capture the upstream 

flow at the crater 

• To perform an error analysis to identify potential sources of errors in the retrievals 

employed in METCRAX II 

Section II.  Applications like wind power forecasting and dynamic wind turbine 

control require a reliable retrieval algorithm with real-time application capabilities.  To 
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address this need, a novel 2D-VAR retrieval was developed and tested on lidar data from 

an onshore wind farm in Tehachapi, CA and the Alta Ventus windfarm located in the 

North Sea, the details of which are given in chapter 3.  The general retrieval is based on 

the minimization of a cost function comprised of the radial velocity advection, radial 

velocity, tangential velocity and background equations.  

The research objectives of this section are: 

• To develop a 2D-VAR retrieval capable of preserving small scale flow structures, 

while being computationally efficient to have real-time application capabilities 

• To test the retrieval on lidar data in a complex flow scenario 

•  To assess the accuracy of the retrieval using data from other instruments in the 

field 

Section III.  Given the improving capabilities of atmospheric sensors and the 

ability to acquire 2D-3D measurements with higher spatial and temporal resolutions, a 

new data visualization method based on mixed/augmented reality (MR/AR) is presented 

in chapter 4.  This visualization technique allows users to view the sensor data anchored 

to the real world objects when viewed through a hand-held or head mounted display 

making the data visualization task more intuitive.  The AR technique is demonstrated on 

a tablet computer with the dual- Doppler lidar data acquired during METCRAX II.  The 

application was further extended to earth science datasets for education and outreach 

activities through a smartphone, iPad application developed in collaboration with the 

National Center for Atmospheric Research (NCAR).  
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The research objectives of this section are: 

• To explore the use of Mixed/Augmented reality technique to visualize Doppler 

lidar (any atmospheric sensor data) 

• To develop the visualization application using popular game development 

platforms 

• Demonstrate the application using lidar data from METCRAX II 

• Demonstrate the application on earth science datasets for education and outreach 

activities 
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CHAPTER 2 

CASE STUDY: LIDARS IN THE SECOND METEOR CRATER EXPERIMENT 

(METCRAX II) 

During the fall of 2013, multiple Doppler lidars along with a suit of other 

meteorological instruments were deployed at the Arizona’s Barringer Meteor Crater to 

study downslope-windstorm type flows occurring there.  This chapter describes the lidar 

experimental setup, scan strategies and different single and multiple Doppler lidar vector 

retrieval techniques employed to obtain vertical profiles of the wind as well as 2D cross 

sections of the flows inside the crater.   

2.1 Downslope Windstorms 

 Downslope windstorms are very strong, gusty and occasionally violent surface 

winds that blow down the steep lee slope of a mountain range (Durran, 2003). These 
!

Figure 4. Aerial view of the crater looking southeast. Photograph by Shane Torgerson 

, CC BY 3.0 
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windstorms occur frequently near foothills of mountains and are known to cause 

substantial damage to life and property (Whiteman & Whiteman, 1974).  

Arizona’s Barringer Meteor Crater (Figure 4), located 40 km east of Flagstaff in 

Northern Arizona, was formed by a meteorite impact that occurred approximately 50,000 

years ago. The crater has a bowl-shaped morphology with a diameter of 1.2 km and a 

depth of 180 m. The crater rim rises 30-60 m above the surrounding plain (Kring, 2007). 

During the first Meteor Crater experiment (METCRAX) field campaign in 2006, short 

lived, episodic nocturnal warm air intrusions were detected on the west sidewall of the 

crater, while studying the characteristics of stable nocturnal boundary layer in basin 

(Whiteman et al., 2008).  These high wind and high turbulence events bore resemblance 

to downslope windstorms.  Adler et al. (2012) hypothesized that these warm air 

intrusions were associated with hydraulic jumps that are produced as the supercritical 

flow (along the lee slope) recovers to the ambient downstream subcritical conditions 

inside the crater. Meteor Crater Experiment-II (METCRAX-II), a follow-on collaborative 

research program with principal investigators from University of Utah, Arizona State 

University and National Centre for Atmospheric Research (NCAR), was designed to 

examine the causes of these warm air intrusions to aid the development and testing of 

relevant conceptual and numerical models pertaining to forced flow over mountains. 

The spatial extent and the morphology of the crater provided a natural laboratory-

like setting that could be used to investigate these downslope wind storm type flows 

(DWF) and their sensitivity to the changes in the ambient approach flow.  Different 

instruments including three coherent Doppler lidars were set up inside and around the 
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crater to measure wind speed, wind direction, temperature, humidity, pressure and 

Figure 5 (a) 50m tower, (b) FLOOR lidar, (c) Tethersonde at BASE lidar site, (d) 

BASE lidar, (e) RIM lidar, (f) Terrain surrounding the crater along with instrument 

location. The dotted lines represent the RHI scan plane of the lidars. 
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surface fluxes.  Among the lidars, two units (Halo-photonics’ Streamline lidar and 

Leosphere’s Windcube-200S lidar) were installed to perform dedicated coplanar RHI 

scans across the crater and another Halo-photonics’ Streamline lidar was placed outside 

to monitor the approach flow.  

2.2 METCRAX II Field Deployment 

The field deployment lasted from 30th September, 2013 till 30th October, 2013, 

during which several instruments monitored the flow inside the crater and on the 

Figure 6. Location of the lidars and the scan sectors as viewed perpendicular to the 

scan plane. The vertical axis shows the height from the crater floor and horizontal axis 

shows the distance from the highest point on the rim in the scan plane.  
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surrounding plain.  A detailed summary of the instrumentation can be found in Lehner et 

al. (2015).  To supplement these continuous measurements, 7 nighttime intensive 

observational periods (IOPs) were conducted, during which, the instruments including 

tethersondes, were operated from late afternoon till little after sunrise.  The IOPs were 

selected based on the forecast of quiescent nighttime condition which is essential for the 

formation of the katabatic drainage flow (Savage et al., 2008).  In this study, IOP data 

from the three Doppler lidars, tethersonde soundings and a 50m tower were used.  The 

RIM Lidar (Leosphere’s Windcube 200S, Figure 5e) and the FLOOR Lidar (Halo 

Photonics’ Streamline Doppler Lidar, Figure 5b) were installed to perform dedicated, 

synchronous RHI scans in Dual-Doppler mode, along the vertical plane passing through 

the South-Southwest gap in the crater rim.  The radial velocity data from both the Lidars 

were combined to retrieve the 2D in-plane vector wind, giving insight into the spatial 

structure and evolution of the DWF events.  The BASE Lidar (Halo Photonics’ 

Streamline Doppler Lidar, Figure 5d) which was installed outside the crater to monitor 

the approach flow, performed periodic (every 15 minutes), 70° elevation - VAD scans 

along with repeated RHI scans at 15.5° azimuth and 42° azimuth.  The radial velocity 

data from the RHI scans were combined to construct vertical velocity profiles of 5 m 

resolution, every 2 minutes.  The specifications and settings of the Doppler lidars are 

given in Table (2.1).  
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Table 2.1 

Lidar Specifications in METCRAX II  

Lidar make Halo Photonics 
Streamline lidar 

Leosphere’s Windcube 
200S 

Location BASE, FLOOR RIM 

Wavelength 1.548 µm 1.543 µm 

Pulse repetition frequency 15000 Hz 10000 Hz 

Pulse width 150 ns 200 ns 

Range gate size used 24 m 25 m 

Pulses averaged 10000 10000 

Pulse Energy ~0.1 mJ ~0.1 mJ 

Radial velocity range ±19.4 m/s ±30 m/s 
 

The temperature measurements used in this study were obtained from the 50 m 

tower (Figure 5a), and the tethersonde (Figure 5c) soundings at the BASE lidar site.  The 

50m tower (installed by NCAR’s Earth Observing Laboratory), located to the southwest 

of the crater (Figure 5f), was equipped with CSAT3 sonic anemometers and 

hygrothermometers at 5m intervals.  The tethersonde soundings provided measurements 

above 50m with an ascent time between 15-20 minutes.    

2.3 Scanning Strategies and Wind Retrievals   

2.3.1 Co-planar dual-Doppler lidar retrieval (RIM lidar and FLOOR lidar) 

The main advantage of using two lidars in the field is that they will provide radial 

velocity measurements along two different directions from which the two velocity 

components (in this case, u and w) can be extracted using simple geometric relations.   
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a)  Methodology.  The retrieval used in the current study is based on Hill et al. 

(2010). The retrieval technique first involves constructing a 2D Cartesian grid in the 

scan overlap region. At each grid intersection point, circular regions with a radius of 

influence:  are defined.  This specific value ensures the complete 

coverage or the retrieval.  Any range gate center that falls within a radius of ‘ ’from 

a grid intersection point is associated with it (Figure 6).  In addition, a weighting 

function is defined to take into account the length of range gate that falls within the 

circle of influence.  After the radial velocities and their corresponding weights are 

assigned, an overdetermined linear system is formed using the geometric relationship 

between the vectors and their corresponding radial velocities (See Figure 6). This 

overdetermined system is solved using the weighted least squares approach (Eq. 

(2.1)).   

                                              (2.1) 

where,       , , ,
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and  are the number of hits from lidar-1 and lidar-2 respectively.  Due to the 

comparitively small range gates possible with the lidars used in METCRAX II, the 

weighting function matrix was replaced with an identity matrix (Cherukuru et al., 

2015).  An alternate procedure is to take the mean of the radial velocities from each 

lidar within each cell and to solve the two-equation linear system. These two methods 

can be derived from one another under certain conditions detailed in appendix A.  

To minimize the number of empty cells, the grid spacing is set equal to the range 

gate length.  If the lidars have different range gate lengths, the larger range gate 

length is selected. The continuous scan mode software provided with the lidar 

determines the scan rate based on the total time taken for the scan, which is defined 

by the user. Hence, the scan rate was optimized using the total time taken for the scan 

from Eq. (2.2). The equation is derived in a way that the lidar beam intersects the cell 

at least once within a specified time frame. 

                                         (2.2) 

where,  is the total time taken to complete the scan,   and   are 

elevation angles at the start and end of the scan respectively, and  is the frequency 

given by the ratio of PRF and averaging used.  is the approximate angle subtended by 

the farthest cell. 

                                                   (2.3) 
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Where is the grid spacing and  is the distance between the farthest 

cell and the lidar. The index ‘ ’ corresponds to each of the lidars.  

b)  Coplanar Dual-Doppler Lidar Simulator.  In order to determine the best 

possible scan strategy and the optimal instrument configuration for METCRAX-II, a 

coplanar lidar simulator was developed.  The simulator works on a background 

windfield from an LES simulation of the downslope-windstorm type flow occurring 

at the crater.  The LES simulations were performed to aide in the placement of 

different instruments for the actual field deployment.  

• Background wind field.  An idealized 2D numerical simulation of the flow was 

previously performed using the Cloud Model 1 (CM1) release 16.  The 

simulation was run for a 15-minute period and wind velocity fields were 

obtained every second.  Horizontal and vertical grid spacing was 2m. The initial 

temperature and wind profiles were selected to qualitatively reproduce the flow 

field and the warm-air intrusions that were observed in the west part of the 

Crater during METCRAX 2006. 

• Estimation of radial velocity.  The radial wind velocity was estimated using Eq. 

(2.4), which is the line integral of the weighted velocities along the beam 

(Frehlich et al. 1998).  The weighting function (Eq. (2.5)) was obtained by 

convolving a range gate indicator function (which is a step function centered 

over the range gate location) with the laser pulse (which is a gaussian) 

cL iD

i
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                                             (2.4) 

            (2.5) 

where  denotes the radial velocity measured at a given instance of time 

at a distance  . is the radial velocity as measured by the lidar at a range 
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Figure 7. Figure showing the weighting function (W∆)
*++) for a range gate at a distance 

of 200m, as a function of radial distance from the lidar (r′). Δp is the range gate length 

in m. 
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gate which is at a distance  from the lidar and is its corresponding 

weighting function measured along the beam. is the FWHM of the laser pulse 

and c is the speed of light. is the distance from the range gate center and  

is the length of the range gate.   

c)   Error analysis.  The major sources of error in dual-Doppler lidar retrievals stem 

from: (i) the assumption that the wind field is homogeneous within the grid cell- Spatial 

error, (ii) the assumption that wind field is stationary within the time taken to perform 

the scan- Temporal error, and (iii) the retrieval technique (matrix inversions)- Retrieval 

error.  There are other sources of errors occurring due to the signal noise, atmospheric 

conditions, inhomogeneity of the aerosols in the illuminated volume etc., which would 

play a major role in reality but for the simple simulation work, they were not 

considered.  These errors combine with one another and give rise to the net error in the 

measurement.   

• Spatial error.  In an ideal case, only the radial velocity values from the range 

gates which intersect the grid should be considered.  Since, the retrieved 

velocity is obtained by combining radial velocity values from a region and not 

a single point, spatial error is defined as a measure of deviation from this 

spatial homogeneity assumption. the variance of the radial velocity would 

give a measure of the amount of variation within a cell for a given grid 

spacing. To obtain the net effect over the domain, the variance is normalized 
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with the mean velocity and its RMS value is taken as a measure of the spatial 

component of error (Eq. 2.6) 

𝐸∆@ 𝑡 =
1
𝑀𝑁

𝜎∆@* (𝑖, 𝑗, 𝑡)
𝑣 𝑖, 𝑗

*f

ghi

j

Bhi

																																						(2.6) 

 

 where  gives the variance in the cell at time ‘t’ and  

gives the spatial average over the cell. ‘ ’ and ‘ ’ denote the total number 

of cells in the horizontal and vertical direction. This process is repeated at 

å

åå

=
DD

= =

D
D

=

=

K

t
ss

M

i

N

j

s
s

tE
K

E

jiv
tji

MN
tE

1

1 1

2

)(1

),(~
),,(1)( s

),,(2 tjisDs ),( ji ),(~ jiv

M N

Figure 8. Spatial errors (blue lines) and temporal errors (red lines) for (a)u component 

and (b) w component, calculated from the coplanar dual Doppler simulator. The dots 

along the lines show the direction of the error gradient. 
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each time step and that would give the total spatial error for a given grid 

spacing.   

• Temporal error.  The radial velocity measurements that are combined to obtain 

the vector wind are not simultaneous measurements i.e., the lidar scans are not 

instantaneous and take some finite time ‘T’.  Thus, the temporal error is the 

measure of the deviation from the ‘frozen wind field’ assumption during the 

finite acquisition time.  The temporal error is taken to be the RMS value of the 

fluctuations about the mean. As mentioned previously, in order to combine the 

errors in space, the errors are normalized by the mean value (Eq. 2.7). 

𝐸∆= 𝑖, 𝑗 =
1
𝑡

𝜎∆@* (𝑖, 𝑗, 𝑡)
𝑣 𝑖, 𝑗

*l

=hi

																																			(2.7) 

 

• Retrieval error.  The method of least squares determines the approximate 

solution by minimizing the sum of squares of the residuals. Thus, it is an 

approximate solution of the overdetermined linear system and the retrieval error 

(quadratic difference between wind retrievals and background LES wind field) 

is the measure of deviation of the retrieved value from the mean in a given cell.  

Retrieval errors are strongly based on noise in the measurements and for this 

study they were not considered.  
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An ideal scanning technique would the wind field as closely as possible 

within the specified time window.  Using this idealistic simulator, insights 

regarding these different sources of errors (Spatial and temporal errors) and 

their dependence on the individual lidar parameters were obtained.   

2.3.2 Vertical Profiles from upwind RHI scans (BASE lidar).   

Assuming horizontally homogeneous flow over the plain surrounding the crater, 

vertical profiles at 5m resolution could be retrieved from the RHI scans.  Thus, the 

retrieval is representative of a horizontally averaged wind.  This method is loosely based 

on Gal-Chen’s turbulence parameter retrieval from lidar RHI scans (Gal-Chen et al. 

1992).   

!

Figure 9. Coplanar Dual Doppler retrieval applied on the data from the lidar simulator.  

The background windfield is derived from an LES simulation. 
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First, the radial velocity values from the two RHI scans (at 15.5°	𝑎𝑛𝑑	42° 

azimuth) were segregated into vertical bins of the user specified resolution (5m in this 

case) and a time interval (~2 minutes). At each vertical bin, the horizontal velocity is 

retrieved in a least squares sense from an expression similar to Eq (2.1), except the 

indices, ‘j’ and ‘k’ refer to the data from the 15° and 42° RHI scan respectively.  Further, 

to minimize the crater effect on the retrieval, only range gates upwind (i.e., pointing away 

from the crater) were considered in the retrieval.  

2.3.3 Vertical Profiles from VAD scans (Base Lidar)  

A VAD retrieval based on Boccippio (1995) was performed on the 70° elevation, 

full PPI scan at 15 minute intervals. At this elevation angle, vertical wind profiles with 

23.18m resolution could be retrieved.  To increase the statistical robustness of the 

retrieval, a singular value decomposition based, iterative regression scheme with 

outlier/influence point rejection based on Cook’s distance was employed in place of a 

straightforward matrix inverse.    

 

2.4 Results 

2.4.1 Results from the Dual Doppler Lidar simulator  

A lidar simulator was constructed on LES data to observe the dependence of 

spatial and temporal errors on the lidar parameters (e.g. range gate length and pulse 

averaging, scanning speed). A response surface analysis (Figure 8) revealed that spatial 

errors were independent of the pulse averaging used and were linearly dependent on the 

range gate length. As expected, it was seen that smaller range gates had a smaller spatial 
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error. However, both range gate size and pulse averaging influenced temporal errors. For 

a fixed range gate, increasing the averaging resulted in an increase in temporal errors due 

to the longer scan time required to ensure complete spatial coverage. On the other hand, 

for a fixed averaging value, increasing the range gate size resulted in a decrease in 

temporal errors due to the increase in grid resolution allowing faster scans according to 

Eq (2.2).  Although the smallest errors were observed for lower values of pulse averaging 

and smaller range gates, a higher value of averaging and range gate had to be used based 

on the atmospheric and instrument limitations. A retrieval from the dual-doppler 

simulator, with lidar parameters that were used later in the field experiment is shown in 

Figure. 9.   

2.4.2 Results from the field experiment 

The upstream conditions were explained based on the data from IOP-4, during 

which the strongest warm air intrusions/ DWF events were observed inside the crater.  

The time-height display of horizontal wind derived from the RHI scans along with 

temperature contours obtained from the tethersonde (above 50m) and the 50m tower (5m-

50m) is given in Figure. 10.  Meteor crater is located in the painted desert which is a 

largely flat plain with very sparse vegetation.  The plane surrounding the crater rises by 

~1° to the Southwest (towards the Mogollon rim).  Shortly after sunset, radiative cooling 

of the ground in turn causes the air atop to cool, forming a surface-based inversion which 

grew in depth as the night progressed.  Simultaneously, cold air being denser, resulted in 

the formation of a mesoscale nocturnal drainage flow on the plain (Katabatically driven 

hydraulic flow, Savage et al., 2008).  The absence of strong directional shear, and the 
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ambient flow having a South-Southwesterly direction could have caused the maximum 

speed of this nocturnal flow to exceeded 6m/s and reach heights of about 60m, which is 

higher than expected.  

Figure 10. Time-Height plot of horizontal wind speed (above) and wind direction 

(below) derived from the RHI scans of BASE lidar for IOP-4 (19th-20th October, 

2013).  The temperature contours were obtained from the tethersonde (50m-300m) 

and the 50m tower (5m-50m).  The dotted line represents the height of the crater rim 

on the SSW side.   
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As the drainage flow height crossed the rim of the crater, strong lee waves 

associated with DWF events were observed inside the crater past 23:00.  In contrast, 

during IOP-5, a strong ambient Northerly flow prevented the formation of the drainage 

flow (Figure 11) throughout the night and no DWF events were registered inside the 

crater. Thus, the presence of the katabatic drainage flow could be pointed as an essential 

factor for DWF events which is consistent with the previous hypothesis regarding the 

warm air intrusions from METCRAX I (Adler et al., 2011).

Figure 11. Same as figure 10 but for IOP-5 (21st-22nd October, 2013).  The strong 

northerly drainage flow prevented the formation of a well defined drainage flow. 
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Figure 12. Coplanar Dual-Doppler lidar retrievals during showing DWF events inside 

the crater during different IOPs.  IOP-3 was omitted due to poor data quality.  DWFs 

were not observed during IOP-5 due to the strong Northerly ambient flow. The dotted 

vertical lines show the locations of the two tethersondes inside the crater (Data from 

these tethersondes are not not used in this study). 
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 Figure 12 shows various DWF events as captured by the dual–Doppler lidar 

retrieval during different IOPs (Except IOP-3).  Although only a single event for each 

IOP is shown in Figure 12, these events were intermittent and occasionally retreated up 

the slope. The dual-Doppler results from IOP-3 were omitted from the results due to the 

poor data quality.  However, tethersonde soundings from inside the crater confirmed the 

presence of strong DWF events throughout the night (Similar to IOP-4).   As shown, the 

strength and depth DWF events varied from very strong (IOP-4) to weak (IOP-1,2,6 and 

Figure 13. Vertical profiles of wind speed and wind direction from VAD scans of 

the BASE lidar during the DWF events presented in figure 12.  BASE lidar was 

not functional until IOP-2 and was moved away from the site for IOP-7. 
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7).  Most of the DWF events occurred shortly after the nose of the katabatic drainage 

flow reached the crater rim, except IOP-7 (Figure 12) when the DWF event was observed 

shortly after sunrise at 7:45am.  The VAD profiles from the BASE lidar during each of 

these DWF events are shown in Figure 13 (The BASE Lidar wasn’t operational until 

IOP-1 and was moved to the west rim for IOP-7). VAD profiles from the BASE lidar 

point to the strength and depth of the drainage flow as major factors in determining the 

occurrence of DWF type events in the crater.      

2.5 Validation 

Almost all the instruments in METCRAX II field experiment took complementary 

measurements and a proper error assessment of the retrievals using data from other 

instruments in the field was challenging.  However, the Dual-Doppler retrieval, VAD 

retrieval and the vertical profiles from RHI scans were compared with measurements 

from the tethersonde at the southwest slope inside the crater, tethersonde at the base and 

the 50m tower located upslope on the surrounding plane respectively.  A detailed 

description of all the instrumentation in METCRAX II (including the ones not used for 

the validation study) is given in Lehner et al. (2016).  These inter-comparisons were used 

to assess the accuracy of the retrievals as well as to identify sources of discrepancies 

between the measurements.  This will be valuable in designing future field deployments 

requiring similar scanning strategies.   
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2.5.1 Profiles from RHI scan.   

A 50m tower was erected by NCAR’s Earth Observing Laboratory on the 

surrounding plane at BASE site for continuous monitoring of the katabatic flow upstream 

to the crater.   Among other instrumentation on the tower, three axis CSAT3 sonic 

anemometers installed at 5m intervals measured the three wind components.  The 60 Hz 

wind measurements from the tower were quality controlled and 5 minute averaged 

Figure 14. Clockwise from the top left, Histograms of Wind speed error, Wind direction 

error, Error in ‘v’ component and error in ‘u’ component of the vertical profiles obtained 

from RHI scans against the 50m tower.    
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horizontal wind speed and wind direction values were used for comparing the retrieved 

wind components from the lidar RHI scans.  The ‘w’ (vertical) component was extremely 

small compared to the other two components and were omitted in the inter-comparison 

study. 

  

Figure 15. Clockwise from the top left, Histograms of Wind speed error, Wind direction 

error, Error in ‘v’ component and error in ‘u’ component of the vertical profiles obtained 

from VAD scans against the tethersonde measurements.    
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Figure 16. Top three figures show the in-plane component of the horizontal wind 

speed retrieved from Coplanar, dual-Doppler scans compared with the tethersonde 

soundings taken from the S-SW wall inside the crater. a) IOP-4, b) IOP-6 c) IOP-7. 

d) Histogram of the error between the retrieval and the tethersonde measurements.   

 

A)	 B)	 C)	

D)	
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2.5.2 VAD 

The accuracy of the VAD profiles from the lidar at the BASE site was determined 

by comparing the measurements from a Karlsruhe Institute of Technology’s (KIT) 

tethersonde system operated close to the lidar at the same site.  The tethersonde system 

consisted of a 5m3 helium filled balloon fitted with a sonde measuring air pressure, 

horizontal wind speed, wind direction, temperature and dew point, tethered to a 

manually-operated electric winch.  Continuous measurements upto a height of 250m were 

recorded by gradual ascents approximately every 15 minutes.  The tethersonde data was 

quality controlled and the wind speed and direction values were used for inter-

comparisons.  

2.5.3 Coplanar dual Doppler lidar validation 

The retrieved wind field from the coplanar dual-Doppler lidar scans, spanned the 

S-SW cross section of the crater.  Horizontal wind speed and direction measurements 

from the tethersonde (Vaisala Digicora Tethersonde Systems) flown inside the crater 

from the S-SW wall, was used for comparisons.  Although there was a 40m tower with 

sonic anemometers erected at the crater rim, positioned in line with the scan plane of the 

lidars, it fell beyond the maximum range of the lidar on the crater rim (~ 900m ) due to 

poor aerosol content in the atmosphere during the IOPs.   Since the tethersonde measured 

vertical profiles of horizontal wind components (u and v components) while the lidar 

captured vertical and in-plane components of the wind (i.e., u component along the scan 

plane and w component), only the horizontal in-plane component from both instruments 

were used for the inter-comparison study.  
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2.5.4 Discussion 

While the mean error in wind speed is not too large in the vertical profiles of wind 

speed and direction retrieved from the RHI scans, there is a considerable scatter in the 

data.  Looking into the errors in the retrieved ‘u’ and ‘v’ component (Figure 14), it is 

evident that the major source of error comes from the ‘u’ component.  The scatter plot of 

retrieved ‘u’ and ‘v’ components (Figure 17)  reveal a similar pattern, with the algorithm 

performing much better in retrieving the ‘v’ component than the ‘u’ component of the 

wind.  The source of the large error in the ‘u’ can be determined by looking into the 

uncertainties of the lidar measurements and their propagation.  The radial velocity 

measurements from any lidar are often polluted by noise due to the presence of small 

Figure 17. Scatter plot of retrieved ‘u’ component (left) and retrieved ‘v’ 

component from the RHI scans against the corresponding measurements from the 

50m tower. The points are color-coded based on the height. 
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scale turbulent fluctuations within range gate, imperfections in the lenses, digitization 

errors etc., to name a few (Frehlich et al., 1994).  These errors/uncertainties in radial 

velocity measurements propagate to the retrieved wind field depending on the 

experimental setup.   

Consider two RHI scans from the same lidar, separated by ∆𝜃°.  Let 𝜃ibe the 

azimuthal angle for the first scan.  The angles are measured from easting, i.e., 0° for a 

scan looking east (Figure 18). When the surrounding windfield is assumed to be 

Figure 18. Pre-factor in Eq. (2.10) as a function of the azimuth angle of one RHI scan and 

the azimuthal separation between the scans for a) uncertainty in ‘u’ component, b) 

uncertainty in ‘v’ component. The ‘+’ marks the setting used in METCRAX II. The two 

figures below show the same plot magnified around the region containing the settings for 

METCRAX II  
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horizontally homogeneous, at a given height, the components u and v of the wind vector 

can be reconstructed from radial velocity measurements (𝑉;iand 𝑉;*) from both the scans 

using Eq. (2.8).  

  

𝑢 =
𝑉;i. sin 𝜃i + ∆𝜃 − 𝑉;*. sin 𝜃i

sin ∆𝜃  

𝑣 =
−𝑉;i. cos 𝜃i + ∆𝜃 + 𝑉;*. cos 𝜃i

sin ∆𝜃 																															(2.8) 

 

Using Gaussian error propagation, the uncertainties in radial velocity measurements (𝜎r;) 

can be related to the uncertainty of u and v component (𝜎s and 𝜎rrespectively) using Eq. 

(2.9). 

𝜎s* =
𝜕𝑢
𝜕𝑉;i

*

𝜎uvw
* +

𝜕𝑢
𝜕𝑉;*

*

𝜎uvx
*  

𝜎r* =
𝜕𝑣
𝜕𝑉;i

*

𝜎uvw
* +

𝜕𝑣
𝜕𝑉;*

*

𝜎uvx
* 																																									(2.9) 

 

Since, both the measurements are taken from the same lidar, 𝜎u;i= 𝜎u;*. Using Eq. (2.8) 

in Eq. (2.9), this simplifies to 

 

𝜎s* =
sin* 𝜃i + ∆𝜃 + sin* 𝜃i

sin* ∆𝜃 𝜎uv
*  

𝜎r* =
cos* 𝜃i + ∆𝜃 + cos* 𝜃i

sin* ∆𝜃 𝜎uv
* 																																		(2.10) 

 



	

 47 

 Figure 18  shows the pre-factor of 𝜎s*and 𝜎r* for various values of 𝜃i and ∆𝜃.  

Based on the angles chosen for METCRAX II dataset (Marked by a black ‘+’ in figure 

X), it is evident that the errors in ‘u’ will be significantly higher than errors in ‘v’ based 

on the geometry of the scans alone.  While this explains the poor accuracy of the retrieval 

in determining the ‘u’ component, it does not explain the clustering in ‘u’ seen in the 

scatter plot of the error (Figure 17). This clustering did not have a strong correlation with 

stability (Figure 19) or dependence on height (Figure 17).  However, considering the 

wind direction (Figure 20) it is evident that the scatter in ‘u’ in higher for Southerly and 

South-Westerly winds.  This behavior can again be explained based on Eq. (2.10). 

Figure 19. Same plot as in Figure 17 but color coded based on the atmospheric stability; 

dT/dZ >= Dry adiabatic lapse rate. 
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 For a given RHI scan configuration, the uncertainty in the retrieved wind 

components is directly proportional to the uncertainty in the measured radial velocity 

which in turn depends on the signal to noise ratio (SNR).  Previous works with the halo 

photonics Streamline Doppler lidar have reported a velocity precision of 0.2 m/s for an 

SNR > -17 dB or 0.14 (Newsom, 2012).  The SNR for the measurements taken during 

METCRAX II were well below the -17 dB level.  Figure 21 shows the average value of 

measured SNR segregated by the wind direction.  This plot shows that the SNR values of 

N, NE, SE’ly flows were comparatively higher, which could explain the large error in the 

‘u’ component for flows from other directions.  The overall low SNR observed for the 

measurements could be attributed to the poor aerosol content expected during 

Figure 20. Same plot as in figure 17 but color coded based on the wind direction.  It is 

evident from this plot that Southerly and South-Westerly flows have a much higher 

scatter. 
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undisturbed, clear-sky nights, which was characteristic for all IOPs.  One possible 

explanation for the change in SNR based on the wind direction could be the driving 

force/source for these winds.  The mesoscale Southwesterly drainage/katabatic flows 

observed during the IOPs were much weaker and thus can be expected to have fewer 

aerosols than the strong Northerly, Northwesterly ambient flows.   

 The errors for the VAD retrieval compared with the tethersonde soundings at the 

BASE site are shown in Figure 15.  Since, almost all the IOPs were conducted during 

stable night-time conditions, VAD is expected to perform reasonably well due to the 

validity of the linear wind field assumption, limited by the SNR of the measurements.  

Figure 16 shows the 15 minute averaged horizontal wind component measurements in the 

S-SW direction, taken from the dual-Doppler retrieval and the tethersonde for a few 

IOPs.  The lidar retrieval is assumed to represent 1 minute averaged values whereas the 

Figure 21. Plot of SNR (signal to noise ratio) of the lidar measurements for different 

mean wind directions 
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tethersonde measurements were instantaneous measurements taken during the ascent 

lasting ~ 15 minutes.  This difference in the sampling time between the lidar retrieval and 

the tethersonde sounding could explain the overall spread in the errors seen in Figure 16.  

Further, strong warm air intrusions which at times reached the crater floor were observed 

during IOP-4 and the personnel operating the tethersonde reported large horizontal 

movements of the tethersonde during the ascents.  This could have contributed to the 

large errors seen during IOP-4 (Figure 16a).  

2.6 Summary   

The second Meteor Crater Experiment (METCRAX II) was designed to study 

downslope-windstorm-type flows occurring at the Barringer Meteorite Crater in Arizona.  

Three Doppler lidars were employed along with other meteorological instruments to 

study the upstream flow and its response inside the crater during these intermittent 

events. Inside the crater basin, Doppler wind lidars were deployed to perform coplanar 

dual-Doppler lidar analysis to capture the two-dimensional (2-D) vertical structure of 

these flows.  This type of analysis allowed the flow to be resolved on a 2-D Cartesian 

grid constructed in the range height indicator scan overlap region.  In order to study the 

dependence of spatial and temporal errors on different lidar parameters, and to determine 

the scan strategy that minimizes the under sampling of radial velocities and provides a 

good spatial as well as temporal coverage of these short- lived events, a lidar simulator 

was developed using a large Eddy simulation wind field.  An expression to calculate the 

scan speed (Eq. (2.2)) was determined to ensure complete spatial coverage while 

providing the best possible temporal coverage for a given coplanar scan. A retrieval 
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technique based on the weighted least squares technique with weights calculated based on 

the relative location of the lidar range gate centers to the grid intersection point was 

developed. The instrument configuration was determined by comparing the simulator 

retrievals to the background wind field and taking into account the limitations of 

commercially available lidars.  To capture the upstream flow, vertical wind profiles were 

retrieved from VAD scans as well as by combining consecutive RHI scans at 15° and 42° 

azimuths from the BASE lidar radial velocity measurements.  The high resolution-short 

range wind profiles from RHI scans complemented the long rage-low resolution wind 

profiles from VAD scans.   

When applied to the lidar data from the field experiment, these retrievals proved 

to be very valuable in capturing the intermittent and short lived DWF events on the lee 

side of the crater and the upstream conditions in the surrounding plain.  The analysis of 

the lidar data combined with tethersonde and tower data pointed to the depth and strength 

of the South-Southwesterly drainage flow to be of importance in determining the 

occurrence of DWF events inside the crater. Most of the instruments in the field 

experiment were setup to take complimentary measurements and a proper validation of 

the retrievals was challenging.  One of the major limitations of the validation study was 

the different spatial and temporal sampling of various instruments.  However, wherever 

the measurements of the tethersonde, sonic anemometers on the tower and the lidars 

overlapped, an intercomparison study was performed to assess the accuracy of the 

retrievals.  Although all the retrievals performed reasonably well, comparatively large 

errors were observed in the u component of the vertical profiles retrieved from the RHI 
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scans.  A Gaussian error propagation analysis revealed the cause to be the insufficient 

azimuthal separation between the RHI scans combined with the low SNR of the lidar 

measurements during the IOPs.  In conclusion, lidars played a very important role in 

METCRAX II and this study highlights the capabilities of Doppler lidar vector retrievals 

in capturing complex atmospheric phenomenon.   
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CHAPTER 3 

2D-VAR  

“Complex flow” (in meteorological sense) is an atmospheric flow with strong 

spatial and temporal variability caused by a combination of complex terrain, presence of 

surface elements (e.g., forests, wind turbines, buildings etc.) and meteorological features 

(e.g., jets, weather fronts etc.) (Clifton, 2015).  Most of the popular single Doppler lidar 

vector retrieval algorithms rely on the homogenous wind field assumption, which plays a 

vital role in reducing the indeterminacy of the inverse problem of obtaining Cartesian 

velocity from radial velocity measurements.  Consequently, these methods fail in 

situations where the flow is heterogeneous.  Alternate methods are based either on 

statistical models (e.g., optimal interpolation, Choukulkar et al., 2012) or computationally 

intensive four dimensional variational methods (Newsom & Banta, 2004). In this chapter, 

a 2D variational vector retrieval for Doppler lidar that uses the radial velocity advection 

equation as an additional constraint along with a tangential velocity constraint derived 

from a new formulation with gradients of radial velocity is described.      

3.1 Relevant work 

Figure 22 shows two successive Doppler lidar PPI scans acquired within a 60s 

time interval.  We can see radial velocity structures advecting towards the lidar.  The idea 

is to use this information in addition to the radial velocity equation to reduce the 

indeterminacy of the vector retrieval inverse problem.  Previous attempts to retrieve 

motion/advection information from two consecutive datasets have come from disparate 
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disciplines.  A review of relevant works that have explored the idea of obtaining the 

velocity vector using advection information is presented in this section.  

3.1.1 Optical flow estimation in computer vision 

Optical flow can be described as the velocity field associated with the movement 

of brightness/intensity patterns between two or more consecutive images.  Optical flow is 

a well-studied problem in the field of computer vision and has many applications.  A 

majority of the popular optical flow estimation methods in use today are derived either 

from the Horn & Schunck method (Horn & Schunck, 1981, HS81) or the Lucas-Kanade 

method (Lucas & Kanade, 1981, LK81).  The HS81 formulation relies on the brightness 

constancy assumption between successive image frames to estimate the in-plane velocity 

vector 𝐯 = (𝑢, 𝑣)B,g, from the Lagrangian conservation equation.  To alleviate the under-

determined nature of the problem (i.e., there is only one advection equation with two 

unknowns 𝑢, 𝑣	), an additional smoothness constraint on the velocity field is imposed and 

the velocity ‘𝐯’ is determined such that the cost function in Eq. (3.1) is minimized.   

Figure 22. Advection of radial velocity structures seen in two successive radial velocity 

plots obtained from a Doppler wind lidar in a 60s interval.  
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J u, v =
𝜕𝜂
𝜕𝑡 + 𝑢

𝜕𝜂
𝜕𝑥 + 𝑣

𝜕𝜂
𝜕𝑦

*

+ 𝛼 ∇𝑢 * + ∇𝑣 * 	𝑑𝑥	𝑑𝑦						 3.1  

where, 𝜂	is the brightness of each pixel, (x,y) is the location of the pixel in the image 

plane and 𝛼 is the weight for the smoothing term, which controls the degree of 

smoothness in the flow field. 

The LK81 differs from HK81 in the implementation of this method. While HS81 

is a global method (i.e., the cost function is evaluated and minimized for the entire 

image), LK81 solves for 𝐯 in a local sense, (i.e., the method is implemented in local 

regions, where every pixel within a region is assumed to have the same velocity 𝐯 giving 

a sparse but more reliable vector field). 

3.1.2 Correlation methods 

  These methods have been extensively used to retrieve winds from non Doppler 

systems (e.g., Conventional radar, elastic lidar etc.) (Schols & Eloranta, 1992; Mayor et 

al., 2012).  Assuming Lagrangean advection of features in radar reflectivity, methods 

such as TREC (Tracking Radar Echoes by Correlation - Rinehart & Garvey, 1978; Tuttle 

& Foote, 1990) estimate the wind field by tracking the centroids of RADAR echoes using 

correlations between successive scans.  The drawback of these methods is that the 

process is computationally expensive and the resulting flow field might contain large 

voids in areas lacking traceable flow features.  Moreover, Gal-Chen (1982) has 

demonstrated that for certain advection-diffusion problems, the correlation method could 

produce multiple solutions.   
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Although not a pure correlation based method, Laroche & Zawadzki’s (1994) 

variational echo tracking (VET) is based on a similar idea implemented using a 

variational method with continuity constraint to obtain the velocity field.  

3.1.3     Doppler radar retrievals based on Gal-Chen’s (1982) formulation 

One of the early works by Gal-Chen (Gal-Chen, 1982, GC82) dealt with finding a 

reference frame moving with the flow, to reduce the errors caused due to the non-

simultaneous measurements in a Doppler radar (i.e., 2D radar scans are not acquired in an 

instant but rather take finite time to complete one scan during which time the features 

could have advected). What started as a simple correction for advection was further 

developed into a least squares based vector retrieval by Gal-Chen & Zhang (Zhang & 

Gal-Chen, 1996 (GC-96); Gal-Chen & Zhang, 1993). Following GC82, an iterative 

method was implemented to obtain a moving reference frame based on the reflectivity 

conservation equation and later Eq. (3.2) was implemented in that moving reference 

plane to obtain the full velocity vector.  

J u, v, w =
𝜕𝜂
𝜕𝑡 + 𝑢

𝜕𝜂
𝜕𝑥 + 𝑣

𝜕𝜂
𝜕𝑦 + 𝑤

𝜕𝜂
𝜕𝑧

*

+ 𝛼 𝑢
𝑥 − 𝑥+
𝑟 	+ 𝑣	

𝑦 − 𝑦+
𝑟 + 𝑤	

𝑧 − 𝑧+
𝑟 − 𝑉;

*
	𝑑Ω	𝑑𝑡																										(3.2) 

where, 𝜂 is the radar reflectivity, (𝑥+, 𝑦+, 𝑧+) is the location of the radar, 𝑑Ω is the region 

over which the algorithm is applied, 𝑉; is the radial velocity and 𝛼 is a weighting term 

used to ensure that both the advection constraint and the radial velocity constraint are of 

the same order of magnitude.  It must be noted that Eq. (3.2) is expressed in a fixed frame 
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of reference but the actual GC-96 retrieval is performed in a reference frame moving with 

the advection velocity.     

3.1.4 Doppler radar variational methods 

Variational retrieval methods (Sasaki 1970a, 1970b, 1970c) could be broadly 

classified into two types (Qiu et al., 2006): a) Parameter identification techniques (PI) 

and b) 4D-VAR based methods.  In the former, data from the radar is used to estimate the 

unknowns (e.g., Cartesian velocity) by fitting them to a set of control equations 

pertaining to reflectivity/ radial velocity conservation equation (Qiu & Xu, 1992).  The 

resulting retrieval could be considered as a time-mean estimate over the acquisition time 

period.  The latter method (i.e., 4D-VAR based) relies on a forecast model to obtain the 

wind field along with thermodynamic variables (Sun et al., 1991).  4D-VAR methods 

have been known to be computationally expensive to implement and often limited by the 

underlying assumptions in the forecast model.  

  The PI techniques involve finding the best time-mean estimate of the control 

variables (X = [u,v,w…]) by minimizing a cost function (J(X)) of the form: 

J 𝐗 =
1
2Ω WBCB* 		𝑑Ω																																																	(3.3) 

where, WB are the weights pertaining to the relative importance of the constraints 

CB, corresponding to the various control equations in a weak sense and 𝑑Ω is the domain 

over which the minimization is performed.  Although, the control equations could be 

specified as strong constraints (Lewis & Derber, 1985) or weak constraints (Sasaki 
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1970b,1970c), previous works (Laroche & Zawadzki, 1994; Xu et al., 1994) have shown 

that the weak constraint formulations perform better in the presence of model errors, 

especially with the reflectivity/radial velocity conservation equation.   

Previous PI works mainly differed in the type of constraints and method used for 

the minimization of the cost function.  Qiu & Xu (1992) first proposed a “simple adjoint 

method (SA)”, to retrieve the time mean winds of artificial data, using only the 

Lagrangian conservation of radar reflectivity as a strong constraint in the cost function.  

The SA method was later upgraded to include the eddy diffusion & residual forcing terms 

in the reflectivity conservation equation in Xu et al. (1994), continuity equation as a 

strong constraint in Xu & Qiu (1994) and radial velocity equation with algorithmic 

improvements in Xu & Qiu (1995).  Following the SA method, Qiu & Xu (1996) 

developed a computationally efficient least-squares formulation with weak zero 

horizontal divergence and vorticity constraint.  A single Doppler radar wind retrieval 

intercomparison study by Shapiro et al. (1995) showed that the least squares formulation 

performed better the other retrieval methods for the given test case.  When compared 

with the SA method, the least squares formulation was found to robust and yielded 

similar retrievals for short scan periods. In addition, Gao et al. (2006) added a 

background constraint to reduce the noise arising from the finite difference calculations 

of the gradients and to facilitate a smooth transition to fill the data void regions with wind 

field from the background.  In an attempt to preserve local structure, Qiu et al. (2006) 

developed a two step variational method in which a proxy background was obtained from 
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a second order expansion of Legendre polynomials. Some of the above methods have 

been extended for dual Doppler radar by Gao et al. (1999).  

3.1.5 Related work with Doppler Lidars 

Methods based on 4DVAR of Sun et al. (1991), has been tested on Doppler lidar 

(Chai et al., 2004, Newsom & Banta (2004a, 2004b), Newsom et al. 2005, Xia et al. 

2008).  A two-step variational retrieval method based on Qui et al. (2006) was 

implemented for the Hong Kong International airport lidar dataset to detect flow hazards 

for airplanes (Chan & Shao, 2007) and was later used in Lagrangean coherent structure 

analysis by Tang et al. (2011).  The same method was implemented for a plume 

dispersion and air quality study by Chan & Yu (2010).  

The general technique used in the current study is based on the 3D-VAR method 

described by Gao et al. (2006).  However, for scans with low elevation angles, further 

simplifications could be made to the radial velocity equation and an expression for the 

tangential velocity can be derived.  Based on these modifications, a new fast 2D-VAR 

algorithm was developed for low elevation, repeated PPI scans. 

3.2 Formulation 

3.2.1 Constraint equations  

Consider figure 1 from (Chapter1). At every point on the scan surface, the 

Cartesian velocity components and their counterparts in spherical coordinates are related 

by: 

𝑉; = 𝑢. 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑 + 𝑣. 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 + 𝑤. 𝑠𝑖𝑛𝜑																																(3.4𝑎) 
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𝑉=� = −𝑢. 𝑠𝑖𝑛𝜃 + 𝑣. 𝑐𝑜𝑠𝜃																																																(3.4𝑏) 

𝑉=r = −𝑢. 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑 − 𝑣. 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 + 𝑤. 𝑐𝑜𝑠𝜑																																	(3.4𝑐)  

where, 𝑉; is the radial velocity, 𝑉=� is the tangential velocity in the horizontal 

plane, 𝑉=r is the tangential velocity in the vertical, (𝜃, 𝜑) are the azimuth and elevation 

angles respectively.  As mentioned previously, a Doppler lidar can measure only 𝑉;.   

Let us consider a repeated PPI scan at low elevation angles and attempt to retrieve 

the horizontal components of the velocity vector.  At low elevation angles (𝜑 ≈ 0), Eq. 

(3.4a) reduces to 

𝑉; = 𝑢. 𝑐𝑜𝑠𝜃 + 𝑣. 𝑠𝑖𝑛𝜃																																																					(3.5) 

Differentiating Eq. (3.5) along the azimuth direction and using Eq. (3.4b) we get 

𝜕𝑉;
𝜕𝜃 = −𝑢. 𝑠𝑖𝑛𝜃 + 𝑣. 𝑐𝑜𝑠𝜃 +

𝜕𝑢
𝜕𝜃 	𝑐𝑜𝑠𝜃 +

𝜕𝑣
𝜕𝜃 𝑠𝑖𝑛𝜃																												(3.6) 

			= 𝑉=� + P						, 𝑤ℎ𝑒𝑟𝑒		P =
	𝜕𝑢
𝜕𝜃 	𝑐𝑜𝑠𝜃 +

𝜕𝑣
𝜕𝜃 𝑠𝑖𝑛𝜃 																						(3.7) 

The term ‘P’ is identically zero when the simplified constant wind assumption is 

true (e.g. VAD, VVP).  ‘P’ could be understood as a measure of deviation from this 

assumption.   

We now have two equations (Eq. (3.5) and Eq. (3.7)) and three unknown 

variables (u,v and P).  These equations can be closed by considering the radial velocity 

advection equation.  Assuming that radial velocity patterns advect with the flow, we get  
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𝜕𝑉;
𝜕𝑡 + 	𝑢	

𝜕𝑉;
𝜕𝑥 + 𝑣	

𝜕𝑉;
𝜕𝑦 = 0																																												(3.8) 

where, 𝑉; is the filtered radial velocity (e.g., Gaussian filter ) introduced to reduce 

the effect of noise on numerical derivatives.  By substituting the partial derivatives with 

finite differences, and solving Eq. (3.5), (3.7) and (3.8), the horizontal vector field can be 

determined.  Since gradients are prone to become unreliable in regions with high noise 

levels, a background constraint similar to Gao et al. (2006) is included.  The background 

constraint equation is formulated as the departure of the vector field (u,v) from the vector 

field derived using VVP or sector VAD (𝑢�, 𝑣�).  The vector field (u,v) can be estimated 

by minimizing a cost function derived from the above mentioned constraints.   

3.2.2 Implementation 

The radial velocities from successive scans are first interpolated onto a Cartesian 

retrieval grid.  Based on the above considerations, the cost function is formulated as 

J u, v, P =
1
2Ω (𝑊>	A* 	+𝑊�	B* +𝑊�	C* +𝑊6	D>* +𝑊6	D�*+)	𝑑Ω											(3.9) 

𝑤ℎ𝑒𝑟𝑒,							𝐴 =
𝑢𝑥
𝑟 +

𝑣𝑦
𝑟 − 𝑉;7�@,						𝐵 = −

𝑢𝑦
𝑟 +

𝑣𝑥
𝑟 −

𝜕𝑉;7�@

𝜕𝜃 + P, 

C =
𝜕𝑉;
𝜕𝑡 + 	𝑢	

𝜕𝑉;
𝜕𝑥 + 𝑣	

𝜕𝑉;
𝜕𝑦 ,								D> = 𝑢 − 𝑢�, D� = 𝑣 − 𝑣�, 

		𝑥 = 𝑟. 𝑐𝑜𝑠𝜃, 𝑦 = 𝑟. 𝑠𝑖𝑛𝜃, 𝑟 = 𝑥* + 𝑦*																																					 

Here, A is the radial velocity constraint, B is the tangential velocity constraint, C 

is the radial velocity advection constraint and D is the background constraint.  The 
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objective is to find u, v and P at which the cost function is minimized or the gradients 

(Eq. (3.10), (3.11) and (3.12)) vanish.   

𝜕J
𝜕u Bg

= 	𝑊>A
𝑥
𝑟 −𝑊�B

𝑦
𝑟 +𝑊�

𝜕𝑉;
𝜕𝑥 +𝑊6D>																														(3.10) 

𝜕J
𝜕v Bg

= 𝑊>A
𝑦
𝑟 +𝑊�B

𝑥
𝑟 +𝑊�

𝜕𝑉;
𝜕𝑦 +𝑊6D�																																(3.11) 

𝜕J
𝜕P Bg

= 𝑊>. 𝐵. 𝑃																																																							(3.12) 

The minimization can be performed using any non-linear optimization methods. 

In the current study, the minimization was performed using the quasi-Newton method 

(Appendix B). 

3.2.3 Selection of Weights 

The weights in the cost function address two issues.  First, when the individual 

constraints in the cost function scale differently, constraints with lower order of 

magnitude (e.g., constraints with spatial derivatives) naturally contribute less to the cost 

function and thus are less affected by the minimization process. Hence, the weights need 

to ensure that each constraint has the same order of magnitude.  Second, within the 

retrieval domain, depending on the confidence of the measurement, some of the 

constraints might be required to have a higher importance than others.  For instance, 

consider the radial velocity advection cost function.  For grid points near the boundary of 

the domain, there is a high probability for the flow structures to advect out of the retrieval 

domain during the acquisition time for the scans.  For such regions, giving equal 
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importance to the advection constraint similar to the other constraints might not be useful, 

if not detrimental to the retrieval. Hence, the weights are calculated to address these two 

concerns.  

 The tangential velocity constraint and the background constraint complement 

each other.  The inclusion of ‘P’ in the tangential velocity formulation (Eq. (3.9)) allows 

the retrieval to preserve the local non homogeneity in the flow.  However, this equation is 

very sensitive to noise, since it is comprised of derivatives of radial velocity 

Figure 23. Figure showing the advection of a flow structure and the formulation of the 

weights for the advection equation. 
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measurements.  In order to limit the use of this constraint to regions where the 

homogeneity assumption breaks down, 𝑊�	and 𝑊6	were chosen based on the R2 value 

(coefficient of determination) of the linear wind model used in the construction of the 

background wind field (usually VVP or sector VAD).  The value of R2 is between 0 and 

1; 1 when the variability in the radial velocity measurements is entirely accounted for, by 

the linear wind model and is lower when it deviates from it.  Thus, while calculating the 

background wind, at each grid point in the retrieval domain, the weight for the 

background is calculated as 

𝑊6(𝑥, 𝑦) = 1 −
𝑉𝑟A76:9 𝜃 − 𝑉𝑟7�@:;r:6 *

𝜎u;* �,�
																									(3.13)	 

𝑉𝑟A76:9 𝜃 = 𝑢�. 𝑐𝑜𝑠𝜃 + 𝑣�. 𝑠𝑖𝑛𝜃																																																				 3.14 	

 where, 𝜎u;* 	is the variance of the radial velocities within the retrieval region (i.e., 

in the region of influence of the grid point) and 𝑉𝑟A76:9 − 𝑉𝑟7�@:;r:6 * is the residual.  

𝑊�	is taken as 𝑊6 − 1.  The weight for the radial velocity (𝑊>) constraint is taken to be 

1. 

 Consider some flow feature (Figure 23, ‘A’), advecting with the surrounding 

mean flow, that is captured in a lidar scan at a certain instant, as shown in figure 23.  In 

the subsequent scan, this feature could advect to a different location.  For every grid 

point, a circular region with a radius ∆𝑥 could be defined, within which, the new location 

of the feature would fall in the subsequent scan.  Now, the radial velocity advection 

constraint is built on the assumption that radial velocity of this feature remains constant 

from one scan to another.  Ideally, this is only valid when the flow direction is along the 
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beam (i.e., lidar’s line of sight) or in a trivial case, when the flow field is stationary.  

Moreover, the differential equation used to describe the advection only works for small 

displacements (ideally, 1-2 grid spacing).  The weight (𝑊�	) must be formulated such that 

it takes the aforementioned factors into consideration and identify regions in the retrieval 

domain where this constraint would be meaningful.    

For this, let ∆𝑥 be defined as: 

∆𝑥 = 𝑈rr8�×∆𝑡																																																								(3.15) 

where, ∆𝑡 is the time interval between the two scans for each grid point and 

𝑈rr8�is the tangential velocity at the grid point obtained from the background wind field 

(usually VVP or sector VAD) and can be obtained using:  

 𝑈rr8� = −𝑢�	𝑠𝑖𝑛𝜃i + 𝑣�𝑐𝑜𝑠𝜃i																																														(3.16)	 

where, (𝑢�	, 𝑣�) are the background wind vectors and 𝜃iis the azimuth angle for 

the grid point from the lidar.  𝑊�	can now be formulated as an image mask based on some 

threshold 𝜆	as 

𝑊� = 			1; 							𝑤ℎ𝑒𝑛				∆𝑥	 ≤ 	𝜆
		0; 								𝑤ℎ𝑒𝑛			∆𝑥	 > 	𝜆																																									(3.17) 

where, 𝜆 could be defined as: 𝜆 = 2(𝑔𝑟𝑖𝑑	𝑠𝑝𝑎𝑐𝑖𝑛𝑔), to satisfy the small 

displacement condition.  Alternatively, the threshold could also be based on the integral 

length scale of the flow if known a priory.   
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 Defining 𝑊� in this manner satisfies the requirements as follows: 

• For a given mean flow, ∆𝑥 is large when the time difference between the 

scans is large.  This ensures that the small displacement condition is satisfied. 

• For a given ∆𝑡, ∆𝑥 is large when the tangential velocity (𝑈rr8�) is large.  This 

ensures that the constant radial velocity during advection condition is 

satisfied. 

3.3 Test cases 

3.3.1 Data from Tehachapi, California 

a) Description of the data set. This test data was acquired between 25-27th June, 

2014, at Tehachapi, California.  A Lockheed Martin Coherent Technologies 

WindTracer® lidar (Table 3.1), was installed on a hill (1450m ASL) at a 

windfarm (Windland, Inc.) (35.094089° N, 118.341312° W). The lidar 

performed a 60° sector, repeated 0° elevation, PPI scans looking North-West 

over Tehachapi city.   
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Table 3.1:  

Specifications of the Lidar used in the study 

Lidar type LMCT WindTracer® 

Wavelength 1.617 µm 

Pulse repetition frequency 750 Hz 

Pulse width 300 ns 

Range gate size 100 m 

Pulses averaged 100 

Pulse Energy 2 mJ 

Radial velocity range ±38 m/s 
 

The 2D retrieval was performed on a rectangular domain (6	km	×	4	km) on the 

lidar scan as shown in figure 24.  Due to the location of the lidar on the top of a hill, the 

scan and the retrieval domain were located approximately 200m above the Tehachapi 

valley.  The weights for individual terms in the cost function for this dataset were set at 

𝑊>= 1,	𝑊�= 0.5 ,	𝑊�= 105 and 𝑊>= 0.1 for this preliminary validation.  The lidar data 

was initially quality controlled based on a simple SNR based filter, i.e., points with very 

high SNR (indicative of hard target returns) and very low SNR (dominated by noise) are 

rejected.  In addition, 2-3 range gates immediately before a hard target return along a line 

of sight were also removed (Banta et al., 2015).  

Figure 24. A relief map and a photograph of the terrain showing the location of the lidar 

and the retrieval domain.  H1, H2 and H3 and hills visible in the lidars field of view.  

Based on the relief map, this terrain could be classified as a complex terrain. 
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b) Initial validation.  To test the performance of the retrieval, an intercomparison of 

lidar retrieved winds with Tehachapi airport’s wind data was performed.  

Tehachapi airport maintains a standard airport weather observing system (AWOS) 

with a cup and vane anemometer measuring horizontal surface winds.  

Unfortunately, the airport was located just outside maximum range of the lidar 

and ~230m below the lidar scan (Figure 24) .  For the horizontal location 

Figure 25  Comparison of lidar retrieved and airport AWOS wind speed (above) and 

wind direction (below).  The retrieval at sections A,B,C,D,E and F are shown figure  

26. The gray areas show data acquired at night.  
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mismatch, the lidar data closest to the airport’s location was used in the 

validation.  For the height mismatch, airport data was interpolated to the lidar’s 

elevation using the power law interpolation (Eq. 3.18) with 𝛼=1/7 (Spera & 

Richards 1979).   

U@	§ = U@s;¨>�:
𝑍

𝑍@s;¨>�:

ª

																																									(3.18) 

where, ‘U’ is the wind speed and ‘𝑍’ is the height above the ground. 

Figure (25) shows the lidar retrieved winds along with the power law extrapolated 

airport data and gusts (no power law extrapolation) observed at the surface.  Gusts 

were reported when the maximum recorded wind speed exceeded the 10-minute 

averaged wind speed by 10kts (ICAO 1998).  The error in windspeed (∆U), wind 

direction (∆φ) and Pearson correlation coefficient (𝑅) are calculated according to 

Eq. (3.19), (3.20) and (3.21). 

∆U =
1
𝑁 U9B6>; − U>B;87;=

*
f

Bhi

																																									(3.19) 

∆φ =
1
𝑁 𝑡𝑎𝑛¬i

𝑢9B6>;𝑣>B;87;= − 𝑣9B6>;𝑢>B;87;=
𝑢9B6>;𝑢>B;87;= + 𝑣9B6>;𝑣>B;87;=

*f

Bhi

																					(3.20) 

𝑅 =
𝐶𝑂𝑉(U9B6>;, U>B;87;=)

𝜎9B6>;𝜎>B;87;=
																																																	(3.21) 

where, ‘𝐶𝑂𝑉()’ is the covariance and  ‘𝜎’ is the standard deviation. 
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Figure 26. The lidar vector retrieval at sections A, B, C, D, E and F  shown figure 25 



	

 72 

Table 3.2 

Retrieval validation study results 

 Wind speed error (∆U) Wind direction 
error (∆φ) 

Correlation coefficient 
(𝑅) 

Day 1.9279 m/s 14.3653° 0.6658 

Night 4.5991 m/s 19.4040° 0.2624 

 

From Table 3.2, we can see that errors from the day are lower than errors 

at night.  A possible cause of the error could be the power law interpolation.  In 

general, the power law exponent ‘𝛼’ in Eq. (3.13) is a complex function that 

depends on local climatology, terrain, surface roughness, atmospheric stability 

and time of the day among many other factors.  Using a constant value for ‘𝛼’ 

could be an oversimplification (Spera & Richards, 1979).  However, 𝛼=1/7 used 

in this study approximately holds for neutrally stable atmosphere (i.e., during the 

day) and could lead to errors in the estimates during the night.  This could explain 

the relatively high errors and smaller correlation values during the night.  The 

higher errors in general could be attributed to the fact that the flow is 

predominantly “complex”.  Measurements in complex flows have been known to 

exhibit persistent differences between point measurements (e.g. sonic 

anemometers) and area measurements (e.g., lidars, Radars) even when the devices 

are operated according to industry standards.  In the current study, this issue of 
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variability could be exacerbated due to the location and height mismatch between 

the measuring devices.  In lieu of the above issues, a qualitative comparison from 

figure 25 and figure 26, shows that flow features (E.g., presence of gusts) are 

captured and correlate well with when the airport data reports gusts.   

3.3.2 Data from FINO-1 platform, North Sea 

FINO-1 (Forschungsplattformen in Nord- und Ostsee Nr.1) is a German offshore 

wind energy research platform located close to the Alpha Ventus wind farm in the North 

Sea.  As a part of an extensive offshore measurement campaign to improve the 

understanding of marine boundary layer, offshore wake propagation effects and air- sea 

interaction, two scanning Doppler wind lidars (Leosphere’s windcube 100s) were 

installed on the FINO-1 platform to perform various Dual- doppler and vertical profiling 

scans.  On 31st, August, 2016, one of the lidars was configured to perform repeated low 

elevation angle (0.5°) PPI scans, primarily for the validation of the new 2D-VAR vector 

retrieval. The lidar scanned a 90° azimuthal sector in the direction of the wind farm 

(Figure 27), with a 2°/s scan speed, accumulation time of 1 second and a 25m range 

resolution, the lidar could produce one scan product approximately every 45 seconds.   

With a good atmospheric aerosol content, the returns were clean and the lidar was often 

was able to capture winds at distance exceeding 2.5km. 
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  By combining two successive scans for each time step, the wind field in a 1170m 

x 1400m domain, with a grid spacing of 30m was retrieved using the 2D-VAR algorithm 

and the traditional Volume Velocity Processing (VVP) algorithm.  The VVP estimates 

were obtained by pooling all the radial velocity measurements within a 200 m region 

around each grid point in the domain and estimating the velocity components that best fit 

the measurements in a least squares sense.  The 200m search space for VVP is required to 

obtain reliable estimates of (u,v) such that the variation in radial velocity due to 

orientation of the line of sight is greater than turbulent fluctuations in the wind (Clifton 

2015).  The downside of this implementation is that the VVP estimates become less 

reliable at grid points far away from the lidar.  However, this wasn’t an issue in the 

present study since only the grid point closest to the lidar was considered for obtaining 

the validation statistics with the anemometer data.  The 10-minute averaged wind data 

from the cup and vane anemometer (CVA) situated at 33m LAT on the meteorological 

mast was used for corroborating and validating the wind retrieval from both 2D-VAR and 

Figure 27. (a) Fino-1 research platform showing the location of the lidar (L1) and the 

tower with cup and vane anemometers (T1), (b) Location of Alpha Ventus wind farm 

in North Sea (b) Photograph of Alpha Ventus windfarm looking North East.  Fino-1 

platform is situated to the left of the turbine T3 beyond the view of the camera.  

Photograph by Martina Nolte, CC by 3.0 (c) lidar scan with retrieval domain. 

T3,T4,T7,T8,T11 and T12 are wind turbines  
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VVP algorithms.  Since the lidar and the met mast were both located on the FINO-1 

platform, retrieved wind vector from the nearest grid point (excluding the points along 

the boundary) was considered.   

Figure 28. Comparisons of (a) wind speed and (b) wind direction, retrievals from 

2D-VAR, VVP and CVA. 
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Figure 29. (a) Radial velocity plot, (b) VVP retrieval and (c) 2D-VAR retrieval 

applied on the data from the lidar at FINO-1 at point ‘A’ in figure 28.  As seen, the 

2D-VAR algorithm is able to capture wake and other small scale structures  
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Figure 30. (a) Radial velocity plot, (b) VVP retrieval and (c) 2D-VAR retrieval 

applied on the data from the lidar at FINO-1 at point ‘B’ in figure 28 for a case 

when the flow is perpendicular to the lidar’s scan. 
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In addition, the temporal profiles of wind speed and direction from the lidar were 

obtained by taking the mean of the retrieved u and v component of velocity within a 10-

minute window around the CVA measurement time.  The error in wind speed (∆U), wind 

direction (∆φ) and Pearson correlation coefficient (𝑅) were calculated according to Eq. 

(13), (14) and (15).  

Figure 28 shows the temporal profiles from VVP, 2D-VAR and CVA.  The 2D 

retrievals along with the radial velocity are shown in figures 29 and 30 corresponding to 

points ‘A’ and ‘B’ given in figure 28.  These particular times were chosen to demonstrate 

instances when the flow was almost parallel and perpendicular to the lidar’s view 

respectively.  The violet and red dotted lines in the direction plots correspond to the 

azimuthal angle and its orthogonal counterpart of the grid point, whose wind values are 

plotted in the figure.  From Table 3.3 and Figure 28, it is evident that both VVP and the 

2D-VAR methods accurately estimate the mean flow, although VVP performs slightly 

better primarily due to its underlying formulation which is designed to obtain the mean 

quantities. The downside of this is the loss of local flow structure as seen in figure 29. It 

is evident from this figure that the wind vectors estimated by the 2D-VAR algorithm 

corroborate well with the radial velocity values (Figure 31 and Figure 32) especially in 

capturing small scale flow structures, including what appear to be wakes behind the wind 

turbines.  All this small scale information is essentially lost in the VVP retrieval. 
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Table 3.3. Validation of 2D-VAR and VVP with 10-minute averaged CVA data 

Algorithm/
Variable Wind speed error 

Wind speed 
correlation 
coefficient 

Wind 
direction 

error 

Wind 
direction 

correlation 
coefficient 

2D-VAR 0.42 m/s (0.8%) 0.96 -1.1° 0.95 

VVP 0.30 m/s (0.6%) 0.97 6.7° 0.97 

 

3.5 Summary 

There is a need for accurate and computationally efficient vector retrieval 

algorithms for Doppler wind lidars especially for applications involving short term wind 

power forecasting and dynamic wind turbine control.  Existing wind retrieval algorithms 

are either incapable of retrieving small scale (turbine scale) flow structures or 

computationally expensive to be used in real time applications.  To address this, an 

efficient 2D-VAR algorithm was developed and tested on lidar data from recent field 

deployment.   

Figure 31. (a) Radial velocity obtained from 2D-VAR, (b) Radial velocity 

obtained from VVP retrieval and (c) Observed radial velocity, (d) Histogram of 

radial velocity error for 2D-VAR, (e) Radial velocity error for VVP retrieval. 
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 The general retrieval is based on a parameter identification (PI) method in which 

the parameters (vector field) is retrieved by seeking a solution which minimizes a cost 

function comprised of constraints pertaining to the flow field.  While there have been 3D 

retrievals developed in the past based on PI technique, it was observed that for scans with 

low elevation angles the constraints in the cost function to be minimized, could be 

simplified and new constraints corresponding to the tangential velocity and the advection 

of radial velocity could be derived from the radial velocity equation.  Expressions to 

calculate the weights for the respective constraints were derived based on the relative 

importance of the constraint in a given scenario, allowing the retrieval to be automated 

requiring minimal user intervention. 

The retrieval was tested on data from two different lidars, a 1.6µm LMCT 

Windtracer lidar and a Leosphere’s Windcube 200S lidar. data from recent field 

deployments at an onshore and an offshore wind farm respectively. The retrievals in both 

the cases were validated with measurements from a reference cup and vane anemometers. 

Although the results from the Tehachapi dataset showed large errors between the retrieval 

and the lidar, most of the variability could be ascribed to the location mismatch between 

the reference sensor and the lidar scan (~ 200m difference in elevation)..  

Figure 32. (a) Radial velocity obtained from 2D-VAR, (b) Radial velocity 

obtained from VVP retrieval and (c) Observed radial velocity, (d) Histogram of 

radial velocity error for 2D-VAR, (e) Radial velocity error for VVP retrieval, for 

an instance where the flow is perpendicular to the lidar line of sight.  
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The lidar data from the Alpha Ventus wind farm however, showed very good 

correlations and a very high accuracy for a single Doppler lidar vector retrieval, in the 

retrieved wind speed and direction when compared with data from a cup and vane 

anemometer located on the FINO-1 platform at roughly the same elevation as the lidar 

scan.  One limitation of this study was that, the accuracy of the retrieval in the spatial 

domain could not be quantified due to the lack of instrumentation in the lidar scan region. 

However, analysis from this exploratory study showed that the algorithm while being 

computationally efficient with fast runtime (~ 3s in MATLAB running in a laptop 

powered by a 2.4GHz intel core i5 processor), was able to capture local structure in the 

flow including possible wakes from the wind turbines.  
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CHAPTER 4 

ATMOSPHERIC DATA VISUALIZATION IN MIXED/AUGMENTED REALITY 

Atmospheric science has seen a tremendous advancement in the tools and 

methods to study the atmosphere over the years.  Remote sensors like lidars can make 

unseen structure in objects or flow fields visible with higher spatial and temporal 

resolutions.  However, it is often difficult to connect static, two-dimensional graphics to a 

natural visual view of either an object or a three-dimensional flow field necessitating an 

interactive 3D visualization environment that is simple and intuitive to the user.  

Visualization in mixed reality provides one such environment that taps into intuitive 

human perception by merging computer generated views of digital objects (or flow 

fields) with natural views.  This type of visualization is particularly useful in situations 

where the user’s primary task requires him/her to shift focus away from the computer 

screen (E.g., Air traffic controllers, Pilots). 

In this chapter a novel mixed reality data visualization application for atmospheric 

science data is explored and the methodology using game development platforms along 

with a few mobile applications demonstrating this technology are presented.  

4.1 What is augmented reality and mixed reality? 

Mixed reality/ Augmented reality taps into intuitive human perception by merging 

computer generated views of digital objects with natural views.  Digital objects can be 

positioned in 3D space and can mimic real objects in the sense that walking around the 

object produces smoothly changing views toward the other side.  Only recently have 
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advances in gaming graphics advanced to the point that views of moving 3D digital 

objects can be calculated in real-time and displayed together with digital video 

streams.  Auxiliary information can be positioned and timed to give the viewer a deeper 

understanding of a scene -- for example, a pilot landing an aircraft might “see” zones of 

shear or decaying vortices from previous heavy aircraft.  A rotating digital globe might 

be displayed on a table top to demonstrate the evolution of El Nino (Figure 34b).   

Although the concept of a transparent display has been around for some time 

(Sutherland, 1968), the term ‘augmented reality’ was first coined by Caudell & Mizell 

(1992) to describe the head-mounted displays used by workers at Boeing to guide them 

with the assembly process.  “Mixed reality” (MR) is an umbrella term used to describe 

any system which combines real and virtual content (Milgram et al., 1994, Figure 33).  If 

we place different user environments along a continuum with the real environment on 

one end and virtual environment (Virtual reality- Fully immersive displays) on the other, 

Figure 33. Mixed reality continuum as given in Milgram et al. (1994).  It shows 

different interfaces which have various levels of immersion with real world on the left 

and fully immersive virtual reality interfaces on the right. 
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any environment in-between these two extremum can be classified as mixed reality (MR) 

of which Augmented reality (AR) is the best known and more popular- The other one 

being Augmented Virtuality (AV) in which a user’s otherwise virtual world is augmented 

with real world objects.  An example of an AV system would be a virtual reality system 

Figure 34. A few augmented reality examples (a) Heads up display (HUD) in an 

airplane, (Optical technology) (Photo by Amber Case; CC by 2.0) (b) Meteo-AR 

mobile application (handheld-video based application) (c) Microsoft’s Hololens 

(Heads up display using optical technology) (Photo by Kai Kowalewski; CC by 4.0) 

(d) AR Sandbox (spatial-projector based Augmented reality) (Photo by Trevor 

Dykstra; CC by 2.0) 
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with a real rendering of the user’s hands for interaction in the virtual world.  Given the 

popularity of AR compared to AV, the terms MR and AR are often used interchangeably.  

4.2 Types of AR systems:  

For an interface to be classified as AR, it must satisfy three criteria (Azuma et al., 

2001):  

i. Present real and virtual content together in a real environment 

One of the key features which distinguishes AR from other types of visualization 

Figure 35. Schematic of different AR display systems classified based on the display 

technology; (a) Head-Mounted optical display system, (b1) Head-Mounted Video 

based display, (b2) Hand held video based system (c) Spatial AR system.   
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ii. Virtual objects align with the real world and registers in 3D  

This distinguishes displays which form simple 2D-overlays over video feeds from 

AR  

iii. The content must be interactive in real time 

This helps in distinguishing popular visual effects often used in movies from AR 

(E.g. chroma key compositing used in Hollywood; which is a post-production 

technique and not interactive).  

At the heart of any AR system is a display technology which combines the real 

and virtual (commonly called as a ‘combiner’).  There are three major types of AR 

systems classified based on the display technology (Carmigniani & Furht, 2011): a) 

Optical, c) Video based, d) Spatial.  (See Figure 35) 

a) Optical. In these systems, the user views the world through a semitransparent 

mirror onto which, a projector unit, projects relevant graphics.  The mirror being 

semi-transparent, allows the user to view the real world along with the projected 

virtual objects.  Smart glass based Head mounted displays (HMDs -Figure 34c) 

and Head-up displays (HUDs) (Figure 34a) fall in this category.  Since the device 

needs to render/project only the virtual content, these systems have lower graphics 

requirements and were commonplace in almost all early implementations of AR.  

However, since the user has a direct view of the real world (which runs in real-

time), even small errors in alignment of the virtual objects with the real world are 

instantly recognizable, increasing the dependence on a reliable and accurate 

tracking system.  Moreover, these unconventional displays often tend to be 
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expensive and until recently have seen only military and industrial applications.  

Some of the recent consumer based AR systems which implement optical system 

are the Microsoft’s Hololens (Figure 34c), Google Glass and Meta2 headset.   

b) Video based. In video based AR, live video of the world from a camera is 

displayed on a screen placed in front of the user.  Since the user now sees the 

world through a video feed, digital content can be blended/layered in the video 

feed prior to rendering, to create the AR experience.  They could either be a head 

mounted VR display with cameras (E.g. Steptoe & Steed, 2014) or 

smartphone/tablet computer.  These systems are gaining popularity due to the 

ubiquitous availability of smartphones and low cost VR headsets.  Moreover, 

since cameras are integrated into the viewing device, the registration (tracking) 

issue can be solved by implementing computer vision based algorithms which 

have high accuracy compared to other registration techniques. An example of a 

handheld video based AR system is Volkswagen’s MARTA (mobile augmented 

reality technical assistance) application used to visualize service information, 

steps and tools required to complete the maintenance task in real time in 

augmented reality (Stanimirovic et al., 2014).  One of the limitations of HMDs 

using video based systems is that these devices tend to be bulky and are not 

suitable for extended usage in the current form (Rolland et al., 1995, Van 

Krevelen & Poelman, 2010).   

c) Spatial.  In spatial AR systems, the virtual content is projected onto real world 

objects by means of a projector, eliminating the need for the user to wear an HMD 
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or hold any display in his/her hands.  An independent tracking system could be 

used to detect user input and adjusting the virtual objects.  An example of such a 

system is the Sixth sense technology (Mistry et al., 2009) which is a wearable 

gestural AR interface.  In this, virtual content is displayed on any surface by 

projecting information using a tiny projector and the user input is captured by a 

camera mounted on a hat or a wearable pendant around the neck.  Another 

example is the Augmented Reality Sandbox (Reed et al., 2014), which allows 

students to learn earth science concepts by shaping real-world sand.  As the 

students shape the real sand, a kinect sensor (Microsoft’s IR based depth sensor) 

positioned on the top, registers the surface in real time to produce simulated 

topographic contour lines, and virtual water in real time (Figure 34d).  However, 

these systems have lower mobility, lower resolution and a short depth of focus 

which limit their application to indoor settings. 

4.3 Motivation for the current project 

Visualization techniques have evolved over time and MR data visualization is 

emerging as the new paradigm for interacting with digital content.  Although the concept 

of MR/AR (AR or augmented reality- considered as a subset of MR and the term often 

used interchangeability with MR) has been known for many years, the ubiquitous 

availability of smartphones and tablet computers has led to an extraordinary growth of its 

applications in the mainstream over the recent years.  In addition, HMDs that were 

popular primarily in the aviation industry, military and specialized research organizations 

in the past have now become affordable and accessible to general public given their 



	

 92 

increasing popularity in the gaming industry.  On the software side, modern game 

development platforms (Software used to develop computer games) have made the 

application development process simpler because of their efficient game engines and 

compatibility with multiple computing devices.   

The primary purpose of this study is to demonstrate a novel application of MR in 

conjunction with atmospheric science data and present a brief methodology using modern 

game development platforms. 

4.4 Relevant applications with atmospheric data 

Aragon et al. (2005) first conducted a flight simulator based usability study of an 

airflow hazard detection system for rotorcraft pilots using AR.  The study demonstrated a 

“dramatic improvement” in the performance of the helicopter pilots who used AR 

visualization under stressful operational conditions.  Nurminen et al. (2011) presented 

another application of MR as one of the features of HYDROSYS system- An 

environmental data analysis and monitoring platform in which simulation results from 

integrated sensor data was visualized in MR using a specialized portable handheld 

computer.  In a similar study, Heuveline et al. (2011) demonstrated a mobile AR system 

to visualize computational fluid dynamics simulation of wind flow around buildings in an 

urban environment.  

The data visualization application presented in this study differs from the previous 

works in three main aspects- (i) Type of data being visualized, (ii) Target devices, (iii) 

Tools used in the application development.  Compared to just simulation data used in 
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previous studies, the current application uses multidimensional data from atmospheric 

sensors with close to real-time application capability in addition to simulation.  

Moreover, as opposed to specialized equipment and development tools used for 

visualization in previous studies, the current work leverages on the ubiquitous availability 

of smartphones and game development tools making the technology accessible to a larger 

user base including independent researchers, small research groups and general audience.   

4.5 General working scenario 

Consider a typical field deployment with multiple sensors (e.g., instruments on a 

meteorological mast, radiosonde, Doppler lidars, weather stations etc.) measuring 

different atmospheric variables (see Figure 36).  The network between the sensors and the 

visualization devices is based on a client-server model i.e., the data being visualized is 

streamed from the sensors and stored at a server and all the devices used for visualization 

(e.g. smartphones, HMDs etc.) obtain the data from this server as clients.  In addition to 

storing the raw data from the sensors, the server also processes the raw data to produce 

appropriate files for visualization.  On the visualization device, the user can either choose 

to automatically stream the data to be visualized as it becomes available (real-time) or 

manually step through the data in a retrospective mode.   

The application on the viewing device (client) is designed to have two modes of 

operation: (a) the “onsite mode”- where the data from the sensors is presented as an 

overlay at the sensor’s physical location when viewed through the mobile device or HMD 

and (b) The “tabletop mode”- where the data being visualized (along with a scaled down 
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version of the 3D terrain) is overlaid on a surface when viewed through the mobile device 

or HMD.   

 

4.6 Implementation on the viewing device 

Computer games can be described as applications which enable human users to 

move and interact with virtual objects, driven by specific rules and mechanics, through a 

user interface.  For instance, in the videogame ‘Tetris’, the user rotates and moves the 

tiles/blocks (virtual objects) using the computer keyboard (interaction) to match the 

patterns as they drop to the floor (mechanics).  A game development platform is a 

Figure 36.  An illustration of a typical working scenario with data acquisition process 

shown with yellow dotted lines and visualization process shown with red dotted lines. 
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software system that provides a working environment to design these games, attach 

scripts (computer codes that specify the mechanics) and build the project (i.e., create an 

executable package through which the user can launch and play the game).  An added 

advantage of using game development platforms is their multiplatform support, i.e., 

Figure 37. (a) An overview of the application setup in Unity, showing different 

GameObjects (GOs) used in the current project. The lines connecting the Camera GO 

with the Background GO denote the edges of the view frustum (Edges of the camera’s 

field of view) of the Camera GO (b) The inset shows the output of the Camera GO 

(the user-view while running the application). 
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applications developed in the game development platform can be built for different 

devices (e.g. smartphones, tablet computers and many of the popular HMDs.)  

A data visualization application was developed using Unity SDK (Unity 

Technologies, 2016).  Following Unity’s terminology, all virtual objects will be referred 

to as ‘GameObjects’ (GOs- basically objects inside a game) henceforth.  There are three 

main GOs in this application (similar to the blocks in Tetris but in 3D): Sensor Data-GO, 

Camera-GO, and Background-GO (see Figure 37(a)).  The Sensor Data-GO(s) 

corresponds to the data being visualized.  In the example shown in Figure 37, it is a 2D 

vector field that is fixed at a known location in the virtual world.  The location of the data 

is determined based on prior knowledge of the instrument’s location.  The Camera-GO 

functions as the eyes of the user into the virtual world, i.e., while running the application, 

the device’s screen displays what the Camera-GO sees at the moment (see Figure 37(b)).  

Lastly, the Background-GO is a 2D plane that serves as a backdrop to the Camera-GO’s 

output onto which live video from the device’s physical camera is displayed (imagine a 

big screen that follows the Camera-GO as its backdrop wherever it currently points).  

Thus, the user can see the video streamed from the device’s physical camera while 

simultaneously seeing the sensor data, whenever the Sensor Data-GOs comes within the 

field of view of the Camera-GO (Figure 37).  The user interaction with this virtual world 

(and hence the MR experience) is controlled through the Camera-GO.  The Camera-GO 

has 6 degrees of freedom (i.e., it can move along three directions in space (X, Y, Z) and 

rotate around each of these axes (roll, pitch, yaw)).  By controlling these six parameters 

of the Camera-GO, the user can move and look around in the virtual world.  The two 
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modes of operation (i.e., the “on-site mode” and “table-top mode”) differ primarily in 

input method of these 6 variables.  

 

 

Figure 38. Working methodology of the table-top mode demonstrating how the image 

appears distorted based on the viewing angle of the device camera.  The inset figures 

(A)-(D) correspond to the camera view at the corresponding positions.  A marker 

detection framework (Vuforia SDK in this study) is used to calculate position and 

orientation of the camera relative to the marker.   
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4.6.1 Onsite-Mode: 

Smartphones, tablet computers and most of the wearable devices come equipped 

with GPS, magnetometer and gyroscope units.  The onsite mode makes use of the data 

from these sensors to determine the 6 variables of the Camera-GO, i.e., GPS can be used 

to obtain the (X, Y, Z) position and the gyroscope (with the magnetometer) can provide 

the (roll, pitch, yaw) information.  Thus, the Camera-GO aligns its view of the virtual 

world with the real world by mimicking the location and orientation of the viewing 

device.  One of the major challenges of the onsite mode is the exact alignment of the 

atmospheric sensor data with real world objects relying solely on mobile sensors (GPS 

and IMU).   The alignment process is limited by the accuracy of the location/orientation 

sensors, (i.e., the current GPS accuracy is about ±10m) requiring the user to make fine 

corrections in the location while starting the application (After which the alignment holds 

without any user intervention).  One way to address this issue in the future is by 

combining the current approach with a computer vision based approach (Klein & Murray, 

2007).  

4.6.2 Table-top mode: 

 The table-top mode uses a marker-based system to determine the position and 

orientation of the Camera-GO.  Consider a square sheet of paper with some image (The 

marker) placed on a table (Figure 38).  When this marker is viewed from different 

locations, the image appears distorted due to the perspective effect (Figure 38 (A)-(D)).  

By comparing this distorted image with the original image of the marker, the location and 

orientation of the camera relative to the location of the marker can be uniquely 
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determined.  This marker detection and tracking process is a well-studied problem in the 

field of computer vision and a number of frameworks are currently available.  In the 

present study, this was implemented using the Vuforia SDK (PTK Inc., 2016)- a mobile 

SDK to create computer vision based AR systems.  By centering the virtual objects at the 

location of the marker, the user can visualize these objects as an over lay on the live 

camera feed of the device.  The virtual objects mentioned above could be static meshes 

(e.g., scaled version of the terrain) or interactive sensor data (e.g., windfield, temperature 

etc.) or a combination of both.  The overall implementation on the device is given in 

figure 39.  

 

Figure 39.  Illustration of the visualization process on the client side (i.e., in the 

mobile/tablet/HMD) running a game engine. 
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4.7 Test case  

For the purpose of demonstration, three different uses of the MR visualization 

were explored.  First, the visualization method was tested with lidar data from 

METCRAX II field experiment.  Figure 40a, 40b show the screenshots of the application 

running on a tablet computer in “on-site mode” and “table-top mode” respectively.  The 

data being visualized is a 2D cross-section of the wind flow inside the Meteor Crater in 

Arizona, during a downslope windstorm-type flow (DWF) event.  The DWF event is an 

intermittent, short lived wind flow in which the ambient flow over the crater descends 

inside the crater and rebounds along the crater side wall forming a rotor and a lee wave.  

The colors represent wind speed with the vectors showing wind direction.  The dataset 

shown spans a two-hour time period with a temporal resolution of 1 minute and is 

visualized in retrospective mode (i.e., recorded data, although it has near real time 

capabilities limited by the bandwidth of the internet connection and the data acquisition 

time of the sensors).  The example shown here with a tablet computer is meant to be 

proof of concept, and such a visualization will prove valuable in situations where 

decision makers need to quickly, identify and determine the physical location of an 

atmospheric event.  For instance, a pilot landing an aircraft could use it to see zones of 

shear or decaying turbulent regions from previous aircraft in his plain sight through his 

head mounted display.
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Figure 40. Screenshots from the tablet computer running the data visualization 

application. (a) Onsite mode- The scan was rotated about the vertical axis get a better 

viewing angle, (b) Table-top mode. 
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 In an educational setting, AR/MR technologies make the atmospheric data 

tangible by allowing students to interact with the data as if they were physical objects 

providing an intuitive and richer learning experience.  Figure 41 demonstrates one such 

application.  Similar to the table-top mode, this application uses a marker based system to 

determine the location of the virtual objects.  The user is provided with science pages 

which contain information pertaining to the dataset along with an image which serves as 

the marker.  Figure 41b shows the science sheet corresponding to the dataset in figure 

41c.  This particular dataset depicts NOAA’s 1/4° daily optimal interpolation sea surface 

temperature anomaly during the years 2015 to 2016, showing the evolution of the recent 

El Niño event.  When viewed through a mobile device running the application (Meteo-

AR), the 3D dataset appears on the page, allowing the user to interact and explore the 

Figure 41. Screenshots from the tablet computer running the METEO-AR data 

visualization application. (a) Screen shot of the application visualizing sea surface 

temperature anomaly showing the evolution of the 2015-2016 El Niño event, 

obtained from an optimal interpolation data assimilation scheme, (b) Science page 

corresponding to the El Niño dataset shown in (a). The pattern with the white dots 

surrounding the image in the marker help the marker detection routine to identify the 

correct dataset to render corresponding to the marker sheet, (c) An example showing 

the September Sea Ice concentration in the Arctic region, (d) Another example 

showing the application, rendering a 3D model of Hurricane Odile.     
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dataset in MR.  To view a different dataset, the user simply swaps the science sheet.  The 

placement of the white dots along the border of the image is unique to each dataset (See 

figure 41b) and they help the application determine which dataset to render. 

4.8 Summary 

Augmented reality provides a data visualization environment which is natural and 

intuitive to use.  In this study, the application of this technology in the field of 

atmospheric science is explored leveraging on the ubiquitous availability of smartphones 

and tablet computers, along with the current enthusiasm for general consumer head 

mounted displays.  ‘Lack of content creation tools’ was one of the major limitations 

reported by research studies in the past (Bacca et al., 2014).  The present study addresses 

this issue by demonstrating an application and presenting methodology utilizing, 

accessible game development platforms.   

In an educational setting, augmented reality was found to be beneficial in teaching 

concepts involving spatial structures and studies from desperate disciplines have 

observed that augmented reality based educational tools fostered collaboration and 

increased student motivation towards the educational content (Radu, 2012).  Further, 

given the increased interest and familiarity with mobile technology among the millennial 

generation, the proposed AR technology could be ideal for teaching atmospheric science 

concepts as well as in weather education and public outreach activities. 
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CHAPTER 5 

CONCLUSIONS & FUTURE SCOPE 

Environmental remote sensing has seen rapid growth in the recent years and 

Doppler wind lidars have gained popularity primarily due to their non-intrusive, high 

spatial and temporal measurement capabilities.  While lidar applications early on, relied 

on the radial velocity measurements alone, most of the practical applications in wind 

farm control and short term wind prediction require knowledge of the vector wind field.  

Over the past couple of years, multiple works on lidars have explored three primary 

methods of retrieving wind vectors viz., using homogeneous windfield assumption, 

computationally extensive variational methods and the use of multiple Doppler lidars.  

These works highlight a tradeoff between the presence of complex flow and the 

complexity of the vector retrieval.   

Building on prior research, the first section of the present study demonstrates the 

capabilities of single and dual Doppler lidar retrievals built on the least squares 

formulation as a part of the METCRAX II field campaign at the Barringer Crater in 

Arizona.  Vertical profiles of wind speed and direction with 5m resolution were retrieved 

from RHI and VAD scans which played a vital role in capturing the strength and depth of 

the nocturnal katabatic drainage flow over the surrounding plain, which were identified 

as an important factor leading to the development of downslope windstorm-type flows 

observed inside the crater.  To capture the intermittent downslope windstorm-type flows, 

a coplanar dual Doppler lidar retrieval was implemented along a vertical plane inside the 

crater.  A lidar simulator that runs on a prior LES simulation of the crater was developed 
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to study the dependence of various lidar parameters on the spatial, temporal and retrieval 

errors, using which, the instrument setting which best capture the intermittent downslope 

flow events were determined.  A validation study to assess the accuracy of all the 

retrievals was performed using data from other instruments in the field.  While most of 

the retrievals performed well, profiles from RHI scans showed a relatively big error in the 

‘u’ component.  A Gaussian error propagation analysis identified the RHI scan separation 

and the low SNR of the measurements to be the likely source of this error.  While the 

single Doppler lidar retrievals implemented in METCRAX II highlight their capabilities 

in a horizontally homogeneous windfield, they would fail in complex flow situations.  An 

example of one such situation is the flow around wind farms.   

With the advancement of wind turbine technology and increased energy needs in 

the past 30 years, large wind farms with several hundred MW capacities with multi row 

wind turbines situated even on complex terrain are becoming common.  However, with 

wind farms of such capacity, wakes from turbines in leading rows have been observed to 

alter the flow, hampering the entrainment of momentum and restricting the wake 

recovery within the wind farm - Known as the deep array affect (Nygaard, 2014).  These 

wakes are the primary cause of increased turbulence within the wind farm, which inturn 

increase the turbine loads and reduce power output of the wind farm.  Previous studies 

have measured average power losses due to wakes to be of the order of 10-20% of the 

total power output (Barthelmie et al., 2009).  The use of turbine wake models to 

characterize wakes have their limitations of either underestimating or overestimating 

wake losses (Barthelmie et al., 2009; Larson et al., 2013).  Moreover, wake meander 
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caused by large scale flow structures in the ambient flow is often difficult to characterize 

by models alone.  One way to address this issue would be to adaptively and collectively 

control the wind turbines to maximize the power output based on upstream flow 

measurements with a Doppler lidar.  A Doppler lidar could be used scan the atmosphere 

upstream and within the wind farm to derive the wind vectors, which could then be used 

in an optimization routine to determine individual turbine parameters to maximize the 

power output of the wind farm.  This optimization process must start with an efficient 

Doppler lidar vector retrieval method which needs to retrieve wind vectors in real-time 

while preserving small scale, local flow structures.  To address this requirement, a novel 

2D-VAR based single Doppler lidar vector retrieval was developed and tested on Lidar 

data in the present study.  

The retrieval obtains the vector field by minimizing a cost function formulated 

from a set of constraint equations pertaining to the flow.  The constraints pertain to the 

radial velocity advection equation, tangential velocity equation from derivatives of radial 

velocity and the background from VVP.  Expressions to determine the weights for each 

of these constraints based on their relative importance and confidence within the retrieval 

domain, were formulated.  This retrieval was applied on lidar data from the Alpha Ventus 

wind farm in the North sea and validated with the data obtained from a cup and vane 

anemometer installed on a nearby research platform FINO-1.  The intercomparison study 

demonstrated the accuracy and computational efficiency of the retrieval, while capturing 

wakes and their meander over time.   
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With these improved capabilities of Doppler lidar, we now have access to 2D and 

3D measurements of the atmosphere, which make the unseen structure in the flow visible.  

However, for tasks requiring the user to shift his/her focus away from the computer 

screen frequently (E.g., Pilots), this process of connecting two-dimensional on-screen 

graphics to a natural visual view of either an object or a three-dimensional flow field 

could often be tedious, if not misleading.  Visualization in Mixed/Augmented reality 

(MR/AR) could address this issue by providing a visualization environment in which the 

data regarding the surrounding atmosphere could be displayed within the user’s real 

world view by means of a head mounted, hand held device.  While AR visualizations 

have seen applications ranging from marketing to healthcare and is an active research 

area, there have been very few applications in the field of atmospheric science.  The few 

previous works comprised of either usability studies or demonstrations with specialized 

hardware on simulation data alone.  The current study differs from the previous works by 

present an AR visualization technique to visualize real sensor data leveraging on the 

ubiquitous availability from smartphones, tablet computers, and popularity of consumer 

grade head-mounted displays.  A methodology using commonly available, game 

development platforms for the application development is also presented.  The concept 

was tested on lidar data from METCRAX II and some NCAR’s Earth science datasets for 

education and outreach activities.     

In conclusion, this work aims to highlight the capabilities and limitations of the 

current Doppler lidar vector retrievals, establish the foundations for a fast 2D-VAR 

vector retrieval and demonstrate a novel Mixed/Augmented Reality based data 
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visualization technique for atmospheric data.  Apart from the possible application of the 

2D-VAR in collective wind farm control techniques, the general idea of using a 

Variational formulation could eventually pave way to a multiple sensor fusion based 

retrieval. 

Variational methods have their roots in data assimilation techniques, in which 

multiple observations are incorporated into the model to deduce the current state of the 

atmosphere.  Similar concept could be used to assimilate measurements from multiple 

sensors in the field to improve the resolution and accuracy of the 2D-VAR method 

developed in this study.  Consider the general formulation of the cost function (J 𝐗 ) 

from chapter 3; 

J 𝐗 =
1
2Ω WBCB* 		𝑑Ω																																							(5.1) 

where, 𝐶B’s are the different constraints with their weights given by WB. Apart 

from the constraints described in this study, additional background constraints for the 

wind vector could be formulated incorporating measurements from other instruments in 

the field such as, point measurements from sonic anemometers, line measurements from 

tethersondes, measurements from automatic weather stations etc., to name a few.  The 

differences in spatial and temporal resolutions can be factored in through the careful 

selection of the weights WB .  To this end, techniques used in statistical methods like 

optimal interpolation which estimates the weights based on the error covariance length 

scales could be implemented. 
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Another possible extension of the work presented in this study would be in the 

formulation of an advection corrected, dual Doppler lidar retrieval.  Work with the lidar 

simulator in chapter 2 pointed to spatial and temporal errors to be the main contributors 

to the overall error in the retrieval.  While spatial error is dependent on the range gate 

size, the temporal errors are dependent on the scan speed and pulse averaging used.  

Often times, it is imperative to have a slow scan speed and a higher pulse averaging, in 

order to obtain measurements with high SNR, making temporal errors inevitable.  

Moreover, large acquisition times could also lead to the eventual violation of the wind 

field homogeneity assumption.  For instance, the downslope windstorm type flows that 

were being studied were only observed during quiescent nights when the ambient wind 

speed was low.  Thus, almost all the IOPs were conducted during clear-calm nights with 

poor aerosol content.  This necessitated longer acquisition times and higher pulse 

averaging for each beam measured by the lidar to obtain data of acceptable quality.  One 

possible remedy is to apply the retrieval in a moving frame of reference as demonstrated 

by Gal-Chen (1982) on data from Doppler weather radars.  In this method, sequential 

backscatter or radial velocity scans could be used in a Variational formulation to deduce 

the mean wind speed and direction.  The individual measurements from each line of sight 

and range gate are then corrected for their actual location using the advection equation, 

before running the dual Doppler algorithm to retrieve the higher resolution wind vectors. 
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APPENDIX A  

EQUIVALENCY FOR AVERAGED RETRIEVAL TECHNIQUE AND LEAST 

SQUARES ALGORITHM 
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Consider a cell in the domain that receives ‘ ’ hits from lidar-1 and ‘ ’ hits from 

lidar-2 within a specified time window. Eq. (A1) gives the relationship between the 

velocity components and the radial velocity for each instance.  

 

                                       (A1) 

 

Where and  are the horizontal and vertical velocity components in the plane of scan, 

is the elevation angle and is the radial velocity as seen by the lidar at the corresponding 

range gate. The subscripts 1 and 2 refer to lidar-1 and lidar-2 respectively. The subscripts 

 and  indicate each hit and they run from 1 to  and 1 to  respectively. A total of 

 equations are obtained which can be solved for the velocity components using a 

least squares algorithm11. Eq. (A2) is the matrix representation of Eq. (A1).  

 

                                                           (A2) 

 

Where    , and  

One shortcoming of this approach is that, for large grid spacing, matrix ‘ ’could become 

ill-conditioned.  This can be avoided by reducing the system of equations given in Eq. (A1) 

to just two equations as outlined below. Eq. (A2) can be written as: 
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                                              (A3) 

,  

 

 

, 

 

 

‘ ’ is the weighting function matrix. Let and  denote the angles made by the 

centroid of the cell with respect to each lidar. For small grid spacing, we can replace 

&  with & . The linear system given in Eq. (A3) can now be written as  

     

                                                                                                                                (A4) 

Where,  and  are the mean radial velocities, given by and 

. & are given by and 
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On further simplification of Eq. (A4) and rearranging the terms in matrix form, we 

obtain  

                                        (A5) 

 

Where and . 

and are identically zero only when . Thus, when 

and , Eq. (A1) can be replaced with, 
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APPENDIX B  

QUASI NEWTON ALGORITHM FOR OPTIMIZATION 
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            algorithm Quasi-Newton method with Davidon-Fletcher-Powell method 

input: 	𝑿𝟎, 𝐽 𝑿𝟎 , ∇𝐽 𝑿𝟎 , 𝑫𝟎 

output: 𝑿 at a local minimum of 𝐽 𝑿  

 

𝑘 = 0 

while  ∇𝐽(𝑿µ) * < 	𝜀  (or) ∆𝐽(𝑿µ) < 𝛿 

            𝑫µ = −𝑯µ∇𝐽(𝑿µ) 

            find ‘a’ using any ‘Line-search algorithm’ 

            𝑿µ¹i = 𝑿µ + 𝛼𝑫µ 

            𝒂 = 𝑿µ¹i − 𝑿µ 

            𝒃 = ∇𝐽 𝑿µ¹i − ∇𝐽(𝑿µ) 

                        for each grid point i                    

𝑯B
µ¹i = 𝑯B

µ +
𝒂𝒂¼

𝒂¼𝒃 B
−
𝑯µ𝒃𝒃¼𝑯µ

𝒃¼𝑯µ𝒃 B
 

            end for 

            𝑯µ = 𝑯µ¹i 

            𝑘 = 𝑘 + 1 

             end while  

 

A simple backtracking line search algorithm (Armijo 1966) could be used to determine 

the optimal step size “𝛼”.  (cont…) 
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            algorithm Line Search 

input: 	𝐽 𝑿 , ∇𝐽 𝑿 ,𝑫, 𝑝, 𝑞 

output: optimal step size: 𝛼 

 

while 		𝐽 𝑿 + 𝛼𝑫 > 	𝐽 𝑿 + 𝑝𝛼∇𝐽(𝑿)¼𝑫   

 𝛼 = 𝑞𝛼 

end while  

 


