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ABSTRACT

For autonomous vehicles, intelligent autonomous intersection management will be

required for safe and efficient operation. In order to achieve safe operation despite

uncertainties in vehicle trajectory, intersection management techniques must consider

a safety buffer around the vehicles. For truly safe operation, an extra buffer space

should be added to account for the network and computational delay caused by com-

munication with the Intersection Manager (IM). However, modeling the worst-case

computation and network delay as additional buffer around the vehicle degrades the

throughput of the intersection. To avoid this problem, AIM Dresner and Stone (2004),

a popular state-of-the-art IM, adopts a query-based approach in which the vehicle re-

quests to enter at a certain arrival time dictated by its current velocity and distance

to the intersection, and the IM replies yes/no. Although this solution does not de-

grade the position uncertainty, it ultimately results in poor intersection throughput.

We present Crossroads, a time-sensitive programming method to program the inter-

face of a vehicle and the IM. Without requiring additional buffer to account for the

effect of network and computational delay, Crossroads enables efficient intersection

management. Test results on a 1/10 scale model of intersection using TRAXXAS RC

cars demonstrates that our Crossroads approach obviates the need for large buffers

to accommodate for the network and computation delay, and can reduce the average

wait time for the vehicles at a single-lane intersection by 24%. To compare Crossroads

with previous approaches, we perform extensive Matlab simulations, and find that

Crossroads achieves on average 1.62X higher throughput than a simple VT-IM with

extra safety buffer, and 1.36X better than AIM.
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Chapter 1

INTRODUCTION

As vehicles become autonomous, intersections are no longer constrained by the hu-

mans that are currently driving and instead, automated Intersection Managers (IMs)

can make intersections safer and more efficient. Vehicle to Infrastructure (V2I) IMs

interact with the vehicles as they approach the intersection to find a safe and efficient

way to operate the intersection.

There are two main ways to design the interface between the vehicles and the

IM. The first is the most intuitive one, which we call Velocity Transaction IM (or

VT-IM). In a VT-IM the approaching vehicle announces its arrival to the IM, and

the IM responds with a velocity command to follow that will ensure safe and efficient

operation of the intersection. To guarantee the safety of vehicles in any intersection, a

safety buffer must be considered around the vehicle which accounts for the uncertainty

in the position and velocity of the vehicle. The uncertainty in the position and

speed of the vehicle stem from different sources such as errors in various sensors

and actuators, inaccuracies in the data fusion algorithms, and even due to the clock

synchronization drift between the vehicle and the IM. To ensure the safe operation

of a VT-IM, the IM must also take into account the network and computation delay

related to the interaction between the vehicle and the IM. Here, the network delay is

the variable lag in delivering information to the IM and then back to the vehicle, and

computational delay is the time it takes for the IM to compute the correct response to

send back to the vehicle. Network and computation delay together, compose Round

Trip Delay (RTD). Neglecting RTD makes VT-IM scheduling methods vulnerable to

uncertainties and may lead to accidents. So, a time buffer should be considered to
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account for the worst-case RTD.

One way to avoid having this large RTD buffer is to use a Query-Based IM (QB-

IM) design. This approach is quite popular, and is used in the state-of-the-art work

AIM Dresner and Stone (2004, 2008). In this, the vehicle approaches the intersection

at a constant speed, and sends a speed query to the IM. The IM simulates vehicle

trajectory and replies with a yes/no answer. If the answer is yes, the vehicle can

continue moving with the speed, and if the answer is no, the vehicle slows down

to a lower speed, and makes a request again. A QB-IM approach does not incur

error in the position of the vehicle due to RTD, and therefore the RTD buffer is not

required. However, in such an IM 1 design there is not much scope for the IM to

optimize the traffic at the intersection. In particular, the QB-IM design cannot solve

an optimization problem and send its result to the vehicles because it can only give

a yes/no answer. Ultimately, a QB-IM results in less intersection throughput.

To solve this RTD buffer problem correctly, we present our approach Crossroads.

Crossroads is a time-sensitive method to program a VT-IM, without requiring the

addition of an RTD buffer. Crossroads solves the RTD buffer problem by fixing the

action time of the target velocity received by the vehicle, so that the position of the

vehicle becomes deterministic. We use 1/10 scale models and design several traffic

scenarios to test the two IM techniques, the VT-IM which requires the RTD buffer,

and Crossroads that does not. We also implemented all the three IMs (the simple

VT-IM, Crossroads, and AIM) in Matlab to study the scalability of our approach.

We run the intersection simulation on randomly generated vehicle input sets. We

found that at low input rates, all the techniques perform almost the same, however,

as input rate increases, the throughput of VT-IM drops sharply. QB-IM works better,

1In this paper we use the acronym IM for both intersection manager and intersection management.
The correct word will be clear from the context.
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Figure 1.1: Five Vehicles in a Real Implementation. Top Speed 3.0 m/s. Intersection

Lines Overlayed After the Test.

but Crossroads scales better. On average over all input flows, Crossroads has 1.62X

better throughput (number of vehicles per second
average delay per vehicles

) than VT-IM, and 1.36X better than

AIM. The performance overhead and network traffic of Crossroads and VT-IM is up

to 20X lower than AIM.
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Chapter 2

SETUP TO EVALUATE IM

Most IM techniques have been evaluated on simulators, therefore researchers did not

encounter timing and error-related problems. In order to test the effectiveness of IM

policies on a physical intersection, we created a 1/10 scale model. As shown in Figure

1.1, we have designed a four-way intersection with one lane per road. The size of the

intersection is 1.2 × 1.2m2 and the vehicle length and width are 0.568m and 0.296m

respectively. Each vehicle will start communicating with the intersection manager

when crossing a designated transmission line. The distance between intersection and

designated transmission line was chosen to be 3m. The maximum velocity of the

vehicles is limited to 3m/s.

We used RWD (rear wheel drive) Traxxas Slash RC as the chassis. A quadra-

ture encoder was installed on the motor to measure vehicle velocity. Arduino Mega

2560s were used as the central control unit of the vehicles. Bosch BNO055 9DOF

sensor fusion IMUs were used for steering feedback. For wireless communication,

NRF24L01+, 2.4GHz serial network adapters were utilized. Our setup is similar to

Fok et al. (2012).

The vehicle interaction with the IM is implemented broadly as a state machine

with four states: i) Arriving state: The vehicle is in this state before it reaches the

transmission line. ii) Sync state: Once the vehicle reaches the transmission line, it

registers with the IM, and sends a sync request to the IM. The IM sends back the

time synchronization data (based on NTP) Mills (1991). iii) Request state: Once the

time sync is achieved, the vehicle transmits a packet of data to the IM requesting to

make an intersection crossing. After processing the requests ahead in a FIFO queue,
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the IM computes the response for the vehicle and sends the response (e.g., proceed at

a particular speed). vi) Follow state: Once the vehicle receives the plan from IM, the

vehicle then follows the plan, and when it crosses the intersection, the vehicle sends

an exit timestamp to notify the IM, and goes back to the Arriving state for the next

intersection. The exit timestamp allows us to track wait time of each vehicle.

Different IMs are implemented and run on a laptop with 10 GB memory, Core

i7 -3517u @1.9/2.4 GHz CPU and Windows 8.1 64-bit OS. The IMs are written in

Matlab R2016.

𝑬𝑳𝒂𝒕

𝑬𝑳𝒂𝒕

𝑬𝑳𝒐𝒏𝒈
𝑬𝑳𝒐𝒏𝒈𝑳

𝑾

𝑬𝑫𝒆𝒍𝒂𝒚

Figure 2.1: Vehicle Modeled With Lateral, Longitudinal Error Including Round-Trip

Delay.
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Chapter 3

SAFETY BUFFER CALCULATION

In any physical system (not simulation), there are always uncertainties/inaccuracies

in identifying the exact state of the system. In our case, the uncertainty is in the

position and velocity of the vehicles. This positioning uncertainty can be due to sev-

eral reasons: sensor errors (in our case, position and speed sensors), state estimation

algorithms used (for example, if a GPS and IMU are used to estimate the position

and the velocity of the vehicle, the sensor fusion algorithm can affect the accuracy of

the position and velocity), and even due to the difference in the clocks of the different

components of the system (in our case, the synchronization error between the IM and

the vehicle). In order to achieve safe operation of the intersection, a safety buffer

must be modeled around the vehicles. The safety buffer essentially implies that the

vehicle can be anywhere within the buffer and the movement of the vehicles must be

planned/implemented such that the safety buffers do not overlap at any moment in

time.

3.1 Estimating Sensing Error

Vehicle positioning is based on acquired measurements from sensors. An IM design

must take into account the error propagated from GPS, encoder, etc. It should be

noted that an encoder error would affect the vehicle longitudinally, whereas GPS

error would affect a vehicle both laterally and longitudinally. Figure 2.1 depicts both

cases. Although it may be possible to estimate the size of safety buffer around the

vehicles using the error numbers from the data sheets of the sensors, it is still hard to

estimate the effect of the data fusion and control algorithms on the buffer. Therefore,
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Figure 3.1: Expected Velocity Versus Actual Velocity Due to Control Algorithm

Errors, and Sensor Errors.

we devise an experiment to estimate the error in the overall position and velocity of

the vehicles, and use that to estimate the safety buffer size.

As shown in Figure 3.1, we start the experiment with the vehicle at position P0,

with velocity v0, at start time T0. The vehicle then attempts to hold velocity v0 until

it reaches time T1. At T1, the vehicle accelerates until it reaches velocity v1 at time

T2. The vehicle then maintains the velocity v1 until time T3. Suppose that ideally the

vehicle should have reached position P3 at time T3, then the error in the final position

will be Elong = P3 − Pactual. The worst-case positive control error will happen in our

model when v0 = 0.1m/s and v1 = 3.0m/s. And the worst-case negative error will

happen when v0 = 3m/s and v1 = 0.1m/s. Using the worst-case of these two test, we

can determine the outer bound of our longitudinal error Elong, which will consequently

become the safety buffer. We perform this experiment 20 times, and measure Elong.

The maximum value of Elong was ±75mm before adding Synchronization error.

3.2 Estimating Time Synchronization Error

Our physical implementation is a distributed system containing multiple nodes

communicating with the central server. Without proper synchronization, commands

given to nodes can be executed at different times, depending on when the command
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is received. Synchronization is the solution to having the same understanding of time

among the nodes. Different time synchronization methods like NTP, PTP, GNSS,

etc. can be used in order to synchronize with the server. We utilize NTP (Network

Time Protocol) for synchronization in our setup. Our time synchronization error with

NTP is well defined and is 1 millisecond over the course of the test. Therefore, at

maximum speed 3.0m/s, the safety buffer due to time synchronization error is 3mm.

Overall in our system, Elong = ±78mm. Elat is not the focus of this research

and we make the assumption that all vehicles entering our intersection can maintain

proper lateral position, therefore it can be disregarded.

3.3 Timing Problems in VT-IM

Velocity Transaction IMs or VT-IMs work in a manner in which when a vehicle

makes an entrance request, the intersection manager calculates the optimal speed and

sends it back to vehicle. Then, the vehicle executes the received command. Algo-

rithms 1 and 2 show how the IM and vehicles collaborate with each other. Incoming

vehicles send a request to the IM that includes two key pieces of information: the cur-

rent velocity of the vehicle, VC , and the distance to intersection, DT . Another packet

of information about the vehicle called V ehicleInfo is sent that includes maximum

acceleration, maximum deceleration, max speed, length, width, lane of entry, lane of

exit, direction of entry, direction of exit, and safety buffer size. Additional informa-

tion about the intersection, such as number of lanes in/out, directions of entry/exit,

lane width, designated transmission line distance, and other intersection parameters

are included in the packet IMParams that is already known to the IM.

Although VT-IMs can provide the high throughput because of flexibility to adopt

a variety of different scheduling algorithms, current VT-IM implementations do not

consider computational delay caused by the IM and network delay imposed due to

8



if a request is received then

VT = calculateTargetVelocity(VC , DT , V ehicleInfo, IMParams);

sendResponse(VT );

end

Algorithm 1: Scheduling Algorithm - IM

if designated line is crossed then
retransmit :

sendRequest(VC , DT , V ehicleInfo) while elapsed time ¡ timeout do

if distance to intersection ¡= safe stop distance then

slow down to stop;

end

if receive response VT then

accelerate to VT and maintain until exit;

return;

end

end

goto: retransmit ;

end

Algorithm 2: Scheduling Algorithm - Vehicle

communication. Neglecting these delays affects the system correctness because the

vehicle executes the received velocity command as soon as it is received. Figure 4.1

depicts how round trip delay (RTD) affects the position of the vehicle. In order to

achieve safe operation, we must add extra RTD buffer around the vehicle to take into

account the worst-case RTD.

The RTD consists of computation delay and transmission delay. Computational

9



Figure 3.2: RTD Causes Late Command Delivery.

delay is the amount of time it takes for the intersection manager to compute the

required information a vehicle needs. Compute time is longest when many vehicle

requests are in the queue, therefore the worst-case for our four-way setup can be de-

fined as four vehicle arrivals at the exact same time, one in each of the four directions.

The resulting worst-case RTD from 10 tests with four vehicles arrivals was 135 mil-

liseconds. The network delay is the time required to send the information back and

forth between the vehicles and the IM, assuming the computation on IM is instant.

In order to measure this delay, each request message can be followed by an acknowl-

edge message from the receiver. Subtracting the time the message is sent, from the

time the Ack is received, network delay for that message is accounted for. For our

2.4 GHz wireless devices, the worst measured network delay was 15 milliseconds. So,

we have bounded RTD with 150 milliseconds for the sake of our experiments. At

maximum speed, the 150ms delay would equate to an extra 0.45mm length being

added to the vehicle. With the safety buffer and RTD buffer added in, our vehicles

will be significantly longer longitudinally than they were originally.

In order to guarantee the safety of the vehicle, the Worst-Case Computational

Delay (WC-CD) should be considered based on the worst-case scenario. However,

because we cannot always bound the WC-RTD, vehicles are programmed with a re-

transmit clauses if no response is received from the IM within the WC-RTD timeout.
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Chapter 4

TIMING PROBLEMS IN VT-IM

Velocity Transaction IMs or VT-IMs work in a manner in which when a vehicle

makes an entrance request, the intersection manager calculates the optimal speed and

sends it back to vehicle. Then, the vehicle executes the received command. Algo-

rithms 1 and 2 show how the IM and vehicles collaborate with each other. Incoming

vehicles send a request to the IM that includes two key pieces of information: the cur-

rent velocity of the vehicle, VC , and the distance to intersection, DT . Another packet

of information about the vehicle called V ehicleInfo is sent that includes maximum

acceleration, maximum deceleration, max speed, length, width, lane of entry, lane of

exit, direction of entry, direction of exit, and safety buffer size. Additional informa-

tion about the intersection, such as number of lanes in/out, directions of entry/exit,

lane width, designated transmission line distance, and other intersection parameters

are included in the packet IMParams that is already known to the IM.

if a request is received then

VT = calculateTargetVelocity(VC , DT , V ehicleInfo, IMParams);

sendResponse(VT );

end

Algorithm 3: Scheduling Algorithm - IM

Although VT-IMs can provide the high throughput because of flexibility to adopt

a variety of different scheduling algorithms, current VT-IM implementations do not

consider computational delay caused by the IM and network delay imposed due to

communication. Neglecting these delays affects the system correctness because the

11



if designated line is crossed then
retransmit :

sendRequest(VC , DT , V ehicleInfo) while elapsed time ¡ timeout do

if distance to intersection ¡= safe stop distance then

slow down to stop;

end

if receive response VT then

accelerate to VT and maintain until exit;

return;

end

end

goto: retransmit ;

end

Algorithm 4: Scheduling Algorithm — Vehicle

vehicle executes the received velocity command as soon as it is received. Figure 4.1

depicts how round trip delay (RTD) affects the position of the vehicle. In order to

achieve safe operation, we must add extra RTD buffer around the vehicle to take into

account the worst-case RTD.

The RTD consists of computation delay and transmission delay. Computational

delay is the amount of time it takes for the intersection manager to compute the

required information a vehicle needs. Compute time is longest when many vehicle

requests are in the queue, therefore the worst-case for our four-way setup can be de-

fined as four vehicle arrivals at the exact same time, one in each of the four directions.

The resulting worst-case RTD from 10 tests with four vehicles arrivals was 135 mil-

liseconds. The network delay is the time required to send the information back and

12



Figure 4.1: RTD Causes Late Command Delivery.

forth between the vehicles and the IM, assuming the computation on IM is instant.

In order to measure this delay, each request message can be followed by an acknowl-

edge message from the receiver. Subtracting the time the message is sent, from the

time the Ack is received, network delay for that message is accounted for. For our

2.4 GHz wireless devices, the worst measured network delay was 15 milliseconds. So,

we have bounded RTD with 150 milliseconds for the sake of our experiments. At

maximum speed, the 150ms delay would equate to an extra 0.45mm length being

added to the vehicle. With the safety buffer and RTD buffer added in, our vehicles

will be significantly longer longitudinally than they were originally.

In order to guarantee the safety of the vehicle, the Worst-Case Computational

Delay (WC-CD) should be considered based on the worst-case scenario. However,

because we cannot always bound the WC-RTD, vehicles are programmed with a re-

transmit clauses if no response is received from the IM within the WC-RTD timeout.
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Chapter 5

RELATED WORKS

5.1 Velocity Transaction Based IMs

Capitalizing on the optimization problem that intersection scheduling presents,

there have been a number of works looking at the problem of how to schedule vehi-

cles most efficiently using a velocity/acceleration profile based control methodology.

In 2012, Lee and Park introduced a optimal methodology in order to schedule the

incoming vehicles Lee and Park (2012). They constructed a conflict look-up table for

vehicle entrance and exit lanes. The work is limited to simulation. Similarly, Zohdy,

et al. solved an optimization problem to minimize the total delay. They proposed

a tool which avoids collision based on characteristic of vehicles Zohdy et al. (2012).

Unfortunately, neither of these methods consider the WC-RTD problem and its effect

on the safety of their policies. In 2016, Tache et. al. proposed a batch scheduling

technique that features a re-organization period where any vehicles that have reached

the transmission line in a certain period of time can be shuffled around to find the

most efficient order of entrance to the intersection Tachet et al. (2016). After the

reshuffling period has elapsed for a given vehicle, the IM picks the vehicle velocity

using a scheduling technique where the vehicle entrance time is set as the time the last

vehicle occupying the designated lane has exited. The authors claim that the through-

put can be doubled in comparison with fair scheduling. The authors implemented the

technique for a two lane case in simulation. Computation time and network traffic

overhead would be very high method because of the reordering, thereby increasing

WC-RTD. However the authors do not model RTD, therefore the work could not be

14



applied to a physical system.

Some VT-IM methods implemented in a physical model, but at speeds too slow

to experience timing and modeling issues. In Milanés et al. (2010), a fuzzy controller

for a simple crossroad is presented. They evaluated their work by experiment on two

mass-produced vehicles in Spain. Perronnet et all implemented a simple two way

intersection utilizing Lego NXT robots and road marking to test IM protocols on a

realistic model Ahmane et al. (2013).

5.2 Query-Based IMs

Dresner and Stone introduced AIM (Autonomous Intersection Management), a

First Come First-Served (FCFS) IM policy that mitigates the effect of WC-RTD

Dresner and Stone (2004), Dresner and Stone (2008), Dresner and Stone (2005),

VanMiddlesworth et al. (2008). When an incoming vehicle reaches the designated

line, it sends a request to the AIM IM indicating time of arrival TOA, current velocity

VC , and V ehicleInfo packet. The IM simulates the trajectory of the vehicle in the

intersection and responds to the vehicle with an approval if the trajectory has no

overlap with the trajectories of existing vehicles with reserved spots. If the request

gets rejected, the vehicle will continue and re-request after a given interval.

AIM has a number of problems, the foremost being that AIM is limited to receiving

vehicle requests to enter at a time determined by the requesters’ current speed. This

means that if the first request is denied, all subsequent requests will be as well until

the vehicle slows down, and in many cases comes to a complete stop. Due to the

tendency of the AIM IM to need to re-simulate the same vehicle trajectory multiple

times before accepting, AIM has high compute and network load.

Dresner and Stone implemented an augmented reality simulation using their Java-

based Autonomous Intersection Simulator, where virtual vehicles shared a four way

15



if request received then

vehicleCollisions = simulateTrajectories(TOA, VC , V ehicleInfo);

if vehicleCollisions == 0 then

sendAccept();

else

sendReject();

end

end

Algorithm 5: Query Algorithm - IM

stop intersection with an actual autonomous vehicles for the 2007 Darpa Challenge

Dresner and Stone (2008). Fok, et al. built a scale model of autonomous vehicles Fok

et al. (2012). Their vehicle systems prove it is possible to use the AIM autonomous

intersection policy on a scale model. However, there are clear limitations: The use

of only four vehicles (one vehicle per direction), and the slow speed of the vehicles

(0.5m/s @ 1/10 scale) in the intersection cause timing and modeling problems to be

masked.
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if designated line is crossed then
retransmit:

sendRequest(TOA, VC , V ehicleInfo);

while timeelapsed ¡ timeout do

if distance to intersection ¡= safe stop distance then

brake to stop;

end

if response recieved then

if response is accepted then

enter at TOA with velocity VC ;

return;

else

break while loop;

end

end

end

reset(timeelapsed);

goto: retransmit ;

end

Algorithm 6: Query Algorithm — Vehicle
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Chapter 6

OUR TIME-SENSITIVE TECHNIQUE

In order to cancel the effect of RTD in the real implementation, we treat WC-RTD as

a delay in command execution. Figure 6.1 depicts three different scenarios where the

vehicles start executing a velocity command at a designated execution time rather

than the moment the command is received.

Figure 6.1: Vehicles Receiving Command From IM with Different Round Trip Delays.

Crossroads is based on a VT-IM. When a vehicle crosses the designated line, it

sends a request message to IM containing the transmission timestamp, TT , distance to

intersection DT , current velocity VC , and the V ehicleInfo packet. The IM calculates

the desired Time of Arrival, ToA, and, the execution time, TE and sends it back to the

vehicle. After receiving the message, the vehicle calculates a trajectory starting at

time TE and arriving at the intersection at time ToA with velocity VT and follows that

trajectory through the intersection. Pseudo-algorithms 5 and 6 depict how proposed

technique works on the IM and vehicle, respectively.

Consider the example of a vehicle transmitting a request message at PT and re-

ceiving the response at PR (Figure 6.2). Then, the vehicle will start executing the
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if a request is received then

TE = calculateActuationTime(TT ,IMParams);

VT , ToA = calculateTargetArrivalTime(TE, TT , DT , VC , V ehicleInfo,

IMParams);

sendResponse(TE, ToA, VT );

end

Algorithm 7: Crossroads Algorithm — IM

if designated line is crossed then

TT = getTime();

sendRequest(TT , DT , VC , V ehicleInfo);

while elapsed time ¡ timeout do

if distance to intersection ¡= safe stop distance then

slow down to stop;

end

if receive response TE, ToA, and VT then

actuate(TE, ToA, VT );

return;

end

end

goto: retransmit ;

end

Algorithm 8: Crossroads Algorithm — Vehicle
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calculated trajectory at PE.

𝑃𝑇 𝑃𝐸 PI

𝐷𝐸

𝑉

Distance𝐷𝑇
Δ𝑋

𝑉𝑚𝑎𝑥

𝑉𝑖𝑛𝑖𝑡

𝑃𝑅

Figure 6.2: Example of a Vehicle Trajectory Based on Max Acceleration

IM computes the TE as following: TE = TT + WC − RTD where TT is the time

captured by the vehicle at transmit position. The vehicle should start executing

the command exactly at time TE. In our management technique, the IM checks the

conflicts between current vehicle’s trajectory and the trajectories of the existing ones.

Then, a safe ToA is calculated based on kinematic equation of vehicles and the earliest

arrival time assigned to the last entered vehicle. The calculated ToA may not be

achievable for the vehicle depending of execution time, TE, ToA, maximum acceleration

amax and maximum deceleration dmax. Therefore, the IM checks the calculated ToA

based on the shortest acceleration time TAcc = Vmax−Vinit

amax
where Vinit is initial speed of

the vehicle. Then, earliest time of arrival can be calculated as EToA = TAcc + Vmax

DE−∆X

where ∆X is the acceleration distance, ∆X = (0.5amaxT
2
Acc +VinitTAcc) and DE is the

the distance between intersection line and execution positionDE = DT−Vinit(TT−TE)

where DT and TT are distance to intersection and time respectively which are received

from the vehicle.
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Chapter 7

EMPIRICAL EVIDENCE

7.1 Time-sensitive Programming Enables Efficient IM

In order to evaluate the effect of the extra safety buffer, we designed 10 different

traffic scenarios, and tried them with the two IMs, the VT-IM, which requires the

extra safety buffers for safe operation, and Crossroads, which does not. Two of the

cases, Scenario 1, and Scenario 10 are pre-designed, as the worst-case and best-case for

VT-IM. In the best case, Scenario 10, the traffic is so sparse that the presence/absence

of the safety buffer does not matter much. The cars can go cross the intersection with

little conflict. On the contrary, in the worst-case, Scenario 1, all the cars arrive at the

intersection at almost the same time, and the presence of extra safety buffers around

the cars reduces the rate at which the cars can cross the intersection. In the rest

of the cases, the vehicle orders and distances are randomly selected. We run all the

traffic scenarios for each IM, and the delay is measured for all the cars. From here

we compute the average delay of the cars. The experiment is repeated 10 times, and

the average of that is plotted in figure 7.1.

The results show that for each scenario, Crossroads has lower average delay, rang-

ing from 1.24X better for the worst-case, Scenario 1, to 1.08X better for Scenario

10. The slightly improved performance of Crossroads in Scenario 10 is because even

in the case where vehicles are nicely spread out, there are still some Safety Buffer

conflicts that cause the VT-IM policy to be slower.
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Figure 7.1: Average Wait Time Comparison for Vehicles in Four Different Cases of

Our Physical Implementation.

7.2 Crossroad Scales Well

In order to show how our method scales, we implemented three simulators in

Matlab for AIM, velocity-transaction IM with extra safety buffers and Crossroads.

The IM code for TT-IM and Crossroads are exactly the same as those from our scale

implementation. The major difference is in the modeling versus the physical scale

model. In our Matlab simulators, the following differential equations are considered

to model motion of the vehicles: 
ẋ = vcos(φ)

ẏ = vsin(φ)

φ̇ = v
l
tan(ψ)

(7.1)

where x, y represents the longitude and latitude of the car respectively in the

Cartesian coordinates, φ is heading of the car from east, v is car velocity, l is car’s
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wheelbase and ψ is steering angle. The Matlab simulators are ran on an ordinary

PC (Intel(R) Core(TM) i7-6700 @ 3.4GHz, 16 GB of memory and 64-bit Windows

10 Enterprise).

In our AIM simulator, we only considered sensor error buffer. In VT-IM, we con-

sidered both sensor error and WCRTD. Tn our time-sensitive approach, Crossroads,

we only consider sensor error as WCRTD is already accounted for. We used the same

input traffic flow and sequence of vehicle for all simulator to have a fair comparison.

We considered the same velocity computational method for VT-IM and crossroads

to emphasize on the effect of a larger buffer. Although the computation time of VT-

IM and Crossroads is the same, AIM has up to 16x higher computation overhead.

However, due to trial error scheme of AIM, it has 16x more computational delay

than crossroads on average. Figure 7.2 also shows the throughput of the intersection

for different flow rates routing 160 cars. In our computation, throughput is defined

number of managed vehicles divided by total wait time.

Figure 7.2 reveals the throughput of Crossroads is 1.28x greater than AIM in

worst case and 1.15x in average. Figure 7.2 also shows the throughput of Crossroad

is 1.62x better than VT-IM in worst case and 1.36x in average. The results show

that all three methods has the same throughput, however, AIM and VT-IM are

saturated with increasing the input flow rate. VT-IM efficiency is better than AIM

in low input flows (0.05-0.4 Car/Lane/Second) because at low flow rates, there are

less conflict between the arriving vehicle. However, in higher flow rates (0.45 - 1.25

Car/Lane/Second), AIM can handle the traffic in a wise manner since the VT-IM

has a larger buffer than AIM. The results from Matlab simulator show Crossroads

has better throughput in comparison with a VT-IM policy because in higher input

flow rates, Crossroads performs even better. This is mainly due to the effect of extra

buffer which saturates the intersection earlier.

23



0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0 0.2 0.4 0.6 0.8 1 1.2 1.4

TH
R

O
U

G
H

P
U

T 
(N

C
A

R
S/

W
A

IT
)

INPUT FLOW RATE (CAR/SECOND/LANE)

THROUGHPUT & COMPUTATION TIME

AIM Crossroads Ideal VT-IM

Figure 7.2: Throughput and Computation Time for Different Input Flow Rates
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Chapter 8

CONCLUSION

In this paper, a time-sensitive technique, Crossroads, is proposed in order to elim-

inate the effect of network and computational delay in an automated intersection.

The effectiveness of Crossroads is evaluated by conducting experiments on 1/10 scale

autonomous vehicles as well as simulation. Crossroads improves the throughput and

removes the safety-jeopardizing effects of both computation and network delay on

vehicles in our simulated and modeled automated intersections.
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