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ABSTRACT  

 

Although the Caribbean has been continuously inhabited for the last 7,000 years, 

European contact in the last 500 years dramatically reshaped the cultural and genetic 

makeup of island populations. Several recent studies have explored the genetic diversity 

of Caribbean Latinos and have characterized Native American variation present within 

their genomes. However, the difficulty of obtaining ancient DNA from pre-contact 

populations and the underrepresentation of non-Latino Caribbean islanders in current 

research have prevented a complete understanding of genetic variation over time and 

space in the Caribbean basin. This dissertation uses two approaches to characterize the 

role of migration and admixture in the demographic history of Caribbean islanders. First, 

autosomal variants were genotyped in a sample of 55 Afro-Caribbeans from five islands 

in the Lesser Antilles: Grenada, St. Kitts, St. Lucia, Trinidad, and St. Vincent. These data 

were used to characterize genetic structure, ancestry and signatures of selection in these 

populations. The results demonstrate a complex pattern of admixture since European 

contact, including a strong signature of sex-biased mating and inputs from at least five 

continental populations to the autosomal ancestry of Afro-Caribbean peoples. Second, 

ancient mitochondrial and nuclear DNA were obtained from 60 skeletal remains, dated 

between A.D. 500–1300, from three archaeological sites in Puerto Rico: Paso del Indio, 

Punta Candelero and Tibes. The ancient data were used to reassesses existing models for 

the peopling of Puerto Rico and the Caribbean and to examine the extent of genetic 

continuity between ancient and modern populations. Project findings support a largely 

South American origin for Ceramic Age Caribbean populations and identify some genetic 

continuity between pre and post contact islanders. The above study was aided by 
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development and testing of extraction methods optimized for recovery of ancient DNA 

from tropical contexts. Overall, project findings characterize how ancient indigenous 

groups, European colonial regimes, the African Slave Trade and modern labor 

movements have shaped the genomic diversity of Caribbean islanders. In addition to its 

anthropological and historical importance, such knowledge is also essential for informing 

the identification of medically relevant genetic variation in these populations.  
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CHAPTER 1: INTRODUCTION 

This dissertation examines the role of migration and genetic admixture in the 

history and evolution of human populations from the Caribbean islands. In evolutionary 

genetics, migration or gene flow is defined as movement between groups that leads to 

genetic exchange (Hedrick 2011, Slatkin 1985). As one of the four forces of evolution, 

gene flow can have a large effect on the origin and demography of populations. It can 

introduce new genetic variation, homogenize previously isolated groups and disrupt or 

enable the effects of other forces such as genetic drift and natural selection (Slatkin 1985, 

Cavalli-Sforza and Feldman 2003). For instance, migration and subsequent admixture 

were major drivers of change and adaptation for the human lineage (Wells and Stock 

2012). As they left Africa, modern humans interbred with other (now extinct) hominin 

species and through this process obtained advantageous genetic variants (Huerta-Sanchez 

et al. 2014, Deschamps et al. 2016, Dannemann, Andres, and Kelso 2016, Sankararaman 

et al. 2014, Reich et al. 2011). Exchange of locally adaptive variants also occurred in the 

more recent past between modern human groups. Examples include introgression of 

alleles involved in high-altitude adaptation from ancestral Sherpa and Chinese 

populations into Tibetans (Jeong et al. 2014) and introgression of adaptive skin 

pigmentation alleles from Bantu agriculturalists into Khoe-San hunter gatherers 

(Schlebusch et al. 2012). At least 1,000 instances of genomic admixture have been 

identified in the demographic history of our species during the last 4,000 years 

(Hellenthal et al. 2014). Therefore, characterizing how gene flow shapes our genetic 

diversity is vital for understanding human evolution, history and health and is a major 

focus of modern genomics research (O'Rourke 2012). 
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Until recently, most research into the role of migration in human population 

history focused on analysis of uniparental markers (such as the Y-chromosome or 

mitochondrial DNA) or small fragments of the autosomal genome. But in the last two 

decades, improvements in sequence quality and the decreasing costs afforded by next-

generation sequencing technologies have led to the incorporation of complete genomes 

into anthropological and evolutionary genetics research (Mardis 2008, Pugach and 

Stoneking 2015, Metzker 2010). This growth has also included the improved ability to 

recover ancient DNA and the beginning of the field of paleogenomics. The data 

recovered from ancient sources have challenged previous understanding of interaction, 

migration and admixture among ancient human groups and their relationships to extant 

populations (Pickrell and Reich 2014, Slatkin and Racimo 2016). For example, Raghavan 

et al. (2015) and Skoglund et al. (2015) proposed two alternative hypotheses for the 

peopling of the Americas. Both hypotheses seek to explain the recent discovery of a 

shared genomic component between Amazonian and Australo-Melanesian populations. 

Neither insight would have been possible without the consideration of both ancient and 

modern genomics data.  

In this dissertation, I implement a similarly combined approach using both ancient 

and modern genomic data to explore signatures of migration, admixture and interaction 

among ancient and extant Caribbean populations. Approximately seven thousand years 

ago, the Caribbean became the last region of the Americas to be settled by humans 

(Pantel 2003, Reid 2014). But, native island populations were the first American groups 

to encounter European colonizers, experience the disease transfer of the Columbian 

exchange and interact with the victims of the Atlantic Slave trade (Cook 1998, Sheridan 
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1972, Whitehead 1999). Thus, due to this complex history of extensive and continuous 

exchange, Caribbean islanders present an excellent case for studying how admixture 

between distantly related parental populations can shape neutral and adaptive genetic 

variation.  

However, a complete understanding of human genomic diversity across the 

Caribbean region is hampered by sampling gaps of both past and present populations. 

Due to the difficulties of obtaining ancient DNA from the tropics, the genetic diversity of 

pre-contact Caribbean groups is not well characterized. Efforts have been made to 

address this problem by studying Native American fragments in the genomes of admixed 

islanders (Bryc, Velez, et al. 2010, Gravel et al. 2013, Moreno-Estrada et al. 2013, 

Martínez-Cruzado 2002, 2010, Martínez-Cruzado et al. 2005, Via et al. 2011, Mendizabal 

et al. 2008, Marcheco-Teruel et al. 2014, Benn-Torres, Kittles, and Stone 2007, Benn-

Torres et al. 2015, Vilar et al. 2014). But, because modern populations do not retain all 

the genomic diversity of ancient groups, this approach provides limited resolution for 

reconstructing ancient demographic events (Bolnick 2011). Further, many Caribbean 

populations remain underrepresented in large catalogs of genomic variation. For instance, 

except for Barbadian Afro-Caribbeans, recently included in 1000 Genomes Phase 3, 

genetics research on most Lesser Antillean populations has been limited to uni-parental 

loci and low-density ancestry informative markers (Benn-Torres et al. 2012, Benn-

Torres, Kittles, and Stone 2007, Benn-Torres, Stone, and Kittles 2013, Benn-Torres et al. 

2015). The present research seeks to fill in these gaps through two approaches: an ancient 

DNA analysis of 60 individuals from three pre-contact archaeological sites in Puerto Rico 



  4 

(A.D. 500–1300) and an analysis of genome-wide variants from 55 Afro-Caribbeans 

from five Lesser Antilles.  

Specifically, in Chapter 2, I use the Illumina Infinium Multi-Ethnic Global Array 

to obtain autosomal genotypes from 55 self-identified Afro-Caribbeans from Grenada 

(n=6), St. Kitts (n=5), St. Lucia (n=15), Trinidad (n=19), and St. Vincent (n=10). I 

characterize patterns of genome-wide variation and ancestry in these groups and compare 

them to exising data from other recently admixed populations. I also perform two scans 

for genomic signatures of natural selection in these populations to identify candidate 

genes underlying local adaptation to Caribbean environments. In Chapter 3, I turn 

towards optimizing extraction methods for DNA recovery from ancient and degraded 

human and primate remains excavated in tropical environments from the Caribbean and 

East Africa. I compare the results of parallel extractions with dentine tissue across two 

methods and evaluate raw DNA yields as well as results obtained after mitochondrial 

enrichment capture. Lastly, in Chapter 4, I apply the methods developed in Chapter 3 as 

well as other protocols in a large-scale effort to recover and sequence complete 

mitochondrial genomes and partial autosomal genotypes from 60 human skeletal remains 

excavated from the pre-contact sites of Punta Candelero (n=19), Tibes (n=11) and Paso 

del Indio (n=30) in Puerto Rico. This analysis combines data generated by previous 

research with extant Native American groups and admixed Caribbean islanders to trace 

the origin and number of pre-contact migrations to Puerto Rico and examine the extent of 

genetic continuity between ancient and modern populations.  

Overall, the findings from this research underscore the large impact of post-

contact demographic shifts on Caribbean population history and illustrate how genomic 
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diversity has changed in this region over the last 7,000 years. In addition, this work 

increases the representation of admixed and diverse populations in available genomic 

datasets and has the potential to inform future functional and clinical genetics research 

with admixed Caribbean islanders. 



  6 

CHAPTER 2: UNDERSTANDING ADMIXTURE, GENETIC STRUCTURE AND 

ADAPTATION IN AFRO-CARIBBEANS FROM THE ENGLISH-SPEAKING 

LESSER ANTILLES 

 

2.1 Abstract 

Previous research with admixed Caribbean populations has shown that many 

islanders retain genomic variation from pre-contact indigenous groups, but also carry 

signatures of more recent admixture events fostered by European colonization and the 

African Slave Trade. However, most of this work has been conducted with Caribbean 

Latinos from the Greater Antilles, while populations from the Lesser Antilles remain 

underrepresented in large-scale genomics catalogs. This sampling gap precludes a 

complete understanding of the diversity of genomic variation across the Caribbean. Thus, 

to address this gap, this study analyzes autosomal SNP genotypes from 55 self-identified 

Afro-Caribbeans from five islands in the Lesser Antilles (LA): St. Kitts, St. Lucia, St. 

Vincent, Grenada, and Trinidad. I characterize patterns of genome-wide variation and 

ancestry in these groups and compare them to existing data from other recently admixed 

populations. I find that LA Afro-Caribbeans carry large proportions of African ancestry, 

but also have contributions from European, Native American, as well as South and East 

Asian populations to their autosomal genomes.  This pattern is significantly different 

from that observed among admixed groups from the Greater Antilles. I further examine 

signatures of selection among LA Afro-Caribbeans to explore whether recent adaptation 

to the environmental pressures of the Caribbean may have shaped extant ancestry 

patterns. I find that LA Afro-Caribbeans carry signatures of selection at olfactory genes 
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that may be associated with the major histocompatibility complex on chromosome 6, 

among other loci. But whether these signatures stem from selection after continental 

admixture remains unclear. Findings from this project underscore the large impact of 

post-contact demographic processes on Caribbean population history and illustrate how 

genomic diversity has changed in this region since the initial occupation of the islands, 

7,000 years ago. In addition, this work increases the representation of admixed and 

diverse populations in available genomic datasets and has the potential to inform future 

functional and clinical genetics research with admixed Caribbean islanders. 

 

2.2 Introduction 

Until recently, human genomics research was limited to a small sample of 

populations, most of which did not represent the full spectrum of human genetic diversity 

(Oh et al. 2015, Bustamante, De La Vega, and Burchard 2011, Popejoy and Fullerton 

2016). To counter this bias, admixed groups such as Latinos and African Americans have 

recently been included in large surveys of genomewide diversity (1000 Genomes Project 

et al. 2015, Nelson et al. 2008, Moreno-Estrada et al. 2014, Bryc et al. 2015, Wang et al. 

2008, Ruiz-Linares et al. 2014, Bryc, Auton, et al. 2010). Admixed Caribbean islanders 

in particular have received widespread attention as several recent studies have 

characterized their complex ancestry and demographic history (Gravel et al. 2013, 

Moreno-Estrada et al. 2013, Bryc, Velez, et al. 2010). However, the bulk of this work has 

focused on islanders from the Spanish speaking Greater Antilles, such as Puerto Ricans 

and Dominicans. Except for Afro-Caribbean individuals from Barbados, recently 

included in 1000 Genomes Phase 3, islanders from the Lesser Antilles remain 
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underrepresented in large scale catalogs of human genomic variation. Unfortunately, this 

sampling gap precludes a complete understanding of how differences in pre and post 

contact migration patterns, colonial experiences and local selective pressures have shaped 

genomic variation across the Caribbean. Beyond its anthropological or historical 

importance, such knowledge on genetic makeup is essential for informing efforts to 

identify phenotypic or medically relevant genetic variation in these populations, such as 

admixture mapping or genome wide association studies (Bustamante, De La Vega, and 

Burchard 2011, Kidd et al. 2012, Oh et al. 2015). Thus, to help build a more complete 

understanding of genetic diversity across the Caribbean, the present study characterizes 

genetic structure, ancestry and signatures of selection in Afro-Caribbeans from the 

English-Speaking Lesser Antilles. 

The Caribbean islands, also known as the Antilles, form an archipelago that 

extends from North to South America across the Caribbean Sea. The islands are divided 

into three groups: the Bahamas, the Greater Antilles and the Lesser Antilles (LA) (Figure 

1). The LA form an arc-like shape that begins with the Virgin Islands, located east of 

Puerto Rico, and ends with Trinidad and the Netherlands Antilles, along the South 

American coast (Rogozinski 2008). The first archaeological evidence for human 

occupation in the LA comes from the site of Banwari Trace in Trinidad, dated to 7,200 

years before present (Harris 1973). After this date, archaeological evidence suggests that 

pre-contact migrations into the Antilles were numerous and continuous, and probably 

stemmed from multiple origin sites in South and Central America (Keegan 2013, Rouse 

1992, Wilson 2007). At the time of European contact in 1492, multiple ethnic groups 

likely coexisted across the Caribbean basin (Wilson 2007, 1999). Spanish conquerors 



  9 

identified the native inhabitants of the LA as the Caribs, and differentiated them from the 

Bahamian Lucayos and the Tainos and Ciboney/Guanahatabeys of the Greater Antilles. 

Whether this categorization corresponded to true ethnic, linguistic or cultural differences, 

however, remains a topic of extensive research (Petersen, Hofman, and Curet 2004, Curet 

2014).  

 

Figure 1. Map of the Caribbean Archipelago with islands included in present study. 

 

European conquerors arrived in the Caribbean in the late 15th century but did not 

formally settle the LA until the 1600s. During the early colonial period the Spanish 

raided the LA islands to capture indigenous slaves for transport to the mining and 

agricultural colonies of the Greater Antilles and continental mainland (Rogozinski 2008, 

Anderson-Córdova 2005, Rivera-Pagán 2003). This practice, combined with overwork, 

abuse and introduction of new disease pressures led to dramatic reductions in the size of 

indigenous populations across the whole Caribbean basin. Demographic changes were 

also brought about by European colonists taking indigenous women as wives or 

concubines (Wilson 2007, Martin-Fragachan 1999). Indigenous groups in the LA, 
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sometimes in concert with runaways from the Greater Antilles, fiercely resisted European 

colonization (Anderson-Córdova 2005) surviving in maroon and isolated settlements 

until treaties with European powers granted them ownership of a subset of their former 

lands (Pérotin-Dumon 1999, Rogozinski 2008). Today, indigenous communities still live 

on the islands of St. Vincent (Garifuna), Dominica (Kalinago Reserve) and Trinidad 

(First Peoples Community Arima), while communities who self-identify as Native 

American exist in many other islands (Benn-Torres et al. 2015, Forte 2006). 

Several colonial powers, including the French, Dutch and British formally settled 

the LA during the 1620s (Pérotin-Dumon 1999, Rogozinski 2008). Due to the decline of 

indigenous populations, indentured laborers from Northern Europe, as well as African 

slaves from several areas of West Africa, Central Africa and Mozambique were imported 

as labor for the growing plantation monocultures. Slave importation grew steadily during 

the next decades (Engerman and Higman 1997). By the time of emancipation in the 19th 

century, it is estimated the British had brought almost 2 million slaves, at a rate of about 

50,000 slaves a year, to their Caribbean posessions (Pérotin-Dumon 1999, Rogozinski 

2008). As a result, the demography of the islands shifted. European settlers and 

indigenous peoples became the minority while African slaves and their descendants 

became, on average, between 60 and 90% of the population. Moreover, sex ratios were 

skewed due to preferential importation of male slaves and indentured laborers (Engerman 

and Higman 1997, Rogozinski 2008). Liasons between mostly male Europeans and 

female slaves also led to the rise of a small creole population (Engerman and Higman 

1997). 
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By the 19th century, the islands included in this research, St. Kitts, St. Vincent, St. 

Lucia, Grenada, and Trinidad were all under British control (Rogozinski 2008). When 

Britain abolished slavery in 1834, the subsequent labor shortage led to the revival of the 

indentured labour system. Between 1834 and 1917 over 500,000 indentured laborers, 

mostly from India, but also from China, Portugal and parts of Africa, came to work in the 

sugar plantations of the LA. Most laborers were transported to Trinidad and British 

Guiana although after completion of their contracts many migrated voluntarily to other 

islands such as St. Lucia. A large number of these migrants settled permanently, further 

transforming the demographic composition of the island populations (Engerman and 

Higman 1997, Laurence 2011, Lee-Loy 2004, Look Lai 2004). Today, the five islands 

included in this study are independent nations, with a population of approximately 1.65 

million people (CIA 2013). Since the 1960s, citizens of the LA have migrated to the 

United States, the United Kingdom and other nations in steady numbers (Richardson 

2004). As of the 2014 census, approximately 495,000 Lesser Antilleans, including people 

from Trindad, St. Vincent and Grenada, live in diasporic comunities in the United States 

(1.16% of the nation’s estimated 42.4 million migrants) (Zong and Batalova 2016). 

Although all Caribbean populations have similar histories of continuous migration 

and contact, different demographic patterns and colonial experiences have created 

heterogenous patterns of genetic structure and ancestry in this region (Schurr 2010).  For 

example, Cubans and Puerto Ricans derive over 60% of their nuclear genomic ancestry 

from European populations, and have moderate proportions of Native American and 

African ancestry in nuclear loci (Gravel et al. 2013, Ruaño et al. 2009, Via et al. 2011, 

Marcheco-Teruel et al. 2014, Moreno-Estrada et al. 2013). But other islanders such as 
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Afro-Caribbeans from Trinidad & Tobago, Grenada, St. Vincent, and Dominica, derive 

most nuclear ancestry from Sub-Saharan Africa and carry very small proportions of 

European or Native American ancestry (Benn-Torres et al. 2008, Benn-Torres, Stone, and 

Kittles 2013, Miljkovic-Gacic et al. 2005). In addition, extensive sex-biased admixture 

has led to widely divergent mitochondrial and Y-chromosome ancestry proportions in 

these populations (Mendizabal et al. 2008, Benn-Torres, Kittles, and Stone 2007, 

Martínez-Cruzado et al. 2005, Simms et al. 2013). 

Patterns of local adaptation to the selective pressures of the region also vary 

across Caribbean islanders. Previous work has scanned the genomes of admixed 

Caribbean Latinos searching for evidence that natural selection has operated since the 

onset of recent admixture, by locating genomic regions with excess or deficiencies in 

ancestry proportions relative to genomewide averages (Oleksyk, Smith, and Brien 2009, 

Tang et al. 2007). In Puerto Ricans, candidate selected regions with excess African and 

Native American ancestry have been identified on the human leukocyte antigen (HLA) 

region on chromosome 6 and in regions harboring olfactory gene clusters on 

chromosomes 8 and 12 (Tang et al. 2007). At least twelve additional ancestry deviations 

have also been detected among Puerto Ricans, Dominicans, Ecuadorians and 

Colombians, but these signtaures are not shared across all populations (Brisbin et al. 

2012). Caribbean islanders were the first populations to experience the selective pressures 

introduced by European contact, such as exposure to disease and to novel or changing 

tropical environments (Cook 1998, Salvaggio 1992). Thus determining whether local 

adaptation has occurred in these groups and which genomic loci are involved can 

contribute to understanding how natural selection shapes ancestry patterns in recently 
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admixed populations and can lead to identification of phenotypically important rare 

genetic variants (Tishkoff 2015). 

At present, human genetics research in the LA has largely focused on uni-parental 

loci (mitochondrial DNA or Y-chromosome) and low-density autosomal ancestry 

informative markers (Benn-Torres, Kittles, and Stone 2007, Benn-Torres et al. 2015, 

Benn-Torres, Stone, and Kittles 2013, Toro-Labrador, Wever, and Martínez-Cruzado 

2003, Benn-Torres et al. 2012, Miljkovic-Gacic et al. 2005). Given the recent history of 

sex-biased admixture in these populations and the limited capacity of uniparental markers 

to provide information about autosomal ancestry (Emery et al. 2015), these studies 

provide an important but incomplete picture of genetic diversity in the LA. Recent efforts 

to include admixed Caribbean groups in large surveys of genomewide diversity (Bryc, 

Velez, et al. 2010, Gravel et al. 2013, Moreno-Estrada et al. 2013, Montinaro et al. 2015) 

and in genomic scans for selection (Pybus et al. 2013, Deng et al. 2016) have begun to 

address this gap, but so far have included few individuals from the English-Speaking 

Antilles. In this investigation, I expand on this body of previous research by analyzing 

nuclear genotypes from 55 Afro-Caribbean individuals from the islands of Grenada 

(n=6), St. Kitts (n=5), St. Lucia (n=15), St. Vincent (n=10), and Trinidad (n=19). With 

these data I seek to address the following questions:  

(1) Do genomewide ancestry and structure patterns differ across Afro-Caribbeans 

in the LA and between the LA and the Greater Antilles? 

(2) What is the influence of selection on the distribution of ancestry in admixed 

Caribbean populations?  
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To answer these questions, I analyzed a combined dataset of newly generated 

genomewide single nucleotide polymorphism (SNP) data from Lesser Antillean Afro-

Caribbean groups and published genotypes from seven admixed Caribbean Latino 

populations: Cuba, Haiti, Dominican Republic, Puerto Rico, Barbados, Honduras, and 

Colombia (Moreno-Estrada et al. 2013, 1000 Genomes Project et al. 2015). I also 

collected reference population genotypes from published sources (Reich et al. 2012) and 

publicly available panels such as the 1000 Genomes Phase 3 (1000 Genomes Project et 

al. 2015) and the Human Genome Diversity Panel (HGDP) (Cann et al. 2002, Rosenberg 

et al. 2002). To answer my first research question, I applied multivariate and 

unsupervised clustering methods to characterize population structure and global ancestry 

among LA Afro-Caribbeans. I also used local ancestry and deconvolution methods to 

determine the continental and sub-continental origin of admixed haplotypes in these 

individuals. I then compared ancestry proportions between autosomal and X-chromosome 

loci to assess whether sex-biased ancestry had a large effect in the studied populations. 

To address my second research question, I employed long-range haplotype selection 

scans and ancestry deviation scans to identify signatures of selection in the LA Afro-

Caribbean population. I then used gene ontology methods to predict the function of 

selected candidate regions. Throughout the study, I compare my results to those obtained 

by previous researchers examining ancestry, population history and selection in 

Caribbean Latino populations and other recently admixed human groups.  

Complex patterns of admixture since European contact were identified among LA Afro-

Caribbeans, including a strong signature of sex-biased mating and inputs from at least 

five continental populations to their autosomal ancestry. I also observed differences in 
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admixture proportions across Caribbean basin populations which likely stem from 

differing experiences with European colonization, the African Slave Trade and modern 

economic development. Lastly some evidence was found for the action of natural 

selection in admixed Afro-Caribbeans, but reliably identifying whether the signals arose 

before or after contact period admixture is difficult. To my knowledge, this study is the 

first analysis of genome wide ancestry and selection patterns in Afro-Caribbean 

population in the Lesser Antilles. 

 

2.3 Materials and Methods 

2.3.1 Sample Collection and Genotyping 

 Samples included in this study were previously collected by co-author Dr. Jada 

Benn Torres among unrelated, self-identified Afro-Caribbean individuals, 18 years or 

older, who were born in, or had at least one parent or three grandparents from the 

English-speaking Lesser Antilles (LA). Original sample collection was conducted 

between 2004 and 2005 with informed consent and Institutional Review Board (IRB) 

approval granted by University of New Mexico and local ministries of health from the 

respective islands. In 2014, a second IRB approval (STUDY00001580) and a Material 

Transfer Agreement were granted for the present study by the respective universities 

(Appendix A). Only participants that provided consent for future study were included in 

these analyses. As described in Benn-Torres, Kittles, and Stone (2007), DNA samples 

were originally collected with buccal swabs and extracted using standard phenol-

chloroform methods. Between June 2015 and May 2016, 88 de-identified DNA extracts 

from the following island populations were transported to ASU from Dr. Benn-Torres’ 
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laboratory: Grenada (n=9), St. Kitts (n=8), St. Lucia (n=24), Trinidad (n=27), and St. 

Vincent (n=20) (Table SM1). 

Extracts were quantified with the Qubit 2.0 Broad Range assay (Simbolo et al. 

2013). A subset of samples with low DNA concentrations were whole genome amplified 

(WGA) with the Qiagen REPLI-G Mini Kit following manufacturer’s instructions. WGA 

products were purified using Qiagen Qiaquick columns and re-quantified with the Qubit. 

Eleven samples with low post-WGA DNA concentrations or with less than 10 uL 

remaining volume were excluded from further processing at this stage. The 77 remaining 

samples were subjected to DNA genotyping on the Illumina Infinium ® Multi-Ethnic 

Global Array (MEGAEX). This array includes over 2 million single nucleotide 

polymorphisms (SNPs) genome-wide distributed and was specifically designed to reduce 

ascertainment bias in ethnically diverse populations (Bien et al. 2016, Illumina 2015). For 

each of the 77 samples, between 300-500 ng of DNA were submitted for genotyping. 

Seventeen of these samples consisted of DNA extracts without amplification and the 

remaining 60 consisted of whole genome amplified DNA. In addition, 13 WGA samples 

were genotyped in duplicate, increasing the total number of samples placed on the array 

to 90 (Table SM2). Genotyping was performed at the University of Miami Miller School 

of Medicine, John P. Hussman Institute for Human Genomics. Raw genotype data will be 

available in the NCBI dbGAP database through data access agreements after publication. 

 

2.3.2 Data Curation and Quality Control 

 All 90 samples were successfully genotyped for 2,036,060 unique SNP markers 

on the MEGAEX array. Genomic markers and coordinates were mapped to human 
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genome build GRCh37 (hg19). Data quality assessments and input filtering were 

performed following guidelines as listed in (Anderson et al. 2010) and using Plink 1.9 

(Chang et al. 2015). Data were transformed from Illumina Final Report format to Plink 

format using custom bash scripts. After filtering for multi-allelic markers, 1,933,206 bi-

allelic sites remained. 83,397 SNPs mapped on the reverse strand were identified using 

snpflip (https://github.com/endrebak/snpflip) and flipped to the forward strand with Plink 

1.9. The complete dataset was restricted to autosomal SNPs. Per-individual quality 

filtering resulted in 33 samples being excluded due to excess heterozygosity values 

(which may be indicative of genotyping errors), excess missing genotype rates (>5% 

missing data) and/or high identity-by-descent values indicative of hidden relatedness or 

sample duplication (Figure SM1). When an individual was genotyped more than once, 

the duplicate with less missing data was kept for further analysis. No individuals were 

eliminated due to discordant sex information.  

Per-marker quality filtering resulted in exclusion of 86,460 SNPs with >10% 

missing data, 11,179 SNPs under Hardy-Weinberg equilibrium (HWE) threshold P< 

1x105, and 779,643 SNPs with minor allele frequency (MAF) <1%. Lastly, 45,160 

duplicate markers or markers without rs identifiers were also removed. The final analysis 

ready dataset included N=55 unrelated, unique individuals from the LA and 1,010,700 

autosomal SNPs, with an average heterozygosity of 0.236 and an average genotyping call 

rate of 0.992. Final sample breakdown per population was as follows: Grenada (n=6), St. 

Kitts (n=5), St. Lucia (n=15), Trinidad (n=19), and St. Vincent (n=10).  
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2.3.3 Data Merging and Integration 

 To conduct comparative analyses, the quality filtered LA dataset was merged with 

several continental reference panels including: world populations from 1000 Genomes 

Phase 3 (1KG) (1000 Genomes Project et al. 2015) and HGDP (Cann et al. 2002, 

Rosenberg et al. 2002), Native American populations from Reich et al. (2012), and 

admixed Caribbean populations from Moreno-Estrada et al. (2013) (Table SM3). The 

data from Reich et al. (2012) had been previously masked such that segments of potential 

non-Native American ancestry were set as missing and related individuals were 

eliminated. This approach prevents recent admixture from confounding ancestry 

estimation performed with this panel but reduces the total amount of SNPs in the dataset. 

The samples from Moreno-Estrada et al. (2013) consisted of family trios, therefore all 

offspring individuals were excluded from analysis. The HGDP panel was trimmed to a 

standardized subset of 940 unrelated individuals (Rosenberg 2006) using scripts from the 

Terastructure package (https://github.com/StoreyLab/terastructure/blob/ 

master/scripts/data/HGDP_text_to_tped.py).  

For reference datasets mapped to previous human genome builds, genomic 

coordinates were lifted to GRCh37 using the UCSC Genome Browser liftOver tool 

(https://genome.ucsc.edu/cgi-bin/hgLiftOver) and the liftOverPlink wrapper 

(https://github.com/sritchie73/liftOverPlink). For all reference datasets, SNPs were 

flipped to the forward strand using methods as described above. For each merge, the 

intersection of common SNPs between the LA dataset and each of the pertinent reference 

panels was identified using custom R scripts (R Core Team 2016). The datasets were 
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merged at these intersections using Plink 1.9 and per marker quality filters (MAF>10%, 

missing data <5%, HWE P< 1x10 5) were reapplied.  

Multiple combinations of merged datasets were produced due to the differing 

requirements of each analysis and the different SNP densities obtained (Table SM4). 

Merged dataset 1 (119,277 SNPs after quality filtering) included the five Lesser Antillean 

groups and all global reference populations (n=3,529). Merged dataset 2 (36,928 SNPs 

after quality filtering) consisted of all populations in dataset 1 plus the Caribbean 

populations from Moreno-Estrada et al. (2013) (n=3,688). The latter has much less SNP 

density due to the poor intersection between Illumina and Affymetrix arrays.  Subsets of 

these two datasets were used for ADMIXTURE and principal components analysis 

(PCA). Merged dataset 3 (852,887 SNPs after quality filtering) included Lesser Antillean 

populations, and four populations from the 1000 Genomes Phase 3 Panel: Yoruba (YRI), 

Utah residents of European ancestry (CEU), Han Chinese (CHB), Tamil (ITU) (n=467). 

These were chosen based on the second run of ADMIXTURE results as putative 

representatives of ancestral populations (see next section). This dataset also had the 

highest SNP density due to good intersection between the MEGAEX genotyped SNPs and 

1000 Genomes sequence data. Merged dataset 4X included the same populations as 

merged dataset 3 but was restricted to just female individuals and X chromosome loci 

(30,659 X chromosome SNPs after quality filtering, n=229). These two datasets were 

used to investigate signatures of sex-biased admixture (see section on X chromosome 

analyses). Merged dataset 3 was also used for natural selection scans. Native American 

populations were not included in these two datasets because no masked data were 

available for chromosome X from the Reich et al. (2012) reference panel. Lastly, merged 
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dataset 5 (119,277 SNPs after quality filtering) was a subset from dataset 1. It included 

the five Lesser Antillean groups and representative populations for each of the five 

continental regions identified in the ADMIXTURE analyses. These included the YRI, 

CEU, CHB and ITU populations referenced above, and 105 indigenous individuals from 

Central and South America from the Reich et al. (2012) reference panel (n=572). 

Multiple individuals from several populations were selected so that the sample size of the 

Native American reference group would be comparable to those of the other four 

populations. This dataset was used for local ancestry inference of autosomal genotypes 

and for natural selection scans. 

 

2.3.4 Global ancestry estimation and Principal components analyses 

 To conduct multivariate and unsupervised clustering analyses, merged datasets 1 

and 2 were thinned for linkage disequilibrium (LD) using the indep-pairwise option in 

Plink 1.9 (--indep-pairwise 50 10 0.1). This command marks for removal SNPs with a 

pairwise r2 > 0.1 within a 50 SNP sliding window, shifted forward by 10 SNPs at a time. 

After the pruning step, 44,219 SNPs remained in merged dataset 1, and 23,636 SNPs 

remained in merged dataset 2.  PCA was performed on both pruned datasets using 

smartpca from the EIGENSOFT 6.0.1 package (Patterson, Price, and Reich 2006). 

Unsupervised global ancestry clustering analyses were conducted on the merged 

autosomal genotype datasets using ADMIXTURE v1.22 (Alexander and Lange 2011, 

Alexander, Novembre, and Lange 2009). This program estimates global ancestry 

proportions by testing data fit to an admixture model where K user defined populations 

have contributed to an admixed individual’s genome. The analysis is ‘unsupervised’ 
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because population labels are not assigned a priori. Instead groupings are determined 

from the data itself (Liu et al. 2013). The first ADMIXTURE run, performed with a 

subset of merged dataset 1, included the LA populations, and a combined subset of 

HGDP and 1KG populations from five continental regions: Africa (Esan, Yoruba, 

Mende, Gambian), Europe (British, Utah, Iberian Spanish, French, Tuscan), Central-

South Asia (Gujarati, Tamil, Sindhi, Bengali), East Asia (Dai, Han), the Americas (Maya, 

Mixe, Kaqchikel, Colombian Piapoco, Surui, Karitiana, Central Amerind, Ge Pano Carib, 

Chibchan Paezan, Equatorial Tucanoan, Andean)  (Table SM3). The second run was 

performed with a subset of merged dataset 2 and it included the same populations listed 

above, plus admixed Caribbean individuals from Moreno-Estrada et al. (2013) and 1KG 

(Colombians, Hondurans, Cubans, Dominicans, Haitians, Puerto Ricans, Afro-Caribbean 

Barbarians). Both ADMIXTURE analyses were performed exploring clusters from K=2 

to K=15. The lowest cross-validation error was observed at K=10 for dataset 1 and K=11 

for dataset 2 (Figure SM2). Clustering models above K=5 resulted in within continent 

substructure. 

Autosomal global ancestry proportions were compared between populations with 

the pairwise Wilcoxon rank sums test as in Homburger et al. (2015). This test is a non-

parametric alternative to a t-test that assesses whether significant differences exist 

between two distributions. It does not require data points to be normally distributed, and 

it is robust to skews and the presence of outliers (Moore, McCabe, and Craig 2009). In 

this case the null hypothesis tested was that the distribution of a given global ancestry 

proportion was identical across all populations. Assuming a model of K=5 ancestral 

components, differences in ancestry proportions from five continental regions were 
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tested: Africa, Europe, South Asia, East Asia and Americas. The test was applied to 

detect significant differences in ancestry proportions between all LA populations from 

merged dataset 1, and between all Caribbean populations included in merged dataset 2. It 

was conducted using the pairwise.wilcox.test function in R with a significance cutoff of 

P<0.05  and Bonferroni correction for multiple testing. The distribution of ancestry 

proportions across populations was visualized with boxplots.  

Based on the first two ADMIXTURE runs four reference populations were 

chosen for inclusion in merged datasets 3 and 4X. These datasets included the admixed 

Lesser Antilleans and four global reference populations chosen to represent putative 

African, European, South Asian and East Asian ancestral components (YRI, CEU, ITU, 

and CHB). In addition, 105 Native American individuals from several Central and South 

American populations were selected for inclusion in merged dataset 5. Stacked bar plots 

visualizing ADMIXTURE results were produced with pong (Behr et al. 2016).  Figure 

labels and colors were modified with Adobe Illustrator. 

 

2.3.5 Phasing and Local Ancestry Estimation 

 Merged datasets 3, 4X and 5 were phased with SHAPEIT2 (Delaneau, Marchini, 

and Zagury 2012). Before phasing, centimorgan (cM) positions for all markers were 

added to the merged dataset with Plink 1.9 (using option --cm-map) and data were 

separated by chromosome. The 1000 Genomes Phase 3 genetic map was used a reference 

haplotype panel for phasing and cM mapping (https://mathgen.stats.ox.ac.uk/impute/ 

1000GP_Phase3.html). Local ancestry estimation was conducted using RFMix v1.5.4 

(Maples et al. 2013). RFMix uses a discriminative, random forest approach to infer local 

https://mathgen.stats.ox.ac.uk/impute/
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ancestry of chromosomal segments from phased genotypes. The program also performs 

phase correction and improves accuracy in ancestry calls through an iterative 

expectation-maximization (EM) algorithm. The program was run separately per each 

chromosome using the PopPhased option. Window size was set at 0.2 cM and the number 

of EM iterations was set to 2. Local ancestry estimation was performed for merged 

datasets 3, 4X and 5. Phased genotypes from CEU, YRI, ITU, CHB, and the 105 Native 

Americans were designated as reference populations and phased genotypes from 

Grenada, St. Kitts, St. Lucia, St. Vincent and Trinidad were considered as admixed. 

Program output included ancestry calls (Viterbi files) and posterior probabilities of each 

reference ancestry (Forward-Backward files) per SNP. Ancestry call cutoffs were 

determined with a 0.9 posterior probability threshold as recommended in Kidd et al. 

(2012). Local ancestry per individual was visualized in color-coded karyogram plots 

produced with Python 2.7.11. Lastly, global ancestry proportions per each admixed 

individual were calculated from RFMix local ancestry proportions and visualized in 

stacked bar plots. RFMix input files, output files and karyogram plots were processed 

with publicly available Python scripts written by A.R. Martin (https://github.com/ 

armartin/ancestry_pipeline) and global ancestry bar plots were produced with custom 

scripts written in R. 

 

2.3.6 X chromosome analyses 

 To identify signatures of sex-biased admixture in the LA, ancestry proportions on 

the X chromosome were compared to those on the autosomes. X chromosome genotype 

data was obtained and merged using the same methods as discussed above for the CEU, 
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YRI, ITU, CHB and LA populations. Masked Native American X chromosome 

genotypes were not available in the Reich et al. (2012) reference panel, therefore this 

ancestry component was excluded from this analysis. In addition, only LA females were 

kept to ensure comparisons were made exclusively between diploid chromosomes. 

Quality filters were re-applied after merging intersecting SNPs and excluding all males 

(Table SM4). PCA and ADMIXTURE analyses were conducted on merged dataset 4X 

after LD pruning (6,175 SNPs remained in pruned dataset) using the same methods as 

detailed above. Clustering models from K=2 to K=6 were explored, and the lowest cross-

validation error was observed at K=3. Phasing and local ancestry estimation were 

performed on the non-LD pruned dataset using the same methods as above.  

Chromosome X global ancestry proportions for each admixed female were 

calculated from RFMix local ancestry estimates. These were compared to autosomal 

global ancestry proportions obtained through the same methods, for the same individuals, 

with the Wilcoxon signed-ranks test as in Moreno-Estrada et al. (2013).  The test was 

applied as described above (see Global ancestry estimation and Principal components 

analyses section), except the data were treated as paired. The null hypothesis tested was 

that the distribution of ancestry proportions on the autosomes was identical to that on the 

X chromosome for each ancestry component (Africa, Europe, South Asia, East Asia). 

The test was applied to all LA females (n=23) to detect overall trends, and to females 

from St. Lucia (n=11) and St. Vincent (n=7) to detect differences between populations. 

Grenada, St. Kitts and Trinidad were excluded from the population specific tests because 

less than four females were successfully genotyped from each. The test was conducted 

using the wilcox.test function in R with a significance cutoff of P<0.05. Differences in 
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the distribution of ancestry proportions between the X chromosome and the autosomes 

were plotted as box and barplots. 

 

2.3.7 Scans of natural selection: Haplotype based measures 

 To identify candidate regions under positive selection in the admixed Lesser 

Antillean populations the integrated haplotype score (iHS) and the extended cross-

population haplotype homozygosity measure (XP-EHH) were calculated. These test 

statistics detect long range haplotypes which arise during positive selection when 

advantageous alleles are in LD with neighboring variants (Voight et al. 2006, Sabeti et al. 

2007). iHS is a within-population test that can detect incomplete selective sweeps 

resulting in intermediate to moderate frequency alleles that have not yet reached fixation. 

Calculation of iHS scores estimates the loss of diversity in haplotypes surrounding a 

putative selected SNP. iHS values can be positive or negative, depending on whether 

selection is occurring on the derived or ancestral allele, respectively. However, in 

practice most analyses are conducted on the absolute value of the iHS score for simplicity 

(Voight et al. 2006). Although this measure is calculated per SNP, grouping iHS scores 

into 100-200 kb windows of consecutive SNPs can increase detection power because 

selective events tend to produce clusters of extreme scores (|iHS > 2|) (Pickrell et al. 

2009, Voight et al. 2006). Windows with high frequencies of top 1% outlier scores 

(values outside of the 99% confidence interval) are considered candidate regions under 

positive selection (Voight et al. 2006). 

In contrast, XP-EHH is a between-population test that detects selective sweeps 

where alleles have risen to extremely high frequencies or complete fixation in one 
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population, but remain polymorphic in the other (Sabeti et al. 2007). XP-EHH values can 

be positive or negative, indicating selection has occurred in tested populations A or B, 

respectively. As with iHS, extreme XP-EHH scores are examined as absolute values and 

can be grouped into windows to achieve higher power for detecting candidate regions 

with long stretches of extreme scores (Vitti, Grossman, and Sabeti 2013). In humans, iHS 

and XP-EHH tests can detect recent selective sweeps within the last 30,000 years 

(Oleksyk, Smith, and Brien 2009). 

Phased genotypes from merged dataset 3 were used as input for the iHS and XP-

EHH selection scans. This dataset was chosen because it had the highest SNP density. 

Ancestral and derived allele states were retrieved from the inferred human ancestor 

sequence (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/ 

ancestral_alignments/human_ancestor_GRCh37_e59.tar.bz2) using scripts from the 

Selection Tools pipeline (Cadzow et al. 2014). Simulations have shown that to maintain 

statistical power, iHS and XP-EHH need a minimum sample size of 40 and 20 

chromosomes (20 and 10 diploid individuals), respectively (Pickrell et al. 2009). 

Therefore, all genotyped LA populations were grouped together for these analyses for a 

total sample size of 55 diploid individuals (110 chromosomes). Although this approach 

precludes detection of selected candidate regions that may differ between populations, it 

ensures robust detection of true positive selection signals common to all groups and 

limits detection of false positives.  

 Using Selscan (Szpiech and Hernandez 2014), unstandardized iHS scores were 

calculated for the phased data from the LA Afro-Caribbeans and for each of the four 

reference populations in merged dataset 3 (YRI, CEU, ITU, CHB). The program was run 
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with default parameters, including a MAF cutoff threshold of < 0.05 and critical value 

threshold of | iHS > 2 |, as recommended by (Voight et al. 2006). Test statistic values 

were standardized using default parameters with the norm tool provided within Selscan. 

Standardization normalizes iHS scores with mean = 0 and standard deviation = 1. 

Standardized iHS scores were then grouped into 100 kb windows with a minimum 

threshold of 10 SNPs per window. The fraction of scores above the critical value was 

calculated for each window per chromosome, for all tested populations. Manhattan plots 

of standardized iHS scores were produced using the qqman package in R (Turner 2014). 

For the XP-EHH statistic, four pairwise comparisons were calculated comparing 

the LA group to each of the four reference populations, respectively. Score calculation, 

standardization and binning across 100 kb windows were performed in Selscan and norm 

with default parameters, in the same way as described above. For iHS and XP-EHH, 

variability in the number of variants per 100 kb window was accounted for by binning 

windows with similar number of SNPs in increments of 10 SNPs as in Pickrell et al. 

(2009)  (Figures SM3 and SM4). For each population, the 100 kb windows with the 

highest proportions of extreme iHS or XP-EHH scores (in the top 1% and 5%) were 

considered candidate regions under selection (Kilman 2016).  

  

2.3.8 Scans of natural selection: Ancestry deviations 

 A second selection scan was conducted to identify candidate regions under 

selection that have arisen since the onset of admixture in Lesser Antillean populations. 

This approach is similar to admixture mapping in that it searches the genome of an 

admixed population for deviations from genome wide ancestry proportions due to excess 
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or deficiency of a given ancestry component. These deviations, also known as ancestry 

skews, may stem from selection acting on the frequency of alleles that are positively 

selected in a population after an admixture event (Tang et al. 2007, Oleksyk, Smith, and 

Brien 2009). RFMix local ancestry estimates for merged datasets 3 and 5 were used as 

input for the ancestry deviation scan. Based on the results of previous global ancestry 

analyses (see Global ancestry estimation and Principal components analyses section), a 

model of five-population admixture was assumed using YRI, CEU, ITU, CHB and 105 

Native Americans as references. As with the long-range haplotype analyses, admixed 

individuals from all five LA populations were grouped together for the first round of 

ancestry deviation tests. However, the test was also run for each island population 

independently to explore whether grouping them together affected statistical power and 

detection of false positives. 

Deviations in locus-specific ancestry per each ancestral component were 

calculated as in (Chimusa et al. 2015) and (Tang et al. 2007) by subtracting local ancestry 

proportions per marker from genome-wide global ancestry proportions as follows: 

δk
m =  (

1

N
∑ φk

i,m) − αk = φ̅k
m − αk 

N is the number of individuals in the admixed population sample. For each ancestral 

component k  ∈ {1, … , K}, αk is the genome-wide global ancestry proportions derived 

from local ancestry estimates and φk
i,m

 is the locus-specific ancestry directly estimated by 

RFMix of each individual i at SNP m ∈ {1, … , M}. φ̅k
m is the averaged locus-specific 

ancestry for all sampled individuals at SNP m. The deficiency or excess of ancestry δk
m 

can be approximated as a normal distribution with mean = 0 and standard deviation = 1 
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(Daya et al. 2014, Deng et al. 2016, Chimusa et al. 2015). As recommended by (Bhatia et 

al. 2014), a strict threshold for significance was implemented to avoid detection of false 

positives. Thus, only genomic segments with normalized deviation scores above four 

standard deviations from the mean were considered as candidate selected regions. All 

calculations and figures depicting the distribution of ancestry proportions and deviations 

across the genome were done using custom scripts in R. 

  

2.3.9 Gene ontology and overrepresentation analyses 

To identify genes within candidate selected regions identified with the genome-

wide selection scans, genomic annotations were examined with the Ensembl genome 

browser for human build GRCh37 (Yates et al. 2015). Specifically, unique Ensembl 

identifiers were obtained for all genes within candidate regions using the BiomaRt R 

interface for retrieving Ensembl annotations (Durinck et al. 2005, Durinck et al. 2009). 

The list of Ensembl identifiers was used for gene function analysis with the PANTHER 

protein annotation through evolutionary relationship database v11.1. This database 

retrieves functional classification of genes by family, protein class, biological process or 

molecular function, among other categories (Mi et al. 2016). PANTHER was also used to 

conduct a statistical overrepresentation test of the biological processes of top candidate 

genes. This is a binomial test which compares the input gene list to a reference list (in this 

case 20,972 known annotated genes in the human genome reference) to determine 

whether a gene class is over or under represented. The null hypothesis is that genes in the 

input list are sampled from the same population as genes in the reference and therefore 

the probability of observing a given biological process gene in the input list should be 
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equal to that of the reference. Test significance cutoff was P<0.05 and p-values were 

adjusted for multiple testing with the Bonferroni correction (Mi et al. 2013). 

 

2.3.10 Computational resources and R packages 

 This research was completed using resources from the ASU High Performance 

Computing Saguaro environment. All custom scripts written for this project will be 

available on GitHub after publication. All plots and figures were generated in R 3.2.4 

using the ggplot2 (Wickham 2009) and reshape 2 (Wickham 2007) packages or with R 

base graphics. 

 

2.4 Results  

2.4.1 Population Structure and Global Ancestry in the Lesser Antilles 

 Multivariate PCA and unsupervised global ancestry analyses were used to 

characterize population structure and ancestral components of LA Afro-Caribbean 

populations. Figure 2 shows the distribution in PC space (PC 1 vs 2) of individuals 

included in the first round of analysis: LA and global populations from seven world 

regions (merged dataset 1). Most LA individuals cluster with African populations, but 

there is variation in clustering patterns across island groups and even between individuals 

from a same population. For instance, many Trinidadians cluster between African, 

European, Central-South Asian and Native American reference populations, suggesting 

they carry ancestry from non-African sources. At least one individual from St. Lucia and 

two from St. Vincent and Grenada also fall between continental populations. However, 

within island variation is evident. Some Trinidadians cluster tightly with individuals from 
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St. Kitts, Grenada and St. Vincent, all of whom also group closely with African 

populations. These clustering patterns are largely preserved at higher PC components 

(Figure SM5). 

 

Figure 2.  PCA performed with 44,219 autosomal SNPs intersected between Lesser 

Antilles genotyped samples and reference populations from Africa, Europe Central-South 

Asia, East Asia, Oceania and the Americas collected from the literature. PC 1 and 2 

contain 10.32% of total variation. 

 

Results of a second round of PCA including additional Caribbean basin 

populations (merged dataset 2) are shown in Figure 3. As expected, many Afro-

Caribbean LA individuals cluster closely with Afro-Caribbean Barbadians, Haitians and 

continental African populations. This suggests that, on average, sampled LA groups carry 

more African ancestry than Puerto Ricans, Hondurans, Colombians and some 

Dominicans and Cubans, who cluster closer to European and Native American reference 

populations. However, at least one Trinidadian individual clusters with a group of 

Colombian and Honduran individuals who fall close to Native American reference 

populations. Clinal distributions of individuals across PC space are observed throughout 



  32 

the Caribbean sample, suggesting that variation in ancestry components within and 

between island populations are common throughout the Caribbean basin.  Additional 

plots with higher PCs for both rounds of PCA are shown in Figure SM6 

 

Figure 3. PCA performed with 23,636 autosomal SNPs intersected between Lesser 

Antilles genotyped samples, reference populations from Africa, Europe Central-South 

Asia, East Asia, Oceania and the Americas, and admixed Caribbean populations. PC 1 

and 2 contain 8.18% of total variation. COL = Colombia, HUR = Honduras, CUB = 

Cuba, HAI = Haiti, DOM= Dominican Republic, PUR = Puerto Rico, ACB = Afro-

Caribbean Barbados. 

 

 ADMIXTURE was used to estimate global ancestry proportions in the LA sample 

and to explore the fit of admixture models for several values of K ancestral populations. 

The analysis was run twice. The first run focused on characterizing global ancestry 

patterns in the LA with respect to world populations from Africa, Europe, Central-South 

Asia, East Asia and the Americas (Figure 4). The second run added admixed Caribbean 

basin populations to compare the distribution of global ancestry proportions across the 

region (Figure 5) (see Global ancestry estimation and Principal components analyses 

section in Methods section and Table SM3 for details). For both runs clustering models 
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from K=2 to K=15 were explored and the lowest cross-validation (cv) error was observed 

at K=10 and K=11, respectively (Figures SM7 & SM8). However, clustering models 

above K=5 resulted in within continent substructure and did not further differentiate 

major continental clusters within the admixed genotypes. Therefore, a model where a 

maximum of K=5 continental populations contributed to genomic admixture was 

assumed to best explain overall ancestry patterns across the LA. 

 

Figure 4. ADMIXTURE clustering performed with 44,219 autosomal SNPs common to 

Lesser Antilles genotyped samples and reference populations from the Caribbean, Africa, 

Europe South Asia, East Asia and the Americas (merged dataset 1). See Table SM3 for 

abbreviations. 

 

 

 

Figure 5. ADMIXTURE Clustering performed with 23,636 autosomal SNPs common to 

Lesser Antilles genotyped samples and reference populations from the Caribbean, Africa, 

Europe South Asia, East Asia and the Americas (merged dataset 2). See Table SM3 for 

abbreviations. 

 

All LA populations show a mixture of African, European and Native American 

ancestry (Table 1), and some populations also carry contributions from South and East 

Asian sources. Although the African component is the largest in all groups, ancestry 
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proportions vary widely between populations (65% to 89%). Native American ancestry is 

the smallest global ancestry component observed across all groups (<2.5%), sometimes 

found in lower proportions than East or South Asian ancestry. Of all the LA populations, 

Trinidad stands out as having the most complex global ancestry patterns and the most 

variation in ancestry proportions for each of the five continental components (Figure 6). 

Trinidadian Afro-Caribbeans carry the highest proportions of East and South Asian 

ancestry, and the lowest proportion of African ancestry of all the LA populations. Afro-

Caribbean populations from Trinidad and St. Vincent, two islands with recognized Native 

American communities, carry the highest proportions of Native American ancestry across 

the LA sample. However, when tested with a pairwise Wilcoxon rank test with 

Bonferroni correction these between population differences were not statistically 

significant (Table SM5). It must be noted however that the low number of individuals 

sampled from Grenada and St. Kitts may introduce some sampling bias and may mask 

the presence of more complex admixture patterns in these populations. 

Table 1. Autosomal global ancestry estimates for Lesser Antilles Afro-Caribbean 

populations using RFMix and ADMIXTURE.  
Population N Estimate AFR EUR AMR SAS EAS 

Grenada 6 
RFMix 87.52% 10.10% 0.44% 1.80% 0.14% 

ADMIXTURE 86.23% 11.36% 0.68% 1.22% 0.52% 

St. Kitts 5 
RFMix 90.51% 9.18% 0.09% 0.17% 0.05% 

ADMIXTURE 89.27% 9.74% 0.25% 0.32% 0.42% 

St. Lucia 15 
RFMix 82.58% 13.45% 0.42% 3.28% 0.27% 

ADMIXTURE 81.00% 14.36% 0.68% 3.47% 0.50% 

St. Vincent 10 
RFMix 84.68% 12.72% 1.68% 0.75% 0.18% 

ADMIXTURE 83.22% 13.54% 1.89% 1.10% 0.24% 

Trinidad 19 
RFMix 67.67% 16.78% 1.77% 8.38% 5.40% 

ADMIXTURE 65.98% 17.59% 2.03% 8.21% 6.19% 

All Lesser 

Antilles 
55 

RFMix 82.59% 12.45% 0.88% 2.87% 1.21% 

ADMIXTURE 77.54% 14.58% 1.33% 4.14% 2.41% 

Abbreviations: AFR = African ancestry, EUR = European ancestry, AMR = Native 

American ancestry, SAS = South Asian ancestry, EAS = East Asian ancestry. 
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With the addition of seven admixed Caribbean populations in the second run of 

ADMIXTURE analysis, stark differences become apparent in the distribution of global 

ancestry proportions across the region (Figure 5). Even with the lower SNP density of 

merged dataset 2, overall admixture patterns are replicated from the previous run and 

K=5 remains the best model for maximum continental contributions. As expected based 

on the results of PCA, ancestry proportions were most similar between Afro-Caribbean 

Barbadians (ACB), Haitians and LA populations who carried much higher African 

ancestry, and much lower Native American ancestry than Hondurans, Colombians, 

Dominicans and Puerto Ricans. These overall similarities and differences in ancestry 

proportions were found to be statistically significant at =0.05 for multiple comparisons 

between Caribbean populations (Figure 7 and Table SM6). Cubans were the only Greater 

Antilles population with a small East Asian component, although in much lower 

proportions than Trinidadians. 

 

Figure 6. Distribution of continental ancestry proportions among Lesser Antilles Afro-

Caribbeans generated with ADMIXTURE analysis at K=5 with 44,219 autosomal SNPs 

(merged dataset 1). 



  36 

 

Figure 7. Distribution of continental ancestry proportions across 12 admixed Caribbean 

populations generated from ADMIXTURE analysis at K=5 with 23,636 autosomal SNPs 

(merged dataset 2). 
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  With the addition of seven admixed Caribbean populations in the second run of 

ADMIXTURE analysis, stark differences become apparent in the distribution of global 

ancestry proportions across the region (Figure 5). Even with the lower SNP density of 

merged dataset 2, overall admixture patterns are replicated from the previous run and 

K=5 remains the best model for maximum continental contributions. As expected based 

on the results of PCA, ancestry proportions were most similar between Afro-Caribbean 

Barbadians (ACB), Haitians and LA populations who carried much higher African 

ancestry, and much lower Native American ancestry than Hondurans, Colombians, 

Dominicans and Puerto Ricans. These overall similarities and differences in ancestry 

proportions were found to be statistically significant at =0.05 for multiple comparisons 

between Caribbean populations (Figure 7 and Table SM6). Cubans were the only Greater 

Antilles population with a small East Asian component, although in much lower 

proportions than Trinidadians.  

Higher values of K revealed structure within continental populations and by 

extension in the ancestral components of admixed Caribbean genomes. At K=11, the 

model with the lowest cv error for the second ADMIXTURE run, two components are 

present within African populations, differentiating the Yoruba and Esan of Nigeria from 

the Mende and Gambian. The East Asian Dai and Han are also separated by two major 

ancestry components, represented by light and dark purple in Figure 5. Among Native 

American groups, there is also differentiating genetic structure, most notably between the 

Chibchan-Paezan speakers (which includes tribes such as the Waunana, Teribe, Kogi and 

Embera from Central and South America) and the other populations. This within-

continent structure is also visible in the admixed Caribbean genomes. Moreno-Estrada et 
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al. (2013) identified a Latino specific European ancestry component, exclusively shared 

with Iberian populations in Caribbean Latinos. In this analysis, notable structure is 

present between European populations, southern groups such as Italians and Iberians 

have larger proportions of an ancestry component (colored dark blue in Figure 5) found at 

lower frequencies in northern groups such as the British and the CEU population. This 

dark blue component is found in higher proportions among Latino Caribbean populations 

than in Haitians or Lesser Antilleans, consistent with previous research (Bryc, Velez, et 

al. 2010, Moreno-Estrada et al. 2013). At K=10 and later again at K >13, a primarily 

Iberian component, shared in low frequencies with other European groups but in high 

frequencies with Puerto Ricans is observed. This component is found in low frequencies 

among the LA populations. But, it must be noted that different reference European 

populations were used in this investigation than in the analysis conducted by (Moreno-

Estrada et al. 2013). ADMIXTURE did not find unique ancestry components separating 

African, East Asian or South Asian ancestry contributions in the Caribbean populations, 

but continental ancestry contributions, especially in the case of Europe, are not 

homogenous across the region. 

Local ancestry estimation conducted with RFMix on merged dataset 5 revealed 

large variability in the distribution of ancestry proportions across admixed LA genomes. 

Figure 8 shows karyogram plots for four individuals with varying continental ancestry 

proportions. Individual D has the highest proportion of Native American ancestry 

observed in the sample. Individual B has what appears to be recent South Asian ancestry, 

based on visual assessment of the large size of the green haplotype blocks. However, this 
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observation has not been tested by modeling of haplotype tract lengths. Additional 

karyogram plots are in Figure SM9.  

 

Figure 8. Local ancestry karyotypes of four Lesser Antilles Afro-Caribbean individuals. 

An individual with: (A) high proportions of African ancestry. (B) high proportions of 

South Asian ancestry. (C) high proportions of European and East Asian ancestry. (D) 

high proportion of Native American ancestry. 

 

Global ancestry proportions were averaged from local ancestry estimates 

generated with RFMix (Table 1). Values estimated through this method differed from 

those generated by ADMIXTURE by approximately 1-2 percentage points. However, this 

difference was not found to be statistically significant (t=-4.838E-05, df=4, P=0.999) and 

the overall distribution of ancestry proportions remained constant. Figure 9 shows 

average autosomal global ancestry proportions for LA Afro-Caribbeans calculated from 

RFMix local ancestry estimates, assuming a model of K=5 continental source 

populations.   

A B

C D
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Figure 9. Global ancestry proportions were averaged per individual genome from RFMix 

local ancestry per-marker estimates. Local ancestry estimates were conducted with 

merged dataset 5 (119,277 autosomal SNPs). 

 

 

2.4.2 Sex biased admixture in the Lesser Antilles  

 To identify instances of sex-biased gene flow in LA Afro-Caribbeans, global 

ancestry on the X chromosome was characterized separately from the autosomes. To 

ensure that only diploid chromosomes were compared, all males were excluded from this 

analysis, leaving a smaller sample size of 23 females. PCA analysis of admixed X 

chromosome genotypes and merged dataset 4X continental reference populations from 

Africa (YRI), Europe (CEU), South (ITU) and East Asia (CHB) demonstrates similar 

patterns as observed with autosomal SNPs. Most individuals cluster close to Africa. A 

few outliers, mostly from Trinidad and St. Vincent, fall closer to non-African populations 
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(Figure SM10).  As mentioned in the Methods section, Native American X chromosomes 

were not available from the masked reference panel for inclusion in this, and subsequent 

analyses on chromosome X loci. In most cases this had the effect of inflating estimates of 

East Asian ancestry proportions in the admixed genotypes (Table 2). 

 

Table 2.  Ancestry proportions for chromosome X in Lesser Antilles Afro-Caribbean 

populations (average for females only).  

Population N AFR EUR SAS EAS 

Grenada* 1 93.25% 5.18% 0.00% 1.56% 

St. Kitts* 1 94.02% 5.98% 0.00% 0.00% 

St. Lucia 11 92.29% 2.34% 3.60% 1.77% 

St. Vincent 7 93.90% 4.93% 0.48% 0.68% 

Trinidad 3 71.32% 12.31% 8.20% 8.16% 

Lesser Antilles 23 90.16% 4.71% 2.94% 2.19% 

* Grenada and St. Kitts only had one female each. 

 

 

 ADMIXTURE was used to explore the fit of admixture models for several values 

of K on the X chromosome, using the same four reference populations mentioned above. 

The lowest cv error was observed at K=3, although the ITU population cannot be 

differentiated from CHB and CEU at this level (Figure SM11).  The ADMIXTURE 

program manual recommends using at least 10,000 SNPs to differentiate between 

continental populations, therefore it is unclear whether this is an artifact of the lower SNP 

density of the X chromosome dataset (6,175 SNPs after LD pruning). At higher values of 

K, the African component observed in LA females becomes differentiated from the 

reference YRI population. This pattern may be due to structure within the African 

ancestry of admixed LA X chromosomes, or it may be another artifact of low SNP 

density in this analysis. 
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 Comparisons of autosomal versus X chromosome global ancestry proportions 

revealed a significant difference in African, European and South Asian ancestry 

proportions across the two genetic systems at =0.05 (Table SM7). Visual comparison 

using bar and boxplots suggests that African and South Asian ancestry are increased in 

the X chromosomes of LA Afro-Caribbean females, while European ancestry is higher on 

the autosomes (Figure 10). These data suggest that sex-biased mating patterns, where 

mostly European males reproduced with African, Native and South Asian females, 

played a large role in shaping the genetic diversity of LA Afro-Caribbean populations. 

Additional boxplots comparing distribution of autosomal versus X chromosome global 

ancestry proportions between island populations are shown in Figure SM12. 

 

 

Figure 10.  (A) Boxplot comparison of global ancestry proportions derived from local 

ancestry estimation. Significant comparisons in Wilcoxon paired test noted with 

asterisks: *** = P ≤ 0.001, ** = P ≤ 0.01, * = P ≤ 0.05, ns = P > 0.05. (B) Stacked bar 

plot of autosomal global ancestry proportions. (C) Stacked bar plot of chromosome X 

ancestry proportions.  
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2.4.3 Scans of natural selection: Long range haplotype methods 

 Two long range haplotype-based measures, iHS and XP-EHH, were applied to 

identify candidate windows under positive selection in the genomes of LA Afro-

Caribbean populations. The iHS test was deployed to detect signatures of incomplete 

selective sweeps resulting in moderate frequency alleles, and the XP-EHH between 

population test was used to detect signatures of complete selective sweeps where alleles 

are fixed in one population but remain polymorphic in the other. This difference in scope 

makes both tests complementary (Sabeti et al. 2007, Voight et al. 2006). The selection 

scans were performed on a grouped dataset of all 55 LA individuals to increase statistical 

power (see Methods). For comparison, the tests were also performed on the four 

reference populations included in merged dataset 3 (YRI, CEU, ITU, CHB). Merged 

dataset 3 was used due to its high SNP density. 

In the LA group, genome-wide scans identified thirteen 100 kb windows with 

high proportions of SNPs in the top 1% of |iHS| scores (Table 3). Genes within those 

windows were associated with cellular and organismal processes, biological regulation, 

and response to stimulus. Specific gene families within these candidate regions include 

the olfactory gene cluster on chromosome 6 and the keratin associated protein family on 

chromosome 17. |iHS| scores for SNP within these windows are highlighted in green in 

Figure 11. The PANTHER statistical overrepresentation test found that six genes 

associated with sensory perception of smell and with the G-protein coupled receptor 

signaling pathway were overrepresented in the top 1% iHS windows (P<0.001) (Table 

4). To find signatures of selection that may be shared across populations, overlapping 

candidate iHS windows in the top 1% in the LA population and in the top 5% of the YRI, 
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CEU, ITU or CHB populations were identified as in (Pickrell et al. 2009, Cardona et al. 

2014). Seven windows overlapped exclusively between LA and YRI (53% of top iHS 

windows in the LA group) (Table 2).  Since African ancestry is the largest ancestry 

component in the LA population, these results are consistent with the findings of 

admixture and population structure analyses discussed previously. No genes were 

significantly overrepresented in these seven overlapping windows with respect to 

expected proportions in the annotated human genome. 

 

Table 3. Top 1% 100 kb candidate regions identified in iHS analysis conducted with 55 

Lesser Antilles Afro-Caribbeans. 

Chr Window Start 
Window 

End 

SNPs in 

window 

Proportion 

of SNPs with 

|iHs| > 2 

Genes in 

Window 

YRI top 

5% iHS 

windows 

1 63100001 63200001 50 0.52 DOCK7  
2 17300001 17400001 55 0.672727 None  

2 21300001 21400001 74 0.567568 TDRD15  

2 111600001 111700001 11 0.727273 ACOXL  

2 194900001 195000001 10 0.9 None X 

3 148100001 148200001 134 0.537313 None X 

3 175900001 176000001 158 0.506329 None X 

6 29000001 29100001 94 0.680851 
OR2W1, 

OR2B3 
X 

6 29100001 29200001 84 0.666667 

OR2J1 

(pseudogene), 

OR2J3, OR2J2 

 

6 29200001 29300001 69 0.536232 OR14J1  

8 9600001 9700001 26 0.692308 TNKS X 

17 39100001 39200001 38 0.921053 

KRT39, KRT40, 

KRTAP3-3, 

KRTAP3-2, 

KRTAP3-1, 

KRTAP1-5, 

KRTAP1-4, 

KRTAP-3, 

KRTAP1-1 

X 

 

The XP-EHH genome-wide scan identified over 500 candidate windows with 

high proportions of SNPs in the top 1% of scores across all pairwise comparisons: 77 in 
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LA vs. YRI, 108 in LA vs. CEU, 243 in LA vs. ITU, 168 in LA vs. CHB (Tables SM8 – 

SM11). The comparison with the lowest amount of top XP-EHH windows is LA vs YRI, 

probably due to the large similarity between these two populations. Most extreme XP-

EHH scores were negative, indicating that the test largely detected variation that is nearly 

fixed in continental reference populations but remains polymorphic in admixed Lesser 

Antilleans (Figure 12).  As with the iHS scan, most genes within the top 1% XP-EHH 

windows were involved in cellular or metabolic processes and responses to stimulus. But 

locomotion and immune system related genes were also identified in the cross-population 

comparisons. Known population-specific targets of selection were detected within the top 

candidate regions, such as the LCT gene in the LA vs. CEU comparison and the EDAR 

gene in the LA vs CHB comparison (Bryk et al. 2008, Bersaglieri et al. 2004). Olfactory 

genes were identified in all pairwise comparisons except between LA vs. YRI. This 

suggests that there are few differentially fixed alleles between YRI and the admixed 

Lesser Antilleans in the olfactory receptor gene family.  

 

Figure 11. Manhattan plot of standardized genome-wide |iHS| scores for Lesser Antilles 

Afro-Caribbeans (N=55). The blue line indicates the theoretical threshold of |iHS| > 2 and 

the red line indicates the empirically determined top 1% quantile threshold. SNPs in 

green are within top 1% 100 kb candidate windows on chromosomes 1-3,6,8, 17 and 19.  
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Figure 12. Manhattan plots of standardized genome-wide XP-EHH scores across four 

cross-population comparisons. Values above the red line were empirically determined to 

be in the top 1% quantiles.  

 

 

The PANTHER statistical overrepresentation test identified eight genes associated 

with cellular defense response, antigen processing and antigen presentation that were 

overrepresented in the top 1% XP-EHH windows in the LA vs. YRI comparison 

(P<0.001) (Table 4). Seven of the genes belong to the HLA gene cluster on chromosome 

6, and the eighth, NCR3LG1 on chromosome 11, belongs to the immunoglobulin 

receptor superfamily. The test also found a significant overrepresentation of genes 
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associated with regulation of gene expression and epigenetic processes in top candidate 

windows in the LA vs. ITU comparison (P<0.001).  These genes belonged to the histone 

cluster 1 H2A family on chromosome 6. Only one window was identified in the top 1% 

of all pairwise XP-EHH comparisons.  It is located on chromosome 1 between positions 

416kb to 417kb, within the length of gene SCMH1. This gene is involved in cell cycle 

processes and transcription regulation. 

 

2.4.4 Scans of natural selection: Ancestry deviations 

 Given that long-range haplotype methods do not allow for identification of 

selection that occurs in an admixed population after the admixture event(s), a genome-

wide scan for ancestry deviations was conducted on the 55 LA Afro-Caribbean autosomal 

genotypes. This test assumes that alleles from a given ancestry component which provide 

a selective advantage in the admixed group will rise in frequency after the onset of 

admixture and therefore create genomic segments with deviations, or skews, in local 

ancestry proportions relative to genome-wide averages. For all 55 LA individuals 

119,277 autosomal loci at the intersection of merged dataset 5 populations were scanned 

for ancestry deviations. Although this is a much smaller dataset than the one used for the 

iHS and XP-EHH tests, it has more than the minimum 3,000 markers recommended by 

Bhatia et al. (2014) for testing ancestry deviations in African-American populations. As 

recommended by Bhatia et al. (2014) genomic segments were considered candidate 

regions under selection if deviations in local ancestry exceeded 4 standard deviations 

(SD) from average global ancestry for the whole LA sample.  
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Table 4. Significant results of PANTHER statistical overrepresentation test on gene lists 

retrieved from top 1% candidate windows for iHS and XP-EHH analyses in Lesser 

Antilles Afro-Caribbeans. 
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LA iHS 

Sensory 

perception 

of smell 

0.37 6.00 Over 16.13 
3.81E

-04 

OR14J1, 

OR2B3, 

OR2W1, 

ORJ23, OR2J2, 

OR2J1 

G-protein 

coupled 

receptor 

signaling 

pathway 

0.71 6.00 Over 8.46 
1.46E

-02 

OR14J1, 

OR2B3, 

OR2W1, 

ORJ23, OR2J2, 

OR2J1 

Unclassified 1.11 13 Over 1.17 
0.00E

+00 
multiple  

LA vs. 

YRI XP-

EHH 

Antigen 

processing 

and 

presentation 

0.29 8 Over 27.23 
1.96E

-07 

HLA-DMB, 

HLA-DPB1, 

HLA-DMA, 

HLA-DOA, 

HLA-DPA1, 

HLA-B, 

NCR3LG1 

Cellular 

defense 

response 

1 7 Over 6.99 
1.73E

-02 

HLA-DMB, 

HLA-DPB1, 

HLA-DMA, 

HLA-DOA, 

HLA-DPA1, 

NCR3LG1 

Unclassified 41.58 34 Under 0.82 
0.00E

+00 
multiple  

LA vs. 

CEU 

XP-EHH 

Unclassified 57.63 52 Under 0.9 
0.00E

+00 
multiple  

LA vs 

ITU XP-

EHH 

Regulation 

of gene 

expression, 

epigenetic 

0.52 5 Over 9.61 
4.80E

-02 

HIST1H2AG 

orthologs 

Unclassified 88.09 72 Under 0.82 
0.00E

+00 
multiple  

LA vs. 

CHB 

XP-EHH 

Unclassified 117.32 117 Under 1 
0.00E

+00 
multiple  
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 The scan identified 566 loci across seven chromosomes with ancestry skews 

exceeding the 4 SD significance threshold (Table 5). All significant markers had an 

excess of Native American (AMR) or East Asian (EAS) ancestry. However, these 

deviations may not necessarily be due to the action of natural selection. Many of the 

significant loci were found at the beginning or end of chromosomes in regions where 

local ancestry estimation has the most error (Figures 13 & 14) (Bhatia et al. 2014). 

Further, loci with significant deviations in AMR ancestry often also had significant 

deviations in EAS ancestry suggesting that these scores co-varied. Lastly, the ancestry 

skew test assumes that deviation scores and ancestry proportions approximate a normal 

distribution (Chimusa et al. 2015). However, probability densities of EAS and SAS 

ancestry proportions and deviation scores were both right skewed (Figure SM13). Thus, it 

seems that for a given genomic region, when proportions of an ancestry component are 

small, any change in allele frequency makes loci within the region more likely to cross 

the significance threshold, leading to the identification of false positives. This spurious 

signal effect was further magnified with decreasing sample size as was observed when 

testing for significant deviations in each of the island populations individually (Figure 

SM14). In the ancestry deviation test conducted with St. Kitts, the population with the 

smallest sample size, 6,100 significant skews across 15 chromosomes were identified and 

every ancestry proportion was overrepresented at least once (Table 5). 
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Figure 13. Genome-wide local ancestry proportions per chromosome in Lesser Antilles 

Afro-Caribbeans (n=55). African ancestry is >50% for all loci (119,277 autosomal 

SNPs). 

 

To examine whether test results were influenced by the number of SNPs 

examined, the ancestry deviation scan was repeated on all 55 LA individuals with 

852,887 autosomal loci at the intersection of merged dataset 4 populations. This analysis 

excluded Native American ancestry. In this case, no locus passed the 4 SD significance 

threshold. However, when the scan was repeated for individual island populations, the 

same situation observed above arose again. Multiple loci, usually with excess East Asian 

or South Asian ancestry, crossed the threshold as sample size decreased (Table 5). 

Therefore, I consider the results from this test to be unreliable and conclude that with 

these methods it is impossible to determine whether selection has occurred since 

admixture in the tested populations. 
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Figure 14. Standardized genome-wide local ancestry deviations in Lesser Antilles Afro-

Caribbeans (n=55). The dotted lines represent 4 standard deviations from average global 

ancestry proportions (119,277 autosomal SNPs). 

 

 

 

Table 5. Autosomal markers with significant ancestry skews. 

Dataset Population N 

Markers with 

significant ancestry 

deviations 

Ancestries with over or 

under representation 

Merged 

Dataset 5 

(119,277 

SNPs) 

St. Kitts 5 4,557 AFR, EUR, SAS, EAS AMR 

Grenada 6 6,100 SAS, EAS AMR 

St. Lucia 15 1,127 SAS, EAS AMR 

St. Vincent 10 7,233 SAS, EAS AMR 

Trinidad 19 2,328 SAS, EAS AMR 

Lesser Antilles 55 566 EAS, AMR 

Merged 

Dataset 4 

(852,887 

SNPs) 

St. Kitts 5 24,016 AFR, EUR, SAS, EAS 

Grenada 6 3,808 EAS, SAS 

St. Lucia 15 14,316 EAS, SAS 

St. Vincent 10 11,190 EAS, SAS 

Trinidad 19 254 SAS 

Lesser Antilles  55 0 NONE 
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2.5 Discussion 

2.5.1 Population structure and genetic admixture in Lesser Antillean Afro-Caribbeans 

 Results from multivariate and admixture deconvolution analyses are consistent 

with previous genetic research, which has found that post-contact migrations had a large 

influence on the genetic structure of contemporary LA Afro-Caribbean populations 

(Benn-Torres, Kittles, and Stone 2007, Benn-Torres, Stone, and Kittles 2013). All the 

sampled groups had high proportions of African ancestry in autosomal loci, but patterns 

varied between islands. While St. Kitts Afro-Caribbeans exhibited a pattern of two-way 

admixture with African and European components, Trinidadian Afro-Caribbeans 

represent the other extreme of the spectrum, with the lowest proportion of African 

ancestry and larger proportions of other ancestry components. Although some of these 

differences may be driven by the larger sample size of Trinidadians in this dataset, the 

results are consistent with the historical record, and with previous genetics research, and 

likely reflect the effect of heterogeneous population histories across the Antilles.  

 Estimates of the African slave trade to the British Caribbean colonies indicate that 

approximately 2 million slaves were brought to the islands between the 15th and 19th 

century (Pérotin-Dumon 1999, Sheridan 1972). However, the volume of the trade to 

individual colonies often varied depending on when each island was settled and its role 

within the plantation monoculture export system. For instance, St. Kitts and Barbados 

were settled in the early 1620s as tobacco and sugar exporting colonies. Both islands 

became intensive plantation societies early in the colonial period and had higher rates of 

slave importation than the other Lesser Antillean islands (mostly due to high slave 

mortality rates) (Rogozinski 2008, Walvin 2013, Pérotin-Dumon 1999). In contrast, St. 
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Vincent was not fully settled by Europeans until the 16th century due to strong resistance 

from resident indigenous populations. Trinidad was a Spanish colony until 1763, when 

the Treaty of Paris ceded the island, along with St. Vincent, Grenada and Dominica, to 

the British. Before this time Trinidad did not have a large planation economy and still had 

a substantial indigenous population (Rogozinski 2008, Morgan 2007). Thus, planation 

monocultures and intensive slave importation arrived at different times to each of these 

islands, which could explain some of the variation in African ancestry proportions 

observed today.  Lastly, it must be emphasized that the present sampling was skewed 

towards individuals who self identify as Afro-Caribbean and therefore African ancestry 

proportions may be higher than in the general population. 

 Low proportions of Native American ancestry were observed in all LA Afro-

Caribbean groups. This pattern may be due to the strong reduction in population size and 

forced re-locations of LA native groups during the early contact period (Anderson-

Córdova 2005, Rivera-Pagán 2003). Proportions of Native American ancestry in St. 

Vincent and Trinidad, where indigenous populations still live today, are slightly higher 

than in the other groups, but this difference was not statistically significant (P>0.05). 

These results are largely consistent with those obtained previously with uniparental loci 

and ancestry informative markers that reported a tri-hybrid pattern of genetic structure for 

Afro-Caribbeans in the LA (Benn-Torres, Kittles, and Stone 2007, Benn-Torres, Stone, 

and Kittles 2013). However, estimates of Native American ancestry reported here for all 

populations are much lower than those listed by Benn-Torres, Stone, and Kittles (2013). 

This may stem in part from the lower sample sizes used in this study or from conflation 
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of East Asian and Native American ancestry components for some populations in 

estimates conducted in the present research. 

 Varying proportions of South and East Asian ancestry were found in admixed 

Caribbean populations. The highest proportions were identified among Trinidadian Afro-

Caribbeans but other LA populations, as well as some Cubans and at least one Afro-

Caribbean Barbadian also carried low proportions of South and East Asian ancestry. This 

is consistent with historic evidence for the importation of Chinese and Indian laborers 

during the post-emancipation indenture ship period in the Caribbean (1834-1917) (Lee-

Loy 2004, Look Lai 2004, Rogozinski 2008). East Asian immigration to the LA began in 

1806 with the importation of a small group of Chinese laborers to Trinidad. It intensified 

after the 1850s with concerted efforts on part of the British government to recruit laborers 

from the Chinese provinces of Guangdong and Fujian to work in the colonial sugar 

industry (Look Lai 2004). Between 1853 and 1884, at least 17, 000 laborers arrived from 

China to the British Caribbean colonies (Look Lai 2004). Most were sent to Trinidad and 

British Guiana. Many also arrived in Cuba during this time (Lopez 2004). The Chinese 

continued migrating into the Caribbean well into the 20th century as communities of ex-

indentured laborers prospered in the shop keeping and service industries (Laurence 2011, 

Richardson 2004). 

Indian indentured laborers were first transported to the Caribbean in 1838 from 

provinces in northwest India such as Uttar Pradesh (mostly Calcutta), Bengal and Bihar, 

but also from southern areas such as Madras and Odisha (Samaroo 2011). More than 

400,000 laborers arrived between 1838 and 1917. As with the Chinese, most worked in 

the sugar plantations of Trinidad, Guiana and Jamaica but some also went to other LA 
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British possessions (Laurence 2011, Mohammed 2002). Chinese and Indian migrations to 

the Caribbean were biased towards male laborers (Laurence 2011), yet in the case of 

Indians the government attempted to bring more women by establishing sex quotas in 

1856 (Mohammed 2002). Although few Chinese women came to the Caribbean overall, 

historical documents indicate they migrated in larger numbers to the LA than to the 

Greater Antilles (Laurence 2011).  

Several historical sources indicate that inter-marriage or concubinage between 

Indians and other ethnic groups were rare throughout the 19th century due to between-

group tensions, structural barriers to cultural exchange and adherence to the caste system 

on the part of Hindu Indians (Mohammed 2002, Diptee 2000, Samaroo 2011). However, 

after the 1920s and until the present, unions between Indian men, Afro-Caribbeans, 

Chinese and other creoles became more common (Mohammed 2002, Birth 1997). Asian 

ancestry had not been previously observed in genetic studies with LA Afro-Caribbeans 

(Benn-Torres, Kittles, and Stone 2007, Benn-Torres, Stone, and Kittles 2013, Benn-

Torres et al. 2012), but mitochondrial lineages common in northern India have been 

identified in Trinidadian indigenous communities (Benn-Torres et al. 2015). It is worth 

noting that other world regions including Portugal, Africa and the Yucatan peninsula 

contributed laborers (willing and otherwise) to the Caribbean islands during the 19th 

century (Richardson 2004, Samaroo 2011). However, at the present scale of analysis, 

disentangling genetic components these groups may have contributed to LA Afro-

Caribbean populations from more ancient African, European or Native American 

ancestry is not feasible.  
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 In addition to highlighting differences in the admixture process between LA Afro-

Caribbean groups, these findings also reveal consistent differences between LA islanders 

and other admixed island and mainland Caribbean populations. In contrast to the pattern 

observed in the LA, admixed Caribbean Latinos have a three-way admixture pattern, with 

large to moderate contributions from European and Native American sources (Bryc, 

Velez, et al. 2010, Gravel et al. 2013, Homburger et al. 2015, Moreno-Estrada et al. 2014, 

Moreno-Estrada et al. 2013). Other mainland Latino populations such as Mexicans, 

Peruvians, Argentinians and Chileans have much higher proportions of Native American 

and European ancestry (Moreno-Estrada et al. 2014, Homburger et al. 2015). Although 

Caribbean Latinos carry higher African ancestry proportions than their mainland 

counterparts (Bryc, Velez, et al. 2010, Bryc et al. 2015), African ancestry is much higher 

in LA Afro-Caribbeans. Of all the Greater Antillean populations tested in this research, 

only Haitians were observed to carry similar proportions of African and European 

ancestry as the LA populations (P>0.05). Dissimilarities were also observed in the 

structure of continental ancestry components across the Caribbean. An Iberian-specific 

European component previously identified among admixed Latinos (Moreno-Estrada et 

al. 2013) was not observed in the LA Afro-Caribbeans. Sex biased ancestry patterns 

however are largely similar across all admixed American populations examined to date. 

Higher proportions of European ancestry in autosome versus X chromosome loci, and 

concomitant increases in Native American or African ancestry on the X are observed 

across admixed populations from the Caribbean, mainland Latin America and the United 

States (Bryc et al. 2015, Bryc, Velez, et al. 2010, Homburger et al. 2015, Moreno-Estrada 

et al. 2013).  
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Differences in ancestry patterns between Caribbean populations are consistent 

with the dissimilar approaches to colonization and economic development employed by 

European powers across the Caribbean basin. The Spaniards settled the Greater Antilles 

in the late 15th and early 16th centuries as gold production centers for the benefit of the 

Crown. Once this economic system collapsed, due to the exhaustion of mineral resources 

and the decline of the indigenous workforce, many colonists abandoned the islands for 

wealthier mainland colonies like Mexico and Peru (Moya Pons 1999). Although a few 

sugar and coffee plantations were established, most colonists remaining on Cuba, Santo 

Domingo (now Dominican Republic), Puerto Rico, Jamaica and Trinidad (then Spanish 

possessions) turned to cattle and subsistence farming (Moya Pons 1999, Pérotin-Dumon 

1999, Heuman 1997). Therefore, the slave trade to the Spanish colonies dwindled until 

the 19th century sugar boom increased slave importation, especially in Cuba (Clarke 

2011). On Puerto Rico, however, slave importation never reached the high levels 

observed in the slave societies of Saint-Domingue or Barbados (Knight 1997a).  

The anthropologist Harry Hoetnik suggested that the lagging economic prosperity 

of the Spanish Greater Antilles during the 18th and 19th centuries relaxed social barriers 

between European, Native American and African settlers (especially in rural areas) and 

allowed for high rates of cross-cultural interaction during this time (Hoetnik 1985). 

European migration to the Spanish islands further increased in the 19th century with the 

loss of other Spanish mainland colonies and the establishment of measures (such as the 

Royal Decree of Graces of 1815) which incentivized relocation to Cuba and Puerto Rico 

(Laurence 2011, Rogozinski 2008). This situation fostered the rise of an admixed creole 

population with larger proportions of European ancestry compared to those observed in 
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Saint-Domingue and other intensive plantation societies (Clarke 2011). Later, Asian 

indentured servitude became a large part of the 19th century sugar boom in the British 

colonies and in Cuba, but Chinese laborers were not imported in high numbers in the 

other Spanish Antilles (Clarke 2011, Lopez 2004, Laurence 2011).  

Colonization in the Lesser Antilles by the Dutch, French and British contrasted 

sharply with that of the Spanish colonies. Many of the islands were settled by corsairs 

and private trading ventures such as the West India Company. Monoculture export 

plantations were established in the mid-1600s, first for tobacco and then for sugar 

(Pérotin-Dumon 1999, Rogozinski 2008). This created high demand for workers and 

incentivized the importation of indentured servants and slaves in high numbers 

(Engerman and Higman 1997). In this aspect colonization of the LA was more similar to 

that of French Saint-Domingue (now Haiti), where demographic proportions were highly 

skewed (Knight 1997a). During the late 17th and 18th centuries, Europeans represented a 

small minority of the population. Most inhabitants were African and Afro-Caribbean 

slaves and laborers. Although creole populations did arise in these islands, historical 

census records indicate they were much smaller in British plantation colonies such as St. 

Kitts and Barbados than in the Spanish and French controlled Greater Antilles (Engerman 

and Higman 1997). In his treatise about the differences in ‘race’ and ‘color’ across the 

Caribbean, Hoetnik argues that the establishment of strict racial boundaries between 

groups in the non-Spanish islands was necessary for the maintenance of the plantation 

system and therefore disencentivized inter-mixing and cross-cultural interaction (Hoetnik 

1985).   
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This discussion does not mean to imply that African populations did not 

significantly contribute to the biological and cultural development of present day 

Caribbean Latinos or that the slave system in these islands was milder or any less brutal 

to its victims, there is ample evidence for the contrary as seen in (Scarano 1992, Andújar 

2006, Nistal-Moret 1984, Moreno Fraginals 1977). African ancestry proportions in 

Greater Antilles Latinos represent a large part of extant genetic variation and have even 

been shown to vary by geographic location and socio-economic status (Via et al. 2011, 

Moreno-Estrada et al. 2013, Marcheco-Teruel et al. 2014, Martínez-Cruzado et al. 2005, 

Mendizabal et al. 2008). But still, the large differences in proportions of continental 

admixture and patterns of genetic structure between the Greater and Lesser Antilles 

populations included in this research point towards a large effect of divergent post-

contact histories on genetic diversity across the Caribbean basin.  

Lastly, it is important to note that the sampling conducted in this research was 

geared toward individuals who self identify as Afro-Caribbean and therefore may bias 

results towards increased proportions of African ancestry in the studied populations. 

However, as discussed above, I have observed large contributions from non-African 

groups to these populations. As previous genetic and anthropological research in the 

region has shown, ethnic-cultural identity is not necessarily predictive of genetic ancestry 

in the Caribbean, even though the two remain intertwined (Benn-Torres 2014, Etkins 

2016, Haslip-Viera 2006, 2001).  
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2.5.2. Signatures of selection in Lesser Antillean Afro-Caribbeans 

When applied to LA Afro-Caribbeans, the iHS within-population test identified 

100kb selection candidate windows across seven chromosomes. Three adjacent windows 

with high proportions of top 1% scores were identified on chromosome 6. All six genes 

within these windows (five functional genes and one pseudogene) mapped to three 

subfamilies within the human olfactory receptor gene family: B, J and W. This class of 

genes was the only biological process overrepresented in the LA sample. Additionally, a 

single window on chromosome 17 had the highest proportion of extreme iHS scores 

(>90% of SNPs had |iHS|>2). This region harbors seven keratin-associated protein genes 

and two keratin genes.  

The olfactory gene family (OR) codes for cellular receptors that interact with 

odorant molecules, via the G-protein mediated transduction pathway, to trigger the 

sensory perception of smell (Purves et al. 2001). It is the largest gene family in the human 

genome, related genes can be found in clusters across all chromosomes except 20 and Y 

(Glusman et al. 2001). OR gene subfamilies are usually found on the same chromosome, 

have related sequences and mediate olfaction of structurally related odorant molecules 

(Malnic, Godfrey, and Buck 2004). In addition, human OR genes can be actively 

expressed in gut tissue, germinal cells, lungs and other non-olfactory organs (Ferrer et al. 

2016, Braun et al. 2007). Although they have a high rate of pseudogenization, functional 

genes within the OR family have been found to be under positive selection in humans 

(Moreno-Estrada et al. 2008, Gilad et al. 2003, Nielsen et al. 2005), especially in Africans 

and African-Americans, who carry a larger repertoire of OR alleles than other world 

populations (Williamson et al. 2007, Gilad and Lancet 2003). All six olfactory genes 
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found within the top 1% iHS candidate regions in LA Afro-Caribbeans have been 

previously identified as belonging to the MHC-linked OR cluster (Ehlers et al. 2001). 

Alleles at these genes are highly polymorphic in humans, possibly due to their role in 

distinguishing multiple odor types (Gilad and Lancet 2003). All five of the functional 

genes may also be involved in mediating MHC-related mate recognition preferences 

(Ziegler 1997, Younger et al. 2001, Ehlers et al. 2001). One gene, OR2J3, has 

specifically been associated with detection of cis-3-hexen-1-ol odor compounds (“grassy” 

smells) (McRae et al. 2012).  

Keratin (KRT) and keratin associated protein (KRTAP) genes are involved in the 

production of filaments that build epithelial cells and hair fibers, respectively (Bragulla 

and Homberger 2009, Moll, Divo, and Langbein 2008). KRTAP genes are only found in 

mammals. Humans, despite being largely hairless, have retained a similar number of 

these genes as other primates (Wu, Irwin, and Zhang 2008). Selection at KRTAP genes 

has been reported across mammal species in response to ecological pressures on hair 

diversification (Khan et al. 2014). In humans, signals of recent adaptation have been 

identified in KRTAP genes among European-American populations (Nielsen et al. 2005, 

Williamson et al. 2007).  

The cross-population XP-EHH test identified over 500 top 1% candidate windows 

across four pairwise comparisons between LA Afro-Caribbeans and African, European, 

South and East Asian reference populations. Most of these windows had high proportions 

of SNPs with negative XP-EHH values, which suggests the test largely detected genomic 

regions under positive selection in the reference populations. Only one 100kb window, 

harboring gene SCMH1 on chromosome 1, overlapped across all comparisons. SCMH1 
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is part of the polycomb group of regulatory genes which influence development by 

silencing homeotic HOX genes that control the timing and pattern of structures in 

embryonic development (Berger et al. 1999). As a regulatory gene, SCMH1 is expressed 

in the testes during meiosis and influences the formation of spermatocytes (Khan et al. 

2014). This gene is highly conserved across multiple organisms including flies and 

humans (Levine et al. 2002). Given its importance in development, SCMH1 may 

represents a target of selection across multiple, if not all, human populations as well as in 

many other organisms, but this has not been formally tested.  

Two biological processes were found to be significantly overrepresented in the 

XP-EHH tests. When comparing the LA Afro-Caribbeans to the Yoruba, immune related 

loci associated with antigen presentation and cellular defense response were 

overrepresented. This included six HLA genes on chromosome 6 and the natural killer 

cell cytotoxicity gene (NCR3LG1) on chromosome 1. This is consistent with previous 

research which has found that African populations have the highest diversity of HLA 

haplotypes (Gourraud et al. 2014, Prugnolle et al. 2005). It is likely that HLA variants 

under strong selective constraints in Africa have risen to high frequency in the Yoruba 

but remain polymorphic in the LA Afro-Caribbeans. Separately, five HIST1H2AG 

orthologs on chromosome 6 associated with epigenetic processes and gene expression 

were overrepresented in the comparison between LA Afro-Caribbeans and the Tamil. 

Haplotype homozygosity patterns detected by tests such as iHS and XP-EHH can 

be strongly affected by demographic history, population differences in recombination 

rates and linkage disequilibrium patterns in addition to selection (Sabeti et al. 2007, 

Wegmann et al. 2011, Pemberton et al. 2012). In LA Afro-Caribbeans, between 
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population overlap in selection signals for both tests is consistent with the patterns 

detected in the global ancestry and admixture analyses. The Yoruba are the only 

population that shares iHS candidate windows with LA Afro-Caribbeans. The 

comparison between these two populations also had the lowest amount of top XP-EHH 

windows, which means that selection signatures are most similar between these two 

groups than between the LA individuals and the other three populations. These results 

suggest there is a strong effect of population history, given the high degree of African 

ancestry present in the Afro-Caribbean individuals. Candidate selected variants and 

associated haplotypes may have been under selection in ancestral populations in Sub-

Saharan Africa and have then been passed on, through gene flow, to the admixed 

population. Whether sufficient time has passed since the onset of admixture for haplotype 

decay to occur in LA Afro-Caribbeans remains to be explored. Admixture events 

between African and Caribbean Latino populations have been dated to between 15 and 7 

generations ago (Moreno-Estrada et al. 2013). Future efforts to date admixture pulses or 

identify instances of continuous admixture in LA Afro-Caribbeans may provide more 

information on expected homozygosity patterns over time given recombination rates in 

these populations.  

In addition to using long range haplotype methods, this research employed 

ancestry deviation scans to identify signatures of selection that could have arisen since 

the onset of admixture between continental populations. This approach has been applied 

to identify targets of recent local adaptation in several admixed human populations 

including Latin Americans (Deng et al. 2016, Rishishwar et al. 2015, Tang et al. 2007, 

Zhou, Zhao, and Guan 2016, Brisbin et al. 2012), African Americans (Bhatia et al. 2014, 
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Jin et al. 2012) and South Africans (Chimusa et al. 2015, Daya et al. 2014), as well in 

animal species such as cattle (Bahbahani et al. 2015, Gautier and Naves 2011). In the 

Americas, ancestry deviation scans have identified anywhere from one (Zhou, Zhao, and 

Guan 2016), to three (Deng et al. 2016, Tang et al. 2007) to 6,372 (Rishishwar et al. 

2015) genomic regions carrying putative signals of positive selection since European 

contact. In most cases, candidate loci are involved in immune related processes. For 

instance, a signature of excess African ancestry at the HLA locus on chromosome 6 has 

been identified across multiple studies conducted with admixed Puerto Ricans, 

Colombians, Mexicans, and Ecuadorian, as well as in US African Americans (Rishishwar 

et al. 2015, Brisbin et al. 2012, Tang et al. 2007, Zhou, Zhao, and Guan 2016). But 

ancestry skews in Latin American populations have also been identified in non-immune 

related genes that are known targets of selection in continental populations, such as 

EDAR and MAPK10 among East Asians (Rishishwar et al. 2015). 

In the LA Afro-Caribbeans, the results of the ancestry deviation tests were 

inconclusive. As discussed in the Results section, the first round of analysis, which 

included five ancestral populations, identified 566 autosomal loci with excess Native 

American and East Asian ancestry. However, the second round of analysis, which 

excluded Native American populations, failed to replicate this pattern and did not find 

any evidence of selection after admixture. These results are consistent with reports by 

(Bhatia et al. 2014, Price et al. 2008) who were not able to replicate previous findings of 

ancestry skews among African Americans and Puerto Ricans. These authors have 

cautioned that spurious signals can arise in ancestry deviation tests due to improper 

accounting for long range LD, failure to consider the effect of genetic drift, use of lenient 
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significance thresholds or errors in local ancestry estimation (Bhatia et al. 2014, Price et 

al. 2008). This last point is particularly problematic in the Caribbean because available 

Native American reference panels, which are composed of extant indigenous groups from 

the mainland Americas, may fail to adequately represent the genetic diversity of pre-

contact island populations who are thought to be the ancestors of modern admixed groups 

(Pasaniuc et al. 2013). To address this problem, Zhou, Zhao, and Guan (2016) developed 

a method which reconstructs Native American haplotypes from fragmented haplotype 

blocks present in descendant admixed populations. However, this methodology requires a 

large proportion of Native American ancestry to be present in the target, admixed 

population and therefore could not be used in the present study.  

Thus, it is currently unclear if selection has acted since the onset of admixture in 

LA Afro-Caribbean populations. Future efforts to test whether selective processes have 

affected current ancestry proportions in the LA would likely benefit from redoing the 

analyses after removing all sites in LD across ancestral populations and from usage of a 

Native American reference panel that incorporated genetic data from pre-contact 

Antillean populations. In addition, simulating selection under complex admixture 

scenarios, perhaps using methods similar to those implemented by the program Admixem 

(Cui, Schumer, and Rosenthal 2016), would likely allow for more robust testing (Bhatia 

et al. 2014). Lastly, an underlying caveat of the implementation of long range haplotype 

and ancestry deviation selection tests in this investigation is that all LA Afro-Caribbeans 

were grouped together and considered as one panmictic population. This grouping may 

obscure differences in haplotype homozygosity and deviation patterns that may have 

arisen between island populations. Collection of additional samples from each island in 
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the future may be a way to address this issue and to gain increased statistical power to re-

evaluate this and other future hypotheses. 

 

2.6 Conclusion 

 In this research, I have used dense SNP genotyping to characterize autosomal 

genetic diversity in five Afro-Caribbean populations from the Lesser Antilles. Coupled 

with existing data from continental reference populations and from admixed populations 

from across the Caribbean basin, this analysis identified a complex pattern of admixture 

in LA Afro-Caribbeans. These populations carry inputs from up to five world regions and 

exhibit strong signatures of sex-biased mating. Proportions of African ancestry are high, 

but Native American ancestry is exceedingly low. This pattern contrasts sharply with that 

observed in among Caribbean Latinos such as Dominicans or Puerto Ricans, but is 

similar to that found in Afro-Caribbeans from Barbados and Haiti. I further observe that 

Trinidadian Afro-Caribbeans have the highest proportion of admixture with East and 

South Asian populations of all Caribbean populations studied to date. These findings 

suggest that genomewide ancestry and structure patterns differ across Afro-Caribbeans in 

the Lesser Antilles, and between Greater Antillean populations.  

 Genomewide selection scans conducted using long range haplotype methods 

identified multiple genes that may be under selection in LA Afro-Caribbeans. These 

included genes associated with the sensory perception of smell, cytoskeletal and hair 

keratin formation, and cellular developmental processes, among others. However, this 

work failed to identify strong signatures of selection since the onset of continental 

admixture in these populations. Thus, at present, it is not possible to determine whether 
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selection has affected the distribution of ancestry among LA Afro-Caribbeans, or whether 

patterns of local adaptation have arisen in the last five centuries since European contact. 

 Characterizing how migration and admixture shapes genetic diversity is vital for 

understanding human evolution, history and health. This is especially true in world 

regions that have undergone recent and dramatic demographic shifts, such as the 

Caribbean. Findings from this project underscore the large impact of post-contact 

migrations, driven by European colonization, the African Slave Trade and modern labor 

movements, on the genomic diversity of Caribbean islanders. In addition to its 

anthropological or historical importance, such knowledge is essential for informing the 

identification of medically relevant genetic variation in these populations and for driving 

their inclusion into personalized medicine and clinical genomics.  
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CHAPTER 3: COMPARATIVE PERFORMANCE OF ANCIENT DNA EXTRACTION 

METHODS IN REMAINS FROM TROPICAL ENVIRONMENTS 

 

3.1 Abstract 

The tropics harbor a large part of the world’s plant and animal diversity, and they 

have a long history of human habitation. But, due to the adverse effects of warm and 

humid conditions on ancient DNA preservation, successful DNA recovery in 

archaeological and historic remains from these regions is uncommon. At least some of 

the limitations that constrain tropical ancient DNA research may be alleviated through 

optimization of laboratory methods to maximize recovery of degraded genetic material. 

This investigation compares the performance of two methods for ancient DNA extraction 

on six ancient and historical teeth from tropical sites in East Africa and the Caribbean. 

The first, Method D, was designed for recovery of short, degraded DNA fragments from 

skeletal remains. The second Method H, modifies the first by adding an initial EDTA 

wash, and an extended digestion and decalcification step. Results indicate that both 

methods successfully recover ancient DNA from the tested remains, and there is no 

significant difference in endogenous content or damage profiles in shotgun libraries built 

with either extract. However, Method D samples are enriched in smaller DNA fragments 

and have higher GC content. Further, samples extracted with this method had a 

significantly higher enrichment factor after mitochondrial target capture. Since surviving 

DNA in ancient or historic remains from tropical contexts is likely to be extremely 

fragmented, these results suggest that at present, Method D is best suited for extractions 

with this material. However, additional optimization of extraction conditions and further 
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testing of Method H with different types of samples may allow for improvement of this 

protocol in the future. 

 

3.2 Introduction 

Ancient DNA (aDNA) is the genetic material that survives in ancient biological 

tissues such as bone, teeth and dental calculus (Warinner et al. 2014, Kaestle and 

Horsburgh 2002). Due to the variety of taphonomic and diagenetic processes that take 

place in an organism’s remains after death, aDNA is inherently a low quality and low 

quantity source of genetic material, and is very susceptible to external contamination 

(Hofreiter et al. 2001, Pääbo 1989, Gilbert et al. 2006, Allentoft et al. 2012, Briggs et al. 

2007, Deagle, Eveson, and Jarman 2006). Previous research has shown that once cell 

repair functions cease, remaining DNA decays exponentially. Therefore, most genetic 

information in ancient samples is found in small, degraded DNA fragments (Dabney et 

al. 2013, Allentoft et al. 2012). Because of this, historically most aDNA studies focused 

on short, but informative fragments of the genome or on multicopy loci such as 

mitochondrial DNA (mtDNA) (Ho and Gilbert 2010). But, recent advances in extraction 

and next-generation sequencing methods now allow for recovery of high resolution, 

complete mtDNA and autosomal genomes even from remains stretching as far back in 

time as the early Holocene and Middle Pleistocene (Orlando et al. 2013, Meyer et al. 

2016, Meyer et al. 2014, Valdiosera et al. 2006). 

Despite advances in stretching the time depth for aDNA recovery, paleogenomics 

research still has a constrained geographical focus. Ancient DNA preservation is 

negatively correlated with thermal age due to the large and accelerating effect of high 
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temperatures on biomolecule decay and fragmentation (Lindahl 1993, Smith et al. 2001, 

Adler et al. 2011, Allentoft et al. 2012, Hofreiter et al. 2015). Therefore, most aDNA 

studies focus on biological remains from cold and temperate world regions, which have 

the highest chance of DNA survival (Paijmans, Gilbert, and Hofreiter 2013, Wade 2015). 

Even today, attempting to retrieve aDNA from remains in tropical or warm environments 

is risky and technically challenging (Hofreiter et al. 2015). However, recent 

improvements in sampling, extraction and target enrichment methods have enabled 

several successful efforts at aDNA recovery from tropical sites in the Caribbean, the 

Yucatan peninsula and South East Asia (Damgaard et al. 2015, Gamba et al. 2014, 

Gutierrez-Garcia et al. 2014, Kehlmaier et al. 2017, Mendisco et al. 2015, Schroeder et 

al. 2015). Both today and in the past, the tropics harbor a large part of the world’s 

biodiversity and many human settlements (Buzas, Collins, and Culver 2002, Brown 

2014). Therefore, optimizing and improving methods that facilitate aDNA recovery from 

degraded remains found in these contexts is of great interest to archaeology, 

paleontology, and conservation genetics, among other fields. 

This study tests the performance of two extraction methods on ancient and 

degraded tooth samples from tropical sites in East Africa and the Caribbean (Table 6). 

Specifically, I compare the method proposed by (Dabney et al. 2013), henceforth known 

as Method D, to a second approach which combines steps from previously published 

protocols (Figure 15), henceforth known as Method H (Warinner et al. 2014, Gamba et 

al. 2016, Dabney et al. 2013). Method D was designed to increase recovery of extremely 

short DNA fragments (up to 30 base pairs) in ancient bone and tooth extractions. The 

protocol is similar to previously developed methods that employ a 24-hour proteinase K 
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digestion to break up cell proteins, and use silica-based buffers and chaotropic salts, such 

as guanidine thiocyanate, to bind DNA fragments and remove inhibitors (Rohland and 

Hofreiter 2007, Höss and Pääbo 1993). However, in contrast to previous protocols, 

Method D utilizes silica spin columns and a guanidine hydrochloride binding buffer. The 

method has been successfully employed to recover aDNA from Late Pleistocene cave 

bear remains (Dabney et al. 2013), Middle Pleistocene hominin fossils (Meyer et al. 

2016, Meyer et al. 2014), and a large variety of more recently dated human and animal 

remains, including at least one from a tropical context (Günther et al. 2015, Kehlmaier et 

al. 2017, Heintzman et al. 2015, Seguin-Orlando et al. 2014). 

 

Table 6. Ancient and historical tooth samples included in chapter 3. 
Sample Site Region, Country Sample Age  Species 

PC E24 Punta Candelero Humacao, Puerto Rico A.D. 400-6001 Homo sapiens 

PC 117 Punta Candelero Humacao, Puerto Rico A.D. 400-6001 Homo sapiens 

T 251 Tibes Ponce, Puerto Rico A.D. 6162 Homo sapiens 

PI 67 Paso del Indio Vega Baja, Puerto Rico A.D. 10222 Homo sapiens 

PI 388 Paso del Indio Vega Baja, Puerto Rico A.D. 8222 Homo sapiens 

GB 7 Gombe National Park Kigome, Tanzania A.D 19663 
Pan troglodytes 

schweinfurthii 
1 Approximate date, based on archaeological context. 

2 Radiocarbon date median probability calAD (Pestle and Colvard 2012)  

3 Date of individual death. 

 

Since the publication of Method D, other modifications have also been proposed 

for improving endogenous DNA recovery during extraction with ancient tissues. 

Warinner et al. (2014) used an initial EDTA wash to remove loosely bound surface 

contaminants on mineralized dental calculus. They found that this wash functioned as an 

initial decontamination step without resulting in significant DNA loss. Other 
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decontamination approaches include the use of bleach and phosphate buffers in pre-

digestion, although these techniques can sometimes result in DNA loss (Boessenkool et 

al. 2016, Korlevic et al. 2015, Ginolhac et al. 2012). 

 

 

Figure 15. Schematic of extraction methods tested in chapter 3. 

 

In a comparison between three known extraction methods, (Gamba et al. 2016) 

found that endogenous aDNA recovery in tooth samples extracted with Method D were 

similar to those obtained with a modified version of the protocol by (Yang et al. 1998), 

both of which use silica columns for DNA binding. The authors also found that a 

secondary digestion and decalcification using lysis buffer with EDTA, proteinase K and 

N-laurylsarcosyl detergent solution, aided in solubilizing cell proteins and resulted in 

increased aDNA yields. A similar finding was reported by (Damgaard et al. 2015) who 

observed that a brief pre-digestion (between 15 and 30 minutes) with an EDTA and 

proteinase K buffer was successful in reducing proportions of exogenous, contaminant 

DNA and enriching extracts for endogenous aDNA. Use of similar detergent solutions 

has been previously implemented in extraction protocols designed by (Richards, Sykes, 
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and Hedges 1995) and was also recently reported in extractions with petrous portion 

tissue (Gamba et al. 2014, Pinhasi et al. 2015). 

In most of the studies referenced above, the samples tested came from temperate 

or cold contexts (Gamba et al. 2014, Dabney et al. 2013, Boessenkool et al. 2016); only 

(Damgaard et al. 2015, Pinhasi et al. 2015) included samples from tropical sites. 

Therefore, in this research, I build upon this body of work by focusing specifically on 

optimizing extraction methods with poorly preserved tooth samples from tropical 

contexts. I examined whether modifying Method D by adding an initial EDTA wash and 

an extended digestion and decalcification step (Method H) can improve endogenous 

aDNA recovery from samples derived from a tropical setting. To address this question, 

the present study examined raw DNA yields and endogenous reads recovered after 

shotgun sequencing from parallel extractions. Differences in base pair composition, post-

mortem damage profiles and average read lengths recovered between the two methods 

are also characterized. Given the low endogenous content found in shotgun sequencing, I 

inferred that most samples examined in this work are not likely to be good candidates for 

whole genome enrichment. Thus, I also evaluated whether samples extracted with either 

method performed differently in mitochondrial enrichment capture, which is likely to 

have a better chance of success due to the higher proportion of mtDNA found in 

eukaryotic cells (Giles et al. 1980). Archaeological samples included in this research 

were obtained from human remains in Puerto Rico. Additionally, one historic, degraded 

sample from a Tanzanian chimpanzee was also included. 

Study results suggest that there is no significant difference in overall aDNA or 

endogenous content recovered in samples extracted with either method. But libraries 
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sequenced from method D extracts have higher proportions of shorter DNA fragments 

and higher complexity. Post-mortem damage profiles are not significantly different in 

samples extracted by either method but average GC content was higher in samples 

extracted with method D. These trends were replicated in mitochondrial enriched 

libraries, although fragment length was skewed much higher in these data. Although both 

methods recovered similar amounts of endogenous DNA, since most of the 

archaeological samples had extremely low endogenous content (<1%), and fragment 

sizes averaged around 68 bp, I find that method D still provides the best chance for 

maximized recovery of informative ancient DNA molecules from remains buried in 

tropical environments. 

 

 

3.3 Materials and Methods 

3.2.1 Sample and site information 

 Five teeth were collected from humans interred in three open-air sites in the 

Caribbean island of Puerto Rico: Tibes (n=1), Paso del Indio (n=2) and Punta Candelero 

(n=2). All individuals date from pre-contact Ceramic Age contexts between A.D. 500-

1300. Tibes and Paso del Indio are in river floodplains in the south and north of the 

island, respectively, and Punta Candelero is located on a coastal peninsula in eastern 

Puerto Rico (Curet and Stringer 2010) (Figure 16). The Köppen-Geiger system classifies 

Puerto Rico as a tropical monsoon environment (Kottek et al. 2006). 
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Figure 16. Sampling locations for ancient and historic tooth remains studied in chapter 3. 

 

 One tooth was collected from historic period skeletal remains of a wild 

P.t.schweinfurthii chimpanzee buried in the ground at Gombe Stream National Park in 

western Tanzania. The chimpanzee died of natural causes in 1966. The skeletal remains 

were exhumed one to two years after death and subsequently moved to the University of 

Minnesota. The Köppen-Geiger system classifies western Tanzania as a tropical savanna 

environment (Kottek et al. 2006).  

 

3.2.2 Sampling and DNA extraction 

 Sampling and DNA extractions were conducted at the Arizona State University 

Ancient DNA Laboratory, a Class 10,000 clean-room facility. To eliminate surface 

contaminants and inhibitors, tooth samples were cleaned with a 1% sodium hypochlorite 

solution and the outer surface was mechanically removed with a Dremel tool (Rohland 

and Hofreiter 2007). Samples were also UV irradiated for 5 minutes on each side in a 
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UVP CL-1000 Ultraviolet Crosslinker. Teeth were sliced transversally at the cemento-

enamel junction using the Dremel. The roots were covered in aluminum foil and 

pulverized by blunt force with a hammer as in (Schuenemann et al. 2011). Throughout 

the sampling process contamination controls, such as use of full body coverings, bleach 

decontamination and UV irradiation of tools and work area before and between uses, 

were implemented to minimize potential for sample contamination (Gilbert et al. 2006, 

Cooper and Poinar 2000). 

Each sample was extracted using two different methods (Figure 15). The first 

method, published by (Dabney et al. 2013), was designed for recovery of short, degraded 

DNA fragments from skeletal remains (Method D). The second method (Method H) 

combines steps from existing protocols including an initial EDTA wash as in (Warinner 

et al. 2014), an extended digestion and decalcification step as in (Gamba et al. 2016), and 

binding and purification steps as in (Dabney et al. 2013) (see Appendix D for complete 

protocol for Method H). Approximately 100 mg of bone or tooth powder were used for 

each extraction. 1 µl of each extract was used to measure DNA yields in ng/µL through 

fluorometric quantification with the Qubit 2.0 High Sensitivity assay (Table SM4) 

(Simbolo et al. 2013). Extraction blanks were included throughout the process.  

 

3.2.3 Library preparation and sequencing 

 Double stranded libraries were produced using 20 µl of each extract following the 

protocol published by (Meyer and Kircher 2010) with the modification that the Qiagen 

MinElute PCR purification kit was used in place of SPRI beads. Extraction blanks were 

also converted into libraries. An additional negative library control including just water 
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was also included to monitor contamination. 1:100 dilutions of each library were 

quantified using Real-Time PCR (qPCR). Reactions were run in triplicate for each library 

in final volumes of 20 µl with the following conditions: 10 µl of 2X Dynamo SYBR 

Green qPCR Master Mix with 0.3x ROX (Thermo Scientific), 1 µl of primer IS7 (5'-

ACACTCTTTCCCTACACGAC-3') at 10 µM, 1 µl of primer IS8 (5'-

GTGACTGGAGTTCAGACGTGT-3') at 10 µM, 7 µl of ddH20, and 1 µl of the library 

dilution. Reactions were heated to 95°C for 10 minutes, then 40 cycles of 95°C for 15 

seconds and 60°C for 1 minute for 40 cycles. A final disassociation stage was added at 

the end of these cycles: 95°C for 15 seconds, 60°C for 15 seconds and 95°C for 15 

seconds. Quantification was performed using an ABI7900HT thermocycler and results 

were analyzed with SDS software. Analysis of qPCR data focused on cycle threshold 

values (Ct), which represent the number of qPCR cycles required for fluorescent signal to 

exceed background levels. Mean Ct values were averaged across all replicates per library. 

Non-template controls (NTC), which have no DNA, were also included in the reaction to 

monitor background fluorescent levels.  

 All libraries were double indexed and amplified for 11-20 cycles following 

recommendations from (Kircher, Sawyer, and Meyer 2012, Seguin-Orlando et al. 2015). 

To increase library complexity, four 100 µl indexing reactions were performed per library 

with the following conditions: 9.27 µl of 10X PCR Buffer II, 3.68 µl of 10 mM dNTPs, 

2.21 µl of 10 mg/ml Bovine Serum Albumin, 9.27 µl of 25 mM Gold MgCl2 solution, 2 

µl of P5 indexing primer (5'-AATGATACGGCGACCACCGAGATCTACAC 

xxxxxxACACTCTTTCCCTACACGACGCTCTT-3') at 10000 nM, 2 µl of P7 indexing 

primer (5'-CAAGCAGAAGACGGCATACGAGATxxxxxxGTGACTGGAGTT 
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CAGACGTGT-3') at 10000 nM, 61.09 µl of ddH20, 1.48 µl of AmpliTaq Gold® enzyme 

(Life Technologies) and 9 µl of DNA library. Reactions were heated to 95°C for 15 

minutes for initial denaturation, further denaturation, annealing and elongation were 

performed at 95°C for 30 seconds, 58°C for 30 seconds and 72°C for 45 seconds for 9-20 

cycles. Final extension was performed at 72°C for 10 minutes, and reactions were kept at 

10°C. All four aliquots of each amplified library were combined and the library was 

purified with Qiagen MinElute PCR purification kit following manufacturer parameters 

with the following modification: EB buffer was preheated to 65°C, and elution was 

performed in 30 µl. 1 µl of each library was used for quantification with the Qubit 2.0 

Broad Range assay. Purified libraries were further diluted to a factor of 1:1000 and 

quantified with the KAPA Library Quantification kit (Kapa Biosystems) following 

manufacturer instructions on the ABI7900HT thermocycler.  

Fragment analysis of the amplified libraries was performed using the DNA 1000 

assay on the Agilent 2100 Bioanalyzer. Heteroduplexes that arose in the libraries during 

indexing were eliminated through reconditioning PCR with the following conditions: 10 

µl of 10X Accuprime Pfx reaction mix, 3 µl of IS5 primer (5’-AATGATACGGCG 

ACCACCGA-3’) at 10 µM, 3 µl of IS6 primer (5’-CAAGCAGAAGAGGCATACGA-

‘3) at 10 µM, 76 µl of ddH20, 1 µl of AccuprimeTM Pfx enzyme and 7 µl of DNA library. 

Reactions were heated to 95°C for 2 minutes for initial denaturation, further denaturation, 

annealing and elongation were performed at 95°C for 15 seconds, 60°C for 30 seconds 

and 68°C for 1 minute for 2 cycles. Final extension was performed at 68°C for 5 minutes, 

and reactions were then kept at 4°C. All four aliquots of each amplified library were 

combined, and the library was purified again with Qiagen MinElute PCR purification kit 
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as detailed above. A second round of qPCR and fragment analysis was performed after 

reconditioning. Shotgun libraries were then sequenced on one lane of the Illumina HiSeq 

2500 (2 x 100 bp reads) at the Yale Center for Genomic Analysis. 

 

3.2.4 Mitochondrial target enrichment capture  

In addition to evaluating overall DNA yields and recovery after shotgun 

sequencing, efficiency and performance of mitochondrial enrichment in DNA samples 

extracted with both methods were also assessed. Targeted enrichment with in-solution 

hybridization was performed as in (Maricic, Whitten, and Paabo 2010) with 

modifications as in (Ozga et al. 2016). After capture, most of the enriched libraries (all 

human and chimpanzee samples extracted with method H) were sequenced along with 

other samples across three MiSeq v2 runs (2 x 150 bp reads) at the DNASU Sequencing 

Core at Arizona State University. Chimpanzee enriched libraries extracted with method D 

were sequenced along with other samples on one lane of the Illumina HiSeq 2500 (2 x 

100 bp reads) at the Yale Center for Genomic Analysis.  

 

3.2.5 Shotgun read mapping and processing 

Illumina sequence reads were merged and adapters trimmed using SeqPrep 

(https://github.com/jstjohn/SeqPrep) with a minimum overlap of 11 base pairs (bp) and a 

minimum length threshold of 30 bp. Read quality was assessed pre and post-merging 

with FastQC v.0.11.3 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). To 

compare sequencing results directly across extraction treatments and to control for 

differences in sequencer output, reads were randomly selected per sample-treatment 
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combination to match the lowest number of reads obtained per sample. Downsampling 

was performed using seqtk with default parameters (https://github.com/lh3/seqtk) (Table 

SM5). For human samples, the down sampled reads were mapped to the GRCh37 (hg19) 

reference with the mitochondria replaced by the revised Cambridge Reference Sequence 

(rCRS) (Andrews et al. 1999). Mapping was performed using BWA v. 0.7.5 (Li and 

Durbin 2009) with seeding disabled (-1 1000) and edit distance increased (-n 0.01) to 

improve mapping accuracy of ancient DNA reads (Schubert et al. 2014). For the 

chimpanzee samples, the reads were mapped to the PanTro4 assembly using the same 

conditions listed above. Sequence reads were filtered with SAMtools v. 0.1.19 (Li et al. 

2009). Reads with mapping quality  Q30 were retained, duplicates were removed with 

the rmdup option and reads mapping to more than one location were discarded by 

controlling for XA, XT and X0 tags. Damage patterns were characterized with 

mapDamage v.2.0.2 (Jónsson et al. 2013, Ginolhac et al. 2011). Parameters examined 

included deamination patterns, probability of C to T misincorporations at first position, 

probability of A to G misincorporations at last position, probability of a DNA fragment 

terminating in a single-stranded overhang (), probability of observing cytosine 

deamination in a double strand (D), and probability of observing cytosine deamination in 

a single strand context (S). Read quality scores were rescaled using mapDamage. 

Library complexity estimates were generated using preseq v2.0 (Daley and Smith 

2013) on downsampled bam files containing all Q30 mapped reads (including 

duplicates). Future experiment yield predictions were calculated extrapolating to 1e+10 

total reads. For both analyses the extrapolation step size parameter was modified as: –s 

100000. Summary statistics such as average %GC content, mean read depth, standard 
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deviation of read depth and percent of reference sequence covered were estimated on the 

rescaled BAM files using Qualimap v.2.2.1 (Okonechnikov, Conesa, and García-Alcalde 

2016). Reads mapping to the mitochondrial genome were subset from the filtered and 

rescaled shotgun BAM files and re-analyzed with Qualimap as described above to obtain 

estimates of mitochondrial genome coverage and read depth.  

 

3.2.6 Mitochondrial enriched reads mapping and processing 

Sequence reads obtained after mitochondrial enrichment were downsampled in 

the same manner as listed above, matching the lowest number of reads obtained per 

sample-treatment combination (Table SM6). Read mapping and filtering followed the 

same parameters described above except human mitochondrial reads were mapped to the 

rCRS (NCBI Reference Sequence: NC_012920.1) and chimpanzee mitochondrial reads 

were mapped to the chimpanzee mitochondrial reference (NCBI Reference Sequence: 

NC_001643.1). This is the same mitochondrial sequence contained within the PanTro4 

reference. Damage parameters and summary statistics were generated as listed above 

using mapDamage and Qualimap. To estimate the fraction of reads from the shotgun 

libraries that were retained after mitochondrial enrichment  per each sample, the 

following commands were used in Bedtools as in (Ávila-Arcos et al. 2015): bedtools 

intersect -wa -r -f 0.9 –abam shotgun.rescaled.bam -b postMT.capture.bed   > 

intersected.bam. Mitochondrial enrichment per sample was estimated as in (Cruz-

Davalos et al. 2016) by calculating the ratio of the total number of unique reads mapping 

to the mitochondrial genome after enrichment over the total number of unique reads 

mapping to the mitochondrial genome in the shotgun libraries.  



  82 

3.2.7 Contamination estimates 

Nuclear coverage was too low for assessing contamination using mitochondrial 

data from the shotgun sequenced libraries (<3X read depth, see Results), so Bayesian 

contamination estimates per sample were performed using the mitochondrial enriched 

reads with contamMix (Fu et al. 2013). A set of 311 human complete mtDNA genomes 

were used as potential contaminant sources. As in (Fu et al. 2013), only samples with >3x 

read depth and >90% coverage of the mitochondrial genome were included in 

contamination assessment. 

 

3.2.8 Statistical Analyses 

 Extraction yields (ng/uL), cycle threshold qPCR values, percent endogenous 

content (shotgun), library complexity (measured as percent distinct reads), percent GC 

content, average fragment lengths and damage parameters were compared for each 

sample across extraction treatments using paired T tests or non-parametric Wilcoxon 

signed rank tests. Normality assumptions were evaluated using a Shapiro-Wilk normality 

test (Zar 2010). However, since this test has been shown to have little power to reject the 

null hypothesis when sample size is low, the normality assumption was further assessed 

through visual examination of Quantile-Quantile plots and histograms of the difference 

between paired values, as recommended by (Ghasemi and Zahediasl 2012) (Figure SM15 

and SM29). Correlations between variables were tested using Pearson’s r as applied in 

the cor.test function in R. Read length distributions for both shotgun and enriched 

libraries were plotted as overlapping histograms.  
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3.2.9 Computational resources and R packages 

 This research was completed using resources from the ASU High Performance 

Computing Saguaro environment. All custom scripts written for this project will be 

available on GitHub after publication. All plots and figures were generated in R 3.2.4 

using the ggplot2 (Wickham 2009), gridExtra (Auguie 2016), tidyr (Wickham 2016b) 

and reshape 2 (Wickham 2007) packages or with R base graphics.  

 

 

3.4 Results 

3.4.1 DNA yields and library DNA content 

 Overall DNA yields were evaluated through flourometric quantification of raw 

extracts (ng/uL) and through analysis of mean Ct values from qPCR of shotgun libraries 

(Table SM5). These analyses did not reveal significant differences in mean DNA yields 

or mean library DNA content between samples extracted with Method D or Method H 

(Table 7and Figure SM16). Low mean Ct values are indicative of high amounts of DNA 

template present in the library. In contrast, high mean Ct values indicate more cycles are 

needed to reach the threshold due to low amounts of starting DNA template. As expected, 

mean Ct values were inversely proportional to ng/uL quantification results for most 

shotgun libraries examined (Figure 17).  
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Figure 17. Per sample comparison of raw DNA yields after extraction and DNA content 

in shotgun libraries. (A) Double bar graph comparing extraction yields (measured as 

ng/uL on Qubit High Sensitivity assay) for samples extracted with both methods. (B) 

Double bar graph comparing mean cycle threshold values (Ct) measuring DNA content in 

shotgun libraries. 

 

 

Table 7. Results of paired tests to determine significant differences in sample means for 

shotgun libraries. 

Test 

comparison 

Shapiro Wilk 

test statistic  

P-

value 

Paired test 

used 

Test 

statistic 
DF  

P-

value  

P ≤ 

0.05 

DNA yields 

(ng/uL) 
W = 0.98751 0.9822 T-test t = -0.054 5 0.9589  

Mean Ct value 

for shotgun 

library 

W = 0.94525 0.7018 T-test t = -2.0989 5 0.0898  

Percent 

endogenous 

content 

W = 0.76495 0.0277 
Wilcoxon 

signed ranks 
V = 6 N/A 0.4375  

Percent distinct 

reads  
W = 0.81734 0.0836 

Wilcoxon 

signed ranks 
V = 14 N/A 0.5625  

Average 

fragment length 
W = 0.84833 0.1526 

Wilcoxon 

signed ranks 
V = 0 N/A 0.0312 * 

Average GC 

content (%) 
W = 0.91525 0.4718 T-test 6.006 5 0.0018 * 

Damage 

parameter 

DeltaD  

W = 0.92583 0.5483 T-test 1.4819 5 0.1985  

Damage 

parameter 

DeltaS 

W = 0.98015 0.9523 T-test -0.28504 5 0.787  

Damage 

parameter 

Lambda  

W = 0.8583 0.1834 T-test 0.72665 5 0.500  
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3.4.2 Endogenous content and library complexity 

 For each DNA library, between 1 and 9 million reads were obtained after shotgun 

sequencing. After randomly selecting the same number of reads per individual pair, 

between 1 and 6 million reads were analyzed per sample-treatment combination. Percent 

endogenous content was calculated as the proportion of unique reads (after duplicate 

removal and quality filtering) mapping to the reference over the total amount of down 

sampled reads (Table SM5). Most samples had <1% endogenous content, and similar 

values were obtained irrespective of extraction treatment. The exception to this pattern 

was sample PI-67, which had a five-fold increase in endogenous content when extracted 

with method H over method D (Figure 18). Both libraries from the chimpanzee sample, 

GB-7, had >10% endogenous content, up to sixteen-fold higher content than that found in 

the human libraries. These differences may be due to the younger age of the historic 

period chimpanzee remains compared to the archaeological human samples. Although, 

for both GB-7 and PI-67 the extractions conducted with Method H resulted in higher 

endogenous content, mean endogenous content was not found to be significantly different 

across the full dataset (Table 7 and Figure SM3A). 

The relationship between clonality and endogenous content in the shotgun 

libraries is shown in Figure 19A. Sequence clonality (measured as fraction of duplicate 

sequence reads over total downsampled reads) is very low for all samples (<0.1%).  

However, replicates from PI-67 and GB-7 extracted with Method H have slightly higher 

clonality than Method D replicates. This suggests that libraries built with Method H may 

have slightly lower complexity. However, the relationship between the two variables is 

not linear or significant in this dataset (Pearson’s r = 0.35, t = 1.19, df = 10, p=0.2588). 
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Figure 18. Per sample endogenous content in shotgun libraries. Percent endogenous 

content calculated as number of mapped, unique reads divided over total down sampled 

reads. 

 

To examine this question further and test which method produced higher 

complexity libraries, I used the c_curve function in preseq to estimate the number of 

distinct reads recovered for each library. High complexity libraries have a large 

proportion of distinct reads that map to different parts of the reference genome. This 

means that there is a higher chance that more parts of the reference are covered with a 

single sequencing experiment. In contrast, low complexity libraries have a large 

proportion of distinct reads that all map to the same sites, and therefore may have a 

strong bias towards a given part of the genome, as well as high redundancy (Head et al. 

2014). For example, libraries with high clonality levels due to excessive amplification 

often have many DNA fragments that align to the reference genome, but have low 

complexity because most of those fragments are duplicate reads. These libraries are 

largely uninformative because a small amount of unique DNA fragments are obtained 

regardless of the amount of sequencing performed (Head et al. 2014, Daley and Smith 
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2013). In this dataset, Method D libraries had a slightly higher mean proportion of 

distinct reads (96%) than Method H libraries (97%), but this difference is not statistically 

significant (Table 7, Figure SM17). This suggests that complexity is high overall 

regardless of method used. The relationship between complexity and endogenous content 

in the tested libraries is shown in Figure 19B. There was no significant linear association 

between the two values in this dataset (Pearson’s r = 0.27, t = 0.91, df = 10, p=0.3846). 

 

 

Figure 19. Scatterplots depicting relationship between endogenous content, clonality and 

complexity in shotgun libraries. (A) Clonality or duplicate rate as number of duplicate 

reads divided over total downsampled reads. (B) Complexity as the number of distinct 

reads before duplicate removal (measured using preseq). 

 

In addition to estimating present complexity, the lc_extrap function within preseq 

was used to predict the expected yield for a larger sequencing effort with the same 

libraries. This extrapolation analysis is highly sensitive to the amount of sequence data 

generated, and can give false estimates with low amounts of reads (Daley and Smith 
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2013). Therefore, this analysis was only possible for the two samples with highest 

number of reads: PI-67 and GB-7. Figure 20 demonstrates that in both cases, libraries 

constructed with Method D extracts are predicted to yield a higher amount of complex 

DNA fragments with deeper sequencing (up to 10 billion reads). However, given that 

saturation of the complexity curve is reached early in the estimation, less than 1 million 

reads would be necessary to sequence all unique fragments predicted to be present in 

these libraries.  

 

Figure 20. Extrapolation curves for shotguns library complexity estimation. Curves are 

shown for the two samples with highest number of reads: PI-67 and GB-7. Top inset 

shows zoomed in results for PI-67. Extrapolation curve and confidence interval 

estimation was performed in preseq using a step size of 100,000 and default sequencing 

effort of 10 billion reads. The dotted line denotes the number of reads randomly 

downsampled for each sample pair: 5.1 million reads for GB-7 and 6.8 million reads for 

PI-67. 
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3.4.3 DNA fragment lengths and GC content 

All samples, irrespective of extraction method had average DNA fragment lengths 

<100 bp. This small size is consistent with expectations for degraded remains (Briggs et 

al. 2007, Dabney, Meyer, and Pääbo 2013) and similar to sizes obtained in previous 

aDNA research with tropical samples (Schroeder et al. 2015, Kehlmaier et al. 2017). 

However, samples extracted with Method D had smaller average DNA fragment size (68 

bp) than Method H extracted samples (76 bp). Overlaid plots showing the length 

distribution of mapped, unique reads per sample replicate in Figure 21 demonstrate that 

most Method H libraries had a higher proportion of larger fragments. This pattern is 

replicated when comparing fragment length distributions for all reads obtained per 

sample, irrespective of mapping or quality (Figure SM18). No significant correlation was 

found between endogenous content and read length (Pearson’s r = 0.56, t = 2.18, df = 10, 

p=0.05433) (Figure SM19).  

Both mean fragment length and GC content were found to be significantly 

different between extraction methods (Table 7).  Average GC content for all libraries was 

approximately 40%, however Method D libraries had higher GC content than Method H 

libraries by at least three percentage points: 42% versus 38%, respectively (Figure 22). A 

scatterplot of average DNA fragment lengths versus average %GC content clearly 

distinguishes between samples generated with either method. A significant negative 

correlation was found between average read length and GC content when considering all 

samples (Pearson’s r = -0.61, t = -2.436, df = 10, p=0.03507); however, this was not 

significant when repeated separately just for samples extracted with Method D or with 

Method H (Figure SM20A). No significant correlation was observed between %GC and 
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endogenous content in the tested samples (Pearson’s r = -0.41, t = -1.457, df = 10, 

p=0.1757) (Figure SM20B). 

 

 

Figure 21. DNA fragment length distributions for unique, mapped reads in shotgun 

libraries. 

 

 

Figure 22. Boxplots comparing distributions of DNA fragment length (A) and %GC 

content (B) values in shotgun libraries. 
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3.4.4 DNA damage parameters 

 DNA damage parameters were examined to determine whether differences 

existed in the composition of the molecules recovered. I observed that all samples, 

irrespective of method, had high probabilities of C to T and A to G misincorporations 

caused by DNA damage at the first and last position of each fragment, respectively 

(>0.90) (Table SM5; see Appendix E and F for damage plots). This is consistent with 

known damage patterns characterizing authentic aDNA sequences (Dabney, Meyer, and 

Pääbo 2013, Briggs et al. 2007, Overballe-Petersen, Orlando, and Willerslev 2012). The 

only exception to this pattern was the PC-117 replicate extracted with Method H, which 

had a lower probability for both measures (~0.73). Samples extracted with Method H had 

lower D and  values. Although this would initially suggest there is less probability that 

fragments retrieved with this method would have deamination in double strands or end in 

overhangs, these differences were not statistically significant (Table 7, Figure SM21). 

Taken together these results suggest that there is no significant distinction in the damage 

profiles of samples extracted with either method. Further, there was no significant 

correlation between average read length and any of the damage parameters tested here 

(Figure SM22). 

 

3.4.5 Mitochondrial Enrichment 

 Mitochondrial enrichment per sample was calculated as the ratio of unique reads 

mapping to the mtDNA genome in the captured versus shotgun library (from down 

sampled reads). Enrichment folds ranged from 2-fold for sample PI 388, up to 638-fold 

for sample T 251 (both method D) (Figure SM23). For some libraries, the proportion of 
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unique mitochondrial reads increased by up to two-orders of magnitude after capture 

(Figure 23). Coverage of the mtDNA genome, mtDNA read depth and mtDNA 

endogenous content increased by two to three orders of magnitude for all samples except 

the PI 388 replicate for method H which had zero mitochondrial reads in the shotgun 

library. Mitochondrial enrichment factor was significantly higher in samples extracted 

with Method D versus H, but no significant difference was observed in mtDNA 

endogenous content (Table 8, Figure SM24). Between 0.1% and 12% of mitochondrial 

reads observed after capture were also sequenced in the shotgun libraries. In accordance 

with findings reported by (Ávila-Arcos et al. 2015), high mtDNA endogenous content in 

the shotgun libraries did not correlate linearly with high mtDNA endogenous content 

after capture in these samples (Pearson’s r =-0.201, t = -0.649, df = 10, p= 0.531) (Figure 

SM25). 

 

 

Figure 23. Per sample comparison of mtDNA enrichment. Enrichment factor shown in 

log10 for ease of graph interpretation. After downsampling, replicate PI-388 extracted 

with Method H had zero reads mapping to the mitochondrial genome. 

 



  93 

Table 8. Results of paired tests to determine significant differences in sample means for 

mtDNA enriched libraries. 

Test comparison 

Shapiro 

Wilk test 

statistic  

P-

value 

Paired test 

used 

Test 

statistic 
DF  

P-

value  

P ≤ 

0.05 

Mitochondrial 

enrichment 
W = 0.8568 0.1785 

Wilcoxon 

signed ranks 
V = 21 N/A 0.0312 * 

MtDNA percent 

endogenous content 
W = 0.8635 0.2014 

Wilcoxon 

signed ranks 
V = 18 N/A 0.1563  

Average mtDNA 

fragment length 
W = 0.8089 0.0705 

Wilcoxon 

signed ranks 
V = 0 N/A 0.0312 * 

Average mtDNA 

GC content (%) 
W = 0.8243 0.0962 

Wilcoxon 

signed ranks 
V = 21 N/A 0.0312 * 

Damage parameter 

DeltaD   
W = 0.7922 0.0499 

Wilcoxon 

signed ranks 
V = 6 N/A 0.4375  

Damage parameter 

DeltaS 
W = 0.8306 0.1088 

Wilcoxon 

signed ranks 
V = 21 N/A 0.0312 * 

Damage parameter 

Lambda  
W = 0.8488 0.1538 

Wilcoxon 

signed ranks 
V = 17 N/A 0.2188  

 

 Average mtDNA fragment length after enrichment was higher than in the shotgun 

libraries (Figure 24A). This is consistent with findings reported by previous studies 

examining efficiency and performance of whole-genome enrichment methods (Ávila-

Arcos et al. 2015, Cruz-Davalos et al. 2016). There was a significant difference in 

fragment length in mtDNA enriched reads between extraction methods (Table 8). As with 

the shotgun libraries, Method H enriched samples had larger fragment sizes, on average, 

than Method D samples (Figures SM26-SM27). Additionally, differences in GC content 

post enrichment were similar to those observed in the shotgun libraries, samples extracted 

with Method D had significantly higher average GC content than Method H extracted 

samples (Figure 24B).   

DNA damage patterns for post capture mtDNA reads, for the most part, mirrored 

those observed in the shotgun libraries (Table SM6). All human samples had high 

probabilities of C to T and A to G misincorporations at the first and last positions of 

DNA fragments (>0.90). However, for both replicates of the chimpanzee sample,  
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Figure 24. Distribution of average DNA fragment length (A) and average %GC content 

values (B) for mtDNA enriched libraries. 

 

 

probabilities of C to T transitions at the first position were lower than A to G transitions 

at the last position (0.88 vs 0.95). This suggest less DNA damage occurred in these 

samples. Average S values were significantly different between enriched samples 

extracted with different methods (Table 8). Method D samples exhibited higher S values 

suggesting that successfully captured mtDNA fragments extracted with this method had 

higher probability of carrying deaminated cytosines in single strand contexts. No 

statistically significant differences were found in D and  values for enriched mtDNA 

samples (Figure SM28). Overall, damage parameters were lower in enriched 

mitochondrial reads from the chimpanzee samples than the human samples regardless of 

extraction method. Lastly, contamination estimates performed on a subset of mtDNA 

enriched samples with >3x read depth and >90% coverage of the mitochondrial genome 

estimated most samples had over 90% proportions of authentic ancient DNA (Table 

SM6) (Fu et al. 2013) 
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3.5 Discussion 

 

 In this research, I explored the efficiency and performance of two extraction 

methods on poorly preserved ancient and historic tooth samples from tropical contexts. 

Experimental results suggest that both methods tested (Method D and Method H) 

successfully recovered degraded genetic material from tooth remains. No significant 

difference was observed in raw DNA yields, endogenous DNA content, library 

complexity (measured as distinct reads after shotgun sequencing) or postmortem damage 

of shotgun reads. The latter suggests that neither method is biased against recovery of 

degraded DNA fragments and is consistent with results previously reported by (Gamba et 

al. 2016) who found that ancient samples extracted with different silica based extraction 

methods did not have different postmortem damage patterns. Other studies that have 

conducted comparative analyses of shotgun reads obtained with different extraction 

methods have found that modifying digestion or pre-digestion wash steps also had 

negligible effects on DNA damage profiles (Boessenkool et al. 2016, Damgaard et al. 

2015).  

 Significant differences between methods were observed in DNA fragment length 

and %GC content of shotgun sequence reads. DNA fragments recovered with Method H 

were, on average, 15 base pairs longer than those recovered with Method D. This 

difference appears to stem from increased recovery of smaller DNA fragments with the 

latter method and not from loss of larger DNA fragments (Figure 21). Extraction method 

D was designed for recovery of ultrashort DNA fragments (Dabney et al. 2013). Given 

that Method H conserves the binding and purification steps implemented in Method D, 
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short DNA fragment loss may be occurring during the pre-digestion EDTA wash or 

during the extended digestion and decalcification step (Figure 15).  

Warinner et al. (2014) did not observe reductions in raw DNA yields after pre-

extraction washes of calculus samples with EDTA. However, they did not test whether 

fragment length distribution was different between samples extracted with and without 

treatment. It is possible that implementation of the wash step has different effects in 

different tissues, leading to increased loss of small, endogenous DNA fragments in teeth 

as opposed to calculus. Previous research by (Damgaard et al. 2015, Korlevic et al. 2015, 

Gamba et al. 2016)  did not find significant differences in average DNA fragment lengths 

after implementation of extended digestion steps or decontamination procedures in 

ancient tooth extractions. However, Boessenkool et al. (2016) observed that mean aDNA 

fragment lengths were smaller and GC content was higher in bone extractions performed 

with short versus long digestions. Although Damgaard et al. (2015) did not find 

differences in fragment length across a variety of digestion times, they did observe 

diminished recovery of endogenous aDNA with digestion steps longer than one hour. As 

implemented here, Method H has an extended two-part digestion step that consists of 

incubating bone powder for one hour in lysis buffer, followed by a second overnight 

digestion at 37C. It is possible that optimization of digestion conditions such as 

temperature and incubation time is needed to avoid loss of small DNA fragments. Future 

optimization efforts may also benefit from separate library preparation and sequencing of 

EDTA wash and pre-digestion fractions to identify whether and at what step in the 

process small DNA fragments are being lost.  
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I observed that average GC content was at least three percentage points higher in 

paired tooth samples extracted with Method D versus Method H. Previous research has 

shown that differential DNA preservation can cause compositional bias in ancient 

genomes towards higher GC content (Briggs et al. 2007, Schuenemann et al. 2011, 

Krause et al. 2010). Higher GC content has also been correlated with lower 

contamination due to reduced presence of exogenous DNA (Racimo, Renaud, and Slatkin 

2016). Although GC content can be strongly affected by amplification enzymes used in 

the library preparation process  (Seguin-Orlando et al. 2015, Dabney and Meyer 2012, 

Aird et al. 2011), all samples in this study were amplified with the same conditions so 

this is unlikely to explain the observed differences in base composition between 

extraction treatments. At first glance these results suggest that since Method D likely 

allowed for higher recovery rates of GC-rich DNA, it may be better suited for ancient 

tropical samples. However, no significant correlation was identified between %GC and 

endogenous content in this investigation (Figure SM20). High GC content can also lead 

to low sequence coverage in aDNA due to difficulty with mapping and alignment 

(Krause et al. 2010, Schuenemann et al. 2011). Although this problem may be alleviated 

somewhat by deep sequencing and high read depths, it is possible that increased recovery 

of GC-rich DNA, may not necessarily lead to better results when read depth and coverage 

is inherently low, such as in poorly preserved tropical samples.  

 Lastly, there were no significant differences in the percent of distinct reads 

obtained from Method D and Method H samples during the shotgun sequencing run. 

However, extrapolation of predicted library complexity with the two best preserved 

samples (PI 67 and GB 7) indicated that Method H libraries would yield fewer unique 
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DNA fragments upon repeated sequencing experiments. Complexity analyses are highly 

sensitive to the amount of sequence data generated. Low amounts of reads can lead to 

false estimates due to uncertainty of the extrapolation (Daley and Smith 2013). This is 

reflected in the large size of the confidence intervals for the extrapolation curves of 

Method D libraries, which yielded fewer unique, mapped reads than Method H libraries 

(Table SM5).  The large confidence intervals indicate there is uncertainty in determining 

the exact point at which saturation would be reached after repeated sequencing (Figure 

20). But, regardless of error margins, the large difference between the complexity curves 

for both methods demonstrates that deeper sequencing would likely be most useful with 

libraries constructed from Method D versus Method H extracts.  

 Mitochondrial capture resulted in substantial enrichment of mtDNA sequence 

reads regardless of extraction method. Method D samples had significantly higher 

average enrichment folds, which suggests that the capture was more efficient in these 

libraries. However, no clear relationship was observed between pre-capture and post-

capture mtDNA endogenous content. For most samples, very few mtDNA sequence reads 

sequenced in the shotgun library were retained in the captured library (Table SM5). 

Further, high mtDNA endogenous content in the shotgun libraries did not predict mtDNA 

endogenous content after capture, and no significant difference was detected in mean 

endogenous content between enriched libraries from different extraction treatments. 

These results suggest mtDNA capture results could be strongly influenced by sampling 

bias in the population of available DNA fragments when dividing library fractions for 

shotgun versus capture applications (Cruz-Davalos et al. 2016). There may also be an 

overrepresentation of mitochondrial DNA fragments relative to autosomal DNA 
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fragments in aDNA extracts, due to the higher number of mitochondria present in 

eukaryotic cells (Giles et al. 1980). 

Significant between method differences in read length distribution and GC 

content bias identified in the shotgun libraries were retained after mtDNA capture. But, 

fragment length increased substantially after enrichment. As noted by (Cruz-Davalos et 

al. 2016, Ávila-Arcos et al. 2015), larger DNA fragments may preferentially bind to 

enrichment capture baits and skew read length distributions in post-capture datasets. 

Thus, it is expected that DNA fragments after enrichment may, on average, have larger 

sizes than after shotgun sequencing. In this study, the bias introduced by the capture 

likely amplified the differences previously observed in the shotgun data. GC content may 

also be skewed by capture methods. Avila-Arcos et al. (2011) found that whole genome 

capture in ancient maize samples was less efficient at extremely low or high GC content 

genomic regions. Other studies have also found a range of differences in pre and post 

contact GC content, including an increase (Gnirke et al. 2009), a reduction (Carpenter et 

al. 2013) and a narrower distribution of GC values after whole genome enrichment in 

ancient human samples (Ávila-Arcos et al. 2015). Therefore, significant differences in 

GC content between enriched samples in this experiment may stem from preservation 

and library amplification biases, as well as from subsequent biases introduced during the 

enrichment process. 

Damage patterns in the mtDNA enriched samples also replicated results seen in 

shotgun libraries, except for mean S values which were significantly higher in Method 

D samples. S measures the probability that DNA fragments carry deaminated cytosines 

in single strand contexts (Jónsson et al. 2013). However, since the library preparation 
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and capture processes are designed to yield double stranded sequences, it is unclear 

whether this results in differential improvements in downstream sequence coverage, read 

depth or analyses for samples extracted with each method. 

 

 

3.6 Conclusion 

This study finds that Method D and Method H were similarly efficient at 

recovering endogenous DNA in archaeological and historic teeth from tropical contexts. 

But, significant differences exist in the composition of the recovered sequence reads. 

Method D recovers smaller aDNA fragments than Method H. Although this difference 

may be less important when working with well-preserved samples, the exacerbated 

aDNA degradation that takes place in the tropics, produces large proportions of small 

fragments in ancient substrates (Allentoft et al. 2012, Hofreiter et al. 2015). Therefore, 

my findings suggest that until further optimization of new protocols can take place, 

Method D continues to be the optimal choice for maximizing aDNA recovery in tropical 

tooth samples. 

An important caveat to this finding is the small sample size of the present dataset. 

With a paired design of six individuals, statistical power may be too low to detect small 

but important differences. Future research into this topic will benefit from increased 

sampling. A larger dataset would further allow for finer subsetting of the data such that 

study results could control for differences between relatively well versus poor preserved 

samples and/or for differences in site-specific aDNA preservation patterns. It would be of 

additional interest to also include other tissue substrates, such as dental calculus or 
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petrous portions, into future efforts to develop methodologies tailored for tropical aDNA 

samples.   
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CHAPTER 4 

RECONSTRUCTING THE PEOPLING OF PRE-CONTACT PUERTO RICO 

THROUGH ANCIENT DNA ANALYSIS 

 

4.1 Abstract 

Native American groups exclusively occupied the Caribbean island of Puerto 

Rico for 4,000 years before present, until European colonization in 1493. Due to the 

demographic shifts that occurred after contact, the origins of these ancient populations 

and their contributions to the ancestry of modern Puerto Ricans are still disputed. Further, 

although there is archaeological evidence of continuous interaction between ancient 

Puerto Rican groups and other Caribbean communities, the role of genetic exchange in 

maintaining these social networks is currently unknown. In this chapter, I use ancient 

DNA to characterize migration into pre-contact Puerto Rico and to examine the extent of 

genetic continuity between ancient groups and modern Puerto Ricans. I sampled dental 

remains from 60 individuals (dated between A.D. 500–1300) collected from three 

archaeological sites: Tibes, Paso del Indio and Punta Candelero. Using in-solution 

capture and next-generation sequencing, I obtained 27 complete mitochondrial genomes 

(mean read depth: 18.9x) and partial autosomal genotypes from one individual. Results 

indicate there is a high proportion of Native American haplogroups A2 and C1 in this 

sample (29% and 55%, respectively). This distribution, as well as the haplotypes 

represented, supports a primarily South American origin for pre-contact populations, but 

does not exclude possible contributions from other regions. In addition, I find two 

identical mtDNA haplotypes in pre and post contact Puerto Rican populations that are not 
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shared with any other population in a dataset of 735 complete mitochondrial genomes. 

Lastly, I observe limited instances of mtDNA lineage sharing between coeval pre-contact 

island populations, suggesting that female-mediated gene flow was not essential to Pan-

Caribbean social interaction. Nuclear genotypes generated from one ancient sample did 

not further inform these issues and repeated attempts at recovering autosomal aDNA are 

currently underway. Project findings contribute to a more complete reconstruction of pre-

contact population history in the Caribbean and increase understanding of how ancient 

migration and admixture has shaped the biological and cultural diversity of modern 

Puerto Rican populations.  

 

4.2 Introduction 

 This research investigates the role of migration and genetic admixture in the 

demographic history of pre-contact populations from Puerto Rico. The Caribbean islands, 

also known as the Antilles, form an archipelago that extends north to south along the 

Caribbean Sea (Figure 25). Puerto Rico is the smallest of the Greater Antilles, located 

east of Hispaniola and west of the Lesser Antilles (Rogozinski 2008). Although the 

Caribbean is a small geographical region, there is abundant archaeological evidence for 

multiple peopling events and continuous settlement of many of the islands throughout 

antiquity (Wilson 2007, Rouse 1992, Siegel 2005, Rodriguez Ramos 2010a, Curet 2004). 

Due to this, Caribbean archaeology has placed a heavy emphasis on the study of 

migration and its role as an agent of cultural and biological change (Siegel 2013, Rouse 

1992, Curet and Stringer 2010). At the regional scale, much of this research has focused 

on reconstructing the original peopling of the Antilles (Curet 2004). However, the source 
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of the original populations, the number of migratory waves, and the extent and role of 

genetic admixture in this process remain disputed (Chanlatte Baik 2003, Rodriguez 

Ramos, Pagán Jiménez, and Hofman 2013, Keegan 2013). At the local scale, there is 

broad agreement that ancient island communities engaged in strong and continuous 

interaction (Rodriguez Ramos, Pagán Jiménez, and Hofman 2013, Hofman et al. 2011). 

But, identifying the precise nature and mechanisms for this interaction (e.g. trade, kin 

networks, spousal exchange, political alliances) remains a difficult task (Curet and 

Hauser 2011, Morsink 2013, Mol 2013, Laffoon 2013). 

 

 

Figure 25. Map of Puerto Rico and the Caribbean islands. Islands for which pre-contact 

ancient mitochondrial DNA data are available are labeled in blue. Inset zooms into Puerto 

Rico to demonstrate approximate location of three archaeological sites from which 

skeletal remains were sampled. Sample size for each site is noted. Total sample size is 

N=60 (Images modified from WorldAtlas). 
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In Puerto Rico, geneticists have attempted to trace pre-contact interactions by 

reconstructing the genetic diversity of ancient groups through Native American genome 

segments found in modern, admixed Puerto Ricans (Gravel et al. 2013, Martínez-Cruzado 

2002, 2010, Moreno-Estrada et al. 2013, Via et al. 2011, Vilar et al. 2014, Martínez-

Cruzado et al. 2005). But, because modern populations do not retain all the genomic 

diversity of ancient groups, research with contemporary individuals provides limited 

resolution for reconstructing the scale and structure of ancient demographic events 

(Bolnick 2011, Pickrell and Reich 2014). This problem is exacerbated in Caribbean 

populations where a recent history of colonialism, slavery, and migration led to extensive 

genetic admixture and cultural creolization throughout the post-contact era (Knight 

1997b, Bryc, Velez, et al. 2010, Moreno-Estrada et al. 2013, Hoetnik 1985). To address 

these limitations and build upon previous efforts, this investigation uses ancient genomics 

to examine directly the genetic diversity of pre-contact Puerto Rican communities and 

evaluate models for its population history.  

 

4.2.1 The peopling of Puerto Rico and the Caribbean: The (bio)archaeological and 

genetic evidence 

During the late 19th and early 20th centuries, Caribbean archaeologists focused on 

defining “culture areas” for human groups based on the description and classification of 

artifact complexes (Siegel 2013). This approach was reflected in the work of Irving 

Rouse, who developed a scheme of modal pottery analysis which defined the geographic 

and temporal boundaries of pre-contact Caribbean cultures (Rouse 1992, 1986). Rouse's 

model proposed that distinct cultural groups were represented by artifactual proxies and 
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that change in these assemblages over time resulted from migration and replacement of 

pre-existing populations (Rouse 1986, Cabana 2011). For instance, material evidence 

indicates that humans carrying chert blade technology first arrived in the Caribbean by 

5000 B.C.  However, by 3000 B.C., ground stone technology assemblages appear in 

Puerto Rico and other islands. Rouse proposed that the two technologies (labeled 

Casimiroid and Ortoroid), stemmed from independent migrations originating in Central 

and South America, respectively. As such, under this model, the arrival of the Ortoroid 

represented the first population transition event in the Antilles. Rouse thought these 

populations were nomadic hunter-gatherers but more recent work indicates that they 

possessed small-scale agriculture and ceramic technology (Cruxent and Rouse 1969, 

Rouse 1986, 1992, Reid 2014).  

Rouse identified a second population transition between 400 and 500 B.C. which 

he labelled the Ceramic Age to differentiate it from the earlier Lithic Age. This transition 

was defined by the introduction of large-scale agriculture and the appearance of elaborate 

ceramic technology similar to that of Arawak cultures from the South American Orinoco 

region (Rouse 1992, 1986, Chanlatte Baik 2003). Rouse proposed that this change 

signaled the arrival of a new group of migrants from South America, known as the 

Saladoid, who displaced the first inhabitants and became the sole ancestors of all later 

Antillean cultures. Thus, under this model, indigenous Puerto Rican groups at the time of 

European contact, known as the Taino, were direct descendants of the second re-peopling 

event and carried little to no genetic or cultural ancestry from the initial island settlers 

(Rouse 1992). 
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 Although Rouse's model continues to influence modern Caribbean archaeology, 

recent scholarship has challenged many of its central tenets. Questions of where the 

inhabitants of the islands came from, how they reached the islands, and what was the 

nature of their interactions continue to be a central focus of archaeological research 

(Keegan 2013, Siegel 2013). Many of these questions have been re-examined through 

novel and interdisciplinary approaches. For example, extensive radio-carbon dating 

surveys have found that the earliest Ortoroid and Saladoid sites from Puerto Rico pre-

date the oldest sites in the Lesser Antilles (except for Trinidad), thereby challenging 

Rouse's model of a stepping-stone movement from South America into the Greater 

Antilles (Rodriguez Ramos 2010a). Additional migration routes from South America 

have also been proposed. Callaghan (2003) performed computer simulations of ancient 

maritime voyages that considered climate, maritime conditions, and pre-contact vessel 

technology. The results indicate that direct canoe travel from the northern South 

American mainland to the Greater Antilles would be possible for seafaring cultures with 

minimal navigation skills (Callaghan 2003, 2013). Further, findings of cultigens, lithics, 

and other objects from the Isthmo-Colombian region at Lithic Age sites in Puerto Rico 

and Virgin Islands has led researchers to consider this region as a potential source area 

for pre-contact settlers (Rodriguez Ramos 2013).  

 Alternative views to the single-origin model have also been proposed. The 

persistence of Lithic Age iconography and manufacturing techniques in late Ceramic Age 

stone tools, art, and pottery suggests that descendants of Lithic Age groups present during 

the transition may have admixed with the newcomers and contributed to the development 

of descendant populations (Keegan 2006, Keegan and Rodriguez Ramos 2005, Rodriguez 
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Ramos 2010a, Wilson 1999). Further, the lack of evidence for systemic conflict during 

the transition years has led some researchers to question the population-replacement 

scenario proposed by Rouse (Curet 2005). Perhaps the strongest challenge to the single-

origin model stems from the discovery of distinct archaeological assemblages at two 

Ceramic Age sites in Puerto Rico, Punta Candelero and La Hueca-Sorcé (Chanlatte Baik 

2003, Rodriguez Ramos 2010b). Multiple lines of evidence suggest that these sites were 

occupied by at least two different ethno-cultural groups with separate origins within 

South America (Chanlatte Baik 2003). This suggests that Puerto Rico, and perhaps the 

other Antilles, were settled by at least two separate South American populations during 

the Ceramic Age.  

To explore these questions further, many researchers have turned to direct 

measurements of ancient biological variation. Overall, these studies vary in their support 

for the admixture versus single origin models and offer differing views of ancient inter-

island mobility and interaction. For example, after A.D. 600, a period known as the Late 

Ceramic Age, cultural diversification took place across the Antilles (Wilson 1999, 2007). 

Social and political changes led to increased social stratification, the rise of chiefdoms, 

and the emergence of regional technological and artistic industries (Curet, Torres, and 

Rodríguez 2004, Rouse 1992, Chanlatte Baik 2003). Although extensive networks 

existed between the Antilles and the Circum-Caribbean since the Lithic Age (Hofman et 

al. 2011, Rodriguez Ramos 2013, 2011, Laffoon et al. 2014), material and stable isotope 

evidence suggest that inter-island interaction, trade and mobility expanded during the late 

Ceramic Age (Laffoon et al. 2013, Hofman et al. 2011, Wilson 2007). Isotopic studies 

with human skeletal remains from the Lesser Antilles find evidence for substantial, 
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mostly female-biased, inter-island adult mobility during this period  (Hoogland, Hofman, 

and Panhuysen 2010, Laffoon and Hoogland 2012). These findings are consistent with 

material evidence for broad inter-island interaction and with ethnohistoric evidence for 

virilocal kinship and residential mobility patterns across the Antilles (Morsink 2013, 

Keegan and Maclachlan 1989).   

 In contrast, dental biodistance studies do not find strong evidence for shared 

morphological traits across island groups, which suggests there was no, or at least very 

little, inter-island admixture (Coppa et al. 2008). Instead, cranial and dental biodistance 

studies find that most ancient Antillean groups share morphological affinity with native 

South American populations. Ancient groups from Cuba, however, consistently appear as 

morphologically distinctive from other Antillean populations and, thus, may have a 

distinct origin (Coppa et al. 2008, Ross, Ubelaker, and Falsetti 2002, Ross and Ubelaker 

2010, Ross 2004). Overall, these findings support a multiple migration model for the 

peopling of the Antilles.  

Genetics research with modern Caribbean islanders provides further insight into 

these issues. Due to post-contact admixture, islanders have varying proportions of 

African, European and Native American ancestry (Benn-Torres, Kittles, and Stone 2007, 

Moreno-Estrada et al. 2013). These patterns differ among populations, and they are 

highly sex-biased and geographically structured (Marcheco-Teruel et al. 2014, Via et al. 

2011, Bryc, Velez, et al. 2010). For example, modern Puerto Ricans have high 

proportions of European and African ancestry in autosome and Y-chromosome loci 

(Moreno-Estrada et al. 2013, Parra, Kittles, and Shriver 2004, Ruaño et al. 2009, Via et 

al. 2011, Vilar et al. 2014), but also carry large proportions of Native American mtDNA 
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ancestry. This Native American component has been used as reservoir for reconstructing 

pre-contact genetic variation (Gravel et al. 2013, Martínez-Cruzado 2002, 2010, 

Martínez-Cruzado et al. 2005, Moreno-Estrada et al. 2013, Vilar et al. 2014) 

 Native American populations have five clinally distributed mtDNA lineages, or 

haplogroups: A2, B2, C1, D1, and X2. Haplogroups A2 and B2 are found in high 

frequencies in North and Central America, C1 and D1 occur in high frequencies in South 

America, and X2 is only found in North America (Schurr 2004). Each of these 

haplogroups can be further divided into sub-haplogroups, or haplotypes. Modern Puerto 

Ricans carry high frequencies of mtDNA haplogroups A2 and C1. This distribution 

suggests a primary northern South American origin, with some smaller contributions 

from Central American sources (Martínez-Cruzado 2002, Martínez-Cruzado et al. 2005, 

Vilar et al. 2014). Based on a sample of 122 mtDNA haplotypes, Martínez-Cruzado 

(2010) proposed that 84% of Native American mtDNA lineages in Puerto Rico stem from 

ancient indigenous groups and arrived on the island through at least three major waves 

during the pre-contact era. The remaining 16% were of unknown origin and may have 

been introduced after European contact. However, studies examining autosomal loci have 

found that genome fragments of Native American ancestry in Puerto Ricans, Cubans, and 

Dominicans cluster closely with modern Amazonian groups. This suggests that the 

ancestors of native Caribbean groups descended primarily from South American 

populations and had limited genetic contributions from other sources (Gravel et al. 2013, 

Moreno-Estrada et al. 2013). 

However, using modern genomes to reconstruct ancient population processes is 

problematic because modern populations may not retain all the genomic diversity of 
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ancient groups.  Evolutionary forces such as genetic drift and natural selection affect 

lineage survival in descendant populations and bias reconstructions of ancient 

demography and population history (Bolnick 2011, Helgason et al. 2009). Recent 

population replacements can also mask the genetic signal of ancient populations 

(Bramanti et al. 2009, Haak et al. 2015). In Puerto Rico for example, historical 

documents indicate that native groups from other parts of the Americas were imported as 

slave labor during the early 16th century (Whitehead 1999, Anderson-Córdova 2005, 

Haslip-Viera 2006), yet their contribution to the gene pool of modern Puerto Ricans is 

currently unknown (Martínez-Cruzado 2010). 

Ancient DNA (aDNA) research has the potential to resolve many of these issues. 

But, due to the constraints that tropical environmental conditions pose for aDNA 

preservation, most work in the region has been limited to recovery of partial mtDNA 

sequences. To date, ancient mtDNA has been recovered from skeletal remains excavated 

at Ceramic Age sites in Cuba, Hispaniola and Guadeloupe. The data indicate that 

populations living between 670 and 1600 AD on these islands carried high frequencies of 

haplogroups A2, C1, and D1. This distribution is consistent with a South American origin 

for these populations, but cannot conclusively rule out a Central American genetic 

contribution (Lalueza-Fox et al. 2003, Mendisco et al. 2015). In agreement with patterns 

also observed in the modern mtDNA data, all aDNA studies found high proportions of 

unique Native American mtDNA haplotypes, not shared across island populations. In 

Guadeloupe, limited lineage sharing is also found between archeological sites and is 

correlated with differences in local funerary practices (Mendisco et al. 2015). Taken 

together, this suggests that female-mediated gene flow was limited during the pre-contact 
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era and that restricted admixture could have contributed to inter-island cultural 

differentiation during the late Ceramic Age (Lalueza-Fox et al. 2001, Lalueza-Fox et al. 

2003, Mendisco et al. 2015, Vilar et al. 2014, Mendizabal et al. 2008, Martínez-Cruzado 

2013). However, due to the paucity of available skeletal remains and insufficient DNA 

preservation, sample sizes obtained for all Caribbean aDNA studies were small (n ≤ 25), 

and none sequenced autosomal loci. These factors constrain the applicability of 

inferences gleaned from those studies to other ancient populations such as those from 

pre-contact Puerto Rico (Martínez-Cruzado 2010, Schurr 2010). 

Thus, significant gaps remain in current understanding of the population history 

of ancient Puerto Rico and the Caribbean. Multiple lines of evidence disagree on the 

sources and number of human migrations, and there is no consensus regarding the single 

versus multiple migration model for the ancestry of late Ceramic Age populations. 

Although there is abundant archaeological evidence for extended social networks in the 

pre-contact Antilles, the biological evidence sampled to date is not consistent with broad 

inter-island gene flow. And lastly, although genetic research has been conducted with 

modern Puerto Ricans, the extent to which ancient populations contributed to the ancestry 

of extant islanders has not been fully characterized. To address these issues, this research 

uses ancient DNA to characterize the genetic diversity of pre-contact populations from 

three pre-contact archaeological sites in Puerto Rico: Punta Candelero, Paso del Indio and 

Tibes. Research questions for this study are:  

(1) How were ancient populations in Puerto Rico related to continental Native American 

groups, and what may this indicate about their origins?  

(2) What was the extent of gene flow in the pre-contact Caribbean, and what may this 
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indicate about local social interaction?  

(3) How and to what extent did pre-contact indigenous groups contribute to the ancestry 

of modern Puerto Ricans? 

 

4.3 Materials and Methods 

4.3.1 Sample and site information  

The site of Punta Candelero is located on a coastal peninsula in southeastern 

Humacao, Puerto Rico (Figure 26). It was identified and excavated between 1986-1989. 

The site had two successive occupation periods: 350 BC-210 A.D. and 660-1010 A.D. 

Each period is associated with distinct site usage patterns, and ceramic and lithic 

assemblages, all of which suggest a multicomponent site occupation. Household 

structures and general activity areas (including a central plaza built during the later 

period) have been identified at the site. No human burials were recovered from the early 

period but 106 skeletal remains were reported from late period strata, 78 of which have 

been identified as human (Crespo-Torres 2000, Fontanez 1991, Rodríguez López 1991).  

The site of Paso del Indio is located in the alluvial plain of the Río Indio in north-

central Vega Baja, Puerto Rico. It was identified and excavated between 1993-1995. Paso 

del Indio was non-continuously occupied from 2690 B.C. to 1440 A.D. Interruptions in 

habitation may have been partly due to periodic river flooding. Large quantities of post 

molds indicate that many household structures, and potentially one central plaza, were 

built at Paso del Indio throughout its occupation. One-hundred and thirty eight human 

skeletal remains were recovered from the site (Walker 2005). Skeletal remains from Paso 

del Indio and Punta Candelero are currently housed by Dr. Edwin Crespo-Torres at the 
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Forensic Anthropology and Bioarchaeology Laboratory at the University of Puerto Rico. 

For this research, thirty individuals were sampled from Paso del Indio and nineteen from 

Punta Candelero. 

The site of Tibes is located in an alluvial terrace near the Río Portugués in 

southern Ponce, Puerto Rico. The site was first identified and excavated between 1975-

1981. In 1982 an archaeological park, the Ceremonial Center of Tibes (CCT), was built at 

the site. Research and excavations resumed in 1995 and continue to the present day. 

Tibes was continuously occupied between A.D. 300 – 1200. In addition to habitation 

areas it has several monumental structures such as at least five stone lined plazas. To 

date, 126 human skeletal remains have been recovered from the site (Curet and Stringer 

2010). Skeletal remains from Tibes are currently housed at the CCT. For this project, 

eleven individuals were sampled from Tibes.  

 In total, sixty tooth samples were obtained from human skeletal remains of the 

three study sites. The remains had been previously sampled by Dr. William J. Pestle 

(University of Miami), Dr. Edwin Crespo-Torres (University of Puerto Rico) and Dr. L. 

Antonio Curet (National Museum of the American Indian) as part of previous research. 

Forty of the 60 individuals were radiocarbon dated and assessed for collagen content and 

dietary isotopes by (Pestle and Colvard 2012, Pestle 2010). Sample dates span most of 

the Caribbean Ceramic Age: ~500 -1300 A.D. (Figure 26, Table SM1). Compliance with 

Native American Graves Protection and Repatriation Act regulations was not required for 

this research because no federally recognized tribes claim cultural affiliation to the 

remains, and the law has no jurisdiction in Puerto Rico (Siegel 2011, Hutt, Blanco, and 

Varmer 1999, Ousley, Billeck, and Hollinger 2005).  



  115 

 

Figure 26. Simplified timeline of the pre-contact history of the Antilles demonstrating 

occupation periods of studied sites. Site chronologies based on published sources. Dashed 

lines represent the non-continuous occupation of Paso del Indio. Red boxes encompass 

minimum and maximum median calibrated radiocarbon dates (cal A.D.) for sampled 

skeletal remains.  

 

4.3.2 Sampling and DNA extraction 

Sampling and DNA extractions were conducted at the Arizona State University 

Ancient DNA Laboratory, a Class 10,000 clean-room facility. To eliminate surface 

contaminants and inhibitors, tooth samples were cleaned with a 1% sodium hypochlorite 

solution and the outer surface was mechanically removed with a Dremel tool (Rohland 

and Hofreiter 2007). Samples were also UV irradiated for 5 minutes on each side in a 

UVP CL-1000 Ultraviolet Crosslinker. Teeth were sliced transversally at the cemento-

enamel junction using the Dremel. The roots were covered in aluminum foil and 



  116 

pulverized by blunt force with a hammer as in (Schuenemann et al. 2011). Throughout 

the sampling process contamination controls such as UV irradiation of tools and work 

area before and between uses, full body coverings and bleach decontamination were 

implemented to minimize potential sample contamination (Gilbert et al. 2006, Cooper 

and Poinar 2000). Samples were extracted using several silica-based extraction methods 

for ancient DNA recovery (Table SM2), including the method developed in chapter 2 of 

this dissertation (Dabney et al. 2013, Rohland and Hofreiter 2007). Between 30-100 mg 

of dentine powder were used per extraction. DNA yields in ng/uL were measured using 1 

µl of each extract through fluorometric quantification with the Qubit 2.0 High Sensitivity 

assay (Simbolo et al. 2013). Extraction blanks were included throughout the process. 

Some samples were extracted more than once to obtain more genetic material (listed in 

Table SM2). Fluorometric quantification values were compared to radiocarbon dates 

using the cor.test function in R to evaluate the relationship between sample age and 

overall DNA preservation. 

 

4.3.3 Library preparation  

Double stranded libraries were produced using 20 µl of each extract following the 

protocol published by (Meyer and Kircher 2010) using the Qiagen MinElute PCR 

purification kit instead of SPRI beads. Extraction blanks were also converted into 

libraries. An additional negative library control including water instead of extract was 

also included as a contamination control per each library batch. 1:100 dilutions of each 

library were quantified using Real-Time PCR (qPCR). Reactions were run in triplicate 

for each library in final volumes of 20 µl with the following conditions: 10 µl of 2X 
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Dynamo SYBR Green qPCR Master Mix with 0.3x ROX (Thermo Scientific), 1 µl of 

primer IS7 (5'-ACACTCTTTCCCTACACGAC-3') at 10 µM, 1 µl of primer IS8 

(5'GTGACTGGAGTTCAGACGTGT-3') at 10 µM, 7 µl of ddH20, and 1 µl of the library 

dilution. Reactions were heated to 95°C for 10 minutes, then 40 cycles of 95°C for 15 

seconds and 60°C for 1 minute for 40 cycles. A final disassociation stage was added at 

the end of these cycles: 95°C for 15 seconds, 60°C for 15 seconds and 95°C for 15 

seconds. Quantification was performed using an ABI7900HT thermocycler, and results 

were analyzed with SDS software. Analysis of qPCR data focused on cycle threshold 

values (Ct), which represent the number of qPCR cycles required for fluorescent signal to 

exceed background levels. Mean Ct values were averaged across all replicates per library. 

Non-template controls (NTC), which have no DNA, were also included in the reaction to 

monitor background fluorescent levels.  

 All libraries were double indexed and amplified following recommendations from 

(Kircher, Sawyer, and Meyer 2012). Primers used were Illumina specific indexing 

primers P5 (5'-AATGATACGGCGACCACCGAGATCTACACxxxxxx 

ACACTCTTTCCCTACACGACGCTCTT-3') and P7 (5'-CAAGCAGAAGACGG 

CATACGAGATxxxxxxGTGACTGGAGTTCAGACGTGT-3'). Unique index 

combinations for all samples (represented by x above) are provided in Table SM2. To 

increase library complexity, four 100 µl indexing reactions were performed per library. 

Samples processed between 2012-2014 were amplified with PfuTurbo enzyme (Agilent) 

for 10 cycles using the following reaction conditions: 10 µl of 10X PfuTurbo Buffer, 2.50 

µl of 10 mM dNTPs, 1.50 µl of 10 mg/ml Bovine Serum Albumin, 2 µl of P5 indexing 

primer at 10000 nM, 2 µl of P7 indexing primer at 10000 nM, 1 µl of PfuTurbo enzyme. 
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Samples processed after 2014 were indexed for 15-20 cycles with AmpliTaq Gold® 

enzyme (Life Technologies) following recommendations by (Seguin-Orlando et al. 

2015). Reaction conditions were as follows: 9.27 µl of 10X PCR Buffer II, 3.68 µl of 10 

mM dNTPs, 2.21 µl of 10 mg/ml Bovine Serum Albumin, 9.27 µl of 25 mM Gold MgCl2 

solution, 2 µl of P5 indexing primer at 10000 nM, 2 µl of P7 indexing primer at 10000 

nM, 61.09 µl of ddH20, 1.48 µl of AmpliTaq Gold® enzyme and 9 µl of DNA library. 

All reactions irrespective of enzyme used were heated to 95°C for 15 minutes for initial 

denaturation, further denaturation, annealing and elongation were performed at 95°C for 

30 seconds, 58°C for 30 seconds and 72°C for 45 seconds for the determined amount of 

cycles. Final extension was performed at 72°C for 10 minutes, and reactions were kept at 

10°C. All four aliquots of each indexed library were combined and the library was 

purified with Qiagen MinElute PCR purification kit following manufacturer parameters 

with the following modification: EB buffer was preheated to 65°C, and elution was 

performed in 30 µl. 1 µl of each library was used for quantification with the Qubit 2.0 

Broad Range assay. Purified libraries were further diluted to a factor of 1:1000 and 

quantified with the KAPA Library Quantification kit (Kapa Biosystems) following 

manufacturer instructions on the ABI7900HT thermocycler. Fragment analysis of the 

indexed libraries was performed using the DNA 1000 assay on the Agilent 2100 

Bioanalyzer. 

 Libraries initially indexed for 10 cycles which had low post purification 

concentrations were re-amplified to obtain sufficient DNA for mitochondrial capture 

(300-500 ng). Libraries were divided into four 100 µL aliquots as above. Re-

amplification conditions were: 10 µl of 10X Accuprime Pfx reaction mix, 3 µl of IS5 
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primer at 10 µM, 3 µl of IS6 primer at 10 µM, 76 µl of ddH20, 1 µl of AccuprimeTM Pfx 

enzyme and 7 µl of DNA library. Reactions were heated to 95°C for 2 minutes for initial 

denaturation; further denaturation, annealing and elongation were performed at 95°C for 

15 seconds, 60°C for 30 seconds and 68°C for 1 minute for 7-13 cycles. Final extension 

was performed at 68°C for 5 minutes, and reactions were then kept at 4°C. Subsequent 

purification and quantification was performed as detailed above.  

 

4.3.4 Mitochondrial target enrichment capture and Illumina sequencing 

Shotgun libraries were pooled in equimolar amounts up to 2 µg per pool. In-

solution and targeted enrichment for the complete mitochondrial genome was performed 

as in (Maricic, Whitten, and Paabo 2010) with modifications as in (Ozga et al. 2016). 

Enriched libraries (including blanks) were sequenced along with other samples on 

multiple runs of the Illumina MiSeq using v2 2 x150 bp chemistry at the DNASU 

Sequencing Core at Arizona State University. Some enriched libraries were captured and 

sequenced more than once to increase coverage.  

 

4.3.5 Whole genome target enrichment capture and Illumina sequencing 

 Whole genome enrichment was performed at Stanford University in Dr. Carlos D. 

Bustamante’s genetics laboratory. Thirteen indexed and amplified libraries were screened 

by shotgun sequencing along with other samples on the Illumina NextSeq 500 (2 x 75 bp 

reads). The eight samples with the highest endogenous content (see below) were chosen 

for whole genome in-solution capture (WISC) which was performed as in (Carpenter et 

al. 2013) with the following modifications. RNA bait libraries were created from a pool 
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of human genomic DNA from three male individuals from the Coriell Hapmap 

populations (MKK, JPT and CEU). These individuals were chosen to maximize sequence 

diversity and obtain Y-chromosome baits. Axygen beads (1.8x volume) were used for 

bait library purification and xGEN ® LNA Adaptor blockers for Illumina TruSeq were 

used to prevent non-specific binding to the baits. WISC enriched libraries were 

sequenced on all four lanes of the NextSeq using same chemistry as listed above. 

 

4.3.6 Read mapping and processing 

Illumina sequence reads were merged and adapters trimmed using SeqPrep 

(https://github.com/jstjohn/SeqPrep) with a minimum overlap of 11 base pairs (bp) and a 

minimum length threshold of 30 bp. Read quality was assessed pre and post-merging 

with FastQC v.0.11.3 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). For 

mitochondrial enriched libraries, reads were mapped to the revised Cambridge Reference 

Sequence (rCRS NCBI Reference Sequence: NC_012920.1). Reads recovered from 

shotgun and WISC enriched libraries were mapped to the hg18 (NCBI Build 36.1) 

reference with the mitochondria replaced by the rCRS (Andrews et al. 1999). For shotgun 

and enriched libraries sequenced on the NextSeq, data from multiple lanes were merged 

before adapter removal and mapping using the cat command in Unix. Post-capture 

mtDNA endogenous content values calculated from the reads were compared to 

radiocarbon dates using the cor.test function in R to evaluate the relationship between 

sample age and endogenous DNA recovery (post-enrichment). 

Mapping was performed using BWA v. 0.7.5 (Li and Durbin 2009) with seeding 

disabled (-1 1000) and edit distance increased (-n 0.01) to improve mapping accuracy of 
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ancient DNA reads (Schubert et al. 2014). Sequence reads were filtered with SAMtools v. 

0.1.19 (Li et al. 2009). Reads with mapping quality  Q30 were retained for 

mitochondrial enriched libraries and  Q25 for whole genome enriched samples. 

Duplicates were removed with the rmdup option in SAMtools, and reads mapping to 

more than one location were discarded by controlling for XA, XT and X0 tags. Damage 

patterns were characterized and read quality scores were rescaled with mapDamage 

v.2.0.2 (Jónsson et al. 2013, Ginolhac et al. 2011). Summary statistics such as mean read 

depth, standard deviation of read depth and percent of reference sequence covered were 

estimated on the rescaled BAM files using Qualimap v.2.2.1 (Okonechnikov, Conesa, 

and García-Alcalde 2016). BAM files were visualized with Tablet v.1.16.09.06 (Milne et 

al. 2013) and Geneious v.7.0.6 (Biomatters).  

Sequence reads from enriched mtDNA libraries sequenced over multiple runs 

were merged after duplicate removal using SAMtools (Table SM4). Before merging, read 

group information was added to each sample replicate using the AddOrReplace 

ReadGroups module from Picard v.2.01 (http://broadinstitute.github.io/picard). After 

merging duplicate removal was repeated and damage patterns as well as summary 

statistics were recalculated as above.  

For all mtDNA enriched libraries, mitochondrial SNP variants were called using 

SAMtools mpileup on the rescaled BAM files. Ploidy was set to 1 using the sample 

option. Variant calls were output in VCF format using the bcftools package. MtDNA 

haplogroup assignment was performed in HaploGrep 2.0 (Weissensteiner et al. 2016). 

Confirmation of haplogroup defining mutations and Haplogrep assignments was 
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performed manually with reference to Phylotree mtDNA tree Build 17 (van Oven and 

Kayser 2009).  

 

4.3.7 Contamination controls (mtDNA) 

Bayesian contamination estimates per sample were performed using the 

mitochondrial enriched reads with contamMix (Fu et al. 2013). This analysis provides an 

estimate of the proportion of contaminant DNA present in the sample reads and the 

proportion of authentic aDNA. A set of 311 human complete mtDNA genomes were used 

as potential contaminant sources. Insufficient read depth or coverage of the reference 

sequence can result in inaccurate contamination estimates with this method. Therefore, 

only samples with >3x read depth and >90% coverage of the mitochondrial genome were 

included in contamination assessments (Table SM3). BAM files for these samples were 

filtered using the program PMDtools (Skoglund et al. 2014) to retain only reads showing 

signs of aDNA damage (threshold > 3). Summary statistics were recalculated, and 

damage pattern assessment and haplogroup assignment were repeated for these samples 

after filtering. 

 

4.3.8 Consensus files and sample selection 

Twenty-seven enriched mtDNA samples with >3x read depth and >93% coverage 

of the mitochondrial genome were selected for population genetics analyses (Appendix 

I).  Reads for seven of these samples were combined across multiple sequencing runs. For 

one sample, endogenous reads were recovered after contamination filtering with 

PMDtools. MtDNA consensus sequences for the 27 samples were produced from the 
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coverage filtered VCF files using the vcf-consensus module within VCFtools v.0.1.15 

(Danecek et al. 2011). This allows for export of variant sites only and maintains all other 

sites identical to the reference. Consensus files were revised manually in Geneious and 

exported in fasta format. Variant sites with no coverage were designated as N. For WISC 

enriched libraries, reads mapping to the mitochondrion were subset from the whole 

genome alignments and variant calling and haplotyping proceeded as described above. 

This allowed for independent confirmation of lineage assignment for samples captured 

with both methods. Deamination damage pattern plots generated for the mtDNA reads of 

the 27 selected samples are available in Figure SM2.  

 

4.3.9 MtDNA comparative populations 

 Complete mitochondrial sequences were collected from the literature for 735 

ancient and modern Native Americans or admixed individuals of Native American 

descent from across the Americas. In addition, sequences from 81 admixed Puerto Ricans 

of Native American mitochondrial ancestry were also included for a total dataset of 816 

complete mtDNA genomes. Individual sequences were classified into 15 groups for inter-

population analyses (Table SM7). Control region sequence data were also obtained from 

the literature for individuals with Native American mtDNA ancestry from Cuba, 

Dominican Republic and Puerto Rico, and members of the First People’s Community 

(FPC), Trinidad and the Garifuna community in St. Vincent (see Table SM7 for 

references). Lastly, ancient mtDNA sequences were collected from individuals excavated 

from pre-contact sites in Cuba, Dominican Republic and Guadeloupe. Except for Puerto 

Ricans, complete mtDNA sequences were not available for modern or ancient Caribbean 
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populations so analyses including these data were restricted to the mtDNA control region 

(see below). Multiple alignments were prepared to account for differences in the extent of 

sequence data available from each dataset. For comparative analyses including just 

modern Caribbean populations, sequences were trimmed to a common region between 

positions 16024-16391. For comparative analyses including just ancient Caribbean 

populations, sequences were subset to positions 16056-16400. Joint median network 

analyses, including ancient and modern Caribbean populations, were conducted with 

variant sites located between positions 16056 – 16391. 

For all samples, phylogenetically uninformative sites such as indels or poly-C 

stretches at positions 309, 315, 515-522, 16182-16183 or 16193 and mutational hotspot 

16519 were excluded from analysis as recommended by (van Oven and Kayser 2009). 

The deletion at position 3107 was also excluded since this is a placeholder for 

maintaining the order of the reference mtDNA sequence.  All sequence alignments were 

performed using the command line version of MAFFT v7.244 (Katoh and Standley 2013) 

and trimming was performed in Geneious v.7.0.6 (Biomatters). Data format conversions 

were performed using PGD Spider (Lischer and Excoffier 2012). Models of sequence 

evolution for each dataset were calculated using the Model Selection Tool in MEGA6 

(Tamura et al. 2013). 

  

4.3.10 MtDNA sequence and statistical analyses 

 Statistical analyses of mtDNA data were performed to determine: (1) the 

relationship between pre-contact Puerto Rican populations (PC-PR) and continental 

indigenous groups, (2) the extent of gene flow and genetic differentiation across the pre-
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contact Caribbean, and (3) the relationship between PC-PR communities and modern 

Puerto Ricans. To characterize patterns of genetic variation, intra-population diversity 

measures were calculated for PC-PR and for each comparative population using DnaSP 

v.5.10.1 (Librado and Rozas 2009). These included the number of haplotypes in each 

group (h), and nucleotide (π) and haplotype diversity (Hd) (Nei 1987, Nei and Miller 

1990). The two latter measures estimate the probability that two randomly chosen 

haplotypes or nucleotides are different within a sample, respectively. For complete 

mtDNA genome sequences, measures were calculated across the complete molecule. To 

assess the effects of large differences in sample size, all populations with complete 

mtDNA data were randomly downsampled to 20 individuals and diversity analyses were 

re-calculated, as in (Martínez-Cruzado et al. 2005). 

To examine patterns of inter-population differentiation and gene flow, Fst 

measures of differentiation across sub-populations were calculated for pairwise 

population matrices in Arlequin v.3.5 using the Tamura-Nei distance method with a 

gamma correction of 0.26 (Wright 1951, Excoffier and Lischer 2010, Wright 1978, 

Meyer, Weiss, and Von Haeseler 1999). Significance values for each pairwise 

comparison were calculated after 500 permutations. A significant result indicates that the 

null hypothesis of no difference between populations is rejected. Additionally, exact tests 

of population differentiation were conducted to test the null hypothesis that haplotypes 

are randomly distributed across all populations (panmixia). The test was run on the 

Genepop web server (http://genepop.curtin.edu.au/index.html) (Rousset 2008) using a 

Markov chain with 10,000 steps. Results from both tests were evaluated at a significance 

threshold of P<0.05. The complete mtDNA pairwise Fst distance matrix comparing PC-



  126 

PR to continental Native American groups was used as input for metric multidimensional 

scaling (MDS). MDS was performed in R using the smacofSym function from the smacof 

package (de Leeuw and Mair 2009). In addition, Fst heat maps were produced using the 

ggplot2 package to visually represent genetic distance across populations included in all 

comparisons. Population groups with less than 10 individuals were eliminated from this 

analysis. The Waorani population was also excluded from this analysis because samples 

published consisted of only one haplotype and therefore do not represent population-wide 

diversity (Table SM7). 

 To detect diachronic changes in genetic diversity in PC-PR, complete mtDNA 

sequences were divided into subsets by coeval radiocarbon dates (undated samples were 

excluded from this analysis). The ideal number of clusters (K) was estimated from the 

distribution of radiocarbon dates using the pamk function from the fpc R package 

(Hennig 2015). Using this value of K, data subsets were identified by hierarchical cluster 

analysis of radiocarbon date distributions using a custom R script (Ward 1963) (Figure 

SM1). A multicomponent Fisher’s test with Bonferroni correction was used to test for a 

significant difference in haplogroup distribution across temporal groups. This was 

performed using the fisher.multcomp function from the RVAideMemoire package in R 

(Hervé 2016). Power for each comparison was estimated after 1000 simulations using the 

power.fishertest function from the statmod R package (Giner and Smyth 2016). 

Significance thresholds for all tests were set at P<0.05. 

Fst and exact genetic differentiation tests were repeated comparing each temporal 

subset to all reference populations, including the complete PC-PR dataset, in the same 

manner as listed above. The relationship between temporal and genetic distance was 
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further assessed using Mantel tests as in (Mata-Míguez et al. 2012, Jansson et al. 2014). 

Pairwise Fst values generated with Arlequin were used to represent genetic distance and 

temporal distances were calculated as the Euclidean distance between average 

radiocarbon dates per cluster (median calAD). A Mantel test comparing the two matrices 

was run for 10,000 permutations with a significance threshold of P<0.05 using the 

mantel.test function in the R ape package (Paradis E. and Strimmer 2004).  

To examine mtDNA variation and lineage sharing across the pre and post-contact 

Caribbean, and between PC-PR and continental indigenous groups, median networks 

were created with Network 5.1 (Fluxus). Median networks represent all possible 

evolutionary relationships between sequences and contain all most parsimonious 

phylogenetic trees. (Bandelt et al. 1995, Bandelt, Forster, and Rohl 1999, Mardulyn 

2012). Haplogroup networks were conducted comparing PC-PR lineages A2, C1 and D1 

to comparative populations. Mutations were identified with respect to the rCRS. 

Exploratory networks resulted in high levels of reticulation, therefore a weighing scheme 

was applied for the final round of analysis. For HVR-I networks, sites with  high 

mutation rates as determined by (Meyer, Weiss, and Von Haeseler 1999) were weighted 

as in (Mata-Míguez et al. 2012). For complete mtDNA networks transversions were 

weighted three times as high as transitions as recommended by the Network manual. 

Several values of epsilon parameter were also explored but none resulted in different 

results than those obtained with the default of epsilon = 10. Coalescence times for several 

lineages were estimated from complete mtDNA networks with Network using the 

complete mtDNA substitution rate of one mutation every 3,624 years (Soares et al. 2009).  
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4.3.11 Autosomal reads additional processing 

For population genetics analyses, autosomal genotypes obtained were compared 

to 938 individuals from the Human Genome Diversity Panel (HGDP) (Rosenberg 2006, 

Rosenberg et al. 2002). Before merging with aDNA sequence data, the reference dataset 

was converted to Plink format using custom UNIX scripts. Following methods outlined 

in (Skoglund et al. 2012), one allele at each site was randomly sampled for every 

individual in the panel, making each site homozygous for the drawn allele. This process 

effectively haplodizes the reference panel and mimics the random sampling process of 

low coverage aDNA reads in the sample. 

 Only one of the eight WISC enriched samples had high endogenous content post-

capture: PI 420 (Table SM6). Genome coverage for this sample was estimated using the 

genomecov option in BEDTools v2.26 (Quinlan and Hall 2010). The sample BAM file 

was subset to include just those variant positions present in the HGDP reference panel. 

Although this approach may reduce representation of true variants, it also reduces the 

possibility that sequencing or damage errors are included in the analysis. Subsetting was 

done using SAMtools mpileup with –l option specifying a list with all variant sites 

present in the HGDP panel. Ancient reads were then filtered again such that only bases 

with BAQ > 20 and reads with mapping quality > 30 were retained. For sites covered by 

only one read this approach ensures only high quality bases are retained. A custom 

Python script was used to draw a random read for those sites with read depth > 1. This 

process ensured that haploid genotypes were obtained for all autosomal positions in the 

sample BAM. As in (Schroeder et al. 2015), a second dataset was produced following the 

same process but excluding all positions with T to C or A to G transitions in the ancient 
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sample with relation to the reference. This filter results in exclusion of all sites that could 

represent deamination damage. All population genetics analyses were conducted on both 

the raw and damage filtered datasets. The ancient autosomal genotypes were merged with 

the reference panel using Plink v.1.07 (Purcell et al. 2007). 11,742 sites were retained 

after merging for the raw dataset and 10,754 sites were retained for the damage filtered 

dataset. Lastly, the merged dataset was filtered for modern contamination using 

PMDtools (Skoglund et al. 2014) by selecting only reads with post-mortem damage 

scores over 0 (5,492  SNPs retained) and 3 (3,249 SNPs retained) respectively. In total, 

four datasets of merged genotypes were produced. 

 

4.3.12 Autosomal genotypes statistical analyses 

 Principal components analysis was performed on the raw, damage and 

contamination filtered merged datasets with smartpca from the EIGENSOFT 6.0.1 

package (Patterson, Price, and Reich 2006). Unsupervised global ancestry clustering 

analyses were conducted on the first merged datasets using ADMIXTURE v1.22 

(Alexander and Lange 2011, Alexander, Novembre, and Lange 2009). This program 

estimates global ancestry proportions by testing data fit to an admixture model where K 

user defined populations have contributed to an admixed individual’s genome. The 

analysis is ‘unsupervised’ because population labels are not assigned a priori. Instead 

groupings are determined from the data themselves (Liu et al. 2013). This analysis was 

conducted after thinning the merged dataset for linkage disequilibrium (LD) using the 

indep-pairwise option in Plink (--indep-pairwise 50 10 0.1). This command marks for 

removal SNPs with a pairwise r2 > 0.1 within a 50 SNP sliding window, shifted forward 
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by 10 SNPs at a time. After the pruning step, 11,090 SNPs remained. Plotting of PCA 

and ADMIXTURE results was done in R. 

 

4.3.13 Computational resources and R packages 

This research was completed using resources from the ASU High Performance 

Computing Saguaro environment and the Stanford University SCG Genomics Clusters. 

All custom scripts written for this project will be available on GitHub after project 

completion. All plots and figures were generated in R 3.2.4  using the ggplot2 (Wickham 

2009), scales (Wickham 2016a) and reshape 2 (Wickham 2007) packages or with R base 

graphics. Correlations were calculated with R base function cor.test. Other R packages 

used throughout this research include Matrix (Bates and Maechler 2016) and 

RColorBrewer (Neuwirth 2014). Python scripts were written in Python v.2.7.11. 

 

 

4.4 Results 

4.4.1 MtDNA enriched samples: aDNA preservation, enrichment success and sample 

authenticity 

All samples collected for this research (N=60) were subjected to target 

enrichment capture with the aim of recovering moderate to high quality complete 

mitochondrial genomes. Nine samples were identified as having potential contamination 

based on low proportions of estimated authentic reads, unusually large average fragment 

lengths, unusual damage patterns or non-Native American haplogroups. Reads from these 

samples were subjected to additional contamination filters and reanalyzed. Twenty-seven 
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of the 60 individuals yielded mtDNA data with sufficient read depth (>3X) and genome 

coverage (>93%) for confident variant calling and haplotype assignment (Appendix I) . 

This represents 45% of the total sample. Twenty-one of these individuals had available 

radio-carbon dates. Mapping statistics for all mtDNA enriched samples are available in 

Table SM3. The final Haplogrep HSD file output listing all variant sites per individual 

haplotype is in Table SM16. 

Successful aDNA recovery rates varied per site (Figure 27). Samples from Punta 

Candelero and Paso del Indio had similar rates of ancient mtDNA recovery, but 80% of 

samples from Tibes did not generate sufficient sequence reads to pass the depth and 

coverage thresholds specified above. This difference may stem from the older average 

age of the remains from Tibes relative to the other two sites. No significant correlation 

was found between sample age (measured as median calAD) and raw DNA yields (r=-

0.046, t=-0.31, df=46, p=0.755). However, a slight positive correlation was identified 

when comparing radiocarbon dates and post-enrichment mtDNA endogenous content 

(r=0.36, t=2.63, df=46, p=0.015) (Figure SM3). These results indicate that younger 

samples yielded higher endogenous content after mitochondrial capture than older 

remains. 

The authenticity of the human reads obtained after mitochondrial enrichment was 

assessed by examining damage patterns typical of ancient DNA (Briggs et al. 2007, 

Dabney, Meyer, and Pääbo 2013, Ginolhac et al. 2011, Jónsson et al. 2013). Because of 

post-mortem molecule breakdown and cytosine deamination, authentic aDNA exhibits 

short lengths (<200 bp) and high rates of C to T and A to G transitions at the 5’ and 3’ 

ends of DNA fragments. These patterns were evident in the post-capture reads  
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Figure 27. Per site comparison of recovery rates for complete mtDNA data after 

enrichment. Samples were included in subsequent analyses when read depth >3X and 

genome coverage >93%. MT = mtDNA. 

 

obtained for all 27 of the selected samples (Appendix I and Figure SM2). Reads obtained 

from sample PC443 were contamination filtered due to initial assignment to a non-Native 

American haplogroup (Tables SM3 and SM5). Only sequence reads with high post-

mortem damage rates (PMD score >3) were retained to ensure removal of potential 

contaminant sequences introduced by modern and putatively undamaged DNA sources 

(Skoglund et al. 2014). The proportion of endogenous mtDNA reads retained after data 

processing was estimated using contamMix and found to be >70% for each of the 

samples listed in Appendix I (Fu et al. 2013). Finally, average fragment length for all 

samples, irrespective of site, was approximately 62 bp. This size is similar to that 
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obtained in previous aDNA research with tropical Caribbean remains (Schroeder et al. 

2015).  

 

4.4.2 MtDNA diversity in pre-contact Puerto Rico 

 Three of the five characteristic Native American mtDNA haplogroups were 

observed in the pre-contact Puerto Rico (PC-PR) sample: A2, C1 and D1 (Appendix I). 

Haplogroups B2 and X2a were not identified among the remains. When considering 

complete mtDNA variants, PC-PR individuals carried 17 unique mtDNA haplotypes, 

85% of which were classified within haplogroups A2 and C1. Only two lineages were 

shared across multiple individuals. Haplogroup C1b2 accounted for 44% of all mtDNA 

lineages in PC-PR. Of the 12 individuals with this lineage, five had poor read coverage at 

one to six diagnostic positions which were set as Ns during variant calling (Table SM16). 

However, since all other diagnostic variants were present, it is reasonable to assume that 

these individuals fall within the C1b2 clade. When considering just HVR-I sites, PC-PR 

lineage variation is collapsed into nine haplotypes. 

Intra-population diversity statistics indicate that the PC-PR population has lower 

levels of haplotype and nucleotide diversity than most comparative Native American 

groups, except for the Surui, Karitiana and Pima (Table 9). The low diversity of the PC-

PR sample remained constant after re-calculating measures with all populations randomly  

down sampled to 20 individuals (Table SM8). It must be noted that diversity statistics for 

some continental groups may be inflated in this analysis due to grouping of the 

comparative data (Table SM7). Two additional comparisons restricted to the HVR-1 

region and including ancient and modern Caribbean populations also found that PC-PR 
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had low haplotype and nucleotide diversity. Only the sample from the Trinidad FPC had 

lower diversity values (Table 10). For admixed Caribbean populations, this analysis was 

restricted to Native American mtDNA lineages. 

 

Table 9. Diversity summary statistics calculated from complete mtDNA data. 
Population n S Eta Hap Hd VarHd Pi 

Karitiana 24 25 25 4 0.5980 0.0033 0.0005 

Pima 26 79 79 7 0.5200 0.0131 0.0007 

Surui 23 41 41 3 0.3120 0.0131 0.0007 

PC-PR 27 84 84 17 0.8690 0.0040 0.0012 

Chippewa 13 67 68 12 0.9870 0.0013 0.0013 

Maya 25 136 136 18 0.9700 0.0004 0.0016 

Zapotec 88 239 240 57 0.9820 0.0000 0.0017 

Mazahua 25 133 133 19 0.9670 0.0006 0.0019 

PC-Andes 79 272 273 69 0.9960 0.0000 0.0019 

SouthCone 106 291 292 97 0.9980 0.0000 0.0019 

PuertoRico 81 169 169 39 0.9510 0.0002 0.0020 

MexAmerican 215 654 659 213 1.0000 0.0000 0.0021 

Amazonia 34 210 211 34 1.0000 0.0001 0.0022 

Andean 9 113 113 9 1.0000 0.0027 0.0023 

N SouthAmerica 22 179 179 21 0.9960 0.0002 0.0023 

S = Number of segregating sites, Hap = Number of haplotypes, Hd = Haplotype diversity, 

Pi = Nucleotide diversity, average number of nucleotide differences per site between 

sequences. 

 

4.4.3 Inter-population differentiation and gene flow 

 When considering complete mtDNA haplotypes, the exact test of population 

differentiation did not find significant differences between individuals from Paso del  

Indio, Punta Candelero or Tibes (p>0.05). Although sample sizes per individual site are 

low (especially for Tibes), these results suggest there is no inter-site genetic structure. 

Subsequent analyses were conducted assuming mtDNA lineages from intra-island 

communities were not strongly differentiated from each other and could be considered as 

one population. Exact tests identified significant differences between PC-PR and five of 



  135 

the 15 comparative populations: Chippewa, Pima, Mexican Americans, Surui, Karitiana 

and Andeans (including Quechua and Cayapo speakers) (Table SM9). The null 

hypothesis could not be rejected for the remaining comparisons.  

 

Table 10. Diversity summary statistics calculated from HVR-1 data (16024-16391).  
Population n S Eta Hap Hd VarHd Pi 

PC-PR versus modern Caribbean 

PC-PR 27 12 12 9 0.698 0.00679 0.00631 

St Vincent 14 13 13 7 0.868 0.00353 0.01075 

Trinidad 11 8 8 2 0.545 0.00522 0.01186 

Cuba 81 58 58 38 0.966 0.00005 0.01587 

DomRep 82 40 41 29 0.924 0.00036 0.0173 

Puerto Rico 25 36 36 24 0.997 0.00016 0.01886 

PC-PR versus ancient Caribbean 

PC-PR 27 11 11 9 0.698 0.00679 0.00652 

PC-DomRep 19 14 14 11 0.918 0.00167 0.00831 

PC-Cuba 15 12 12 10 0.943 0.00162 0.00966 

PC-Guadeloupe 10 13 13 9 0.978 0.00292 0.01346 

S = Number of segregating sites, Hap = Number of haplotypes, Hd = Haplotype diversity, 

Pi = Nucleotide diversity, average number of nucleotide differences per site between 

sequences. 

 

In comparisons including PC-PR, the three lowest Fst sub-differentiation values 

were observed between this group and indigenous populations from northern South 

America, Amazonia, and extant Puerto Ricans of Native American mtDNA ancestry 

(Table SM10). Some similarity is also apparent between PC-PR and Mexican Americans. 

However, the null hypothesis of no difference between populations was rejected for all 

comparisons in the permutation test. Fst distances between populations are visually 

represented with MDS in Figure 28A. The Surui and Karitiana were highly differentiated 

from all populations in this dataset and therefore were eliminated from the plot to allow 
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for better visualization of clustering patterns. PC-PR falls far from the central cluster of 

South American populations in dimensional space. Additionally, PC-PR is also separated 

from modern Puerto Ricans. This suggests that despite having relatively low Fst 

differentiation values, mtDNA haplotype composition differs between the pre and post 

contact population. This is especially noticeable when the distance between the two data 

points is compared with the closeness exhibited by ancient and modern Andean 

populations on the MDS plot and their extremely low subdifferentiation values in the 

pairwise Fst matrix. Lastly, the MDS plot recapitulates the stark differentiation between 

the mtDNA pools of PC-PR, and North American groups such as the Chippewa and 

Pima. These observations are limited by a relatively poor data fit for the MDS plot, as 

shown by the stress value >0.05 (Kruskal and Wish 1978). Therefore, Fst values were 

also visualized as a heatmap matrix in Figure 28B, where darker colors represent 

increased genetic differentiation (higher Fst distance).  

Two additional pairwise Fst matrices were calculated including HVR-I 

haplotypes from PC-PR and several Caribbean groups. The first analysis, which included 

just ancient populations, found very small Fst differentiation values between ancient 

communities (Table SM11). However, a significant difference was observed between PC-

Dominican Republic (PC-DomRep) and several other populations, including PC-PR. The 

PC-DomRep mtDNA pool has high rates of C and D haplotypes but no A lineages  

(Lalueza-Fox et al. 2001). This distribution contrasts with that observed in other ancient 

Caribbean populations which have varying frequencies of A2, C1 and D1 haplogroups 

(Lalueza-Fox et al. 2003, Mendisco et al. 2015).  
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Figure 28. Fst genetic distances from complete mtDNA sequence data. (A) MDS plot in 

two dimensions. Surui and Karitiana were excluded from the plot due to falling extremely 

far from other populations. (B) Heatmap matrix of raw pairwise Fst values. Darker colors 

represent increased genetic differentiation. PC = pre-contact. 
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Figure 29. Fst genetic distances from HVR-I sequence data from ancient (A) and modern 

(B) Caribbean populations. Heatmap matrix of raw pairwise Fst values. Darker colors 

represent increased genetic differentiation. PC = pre-contact. 
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The last pairwise Fst matrix compared PC-PR to extant Caribbean populations 

(only Native American mtDNA lineages). This analysis found the lowest differentiation 

values between PC-PR and modern Puerto Ricans (Figure 29). However, the two 

populations were still significantly different in the permutation test (Table SM12). Fst 

pairwise matrices calculated with Caribbean population data are restricted to the HVR-I 

region, therefore similarity between haplotypes may be inflated due to loss of the 

resolution provided by additional HVR-II and control region substitutions. Exact tests 

conducted with HVR-I data found significant differences in haplotype distribution 

between PC-PR and most pre and post contact Caribbean populations (Native American 

lineages only; p<0.05) (Table SM13). Since this test is based on differences in haplotype 

frequencies, the results may reflect genetic differences created by the high rates of unique 

lineages found in each island group (see section below on HVR-I median joining 

networks). 

 

4.4.4 Genetic differentiation over time 

 To detect changes in mtDNA diversity over time within PC-PR, the twenty-one 

radiocarbon dated samples were divided into three temporal clusters of coeval 

radiocarbon dates: (1) 491-671 calAD with n=6 individuals, (2) 824-1039 calAD with 

n=9, and (3) 1095-1270 calAD with n=6 (Figure SM1).  Figure 30 represents the 

distribution of mtDNA haplogroups over the three temporal groups as stacked bar charts.  

Lineage C1b2 is present in high frequencies in all time periods. No statistically 

significant differences in parent haplogroup (A2, C1, D1) distribution were found when 

examined with Fisher’s Exact Test (Table SM14). But, simulations indicated that each 
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comparison had less than 30% statistical power, which suggests that sample sizes per 

cluster may be too low to allow for detection of small differences. Analysis of pairwise 

Fst values was repeated including the three PC-PR temporal subgroups and comparative 

populations (Table SM15). Fst distances were extremely low between temporal groups, 

and the null hypothesis of no significant difference was not rejected. Mantel tests 

comparing genetic versus temporal distance did not find a statistically significant 

correlation between genetic and temporal distance across the three groups (z=107.8, 

p=0.111) or between either group and modern Puerto Ricans (z=84.5, p=0.168).  

 

 

Figure 30. Distribution of mtDNA sub-haplogroups over time across all archaeological 

sites. Temporal groups identified through hierarchical clustering of median calAD 

radiocarbon dates for 21samples. Clusters are: (1) 491-671 median calAD with n=6 

individuals, (2) 824-1039 calAD with n=9, and (3) 1095-1270 calAD with n=6. 
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4.4.5 Complete mtDNA median joining networks  

 An initial round of analysis created median joining (MJ) networks comparing 

complete mtDNA sequences from PC-PR to all populations in the comparative dataset. 

Only haplogroups A2, C1 and D1 were considered. It was observed that PC-PR did not 

share haplotypes with any population except for extant Puerto Ricans. Therefore, network 

analysis was repeated excluding all other groups to clarify the relationship between the 

pre and post contact island populations.  

The complete mtDNA MJ network for haplogroup A2 includes 8 ancient and 45 

modern individuals (Figure 31). It is a diverse network, characterized by high frequencies 

of unique haplotypes (33 of 53 total sequences) and the lack of a central founder node. 

This topology suggests that most A2 lineages did not evolve in-situ but instead arrived to 

the island as derived haplotypes. The network suggests there was limited continuity of 

mitochondrial lineages over time. Only one pre-contact A2 lineage was shared with 

modern Puerto Ricans. In the ancient population, it is represented by individual PI420 

from Paso del Indio. It is differentiated from other A2 types by polymorphisms 179C, 

385G, 9947A and 16218T. The HVR-I motif for this lineage has also been observed 

among admixed Cubans and Puerto Ricans (Mendizabal et al. 2008, Vilar et al. 2014).  

The complete mtDNA MJ network for haplogroup C1 includes 43 individuals, 15 

from PC-PR and 28 modern Puerto Ricans (Figure 31). Network topology is 

characterized by several unique haplotypes and one large node composed of 18 identical 

sequences shared between the pre and post contact populations. The central lineage is 

haplogroup C1b2, defined in PhyloTree by control region polymorphisms G263A, 

C4242T, G7013A, C9557T, and G12454A. In the present network, C1b2 exhibits a star-
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like phylogenetic pattern, where a founding, high-frequency lineage occupies a central 

position among several unique or low-frequency derived haplotypes (Forster 2004, 

Bandelt et al. 1995). This pattern is consistent with a history of expansion for this lineage. 

Haplogroup C1 and derived haplotypes are found in high frequencies in most ancient and 

modern Caribbean populations sampled to date (see next section) (Benn-Torres et al. 

2015, Vilar et al. 2014, Mendizabal et al. 2008, Mendisco et al. 2015, Bryc et al. 2015, 

Lalueza-Fox et al. 2003, Martínez-Cruzado 2010, Lalueza-Fox et al. 2001). Lastly, 

complete mtDNA networks were not constructed for haplogroup D1 because no complete 

comparative data is available for modern Puerto Rican D haplotypes. 

 

 

Figure 31. Complete mtDNA networks for haplogroups A2 and C1 including pre and post 

contact Puerto Rico populations. Mutations identified relative to the rCRS. Node size is 

proportional to the frequency of a given haplotype. Yellow arrows indicate lineages C1b2 

and A2+16218 which were included in coalescent dating analysis. PC = pre-contact. MV 

= median vector 
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 The coalescence date of haplotype branches in MJ networks can be estimated by 

equating the number of mutations differentiating each lineage with the substitution rate at 

the studied locus. This approach uses the molecular clock to date when a lineage arose or 

arrived in a population and its subsequent expansion (Forster 2004). Coalescence times 

were estimated for the entire C1b2 cluster and the A2+16218 branch containing sample 

PI420. Both are indicated by yellow arrows in Figure 31. The age of the C1b2 cluster was 

estimated as 1,294  517 YBP. Radiocarbon dates obtained for PC-PR sequences within 

this cluster fall between 1167 – 943 calAD (813 to 1013 YBP) and therefore are within 

the standard deviation range of the genetic date. The coalescence estimate for the A2 

branch was 13,046  5,976. This estimate is inconsistent with previous research (see 

Discussion). Sample PI420 has been radiocarbon dated to 1270 calAD, or approximately 

620 YBP.  

 

4.4.6 HVR-I median joining networks  

 A second round of MJ network analysis was conducted comparing PC-PR 

haplotypes to pre and post contact Caribbean populations. Since comparative data were 

not available for complete mtDNA genomes, analysis was restricted to HVR-I sequences.  

In the MJ network for haplogroup A2 (Figure 32) sequences from all populations make 

up the central node. Topology mirrors that of the complete mtDNA network although 

diversity is reduced and some branches which appeared as distinct in the previous 

analysis are now collapsed. 53 of the 139 HVR-I sequences are unique haplotypes. 

Ancient populations share HVR-I haplotypes with several modern groups. For instance, 

lineage A2+16218 and derived types are observed in PC-PR, PC-Guadeloupe and Cuba 
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(Mendisco et al. 2015, Mendizabal et al. 2008). A second lineage, distinguished by 

polymorphism 16336A and defined as A2e in Phylotree is shared between Cubans and 

PC-PR. In addition, several low-frequency haplotypes observed in modern populations 

derive from founder nodes that include pre-contact individuals. Despite these instances of 

lineage sharing, many low frequency haplotypes are island specific. Lineages from the 

Trinidad FPC, for example, form a single clade. This overall topology is not consistent 

with a single A2 Caribbean founder but instead suggests multiple independent 

introductions with subsequent expansion of some of the derived lineages. It may also 

suggest some differentiation in A2 haplotypes between the Greater and Lesser Antilles, 

although more data from pre-contact Lesser Antillean groups would be needed to assess 

this thoroughly. 

In contrast, the HVR-I network for haplogroup C1 shows a clear star-like pattern 

suggestive of in-situ expansion. The C1 founder shared across all Caribbean populations 

is defined by HVR-I polymorphisms 16223T, 16298C, 16325C, 16327T. As with 

haplogroup A2, some lineages which appeared to be distinct in the complete mtDNA 

genome analysis are now collapsed, largely into the central node. Most low-frequency 

derived haplotypes are separated from the founder by one mutation and are present in just 

one island population. A derived branch defined by a polymorphism 16298C only 

contains pre-contact haplotypes. PC-Guadeloupe and PC-PR individuals in this cluster 

have coding region variants which place them within haplogroups C1d and C1c, but these 

variants are not considered in the network because they were not typed for the PC-DR 

and Lesser Antillean samples. This network is composed of 36 unique haplotypes 

distributed across 100 individuals.  
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Figure 32. HVR-I networks for haplogroups A2, C1 and D1 including pre and post 

contact Caribbean populations. Networks are restricted to positions 16056 – 16391 which 

were sequenced across all datasets. Mutations identified relative to the rCRS. Node size 

is proportional to the frequency of a given haplotype. PC = pre-contact 
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 Haplogroup D1 is present at low frequencies across all Caribbean populations. 

However, the HVR-I network indicates there is a large diversity of unique D1 lineages 

(21 individuals distributed into 11 haplotypes). This topology is not consistent with in-

situ population expansion but instead suggests that derived D1 haplotypes arrived 

independently into the Antilles. PC-PR individuals carried four unique D1 haplotypes 

separated from the central node by one or two mutations. Two of these haplotypes are 

also observed in the Dominican Republic (Nieves Colón, Díaz-Zabala, and Martínez-

Cruzado 2012) and in PC-Guadeloupe (Mendisco et al. 2015). Complete mtDNA 

sequences for these lineages are not present in the latest PhyloTree classification which 

suggests they have not yet been sampled in modern populations. Lastly, it must be noted 

that inferences from comparative analysis of HVR-I data were restricted to commonly 

sequenced regions across multiple genetic datasets. In some instances, haplotypes 

distinguished by coding region variants were grouped as equivalent taxa in the network 

estimation. This may have caused divergent clades to appear identical, and overestimated 

the amount of lineage sharing between ancient and modern groups, therefore 

underestimating the uniqueness of each island’s mtDNA pool.  

 

4.4.7 Whole genome enriched samples: Preservation, enrichment success and sample 

authenticity 

Shotgun sequencing of thirteen aDNA libraries from the PC-PR sample revealed 

poor preservation of autosomal DNA. Average endogenous content was 0.45% for all 

libraries. Only two samples yielded over 1% endogenous content (Table SM6). Eight 

aDNA libraries were subjected to whole genome enrichment with the aim of recovering 
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autosomal genotypes. Only one of the enriched samples, PI 420, had high endogenous 

DNA content after WISC capture (10%). 1,688,415 unique reads mapping to the nuclear 

genome were recovered for PI420 after WISC capture but genomewide read depth was 

extremely low (0.035X). In contrast, 83% of the mitochondrial genome was recovered 

with an average read depth of 10X. These results are indicative of the differential 

preservation of mtDNA versus autosomal DNA due to the higher quantities of 

mitochondria in eukaryotic cells (Giles et al. 1980). 

A second sample, PI 413, had 2.3% endogenous content after capture, but mtDNA 

read analysis revealed a non-Native American haplogroup assignment. In addition, 

deamination plots indicated this sample did not have authentic aDNA damage patterns 

(Figure SM4). Given that this pattern was also similar in the mtDNA enriched library 

(Table SM3 and SM5), it seems likely contamination was introduced to the sample 

extract or library at some point before enrichment. WISC enriched samples are captured 

independently (not pooled) and no other samples had evidence of potential exogenous 

contamination. Deamination patterns for sample PI420 were consistent with expectations 

for authentic ancient DNA (Figure 33) (Dabney, Meyer, and Pääbo 2013, Briggs et al. 

2007).  

 

4.4.8 Principal components analysis and ADMIXTURE estimation of autosomal data 

PCA was conducted to determine whether sample PI420 showed closed affinity to 

specific reference populations. SNP genotypes at 11,742 autosomal sites intersected with 

the HGDP reference panel were used as input for multivariate analysis. The panel 

contains 51 global populations including five Native American groups: Karitiana, Maya,  
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Figure 33. Damage plots and fragment misincorporation patterns for autosomal reads 

recovered from sample PI420 after WISC enrichment. Plot generated with mapDamage. 

 

Pima, Surui and Piapoco (Colombian) (Rosenberg 2006, Rosenberg et al. 2002). PI420 

fell far from Native American populations in PC space (Figure 34), clustering close to 

Oceanian aboriginal groups in PC 1 vs 2. This pattern is recapitulated at higher 

components as well (Figure SM5A). To examine whether this was the artifact of post-

mortem damage, SNPs with C to T or A to G transitions, which are likely to arise due to 

deamination, were removed from the dataset. A second PCA was conducted on the 

remaining 10,754 SNPs but the position of PI420 in PC space did not change (Figure 
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SM5B-C). Lastly, the effects of modern contamination were evaluated by repeating the 

PCA on autosomal reads filtered for PMD scores >0 and >3, keeping 5,492 and 3,249 

SNPs, respectively, after each filtering run. PCA were repeated a third time on the 

damage filtered datasets. Even though resolution is reduced due to the lower density of 

input data, the position of sample PI420 on the plot remained the same (Figure SM5D-G). 

 

 

Figure 34. PCA conducted with 11,742 autosomal SNPs comparing PI420 to 51 HGDP 

populations (PC 1 vs 2). Sample PI420 shown as a yellow star. 

 

 

 

To explore the genetic ancestry of sample PI420 further, unsupervised clustering 

analysis was performed in ADMIXTURE including all HGDP populations. Clusters from 

K=2 to K=6 were explored, and the lowest cross-validation error was observed at K=6. 

Stacked barplots shown in Figure 35 clearly indicate that sample PI420 consistently 

shows a three-way ancestry pattern from K=3 onwards. At K=6, this pattern is 
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characterized by a large dark blue component shared with Native American populations 

and smaller yellow and light blue components shared with Eurasian and African 

populations, respectively. The estimated ancestry proportions for PI420 were 74.8% 

Native American, 10.3%African and 13.9% Eurasian, with the remaining ancestry made 

up of >1% from other sources.  

 

 

Figure 35. ADMIXTURE analysis K=2 to K=6 with 11,090 autosomal SNPs comparing 

PI420 to HGDP populations. SNPs were thinned for linkage disequilibrium. PI420 

sample is the last bar on the right. 
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4.5 Discussion 

4.5.1 Ancient DNA preservation in Puerto Rican archaeological sites 

Moderate to high coverage mtDNA genomes were recovered from 27 of the sixty 

ancient Puerto Rican remains. This represents a success rate of approximately 45%. 

Differential rates of aDNA preservation were observed between samples collected at 

Paso del Indio, Punta Candelero and Tibes. This suggests that in the tropics, site-specific 

processes may play a larger part in aDNA decay than island or region-wide 

environmental conditions. Samples from Tibes had the poorest genomic preservation. 

This finding is consistent with previous reports of poor collagen and organic preservation 

in skeletal remains from Tibes compared to Paso del Indio, Punta Candelero and other 

pre-contact sites in Puerto Rico (Pestle and Colvard 2012). Future research with 

biological remains from this site may benefit from assessing the extent of endogenous  

aDNA in other dense tissues, such as the petrous portion of the temporal bone, or in 

mineralized dental calculus (Hansen et al. 2017, Pinhasi et al. 2015, Ozga et al. 2016). In 

this dataset, a slight positive correlation was observed between sample age (measured in 

calibrated radiocarbon dates) and mtDNA recovery. This suggests that samples with 

younger ages tend to yield higher endogenous content after mitochondrial capture. 

However, the correlation test did not control for inter-site effects and could be influenced 

by other factors such as capture efficiency or sequencing effort. Additionally, because it 

is known that enrichment can bias sequence composition (Ávila-Arcos et al. 2015), this 

relationship should be further tested by large scale shotgun sequencing of radiocarbon 

dated remains from the selected sites. This approach would hold great potential for better 
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characterizing the relationship between thermal age and rates of DNA fragmentation and 

degradation in tropical contexts (Hofreiter et al. 2015). 

 

4.5.2 Whole genome data 

Nuclear genome coverage was estimated in a subset of the remains before and 

after whole genome enrichment. This comparison demonstrated that autosomal DNA is 

preserved at extremely low rates in ancient Puerto Rican remains. Poor aDNA 

preservation has been observed in previous research conducted with tropical remains and 

was not unexpected for this dataset (Schroeder et al. 2015, Lalueza-Fox et al. 2003, 

Gutierrez-Garcia et al. 2014). The results of shotgun sequencing highlighted the 

importance of target enrichment approaches for increasing chances for tropical aDNA 

recovery.  

Autosomal genotypes produced from one individual provided inconclusive results 

due to low read depth, sparse genome coverage, excessive DNA degradation, and 

potentially, exogenous contamination. PCA plots indicated sample PI420 clustered close 

to aboriginal Oceanian populations in PC space (Figure 34). This result does not 

necessarily indicate that PI420 has a strong link with Oceania. Admixed individuals tend 

to fall on a clinal gradient between parental groups in PCA (Wollstein and Lao 2015, Ma 

and Amos 2012).  Therefore, the position of the data point suggested PI420 could carry 

some genomic admixture with non-Native American populations. This was confirmed 

with the genomic ADMIXTURE barplots and global ancestry proportion estimates. 

These results were unexpected because the radiocarbon date for PI420 precedes 

European contact (1270 calAD) and mtDNA data indicates this individual carried a 
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Native American haplogroup. It is possible that the signature of genomic admixture from 

multiple continental populations stems from sample contamination. However, WISC 

enriched sequence reads recovered for PI420 show the characteristic signs of authentic 

aDNA (increased deamination at 5’ and 3’ ends and small average fragment size). 

Further, WISC recovered mtDNA reads were estimated to be ~99% authentic which is 

consistent with recovery of endogenous aDNA (Table SM6, Figure 33). High rates of 

post-mortem damage could also explain skews in the data, but the observed pattern 

persists after excluding variants that could potentially arise from cytosine deamination. 

Another possibility is that the extremely low coverage and read depth of the recovered 

reads may have been insufficient to generate confident SNP and genotype calls (Parks 

and Lambert 2015). This last issue can be addressed through additional sequencing and 

application of newer methods developed for autosomal variant calling and duplicate read 

removal in aDNA datasets (Peltzer et al. 2016). Lastly, although unlikely given the 

occupation history of Paso del Indio, the possibility that there were errors in radiocarbon 

date estimation or that this individual is from an intrusive post-contact burial cannot be 

discarded. Given these results, additional analysis of autosomal reads recovered from the 

whole genome enrichment were discontinued and the results are not discussed further in 

the present section. A second effort to recover nuclear DNA from ancient Puerto Rican 

remains is currently ongoing. 

 

4.5.3 MtDNA diversity of pre-contact Puerto Rican communities 

Analysis of mtDNA diversity identified high frequencies of Native American 

haplogroups A2 and C1, and low frequencies of haplogroup D1 in the ancient population.  
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Similar haplogroup distributions have been previously reported in several ancient and 

modern Caribbean populations from across the Greater and Lesser Antilles, including 

modern Puerto Ricans of Native American ancestry. This indicates that the PC-PR 

population follows a general Caribbean wide pattern of mtDNA haplogroup diversity and 

distribution (Benn-Torres et al. 2015, Mendizabal et al. 2008, Mendisco et al. 2015, 

Martínez-Cruzado 2010, Martínez-Cruzado et al. 2005, Vilar et al. 2014, Nieves Colón, 

Díaz-Zabala, and Martínez-Cruzado 2012, Benn-Torres, Kittles, and Stone 2007, Bryc et 

al. 2015).  

Genetic relationships at an intra-island scale were evaluated by testing for 

significant differences in mtDNA diversity between coeval individuals from the three 

studied sites. Archaeological evidence indicates there was a growing trend towards 

cultural differentiation and regionalization across Caribbean chiefdoms during the Late 

Ceramic Age (CA). Within Puerto Rico, this is visible through the emergence of 

distinctive material culture, settlement patterns and ceramic traditions that divided 

communities along an East-West divide after the year A.D. 600 (Rouse 1992, Curet and 

Stringer 2010, Curet 2005, Curet, Torres, and Rodríguez 2004). In this study, I find no 

evidence for genetic structure or significant differences in mtDNA haplogroup 

composition between communities at Punta Candelero, Paso del Indio and Tibes. 

Although individuals compared from each population are not strictly coeval, temporal 

cluster analysis also finds no evidence for the emergence of temporal structure or 

differences in mtDNA haplogroup composition over time in this population. This finding 

contrasts with the analysis conducted by (Martínez-Cruzado et al. 2005) who found a 

strong geographic gradient in the distribution of C1 lineages among modern Puerto 
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Ricans, but is consistent with subsequent findings by (Vilar et al. 2014, Gravel et al. 

2013). This suggests that the differentiation patterns observed by (Martínez-Cruzado 

2010) could stem from more recent demographic processes. A lack of strong genetic 

differentiation between PC-PR communities indicates that intra-island cultural 

diversification during the late CA was not accompanied by genetic isolation or 

restrictions of female-mediated gene flow. 

 Interestingly, palaeodemographic reconstruction using skeletal remains from 

Punta Candelero suggests this site had large numbers of young and middle aged adult 

males, a pattern that is consistent with an immigrant population (Curet 2005). In contrast, 

the demographic profile and archaeological evidence for Paso del Indio and Tibes 

indicate both sites had long term and stable occupations, despite some periods of 

abandonment (Curet 2005, Walker 2005, Rodríguez López 1991, Curet and Stringer 

2010). I find no evidence for increased genetic diversity at Punta Candelero relative to 

Paso del Indio, and the small number of samples recovered from Tibes precludes more 

extensive efforts at inter-site comparisons. Although additional sampling from each of 

these populations is currently underway, the poor aDNA preservation at Tibes may not 

allow for systematic reconstruction of the genetic diversity of this site’s population.   

MtDNA diversity in PC-PR is low compared to most continental Native 

American populations, except for the Surui, Karitiana and Pima (Table 2). Low genetic 

diversity has previously been reported for Amazonian populations from Eastern South 

America due to small historical effective population sizes and repeated genetic 

bottlenecks (Lewis et al. 2007, Hunley, Gwin, and Liberman 2016). Similarly, low 

haplotype diversity in PC-PR may stem from genetic drift and a strong founder effect 
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during the original peopling of the region, as shown by the high frequency of C1b2 

lineages. Founder effects could have occurred during the initial island settlement or 

during the subsequent Ceramic Age expansions. Previous studies of mtDNA and 

autosomal loci among modern Puerto Ricans noted a pattern consistent with strong 

effects of drift and at least one population bottleneck in the demographic history of 

Caribbean Native American groups (Gravel et al. 2013, Martínez-Cruzado et al. 2005). 

The aDNA mitochondrial data analyzed here supports a scenario where a reduced number 

of mtDNA haplotypes became isolated from their ancestral population after settling in 

Puerto Rico. This led to a reduction in effective population size (Ne), loss of ancestral 

diversity and increased susceptibility to genetic drift (Hedrick 2011). Subsequent 

expansion of one of the founder lineages, C1b2, then created the star-like pattern visible 

in the phylogenetic network of Puerto Rican C1 lineages (Bandelt et al. 1995, Forster 

2004).  

Evidence for a dramatic effect of genetic drift on mtDNA diversity in the Greater 

Antilles has been previously described in studies of pre and post-contact Cuban and 

Dominican populations (Lalueza-Fox et al. 2001, Lalueza-Fox et al. 2003, Mendizabal et 

al. 2008).  In contrast, communities from PC-Guadeloupe have high mtDNA diversity, 

despite the low genetic diversity that is observed today among the Trinidadian FPC and 

Vicentian Garifuna groups of neighboring Lesser Antilles (Benn-Torres et al. 2015, 

Mendisco et al. 2015). In theory, a pattern of increased diversity in the Lesser versus the 

Greater Antilles would be consistent with archeological hypotheses of a west to east 

stepping stone migration where South American populations entered the archipelago via 

Trinidad and rapidly moved upwards, reaching the Greater Antilles in less than a 
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thousand years (Keegan 1995, Rouse 1986). However, this model would predict that 

genetic diversity would be higher, not lower in PC-PR than in PC-Cuba or PC-DomRep.  

Inferences regarding the direction of pre-contact Caribbean migrations cannot be 

drawn exclusively from interpretation of summary statistics, especially given the widely 

different dates and small sample sizes available from comparative populations (Mendisco 

et al. 2015, Lalueza-Fox et al. 2001, Lalueza-Fox et al. 2003). Future application of more 

complex approaches such as Bayesian modeling and testing of explicit migration 

scenarios while considering time-stamped sequences will allow for more robust testing of 

inter-island migration scenarios. 

 

4.5.4 MtDNA haplogroups and the continental origins of Caribbean indigenous groups 

Statistical analyses of genetic differentiation values find similarities between the 

mtDNA gene pool of PC-PR and extant indigenous populations from northern South 

America and Amazonia, including groups from Venezuela, Guyana, Brazil and 

Colombia. This finding is consistent with previous genetic research with mtDNA and 

nuclear loci (Gravel et al. 2013, Moreno-Estrada et al. 2013, Martínez-Cruzado 2010, 

Martínez-Cruzado et al. 2005, Vilar et al. 2014), and with archaeological evidence 

placing the ultimate origin of Ceramic Age Caribbean population among Arawak 

speaking cultures of the Orinoco region (Chanlatte Baik, 2003; Siegel, 2005, Rouse 1986; 

Siegel 2005). But, the results of the exact test do not reject a possible contribution from 

Mesoamerica to the ancestry of late Ceramic Age PC-PR populations. 

I find no evidence of genetic affinity between the Chippewa and Pima and PC-PR. 

This finding is consistent with lack of archaeological evidence for any contribution from 
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North American populations to the cultural ancestry of Caribbean indigenous groups 

(Pantel 2003). However, the Chippewa and Pima reside in southwest and northeast North 

America. Julian Steward, in his Handbook of South American Indians, proposed the 

Florida peninsula, as a potential source area for Caribbean groups (Steward 1947), and 

recent genetic data has suggested potential movements southwards into the Antilles from 

the eastern north American coast (O'Rourke and Raff 2010). Therefore, incorporation of 

genetic data from extant or ancient groups native to the Southeastern United States could 

prove to be a more informative comparison. Unfortunately, such data is not currently 

available in public catalogs of human genetic variation.  

Interestingly, Fst permutation tests rejected the null hypothesis of no genetic 

differentiation between PC-PR and every continental population in the comparative 

dataset. However, no significant differentiation was observed between PC-PR and pre-

contact communities from Cuba and the Guadeloupe archipelago. These results suggest 

that local evolutionary processes such as drift may have led to differentiation of the 

Caribbean mtDNA gene pool from that of continental indigenous groups. The only 

exception to this pattern seems to be the PC-DomRep population which is distinguished 

from other ancient Caribbean groups by an absence of A2 haplogroups (Lalueza-Fox et 

al. 2001). However, the HVR-1 median network indicates that modern Dominicans carry 

large frequencies of A2 lineages and some of these are identical or derived from 

haplotypes found in other ancient Caribbean populations. This suggests that at least some 

of the extant A2 lineages may have a pre-contact origin. Testing this prediction would 

require additional sampling of human skeletal remains collected from Ceramic Age sites 

in Dominican Republic or Haiti. 
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The most frequently observed mtDNA haplogroup in PC-PR was C1b2, which 

made up 44% of all ancient lineages. C1b2 is derived from haplogroup C1b, which is one 

of the nine New World founding lineages (Tamm et al. 2007). Although C1b is found 

across the Americas, it is seen in highest frequencies among South American native 

groups such as the Yanomami (Williams, Chagnon, and Spielman 2002, Perego et al. 

2010). Coalescent analysis places C1b2’s likely origin in South America approximately 

2,000 YBP (Gomez-Carballa et al. 2015). It has been identified through restriction 

fragment length polymorphism (RFLP) assays and control region sequencing in admixed 

Brazilians and Uruguayans, and among Brazilian and Venezuelan Amazonian tribes such 

as the Yanomami and the Kraho (Torroni et al. 1993, Cardena et al. 2013, Sans, Mones, 

et al. 2015). 

C1b2 is also the most common C1 lineage observed in modern Puerto Ricans 

(Vilar et al. 2014, Martínez-Cruzado 2010). The large number of identical C1b2 

haplotypes and its consistently high frequency over time provide the strongest continuous 

link between the pre and post contact population. This clade has a clear signature of 

population expansion in the complete mtDNA networks and its estimated arrival date of 

1,294  517 YBP falls within the Ceramic Age period. This estimate differs from that 

obtained by (Vilar et al. 2014) for the complete control region (647  373 YBP) but is 

consistent with previous analyses conducted by (Martínez-Cruzado 2010) on HVR-I 

haplotypes (1,195  690 YBP). 

These findings are consistent with previous research (Vilar et al. 2014, Martínez-

Cruzado 2010). Taken together these data suggest that the Puerto Rican C1b2 clade 

arrived from South America, possibly carried by Arawak migrants during the Ceramic 
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Age expansion into the Antilles. Unfortunately, control region polymorphisms typed in 

most other Caribbean populations do not provide sufficient resolution to distinguish C1b2 

from the C1 founder lineage. However, the large frequency of C1 haplotypes observed 

across the region’s ancient and modern peoples (Lalueza-Fox et al. 2001, Lalueza-Fox et 

al. 2003, Mendizabal et al. 2008) and the identification of C1b lineages in pre and post 

contact Lesser Antillean populations (Mendisco et al. 2015, Benn-Torres et al. 2015) 

support designating this clade as a characteristic motif of Ceramic Age Antillean 

populations (Vilar et al. 2014, Martínez-Cruzado 2010, Schurr 2010). 

Two additional C1 haplogroups, C1c and C1d1, were also identified in PC-PR. 

Both are founding New World lineages and have a wide distribution across the Americas 

(Perego et al. 2010, Tamm et al. 2007). C1c was identified in individual T257 from 

Tibes. This haplogroup is distinguished by coding region polymorphisms G1888A and 

G15930A (PhyloTree Build 17). Although its present distribution is widespread, C1c is 

common among Mexican and Mexican American populations (Perego et al. 2010, Kumar 

et al. 2011). Mendisco et al. (2015) found one C1c haplotype among late Ceramic Age 

individuals from PC-Guadeloupe but this lineage differs from that carried by individual 

T257 by one mutation at site T16311C. Although, C1c lineages have also been observed 

in modern Puerto Ricans, none of these haplotypes match the T257 sequence.  

Haplogroup C1d1 was observed in the PCPR sample in individual PI419, from 

Paso del Indio. C1d1 is distinguished by four polymorphisms: A16051G, C194T and 

G7697A (PhyloTree Build 17). Basal C1d lineages are common across Central and South 

America (Perego et al. 2010, Figueiro, Hidalgo, and Sans 2011). For instance, one C1d 

derived type, C1d3 was characterized from pre-contact remains in Uruguay (Sans, 
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Figueiro, et al. 2015). Other C1d variants have been seen in extant Mexican and Andean 

populations (Guardado-Estrada et al. 2009, Barbieri et al. 2011). In the Caribbean, C1d1 

has been found in Cuba, Dominican Republic and the Trinidadian FPC (Mendizabal et al. 

2008, Nieves Colón, Díaz-Zabala, and Martínez-Cruzado 2012, Benn-Torres et al. 2015). 

But none of these haplotypes match the one carried by individual PI419. Overall, these 

results suggest that C1c and C1d may have been introduced independently into the 

Antilles. The specific origin of the PC-PR C1c and C1d haplotypes within the continental 

Americas remains unclear.  

 Haplogroup A2 makes up 29% of the PC-PR mitochondrial pool and is 

represented by three major lineages: A2, A2+64 and A2e. Seven unique haplotypes are 

found in eight ancient individuals. Basal A2 lineages are among the nine New World 

founders and as such are widely distributed across the Americas. Nonetheless, North and 

Central American populations have higher frequencies and larger varieties of A2 

haplotypes than other continental groups (Perego et al. 2010, Tamm et al. 2007, 

Gonzalez-Martin et al. 2015). All A2 haplotypes identified in PC-PR were distinct from 

lineages characterized in broad surveys of extant Mesoamerican mtDNA diversity; 

including studies conducted with admixed and indigenous peoples from Mexico, Panama 

and Guatemala (Kumar et al. 2011, Gonzalez-Martin et al. 2015, Söchtig et al. 2015, 

Mizuno et al. 2014, Perego et al. 2012, Gorostiza et al. 2012). For instance, four 

individuals in PC-PR carried derived lineages of haplogroup A2e also observed in 

admixed Cubans (Mendizabal et al. 2008). Although A2e is listed in a broad phylogeny 

of American haplotypes by (Achilli et al. 2008), its origin and geographical distribution is 

unknown. Difficulty in identifying links between Caribbean and mainland A2 haplotypes 
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does not necessarily exclude a Mesoamerican contribution to the peopling of Puerto Rico 

and the other Antilles. Genetic drift and the population bottlenecks caused by European 

contact could have led to loss of these lineages in extant mainland populations. A trend 

for genetic discontinuity between pre and post contact mtDNA diversity has previously 

been observed in large scale studies of ancient South American groups (Llamas et al. 

2016).  

Although A2 is the most common Native American haplogroup found in modern 

Puerto Ricans (Martínez-Cruzado et al. 2005, Vilar et al. 2014), only one derived 

haplotype was shared between pre and post contact populations: A2+16218. This 

haplotype was obserbed by (Martinez-Cruzado et al. 2001, Martínez-Cruzado 2010) 

based on RFLP and HVR-I sequencing among self-identified Native American 

descendant communities in Indiera Alta, Maricao, Puerto Rico. Subsequently, it has also 

been found in Cubans and Puerto Ricans and in one pre-contact sample from the site of 

Grande Anse in Guadeloupe (Mendizabal et al. 2008, Vilar et al. 2014, Mendisco et al. 

2015).  

Martínez-Cruzado (2010) inferred that despite its low frequency among 

contemporary Puerto Ricans, this lineage and its derived haplotypes may have arrived 

during the early pre-contact era, before the Ceramic Age expansions. This inference was 

based on its high diversity despite the lack of a population expansion signature. Attempts 

to test this hypothesis by dating A2+16218’s arrival to Puerto Rico were unsuccessful. 

The coalescent estimate of 13,046  5,976 pre-dates the archaeological evidence for 

human arrival into the Antilles and is not consistent with previous research (Martínez-

Cruzado 2010). Coalescence estimates are highly influenced by the amount of descendant 
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lineages within a branch and how well the founder lineage confirms to a star-like pattern 

(Forster 2004). Therefore, the early date and large standard errors may be attributable to a 

small number of haplotypes included and the lack of a clear expansion signature. 

Nonetheless, the presence of this haplotype at Paso del Indio and across the Antilles 

supports a pre-contact arrival and suggests this lineage may have had a wide inter-island 

distribution. Unfortunately, the continental origin of A2+16218 is currently unknown and 

it is not included in the most recent PhyloTree build. 

The overall topology of the complete mtDNA network for Puerto Rican A2 

haplogroups is not consistent with a star-like phylogeny. Instead, it suggests that A2 

haplotypes arrived to the island via multiple independent introductions with subsequent 

expansion of several derived lineages. This is consistent with inferences drawn from A2 

networks estimated in previous research with HVR-1 sequences from Puerto Rico (Vilar 

et al. 2014, Martínez-Cruzado 2010). Based on the observation that A2 haplotypes in 

Cuba are more numerous and diverse than those in Puerto Rico, Vilar et al. (Vilar et al. 

2014) proposed that two lineages found among modern Puerto Ricans, A2k and A2*, 

may have originated in Cuba and then moved eastwards. This scenario would lend 

support for west to east migration pattern throughout the Antilles. The HVR-1 networks 

constructed in the present research provide some support for this hypothesis. In general, 

Cuban and Dominican A2 lineages are more diverse than Puerto Rico A2 haplotypes, 

many of which are derived from Dominican and Cuban parental nodes. However, the 

aDNA data is not consistent with this scenario. Lineages A2k and A2* were not 

identified in PC-PR, and pre-contact populations from Cuba and the Dominican Republic 

have very few A2 haplotypes (Lalueza-Fox et al. 2001, Lalueza-Fox et al. 2003). More 
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sequence data from ancient Greater Antilles communities could further illuminate this 

issue. Lastly, despite some instances of lineage sharing across islands, the HVR-1 

network for haplogroup A2 has multiple low-frequency and geographically restricted 

lineages which are only found on specific islands. This is especially notable for the 

Trinidad FPC population who did not share a single A2 haplotype with any other ancient 

or modern Caribbean group (Benn-Torres et al. 2015). This observation suggests that 

there may have been some degree of genetic isolation and differentiation between island 

communities during antiquity. 

Although haplogroup D1 was only identified in four PC-PR samples, each 

complete mtDNA haplotype was unique. The haplotypes had several unique mutations 

differentiating them from the basal D1 lineage (defined by C2092T and T16325C). None 

of them were listed in PhyloTree and therefore could not be classified beyond the basal 

D1 type. This suggests that complete mtDNA lineages matching these haplotypes have 

not yet been sampled in extant populations. D1 is a New World founding haplogroup and 

therefore has a Pan-American distribution. However, basal and derived D1haplotypes are 

most commonly observed in South American indigenous populations (Perego et al. 2010, 

Tamm et al. 2007). Lalueza-Fox et al. (2001) found high frequencies of haplogroups D1 

and C1 in pre-contact individuals from the site of La Caleta, Dominican Republic. Based 

on this distribution, they proposed a South American origin for PC-DomRep populations, 

and hypothesized that these were the direct descendants of Arawak migrants. 

Subsequently, Bodner et al. (2012) speculated that some of the PC-DomRep D1 lineages 

could correspond to haplogroup D1j which is geographically restricted to the Southern 

Cone.  
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None of the PC-PR D1 lineages matched the HVR-1 motifs identified in PC-

DomRep (Lalueza-Fox et al. 2001) or the coding region polymorphisms that define D1j. 

However, this finding does not necessarily reject a South American origin for Caribbean 

D1 haplotypes. The D1 lineage carried by sample PCE54 from Punta Candelero matched 

another Ceramic Age individual from the site of Grotte Cadet 2, Marie Galante, 

Guadeloupe (Mendisco et al. 2015). This haplotype lacks polymorphism T16325C and 

was previously reported by (Alves-Silva et al. 2000) in a single individual from northern 

Brazil. Additionally, the lineage carried by individual T251 from Tibes is an incomplete 

match to an unclassified D1 haplotype identified by (Lee and Merriwether 2015) among 

the Yekuana tribe of the Venezuelan Amazon. Although the two lineages are not 

identical, they share many rare mutations and thus may derive from the same common 

ancestor.  

Based on network analysis of modern Puerto Rican HVR-I sequences Martínez-

Cruzado (2010) predicted that haplogroup D1should be present at low frequencies in PC-

PR. Results from the present work support this prediction, but the lack of a star-like 

phylogeny prevents robust estimation of the arrival date of these lineages into the 

Caribbean. Interestingly, no lineage sharing was observed for D1 HVR-1 lineages 

between pre and post contact Puerto Rico, but a match was found between sample T251 

from Tibes and three Dominican individuals. The present distribution of Caribbean D1 

lineages suggests that this haplogroup was rare during antiquity. However, the diversity 

of PC-PR D1 haplotypes and the fact that they are shared with multiple ancient and 

modern populations suggests that haplogroup D1 frequencies in the Caribbean today may 
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be skewed due to genetic drift or to the extreme lineage loss caused by post-contact 

population bottlenecks (see next section).  

 

4.5.5 MtDNA diversity across the pre and post contact divide 

 When comparing HVR-1 mtDNA variation in PC-PR with that of extant 

Caribbean groups (Native American lineages only), the lowest genetic differentiation was 

observed with modern Puerto Ricans. Although this suggests there is a link between pre 

and post contact island populations, the complete mtDNA exact tests, Fst matrices and 

MDS plots detect significant differences between the two groups. This finding stems 

from the different haplogroup composition of ancient and modern Puerto Rican 

populations. As discussed above, only two mtDNA haplotypes were shared across the 

two samples. Several reasons could account for this finding. 

 First, the poor aDNA preservation of the remains restricted the pre-contact 

sample to just 27 individuals. Even though this is the largest sample of aDNA data 

generated from ancient Caribbean populations to date, it is possible that the full extent of 

mtDNA diversity present in PC-PR is not represented in this dataset. Ongoing research 

including sixty additional remains from these three sites will at least partially account for 

this problem. Given the success rates obtained during this project (45%) I estimate 27 

additional mitochondrial genomes to be recovered from this additional sampling effort.  

Second, if some of the mtDNA lineages observed in the modern population 

arrived after the last known occupation of the sites included in this study (i.e. 1300 A.D.), 

they would be undetectable. In the modern population these haplotypes would appear as 

isolated, derived types in network analysis and would not present signatures of 
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population expansion (Martínez-Cruzado 2010). Unfortunately, Native American 

lineages that arrived after European contact would also share these characteristics. 

Third, genetic drift can lead to stochastic loss of genetic diversity over time, 

especially in isolated populations with high rates of inbreeding, skewed sex ratios, or few 

breeding pairs (Charlesworth 2009). This effect is even more pronounced for mtDNA 

which, due to its haploid nature and uniparental inheritance, has about a fourth of the 

effective population size (Ne) of nuclear loci (Hedrick 2011). For example, Helgason et 

al. (2009) found that drift was the most likely explanation for large differences in mtDNA 

lineage composition between modern Icelanders and their Medieval ancestors. This 

pattern could not be explained by migration, but instead was consistent with stochastic 

loss of ancient haplotypes due to repeated genetic bottlenecks and reductions in female 

Ne. As discussed above, indigenous populations in the Caribbean likely experienced a 

strong reduction in Ne due to founder effect during the settlement of the islands. This 

would have produced a genetic pool characterized by few mtDNA haplotypes and thus 

susceptible to stochastic changes in lineage frequencies or loss of low frequency 

haplotypes. Therefore, even without the large scale demographic changes that occurred 

after contact (see below), it is possible and even likely that several mitochondrial 

haplotypes found in PC-PR would not be passed on to modern Puerto Rican populations.  

Fourth, there is extensive documentary evidence of a sharp reduction in 

population size across the Caribbean islands during the conquest period. Historians have 

estimated that shortly before European contact the population of Puerto Rico was 

anywhere between 30,000 to 70,000 people, with some estimates as high as 1 million 

(Cobley 1994, Anderson-Córdova 2005). By the census of 1530, however, the total native 
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population was reported to be about 1,543 individuals (Anderson-Córdova 2005). Among 

these, some were also Native Americans forcibly relocated from other islands or from the 

continental Circum-Caribbean basin (Anderson-Córdova 2005, Wilson 2007). Colonial 

era census likely under-represented the true number of indigenous people living in Puerto 

Rico and other Caribbean colonies throughout the Spanish occupation, therefore these 

estimates must be interpreted with caution (Benn-Torres 2014). Estimates of long term 

historical Ne have been gleaned from autosomal genome fragments found in modern 

Puerto Ricans from the 1000 Genomes Panel. These suggest that the Native American 

ancestors of the modern population had an effective breeding population size of just 

1,922 individuals; 32 times smaller than the estimated size of ancient Mexican 

populations (Gravel et al. 2013). Thus, modern Puerto Ricans likely carry a subset of the 

mtDNA diversity that was present in the ancient pre-contact population, along with 

several mtDNA lineages introduced during the colonial era.  

My findings do not support a scenario of complete population replacement or 

extinction of indigenous Caribbean populations. In a database of 735 complete 

mitochondrial genomes from throughout the pre and post-contact Americas, the only 

identical matches to PC-PR haplotypes where found among modern Puerto Ricans. 

Although this may partly be an artifact of under sampling among continental Native 

American populations (1000 Genomes Project et al. 2015, Bustamante, De La Vega, and 

Burchard 2011) it also points to the large role that indigenous groups have played in 

shaping the genetic diversity of admixed Caribbean peoples. 
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4.6 Conclusion 

This research characterizes the genetic diversity of pre-contact Puerto Rican 

groups and tests hypotheses about their relationships and interaction with other Native 

American and Caribbean populations. Complete mtDNA genomes recovered from the 

ancient inhabitants of Punta Candelero, Paso del Indio and Tibes suggest they shared a 

common origin and may have engaged in continuous genetic exchange. This indicates 

that a process of cultural diversification observed in the archaeological record during the 

late Ceramic Age was not accompanied by genetic isolation or reduced female-mediated 

gene flow between local communities. I also identify a shared genetic component among 

inter-island pre-contact groups, mainly represented by shared C1 haplotypes and similar 

mtDNA haplogroup frequencies. This is in line with previous findings suggesting an 

ancient origin to the characteristic pattern of Native American mtDNA haplogroup 

distribution seen today among modern Caribbean islanders (Benn-Torres et al. 2015). 

However, I also identified several private or geographically restricted mtDNA haplotypes 

across the Caribbean. This indicates that drift and isolation led to some genetic 

differentiation between island populations. More broadly this finding suggests that 

female-mediated gene flow may have been limited and not essential to the maintenance 

of inter-island social networks.  

Martínez-Cruzado (2010) predicted that nine Native American lineages currently 

found in modern Puerto Ricans had their proximate origin in pre-contact Puerto Rican 

populations. In the present sample, I identify two of these lineages, C1b2 and A2+16218, 

among the ancient inhabitants of Punta Candelero and Paso del Indio. Haplogroup C1b2 

emerges as the characteristic motif of Ceramic Age Caribbean populations. This and 
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other findings support a South American origin for pre-contact Puerto Rican populations 

in agreement with previous genetics research (Bryc, Velez, et al. 2010, Gravel et al. 2013, 

Moreno-Estrada et al. 2013, Martínez-Cruzado 2002, 2010), and with extensive 

archaeological evidence (Siegel 2005, Rouse 1992, Chanlatte Baik 2003). However, the 

presence of several mtDNA lineages of unknown origin and the differentiation of the 

Caribbean mtDNA pool from that of extant South American groups suggests that genetic 

contributions from other regions such as ancient Mexico or Central America cannot be 

rejected. These findings provide tentative support for the multiple migration model for 

the peopling of the Antilles.  

This research broadens understanding of the genetic relationship between modern 

Puerto Ricans and ancient island populations. Better characterization of the genetic 

diversity of the ancestral groups that have contributed genetic variation to modern Puerto 

Ricans may aid in development of genome association methods and guide future efforts 

at rare variant discovery among Puerto Rican biomedical cohorts. Given that a large 

amount of functional human genetic variation is population-specific, rare variants may be 

the primary genetic factors underlying complex phenotypes (Saint Pierre and Génin 

2014). In addition, Native American “Taíno” ancestry is a central component of Puerto 

Rican national and ethnic identity (Oboler 1995, Ramos-Zayas 2003, Veran 2003). 

Cultural elements of pre-contact groups such as artwork and iconography are used today 

as expressions of contemporary Puerto Rican culture and symbols of identity and political 

empowerment (Duany 2001, De la Luz Rodriguez 2010, Oliver 2005). Self-identified 

Native American Taíno communities are found in Puerto Rico and the US Puerto Rican 

diaspora (Castanha 2010, Feliciano-Santos 2011, Duany 2001, Haslip-Viera 2014, Benn-
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Torres 2014). Therefore the results of this work also have implications for the 

construction and experience of individual and group identity among contemporary Puerto 

Ricans (Laguer-Díaz 2013).  

The conclusions of this research are limited by its almost exclusive focus on 

mtDNA, which although very informative, is still just a single locus that only provides 

information about female population history. Therefore, future research into this topic 

will focus on optimizing recovery of whole genome and Y-chromosome variants from the 

best-preserved ancient remains. Analysis of autosomal DNA will provide added 

resolution for detecting ancient admixture and inferring population relationships, and will 

also allow exploration of paternal relationships among ancient Caribbean groups. 

Additionally, future analyses will incorporate coalescent methods for direct 

reconstruction of demographic history, such as the extended Bayesian skyline plot, and 

modeling of several demographic scenarios for migration at the inter- and intra-island 

scale. At present, DNA extractions including sixty more dental remains from the three 

studied populations are underway. 
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CHAPTER 5: CONCLUSION 

This dissertation uses modern and ancient DNA to examine the role of migration 

and genetic admixture in the history and evolution of Caribbean populations. 

Specifically, the three main objectives of this research were to: (1) understand how 

differences in pre and post contact migration patterns and local selective pressures shaped 

human genomic variation across the Caribbean, (2) develop optimized methods for 

ancient DNA recovery with degraded remains from topical Caribbean environments, and 

(3) use paleogenomics data to reconstruct the population history of pre-contact 

indigenous groups from Puerto Rico and clarify their relationship to modern, admixed 

islanders.  

In Chapter 2, I used the Illumina Infinium Multi-Ethnic Global Array to obtain 

autosomal genotypes from 55 self-identified Afro-Caribbeans from the Lesser Antilles 

islands of Grenada (n=6), St. Kitts (n=5), St. Lucia (n=15), Trinidad (n=19), and St. 

Vincent (n=10). I characterized patterns of genome-wide variation and ancestry in these 

groups and found they carry large proportions of African ancestry and smaller 

proportions of European, Native American, South and East Asian ancestry in their 

autosomal genomes. This pattern is significantly different from that observed across most 

of the Greater Antilles and also varies within the Lesser Antilles themselves. I also found 

strong signatures of sex-biased mating, which suggests that admixture may have ocurred 

largely between European males and females from other ethnicities. Additionally, I 

searched the autosomal genome for signatures of selection to asses whether recent 

adaptation to the environmental pressures of the Caribbean may have shaped these 

ancestry patterns. I found candidate targets of selection among olfactory genes potentially 
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associated with the major histocompatibility complex on chromosome 6, among other 

loci. But whether these signatures stem from selection before or after continental 

admixture still remains unclear. In summary, I found that post-contact demographic 

processes had a large impact on genetic diversity in the Lesser Antilles and that self-

identified ethnic-cultural identity did not necessarily predict genetic ancestry. 

In Chapter 3, I turn towards optimizing extraction methods for recovery of ancient 

and degraded DNA from tropical environments. I compare the performance of two 

protocols for ancient DNA extraction with skeletal remains. The first, Method D, was 

designed for recovery of short, degraded DNA fragments (Dabney et al. 2013) and the 

second, Method H, modifies the first by adding an initial wash, and an extended digestion 

and decalcification step (Warinner et al. 2014, Gamba et al. 2016). Both methods were 

tested on degraded human and chimpanzee remains excavated in the Caribbean and East 

Africa. Results indicate that both methods successfully recover ancient DNA and there is 

no significant difference in endogenous content or damage profiles in shotgun libraries 

built with either extract. But I found that Method D samples are enriched in smaller DNA 

fragments, have higher GC content and present a significantly higher enrichment factor 

after mitochondrial target capture. Since surviving DNA in ancient or historic remains 

from tropical contexts is likely to be extremely fragmented, these results suggest that at 

present, Method D is best suited for paleogenomics research with tropical ancient DNA.  

Lastly, in Chapter 4, I used the insights from the previous chapter to guide 

selection of extraction methods. I sampled dental remains from 60 individuals (dated 

between A.D. 500–1300) collected from three pre-contact archaeological sites in Puerto 

Rico: Punta Candelero (n=19), Tibes (n=11) and Paso del Indio (n=30). Using in-solution 
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capture and next-generation sequencing, I obtained 27 complete mitochondrial genomes 

as well as partial autosomal genotypes from one individual. The mtDNA haplogroup 

distribution observed across all three communities, as well as the haplotypes represented, 

supported a mainly South American origin for pre-contact populations in Puerto Rico, but 

did not exclude possible contributions from other continental regions. In addition, I found 

two identical mtDNA haplotypes shared across pre and post contact Puerto Rican 

populations. This finding indicates at least some genetic continuity between the two 

groups regardless of the influence of post-contact demographic shifts. I also found 

limited instances of mtDNA lineage sharing between coeval pre-contact Caribbean 

populations, suggesting that female-mediated gene flow was not essential to Antillean 

social interaction. Unfortunately, the autosomal genotype data were inconclusive but 

additional efforts are currently ongoing to repeat whole genome enrichment on a subset 

of the Puerto Rican remains. The results of Chapter 3 agree with previous archaeological 

evidence and support the current prevailing view of the ancient Caribbean as a pluralistic 

culture area shaped by multiple migrations of continental Native American groups.  

Overall, this work has led to a critical reassessment of existing models for the 

peopling of Puerto Rico and the Caribbean and a formal test of the hypotheses put 

forward by genetics research with modern Caribbean islanders (Keegan 2013, Martínez-

Cruzado 2013). When integrated with historic, (bio)archaeological, and other lines of 

evidence, the findings reported here contribute to a more complete reconstruction of the 

population history of pre-contact Puerto Rico and of the extent and composition of inter-

island gene flow during the Caribbean Ceramic Age. This in turn may help future 

archaeological interpretation regarding the role of kinship, residence patterns and 
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mobility in the maintenance of interaction networks across the pre-contact Antilles 

(Laffoon and Hoogland 2012, Mol 2013). Lastly, by sampling a large collection of 

radiocarbon dated skeletal remains (N=60), which span three archaeological sites and an 

extensive temporal period, this project is the largest study conducted with ancient DNA 

from pre-contact Caribbean populations to this day. The recovery of complete 

mitochondrial and partial autosomal data from the remains represents a significant gain in 

resolution over previous attempts, which were limited due to technological constraints, to 

examining small regions of the mtDNA genome (Mendisco et al. 2015, Lalueza-Fox et al. 

2001, Lalueza-Fox et al. 2003).  

A practical aspect of this dissertation was the optimization and systematic testing 

of protocols for increased aDNA recovery from skeletal remains of tropical 

environments. Ongoing research into this topic will contribute to pushing the current 

geographical boundaries of paleogenomics research and lessening the euro-centric bias of 

current ancient DNA studies (Hofreiter et al. 2015). With further optimization, the 

protocol designed during this research could also be extended for forensic applications, 

where surviving DNA may be as degraded as in ancient substrates due to extended 

postmortem intervals and corpse deposition in adverse preservation contexts (Imaizumi, 

Taniguchi, and Ogawa 2017, Soler et al. 2011, Milos et al. 2007). 

Lastly, this dissertation has characterized how ancient indigenous groups, 

European colonial regimes, the African Slave Trade and modern labor movements have 

shaped the genomic diversity of extant Caribbean islanders. In addition to its 

anthropological and historical importance, such knowledge is also essential for informing 

the identification of funciontal, rare and medically relevant genetic variation in these 
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populations and for facilitating their inclusion in clinical genomics and individualized 

medicine efforts (Bustamante, De La Vega, and Burchard 2011, Popejoy and Fullerton 

2016). 
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APPENDIX A  

INSTITUTIONAL REVIEW BOARD APPROVALS AND MATERIAL TRANSFER 

AGREEMENTS FOR SAMPLES IN CHAPTER 2 

 

Consult Attached Files using Adobe Acrobat Reader  
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APPENDIX B  

SUPPLEMENTARY TABLES FOR CHAPTER 2 (SM1 TO SM3)  

 

Consult Attached Files using Microsoft Excel   
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APPENDIX C  

SUPPLEMENTARY FIGURES FOR CHAPTER 2 (SM1 TO SM14)  

 

Consult Attached Files using Adobe Acrobat Reader   
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APPENDIX D  

PROTOCOL FOR EXTRACTION METHOD H  
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Protocol for Ancient DNA Extraction from Bone or Teeth (Method H) 

 

The following protocol isolates and purifies DNA from ancient bones or teeth. This 

method combines steps of previously published ancient DNA extraction protocols, with 

modifications. Total time: 2 days.  

 

Reagents  

0.5 M EDTA pH 8.0 (Life Technologies, cat.no. AM9262) 

1 M Tris-HCl pH 8.0 (Life Technologies, cat.no. 15568-025) 

Proteinase K (Qiagen, cat.no. 19133) 

Guanidine hydrochloride (Sigma, cat.no. G3272) 

3M sodium acetate pH 5.2 (Sigma, cat.no. S7899) 

MinElute PCR purification kit (Qiagen, cat.no. 28004) 

N-laurylsarcosyl 20% sodium salt solution (Sigma, cat.no. L7414) 

Isopropanol (VWR, cat.no. BDH1133-4LP) 

Nuclease free water (ddH20) (Bioexpress, cat.no. G-3223-1L) 

Tween 20 (Sigma, cat.no. P9416-50ML) 

 

Consumables 

1.5 mL LoBind tubes (Eppendorf, cat.no. 0030108051) 

2.0 mL LoBind tubes (Eppendorf, cat.no. 0030108078) 

50 mL Falcon tubes (VWR, cat.no. 352098) 

15 mL Falcon tubes (VWR, cat.no. 352097) 
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Zymo-Spin V-Spin columns (ZymoResearch, cat. no. C1012-50) Treat with bleach, rinse 

in water and irradiate with UV before usage. 

 

Buffers 

Lysis buffer: 2 mL per sample (Must be made fresh, irradiate with UV before usage) 

Reagent Final concentration 
For 1 sample         

(2 mL) 

For 7 samples   

(14 mL) 

N-laurylsarcosyl 20%  0.5% 50 uL 350 uL 

0.5 M EDTA, pH 8.0 0.45 M 1.8 mL 12.6 mL 

20 mg/ml Proteinase K 0.25 mg/mL 30 uL 210 uL 

ddH20 - 130 uL 910 uL 

 

 

TET buffer: 50 uL per sample, recipe for 10mL (Irradiate with UV before usage) 
Reagent Final concentration  Volume 

ddH20 n/a 9.88 mL 

0.5 M EDTA, pH 8.0 1 mM 20 uL 

1 M Tris-HCl, pH 8.0 10 mM 100 uL 

Tween 20 0.05% 10 uL 

 

 

Binding buffer: 13 mL per sample, recipe for 15 mL to account for potential spillage 

(Can be made in advance on day 1, irradiate with UV before usage) 

Reagent Final concentration 
For 1 sample        

(15 mL) 

For 7 samples        

(100 mL) 

Guanidine hydrochloride 5 M 7.2 g 47.7 g 

ddH20 -  To 9 mL To 60 mL 

100% Isopropanol 40% To 14.9 mL To 90.9 mL 

100% Tween 20 0.05% 10 uL 50 uL 

3 M Sodium Acetate pH 5.2 90 mM 450 uL 3 mL 

Add salt first then add water (using the graduation of a falcon tube or Nalgene container). 

Mix to dissolve the salt (if necessary heat it in the microwave very briefly). Add 

isopropanol, then Tween 20 and Sodium Acetate. Making 15 mL for one sample to 

account for possible error or spillage. 

 

 

I. Sampling and Pre-Digestion to remove loose surface contaminants [EDTA Wash 

step] (Day 1: ~1-3 hours depending on samples) From: Warinner et al. (2014) 
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1. Prepare three 2 mL SafeLock LoBind tubes per sample. Label one EDTA-WASH, 

one DIGEST, and one BONE PELLET. UV each tube for 10 minutes 

2. For each sample, measure 100 mg of bone or dentine powder in BONE PELLET 

tube.  

3. Add 1 mL of 0.5M EDTA to each sample. Seal caps tightly. 

4. Vortex, then incubate on rotation at RT (~23°C) for 15 minutes. Do not leave for 

longer. 

5. Centrifuge at 13,000 rpm for 1-3 minutes.  

6. Transfer supernatant to EDTA-WASH tube. Save this tube in -20°C freezer until 

extraction process is completed.  

 

II. Decalcification and Digestion [Lysis Buffer step] (Day 1: ~2 hours) – From: 

Gamba et al. (2016) 

1. Add 1 mL of Lysis Buffer to sample pellet. Mix by pipetting up and down or 

vortexing. 

2. Incubate on rotation for 1 hour at 56°C.  

3. Centrifuge at 13,000 rpm for 2 minutes.  

4. Collect supernatant into DIGEST tube. Save in 4°C fridge.  

5. Add 1 mL of fresh Lysis Buffer to sample pellet. Incubate on rotation for an 

additional hour at 56°C and then overnight at 37°C. 

6. Immerse one Zymo reservoir per sample in 50% bleach solution overnight. 
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III. Binding and Purification (Day 2: ~3 hours) – From: Dabney et al (2013) 

1. Label one 15 mL Falcon tube, one 50 mL Falcon tube, one MinElute column, and 

one 1.5 mL SafeLock LoBind tube (for final elution) per sample.  

2. Take Zymo reservoir out of bleach solution and wash with Sigma water. Dry with 

paper towel or Kimwipes. 

3. UV all tubes and reservoirs for 10 minutes. Do not UV MinElute column. 

4. Jam the Zymo reservoir into the MinElute column and place in pre-labeled 50 mL 

tubes.  

5. Heat TET buffer to 65C on heating block 

6. For each sample, transfer 13 mL Binding Buffer to a 15 mL Falcon tube. 

7. Centrifuge pellet sample tubes at 13,200 rpm (max speed) for 2 minutes.  

8. Collect supernatant and add it to DIGEST tube. This combined digest will be used 

in further extraction procedures. Save sample pellet tube in -20°C freezer. It can be 

used in future extractions if necessary. 

9. Transfer the DIGEST supernatant (2 mL) to falcon tube containing the Binding 

Buffer. Mix gently by shaking and let it stand for 10 minutes.  

10. Pour the sample/Binding buffer mixture from into the extension reservoir and close 

the falcon tube with a screw cap. Let stand for 5 minutes.  

11. Centrifuge for 4 min at 1,500 rpm in a large centrifuge. Turn the tubes by 180 

degrees and centrifuge for 2 more min at 1,500 rpm.  

12. Remove the screw cap and place the extension reservoir/spin column assembly back 

into the collection tube. Carefully remove the extension reservoir and close the cap 

of the spin column. Close the falcon tube with a screw cap and save the flow 
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through for later experiments.  

13. Perform a dry spin for 1 minute at 6,000 rpm in a centrifuge. Discard the flow-

through. 

14. Add 750 uL PE buffer, spin at 6,000 rpm for 1 minute. Again, add 750 uL of PE 

buffer, and with the same tip, lift column and remove waste from collection tube. 

15. Spin at 6,000 rpm for 1 minute again.  

16. Remove waste from collection tube.  

17. Perform a dry spin for 1 min at 13,200 rpm, turn the column 180 degrees and spin 

for 30 seconds. Transfer the spin column into a Lo-Bind (or siliconized) 1.5 ml final 

elution tube. 

18. Add 25 uL TET (preheated to 65C) on top of the silica membrane and let the tube 

stand for 10 minutes at RT. Spin for 1 minute at 13,200 rpm. Repeat this step. 

Ending volume of eluate: 50 uL 

19. Transfer the eluate (the DNA extract) to a fresh tube. Aliquot 1 uL for Qubit 

quantification.  Freeze remaining 49 uL at -20 °C.  
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APPENDIX E  

DAMAGE PLOTS FOR SHOTGUN LIBRARIES IN CHAPTER 3 

 

Consult Attached Files using Adobe Acrobat Reader   
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APPENDIX F  

DAMAGE PLOTS FOR MTDNA ENRICHED LIBRARIES IN CHAPTER 3 

 

Consult Attached Files using Adobe Acrobat Reader   
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APPENDIX G  

SUPPLEMENTARY TABLES FOR CHAPTER 3 (SM4 TO SM6) 

 

Consult Attached Files using Microsoft Excel   
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APPENDIX H  

SUPPLEMENTARY FIGUES FOR CHAPTER 3 (SM15 TO SM29) 

 

Consult Attached Files using Adobe Acrobat Reader   
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APPENDIX I 

TABLE OF MAPPING STATISTICS AND HAPLOGROUP ASSIGNMENTS FOR 27 

ANCIENT SAMPLES ANALYSED IN CHAPTER 4 
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Mapping statistics and haplogroup assignments for 27 ancient samples with >3X 

read depth and 93% coverage of the mitochondrial genome 

Haplogroup assignments were originally performed in Haplogrep. Diagnostic positions 

were then revised manually. Scores listed in Table 1 correspond to second round of 

Haplogrep assignment on manually curated variants.  
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PC-112 
Punta 

Candelero 
943 6,176 68.40 25 7.5 99.97% C1b2 0.985 0.914 

PC-115 
Punta 

Candelero 
None 1,192 49.25 3.5 2.1 95.9% C1b2 0.953 0.997 

PC-1211 
Punta 

Candelero 
672 1,004 78.35 4.7 2.4 97.64% C1b 0.963 0.812 

PC-4432 
Punta 

Candelero 
645 1,810 68.06 7.4 3.1 99.14% C1b2 0.971 0.937 

PC-452 
Punta 

Candelero 
491 2,235 58.17 7.8 3.5 99.67% D1 0.965 0.932 

PC-455 
Punta 

Candelero 
619 1,076 57.30 3.7 2.2 94.9% A2 0.974 0.958 

PC-

B4E2 

Punta 

Candelero 
None 4,091 56.53 13.9 4.9 99.86% C1b2 0.986 0.987 

PC-E241 
Punta 

Candelero 
None 1,353 51.67 4.2 2.6 96.92% C1b2 0.977 0.957 

PC-E54 
Punta 

Candelero 
None 1,904 48.00 5.5 2.8 99.29% D1 0.964  

Average 
Punta 

Candelero 
674 2,316 59.5 8.4 3.4 98.42% N/A 0.97 0.937 

PI-174 
Paso del 

Indio 
824 2,167 67.16 8.7 4.4 99.70% C1b2 0.986 0.983 

PI-3881 
Paso del 

Indio 
866 2,332 54.48 7.6 4.4 99.54% C1b2 0.986 0.903 

PI-390 
Paso del 

Indio 
1167 5,765 63.35 22 7.7 99.95% D1 0.957 0.857 

PI-395 
Paso del 

Indio 
901 7,801 57.62 27.1 9.8 99.99% C1b2 0.986 0.940 

PI-397 
Paso del 

Indio 
1276 5,320 59.54 19.1 8.0 99.9% C1b2 0.986 0.876 

PI-399 
Paso del 

Indio 
1095 11,372 69.80 47.9 12.4 99.98% A2+(64) 0.925 0.978 

PI-410 
Paso del 

Indio 
None 2,463 56.07 8.3 4.0 99.40% A2e 0.947 0.986 
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PI-417 
Paso del 

Indio 
1233 5,594 64.34 21.7 7.6 99.94% C1b2 0.986 0.947 

PI-419 
Paso del 

Indio 
1122 18,068 65.04 70.9 13.7 100% C1d1 0.897 0.978 

PI-4201 
Paso del 

Indio 
1270 3,278 60.97 12 5.2 99.89% A2 0.957 0.970 

PI-423 
Paso del 

Indio 
965 4,478 54.13 14.6 6.3 99.80% A2e 0.922 0.978 

PI-424 
Paso del 

Indio 
None 2,449 65.66 9.7 4.2 99.61% C1b2 0.962 0.978 

PI-435 
Paso del 

Indio 
994 909 67.53 3.7 2.1 95.56% A2e 0.942 0.923 

PI-437 
Paso del 

Indio 
1039 1,320 65.88 5.2 2.7 97.80% A2e 0.905 0.731 

PI-481 
Paso del 

Indio 
674 4,089 61.04 15 7.4 99.97% C1b2 0.986 0.931 

PI-671 
Paso del 

Indio 
1022 14,599 62.01 54.6 16.1 99.99% A2+(64) 0.922 0.959 

Average 
Paso del 

Indio 
1032 5,750 62.2 21.8 7.3 99.14% N/A 0.95 0.932 

T-2511 Tibes 616 4,830 62.26 18.1 6.1 99.95% D1 0.895 0.958 

T-257 Tibes 878 15,413 72.99 67.9 14.4 99.99% C1c 0.967 0.974 

Average Tibes 747 10121.5 67.63 43.0 10.2 99.00% N/A 0.93 0.966 

ALL  ALL  920 4929 61.7 18.9 6.2 98.99% N/A 0.96 0.936 

1 Reads combined across multiple sequencing runs. 

2 Reads subjected to contamination filtering with PMDTools. 

3 Estimated proportion of authentic endogenous human reads using contamMix. 
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APPENDIX J  

SUPPLEMENTARY TABLES FOR CHAPTER 4 (SM7 TO SM22) 

 

Consult Attached Files using Microsoft Excel   
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APPENDIX K 

SUPPLEMENTARY TABLES FOR CHAPTER 4 (SM30 TO SM34) 

 

Consult Attached Files using Adobe Acrobat Reader   
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