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ABSTRACT 

Functional traits research has improved our understanding of how plants respond 

to their environments, identifying key trade-offs among traits. These studies primarily 

rely on correlative methods to infer trade-offs and often overlook traits that are difficult 

to measure (e.g., root traits, tissue senescence rates), limiting their predictive ability 

under novel conditions. I aimed to address these limitations and develop a better 

understanding of the trait space occupied by trees by integrating data and process models, 

spanning leaves to whole-trees, via modern statistical and computational methods. My 

first research chapter (Chapter 2) simultaneously fits a photosynthesis model to 

measurements of fluorescence and photosynthetic response curves, improving estimates 

of mesophyll conductance (gm) and other photosynthetic traits. I assessed how gm varies 

across environmental gradients and relates to other photosynthetic traits for 4 woody 

species in Arizona. I found that gm was lower at high aridity sites, varied little within a 

site, and is an important trait for obtaining accurate estimates of photosynthesis and 

related traits under dry conditions. Chapter 3 evaluates the importance of functional traits 

for whole-tree performance by fitting an individual-based model of tree growth and 

mortality to millions of measurements of tree heights and diameters to assess the 

theoretical trait space (TTS) of “healthy” North American trees. The TTS contained 

complicated, multi-variate structure indicative of potential trade-offs leading to 

successful growth. In Chapter 4, I applied an environmental filter (light stress) to the 

TTS, leading to simulated stand-level mortality rates up to 50%.  Tree-level mortality 

was explained by 6 of the 32 traits explored, with the most important being radiation-use 

efficiency. The multidimentional space comprising these 6 traits differed in volume and 
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location between trees that survived and died, indicating that selective mortality alters the 

TTS.  
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CHAPTER 1 – INTRODUCTION 

Background 

Understanding the relationships of functional traits to tree growth and mortality, 

as well as processes underlying growth and mortality, such as photosynthesis, water 

dynamics, and carbon storage, can provide insights into the links between population and 

ecosystem processes useful to a range of fields. The links between tree traits and 

processes have important implications across topics and scales, from small-scale studies 

of plant competition, to large scale endeavors such as the development of global 

vegetation models (Scheiter et al. 2013, Fyllas et al. 2014, Van Bodegom et al. 2014). 

From a global perspective, having a better understanding of how tree traits relate to the 

environment, and to each other (via “tradeoffs”), may improve our ability to predict their 

responses to environmental perturbations. This is important because trees cover about 

30% to 38% of the earth’s terrestrial surface (Dixon et al. 1994, Perry et al. 2008) and 

account for ~32% of the global carbon sink (Pan et al. 2011). 

Research on functional traits has largely focused on analyzing relationships 

among traits and the environment using a number of correlative or phenomenological 

approaches, including regression analysis (e.g., multiple regression, standardized major 

axis regression) and dimension reduction (e.g. principle components analysis, multiple 

factor analysis). These approaches have led to the discovery of interesting relationships 

among groups of traits. For instance leaf lifespan is positively related to leaf mass per 

area (Wright et al. 2004), and wood density is negatively related to tree mortality rate 

(Chave et al. 2009). Such relationships have been summarized into a few economics 

spectra including the leaf, wood, and fast-slow economics spectra (Wright et al. 2004, 
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Chave et al. 2009, Reich 2014), and more recently, the global spectrum of plant form and 

function (Diaz et al. 2016). Each of these spectra encompasses one or several groups of 

traits and describes the relationships and tradeoffs between them. However, some of the 

relationships—those involving functional traits expressed on a per unit leaf area, such as 

area-specific maximum photosynthetic rate—in the leaf economics spectrum have been 

questioned in recent years, and may be an artifact of how the traits are quantified (Lloyd 

et al. 2013, Osnas et al. 2013).  

Another branch of research on functional traits has examined the problem of 

coexistence, where many species occur in a given environment. Coexistence is not 

explained by classical theory, where exclusion would be expected, especially if there are 

only a limited number of tradeoffs (Tilman 1985). There are two possible explanations 

for why many species are often found in a given environment. One is environmental 

heterogeneity (Tilman 2004), which permits each species to outcompete others based on 

differences in resource availability across the environment. Another possible explanation 

is that there are many axes of variation leading to many potential tradeoffs permiting 

species to coexist through differential use of resources (Hutchinson 1957, Clark et al. 

2010, McMahon et al. 2011). There also could be some combination of these 

explanations.  

 One way to better understand the relationships between traits is to utilize 

mechanistic models that represent important physiological processes underlying growth. 

For example, the Farquhar et al. (1980) leaf-level model of photosynthesis is often 

coupled to larger models such as dynamic global vegetation models and ultimately 

general circulation models to predict carbon uptake (Bonan et al. 2003, Shugart and 
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Woodward 2011). However, most models do not include mesophyll conductance (gm, or 

internal conductance), a potentially important physiological trait that governs 

photosynthesis. Though, there is evidence gm should be considered, because not including 

gm can lead to incorrect estimates of other photosynthetic parameters and ultimately 

incorrect predictions of assimilation rates (Keenan et al. 2010, Flexas et al. 2012). By 

integrating models, such as the Farquhar et al. (1980) model, with tree growth models, a 

better understanding of how specific physiological (such as gm), morphological, and 

allometric traits influence overall carbon uptake can be gained. For example, by 

conducting a sensitifity analysis for a given physiological parameter like gm it would be 

possible to assess its impact on overall tree growth.  This could be taken a step further by 

integrating carbon-centric process models with other processes, such as plant hydraulics 

(Sperry et al. 1998, Tuzet et al. 2003).  

 While models of photosynthesis aim to model carbon uptake at the leaf scale, 

another common approach to understanding forest carbon dynamics is to model the 

growth, mortality, and competition of individual trees within forests. A variety of these 

models have been produced over the years, but they are often criticized for being either 

overly complex or not complex enough (Shugart and Woodward 2011). A few examples 

of forest patch models that consider individual-tree growth processes include JABOWA 

(Botkin et al. 1972, Bugmann 2001), SORTIE (Pacala et al. 1993, 1996), and ED 

(Moorcroft et al. 2001). By using patch models such as these, or truly individual-based 

models (Ogle and Pacala 2009), the trait space of trees can be analyzed theoretically and 

compared to empirically-derived trait relationships to explore the structure of the trait 
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space occupied by trees, including the potential factors that give rise to empirically 

observed tradeoffs.   

Objectives  

 The overall goal of my dissertation research was to better quantify tree functional 

traits and their interrelationships. Specific objectives included:  

 O1: Improve the quantification of mesophyll conductance (gm) by introducing 

fluorescence data into a biochemically based model of photosynthesis previously 

integrated in a Bayesian framework by Patrick et al. (2009).  

 O2: Quantify the trait space occupied by North American trees and gain a better 

understanding of the relationships between traits in the theoretical trait space that 

emerges from a process-based model of tree growth, allocation, and mortality. 

 O3: Assess the impact of filtering on the theoretical trait space of trees by 

imposing an environmental stress (light limitation) that would lead to mortality and a 

restriction of the trait space reminiscent of what happens in natural environments. 

Approach and Insights 

 My approach included a combination of field studies, statistical modeling, and 

computational approaches. I used these approaches to better understand how specific 

traits influence leaf-level photosynthesis and individual tree growth and mortality. 

Chapter 2 addresses my first objective (O1). To better constrain a model of 

photosynthesis and improve estimates of commonly inferred photosynthetic traits, I 

conducted field work at three sites in Arizona, USA, including the McDowell Mountains 

and Sycamore Creek spanning the upper Sonoran Desert, and Chevelon Canyon on the 

lower Mogollon Rim  (see Table 2.1). These sites varied in their temperature and 
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precipitation regimes. I collected simultaneous measurements of chlorophyll fluorescence 

and gas exchange to better estimate photosynthetic traits, including mesophyll 

conductance (gm). My focus on gm was motivated by recent studies that point to the 

potentially overlooked importance of this trait for accurately predicting carbon 

assimilation. I then simultaneously fit the Farquhar et al. (1980) model of photosynthesis 

to light response curves, photosynthesis vs leaf-internal CO2 curves, and fluorescence 

data. This also revealed interesting results with respect to intraspecific variation in gm 

along the aridity gradient, such that estimated gm and its variance decreased as aridity 

(water stress) increased in Prosopis velutina.  I also found some evidence for differences 

between species and growth forms (angiospers vs. gymnosperms).  These findings could 

be important for correctly predicting productivity if the Farquhar et al. (1980) model is 

coupled to models at larger scales, as it often is.   

 Chapter 3 addresses my second objective (O2) of quantifying the trait space 

occupied by North American trees by using a Bayesian framework to fit the 

Allometrically Constrained Growth and Carbon Allocation (ACGCA) model (Ogle and 

Pacala 2009) to Forest Inventory and Analysis (FIA) data. ACGCA is an individual-

based model of tree growth and mortality with inputs (parameters) that are directly 

interpreted as tree functional traits (32 traits). By using this modeling framework, I was 

able to assess the theoretical trait space (TTS) for North American trees in a way that 

complements work done in empirical studies. In particular, the TTS describes the multi-

variate trait space that is expected to produce realistic tree growth, as informed by FIA 

data. The trait space found ultimately had few strong bivariate interactions.  However; 

there was evidence for trait-trait relationships found using stepwise regression that 
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indicated a more complicated multidimensional space.  For example in a stepwise 

regression where radiation use efficiency was treated as dependent on the other 31 

functional traits and light the resulting model had an R2 of 0.81 (Table S3.3, Figure 3.3). I 

also found that relationships between dependent traits and their predictors were in 

agreement with relationships seen in past work such as the leaf and wood economics 

spectra (Wright et al. 2004, Chave et al. 2009) when comparisons could be made. 

 Chapter 4 addresses my third objective (O3) of assessing the impact of filtering 

on the TTS of trees by applying a gap dynamics simulation to the TTS. This extended the 

results of my third chapter by allowing me to see how a more realistic environment can 

lead to both volume changes and shifts in the TTS. The simulations clearly demonstrated 

non-random mortality such that certain combinations of trait values were selected against 

(i.e., associated with trees that died under light stress); that is, the multivariate trait space 

of trees that died versus those that survived differed in their spread (volume) and nominal 

trait values (location). I also assessed the effects of filtering on relationships between 

traits (tradeoffs) as well as trait-mortality relationships. Interestingly, I found that six key 

traits (i.e., radiation use efficiency, maximum tree height, xylem conducting area to 

sapwood area ratio, senescence rate of coarse roots and branches, maintenance respiration 

rate of leaves, and maximum potential crown radius of a tree with diameter at breast 

height of 0m), out of 32 investigated, accounted for 93% of the variation in mortality 

rates among trees. Importantly, this study suggested that traits such as conducting area to 

sapwood area ratio and senescence rates of coarse roots and branches should be targeted 

in empirical, field studies, yet challenges associated with measuring such traits has led to 
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under-exploration of the importance of these traits for understanding whole-plant 

function and community dynamics.   
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2. INCORPORATING FLUORESCENCE DATA INTO A HIERARCHICAL 

BAYESIAN PHOTOSYNTHESIS MODELING FRAMEWORK TO BETTER 

ESTIMATE MESOPHYLL CONDUCTANCE ALONG REGIONAL AND LOCAL 

ARIDITY GRADIENTS 

Abstract 

 Mesophyll conductance (gm) is important for understanding photosynthesis (A), 

but current methods for estimating gm do not simultaneously consider multiple relevant 

data sources, and they typically lack appropriate uncertainty quantification. Thus, we 

developed a hierarchical Bayesian (HB) approach for simultaneously fitting 

photosynthesis models to fluorescence and A-Ci and/or A-Q (Ci = leaf-internal [CO2], Q = 

photon flux density) response curve data. We tested the HB model against artificial data, 

and explored the influence of including fluorescence data. We applied the HB model to 

estimate gm in four woody species (Prosopis velutina, Salix gooddingii, Quercus 

gambelii, Juniperus monosperma) spanning regional and local gradients in water 

availability in Arizona. Estimates of gm in Prosopis velutina (velvet mesquite) followed 

expected patterns, with higher gm at low, vs intermediate, vs high aridity sites (12.56 vs 

3.85, vs 0.75 µmol m-2s-1Pa-1). Juniperus monosperma (one-seed juniper) had lower mean 

gm values at the two sites where it was estimated (1.36 and 1.46 µmol m-2s-1Pa-1) than 

mean gm for angiosperm trees at four out of five sites (3.85, 4.30, 12.56, and 14.08 µmol 

m-2s-1Pa-1). The exception for angiosperms was drought stressed P. velutina (~0.75 µmol 

m-2s-1Pa-1). The values of gm found for both J. monosperma and P. velutina were low 

enough to affect estimates of photosynthetic parameters if gm was not included in the 

model. Thus, gm should be considered when modeling photosynthesis in either arid 



12 

 

environments, or when gymnosperms are present. The HB approach applied to multiple 

datasets (fluorescence, response curves, and potentially isotopes) is likely to facilitate 

better estimates of gm, which is important for estimating other biochemical parameters, 

especially in water stressed conditions where gm is expected to have the greatest impact 

on photosynthesis.  

Keywords: A-Ci curve; A-Q curve; CO2-response curve; fluorescence; Farquhar et al. 

model; hierarchical Bayesian; light-response curve; mesophyll conductance; 

photosynthesis 
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Introduction 

In many early papers on modeling photosynthesis (Caemmerer and Farquhar 

1981, Farquhar and Sharkey 1982, Dubois et al. 2007), the only conductance term 

explicitly considered was stomatal conductance (gs), thus effectively assuming infinite 

leaf-internal (or mesophyll) conductance to CO2 (gm).  In recent years, this assumption of 

an infinite conductance has been shown to affect estimates of key photosynthetic 

parameters, including maximum rates of carboxylation (Vcmax) and electron transport 

(Jmax). Specifically, Vcmax and Jmax can be underestimated in water stressed conditions 

(e.g., arid environments, under drought) if gm is not considered  (Ethier and Livingston 

2004, Flexas et al. 2007b, 2012, Niinemets et al. 2009a, Keenan et al. 2010a). As such, it 

has become evident that estimates of gm should be included in mechanistic models of 

photosynthesis (Loreto et al. 1992, Warren and Adams 2006, Flexas et al. 2007a, 2007b, 

2012), especially when considering variable environmental conditions. 

Indeed, underestimating or ignoring gm can have a large impact on predicted 

photosynthetic rates. When gm is expected to be high, it can lead to an ~7% 

overestimation of photosynthesis (Niinemets et al. 2009a), while ignoring low values of 

gm can lead to an underestimation of up to 70% (Niinemets et al. 2009b).  Because it is 

common to scale leaf-level photosynthesis to the canopy using big-leaf models (De Pury 

and Farquhar 1997, Wang and Leuning 1998), underestimation of photosynthesis due to 

inadequate consideration of gm could have large-scale repercussions.  For example, in a 

study of Mediterranean systems, including gm led to significantly lower modeled 

photosynthetic rates at high temperatures and vapor pressure deficits compared to when 

gm was considered infinite (Keenan et al. 2010b).   
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 Due to the importance of gm, there have been advances in statistical and 

experimental methods for estimating gm within the context of photosynthetic models 

(Harley et al. 1992, Loreto et al. 1992).  Four common approaches of estimating gm are 

the (1) variable J (electron transport) (Harley et al. 1992, Loreto et al. 1992), (2) constant 

J (Harley et al. 1992, Loreto et al. 1992), (3) carbon isotope (Evans et al. 1986, Loreto et 

al. 1992), and (4) curve fitting (Ethier and Livingston 2004) methods.  The first three 

methods estimate gm outside of the model fitting process using empirical measurements 

(Harley et al. 1992, Loreto et al. 1992, Pons et al. 2009). They then calculate the 

chloroplastic [CO2] (Cc) using the calculated gm. The Cc estimates are subsequently 

treated as “data” and are used instead of intercellular [CO2] (Ci) when fitting the Farquhar 

et al. (1980) (FvCB) model to leaf-level gas exchange data. In the curve fitting 

approaches, generally no additional data (fluorescence or isotope data) are used, and 

estimates of gm are obtained by treating it as one of the unknown parameters in the FvCB 

model (Sharkey et al. 2007). However, Bellasio et al. (2015) describe a step-by-step 

fitting procedure (in Excel) that assimilates data on four types of photosynthesis (A) 

response curves—A-Q (light) and A-Ci under ambient and low CO2—to produce more 

accurate and precise estimates of gm, but generating such response curves under low CO2 

is challenging in field settings. 

Alternative curve fitting approaches have been developed that also facilitate 

estimation of gm. For example, Patrick et al. (2009) fit the FvCB model using a 

hierarchical Bayesian framework, allowing for (1) the incorporation of semi-informative 

priors for parameters that are not well-informed by the gas exchange data, and (2) the 

simultaneous estimation of model parameters, including gm and its temperature 



15 

 

dependency. As an alternative, Gu et al. (2010) developed a model fitting procedure that 

minimizes a cost function based on three possible limitation states (Rubisco, RuBP 

regeneration, and Triose-phosphate utilization).  The best fit is then chosen after fitting 

all possible limitation state distributions given the data (Gu et al. 2010). Both of these 

sophisticated model fitting approaches are still somewhat limited in the data that they 

use; Gu et al. (2010) only used A-Ci data, Patrick et al. (2009) used both A-Q and A-Ci 

data, and it appears that in both case, the curves were generated under ambient O2. 

However, both of these approaches are potentially flexible enough to incorporate 

additional data types, and here we illustrate how the Bayesian model originally described 

by Patrick et al. (2009) can be extended to include fluorescence data. 

Along with the realization that gm should be included in models of photosynthesis, 

there have been advancements in measurement methods relevant to estimating gm, some 

of which have led to the relatively easy collection of fluorescence data while 

simultaneously measuring photosynthesis. Fluorescence data can be used in conjunction 

with gas exchange measurements to derive values for gm using the variable and constant J 

methods, both of which have limitations (Harley et al. 1992, Pons et al. 2009, Gilbert et 

al. 2012). For example, neither method directly incorporates fluorescence measurements 

into the FvCB model fitting procedure. As noted above, these approaches express gm as a 

function of variables (e.g., Ci, J, 𝛤∗, Rd, and A) that are subsequently treated as data (e.g., 

Cc, A) or parameters (e.g., 𝛤∗, Rd) in the process of fitting the FvCB model. Of these 

variables, A and Ci come from gas exchange measurements, and J and Cc are calculated 

from fluorescence data (Harley et al. 1992, Pons et al. 2009). It has recently been noted 

that using florescence data via the variable J approach can bias our understanding of the 
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response of gm to CO2 (Gu and Sun 2014). The Excel fitting methods developed by 

Bellasio et al. (2015), however, allows for estimation of photosynthesis parameters, 

including gm, from combined gas exchange and fluorescence data. Their approach, 

however, may be described as a step-wise or piece-wise analysis that does not provide a 

full accounting of the uncertainty associated with measurement error or parameter 

uncertainty. Due to these considerations, a stochastic model incorporating fluorescence 

data while avoiding direct calculation of gm from data used in fitting the FvCB model is 

desirable. 

Our first objective was to improve photosynthetic parameter estimates by directly 

incorporating both response curve data and fluorescence data into a stochastic modeling 

framework. We chose to do this via a hierarchical Bayesian (HB) modeling approach that 

can easily accommodate multiple datasets (e.g., A-Ci curves, A-Q curves, and 

accompanying fluorescence data) to simultaneously inform parameters in the FvCB 

model. We assessed our HB model by (1) using artificial data to recover known 

parameter values, and (2) evaluating the effect of including fluorescence data on model 

fit and estimation of gm using gas exchange data collected in the field. Once establishing 

the validity of our HB model, our second objective was to utilize our model to determine 

the magnitude of gm and its relative variation across an elevation gradient representing 

gradients in water availability (precipitation) and temperature in Arizona (Table 2.1). 

This was motivated by previous studies suggesting gm is affected by temperature and 

plant water status (Bernacchi et al. 2002, Warren and Dreyer 2006, Warren 2008, Flexas 

et al. 2008).  For instance, the sensitivity of gm to water stress may be just as great as the 

sensitivity of stomatal conductance (gs), though, the exact nature of the relationship 
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between gs and gm (e.g., linear, non-linear, variable) is uncertain (Warren 2008).  In 

particular, several studies (Warren 2008, Flexas et al. 2008) indicate that water stress may 

lead to reduced gm over periods of time ranging from minutes to months, but it is not 

clear how gm should be affected by different levels of water stress in plants native to a 

semi-arid climate. We hypothesized that plants growing along our elevation gradient 

would exhibit lower gm and less variation in gm when growing under more water stressed 

conditions compared to plants growing near a water source. 

 

Methods 

Field sites and study species  

Field work was conducted along an aridity gradient that spans desert woodlands 

in the Sonoran Desert near Phoenix, AZ to forested high country around Payson, AZ (see 

Table 2.1 for sites and sample sizes).  The sites along this gradient in elevation, 

temperature, and precipitation allowed us to investigate variation in photosynthetic 

parameters at two scales.  Small scale (local) variation was assessed by sampling 

pronounced aridity gradients over short distances within a site created by the transitioning 

from lowland areas along creeks to dry uplands.  Large scale (regional) variability was 

assessed by comparing parameter estimates across sites that occur at two elevations 

characterized by different climates (Table 2.1).  The sites varied in temperature, 

precipitation (Table 2.1), and water availability, all of which have been found to directly 

or indirectly influence gm (Bernacchi et al. 2002, Flexas et al. 2009, 2012, Tosens et al. 

2012).  
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We focused on four perennial woody species, with varying leaf structure, 

common to each site, including Prosopis velutina (velvet mesquite), Salix gooddingii 

(Goodding's willow), Juniperus monosperma (one-seed juniper), and Quercus gambelii 

(Gambel oak).  P. velutina is abundant at the McDowell Mountain and Sycamore Creek 

sites, and it was one of the few tree species found in both lowland and upland habitats at 

Sycamore Creek and has been shown to have a 𝛹𝑐𝑟𝑖𝑡 (water potential at hydraulic failure) 

between -5 and -8 MPa (Pockman and Sperry 2000).  S. gooddingii is a common riparian 

species in the southwestern United States and was also abundant along Sycamore Creek, 

but absent in upland areas. At Chevelon Canyon, J. monosperma and Q. gambelii were 

sampled; J. monosperma was found near the canyon bottom as well as in the upland areas 

and is known to be highly drought tolerant (Linton et al. 1998, Pockman and Sperry 

2000, Plaut et al. 2012).  Q. gambelii is also drought tolerant, but was only found in 

abundance along the creek, and is less tolerant of water stress compared to co-occurring 

J. monosperma (Neilson and Wullstein 1985, Williams and Ehleringer 2000).  Sampling 

P. velutina and J. monosperma in upland and lowland areas, as well as P. velutina in the 

McDowell Mountains (only in the desert), allowed us to investigate the effects of 

differing levels of water stress.  

Leaf physiology measurements 

Leaf physiological measurements consisting of A-Ci (photosynthesis vs. leaf-

internal [CO2]) and A-Q (A vs. light) responses curves were measured during a period 

from May to October 2012 using a LI-6400 equipped with a leaf chamber fluorometer 

(LI-COR Lincoln, Nebraska, 6400-40), which permits the simultaneous measurement of 

photosynthesis and chlorophyll fluorescence.  Variable chlorophyll fluorescence is 
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primarily due to light emitted by photosystem II (PSII) and is related to the electron flow 

through PSII per quanta, or φPSII (Murata et al. 1966, Schreiber et al. 1994, von 

Caemmerer 2000).  

Fully expanded leaves exposed to full light were chosen from branches accessible 

with a tripod.  Since the scaly leaves of J. monosperma often caused chamber leaks due 

to gaps between the leaves and gasket material, a viscoelastic liquid silicone putty was 

used to seal the chamber around these leaves.  The leaf chamber fluorometer is different 

form the standard LI-6400 chamber in that the chamber area is one third that of the 

standard chamber (2 vs. 6 cm2), which can lead to increased measurement error.  Since 

one of the main goals of this study was to simultaneously fit the FvCM model to 

fluorescence, A-Ci, and A-Q data, the limitations of the leaf chamber fluorometer were 

deemed acceptable in the absence of a more accurate method, and our statistical modeling 

approach explicitly quantifies observation error. 

On each leaf, we measured A-Ci curves at a constant, saturating light level of 

1500 µmol photons m-2s-1.  A-Ci measurements were made at chamber [CO2] levels in 

order of 300, 200, 100, 50, 200, 400, 600, 800, 1200, 1500, and 2000 µmol mol-1.  After 

measuring 11 curves and reviewing initial results, the [CO2] of 100 µmol mol-1 was 

added to better capture the initial part of the curve (at low [CO2]), and the 2000 µmol 

mol-1 value was removed because it was found not to be necessary. Leaves were allowed 

to stabilize under initial chamber conditions (400 ppm CO2) for at least 5 min prior to 

starting A-Ci curves.   

For A-Q curves, the chamber was maintained at near ambient [CO2] of 400 µmol 

mol-1, and incident irradiance (Q) was varied in order from 2000, 1800, 1500, 1000, 800, 
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500, 200, 100, 50, to 0 μmol m-2 s-1. The 2000 and 1800 μmol m-2 s-1 levels were not 

included in the first nine of 46 curves; they were added later during the sampling season 

to ensure the entire curve was captured.  Leaves were allowed 5 min at 1500 μmol m-2 s-2 

to stabilize prior to starting A-Q curves.  Before each measurement, the light level was set 

and at least 2 min were allowed for stabilization. 

While performing each curve, leaves were given at least 3 min to stabilize at each 

[CO2] or light level prior to measurement.  A-Ci and A-Q curves (described below) were 

measured sequentially with each pair being considered one curve for analysis. 

Temperatures were controlled near the ambient outside temperature for each curve and 

thus varied between curves.  The change in temperature from start to completion of a 

single curve ranged from 0.12 to 6.56° C with a mean of 1.55° C. Oxygen (O2) levels 

were based on ambient conditions. 

For both A-Ci and A-Q curves, a leak correction was applied to all readings 

according to the LI-6400 manual, and it was necessary to correct the leaf area used in the 

calculation of A.  For leaves not filling the chamber, the orientation was marked and they 

were scanned using a template representative of the shape and size of the LI-6400 

chamber used.  When leaves did not fill the chamber, their position in the chamber was 

marked on the leaf sample so area could be determined in the lab.  For P. velutina and J. 

monosperma, there was some leaf overlap that occurred in the chamber. In the cases 

where this happened, the projected area was used such that the area was equal to the total 

area illuminated in the chamber. Leaf area was determined with ImageJ (Schneider et al. 

2012) and corrections were made to the LI-6400 output, including A and stomatal 

conductance (gs) associated with each measurement. 
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Along with measuring leaf area, we also measured branch water potential (𝜓𝑏, 

MPa) at the start and end of each A-Ci and A-Q curve pair to use as an indication of the 

plant’s level of water stress.  To do so, a small branch (twig) was cut near the leaf being 

used for A-Ci and A-Q measurements. The branch was inserted into a pressure chamber 

(PMS instruments Model 1505D) to determine 𝜓𝑏, which was subsequently used to 

calculate the relative difference in water potential given by 

∆𝜓𝑏 = (𝜓𝑏,𝑐𝑟𝑖𝑡 − 𝜓𝑏,𝑎𝑣𝑒𝑟𝑎𝑔𝑒) 𝜓𝑏,𝑐𝑟𝑖𝑡⁄ ,  where the 𝜓𝑏,𝑐𝑟𝑖𝑡 is the water potential expected 

at complete loss of water transport, based on literature-derived values (Pockman and 

Sperry 2000, Plaut et al. 2012). The 𝜓𝑏,𝑎𝑣𝑒𝑟𝑎𝑔𝑒 values represent the average 𝜓𝑏 values 

for each plant.   

Data analysis and modeling approach 

First, we provide an overview of the photosynthesis model.  Second, we detail the 

statistical approach used to fit the model to the data.  Third, we outline the hierarchical 

structure of the parameter model.  Finally, we describe how the Bayesian model was 

implemented and how convergence was assessed. A full listing of model parameters, 

descriptions, and units is given in Table 2.2. 

Photosynthesis model description  

The photosynthesis model is based on Farquhar et al. (1980), Farquhar and Wong 

(1984), Von Caemmerer (2000), Either  and Livingston (2004), and Ethier et al. (2006), 

as described in Patrick et al. (2009). One of the important differences between our model 
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versus that of Patrick et al. (2009) is our treatment of the rate limiting photosynthesis.  

We assume photosynthesis is given by a piecewise function: 

 
𝐴 = {

min(𝐴𝑐, 𝐴𝑗)    𝑖𝑓 𝛤∗ < 𝐶𝑐 

𝐴𝑐                     𝑖𝑓 𝛤∗ > 𝐶𝑐

 (1)  

Where Ac (Rubisco-limited rate) and Aj (electron transport limited rate) are given by: 

 𝐴𝑐 = 𝑓(𝑉𝑐𝑚𝑎𝑥, 𝐶𝑖, 𝑂, 𝑅𝑑, 𝑔𝑚, 𝛤∗, 𝐾𝑜 , 𝐾𝑐) (2)  

 𝐴𝑗 = 𝑓(𝐽, 𝐶𝑖 , 𝑅𝑑 , 𝑔𝑚, 𝛤∗) (3)  

Finally, J (electron transport rate) is given by: 

 𝐽 = 𝑓(𝐽𝑚𝑎𝑥, 𝑄2, 𝜃) (4)  

Where the functions on the right-hand sides of Eqns (2), (3), and (4) are given in (Table 

2.3). The piecewise function in Eqn (1) is used to ensure that the correct limitation state 

will be chosen at low [CO2] (i.e., when 𝛤∗ > 𝐶𝑐; Gu et al. (Gu et al. 2010)).  This is 

necessary because photosynthesis is carboxylation limited (Ac), not RuBP regeneration 

limited (Aj) at low [CO2] (Farquhar et al. 1980, von Caemmerer 2000, Gu et al. 2010).  In 

theory, there may be conditions where RuBP regeneration limitation could be the correct 

limitation at low light such that Eqn (1) might lead to the wrong limitation state, but this 

was not an issue in our analysis given our data and parameter estimates. For simplicity, 

we do not include triose-phosphate utilization (TPU) limited rates following Patrick et al. 

(2009). 

Equation (1) can also be viewed as a change-point model (Gu et al. 2010) in the 

sense that there is a critical Cc value (Ccrit > *) associated with the transition between Ac 

and Aj.  Many past studies assume that Ccrit is known by specifying a fixed value for this 
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change point (Dubois et al. 2007, Gu et al. 2010), thus avoiding the actual evaluation of 

min(Ac, Aj) in Eqn (1) (Sharkey et al. 2007).  Patrick et al. (2009) improved upon this by 

assuming that Ccrit is unknown (as opposed to fixing it at pre-determined values), and 

they estimated it as part of the model fitting process. Alternatively, Gu et al. (2010) 

included checks to ensure points were not assigned to the wrong limitation state after 

fitting the model. In our approach, we do not explicitly estimate Ccrit, and we take an 

approach similar to Gu et al. (2010) by computing both Ac and Aj for all observations, and 

the minimum function (value) is selected by the algorithm (when Cc < *). Thus, this is 

no longer a true change-point model from a statistical perspective (e.g., Carlin et al. 1992, 

Perreault et al. 2000 Carlin et al. 1992; Perreault et al. 2000) given that we do not 

explicitly estimate Ccrit.  

We also extended the fitting approach by directly incorporating measured 

chlorophyll fluorescence data into the Bayesian routine (described below). We used the 

φPSII data obtained from the LI-6400, based on 𝜑𝑃𝑆𝐼𝐼 = 𝑓𝑚𝑖
− 𝑓𝑠𝑖

𝑓𝑚𝑖
⁄ , where fm is the 

maximum fluorescence during a saturating light pulse, and fs is the steady state 

fluorescence. J is related to φPSII  through the following equation (Genty et al. 1989): 

 𝐽 =   𝑄(𝜑𝑃𝑆𝐼𝐼) (5)  

where α is the leaf absorptance, which we measured with a spectroradiometer and 

integrating sphere (Optronic Laboratories, 754) according to Day et al. (2015); β is the 

partitioning of electrons between photosystem I (PSI) and PSII; Q is the incident 

irradiance. We rearranged Eqn 5 to obtain an expression for φPSII: 
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𝜑𝑃𝑆𝐼𝐼 = {

𝐽

  𝑄
        𝑖𝑓 𝑄 > 0 

 𝜑𝑚𝑎𝑥         𝑖𝑓 𝑄 = 0

 (6)  

Eqn 6 was given as a piecewise function to accommodate situations when Q was set to 0 

μmol m-2 s-1; the use of 𝜑𝑚𝑎𝑥 was only relevant for <4% of the data, and only for A-Q 

curve data (i.e., for observations with Q = 0). The remaining equations for the 

photosynthesis model are presented in Table 2.3.  

Bayesian model fitting procedure  

We fit the FvCB model described above to the A-Ci and A-Q data using a 

modification of the HB approach presented in Patrick et al. (2009).  The HB method 

allows for the simultaneous estimation of key parameters, including Vcmax, Jmax, Rd, gm, 

etc. (Table 2.3), at the curve, plant, and species by site levels while also providing 

estimates of parameter uncertainty.  Unique to the HB approach is the opportunity to 

integrate prior knowledge about parameters in the FvCB model that may not be directly 

informed by the field data; see Patrick et al. (2009) for a detailed discussion about this. 

We begin with describing the uncertainty in the observed data. For observation i (i = 1, 

…, 905), the likelihood for the observed A data (Aobsi) obtained from both A-Ci and A-Q 

curves is given by a normal distribution: 

 𝐴𝑜𝑏𝑠𝑖 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝐴𝑖 , 𝜎𝐴
2) (7)  

where 𝐴𝑖 is the mean or predicated photosynthetic rate given by the FvCB model (based 

on Eqn 1 and associated equations in Table 2.3), and 𝜎𝐴
2 is the variance describing 

observation or measurement error. 
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 The accompanying observed φPSII data (φPSIIobs), which are defined on the 

interval (0,1), were logit transformed, and the transformed data were assumed to follow a 

normal distribution: 

 𝑙𝑜𝑔𝑖𝑡(𝜑𝑃𝑆𝐼𝐼𝑜𝑏𝑠𝑖) ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑙𝑜𝑔𝑖𝑡(𝜑𝑃𝑆𝐼𝐼𝑖), 𝜎𝑃𝑆𝐼𝐼
2 ) (8)  

where 𝜑𝑃𝑆𝐼𝐼𝑖 is the mean or predicted electron flow through PSII per quanta (given by 

Eqn 6), and 𝜎𝑃𝑆𝐼𝐼
2  is the variance describing the observation or measurement error.  

Temperature dependencies of key photosynthesis parameters (see Table 2.2) were 

incorporated such that 𝑅𝑑, 𝑔𝑚, 𝐾𝑐, 𝐾𝑜, and 𝛤∗ were modeled using non-peaked Arrhenius 

functions, while 𝑉𝑐𝑚𝑎𝑥 and 𝐽𝑚𝑎𝑥 were modeled using peaked Arrhenius functions (Table 

2.3), as described by Patrick et al. (2009). 

Prior specification 

Finally, as part of the HB framework, we specified priors for the photosynthesis 

parameters similar to Patrick et al.(2009).  We summarize the priors that we used, and the 

full list of priors is given in Table S2.1 (supporting material).  For those parameters that 

incorporated temperature dependencies, the temperature-corrected (relative to 25° C) 

parameters were assigned hierarchical priors depending on the level at which each 

parameter was expected to vary.  Those defined at the curve level are denoted by 𝑌25𝑐
=

𝑅𝑑25, 𝑔𝑚25, 𝑉𝑐𝑚𝑎𝑥25, or 𝐽𝑚𝑎𝑥25, where c indexes the curve (c = 1, …, 46). These curve-

level parameters were assumed to vary around plant-level parameters such that for plant p 

(p = 1,…,23) associated with curve c: 

 𝑌25𝑐
~𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇𝑌25𝑝

, 𝜎𝑌25

2 ) (9)  
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Likewise, each plant-level parameter (𝜇𝑌25𝑝
) was assumed to vary around a species by 

site level parameter such that for species by site combination st (st = 1,…,7) associated 

with plant p: 

One advantage of the HB approach is the ability to incorporate informative priors 

for parameters that are not expected to be well informed by the data while still allowing 

them to be stochastic quantities, thus acknowledging the fact that the values of such 

parameters are not known exactly. For example, the activation energies, 𝐸𝑟, 𝐸𝑚, 𝐸𝑣, 𝐸𝑗 

(Table 2.2), in the temperature response functions for 𝑅𝑑,  𝑔𝑚, 𝑉𝑐𝑚𝑎𝑥, and 𝐽𝑚𝑎𝑥, 

respectively, were given non-hierarchical (i.e., independent) semi-informative priors at 

the species by site level (Table S2.1). The remaining activation energies (𝐸𝑔 𝐸𝑘𝑐, and 

𝐸𝑘𝑜, for 𝛤∗, 𝐾𝑐, and 𝐾𝑜, respectively), entropy parameters (𝑆𝑣 and 𝑆𝑗), deactivation 

parameters (𝐻𝑣 and 𝐻𝑗, for 𝑉𝑐𝑚𝑎𝑥 and 𝐽𝑚𝑎𝑥, respectively), and 𝛤25
∗ were given informative 

non-hierarchical priors at the species level (Table S2.1).  Patrick et al. (2009) provide a 

detailed description and citations associated with the specification of these informative 

and semi-informative priors. It should be noted that many of these parameters (e.g., E’s, 

S’s, and H’s) are typically held constant in most curve fitting approaches, but our HB 

approach acknowledges uncertainty in these parameters.  

With the incorporation of fluorescence data, we introduced two additional 

parameters (β and 𝜑𝑚𝑎𝑥) associated with the model for φPSII (Eqn 6). We specified 

semi-informative beta distribution priors for both parameters given that they are 

constrained to the interval (0,1). A beta(10,10) prior was used for the species by site level 

 𝜇𝑌25𝑝
~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇∗𝑌25𝑠𝑡

, 𝜎𝑌25

2∗ ) (10)  
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β  parameter, corresponding to a prior mean of 0.5, based on previous work (Laisk and 

Loreto 1996, von Caemmerer 2000) (Table S2.1). For convenience, a beta(16,4) prior, 

corresponding to a prior mean of 0.8, was specified for the scalar parameter 𝜑𝑚𝑎𝑥; this 

prior was based on the maximum observed 𝜑𝑃𝑆𝐼𝐼 in our dataset. All standard deviation 

parameters were assigned relatively non-informative folded-Cauchy priors as done in 

Patrick et al.(2009), following Gelman (2006).  In practice, the utility of using semi-

informative or informative priors is that uncertainty in the associated parameters is 

accounted for, and if the data do not provide additional information about these 

parameters, then the posterior estimates will reflect this prior uncertainty. In general, the 

majority of posteriors for parameters that were assigned semi-informative priors 

remained close to their priors or shifted slightly, indicating that either the data were 

insufficient to inform the parameter(s) or that the priors were consistent with the data.  

Use of informative priors and hierarchical priors also leads to a reduction in the effective 

number of model parameters relative to the actual or countable number of parameters in 

the model (Spiegelhalter et al. 2002). 

Another benefit of the HB method is the ability to control feedback between 

different model components. In this study, we implemented feedback control as a way of 

indicating which data set should inform a given parameter or set of parameters.  

Feedback control or model modularization techniques have been found to be useful in a 

range of modeling applications such as meta-analyses, analysis of complex computer 

models, and in cases where some of the data in a model are not expected to influence all 

of the parameters  (Liu et al. 2009, Ogle et al. 2013).   In a full Bayesian model, the 

posteriors for all parameters would be affected by all of the data.  Based on preliminary 
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analyses and Patrick et al. (2009), we used feedback control to ensure that the Vcmax and 

Jmax models and their associated parameters are only informed by the A-Ci (not A-Q) data. 

Similarly, the Rd model and its parameters were only informed by the A-Q data. All other 

parameters were informed by all data.  

HB model implementation 

The goal of a Bayesian analysis is to obtain or estimate the posterior distribution 

of the model parameters. Algorithms for estimating the posterior, such as Markov chain 

Monte Carlo (MCMC), return parameter values that are sampled from the posterior. This 

is in contrast to optimization approaches that seek the maximum (or minimum) of an 

objective function, and which are more vulnerable to getting stuck in local optima. The 

stochastic nature of the MCMC algorithm, paired with running multiple chains started at 

diffuse parameter values, makes it much less susceptible to getting stuck in minor modes 

(Gamerman and Lopes 2006). 

The HB model was implemented in OpenBUGS (see Apendix B for model code), 

a free, open source program for conducting Bayesian analysis (Lunn et al. 2009b). 

Feedback control was implemented using the built-in cut function in OpenBUGS (Lunn 

et al. 2009a, Molitor et al. 2009, Ogle et al. 2013).  We ran three parallel Markov chain 

Monte Carlo (MCMC) chains, and the chains were allowed to burn in for 1000 iterations 

prior to convergence.  Convergence was assessed using the BGR diagnostic tool provided 

in OpenBUGS.  After burn in, the model was run for an additional ~60,000 iterations per 

chain, which were thinned by 50 to remove autocorrelation and reduce storage 

requirements. Thus, roughly 3600 independent samples were obtained from the (pseudo)-
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posterior distribution, and the output was processed (e.g., to obtain posterior means and 

interval estimates) and graphed in R (R Core Team 2015). 

Model assessment 

We employed the following methods for assessing the HB model: (1) challenging 

it with artificial data, (2) evaluating the effect of incorporating fluorescence data, and (3) 

evaluating model goodness of fit. Below, we describe each method in more detail. 

First, artificial data were generated from a set of known parameter values.  

Realistic parameter values were derived from the literature based on three species 

(Nicotiana tobacum, Acer rubrum, and Larrea tridentata) representing different life 

forms (forb, tree, shrub) and characterized by different photosynthetic parameters (see 

Table S2.2). Data were generated for each species at a constant temperature (25 °C) and 

for variable temperatures (15, 20, 25, 30, 35 °C), with each scenario associated with 15 

curves representing a single plant.  Testing the model at constant versus varying 

temperature allowed us to assess if data collected across different temperatures (as in our 

field study) affected model fit.   

We evaluated the FvCB model (Eqns 1-3 and Table 2.3) at the “true” parameter 

values (Table S2.2), over the range of Ci and Q values representative of our field data, 

producing “true” or predicted values for A and φPSII. Observation error was added to the 

predicted values to obtain pseudo observations of Aobs and φPSIIobs.  Observation errors 

for Aobs were randomly generated from a normal distribution with a mean of zero and a 

standard deviation of 2.8, which was derived from the literature (Turnbull et al. 2002, 

Lefebvre et al. 2005).  Observation errors for φPSII were generated from a normal with 

mean zero and a standard deviation of 0.05, with the constraint that φPSII ≥ 0. The above 
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HB model was subsequently applied to the artificial data, and the estimated parameters 

were compared to the known values used to generate the data to assess the ability of the 

model to recover the true values of key parameters, including 𝑅𝑑25, 𝑔𝑚25, 𝑉𝑐𝑚𝑎𝑥25, and 

𝐽𝑚𝑎𝑥25. 

 Second, to determine the effect of including φPSII data (calculated from 

fluorescence data) in the HB model, we removed the components that were added to 

accommodate φPSII data (“reduced” model).  This included the likelihood given in Eqn 8 

as well as the associated prior distributions for 𝜎𝑃𝑆𝐼𝐼
2 , 𝛽, and 𝜑𝑚𝑎𝑥. The remaining A-Ci 

and A-Q data were then used to fit the reduced model. The parameter estimates obtained 

from the reduced model were compared to those obtained from the above described “full” 

model.  

 Third, in all model scenarios (full and reduced models; real and artificial data), we 

evaluated model goodness of fit by plotting observed data (Aobs or φPSIIobs) versus 

predicted values, and obtaining the coefficient of determination (R2). The predicted 

values were obtained by generating “replicated” data (Gelman et al. 2004) from the 

sampling distributions specified in Eqns (7) and (8), given the predicted means (e.g., 𝐴 or 

𝜑𝑃𝑆𝐼𝐼). 

Results 

Model assessment with artificial data 

The HB full model fit both the artificial A-Ci and A-Q data well.  The observed 

versus predicted values for A fell around the 1:1 line with an R2 of 0.89 (Figure 2.1A). 
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The observed versus predicted values for φPSII also fell around the 1:1 line with an R2 of 

0.95 (Figure 2.1B). 

The effectiveness of the HB approach at recovering known parameter values 

varied by species and temperature scenario.  The HB approach was successful at 

recovering the true gm25 values such that the central 95% Bayesian credible intervals 

(BCIs) contained the true value in two of three cases at constant temperature and one of 

three cases at variable temperature (Figure 2.2A).  Posterior estimates of Rd25 contained 

the true value of Rd25 in both temperature scenarios for N. tabacum and A. rubrum, while 

the value was overestimated in both temperature cases for L. tridentata (Figure 2.2B). 

Values for Vcmax25 were overestimated for N. tabacum in both temperature scenarios, but 

the true value was contained in the 95% BCI for both cases for L. tridentata. The true 

VCmax25 value was underestimated for A. rubrum at constant temperature and 

overestimated in the variable temperature scenario (Figure 2.2C).  Finally for Jmax25, the 

95% BCIs contained the true value for L. tridentata and A. rubrum at constant 

temperature, and for N. tobacum and L. tridentata at variable temperature (Figure 2.2D). 

Application of the HB model to field data   

Model fit 

The HB model fit the field-collected A-Ci and A-Q data well. The observed versus 

predicted values for A fell primarily around the 1:1 line with a slope of 0.97 and an R2 of 

0.91 (Figure 2.3A).  The model also fit the φPSII data fairly well (observed vs predicted: 

slope = 0.79, R2 = 0.95), but it tended to over predict high values (> 0.5) of φPSII (Figure 

2.3B). Given the relatively good fit of the model, we proceed to evaluate the parameter 
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estimates produced by the model. Posterior estimates for all parameters are given in 

Table S2.4. 

Photosynthesis parameter estimates 

The posterior estimates of gm25 generally did not vary among plants within each 

species by site combination. Thus, we report posterior results at the species by site level 

(see Figure 2.4 for plant and species by site level means).  Site level estimates of gm25 for 

P. velutina increased from the Sycamore Creek upland, to the McDowell Mountains, to 

the Sycamore Creek lowland, with posterior means of 0.75, 3.85 and 12.56 μmol m-2 s-1 

Pa-1, respectively.  The width of the 95% BCIs increased in the same order as the means 

(Figure 2.4A).   Site level estimates of gm25 for J. monosperma were similar between the 

upland and lowland sites at Chevelon Canyon, with posterior means of 1.35 and 1.46 

μmol m-2 s-1 Pa-1, respectively (Figure 2.4A).  No clear trends across sites emerged for Q. 

gambelii and S. gooddingii (Figure 2.4A), but their gm25 estimates differed from each 

other, with S. gooddingii having far higher values than Q. gambelii (14.08 vs. 4.30 μmol 

m-2 s-1 Pa-1). 

The posterior estimates of Rd25 generally showed similar variation to gm25 but 

different patterns across species and sites. Rd25 differed between species in the Sycamore 

Creek lowland and between upland and lowland J. monosperma at Chevelon canyon 

(posterior means of 8.43 and 4.88 μmol m-2 s-1, respectively; Figure 2.4B). Moreover, the 

lowest Rd25 was estimated for S. gooddingii (0.74 μmol m-2 s-1), which was significantly 

lower than the Rd25 estimates for all other species and sites. On the other extreme, J. 

monosperma in the Chevelon upland site supported the highest Rd25 (8.43 μmol m-2 s-1), 
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which was significantly higher than the Rd25 estimates for all other species and sites. In 

contrast to Rd25 and gm25, the estimates of Vcmax25 and Jmax25 were not significantly 

different within or between any of the species or sites measured (Figure 2.4C-D). 

However, Jmax25 did exhibit significant variation among plants within a species at the 

Sycamore Creek lowland site (Figure 2.4D).  

Most of the photosynthesis parameters that were given semi-informative priors 

(e.g., 𝐾𝑐25, 𝐾𝑜25, 𝐸𝑟, 𝐸𝑚, 𝐸𝑣, 𝐸𝑗, 𝐸𝑔 𝐸𝑘𝑐, 𝐸𝑘𝑜, 𝑆𝑣, 𝑆𝑗, 𝐻𝑣, 𝐻𝑗, and 𝛤25
∗ ) generally were 

associated with posterior estimates (Table S2.4) that did not change much relative to the 

priors (Table S2.1); e.g., the posterior 95% BCI for each parameter often contained the 

prior mean. The exceptions included  𝐾𝑜25 for P. velutina, 𝑆𝑣for P. velutina and J. 

monosperma, 𝐸𝑟 for P. velutina growing in the McDowell Mountains, and 𝛤25
∗ ; the 

posteriors for 𝛤25
∗  were significantly updated by the data (differed from the priors) for all 

cases except P. velutina. 

Plant water status 

We explored potential relationships between gm and leaf water status at the curve 

level (n = 46), based on two indices of plant water stress: gs and measures of plant water 

potential (𝜓𝑏and ∆𝜓𝑏). Curve-level estimates of log(gm) and log(gs) were weakly and 

positively correlated  (r = 0.57; Figure S2.1). Mean plant-level 𝜓𝑏 for P. velutina was 

between -2.3 and -6.3 MPa and followed the same pattern as the plant-level gm25 

estimates and ∆𝜓𝑏, going from highest (less negative, least water stressed), to 

intermediate, to lowest (most negative, most water stressed) values for plants in the 

Sycamore lowland, McDowell Mountain, and Sycamore upland sites, respectively 
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(Figure 2.5B). This trend, though weaker, also occurred for gm versus gs at the curve level 

(Figure 2.5A).  Plant-level mean 𝜓𝑏 for J. monosperma spanned a narrow range from -

1.9 to -2.6 MPa as did ∆𝜓𝑏 across both sites (Figure 2.5B). A similarly narrow range is 

seen for gm versus gs (Figure 2.5A). Q. gambelii and S. gooddingii, both in lowland areas, 

had mean 𝜓𝑏of -1.3 and -2.7 MPa, respectively, but had generally overlapping ∆𝜓𝑏 

(Figure 2.5B), but significantly different gm.  S.gooddingii in all cases had higher curve-

level gm and gs than Q. gambelii.  These two species also followed opposite patterns, with 

Q. gambelii having a narrow range of gs but variable gm, and S. gooddingii having a 

narrow range of gm but variable gs.  

Effect of including fluorescence data 

 A comparison of the full (including φPSII data) and reduced (excluding φPSII 

data) models revealed the effect of including fluorescence data. The primary effect of 

including φPSII data was on gm25, Rd25, and Jmax25, all of which are related to the electron 

transport limited rate of CO2 assimilation; inclusion of φPSII data did not affect Vcmax25, 

which is related to the Rubisco limited rate of CO2 assimilation (Figure 2.6A-D).  In most 

cases, the posterior means for the primary photosynthesis parameters were not 

significantly different between the full and reduced models. For example, of the seven 

species by site combinations, the full and reduced models produced different parameter 

estimates for two (gm25, Figure 2.6A; Rd25, Figure 2.6B), three (Jmax25 , Figure 2.6D), and 

none (Vcmax25, Figure 2.6C) of the combinations. However, even when the parameter 

estimates were not statistically different between the two models, including the φPSII 

data often reduced parameter uncertainty (narrower BCIs). For example, in the case of 
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gm25, the BCIs were 1.5 (for mean widths) to 3.8 (for median widths) times wider when 

the φPSII data were excluded (see Table S2.3 for all BCI widths). 

Discussion 

Improved modeling framework 

A primary objective of our study was to develop and demonstrate an alternative 

method for fitting photosynthesis models to gas exchange data that allows for integration 

of different types of data, which also addresses some of the concerns identified by Gu and 

Sun (2014). In particular, our method does not compute gm as a function of Ci, J, 𝛤∗, Rd, 

and A, but estimates gm as part of the non-linear model fitting routine, as done by Sharkey 

et al. (2007), Patrick et al. (2009), Gu et al. (2010), and Bellasio et al. (2015).  All of 

these methods, including our approach, essentially involve the same photosynthesis 

equations (Farquhar et al. 1980, von Caemmerer 2000, Ethier and Livingston 2004, 

Ethier et al. 2006) and include temperature corrections for most of the parameters (e.g., 

Vcmax, Jmax, Rd, gm). However, Sharkey et al. (2007), Gu et al. (2010), and Bellasio et al. 

(2015) include TPU limited rates, which are not considered by Patrick et al. (2009) or in 

this study. However, the Bayesian modeling framework can easily accommodate TPU 

limitation, but the increased model complexity would likely increase the computational 

demands. 

Importantly, the four aforementioned methods and our HB approach treat gm 

similarly in that it is included as a variable in the equations being fit (Table 2.3), but the 

methods used to estimate gm and fit the FvCB model to the data differ between the 

approaches. Sharkey et al.(2007) and Bellasio et al. (2015) use a non-linear curve fitting 

routine where the user must a priori assign points in the A-Ci curve to a limitation state 
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before the model is fit. Each limitation state of the model is fit independently using only 

the points assigned to that state. The Excel fitting tool developed by Bellasio et al. (2015) 

expands on the type of methodology used for the Sharkey et al. (2007) tool by making 

use of additional information including A-Q and fluorescence data (Bellasio et al. 2015). 

Gu et al. (2010) took a different approach to improve upon Sharkey et al. (2007) by 

removing the necessity for defining a limitation state a priori by modeling all possible 

limitation state distributions (they assign all the points to the three possible limitation 

states in all possible combinations), fitting all possible models, and then picking the best 

one based on a cost function. They check for inadmissible fits (where the predicted 

coefficients lead to a point being in the wrong limitation state) and employ measures to 

correct the inconsistency. Finally, Patrick et al. (2009) and our method both employ an 

HB approach, which has several advantages, but there are potential drawbacks, both of 

which we describe below. 

A notable difference among these approaches is that Sharkey et al. (2007) and Gu et 

al. (2010) only utilize A-Ci data, while Patrick et al. (2009) added the ability to assimilate 

A-Q data into the model. Like our approach, Bellasio et al. (2015) extend existing 

approaches by accommodating the addition of fluorescence data.  Importantly, our work 

naturally extends the Patrick et al. (2009) approach by also incorporating chlorophyll 

fluorescence data directly into the fitting process, while also accounting for uncertainty in 

photosynthesis parameters. Our model incorporated fluorescence measurements by 

explicitly accommodating likelihoods for both A (e.g., from A-Ci and A-Q response 

curves) and φPSII data, which are conditional on their associated predicted values 

defined by components of the non-linear FvCB photosynthesis model. Since the predicted 
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values (e.g., 𝐴 and 𝜑𝑃𝑆𝐼𝐼, Eqns 7 and 8) are linked to many of the same underlying 

photosynthesis quantities (e.g., gm, Jmax, Vcmax, Rd), simultaneous incorporation of A and 

φPSII data is expected to result in more realistic and more precise parameter estimates. In 

fact, including fluorescence data resulted in improved estimates of gm and its associated 

parameters such as gm25, as demonstrated by reduced uncertainty (narrower BCIs). 

Future model fitting exercises could improve upon our work by resolving some 

remaining issues such as improving the fit to the φPSII data, which were overestimated 

for high values.  This overestimation could be due to a potential underestimation of φPSII 

in the measurement of fluorescence. For example, Loriaux et al. (2013) show that the 

maximum yield of chlorophyll fluorescence (Fm’) is prone to underestimation of up to 

~10% using a single saturation pulse as was done by the LI-6400 fluorometer.  If the 

φPSII data were underestimated, then the predicted values could be closer to the true 

values. Another issue is that it is possible to obtain values of Rd25 that are not 

physiologically realistic. For instance, in the case of J. monosperma, the Rd25 values 

obtained in this study imply a negative C*, which is the intercellular CO2 partial pressure 

where Cc =*. However, within the HB framework, it would be possible to modify the 

prior for Rd25 such that it obeys the constraint C* = * - Rd/gm > 0. Even if the Bayesian 

fitting approach described herein is improved upon to address these issues, there are 

potential computational hurdles associated with applying this approach. For example, in 

our study, it took over a week for the MCMC simulations to finish, even for the smaller, 

artificial dataset. Moreover, although we provide the annotated OpenBUGS code for 

other potential users, application of the model requires familiarity with Bayesian methods 

and MCMC procedures. 
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Future work could also include carbon isotope data into the HB model either alone or 

in conjunction with fluorescence and photosynthesis response curve data.  This could be 

accomplished by incorporating known relationships between the discrimination of 13CO2 

versus 12CO2 (Δ
13) during photosynthesis (Evans et al. 1986, Gu and Sun 2014). The 

difference between the observed Δ13 and the expected Δ13 under the assumption of 

infinite gm can be used to obtain estimates of gm (Evans et al. 1986, Warren 2006).  

Incorporating isotope information would involve adding a third likelihood for the Δ13 

data, and the mean or predicted Δ13 would share quantities with the mean models for A 

and/or φPSII, including Ca, Ci, Rd and 𝛤∗, which would likely help to refine the estimates 

of their shared parameters. Though, addition of  Δ13 data would also increase model 

complexity and introduce new parameters related to multiple fractionation processes (Gu 

and Sun 2014), and could exacerbate computational demands. 

Estimates of gm from application of HB model to field data 

A secondary objective of our study was to apply our HB method to evaluate 

variation in gm across naturally occurring local and regional aridity gradients. The results 

for P. velutina provided support for the hypothesis that gm should decrease with 

increasing water stress when considering ∆𝜓𝑏 and to some extent gs; for this species, 

temperature-corrected gm (i.e., gm25) was lower in magnitude and less variable under 

lower ∆𝜓𝑏 (Figure 2.5B). In fact, gm25 was generally more variable in three of the four 

species growing near a water source (lowland sites) compared to upland areas, with the 

exception of J. monosperma.  When comparing variation in gm to gs at saturating light 

and ambient CO2, no increase in variation (width of BCI) was observed; however, point 

estimates of gm (but not variation in gm) tended to increase with gs (Figure 2.5A, Figure 
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S2.1), indicating covariation in these physiological traits, which has also be observed in 

other studies (Flexas et al. 2012). The gm25 estimates for J. monosperma growing in 

lowland (low gm25) versus upland (high gm25) sites appeared to contradict our hypothesis 

because the lowland areas are expected to be characterized by greater water availability. 

However, these results could be explained by 𝜓𝑏 observed for J. monosperma, which 

varied little among plants and sites (range: -2.6 to -1.8 MPa) and was much higher than 

the expected critical water potential of 𝜓𝑐𝑟𝑖𝑡 = -13 MPa (Pockman and Sperry 2000). In 

fact, Pockman and Sperry (2000) did not measure significant cavitation in J. monosperma 

until 𝜓𝑏 dropped below -10 MPa. This suggests that J. monosperma plants at both sites 

were experiencing similar and relatively low water stress, which could help to explain 

why gm25 did not vary between the sites.    

Within the lowland environments, gm25 differed significantly among species, with 

Q. gambelii having the lowest and least variable gm25 values and experiencing lower 

water potentials. However, some of the differences among species could be attributed to 

leaf anatomy, which is expect to influence gm (Evans et al. 2009, Terashima et al. 2011, 

Flexas et al. 2012, Tomás et al. 2013). For example, gm has been shown to differ among 

functional groups (e.g., grasses, herbs, semi-deciduous, deciduous, evergreen, conifers, 

liverworts/hornworts) such that gm may be highest in the most phylogenetically evolved 

groups (Flexas et al. 2012). Moreover, gm also varies with specific leaf area and other 

morphological features affecting components of the diffusion pathway (Tomás et al. 

2013).  In the case of the species studied here, the expected trends seen in the literature 

were followed. The most drought stressed P. velutina had the lowest gm , while P. 

velutina under low stress (Sycamore lowland) had the second highest gm, following the 
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expected trend with water stress (Warren and Adams 2006, Flexas et al. 2012). J. 

monosperma had low gm under low water stress, which could reflect it unique leaf 

morphology (Tomás et al. 2013).   

The magnitude and variability in the estimated gm could also have implications at 

larger scales.  In both locations that J. monosperma was sampled, and in the Sycamore 

Creek upland for P. velutina, mean gm25 values were similar in magnitude to values found 

to influence canopy-level net assimilation by Keenan et al. (2010b).  In fact, Keenan et 

al. (2010b) found that their photosynthesis model could only explain seasonal fluxes in 

CO2 and water if gm was included. Over- or under-estimation of leaf-level A will become 

even more important when scaling to canopy-level assimilation since small errors can be 

greatly compounded over time.  This is especially relevant here given that the effect of gm 

on predicted A is expected to be most pronounced under high temperatures, radiation, and 

vapor pressure deficits (Keenan et al. 2010b), all of which are common in the arid and 

semi-arid environments that we sampled in this study. 

Conclusions 

We developed a hierarchical Bayesian (HB) model that simultaneously fit a 

mechanistic model of photosynthesis to fluorescence data and photosynthesis response 

(versus light and leaf-internal [CO2]) curves. Photosynthetic parameters that are generally 

weakly informed by such data were constrained with semi-informative priors based on 

the literature. This Bayesian approach provided estimates of biochemical-based 

photosynthesis parameters and their uncertainties.  Incorporation of these multiple types 

of data reduced parameter uncertainty for the majority of the photosynthesis parameters 
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of interest. Incorporation of such multiple data sources is expected to yield improved 

estimates of key parameters, such as mesophyll conductance (gm), which is becoming 

increasingly recognized as an important component underlying photosynthesis 

predictions at the leaf and canopy levels. We demonstrate our modeling approach with 

data collected for species growing in arid and semi-arid sites, which produced gm 

estimates that varied among species and sites, and the relatively low values for gm 

indicate this is an important factor affecting plant photosynthesis.  

 

  



42 

 

Acknowledgements  

We thank Clint Clarkson for help processing samples. Members of the Ogle Lab, 

including Heather Kropp, Edmund Ryan, Jessica Guo and Drew Peltier, provided 

feedback on earlier drafts. We thank Thomas Day for access to his spectroradiometer. We 

thank the staff at McDowell Mountain Regional Park for their support and assistance 

with site access. We also thank Ashley Fell for her help assuring the grammatical 

accuracy of earlier drafts of this manuscript. Finally, we thank Michael Fell’s committee 

members for their support and feedback including Janet Franklin, Thomas Day, Kevin 

Hultine, and Jarrett Barber. 

 

  



43 

 

References 

 

Bellasio, C., D. J. Beerling, and H. Griffiths. 2015. An Excel tool for deriving key 

photosynthetic parameters from combined gas exchange and chlorophyll 

fluorescence: theory and practice. Plant, Cell & Environment 39:1180–1197. 

 

Bernacchi, C. J., A. R. Portis, H. Nakano, S. Von Caemmerer, and S. P. Long. 2002. 

Temperature Response of Mesophyll Conductance . Implications for the 

Determination of Rubisco Enzyme Kinetics and for Limitations to Photosynthesis 

in Vivo. Plant Physiology 130:1992–1998. 

 

von Caemmerer, S. 2000. Biochemical Models of Leaf Photosynthesis. Brown Prior 

Anderson, Collingwood. 

 

von Caemmerer, S., and G. Farquhar. 1981. Some relationships between the biochemistry 

of photosynthesis and the gas exchange of leaves. Planta 153:376–387. 

 

Carlin, B. P., A. E. Gelfand, and A. F. M. Smith. 1992. Hierarchical Bayesian Analysis of 

Changepoint Problems. Journal of the Royal Statistical Society. Series C 41:389–

405. 

 

Day, T., R. Guenon, and C. Ruhland. 2015. Photodegradation of plant litter in the 

Sonoran Desert varies by litter type and age. Soil Biology & Biochemistry 89:109–

122. 

 

Dubois, J.-J. B., E. L. Fiscus, F. L. Booker, M. D. Flowers, and C. D. Reid. 2007. 

Optimizing the statistical estimation of the parameters of the Farquhar-von 

Caemmerer-Berry model of photosynthesis. The New Phytologist 176:402–14. 

 

Ethier, G. J., and N. J. Livingston. 2004. On the need to incorporate sensitivity to CO2 

transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis 

model. Plant, Cell & Environment 27:137–153. 

 

Ethier, G. J., N. J. Livingston, D. L. Harrison, T. a Black, and J. a Moran. 2006. Low 

stomatal and internal conductance to CO2 versus Rubisco deactivation as 

determinants of the photosynthetic decline of ageing evergreen leaves. Plant, Cell 

& Environment 29:2168–2184. 

 

Evans, J. R., R. Kaldenhoff, B. Genty, and I. Terashima. 2009. Resistances along the 

CO2 diffusion pathway inside leaves. Journal of Experimental Botany 60:2235–

2248. 

 

Evans, J., T. Sharkey, J. Berry, and G. Farquhar. 1986. Carbon isotope discrimination 

measured concurrently with gas exchange to investigate CO2 diffusion in leaves of 

higher plants. Functional Plant Biology 13:281–292. 



44 

 

 

Farquhar, G. D., S. Caemmerer, and J. A. Berry. 1980. A biochemical model of 

photosynthetic CO 2 assimilation in leaves of C 3 species. Planta 149:78–90. 

 

Farquhar, G. D., and T. D. Sharkey. 1982. Stomatal conductance and photosynthesis. 

Annual Review of Plant Physiology 33:317–345. 

 

Farquhar, G., and S. Wong. 1984. An Empirical Model of Stomatal Conductance. 

Australian Journal of Plant Physiology 11:191–210. 

 

Flexas, J., M. M. Barbour, O. Brendel, H. M. Cabrera, M. Carriquí, A. Díaz-Espejo, C. 

Douthe, E. Dreyer, J. P. Ferrio, J. Gago, A. Gallé, J. Galmés, N. Kodama, H. 

Medrano, Ü. Niinemets, J. J. Peguero-Pina, A. Pou, M. Ribas-Carbó, M. Tomás, T. 

Tosens, and C. R. Warren. 2012. Mesophyll diffusion conductance to CO2: an 

unappreciated central player in photosynthesis. Plant Science 193–194:70–84. 

 

Flexas, J., M. Barón, J. Bota, J.-M. Ducruet, A. Gallé, J. Galmés, M. Jiménez, A. Pou, M. 

Ribas-Carbó, C. Sajnani, M. Tomàs, and H. Medrano. 2009. Photosynthesis 

limitations during water stress acclimation and recovery in the drought-adapted 

Vitis hybrid Richter-110 (V. berlandierixV. rupestris). Journal of Experimental 

Botany 60:2361–2377. 

 

Flexas, J., A. Díaz-Espejo, J. A. Berry, J. Cifre, J. Galmés, R. Kaldenhoff, H. Medrano, 

and M. Ribas-Carbó. 2007a. Analysis of leakage in IRGA’s leaf chambers of open 

gas exchange systems: quantification and its effects in photosynthesis 

parameterization. Journal of Experimental Botany 58:1533–1543. 

 

Flexas, J., A. Diaz-Espejo, J. Galmés, R. Kaldenhoff, H. Medrano, and M. Ribas-Carbo. 

2007b. Rapid variations of mesophyll conductance in response to changes in CO2 

concentration around leaves. Plant, Cell & Environment 30:1284–98. 

 

Flexas, J., M. Ribas-Carbó, A. Diaz-Espejo, J. Galmés, and H. Medrano. 2008. 

Mesophyll conductance to CO2: current knowledge and future prospects. Plant, 

Cell & Environment 31:602–621. 

 

Gamerman, D., and H. F. Lopes. 2006. Markov Chain Monte Carlo: Stochastic 

Simulation for Bayesian Inference. 2nd edition. Chapman & Hall/CRC Press, Boca 

Raton. 

 

Gelman, A. 2006. Prior distributions for variance parameters in hierarchical models 

(Comment on Article by Browne and Draper). Bayesian Analysis 1:515–534. 

 

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 2004. Bayesian Data Analysis. 

Second. Chapman & Hall/CRC Press. 

 



45 

 

Genty, B., J.-M. Briantais, and N. R. Baker. 1989. The relationship between the quantum 

yield of photosynthetic electron transport and quenching of chlorophyll 

fluorescence. Biochimica et Biophysica Acta 990:87–92. 

 

Gilbert, M. E., A. Pou, M. A. Zwieniecki, and N. M. Holbrook. 2012. On measuring the 

response of mesophyll conductance to carbon dioxide with the variable J method. 

Journal of Experimental Botany 63:413–425. 

 

Gu, L., S. G. Pallardy, K. Tu, B. E. Law, and S. D. Wullschleger. 2010. Reliable 

estimation of biochemical parameters from C leaf photosynthesis-intercellular 

carbon dioxide response curves. Plant, Cell & Environment 33:1852–1874. 

 

Gu, L., and Y. Sun. 2014. Artefactual responses of mesophyll conductance to CO2 and 

irradiance estimated with the variable J and online isotope discrimination methods. 

Plant, Cell & Environment 37:1231–1249. 

 

Harley, P. C., F. Loreto, G. Di Marco, and T. D. Sharkey. 1992. Theoretical 

Considerations when Estimating the Mesophyll Conductance to CO2 Flux by 

Analysis of the Response of Photosynthesis to CO2. Plant Physiology 98:1429–

1436. 

 

Keenan, T., S. Sabate, and C. Gracia. 2010a. The importance of mesophyll conductance 

in regulating forest ecosystem productivity during drought periods. Global Change 

Biology 16:1019–1034. 

 

Keenan, T., S. Sabate, and C. Gracia. 2010b. Soil water stress and coupled 

photosynthesis–conductance models: Bridging the gap between conflicting reports 

on the relative roles of stomatal, mesophyll conductance and biochemical 

limitations to photosynthesis. Agricultural and Forest Meteorology 150:443–453. 

 

Laisk, A., and F. Loreto. 1996. Determining Photosynthetic Parameters from Leaf CO2, 

Exchange and Chlorophyll Fluorescence’. Plant Physiology 110:903–912. 

 

Lefebvre, S., T. Lawson, M. Fryer, O. V Zakhleniuk, J. C. Lloyd, and C. A. Raines. 2005. 

Increased Sedoheptulose-1,7-Bisphosphatase Activity in Transgenic Tobacco 

Plants Stimulates Photosynthesis and Growth from an Early Stage in 

Development. Plant Physiology 138:451–460. 

 

Linton, M. J., J. S. Sperry, and D. G. Williams. 1998. Limits to water transport in 

Juniperus osteosperma and Pinus edulis: implications for drought tolerance and 

regulation of transpiration. Functional Ecology 12:906–911. 

 

Liu, F., M. J. Bayarri, and J. O. Berger. 2009. Modularization in Bayesian analysis, with 

emphasis on analysis of computer models. Bayesian Analysis 4:119–150. 

 



46 

 

Loreto, F., P. C. Harley, G. Di Marco, and T. D. Sharkey. 1992. Estimation of Mesophyll 

Conductance to CO(2) Flux by Three Different Methods. Plant Physiology 

98:1437–1443. 

 

Loriaux, S. D., T. J. Avenson, J. M. Welles, D. K. McDermitt, R. D. Eckles, B. Riensche, 

and B. Genty. 2013. Closing in on maximum yield of chlorophyll fluorescence 

using a single multiphase flash of sub-saturating intensity. Plant, Cell & 

Environment 36:1755–1770. 

 

Lunn, D., N. Best, D. Spiegelhalter, G. Graham, and B. Neuenschwander. 2009a. 

Combining MCMC with “sequential” PKPD modelling. Journal of 

Pharmacokinetics and Pharmacodynamics 36:19–38. 

 

Lunn, D., D. Spiegelhalter, A. Thomas, and N. Best. 2009b. The BUGS project : 

Evolution , critique and future directions. Statististics in Medicine 28:3049–3067. 

 

Molitor, N.-T., N. Best, C. Jackson, and S. Richardson. 2009. Using Bayesian graphical 

models to model biases in observational studies and to combine multiple sources 

of data: application to low birth weight and water disinfection by-products. Journal 

of the Royal Statistical Society, A 172:615–637. 

 

Murata, N., M. Nishimura, and A. Takamiya. 1966. Fluorescene of chlorophyll in 

photosynthetic systems. II. Induction of fluorescence in isolated spinach 

chloroplasts. Biochimica et Biophysica Acta 120:23–33. 

 

Neilson, R. P., and L. H. Wullstein. 1985. Comparative Drought Physiology and 

Biogeography of Quercus gambelii and Quercus turbinella. American Midland 

Naturalist 114:259–271. 

 

Niinemets, U., A. Díaz-Espejo, J. Flexas, J. Galmés, and C. R. Warren. 2009a. Role of 

mesophyll diffusion conductance in constraining potential photosynthetic 

productivity in the field. Journal of Experimental Botany 60:2249–2270. 

 

Niinemets, U., A. Díaz-Espejo, J. Flexas, J. Galmés, and C. R. Warren. 2009b. 

Importance of mesophyll diffusion conductance in estimation of plant 

photosynthesis in the field. Journal of Experimental Botany 60:2271–2282. 

 

Ogle, K., J. Barber, and K. Sartor. 2013. Feedback and Modularization in a Bayesian 

Meta–analysis of Tree Traits Affecting Forest Dynamics. Bayesian Analysis 

8:133–168. 

 

Patrick, L. D., K. Ogle, and D. T. Tissue. 2009. A hierarchical Bayesian approach for 

estimation of photosynthetic parameters of C(3) plants. Plant, Cell & Environment 

32:1695–1709. 

 



47 

 

Perreault, L., J. Bernier, B. Bobée, and E. Parent. 2000. Bayesian change-point analysis 

in hydrometeorological time series. Part 1. The normal model revisited. Journal of 

Hydrology 235:221–241. 

 

Plaut, J. a, E. a Yepez, J. Hill, R. Pangle, J. S. Sperry, W. T. Pockman, and N. G. 

McDowell. 2012. Hydraulic limits preceding mortality in a piñon-juniper 

woodland under experimental drought. Plant, Cell & Environment 35:1601–1617. 

 

Pockman, W., and J. Sperry. 2000. Vulnerability to xylem cavitation and the distribution 

of Sonoran desert vegetation. American Journal of Botany 87:1287–1299. 

 

Pons, T. L., J. Flexas, S. von Caemmerer, J. R. Evans, B. Genty, M. Ribas-Carbo, and E. 

Brugnoli. 2009. Estimating mesophyll conductance to CO2: methodology, 

potential errors, and recommendations. Journal of Experimental Botany 60:2217–

2234. 

 

De Pury, D. G. G., and G. D. Farquhar. 1997. Simple scaling of photosynthesis from 

leaves to canopies without the errors of big-leaf models. Plant, Cell & 

Environment 20:537–557. 

 

R Core Team. 2015. R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. 

 

Schneider, C. a, W. S. Rasband, and K. W. Eliceiri. 2012. NIH Image to ImageJ: 25 years 

of image analysis. Nature Methods 9:671–675. 

 

Schreiber, U., W. Bilger, and C. Neubauer. 1995. Chlorophyll Fluorescence as a 

Nonintrusive Indicator for Rapid Assessment of In Vivo Photosynthesis. Pages 

49–70in E. D. Schulze and M. M. Caldwell, editors.Ecophysiology of 

Photosynthesis. Springer-Verlag, Berlin Heidelberg. 

 

Sharkey, T. D., C. J. Bernacchi, G. D. Farquhar, and E. L. Singsaas. 2007. Fitting 

photosynthetic carbon dioxide response curves for C(3) leaves. Plant, Cell & 

Environment 30:1035–1040. 

 

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. Van Der Linde. 2002. Bayesian 

measures of model complexity and fit. J. R. Statist. Soc. B 64:583–616. 

Terashima, I., Y. T. Hanba, D. Tholen, and Ü. Niinemets. 2011. Leaf functional anatomy 

in relation to photosynthesis. Plant Physiology 155:108–116. 

 

Tomás, M., J. Flexas, L. Copolovici, J. Galmés, L. Hallik, H. Medrano, M. Ribas-Carbó, 

T. Tosens, V. Vislap, and U. Niinemets. 2013. Importance of leaf anatomy in 

determining mesophyll diffusion conductance to CO2 across species: quantitative 

limitations and scaling up by models. Journal of Experimental Botany 64:2269–

2281. 

 



48 

 

Tosens, T., U. Niinemets, V. Vislap, H. Eichelmann, and P. Castro Díez. 2012. 

Developmental changes in mesophyll diffusion conductance and photosynthetic 

capacity under different light and water availabilities in Populus tremula: how 

structure constrains function. Plant, Cell & Environment 35:839–856. 

 

Turnbull, M. H., D. Whitehead, D. T. Tissue, W. S. F. Schuster, K. J. Brown, V. C. 

Engel, and K. L. Griffin. 2002. Photosynthetic characteristics in canopies of 

Quercus rubra , Quercus prinus and Acer rubrum differ in response to soil water 

availability. Oecologia 130:515–524. 

 

Wang, Y.-P., and R. Leuning. 1998. A two-leaf model for canopy conductance, 

photosynthesis and partitioning of available energy I: Model description and 

comparison with a multi-layered model. Agricultural and Forest Meteorology 

91:89–111. 

 

Warren, C. 2006. Estimating the internal conductance to CO2 movement. Functional 

Plant Biology 33:431–442. 

 

Warren, C. R. 2008. Stand aside stomata, another actor deserves centre stage: the 

forgotten role of the internal conductance to CO2 transfer. Journal of Experimental 

Botany 59:1475–1487. 

 

Warren, C. R., and M. a Adams. 2006. Internal conductance does not scale with 

photosynthetic capacity: implications for carbon isotope discrimination and the 

economics of water and nitrogen use in photosynthesis. Plant, Cell & Environment 

29:192–201. 

 

Warren, C. R., and E. Dreyer. 2006. Temperature response of photosynthesis and internal 

conductance to CO2: results from two independent approaches. Journal of 

Experimental Botany 57:3057–3067. 

 

Williams, D., and J. Ehleringer. 2000. Intra-and interspecific variation for summer 

precipitation use in pinyon-juniper woodlands. Ecological Monographs 70:517–

537.  



49 

 

Tables 

Table 2.1 Mean annual precipitation (MAP) and minimum (Tmin) and maximum (Tmax) 

temperature are based on the nearest weather stations, which occur within 13.7 to 35.4 

km of each site. Elev = elevation.  Prosopis velutina and Juniperus monosperma were 

sampled in both upland and lowland areas at Sycamore Creek (33°43’53.49” N, 

111°30’53.07” W) and Chevelon Canyon (34°35’27.59” N, 110°47’15.82” W), 

respectively.  Salix gooddingii and Quercus gambelii were only sampled in lowland areas 

at Sycamore Creek and Chevelon Canyon, respectively.  The McDowell Mountain site 

(33°43’32.38” N, 111°41’50.45” W) was relatively flat, and it did not have a lowland 

area, so we consider it an upland area given the lack of nearby surface water. The site 

codes correspond to the McDowell Mountains (MD), Sycamore Creek upland (Syc.) and 

lowland (Syc. L.), and Chevelon Canyon upland (Che.) and lowland (Che. L.).  

Site Species (# trees, # curves) Elev (m) MAP (mm) 

Tmin, 

Tmax 

(oC) 

1.MD P. velutina (5, 20) 533 325 
13.9, 

30.6 

2. Sycamore Creek 

    Syc. 

    Syc. L. 

 

P. velutina (3, 3) 

P. velutina (3, 3), S. gooddingii(3, 3) 

 

625 

 

408 

 

13.6, 

29.0 

3. Chevelon Canyon 

    Che. 

    Che. L. 

 

 

J. monosperma (3, 6) 

J. monosperma (3, 6), Q. gambelii (3, 5) 

 

1830 

 

508 

 

2.0, 

16.4 
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Table 2.2. Symbols and definitions of quantities used in the photosynthesis (FvCB) 

model.  

Symbol* Description Node type Unit 

𝐴 Rate of CO2 assimilation (photosynthesis) SD µmol m-2 s-1 

𝐶𝑖 Intercellular CO2 partial pressure D Pa 

𝑄 Photon flus density D µmol m-2 s-1 

𝑇 Leaf temperature D °C 

𝑃 Pressure D Pa 

𝛼 Absorptance D  

𝛷𝑃𝑆𝐼𝐼 
Electron flow through photosystem II (PSII) per unit 

quantum absorbed 
SD  

𝐴𝑐 Rubisco-limited rate of CO2 assimilation 
SQ 

 
µmol m-2 s-1 

𝐴𝑗 Electron transport limited rate of CO2 assimilation SQ µmol m-2 s-1 

𝐸 (
𝐸𝑔, 𝐸𝑚, 𝐸𝑟 , 𝐸𝑘𝑐 ,

𝐸𝑘𝑜 , 𝐸𝑣 , 𝐸𝑗
) 

Activation energies used in Arrhenius temperature 

functions 
SQ kJ mol-1 

𝑓 Spectral light quality factor C  

𝑔𝑚 Mesophyll conductance to CO2 SQ 
µmol m-2 s-

1Pa-1 

𝐻(𝐻𝑣 , 𝐻𝑗) 
Deactivation factors used in Arrhenius temperature 

functions 
SQ kJ mol-1 

𝐽 Rate of electron transport SQ µmol m-2 s-1 

𝐽max(𝐽𝑚𝑎𝑥25) 
Maximum electron transport rate (standardized to 25 

°C) 
SQ µmol m-2 s-1 

𝐾𝑐(𝐾𝑐25) 
Michaelis-Menten constant for Rubisco for CO2 

(standardized to 25 °C) 
SQ Pa 

𝐾𝑜(𝐾𝑜25) 
Michaelis-Menten constant for Rubisco for O2 

(standardized to 25 °C) 
SQ kPa 

𝑂 Partial pressure of O2 C Pa 

𝑄2 Photosynthetically active radiation absorbed by PSII D µmol m-2 s-1 

𝑅 Universal gas constant (8.314 J K-1 mol-1) C J K-1 mol-1 

𝑅𝑑 (𝑅𝑑25) 
Mitochondrial respiration in the light (standardized 

to 25 °C) 
SQ µmol m-2 s-1 

∆𝑆 (∆𝑆𝑣 , ∆𝑆𝑗) 
Entropy factors used in Arrhenius temperature 

functions 
SQ J K-1 mol-1 

𝑇 Leaf temperature D °C 

𝑉𝑐𝑚𝑎𝑥(𝑉𝑐𝑚𝑎𝑥25) 
Maximum rate of Rubisco carboxylation 

(standardized to 25 °C) 
SQ µmol m-2 s-1 

𝛽 
Proportion of irradiance absorbed by PSII relative to 

PSI 
SQ  

𝛤∗(𝛤25
∗ ) 

Chloroplastic CO2 compensation point (standardized 

to 25 °C) 
SQ Pa 

𝜃 Empirical curvature factor C  

𝑌25 
Plant-level mean of parameter Y standardized to 25 

°C 
SQ  

𝜇𝑌25 
Species-level mean of parameter Y standardized to 

25 °C 
SQ  

𝜇 ∗ 𝑌25 
Population-level mean of parameter Y standardized 

to 25 °C 
SQ  
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𝜎2 
Variance parameter describing observation and 

measurement error 
SQ  

𝜎2
𝑌𝑝𝑙𝑎𝑛𝑡  

Precision (1/variance) parameter describing plant-to-

plant variation within species 
SQ  

𝜎2
𝑌𝑠𝑝𝑝 

Precision (1/variance) parameter describing species-

to-species variability 
SQ  

 Note Type: D = data (fixed), SQ = stochastic quantity (unknown), SD = stochastic data, C = constant 

 

Symbols based on Patrick et al. (2009) and von Caemmerer (2000). 

*When data are available for a particular quantity, we often write the quantity as Xobs to 

indicated “observed X” (such as Aobs, Qobs, etc.) 
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Table 2.3: Farquhar et al. equations  

Eqn no. Equation 

1 𝐴𝐶𝑖
=

−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎
 

 
𝑎 = −

1

𝑔𝑚
 

 
𝑏 =

(𝑉𝑐𝑚𝑎𝑥 − 𝑅𝑑)

𝑔𝑚
+ 𝐶𝑖 + 𝐾𝑐 (

1 + 𝑂

𝐾𝑜
) 

 
𝑐 = 𝑅𝑑 [𝐶𝑖 + 𝐾𝑐 (

1 + 𝑂

𝐾𝑜
)] − 𝑉𝑐𝑚𝑎𝑥(𝐶𝑖 − 𝛤∗) 

2 
𝐴𝑗𝑖

=
−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎
 

 
𝑎 = −

1

𝑔𝑚
 

 
𝑏 =

𝐽
4 − 𝑅𝑑

𝑔𝑚
+ 𝐶𝑖 + 2𝛤∗ 

 𝑐 = 𝑅𝑑(𝐶𝑖 + 2𝛤∗) −
𝐽

4
(𝐶𝑖 − 𝛤∗) 

3 𝐽𝑖 =
𝑄2 + 𝐽𝑚𝑎𝑥 − √(𝑄2 + 𝐽max)2 − 4𝜃𝑄2𝐽max

2𝜃
 

 where θ=0.7 (Evans 1987) and  

 𝑄2𝑖 = 𝑄 ∙ 𝛼𝛽(1 − 𝑓) 

 where f = 0.15 (Evans 1987)  

4 𝑌 =  𝑓1(𝑌25, 𝐸𝑌, 𝑇) = 𝑌25𝑒𝑝_𝑌 (𝑇 − 298))/((298 ∙ 𝑅 ∙ 𝑇) )] 

5 

𝑌 = 𝑓2(𝑌25, 𝐸𝑌, 𝑇, ∆𝑆𝑌, 𝐻𝑌)

= 𝑌25 exp [
𝐸𝑌(𝑇 − 298)

298 ∙ 𝑅 ∙ 𝑇
] [

1 + exp (
298∆𝑆𝑌 − 𝐻𝑌

298𝑅 )

1 + exp (
𝑇∆𝑆𝑌 − 𝐻𝑌

𝑅 ∙ 𝑇 )
] 

   

Farquhar et al. (1980) (FvCB model) equations used, modified from Patrick et al. (2009)  
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Figures 

 

Figure 2.1. Model fit for artificial data. (A) Predicted versus observed photosynthetic 

rate (A). (B) Predicted versus observed values φPSII. The predicted values are the 

posterior means and the error bars represent the 95% Bayesian credible intervals (CIs) for 

replicated data. The dashed diagonal lines represent the 1:1 lines.  The solid lines show 

the regression of predicted versus observed, which had an R2 of 0.89 and 0.95 for A and 

φPSII, respectively.  
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Figure 2.2. Artificial data model parameter estimates. Results from the Bayesian model 

with 95% Bayesian credible intervals (BCIs) based on fitting the FvCB model to data for 

n =15 curves per species for both constant (25° C) and variable temperature (15, 20, 25, 

30, 35° C; n = 3 for each temperature) scenarios.  The short horizontal lines indicate the 

true parameter value.  Results are shown for four key photosynthesis parameters at 25oC: 

(A) mesophyll conductance (gm25), (B) mitochondrial respiration in the light (Rd25), (C) 

maximum rate of Rubisco carboxylation (Vcmax25), and (D) maximum electron transport 

rate (Jmax25). Species are indicated by: N = N. tobacum, L = L. tridentata, and A = A. 

rubrum. 
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Figure 2.3. Model fit for the field data. (A) Predicted versus observed photosynthetic rate 

(A). (B) Predicted versus observed values φPSII. The predicted values are the posterior 

means and the error bars represent the 95% Bayesian credible intervals (BCIs) for 

replicated data. The dashed diagonal lines represent the 1:1 lines.  The solid lines show 

the regression of predicted versus observed, which had an R2 of 0.91 and 0.95 for A and 

φPSII, respectively.   
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Figure 2.4. Parameter estimates for field data. Plant (open symbols) and species by site 

level (filled symbols) posterior means and 95% BCIs across all seven sampling locations 

for four key photosynthesis parameters at 25oC: (A) mesophyll conductance (gm25), (B) 

mitochondrial respiration in the light (Rd25), (C) maximum rate of Rubisco carboxylation 

(Vcmax25), and (D) maximum electron transport rate (Jmax25). Descriptions of site codes are 

in Table 2.1. 
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Figure 2.5. Plant water status vs gm2. Posterior means and 95% BCIs for (A) predicted 

gm25 vs gs (measured by the licor) at the curve level and (B) temperature corrected gm at 

25 oC (gm25) versus plant water status at the plant level, which is represented as the 

relative difference in plant water potentials, where ∆𝜓𝑏 = (𝜓𝑏,𝑐𝑟𝑖𝑡 − 𝜓𝑏,𝑎𝑣𝑒𝑟𝑎𝑔𝑒) 𝜓𝑏,𝑐𝑟𝑖𝑡⁄ .  

In panel B, the further a plant is to the left (nearer ∆𝜓𝑏 = 0), the closer it is to its critical 

value where complete hydraulic failure is expected (i.e., smaller values of ∆𝜓𝑏 indicate 

greater plant water stress).  Each 𝜓𝑏,𝑎𝑣𝑒𝑟𝑎𝑔𝑒 value is the average measured branch water 

potential of a plant across all measurements taken. The 𝜓𝑏,𝑐𝑟𝑖𝑡 values were obtained from 

the literature and are: -4.1 (Sperry et al. 1991), -13.5, -2, and -7 (Pockman and Sperry 

2000) MPa for Q. gambelii, J. monosperma, S. gooddingii, and P. velutina,  respectively. 

Open symbols represent lowland plants; solid symbols represent upland plants. Numbers 

by error bars indicate values outside of the figure’s range.  Descriptions of site codes are 

in Table 2.1. 
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Figure 2.6: Posterior results obtained from applying HB model to field data with the 

φPSII data (solid symbols, full model) or without the φPSII data (open symbols, reduced 

model). The parameter estimates were significantly different between the full and reduces 

models in two cases for gm25, in three cases for Jmax25, and in zero cases for Vcmax25. 

Inclusion of the φPSII data generally resulted in narrower 95% BCIs in most cases. 

Descriptions of site codes are in Table 2.1. 
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3. TRAIT SPECTRA PREDICTED BY A MECHANISTIC MODEL OF TREE 

GROWTH AND CARBON ALLOCATION 

Abstract 

Research on plant functional traits has revealed many interesting and potentially 

important patterns among morphological, physiological, and life history traits and the 

environment. These are exemplified in studies finding trade-offs between groups of traits 

in the leaf and wood economics spectra. Most empirical studies, however, suffer from at 

least three limitations: 1) the correlative nature of the analysis limits the ability to make 

predictions under novel conditions; 2) due to incomplete trait data, they often work with 

means at various levels without accounting for variation; 3) they tend to focus on traits 

that are easy to measure, and thus may overlook other traits important for understanding 

plant or tree growth. Here, we take a different approach and use an individual-based 

model of tree growth and mortality (ACGCA) to investigate the theoretical trait space 

(TTS) of North American trees. The model includes 32 parameters representing 

allometric, physiological, and anatomical traits, some of which overlap with the leaf and 

wood economics spectra. Using a Bayesian approach, we fit the ACGCA model to 

individual tree heights and diameters from the USFS Forest Inventory and Analysis (FIA) 

dataset, with further constraints by literature-based priors. This is accomplished by fitting 

the model to 1.6 million FIA records that are aggregated across individuals, species, and 

sites, producing a “global” (posterior) distribution of traits (parameters) that lead to 

realistic growth. We explored this multidimensional (joint) distribution (the TTS) to 

evaluate trait-trait relationships that emerge from the ACGCA model, and to compare 

these against empirical patterns. Only three notable bivariate correlations (r > 0.2), 
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among 496 possible pairs of traits, were contained in the TTS, but stepwise and best 

subsets regressions uncovered a complicated multivariate structure. For example, a subset 

of traits—related to photosynthesis (e.g., radiation-use efficiency) and maintenance 

respiration traits—exhibited strong multivariate trade-offs with each other, while half of 

the traits—mostly related to allometries and construction costs—varied independent of 

other traits. Interestingly, SLA (specific leaf area) was related to several root traits that 

are rarely measured in empirical studies. The trade-offs that emerged in the TTS tend to 

reflect mass-balance (related to carbon allocation) and engineering (mostly related to 

allometries) tradeoffs that are represented in the ACGCA model, and point to potentially 

important traits that are under-explored in field studies (e.g., root traits, branch 

senescence rates, xylem conducting area). 

Keywords: FIA, Forest Inventory and Analysis, Individual-based model, Markov chain 

Monte Carlo, North American trees, plant functional traits, trait space, trait trade-offs, 

tree growth model 
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Introduction 

Functional trait research has led to the recent discovery of important patterns 

among plant morphological, physiological, and life history traits and between such traits 

and the environment. Functional traits are well-defined properties of organisms, often 

measured at the level of an individual, that strongly influence organismal performance or 

fitness (McGill et al. 2006). For trees, key traits include properties of leaves/needles, 

wood/stems, and roots that are important determinants of plant function, such as those 

related to water transport, carbon gain, mechanical limitations, and nutrient uptake 

(Wright et al. 2004, Chave et al. 2009, Reich 2014). Empirical studies—those based 

primarily on trait measurements without a significant theoretical or modeling 

component—of hundreds (Reich et al. 1997, Baraloto et al. 2010) to thousands (Wright et 

al. 2004, Shipley et al. 2006, Chave et al. 2009) of species have discovered important trait 

tradeoffs or correlations (e.g., leaf lifespan increases with leaf mass per area; relative 

growth rate decreases with wood density).  

It is often the case, however, that easily measured traits are favored over those 

that are more difficult to measure, but that may be more directly related to mechanisms 

(Weiher et al. 1999, Lavorel and Garnier 2002, Lavorel et al. 2007). This “measurement 

bias” can potentially limit inferences about traits that may be key predictors of whole-

plant performance. Mechanistic models have the potential to overcome such bias by 

incorporating traits—regardless of how easy or difficult they are to measure—that 

underlie mechanisms or processes (e.g., photosynthesis, allocation, structural constraints) 

that govern performance. Thus, simulation experiments with mechanistic models may 



62 

 

allow us to explore tradeoffs between multitudes of traits that cannot be easily 

accomplished by field studies. 

 A major development in trait-based ecology are trait spectra, which place 

organisms along one or more continuous axes (e.g., tradeoffs or life-history dimensions). 

For instance, the leaf economics spectrum (LES) quantifies tradeoffs among leaf mass 

per area (LMA), leaf lifespan (LL), and mass-normalized values of photosynthetic 

capacity (Amass), leaf nitrogen (Nmass), leaf phosphorus (Pmass), and leaf dark respiration 

(Rmass) (Wright et al. 2004). Trait-environment relationships are also often evaluated; for 

instance, LES traits are often correlated with annual rainfall and temperature (Wright et 

al. 2004). Another spectra relevant to trees is the wood economics spectrum (WES), 

which links wood traits to major ecological functions, including competitive ability, 

resistance to stress, and disturbance responses (Chave et al. 2009). An important tradeoff 

revealed by the WES is that growth and mortality rates are both negatively correlated 

with wood density (Chave et al. 2008, 2009). A third spectra, the worldwide ‘fast-slow’ 

economics spectrum, integrates key leaf, wood, and fine root traits, including those in the 

LES and WES, into a single spectrum by demonstrating consistent tradeoffs between 

traits leading to fast versus slow growth (Reich 2014). Although the validity and 

interpretation of some trait spectra have been questioned (Lloyd et al. 2013, Osnas et al. 

2013), there is still broad interest in quantifying empirical trait spectra (Diaz et al. 2016) 

and using these patterns to more realistically represent plant functional diversity in global 

carbon-climate models (Scheiter et al. 2013, Van Bodegom et al. 2014, Fisher et al. 

2015). Yet, the underlying factors giving rise to empirical patterns are not always clear 

and likely emerge from different types of tradeoffs, such as those related to resource 
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allocation or physical constraints (Scheiter et al. 2013). It is possible that more complex 

multivariate patterns are contained within such trait spectra that could underlie species 

coexistence mechanisms (Clark et al. 2010). 

The majority of studies exploring functional traits and associated trait spectra 

focus on assessing trait-trait and/or trait-environment relationships. Standard approaches 

include regression analyses such as bivariate, multiple, and stepwise multiple regression 

(Reich et al. 1999, Atkin et al. 2015), standardized major axis regression (Wright et al. 

2004), and Dirichlet regression (Adler et al. 2014). The general goal of such analyses is 

to discover how functional traits are related to other traits, to an emergent process (e.g., 

rates of survival, growth, reproduction), or to the environment. Ordination methods such 

as principle components analysis (Reich et al. 1999, Diaz et al. 2004, Cavender-Bares et 

al. 2004), principle coordinate analysis (Stahl et al. 2013), and multiple factor analysis 

(MFA) (Baraloto et al. 2010) reduce the dimensionality of the problem and produce low 

dimensional axes that can be evaluated to identify tradeoffs.  For instance, Diaz et al. 

(2004) found that the first principle component axis (PCA1) was primarily driving by 

SLA and leaf thickness, but in opposite directions such that as SLA increases, leaf 

thickness decreases, as would be expected. While standard multivariate approaches such 

as ordination are useful, they typically do not account for conditional relationships among 

traits; i.e., the relationship between a pair of traits may depend on the values of other 

traits. We refer to these common approaches (i.e., regression and ordination methods) as 

describing “empirical trait spectra” because they are revealed by analyses of trait data 

collected on living plants, often growing in field conditions. Though these studies provide 

vital insights, they are often limited by the traits they can assess (due to the practicality of 
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measurement) and by the phenomenological or correlational nature of the analyses. This 

results in the inability to explicitly consider mechanisms that give rise to empirically 

observed tradeoffs. These limitations may render empirical spectra inappropriate for 

predicting plant function under novel conditions (Webb et al. 2010, Evans 2012, Scheiter 

et al. 2013).   

To move beyond phenomenological models of trait relationships, and to develop 

the capacity to predict plant function under future novel environments, tradeoffs should 

be related to plant function and underlying processes and mechanisms. Scheiter et al. 

(2013) envisaged that trait tradeoffs fall into one of three categories describing 

mechanisms that give rise to the tradeoffs, and they suggested that this would facilitate 

incorporating a trait perspective into dynamic global vegetation model (DGVM). These 

include: (1) mass conservation tradeoffs related to resource use and allocation, (2) 

engineering tradeoffs that prevent structures or architectures of plants that are not 

feasible, and (3) empirical tradeoffs that are more difficult to derive mathematically and 

that are not explicitly considered in a given modeling framework (Scheiter et al. 2013). 

We propose a complimentary approach to understanding trait spectra that takes these 

considerations into account by using theoretical or process-based models of whole-plant 

function to determine how functional traits interact with each other to influence whole-

plant function (e.g., growth and survival). 

To produce realistic behavior of whole-plant performance, theoretical models 

should consider important plant physiological processes (e.g., photosynthesis, respiration, 

etc.), carbon allocation (mass conservation tradeoffs), structural characteristics (e.g., 

anatomical features), and allometeric relationships (engineering tradeoffs). Examples 
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include the many existing individual-based models (IBMs) of plant growth (Bugmann 

2001, Ogle and Pacala 2009, Fyllas et al. 2014). These models are useful in relating key 

traits—which usually take the form of model parameters—to processes such as carbon 

acquisition, allocation, and metabolism, and provide a novel way of investigating the 

influence of key functional traits (model parameters) on growth and/or survival (model 

outputs).  By fitting IBMs to empirical data on plant performance and functional traits, it 

may be possible to investigate the “theoretical” trait space that emerges from the mass 

conservation and engineering tradeoffs (Scheiter et al. 2013) that are built into the IBM. 

Evaluation of the theoretical trait space (or spectra) should provide insight into the factors 

giving rise to observed, empirical trait spectra, and possibly reveal potentially important 

trait relationships or tradeoffs that have not been previously identified.  

The main objectives of this study are to quantify the theoretical trait space (TTS) 

of North American tree species, and to use this TTS to understand empirical trait spectra 

(e.g., LES and WES). To accomplish these objectives, we fit an IBM of tree growth and 

survival, the ACGCA model (Ogle and Pacala 2009), to 1.6 million observations of 

“healthy” trees from the USFS Forest Inventory and Analysis (FIA) database that were 

pooled across sites, species, and individuals, complemented by literature information 

(TreeTraits database; Kattge et al. 2011; Ogle et al. 2013; Ogle et al. 2014) to help 

constrain parameter values (traits) to realistic ranges. To achieve this, we employed a 

Bayesian framework that utilized a fast, custom stochastic algorithm for fitting the 

ACGCA model to the aggregated FIA data and literature information. This produced a 

32-dimensional (joint) posterior distribution of parameters (traits) that lead to realistic 

tree growth, which we refer to as the TTS. We evaluated this TTS to address the 
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following questions: (1) Are notable bivariate correlations or trait-trait tradeoffs 

contained in the TTS? (2) Do higher dimensional relationships exist between traits in the 

TTS, and if so, which traits contribute to these relationships? (3) How does the TTS 

compare to empirical spectra such as the LES and WES?   

Methods 

Overview 

We fit the Allometrically Constrained Growth and Carbon Allocation (ACGCA) 

model (Ogle and Pacala 2009) to USFS Forest Inventory and Analysis (FIA) data on 

individual tree heights and stem diameters within a Bayesian framework to investigate 

the theoretical trait space (TTS) of North American trees. Computational challenges 

involved with fitting the ACGCA model to the large FIA dataset and the limitations of 

precompiled software necessitated development of a customized Metropolis-Hastings 

(MH) algorithm.  In addition to fitting the ACGCA model to the FIA data, model 

parameters (Table 3.1) were partially constrained by priors derived from the TreeTraits 

database (Kattge et al. 2011b, Ogle et al. 2013, 2014). Below, we first summarize the 

ACGCA model, then we provide an overview of the data sources used to inform the 

ACGCA model, followed by a description of the Bayesian approach used to fit the 

ACGCA model to the data, including a description of the custom MH algorithm and how 

the Bayesian results were analyzed. 

Tree growth and carbon allocation model         

The ACGCA model is an individual-based model (IBM) of tree growth and 

mortality (Ogle and Pacala 2009).  The ACGCA model recognizes the importance of 
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including both allometric relationships (related to engineering tradeoffs) and 

physiological (mass balance) processes underlying labile and structural carbon dynamics, 

including allocation and growth (Ogle and Pacala 2009); these processes are governed by 

32 functional traits (i.e., model parameters, see Table 3.1).  Tree growth is simulated by 

dynamically allocating labile carbon to storage and structural biomass pools in a way that 

obeys observed allometric relationships among leaf, stem, branch, and root compartments 

(Ogle and Pacala 2009). Structural (biomass) pools of different tissue compartments 

(leaves; fine roots; and root, branch, and trunk sapwood and heartwood) are predicted at 

each time step.  

Labile carbon dynamics are essential to the ACGCA model. There are two main 

types of labile carbon storage pools. One is associated with storage in leaf and fine root 

tissue, and labile carbon in this pool is retranslocated when structural tissue is lost (e.g., 

via senescence of leaves or fine roots). The other storage pool is associated with storage 

in sapwood and can be drawn upon during times of stress (high labile carbon demand). 

The ACGCA model also includes a transient carbon pool (e.g., recent photosynthesis and 

retranslocated carbon) that is not associated with storage in any specific tissue and is 

immediately redistributed within the plant to accommodate structural biomass 

production, growth respiration, and allocation to storage pools (Ogle and Pacala 2009).  

Labile carbon allocation and storage aligns with six physiological states: healthy, 

static, shrinking, recovering, recovered, or dead.  Each physiological state is described by 

a set of difference equations that satisfy mass-balance relationships among the structural 

and labile carbon pools (Eqn. 4-8, below). Negative carbon balance (demand > supply) 

results in a “reduced” allometry, an unhealthy state, and eventual tree death.  For reasons 
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discussed below in the MH algorithm section, only the healthy state is relevant to this 

study, which we summarize here. In the healthy state, labile carbon is allocated so that 

the sizes of the structural and storage pools are kept in allometric proportion by solving a 

set of difference equations that tie the size of each pool to trunk radius. Below, we 

highlight key aspects of the model relevant to this study, and note specific functional 

traits relevant to these processes; a full description of the model is given in Ogle & Pacala 

(2009). 

Light is the only environmental driving variable in the current version of the 

ACGCA model. A simple radiation-use function is applied to determine the amount of 

labile carbon fixed by a tree (gross photosynthesis, PG) per year: 

 𝑃𝐺(𝑡) = 𝜀 ∙ 𝐴𝑃𝐴𝑅(𝑡) (11)  

Where ε is radiation-use efficiency (a functional trait), APAR is the absorbed 

photosynthetically active radiation (PAR), and t is time (years). APAR is based on the 

maximum annual PAR above the tree’s crown (PARmax), modified by the light extinction 

coefficient of the tree’s crown (k, a trait), its leaf area (LA), and its leaf area index (LAI) 

using the Beer-Lambert equation (Ogle and Pacala 2009): 

 𝐴𝑃𝐴𝑅(𝑡) = 𝑃𝐴𝑅𝑚𝑎𝑥{1 − 𝑒𝑥𝑝(−𝑘 ∙ 𝐿𝐴𝐼(𝑡 − ∆𝑡))} ∙ (
𝐿𝐴(𝑡−∆𝑡)

𝐿𝐴𝐼(𝑡−∆𝑡)
)  (12)  

The numerical time step, Δt, is set to 1/16 of a year to achieve numerical convergence, 

and the model outputs individual tree states at an annual time-scale (Ogle and Pacala 

2009). The effect of light was tested by running simulations that varied PARmax from 10% 

(e.g., representing an overtopped tree in a dense canopy) to 100% (an open-grown tree) 

of the maximum incident radiation expected above the forest canopy, following a 
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logarithmic progression (206, 259, 326, 411, 517, 651, 820, 1032, 1300, 1636, 2060 MJ 

m-2 year-1), yielding 11 light levels.  LA is assumed to be related to xylem conducting area 

(XA, a trait) via an allometric function. LAI is equal to LA divided by the tree’s projected 

crown area (Ogle and Pacala 2009). 

The amount of “excess” labile carbon determines the size of the transient pool 

available for biomass production at time t, E(t). E(t) is computed as a simple mass-

balance that first scales up area-specific photosynthesis to tree-level carbon assimilation 

(input variable) as 𝑃𝐺(𝑡) ∙ 𝐿𝐴(𝑡 − ∆𝑡). Other inputs to E(t) are associated with 

retranslocation of labile carbon from senescing leaf and root tissues and sapwood to 

heartwood conversion (incorporated through δ terms explained below). Losses from E(t) 

are attributed to maintenance respiration (RM) of all living tissues (tissue-specific trait). 

Thus, E(t) is given by:  

 𝐸(𝑡) = 𝑃𝐺(𝑡) ∙ 𝐿𝐴(𝑡 − ∆𝑡) + 𝛿𝑆(𝑡) ∙ 𝑆𝑂 ∙ 𝐵𝑂𝑆(𝑡 − ∆𝑡)

+ ∑ 𝛿𝑖 ∙ 𝑆𝑖 ∙ 𝐵𝑖(𝑡 − ∆𝑡) − 𝑅𝑀(𝑡)

𝑖=𝐿,𝑅

 
(13)  

Key traits here include δS, δL, and δR (g gluc g dw-1), which are the labile carbon storage 

capacities of the bulk sapwood, leaves, and fine roots, respectively (see Ogle and Pacala 

2009 for full derivation of δ terms). BOS, BL, and BR (g dw) represent the structural 

biomass of other (e.g., branches and coarse roots) sapwood, leaves, and fine roots, and 

SO, SL, and SR are their corresponding senescence rates (traits) (Ogle and Pacala 2009).  

Excess labile carbon (when E > 0) is subsequently allocated to the different tissue 

compartments to produce structural biomass, Bi, where i = L (leaves), R (fine roots), TS 

(trunk softwood), TH (trunk heartwood), T (bulk trunk, BTS+BTH), OS (other sapwood), 
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OH (other heartwood), O (bulk otherwood). For each time step in the model, the excess 

carbon allocated to each compartment is simultaneously converted to biomass and 

allocated to storage according to each tissue’s labile carbon storage capacity (δ’s, traits as 

defined above). The allocation of labile carbon and production of structural carbon must 

satisfy constraints set by the tree’s allometric relationships, which are tied the radius (r) 

of the tree’s trunk. For a tree growing according to the healthy allometry (Ogle & Pacala 

2009): 

 ∆𝐵𝑂𝑆 = 𝜆 ∙ ∆𝐵𝑇𝑆 (14)  

 ∆𝐵𝑂𝐻 = 𝜆 ∙ ∆𝐵𝑇𝐻 (15)  

 ∆𝐿𝐴(𝑟(𝑡))

𝑆𝐿𝐴
= ∆𝐵𝐿 (16)  

 𝜌𝑅 ∙
𝑟𝑅

2
∙ ∆𝑅𝐴(𝑟(𝑡)) = ∆𝐵𝑅 (17)  

 𝜌𝑊(𝑡) ∙ ∆𝑉𝑇(𝑟(𝑡)) = ∆𝐵𝑇 (18)  

The ΔBi’s denote the change in structural biomass in a given time step. Allometric 

relationships are incorporated via the changes in LA (ΔLA), fine root area (ΔRA), and 

trunk volume (ΔVT), which are expressed as functions of trunk radius (r) under the 

healthy allometry. The parameters , SLA, rR, R and W are functional traits (see Table 

3.1) that link allometric and mass-balance constraints. 

The above equations (4-8) are solved numerically using a root-finding routine 

(Ogle and Pacala 2009), yielding solutions for r and all other state variables (e.g., LA, RA, 

B’s, etc.), including tree height (H), which is linked to r by a simple allometric equation: 
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𝐻(𝑡) = 𝐻𝑚𝑎𝑥 ∙ {1 − 𝑒𝑥𝑝 (−

𝜑𝐻

𝐻𝑚𝑎𝑥
∙ 𝑟(𝑡))} (19)  

Two key allometric traits are the maximum tree height, Hmax, and the initial (at r = 0) 

slope of the H versus r allometric curve, 𝜑𝐻. 

For the purpose of fitting the ACGCA model to FIA data, the model can be 

viewed as a non-linear function of the vector of parameters (traits) and inputs (Table 3.1) 

that yields outputs such as H and r for each year of the simulation. 

Data sources  

The ACGCA model parameters are informed by two primary data sources: the 

Forest Inventory and Analysis (FIA) data compiled by the US Forest Service 

(http://www.fia.fs.fed.us/) and the TreeTraits database compiled from published literature 

(Kattge et al. 2011b, Ogle et al. 2013, 2014) (see details below). The FIA database 

provided radius and height data for 965,003 individual trees occurring in approximately 

100,779 plots that are an unbiased sample of forested areas in the U.S. (Bechtold and 

Patterson 2005).  

Forest inventory data.—The FIA data were filtered such that only individuals 

with at least two height and diameter measurements were included in the study to 

facilitate calculating change in radius (Δr) and height (ΔH). The data were further filtered 

to select for “healthy,” growing trees such that an individual was discarded if: (1) it was 

missing r and/or H values, (2) Δr ≤ 0 or ΔH ≤ 0, (3) r < 0.05 m (the starting radius for the 

ACGCA simulations), or (4) the annualized Δr or ΔH values were larger than the 99.9% 

quantile of all data (i.e., remove outliers). The resulting, filtered FIA dataset (1,270,510 

remeasurements) had minimum and maximum (min, max) r, H, Δr, and ΔH values of 
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(0.050 m, 0.923 m), (0.051 m, 78.030 m), (3.24 x 10-5 m yr-1, 0.012 m yr-1), and (1.23 x 

10-2
 m yr-1, 3.360 m yr-1), respectively. 

 The sheer size of the FIA data precludes fitting the ACGCA model to individual- 

or tree-level data as this would greatly exceed available computational resources. Thus, to 

quantify the distribution of observed tree growth based on the FIA data, the r, H, Δr, and 

ΔH data were log-transformed and used to construct a four-dimensional histogram 

describing the distribution of “realistic” values corresponding the healthy, growing trees. 

The histogram had nine evenly spaced bins in each dimension (94 = 6,516 total bins). The 

number of bins was chosen based on trial and error to provide sufficient resolution for 

analysis, but avoiding excessive computational issues associated with using more bins. 

Limits in each dimension were based on the minimum and maximum values in the 

filtered FIA data, with the exception of the minimum value for r which was set to 0.05. 

Each point (ri, Hi, Δri, ΔHi) representing an individual tree with multiple measurements 

was assigned to a bin, for i = 1, 2, …, 1,270,510 remeasurment points. The proportion of 

trees falling in each of the 6,561 bins was computed, yielding a histogram in four 

dimensions representing an empirical, 4-dimensional probability distribution of the FIA 

data (henceforth referred to as Hist), aggregated across individuals, species, and sites. 

 Tree functional traits database.—Data from the TreeTraits database (Kattge et al. 

2011b, Ogle et al. 2013, 2014) were used to derive semi-informative priors to constrain 

the parameters (traits) to realistic ranges. TreeTraits contains summary statistics (e.g., 

sample means or parameter estimates) for functional traits extracted from the literature; it 

provided over 7400 records for 27 functional traits with sample sizes ranging from 6 (rr 

and r) to >1700 (SLA and ) (see Table 3.1 for parameter/trait descriptions). The 
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Bayesian model (described below) requires priors for log- or logit-scale parameters, and 

means and standard deviations of the transformed values (log or logit, Table S3.1) were 

derived from the TreeTraits database and used to construct semi-informative priors. The 

TreeTraits database lacked data for λs, λh , f1, ηB, and m (see Table 3.1 for definitions); in 

these cases, the prior means were set to the values used for Pinus taeda and Acer rubrum 

in Ogle and Pacala (2009), and the prior standard deviations were set to constrain 

parameters to reasonable ranges. See Table S3.1 for the prior distributions. 

Bayesian model 

 The ACGCA model was fit to the FIA data (histogram) in a Bayesian framework 

to yield posterior distributions of parameters (traits) leading to “realistic tree” growth 

based on the FIA data and partially constrained by the TreeTraits priors. The basic 

Bayesian formulation defines the posterior distribution of the parameters, conditional on 

the data (FIA), as proportional to the likelihood of the data (based on Hist) multiplied by 

the prior(s): 

 𝑝(𝜽|𝐹𝐼𝐴) ∝ 𝑝(𝐹𝐼𝐴|𝑟(𝜽), 𝐻(𝜽), ∆𝑟(𝜽), ∆𝐻(𝜽)) ∙ 𝑝(𝜽) (20)  

Note that θ represents the vector of 32 ACGCA model parameters (we use bold font to 

explicitly refer to the vector of parameters). The term p(θ|FIA) is the posterior 

distribution of θ conditional on the FIA data; p(FIA|r(θ), H(θ), Δr(θ), ΔH(θ)) is the 

likelihood of the FIA data given the ACGCA outputs for r, H, Δr, and ΔH, which are 

deterministic function of θ; and, p(θ) is the joint prior for θ. 

The likelihood of the FIA data given the ACGCA output was computed by 

evaluating Hist at the ACGCA output (r, h, Δr, Δh). In particular, for each annual time 
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step (t = 1, 2, …, T) for which ACGCA output are produced, the likelihood is computed 

as: 

  𝑝(𝐹𝐼𝐴|𝑟(𝜽), 𝐻(𝜽), ∆𝑟(𝜽), ∆𝐻(𝜽))

=  ∏ 𝐻𝑖𝑠𝑡(𝑟𝑡(𝜽), 𝐻𝑡(𝜽), ∆𝑟𝑡(𝜽), ∆𝐻𝑡(𝜽))

𝑇

𝑡=1

 

(21)  

That is, for a vector of outputs for r, H, Δr, and ΔH (where Δrt = rt – rt-Δt, and likewise for 

ΔH), at each time, t, we find the 4-dimensional bin in Hist that contains these values, and 

we return the probability of observing this vector based on the relative frequencies of the 

FIA data that are looked up in Hist. Equation (11) thus obtains the (histogram) 

probability of each simulated (r, H, Δr, ΔH) over the simulation period from initial year t 

= 1 to final year t = T, and the product of these probabilities is the likelihood of the data 

given the particular outputs produced by the ACGCA model for a given vector of 

parameters (θ). If the ACGCA simulation associated with a particular vector of trait 

values (θ) resulted in a tree that was in the healthy state for the entire 50-year simulation, 

then T = 50 (approximately the average age of a tree in the FIA data).  But, if the tree 

died during the simulation period (not in the healthy state), or had values outside of the 

minimum and maximum values set by Hist, the parameters were rejected in the MH 

algorithm (see below), because the likelihood is defined as 0 in these cases.  

 The prior, p(), in Eqn 10 is computed as the product of 32 independent 

univariate priors for each trait k in the parameter vector θ; i.e., 𝑝(𝜽) = ∏ 𝑝(𝜃𝑘)32
𝑘=1 , 

where the priors for each k are given in Table S3.1. As noted previously, all parameters 

were log- or logit-transformed, and each is assigned a normal or truncated normal prior 

(see Eqn 13). For the normal priors:  
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 𝑙𝑜𝑔(𝜃𝑘) 𝑜𝑟 𝑙𝑜𝑔𝑖𝑡(𝜃𝑘) ~𝑁𝑜𝑟𝑚𝑎𝑙(𝜃𝑘
̅̅ ̅, 𝜎𝑘 ) (22)  

Eqn 12 applies to a subset of parameters in k = 1, …, 32; 𝜃𝑘
̅̅ ̅ and 𝜎𝑘 represent the prior 

mean and standard deviation, respectively, derived from the corresponding log- or logit-

transformed TreeTraits data (see Table S3.1 for the transformations applied to each 

parameter). 

Truncated normal priors were used for η, ηB, Hmax, and ρmax (see Table 3.1 for 

definitions, and Table S3.1 for transformations) to exclude unrealistic or extreme values: 

 𝑙𝑜𝑔(𝜃𝑘) 𝑜𝑟 𝑙𝑜𝑔𝑖𝑡(𝜃𝑘)~𝑇𝑟𝑢𝑛𝑐𝑁𝑜𝑟𝑚𝑎𝑙(𝜃𝑘
̅̅ ̅, 𝜎𝑘, 𝑎𝑘, 𝑏𝑘) (23)  

where 𝜃𝑘
̅̅ ̅ and 𝜎𝑘 are the prior mean and standard deviation, and ak and bk are the lower 

and upper bounds, respectively. Both trunk-tapering parameters, η and ηB, were given 

bounds relative to each other such that η > ηB. This was accomplished by setting a = 

log(ηB) and b = ∞ for η, and a = -∞ and b = log(η) for ηB. The maximum potential tree 

height, Hmax, was given a lower bound of a = -∞ and an upper bound of b = log(127 m) 

based on physical limitations of water transport (Domec et al. 2008). Finally, wood 

density, ρ, was given bounds based on physical (or engineering) constraints imposed by 

γX, γw, and VwVc, where VwVc represents the volume ratio of structural tissue to internal 

cell volume for living sapwood cells such that: 

 
𝑎 =

𝑉𝑤𝑉𝑐 − 𝛾𝑥(𝑉𝑤𝑉𝑐 − 𝛽)

𝛾𝑤(1 + 𝑉𝑤𝑉𝑐)
 (24)  

 
𝑏 =

1 − 𝛾𝑥

𝛾𝑤
 (25)  

Eqn 14 is based on the assumption that there is a lower limit to the ratio of xylem cell 

wall area (mostly cellulose with density 1/w; see Table 3.1) to xylem conduit lumen area 
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(set by ). Eqn 15 is based on the assumption that the conduit lumens do not contain 

structural tissues, and thus do not contribute mass to the bulk wood density. Here, we 

assume VwVc = 0.5 and   0.05, and we treat x and w as unknown parameters (traits). 

The above Bayesian model is relatively simple and does not involve any 

hierarchical structures. No attempt was made to estimate individual-, site-, or species-

specific parameters.  Instead, the goal of the Bayesian model is to yield distributions of 

the “global” θ vectors that are consistent with the “aggregated” FIA data—pooled across 

all individuals, sites, and species—and the semi-informative priors, which also pooled 

across all studies (publications) and species. This greatly simplifies the model 

formulation and computational requirements (i.e., the ACGCA model is only run once for 

every θ vector, and the likelihood only needs to be evaluated once for a given ACGCA 

output vector at a each simulation year). Hence, the posterior distribution of θ can be 

viewed as the probability distribution of trait values leading to realistic tree growth of 

healthy trees, across all species and environments combined; i.e., the posterior 

marginalizes over individuals, sites and species, such that posterior distributions for any 

individual, site, or species are expected to be contained within the aggregated 

distribution. 

As described above, the 4-dimensional histogram (Hist) was used for the 

likelihood rather than an alternative distribution such as a multivariate normal or a kernel 

density estimate of the 4-dimensional distribution. Both of these alternative approaches 

were explored, but they led to greater computational expense and/or undesirable behavior 

of the MH algorithm (below). Use of Hist greatly reduced the computational demands 

because it only needed to be computed once and then referenced via a “look-up” function 
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when running the MH algorithm.  The resulting simple, global analysis allowed us to run 

the MH algorithm on a desktop computer in a reasonable amount of time (~2 days). 

Metropolis-Hastings (MH) algorithm 

 We used an MH algorithm custom coded to allow simultaneous evaluation of the 

ACGCA model and to compare the ACGCA output against Hist. The actual MH 

algorithm for sampling from the posterior distribution is standard and follows Gelman et 

al. (2014). In summary, the algorithm proposes a vector of potential parameter values at 

each MH iteration z and accepts or rejects the proposed parameters. In particular, let * 

denote the proposed vector of parameter values, and let 𝑟𝑡
∗, 𝐻𝑡

∗, ∆𝑟𝑡
∗, and ∆𝐻𝑡

∗ denote the 

corresponding ACGCA outputs at simulation year t, given * proposed at iteration z. We 

obtain * by independently generating individual k* (again, for k = 1, 2, …, 32 

components) from a jumping distribution, 𝐽𝑧(𝜃𝑘
∗|𝜽𝑧−1). Truncated normal jumping 

distributions were employed for parameters with truncated priors (i.e., η, ηB, Hmax, and 

ρmax), using the same upper and/or lower limits as the priors. Normal jumping 

distributions were used all other k*. 

As each component (𝜃𝑘
∗) is proposed, it is either accepted or rejected based on the 

following acceptance ratio (ark) that involves evaluation of the posterior distribution 

(density), up to some normalizing constant (see Eqn 10), and the jumping distribution: 

 
𝑎𝑟𝑘 =

𝑝(𝜃𝑘
∗|𝐹𝐼𝐴) 𝐽𝑧(𝜃𝑘

∗|𝜽𝑧−1)⁄

𝑝(𝜃𝑘
𝑧−1|𝐹𝐼𝐴) 𝐽𝑧(𝜃𝑘

𝑧−1|𝜽∗)⁄

=
𝑝(𝜃𝑘

∗|𝐹𝐼𝐴) 𝐽𝑧(𝜃𝑘
𝑧−1|𝜽∗)

𝑝(𝜃𝑘
𝑧−1|𝐹𝐼𝐴) 𝐽𝑧(𝜃𝑘

∗|𝜽𝑧−1)
 

(26)  
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If ark > 1, the posterior density evaluated at 𝜃𝑘
∗ is greater than the posterior density 

evaluated at 𝜃𝑘
𝑧−1, and 𝜃𝑘

∗ is accepted such that 𝜃𝑘
𝑧 = 𝜃𝑘

∗.  If the proposed value decreases 

the posterior density (ark < 1), it is accepted with probability ark; otherwise, 𝜃𝑘
𝑧 = 𝜃𝑘

𝑧−1 

(Gelman et al. 2014). To prevent numerical overflow Eqn 16 was transformed to the log-

scale, yielding: 

 log(𝑎𝑟𝑘) =  log 𝑝(𝜃𝑘
∗|𝐹𝐼𝐴) − log 𝑝(𝜃𝑘

𝑧−1|𝐹𝐼𝐴)

+ log  𝐽𝑧(𝜃𝑘
𝑧−1|𝜽∗) − log  𝐽𝑧(𝜃𝑘

∗|𝜽𝑧−1) 

(27)  

Acceptance is determined by comparing log(ark) to a random variable (rexp) generated 

from an exponential distribution such that if −log(𝑎𝑟𝑘) < 𝑟𝑒𝑥𝑝, the proposed value is 

accepted (again, 𝜃𝑘
𝑧 = 𝜃𝑘

∗); otherwise, 𝜃𝑘
𝑧 = 𝜃𝑘

𝑧−1. 

MH implementation—Five parallel MH chains were simulated for each of the 11 

light levels (PARmax) described in the ACGCA model section above, with PARmax fixed at 

a single light level for the duration of a given simulation.  Starting values (at z = 0) for 

each parameter component, 𝜃𝑘
0, were generated for each chain by randomly sampling 

from the prior distributions. Starting values were rejected if they resulted in a zero 

likelihood according to Hist (Eqn 11); i.e., we continued to randomly draw starting values 

for each k until we obtained starting values that produced realistic growth curves. 

Once acceptable starting values were obtained, jumping distributions for each MH 

chain were tuned for 30,000 iterations to achieve near optimal acceptance rates of ~44% 

(Gelman et al. 1996). The simulations were executed for an additional 50,000 iterations 

after tuning, the first 20,000 of which were discarded as burn-in, yielding a sample of 

30,000 iterations per chain. Thus, we obtained a total of 1,650,000 (5 chains × 11 light 

levels × 30,000 iterations) parameter sets overall, which we thinned by 50 to reduce both 
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within-chain autocorrelation and storage requirements (n = 33,000 samples). All results 

refer to the thinned output unless otherwise noted. 

All MH code for the analysis was written in the R programming language (R Core 

Team 2015), and the ACGCA model was coded in C based on code developed by Ogle 

and Pacala (2009) and Gemoets et al. (2013). A wrapper function in C was written to pass 

inputs from R to the ACGCA C code (Gemoets et al. 2013), and return outputs to R. This 

code was then implemented via a custom parallelization algorithm allowing multiple R 

sessions to run simultaneously, each running a single chain. The R code is provided in 

Appendix D. 

Output Analysis 

 Posterior parameter space— Again, we only used FIA data for trees that are 

assumed to be healthy and growing, we do not explicitly account for various filtering 

processes (e.g., environmental stress or competition), and we impose mass-balance and 

engineering constraints contained with the ACGCA model. Thus, we interpret the joint 

posterior distribution of the parameters, , as the theoretical trait space. To evaluate the 

structure of this trait space, we graphically explored if the theoretical trait space is refined 

compared to the independent prior distributions used for each trait. To initially address 

this, we overlaid the marginal posterior distributions for each k (each trait) with the 

corresponding prior distribution for that trait. Next, we analyzed the posterior samples of 

 to explore trait correlations (or trade-offs) associated with the theoretical trait space. In 

particular, bivariate correlations between all unique pairs of the 32 k were assessed, 

yielding (3231)/2 = 496 bivariate plots and associated Pearson correlation coefficients. 
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To further explore the correlation structure of the θ space, as contained in the 

posterior samples, we evaluated how perturbations to this structure affect tree growth. For 

these simulations, the posterior samples of the individual θk, for all 11 light levels, were 

stored in a 33,000 (MH iterations) × 32 (parameters) matrix that maintained the 

correlation structure produced by the MH simulations. This correlation structure was 

subsequently perturbed such that, for a given column (k denotes a column corresponding 

to a trait), all of the sampled values (rows) were randomized without replacement, 

producing a new matrix of parameter values. This was repeated for each column 

(parameter), while maintaining the original row (iteration) order of the other 31 columns 

(parameters). Thus, we produced 33 matrices of posterior samples; one maintained the 

original correlation structure, and the others (32) maintained the correlation structure of 

all but one of the parameters (or traits). For each of these 32 randomized parameter 

matrices, the ACGCA model was run for each of the 33,000 rows (each containing a 

randomized parameter vector), resulting in associated output vectors (r, H, Δr, and ΔH). 

The likelihood of each output vector was evaluated with Eqn 11 (Hist) to determine 

evaluate if the corresponding, randomized parameter vector produced realistic tree 

growth (i.e., a likelihood greater than 0), indicating that the simulated tree survived for 50 

years, remained in a healthy state, and was not associated with unrealistic values for r, H, 

Δr, and/or ΔH.  From these simulations, we calculated, across all light levels, the 

proportion of the “new” (randomized) 33,000 parameter vectors that produced realistic 

tree growth, for each of the 32 matrices for which one trait was randomized. 

Multivariate trait correlation structure—The above randomization of individual 

trait values suggested a more complicated correlation structure among the 32 traits that 
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was not revealed by the bivariate analyses (see Results). Thus, we applied two multiple 

regression approaches (see below) to further assess the correlation structure of the 

theoretical trait space defined by the joint posterior for . The rationale for the 

regressions was to consider the MH posterior samples as a dataset, and then to treat each 

of the 32 traits (k) in turn as the dependent variable with the remaining 31 traits and light 

level serving as 32 independent (explanatory) variables. Each trait, whether treated as the 

independent or dependent variable, was log- or logit-transformed according to the 

transformation used in the Bayesian model (see Table S3.1). The transformed values 

were standardized by subtracting their posterior mean and dividing by their posterior 

standard deviation. We refer to each transformed and standardized parameter as k, all of 

which are unitless, with mean 0 and variance 1. For consistency, light level was rescaled 

from -3 (lowest light level) to +3 (highest level), roughly the same range as the 

standardized traits (k). 

The first regression approach used best subsets regression, which was 

implemented in R using the leaps package (Lumley and Miller 2009). Two best subsets 

regressions were conducted; one only considered main effects (i.e., the 32 possible 

independent variables), and the second considered main effects and all possible two-way 

interactions. For each of the best subsets regressions, the best model was identified with 

exactly 10 independent variables. 

In the leaps package, a variable may be included in the final (best) model through 

a two-way interaction, even if it is not included as a main effect. However, it is often 

difficult to interpret the importance of a variable that is included in an interaction, but that 

is not included as a main effect. Thus, we also conducted stepwise regressions that 
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ensured that variables were included as main effects (whether or not the main effect is 

significant), if they are included in an interaction. As above for the best subsets 

regression, we fit two models for each trait: a one with only main effects, and one with 

main effects and all possible two-way interactions. All stepwise regressions used forward 

and backward selection. BIC (Bayesian Information Criterion) was used for model 

selection because it tends to select more parsimonious models compared to AIC given 

that BIC’s penalty term is larger per variable added for large data sets (Gelman et al. 

2014).  

Results from stepwise regression allowed exploration of the importance of trait-

trait interactions for understanding the “direct” effect of one trait on another trait. For 

example, consider the following generic regression model for dependent variable trait k, 

which is significantly correlated with independent variable traits i and j and their 

interaction (k  i or j): 

 𝑘 = 𝛽0 + 𝛽𝑖𝑖 + 𝛽𝑗𝑗 + 𝛽𝑖𝑗𝑖𝑘 (28)  

The overall effect of 𝑖  is given by combining all terms on the right-hand side involving 

𝑖 , and factoring out 𝑖 , Eqn 18 can be rewritten as: 

 𝛿𝑘 = 𝛽0 + (𝛽𝑖 + 𝛽𝑖𝑗𝛿𝑗)𝛿𝑖 + 𝛽𝑗𝛿𝑗 (29)  

Thus, the overall effect of 𝛿𝑖 (i.e., i + ijj) depends on the partial regression coefficients 

for its main effect (i) and interaction term (ij) and the value of j. Because the 

regression variables () are linear transformations of the trait parameters (), Eqn 19 

allowed us to quantify how correlations between pairs of traits depend on the values of 

other traits. Thus, interactions with other traits could potentially result in a wide range of 
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possible bivariate correlations (negative, uncorrelated, or positive) and strengths of 

correlations (strong to weak) between two traits (e.g., k and i), conditional on the values 

of other traits (e.g., j). 

 We used Eqn 19 to approximate the posterior distributions for the overall effects 

for each dependent trait. That is, for each of the 32 dependent trait models, Eqn 19 was 

evaluated at the point estimates of the regression coefficients ( ’s), for every posterior 

parameter vector (n = 33,000 MH iterations) of the associated dependent traits (e.g., i 

and j in Eqn 19). This approach ignores uncertainty in the regression coefficients (β), but 

it does account for uncertainty in and covariation among the traits, as quantified by the 

joint posterior for θ. 

Results 

ACGCA model versus FIA comparison  

 The posterior region of the ACGCA simulations for tree radius versus height 

generally had good overlap with the FIA data (Figure 3.1 A). Since the ACGCA model 

was only run for 50 years in each simulation, it did not reach the large radii and heights 

reported for tree from older stands. The ACGCA model also did not sufficiently capture 

the FIA region characterized by short trees with small radii, perhaps because these trees 

may not align with the ACGCA model’s “healthy” condition.  

Posterior parameter samples 

 Posterior estimates for θ are given in Table S3.2. For 30 of the 32 θk (traits), the 

95% posterior credible intervals (CIs) included the prior mean, for each of the 11 light-
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level specific marginal distributions.  Based on visual inspection, the posteriors closely 

resembled the priors for 19 of the θk (as in Figure 3.2c); for 11 θk, the posteriors were not 

notably different from the prior, but were slightly shifted (as in Figure 3.2b); for only two 

θk (ε and So), the posterior and prior distributions were notably different (as in Figure 

3.2a). For So, the posteriors did not differ by light level, but the overall posterior mean 

and 95% CI were 0.13 [0.01, 0.47] year-1, resulting in a slower senescence rate (longer 

life-span) for other, non-trunk woody tissue compared to what would be predicted from 

the literature (prior mean = 1.85 year-1; Figure S3.1). Only one parameter (ε, radiation use 

efficiency) had posterior distributions that noticeably differed across light-levels (Figure  

3.2a). The four highest light levels (PARmax = 1032, 1300, 1636, and 2060 units) resulted 

in posterior means and 95% CIs for ε that varied from 15.0 [4.8, 35.0], 13.6 [3.7, 31.4], 

9.9 [3.0, 24.4], to 11.3 [2.9, 28.8] g gluc MJ-1, respectively. These posterior estimates 

were significantly different from the prior mean (37.81 g gluc MJ-1) and showed a trend 

of decreasing ε as PARmax increased (Figure S3.2).  

Bivariate relationships 

 Bivariate correlations among all possible pairs of the θk (496 total pairs) were 

generally weak (Table 3.2); for example, 178 pairs were associated with significant (p <= 

0.05) correlations, ranging from r = -0.25 to 0.42. The three strongest bivariate 

correlations occurred between the proportion of xylem conducting area (X) versus 

sapwood maintenance respiration rate (RmS) (r = 0.42, p < 0.01), fine root area to leaf area 

ratio (f1) versus root maintenance respiration rate (RmR) (r = -0.25, p < 0.01), and X 

versus wood density (ρ) (r = -0.23, p < 0.01).  The remaining 175 correlations may be 
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deemed biologically insignificant given that |r| < 0.2, but many of these were still 

statistically significant (Table 3.2) due to the large number of posterior samples used to 

compute r. 

Starting values and resampling 

 Generation of starting values required an average (n = 10 repetition of generating 

starting values for each light level) of 7,004 (32% light) to 52,353 (100% light) draws 

from the priors to obtain a single vector of starting values for , with an overall mean 

(across all 11 light levels) of 24,996 draws (n = 110, Table 3.3).  There was large 

variation in the number of iterations required to find a viable set of starting values at each 

light level, with standard deviations ranging from 4,834 (25% light) to 56,124 (100% 

light). The high number of draws required to generate starting values indicates that many 

parameter sets lead to “unrealistic” tree growth, such that the simulated tree heights and 

diameters fell outside the empirical distribution estimated from FIA data (as determined 

by Hist). 

 The resampling procedure for evaluating the importance of the parameter 

correlation structure, as quantified by the MH posterior samples, resulted in acceptance 

rates from 13.4% (when radiation-use efficiency, ε, was randomized relative to the other 

traits) to ~100% (when labile carbon storage capacity of leaves, δL, or roots, δR, was 

randomized) (Figure 3.3). Randomization of four other parameters (traits) lead to 

acceptance rates lower than 50%: maximum potential crown radius of a tree with 

diameter at breast height (1.37 m) of 40 cm  (R40), root and leaf maintenance respiration 

rates (RmR and RmL), and the fine root to leaf area ratio ( f1) (Figure 3.3).  
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Multiple regression results 

 Best subsets and stepwise regressions, with and without two-way interactions, 

produced statistically significant models (p < 0.05), with R2
 values as high as 0.81 

(stepwise with interactions) when ε was treated as the dependent variable (Table S3.3, 

Figure 3.3). Many models with low R2
 (e.g., Hmax, R

2 = 0.009) were still statistically 

significant (e.g., p << 0.01) due to large the sample size (n = 33,000). The stepwise 

regression procedure that only considered main effects produced models only containing 

intercept terms when γc, CgL, CgR, CgW, and δL were treated as the dependent variable. 

When the procedure included 2-way interactions, it produced models only containing 

intercepts for the aforementioned variables, in addition to φH, and m (see Table 3.1 for 

trait definitions). In these cases, no relationship was identified between the 

aforementioned “dependent variable” traits and other “independent variable” traits. As 

expected, models for these traits yielded the smallest R2 values, and when these traits 

were randomized, they had high acceptance rates in the resampling procedure (Figure 

3.3), and they were associated with many low, non-significant bivariate correlations 

(Table 3.2).  

 Across the 32 different θk, the R2 values from the different regression models 

increased as the acceptance rate from the resampling procedure decreased (Figure 3.3, 

Table S3.3). When adding two-way interactions to the best subsets regressions that were 

limited to finding the best model with only 10 variables, there was at most a small 

increase (a maximum of 0.04 for RmS) in R2 relative to the best subsets model that only 

considered main effects of other traits. In contrast to the best subsets regressions, adding 

two-way interactions in the stepwise regressions greatly increased the R2 for some 
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models; e.g. when two-way interactions were included, the R2 for the model of R40 

increased from 0.32 (main effects only) to 0.53, but was accompanied by a large increase 

in the number of model parameters, from 21 to 114 (Table S3.3). The increase in 

parameters when including two-way interactions was driven by the inclusion of a large 

numbers of interaction terms, and occasionally an additional main effect (Tables 3.4 and 

3.5). The direction (positive or negative) of the main effects was generally not changed 

by adding interactions. 

 The trait models with the highest R2 values were the same for the stepwise 

regressions both with and without two-way interactions. The top five models with the 

highest R2 values corresponded to the models for ε, RmR, f1, RmL, and R40, with R2 values 

of 0.74, 0.42, 0.38, 0.33, and 0.32 (main effects only), respectively, and 0.82, 0.53, 0.51, 

0.48, and 0.53 (main effects and interactions), respectively. It is worth noting that of 

these traits, RmL is part of the LES (Wright et al. 2004) and ε is related to the LES via its 

relationship to leaf N (Sinclair and Horie 1989, Wang et al. 1991, Martin and Jokela 

2004).  The model for SLA—an important LES trait—had R2 values of 0.28 (with 

interactions) and 0.14 (without interactions). With respect to the WES, ρ is the only 

ACGCA parameter that is explicitly included in the WES; the models for ρ had low R2 

values (e.g., R2 = 0.07 with interactions). However, X is indirectly related to the WES, 

and it had the sixth highest R2 (0.31 with interactions). In general, θk that were associated 

with models with relatively high R2 values, were also typically included as predictors in 

models for other θk and were included in more interactions (Tables 3.4 and 3.5).  Further, 

θk that are directly or indirectly related to the LES or WES were often included as 

predictors in regression models for other LES or WES related traits. For instance, the leaf 
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traits SLA and RmL were included as predictors of ε, and the wood traits RmS and ρ were 

included as predictors of X (Tables 3.4 and 3.5). 

 With respect to the stepwise multiple regressions with two way interactions, the 

coefficients for the main effects indicate the partial effect of a given variable (trait) when 

all other variables (traits) are held constant. The overall effect of each independent 

variable (e.g., 𝑖 , see Eqns 18 and 19) shows that the effect (or correlation between the 

dependent and independent variable) can change when considering interactions with 

other traits (e.g., 𝑗  in Eqns 18 and 19; Figure 3.4).  In some cases, the overall effect can 

switch signs relative to the main effect—for example, see the overall effect of RmS (along 

x axes) on ε (Figure 3.4a), RmL (Figure 3.4b), and RmR (Figure 3,4c), depending on the 

values of the interacting traits.  In most cases, the overall effect is primarily negative or 

positive, with the magnitude of the effect being influenced by interacting traits. For 

example, the main effect of ε on RmL is 1.29 (Figure 3.4b), but the approximated 95% 

central credible interval representing the overall effect is (0.06, 2.71). 

Discussion 

Structure of the theoretical trait space 

The theoretical trait space produced by the individual-based tree growth model 

(ACGCA), constrained by forest inventory (FIA) and literature (TreeTraits) data, 

suggests complex multivariate relationships among key traits related to tree growth and 

carbon allocation. Bivariate, trait-trait correlations were generally weak within the 

theoretical trait space (Figure 3.5, Table 3.2). Yet, it is clear from evaluation of the data-

constrained ACGCA output (posterior for θ) that the 32 functional traits (θk’s) cannot be 
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randomly combined; specific combinations of traits are necessary to achieve predictions 

of realistic tree growth. This is further emphasized by independently drawing values of 

each θk (trait) from the literature-based marginal priors that do not capture 

interdependence among traits; the majority of parameter sets are rejected because they 

lead to growth patterns that do not agree with the FIA data (Table 3.3). For example, 

most cases of randomly drawn θ vectors resulted in trees that died during the simulation, 

and the majority died during the first simulation time step. Similarly, the results from 

independently randomizing each θk (Figure 3.3) within the joint posterior for θ clearly 

show that the joint distribution of θ contains important correlation structure that is 

necessary to produce realistic predictions of tree growth. Taken together with the 

multiple regressions, our findings provide evidence for complex, multi-dimensional 

relationships between functional traits that govern tree growth and carbon allocation, 

utilization, and starvation. 

The theoretical space represents a multi-dimensional hypervolume of traits that 

does not explicitly account for biotic constraints such as competition. However, 

competitive effects are implicitly contained in the FIA data and the priors estimated from 

the TreeTraits database, which is mostly based on observations of trees growing in field 

settings (Ogle et al. 2013, 2014). To the extent that competition was not explicitly 

considered in our analysis, the resulting theoretical trait space parallels the fundamental 

niche concept (Hutchinson 1957). If environmental factors (e.g., moisture, disturbances) 

or biotic interactions (e.g., competition) had been explicitly accounted for in our analysis, 

the resulting trait space (posterior distribution of ) associated with different scenarios 

would likely have been refined relative to the theoretical trait space described herein. 
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This refinement or filtering of the theoretical trait space to reflect additional constraints 

on tree growth may have resulted in stronger bivariate relationships among traits, 

representing more pronounced trade-offs under specific conditions. For instance, filtering 

the theoretical trait space by limiting the range of values associated with four traits (f1, 

SLA, RmL, and R40; see Table 3.1) and light level (PARmax) revealed a potential trade-off 

(strong correlation) between root maintenance respiration (RmR) and radiation-use 

efficiency (ε) (see Figures 3.5 and S3.3).  Filtering by light represents a particular 

environmental constraint, while filtering by the other four traits represents potential 

environmental or biotic selection pressures. 

Moreover, our approach to quantifying the theoretical trait space is agnostic to 

site conditions or species identity. Binning the FIA data by both site and species would 

have produced an insufficient number of data points to develop representative 4-

dimensional histogram (Hist) of observed heights, radii, and associated growth rates for 

each bin.  However, we would expect that binning by species, for abundant species, may 

have produced trait spaces that differed among species, with each being contained in the 

overall theoretical trait space describe here for a “generic” North American tree in a 

healthy, growing state.  

Relationships between traits 

 Multiple regression analysis of the theoretical trait space provided insight into 

relationships among traits and between traits and light level. First, we focus on traits that 

are frequently measured in field or lab settings and that are related to empirical trait 

spectra (e.g., LES, WES). For instance, when SLA was treated as the dependent variable 

trait, it was positively related to leaf maintenance respiration (RmL), as expected (Wright 
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et al. 2004), and negatively related to light level (PARmax), in agreement with previous 

work showing that SLA is up to two times higher for leaves produced in shade compared 

to high light (Evans and Poorter 2001, Ogle et al. 2013). Unanticipated relationships also 

emerged. For example, SLA was correlated with a number of root traits (RmR, f1, rR, ρr), 

many of which are often challenging to measure and could possibly define a root 

economic spectrum (Reich 2014). Other infrequently-measured traits (e.g., R0, R40, So) 

were often included as predictors of more frequently-measured traits (e.g., SLA, RmL, RmR, 

) (Table 3.5; see Table 3.1 for trait definitions). While it is often impractical, due to 

logistics or expense, to measure traits such as So (branch and coarse root senescence rate) 

and various root traits (Weiher et al. 1999, Lavorel et al. 2007), we demonstrate that 

modeling can help reveal potential relationships among traits that might otherwise be 

impractical to investigate. Although the trait relationships that emerge from our analysis 

are not directly equivalent to those measured in the field that explicitly evaluate inter- 

and/or intraspecific relationships, the model-based theoretical trait space suggests that 

future observational or experimental studies should consider potentially important traits 

(e.g., R0, R40, So, SWmax, f1, RmR, RmS; see Table 3.1) that are not included in most 

measurement campaigns.  

 The regression analyses of the theoretical trait space suggests that a notable 

number of traits (~50% of the 32 explored here) are independent of all other traits. 

However, for a subset of traits, their relations (tradeoff) with another traits appear 

somewhat complex. For example, while the bivariate correlation between light-use 

efficiency () and root maintenance respiration (RmR) is weak (Table 3.2), RmR is a 

significant predictor of  when other traits are considered (e.g., f1, SLA, RmL, R40), partly 
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because of interactions between RmR, these other traits, and light level (Table 3.5, Figure 

S3.3). Existing empirical trait spectra—including the LES (Wright et al. 2004), WES 

(Chave et al. 2009), and the world-wide fast-slow spectrum (Reich 2014)—typically do 

not evaluate trait-trait relationships beyond at most three traits (e.g., 3D plots). Studies 

using ordination methods provide an indication that interactions exist, in that multiple 

traits are often found to be correlated with a particular axis in the ordination (Diaz et al. 

2004, Cavender-Bares et al. 2004, Baraloto et al. 2010, Stahl et al. 2013). The results 

from this study, however, indicate that explicit consideration of multiple trait-trait or 

trait-environment interactions is potentially important (Table 3.5). Considering the 

variety of relationships proposed in plant physiological models—such as photosynthetic 

models (Farquhar et al. 1980), water transport models (Sperry et al. 1998, Tuzet et al. 

2003), stomatal conductance models (Ball et al. 1987, Damour et al. 2010, Medlyn et al. 

2011)—it is perhaps unsurprising that multiple plant functional traits interact to govern 

lower dimensional trait spaces (e.g., bivariate trait relationships), especially when they 

are known to be correlated with the same underlying physiological processes. 

 We highlight potential mechanisms that may give rise to some of the trait-trait 

relationships that emerged through our multivariate analyses. These tradeoffs result from 

a combination of constraints inherent to the structure of the ACGCA model as well as the 

constraints placed on tree growth by fitting the model to FIA and TreeTraits data. 

Consider one of the tradeoffs that emerged for SLA that may be representative of a hidden 

mass conservation tradeoff. To achieve a particular growth rate or size, as SLA increases, 

this implies that for a fixed amount of leaf biomass, leaf area (LA) increases, which is 

expected to lead to increased photosynthesis (PG). If more carbon is fixed, then this 
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“excess” carbon must be incorporated into tissues, respired, or lost. Again, to achieve a 

particular (fixed) growth rate as SLA increase, this would require that the excess carbon 

be lost, which is reflected in the positive correlation between SLA versus respiration (RmR 

and RmL) and/or tissue senescence (SR and SL) (Table 3.4). The negative correlation 

between γX and ρ may be interpreted as an engineering tradeoff. For a fixed trunk radius, 

as the conducting area in the sapwood increases (increase in γX), this leads to less 

structural tissue, and lower overall wood density (ρ).  

In the absence of fitting the ACGCA model to the FIA data, randomly chosen 

combinations of parameters can result in trees that grow unrealistically fast, tall, or wide, 

trees that do not grow, or trees that immediately die, even under high light conditions. For 

example, combining high values of SLA and ε with low values of respiration, construction 

costs, and senescence rates will lead to a tree that unrealistically reaches its maximum 

height within one annual time step. Thus, the tradeoffs that emerge by fitting the ACGCA 

model to the FIA and TreeTraits data represent a combination of the mass balance and 

engineering mechanisms that are built into the model, combined with empirical 

relationships contained in the FIA data. 

Tradeoffs from economics spectra 

Our analysis did not reveal strong correlations or tradeoffs between pairs of traits 

(Table 3.2), in contrast to previously described trait spectra such as the LES and WES 

(Wright et al. 2004, Chave et al. 2009, Reich 2014). Though, this apparent discrepancy 

between the (lack of) bivariate tradeoffs in our theoretical trait space versus the fairly 

strong (e.g., R2 = 0.16 to 0.72) correlations in, for example, the LES could arise from at 

least two explanations. First, as noted previously, our theoretical trait space is 
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representative of a “generic” tree and essentially aggregates over all individuals 

(millions), species (ca. 300), and sites (thousands) represented in the FIA. In contrast, the 

LES evaluates interspecific trait tradeoffs by summarizing species-specific traits (for over 

2000 species) and evaluating tradeoffs across these species; although it aggregates across 

sites (n = 175), it does explore how the interspecific trait tradeoffs potentially vary along 

climatic gradients (Wright et al. 2004). Second, normalization of leaf traits—such as 

maximum photosynthetic rate, respiration rate, and nitrogen and phosphorous contents—

by leaf mass, instead of leaf area has been shown to change the correlation strength 

between pairs of traits related to the LES (Lloyd et al. 2013, Osnas et al. 2013). However, 

LES leaf traits and related traits in the ACGCA model (e.g., RmL) are both normalized by 

leaf mass, but a key ACGCA photosynthesis parameter demonstrating the strongest 

multivariate trait relationships (i.e., , radiation-use efficiency) is independent of the leaf 

size unit (mass or area) (Table 3.1). 

  However, the multiple regression results, in general, provide evidence for the 

existence of trait tradeoffs in the theoretical trait spectra, many of which agree with the 

empirical economics spectra.  One example, mentioned above, is the relationship between 

SLA and RmL (equivalent to Rmass in the LES). When SLA is treated as the dependent trait, 

the partial regression coefficient for RmL is positive, which agrees with the relationship in 

the LES (Wright et al. 2004). The LES correlation between leaf lifespan (LL = SL
-1) and 

LMA (LMA = SLA-1) is positive (Wright et al. 2004), which agrees with the partial 

regression coefficient for SL in the model for SLA. Likewise, RmL and leaf life span (LL) 

are positively correlated in the LES (Wright et al. 2004), which agrees with the negative 
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partial regression coefficient for SL (since SL = LL-1) in the regression model that treats 

RmL as the dependent variable (Table 3.5). 

 There is considerably less overlap between the WES (Chave et al. 2009) and the 

functional traits in the ACGCA model, with only wood density (ρ) being explicitly 

included in both. However, the proportion of xylem conducting area (γX) is an important 

wood trait in ACGCA, and it can be derived from traits in the WES, including mean 

conduit diameter and conduit density (i.e., number of conduits per cross-sectional area), 

given assumptions about conduit shape (e.g., circular cross-section). In the WES, conduit 

density is often found to be negatively correlated with ρ (Chave et al. 2009). This is in 

agreement with our theoretical trait spectra; the bivariate correlation between ρ and γX  

and associated partial regression coefficients were both negative and significant. Our 

study suggests that the WES could be expanded upon by considering other wood traits 

(e.g., RmS, So, SWmax) that emerged here as important predictors of traits included in the 

WES (γX and ρ) (Table 3.5). 

 The general agreement between patterns contained in our theoretical trait space 

and analogous aspects of common, empirical trait spectra (LES and WES) suggests that 

quantifying the theoretical trait space provides another approach to understanding 

tradeoffs among functional traits. The ACGCA model directly incorporates mass 

conservation (via carbon allocation, utilization, and storage mechanisms) and engineering 

tradeoffs (via structural and allometric relationships) (Scheiter et al. 2013). The 

theoretical trait spectra produced by the ACGCA model produced trait tradeoffs similar 

to those seen in the LES and WES, at least in direction (positive versus negative), 

suggesting that mass conservation and engineering tradeoffs likely govern much of the 
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variation in these empirical spectra. It is notable that prominent empirical trait 

relationships were contained in the theoretical trait spectra given that the ACGCA model, 

as implemented here, did not include important factors like water, nutrients, disturbances, 

or biotic interactions that act on actual trees. If such factors are included in theoretical 

(modeling) analyses of functional trait spectra, they could possibly generate a more 

refined description of how specific physiological and environmental processes influence 

the functional trait space. 

Future directions 

 Other theoretical trait spectra could be constructed with different process-based 

models of tree or plant function, or by including species-specific traits and fitting to data 

on individual trees or species. The parameters in such models should be directly 

interpreted as plant traits, and for comparison against field-based empirical spectra, at 

least a subset of parameters should overlap with traits in such empirical spectra. We 

could further refine the theoretical trait spectra emergent from the ACGCA model by 

including additional environmental limitations. For instance, the modular structure of the 

ACGCA model could accommodate a more mechanistic model of carbon acquisition, but 

incorporating, for example, the Farquhar et al. (1980) model of photosynthesis and a 

stomatal conductance model (Ball et al. 1987, Leuning 1995, Ogle and Reynolds 2002, 

Medlyn et al. 2011). Incorporation of a more mechanistic photosynthesis model, along 

with a water transport model, could allow for the possible incorporation of a full 

representation of the soil-plant atmosphere continuum (Sperry et al. 1998, Tuzet et al. 

2003), and thus, evaluate the effects of water availability on the theoretical trait spectra. 

The type of model-based analysis conducted herein could provide unique opportunities to 
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investigate how specific processes—such as those related to physiology, mass 

conservation, and engineering constraints—interact with each other to govern functional 

trait distributions and tradeoffs. 

Conclusions 

 Though strong bivariate patterns among traits did not directly emerge from the 

theoretical trait space described by the posterior distribution of parameters (θ) in the 

ACGCA model, complex multidimensional relationships are contained in this trait space, 

for at least a subset of traits. Thus, the theoretical space implies that realistic tree growth 

can only be predicted if the multivariate structure of θ is maintained; if individual traits 

within θ are randomly combined, this leads to immediate tree death in the vast majority 

of simulations. The theoretical trait space also suggested a number of root traits and other 

less commonly quantified traits may be important for understanding trait spectra, whole-

plant performance, and life-history tradeoffs, and such traits should be considered in 

future observational and experimental studies. Finally, the directions (positive or 

negative) of the trait-trait relationships in the theoretical trait space generally agreed with 

existing empirical spectra (e.g., LES and WES), pointing to the validity of quantifying 

theoretical traits spaces, while also suggesting mechanisms giving rise to the observed 

variation in empirical trait spectra. 
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Tables 

Table 3.1: Descriptions and units associated with the 32 parameters (θk) in the ACGCA 

model that are representative of potentially important functional traits. 

 Symbol Unit  Description 

Hmax m Maximum tree height 

φH - Slope at H versus r curve at r = 0 m 

η - 

Relative height at which trunk transitions from 

paraboloid to cone 

SWmax m Maximum sapwood width 

λS - Proportionality between BT and BO for sapwood 

λH - Proportionality between BT and BO for heartwood 

ρ g dw m-3 Wood density  

f1 - Fine root area to leaf area ratio 

f2 - Leaf area to xylem conducting area ratio 

γC g gluc m-3 Maximum storage capacity of living sapwood cells 

γX - Xylem conducting area to sapwood area ratio 

CgL g gluc g dw-1 Construction costs of producing leaves 

CgR g gluc g dw-1 Construction costs of producing fine roots 

Cgw g gluc g dw-1 Construction costs of producing sapwood 

δL g gluc g dw-1 Labile carbon storage capacity of leaves 

δR g gluc g dw-1 Labile carbon storage capacity of fine roots 

SL year-1 Senescence rate of leaves 

SLA m2 g dw-1 Specific leaf area 

SR year-1 Senescence rate of fine roots 

SO year-1 Senescence rate of coarse roots and branches 

rR m Average fine root radius 

ρR g dw m-3 Tissue density of fine roots 

RmL 

g gluc g dw-1 

year-1 Maintenance respiration rate of leaves 

RmS 

g gluc g dw-1 

year-1 Maintenance respiration rate of sapwood 

RmR 

g gluc g dw-1 

year-1 Maintenance respiration rate of fine roots 

ηB - 

Relative height at which trunk transitions from 

neiloid to paraboloid 

k - Crown light extinction coefficient 

ε g gluc MJ-1 Radiation-use efficiency 

m - Maximum relative crown depth 

α - Crown curvature parameter 

R0 m 

Maximum potential crown radius of a tree with 

diameter at breast height of 0 m (i.e., for a tree that is 

exactly 1.37 m tall) 
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R40 m 

Maximum potential crown radius of a tree with 

diameter at breast height of 0.4 m (40 cm). 
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Table 3.2: Bivariate correlations between pairs of parameters (traits) are shown in the 

upper triangle (blue for +, red for – correlations). The lower triangle contains p-values for 

the Pearson correlations (shading indicates the level of significance).  There were 

relatively few strong correlations (|r|>0.2).  Many weak correlations were significant, 

possibly due to sample size (n = 33,000). 
θ ε  R40 RmR RmL f1 SLA RmS rR ρR SO f2 k SWmax γX 

ε 1.00 -0.03 0.15 0.16 0.14 -0.08 0.04 0.04 0.04 0.08 -0.01 -0.05 -0.07 -0.04 

 R40 0.00 1.00 0.15 0.17 0.09 -0.07 -0.01 0.03 0.04 0.18 0.12 0.01 0.15 -0.11 

RmR 0.00 0.00 1.00 0.03 -0.25 0.00 0.03 -0.09 -0.10 0.06 -0.07 0.00 -0.09 -0.02 

RmL 0.00 0.00 0.00 1.00 0.02 0.13 0.04 0.00 0.00 0.09 -0.06 -0.01 -0.08 -0.01 

f1 0.00 0.00 0.00 0.00 1.00 -0.02 0.03 -0.06 -0.02 0.09 -0.02 0.02 -0.06 0.00 

SLA 0.00 0.00 0.79 0.00 0.00 1.00 -0.04 -0.01 0.00 -0.05 0.01 0.00 0.04 -0.01 

RmS 0.00 0.16 0.00 0.00 0.00 0.00 1.00 0.00 0.01 0.07 0.06 0.03 -0.06 0.42 

rR 0.00 0.00 0.00 0.47 0.00 0.04 0.93 1.00 -0.02 0.00 -0.02 0.00 -0.01 -0.01 

ρR 0.00 0.00 0.00 0.69 0.00 0.80 0.20 0.01 1.00 0.02 -0.02 0.00 0.00 -0.01 

SO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.00 1.00 0.12 0.05 0.07 0.12 

f2 0.16 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00 1.00 0.01 -0.08 -0.01 

k 0.00 0.07 0.49 0.29 0.00 0.48 0.00 0.55 0.87 0.00 0.03 1.00 -0.03 0.01 

SWmax 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.45 0.00 0.00 0.00 1.00 0.04 

γX 0.00 0.00 0.00 0.01 0.90 0.28 0.00 0.04 0.03 0.00 0.34 0.29 0.00 1.00 

R0 0.00 0.00 0.75 0.41 0.00 0.11 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.00 

α 0.00 0.55 0.00 0.00 0.15 0.04 0.47 0.96 0.65 0.00 0.02 0.00 0.07 0.37 

η 0.00 0.40 0.03 0.00 0.12 0.93 0.00 0.13 0.59 0.00 0.00 0.01 0.01 0.00 

SL 0.00 0.00 0.14 0.06 0.02 0.00 0.12 0.55 0.32 0.00 0.12 0.00 0.01 0.96 

ρ 0.00 0.02 0.48 0.25 0.66 0.23 0.00 0.04 0.52 0.00 0.48 0.89 0.01 0.00 

SR 0.01 0.01 0.06 0.04 0.00 0.00 0.62 0.73 0.21 0.99 0.00 0.88 0.00 0.34 

m 0.79 0.21 0.12 0.00 0.21 0.63 0.57 0.01 0.12 0.11 0.93 0.99 0.32 0.06 

λs 0.00 0.02 0.24 0.62 0.70 0.61 0.00 0.83 0.49 0.00 0.53 0.15 0.00 0.18 

Hmax 0.00 0.00 0.80 0.96 0.33 0.85 0.00 0.06 0.25 0.00 0.04 0.08 0.00 0.23 

ηB 0.01 0.00 0.04 0.92 0.90 0.12 0.56 0.45 0.61 0.00 0.94 0.01 0.00 0.70 

φH 0.51 0.01 0.75 0.76 0.14 0.20 0.65 0.61 0.89 0.40 0.71 0.29 0.03 0.34 

λh 0.18 0.03 0.12 0.39 0.57 0.28 0.13 0.06 0.90 0.00 0.42 0.32 0.00 0.38 

Cgw 0.10 0.55 0.15 0.76 0.23 0.84 0.24 0.71 0.53 0.00 0.95 0.22 0.04 0.06 

CgR 0.60 0.04 0.17 0.28 0.89 0.81 0.77 0.06 0.28 0.01 0.50 0.55 0.64 0.39 

CgL 0.43 0.33 0.74 0.59 0.86 0.93 0.98 0.80 0.92 0.68 0.12 0.32 0.56 0.02 

δR 0.28 0.56 0.93 0.16 0.33 0.88 0.39 0.56 0.98 0.07 0.59 0.02 0.58 0.37 

δL 0.60 0.04 0.27 0.33 0.48 0.74 0.37 0.44 0.26 0.44 0.22 0.24 0.01 0.80 

γC 0.86 0.10 0.98 0.25 0.35 0.68 0.11 0.53 0.20 0.00 0.12 0.12 0.05 0.00 

PARmax 0.00 0.01 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

 



108 

 

Table 3.2 continued: 

θ R0 α η SL ρ SR m λs Hmax ηB φH λh 

ε -0.14 0.04 0.05 0.04 0.05 0.01 0.00 0.03 0.02 -0.01 0.00 0.01 

 R40 0.19 0.00 0.00 0.05 -0.01 0.01 0.01 -0.01 -0.02 0.02 -0.02 -0.01 

RmR 0.00 -0.02 -0.01 0.01 0.00 0.01 -0.01 0.01 0.00 -0.01 0.00 0.01 

RmL 0.00 -0.02 -0.02 0.01 0.01 0.01 -0.02 0.00 0.00 0.00 0.00 0.00 

f1 -0.02 -0.01 -0.01 0.01 0.00 -0.02 -0.01 0.00 -0.01 0.00 -0.01 0.00 

SLA -0.01 0.01 0.00 0.02 0.01 0.02 0.00 0.00 0.00 -0.01 0.01 -0.01 

RmS -0.04 0.00 0.02 0.01 -0.05 0.00 0.00 -0.02 -0.02 0.00 0.00 0.01 

rR 0.01 0.00 -0.01 0.00 0.01 0.00 -0.01 0.00 -0.01 0.00 0.00 0.01 

ρR -0.01 0.00 0.00 -0.01 0.00 -0.01 -0.01 0.00 0.01 0.00 0.00 0.00 

SO -0.19 0.02 0.02 0.02 -0.07 0.00 0.01 -0.02 -0.03 0.04 0.00 -0.09 

f2 -0.09 0.01 0.02 -0.01 0.00 -0.02 0.00 0.00 -0.01 0.00 0.00 0.00 

k -0.06 0.02 0.01 -0.02 0.00 0.00 0.00 0.01 -0.01 -0.02 -0.01 0.01 

SWmax -0.02 -0.01 -0.02 -0.01 0.01 -0.03 -0.01 0.02 0.02 -0.03 0.01 -0.02 

γX 0.04 0.00 0.02 0.00 -0.23 -0.01 0.01 0.01 0.01 0.00 0.01 0.00 

R0 1.00 -0.02 -0.01 0.00 0.02 0.01 0.01 0.01 0.02 -0.01 0.02 -0.01 

α 0.00 1.00 0.01 0.00 0.00 -0.01 0.00 0.00 -0.01 -0.01 -0.01 0.00 

η 0.01 0.09 1.00 -0.01 -0.01 0.00 0.00 -0.01 -0.02 0.02 0.00 0.01 

SL 0.71 0.97 0.21 1.00 0.01 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 

ρ 0.00 0.65 0.01 0.01 1.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 

SR 0.23 0.05 0.37 0.93 0.78 1.00 -0.01 -0.01 0.00 0.00 0.00 0.00 

m 0.26 0.43 0.54 0.28 0.82 0.03 1.00 0.00 -0.01 0.01 -0.01 -0.01 

λs 0.02 0.66 0.26 0.59 0.64 0.01 0.62 1.00 0.00 0.00 -0.01 0.01 

Hmax 0.00 0.01 0.00 0.92 0.08 0.79 0.07 0.66 1.00 0.01 -0.01 0.00 

ηB 0.02 0.14 0.00 0.71 0.95 0.73 0.35 0.97 0.01 1.00 -0.01 -0.01 

φH 0.00 0.26 0.50 0.70 0.13 0.98 0.22 0.22 0.17 0.01 1.00 -0.01 

λh 0.16 0.54 0.13 0.72 0.66 0.83 0.25 0.11 0.56 0.01 0.13 1.00 

Cgw 0.01 0.01 0.21 0.82 0.02 0.24 0.05 0.83 0.02 0.92 0.19 0.50 

CgR 0.85 0.49 0.44 0.02 0.57 0.19 0.20 0.49 0.43 0.17 0.36 0.85 

CgL 0.10 0.90 0.45 0.48 0.01 0.06 0.51 0.69 0.40 0.47 0.76 0.08 

δR 0.29 0.57 0.61 0.25 0.61 0.71 0.07 0.58 0.00 0.21 0.12 0.89 

δL 0.25 0.51 0.46 0.62 0.93 0.91 0.57 0.21 0.04 0.91 0.83 0.22 

γC 0.86 0.66 0.65 0.62 0.81 0.76 0.82 0.23 0.28 0.89 0.15 0.01 

PARmax 0.00 0.02 0.07 0.00 0.03 0.00 0.01 0.14 0.22 0.17 0.00 0.01 
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Table 3.2 continued: 

θ Cgw CgR CgL δR δL γC PARmax 

ε 0.01 0.00 0.00 -0.01 0.00 0.00 -0.63 

 R40 0.00 0.01 0.01 0.00 0.01 -0.01 -0.01 

RmR -0.01 0.01 0.00 0.00 0.01 0.00 0.11 

RmL 0.00 -0.01 0.00 0.01 0.01 -0.01 0.14 

f1 0.01 0.00 0.00 0.01 0.00 -0.01 0.12 

SLA 0.00 0.00 0.00 0.00 0.00 0.00 -0.06 

RmS 0.01 0.00 0.00 0.00 0.00 -0.01 0.01 

rR 0.00 -0.01 0.00 0.00 0.00 0.00 0.03 

ρR 0.00 0.01 0.00 0.00 0.01 0.01 0.03 

SO -0.02 -0.01 0.00 -0.01 0.00 -0.02 0.06 

f2 0.00 0.00 0.01 0.00 0.01 -0.01 -0.01 

k -0.01 0.00 0.01 0.01 -0.01 0.01 -0.04 

SWmax 0.01 0.00 0.00 0.00 -0.02 0.01 -0.06 

γX 0.01 0.00 -0.01 0.00 0.00 -0.02 -0.05 

R0 0.01 0.00 0.01 0.01 0.01 0.00 -0.10 

α 0.01 0.00 0.00 0.00 0.00 0.00 0.01 

η -0.01 0.00 0.00 0.00 0.00 0.00 0.01 

SL 0.00 0.01 0.00 0.01 0.00 0.00 0.03 

ρ 0.01 0.00 0.01 0.00 0.00 0.00 0.01 

SR 0.01 0.01 -0.01 0.00 0.00 0.00 0.02 

m -0.01 0.01 0.00 -0.01 0.00 0.00 0.01 

λs 0.00 0.00 0.00 0.00 -0.01 -0.01 0.01 

Hmax -0.01 0.00 0.00 -0.02 -0.01 0.01 0.01 

ηB 0.00 0.01 0.00 0.01 0.00 0.00 -0.01 

φH 0.01 -0.01 0.00 0.01 0.00 0.01 0.02 

λh 0.00 0.00 0.01 0.00 -0.01 0.01 0.01 

Cgw 1.00 0.01 0.00 0.00 0.00 0.01 -0.01 

CgR 0.27 1.00 -0.01 -0.02 0.01 -0.01 -0.01 

CgL 0.83 0.32 1.00 0.00 0.00 0.00 0.00 

δR 0.37 0.00 0.84 1.00 0.00 -0.01 0.01 

δL 0.98 0.24 0.83 0.62 1.00 0.00 0.01 

γC 0.21 0.34 0.98 0.14 0.54 1.00 0.01 

PARmax 0.17 0.08 0.72 0.12 0.32 0.22 1 
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Table 3.3: The mean number of draws from the priors required to obtain a parameter 

vector, , that resulted in realistic tree growth under each light level depicted by the 

PARmax values (mean and standard deviation [SD] based on n = 10 simulations). For 

example, when PARmax = 206 MJ m-2 yr-1, over 43,000 random draws from the priors are 

generally required to find a single set of parameter values that lead to predicted r, H, r, 

and H associated with a probability greater than 0 given the FIA histogram (Hist). 

Mean # draws SD PARmax 

43235.9 38392.1 206 

13806.3 10946.8 259 

21053.3 24366.2 326 

14530.5 9413.5 411 

7041.2 4834.6 517 

7004.3 7448.3 651 

13958.7 7711.6 820 

29815.2 31777.0 1032 

26828.7 16398.4 1300 

45324.5 37804.6 1636 

52352.8 56124.9 2060 

 

  



111 

 

Table 3.4: Main effects included in the multiple-regression models identified by a 

stepwise regression routine that only considered main effects. Each column represents a 

model (i.e., columns are associated with the trait that was treated as the dependent 

variable), and each row represents a potential covariate in the model. When appropriate, 

+/- in a cell indicates the direction of the regression coefficient for a given variable; gray 

shaded cells denote statistically significant effects (p < 0.05, most p << 0.05). White 

boxes indicate a variable was not included in the model.  
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Table 3.5: Summary of effects included in multiple-regression models found with a 

stepwise regression routine including main effects and all two-way interactions. Each 

column represents a model (i.e., columns are associated with the trait that as treated as the 

dependent variable), and each row represents a potential covariate in the model. When 

appropriate, +/- in a cell indicates the direction of the main effect for a given variable. 

The number under each diagonal line in a cell represents the number of interaction terms 

that the corresponding covariate trait was included in; if left blank, then it only occurred 

as a main effect. Gray shaded cells denote statistically significant main effects (p < 0.05, 

most p << 0.05); all interaction effects were statistically significant, all but 3 main effects 

were statistically significant, and the three non-significant main effects were included in 

at least one significant interaction within the corresponding model. 
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Figures 
  

 

Figure 3.1: Panel A: Tree height (H) versus trunk radius (r) space covered by the 

ACGCA model output for “realistic tree growth” (black; n = 1,650,000 simulations 

points) overlaid on top of the FIA data (gray; n = 1,270,510 data points). Panel B: Tree Δ 

height and Δ radius form the FIA data (grey), covered by ACGCA (black simulation 

points). 
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Figure 3.2: Marginal posterior probability densities by light level (11 thin lines) for a 

select set of parameters (traits), overlaid with their prior probability distributions (thick 

black lines) for transformed values of: (A) radiation-use efficiency (ε, g gluc MJ-1), (B) 

proportion of xylem conducting area (γx, unitless), and (C) construction cost of producing 

leaves (CgL, g gluc g dw-1). Three main patterns emerged across the 32 traits: (A) shows 

the only case of notable differentiation of the posterior by light level, and it also 

illustrates differences between the prior and posteriors; So was the only other parameter 

(trait) where the posterior visually differed from the prior; (B) shows that the posterior 

distributions obtained under the 11 light levels were nearly identical, and the prior and 

posteriors were only slightly differentiated, but effectively very similar; and, (C) shows 

one of ~18 traits described by a high degree of overlap between the prior and posterior 

distributions. 
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Figure 3.3: The proportion of values accepted after randomizing the order each 

parameter with respect to MH iteration number (gray bars) overlaid with the R2
 values 

associated with four different multiple regression procedures (points) that treated each 

parameter as the dependent variable. The R2 values are shown for: best subsets 

regressions with a maximum of 10 effects main effects only (circle) or with 10 main 

effects and/or two-way interactions (square); or for stepwise regressions with main 

effects only (triangle) or main effects and two-way interactions (diamond). In general, R2 

values increased as the proportion accepted increased. In some cases (for parameters such 

as R40, RmR, RmL, f1, SLA, and SO), it is clear from the stepwise regressions that including 

interactions drastically improved model fit. However, there were often many more 

variables in these models (for SLA, 23 terms in the main effects-only model versus 116 in 

the model with main effects and interactions). See Table 3.1 for definitions of the 

parameters.  



116 

 

 

 

 

Figure 3.4: Main effects of variables (traits) included in the stepwise multiple 

regressions that treated the following four traits as dependent variables: (A) radiation-use 

efficiency (ε), (B) leaf maintenance respiration (RmL), (C) fine root maintenance 

respiration (RmR), and (D) proportion xylem conducting area (γX). In these regressions, the 

dependent trait and the independent traits (x axes) were normalized such that the 

normalized variable are unitless. The violin plots show the overall main effect of each 

variable (on x-axes) when taking into account interactions (e.g., Eqns 18 and 19), which 

contain the corresponding partial regression coefficient for the actual main effect (light 

gray horizontal lines). Three primary cases are illustrated: (1) the interactions lead to a 

variable overall main effect such that the violin plot is comparatively wide, but the 

direction of the overall effect is consistent with the partial main effect (negative or 

positive); (2) the overall main effect can shift from negative to positive, or vice versa, 

given the values of interacting variables (e.g., violin plots to overlap the dashed, 

horizontal zero line); and (3) the interactions have little influence such that the overall 

main effect is nearly indistinguishable from the partial main effect (e.g., very narrow 

violin plots). 
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Figure 3.5: Bivariate posterior plots for an example parameter (trait) pair (see Table 3.1 

for parameter definitions). The black points are the 1.65 million parameter pairs 

generated by the MH routine before thinning by 50, and the grey points represent the 

subset of 33,000 points used to calculate posterior statistics. The red points represent a 

subset of the posterior space obtained by filtering the MH output such that the middle 

20% quantile for PARmax, f1, RmL, R40, and SLA were retained (all other samples ignored), 

resulting in 733 parameter sets out of 1.65 million that met these criteria (red points); this 

filtering by other traits lead to a significant correlation (r = 0.57, p < 0.05) between the 

focal pair of traits ( and RmR).  
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4. REFINEMENT OF A THEORETICAL TRAIT SPACE FOR NORTH AMERICAN 

TREES VIA ENVIRONMENTAL FILTERING 

Abstract 

The theoretical trait space (TTS) for North American trees represents an n-

dimensional hypervolume (“hypercube”) characterizing the range of values and 

covariations among multiple functional traits, in the absence of explicit filtering 

mechanisms. A 32-dimensional TTS was previously generated by fitting the 

Allometrically Constrained Growth and Carbon Allocation (ACGCA) model to USFS 

Forest Inventory and Analysis (FIA) data. We sampled traits from this TTS, representing 

different individual “trees,” and subjected these trees to a series of gap dynamics 

simulations resulting in different annual light (photosynthetically active radiation) levels. 

Variation in light limitation led to non-random mortality and a refinement of the TTS. A 

set of six key “mortality” traits and six traits related to the leaf and wood economics 

spectrums (LES and WES) were used to construct hypercubes of the traits represented by 

both dead and living trees. For trees capable of surviving a given gap scenario, the 

volume of their refined trait space decreased linearly with increasing stand-level 

mortality rates (to ~50% mortality). The location of the hypercubes also shifted, as 

indicated by non-zero distances between the hypercube centroids of surviving trees 

compared to dead trees and the original TTS. We investigated potential mechanisms 

underlying such filtering processes by exploring how traits and the environment relate to 

mortality rates at the tree, phenotype (a specific set of traits representing a tree), and 

stand (a specific gap scenario) levels. The average light level at the forest floor explained 

42% of the stand-level mortality, while phenotype- and tree-level mortality were best 

explained by functional traits, especially radiation use efficiency, maximum tree height, 
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and xylem conducting area to sapwood area ratio. Overall, the patterns were consistent 

with empirical studies of functional traits, in terms of which traits predict mortality and 

the direction of the relationships. This work also identified potentially important 

functional traits that are not commonly measured in empirical studies. For example, the 

ratio of xylem conducting area to sapwood area and senescence rates of relatively long-

lived tissues were both found to be important predictors of tree- and phenotype-level 

mortality.. 

Keywords: environmental filtering, functional traits, gap dynamics, hypercube, 

hypervolume, IBM, North American trees, simulation experiment, trait space, trait 

spectra 
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Introduction  

 Quantifying how plant functional traits can determine individual success, and how 

traits interact with the environment to affect individual performance is a challenging 

problem. Longstanding and recent interest in functional traits encompasses many 

research areas, including plant competition, community assembly, species coexistence, 

demographics (Weiher et al. 1999, McGill et al. 2006, Westoby and Wright 2006, Clark 

et al. 2010, McMahon et al. 2011), biogeography (Violle et al. 2014), global vegetation 

models (Scheiter et al. 2013, Fyllas et al. 2014, Van Bodegom et al. 2014), and 

conservation (Devictor et al. 2010). An exciting aspect of functional traits research has 

been the discovery of correlations among traits representing tradeoffs at the global scale.  

Examples of these include the leaf, wood, and fast-slow economics spectra (Wright et al. 

2004, Chave et al. 2009, Reich 2014), and more recently, a global spectrum of plant form 

and function (Diaz et al. 2016).  These spectra are based on correlations found through 

statistical curve fitting (e.g., regression), dimension reduction methods (e.g., PCA), or 

other multivariate approaches such as the estimation of convex hulls combined with PCA 

(Diaz et al. 2016). These approaches have advanced our understanding of the 

interrelatedness of functional traits, but because they use empirical or statistical models, it 

is challenging to extend the observed patterns to novel conditions (Pearl and Reed 1920, 

Webb et al. 2010, Evans et al. 2011).  

More robust predictions of plant performance (e.g., growth, survival) in novel 

environments may be gained by linking novel trait data to mechanisms (Savage et al. 

2007, Webb et al. 2010, Evans et al. 2011, Scheiter et al. 2013). Functional trait 

distributions are influenced by both environmental and biotic filters that lead to non-
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random mortality, selecting only individuals that can survive in a given environment 

(Van der Valk 1981, Woodward and Diament 1991, Weiher and Keddy 1999, Webb et al. 

2010). The ways in which species respond to these filters are limited by inherent mass 

balance and engineering constraints (Scheiter et al. 2013).  Environmental filters tend to 

limit the range of trait distributions in a given environment; these filters relate to limiting 

factors such as resources, temperature, or soil characteristics (Van der Valk 1981, 

Woodward and Diament 1991, Weiher and Keddy 1999, Webb et al. 2010), and variation 

in these factors tends to select for plants (trees) that remain above their zero-net-growth 

isoclines (Tilman 1985). Interspecific competition can limit the similarity of the 

remaining species traits in a community (Macarthur and Levins 1967, Stubbs and Wilson 

2004, Cornwell and Ackerly 2009). Thus, both environmental and biotic filters can lead 

to non-random mortality. Thus, one way to investigate how filtering influences the trait 

space is to investigate how traits influence mortality. Another way to assess filtering’s 

influence on the trait space is to determine how filtering affects correlations indicative of 

tradeoffs. In this case, the range of possible trait relationships/tradeoffs will depend on 

the dimensionality of the trait space (Clark et al. 2010). Such trait tradeoffs are beginning 

to be incorporated into predictive models, such as dynamic global vegetation models. By 

allowing plants in a community to adapt to their environment over the course of the 

simulation (via fairly simple reproduction and inheritance sub-models), traits possessed 

by the community changed over time in response to environmental change (Scheiter et al. 

2013). Importantly, realistic tradeoffs were found to emerge from this framework without 

being too computationally intensive for use in larger, more complex models (Scheiter et 

al. 2013). 
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The multidimensional nature of the niche (Hutchinson 1957, Clark et al. 2010), and 

large variation in tree traits, seen in several studies (Wright et al. 2005, Kattge et al. 

2011a), suggests that trees possess many ways of responding to a given environment.  

However, even if there is a great degree of variation within the traits of a species or 

community, this does not imply that any or all combinations of trait values are possible. 

The traits expressed by a tree are governed by mass-balance and engineering tradeoffs 

(Scheiter et al. 2013). Common tradeoffs are seen in groups of related traits in the leaf 

(Wright et al. 2004), wood (Chave et al. 2009), and “fast-slow” (Reich 2014) economics 

spectra, as well as the global spectrum of plant form and function (Diaz et al. 2016). 

These tradeoffs are often based on sample means computed at various levels of 

organization (e.g., site, species, genus), partly to ameliorate problems due to incomplete 

data (Reich et al. 1999, Wright et al. 2004, Diaz et al. 2004, Chave et al. 2009, Stahl et al. 

2013).  However, by focusing analyses on means the variability in the data is not well 

represented, potentially leading to erroneous results due to the problem of aggregation 

(Clark et al. 2011). One potential solution to exploring such trait tradeoffs is to use 

mechanistic models to simulate ecological processes, and subsequently assess the 

tradeoffs that emerge under varying environmental conditions via simulation 

experiments.  

For many boreal and temperate forests, forest canopy gap dynamics can produce 

widely varying environmental conditions, potentially acting as an important filtering 

process leading to non-random mortality and trait tradeoffs (McCarthy 2001). For 

example, forest gap formation and closure are important in determining community 

dynamics (Runkle 1985, Runkle and Yetter 1987). Tree success can depend on gap 
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dynamics, including how often gaps form, how long the gap remains open, and how long 

it takes for the forest canopy to close (Runkle 1985, Valverde and Silvertown 1997, 

McCarthy 2001, Ogle and Pacala 2009), due to impacts on light availability, and 

subsequently carbon uptake. 

The Allometrically Constrained Growth and Carbon Allocation (ACGCA) model 

developed by Ogle and Pacala (2009) predicts tree growth, carbon allocation, and 

survival status at annual time-steps, given average, annual light levels above the forest 

canopy. In particular, ACGCA uses known tree allometries along with physiological and 

morphological traits to control carbon allocation from a transient (fast) pool to structural 

compartments and a storage (slow) pool within an individual tree, and tree death occurs if 

the non-structural carbohydrate (slow and fast) pools are depleted (Ogle and Pacala 

2009). We integrated the ACGCA model with a simple gap dynamics simulator to 

investigate if an individual tree, defined by a specific set of functional trait values, is 

capable of surviving a particular gap dynamics scenario. We imposed a wide range of 

realistic gap scenarios to create varying levels of environmental stress (Ogle and Pacala 

2009), allowing the investigation of the relationship between selective mortality due to 

environmental filtering (light stress) and tree traits (ACGCA parameters). Through 

repeated simulation, we used the gap dynamics simulations to explore how the multi-

dimensional trait space changes with increasing stress (filtering), and to learn which traits 

experience the greatest filtering and/or are the best predictors of mortality. 

In previous work, we used the ACGCA model to estimate the theoretical trait space 

(TTS) for North American trees (see Table 1 for a full list of traits). This was done by 

fitting the ACGCA model to FIA data while restricting parameter values to realistic 



124 

 

ranges through the use of semi-informative priors.  The TTS represents the trait space 

that is consistent with living trees in the FIA data. In this study, our objective was to use 

this framework to assess how this TTS may be refined when applying the ACGCA model 

to a range of gap dynamics simulations that lead to some level of mortality (i.e., not all 

simulated trees survive).  In doing so, we address the following questions: 1) How well 

do environmental factors versus functional traits explain tree-level mortality? 2) How do 

environmental factors, such as time between gaps, relate to stand-level mortality? 3) 

Which functional traits in the TTS, if any, predict the mortality rate of a given phenotype 

defined by a specific combination of trait values? 4) Does environmental filtering 

associated with the gap scenarios lead to a refinement of the trait space relative to the 

original TTS? That is, does the trait space differ between trees that survived versus those 

that died, or between surviving and dead trees versus the original TTS? How are such 

differences (e.g., in terms of centroid distances or volume) affected by the level of 

environmental (light) stress? 5) In what ways are trait tradeoffs affected by subjecting the 

TTS to environmental filtering (non-random mortality) via gap dynamics?  

 

Methods 

Theoretical Trait Space 

 The ACGCA model involves 32 parameters (inputs) representing physiological, 

morphological, and allometric traits (see Table 1 for ACGCA parameter definitions). We 

used parameter (trait) values representative of the theoretical trait space (TTS) of North 

American trees (Fell et al. in review).  Based on previous work to quantify the TTS, 

33000 parameter sets were obtained, each set representing a vector of 32 parameters. 
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These parameter sets were found by fitting the ACGCA model to US Forest Service 

(http://www.fia.fs.fed.us/) Forest Inventory and Analysis (FIA) data, including tree 

heights, diameters, and their estimated rates of change per year. The model was fit to the 

FIA data via a simple Bayesian framework that employed a custom Metropolis-Hastings 

(MH) algorithm to sample from the posterior of the parameters, allowing estimation of 

parameter spaces for each trait in the ACGCA model. The likelihood of the modeled 

(ACGCA) outputs—annual heights, diameters, and annual rates of change in each—was 

evaluated against a four-dimensional histogram representing realistic tree growth based 

on 1.27 million FIA re-measurements of height, radius, change in height, and change in 

radius for living, healthy trees (i.e., data for dead trees or trees associated with no growth 

or negative growth were eliminated). The ACGCA model parameters were further 

constrained by informative prior distributions based on the TreeTraits literature database 

(Kattge et al. 2011b, Ogle et al. 2013, 2014), which contains reported values for 27 of the 

32 traits (parameters) used in the ACGCA model. In cases where no trait data were 

available (i.e., for parameters λs, λh , f1, ηB, and m, see Table 1), semi-informative priors 

were based on values derived for Pinus taeda and Acer rubrum in Ogle and Pacala 

(2009). The final output from this analysis (posterior samples of the traits [or 

parameters]) can be thought of as representing an unfiltered trait space, or the TTS, that 

simultaneously agrees with FIA data, the semi-informative priors, and the ACGCA 

model structure. 

Gap Dynamics Simulations 

 The overarching goal of the gap dynamics simulations was to impose 

environmental stress on the aforementioned unfiltered trait space (TTS).  Though it could 
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be argued that gap dynamics simulations really impose a biotic stress due to competition 

for light by surrounding trees, as opposed to a strictly abiotic (i.e., environmental) stress 

(Kraft et al. 2015), the sole effect of the gap formation and closure process in our 

simulations is to reduce light availability, an important abiotic factor determining carbon 

uptake. Regardless of which perspective is employed (abiotic versus biotic stress), the 

gap dynamics scenarios are constructed to explore how varying stress conditions may 

refine the TTS by potentially eliminating sub-regions of the trait space, associated with 

trees (or sets of trait values) that die during the simulation. Our gap scenarios are based 

on those described in Ogle and Pacala (2009); only details relevant to our objectives and 

questions are provided here.   

 Gap simulations were conducted with three repeated phases: open gap, gap 

closure, and closed canopy. Following Ogle and Pacala (2009), three levels were used for 

the open gap phase (gt = 4, 6, and 8 years), five for the closure phase (ct = 5, 10, 15, 25, 

and 45 years), and five for the time between gaps (tbg = 20, 35, 50, 100, and 200 years).  

Some combinations were removed due to inconsistences (e.g., a time between gaps of 20 

years and a closure phase of 45 years are inconsistent), resulting in 62 unique simulation 

scenarios. Each scenario was run for a 200 year period, and the average light at the forest 

floor was calculated for the 200 year period based on supplemental material in Ogle and 

Pacala (2009), using a standard Beer-Lambert light-extinction model, combined with 

modeled variation in forest canopy leaf area index (LAIF) as gaps form and close. 

Average light level at the forest floor (PARavg) was found to be closely related to tbg and 

stand/scenario-level mortality (see results), and thus was used as a continuous variable 
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representative of the level of environmental stress in a subset of regression analyses 

described below. 

The gap scenario simulations were kept simple by employing an empirical model 

that described the LAIF of the surrounding forest canopy, rather than modeling individual 

trees in the surrounding forest. The ACGCA model, however, was used to model growth 

and survival of the target tree defined by a particular set of parameters (traits), under each 

gap scenario. The forest was prescribed a canopy height (HF) and LAIF, both of which 

were zero during the gap phase and both increase linearly during the closure phase, until 

reaching their maximum values (HF,max and LAIF,max) during the closed phase (Ogle and 

Pacala 2009). The forest canopy affects the modeled (target) tree through its effect on 

annual photosynthetically active radiation (APAR) according to the Beer-Lambert 

equation (Ogle and Pacala 2009). The light environment experienced by the target tree is 

determined by its crown height (H) relative to HF, yielding three scenarios: (1) the tree is 

not limited by light (H > HF), (2) its crown is partially exposed to full sunlight (Hη < HF 

< H, where Hη is the height to the base of the target tree’s crown), or (3) the tree can be 

completely overtopped by the surrounding forest (HF > H) (Ogle and Pacala 2009). 

 Output from the gap dynamics simulations was used to determine if a given 

parameter set led to a target tree that survived or died over the 200 year period, for each 

of the 62 gap scenarios. This yielded 2,046,000 (33,000 parameter sets  62 gap 

scenarios) binary values, where 0 indicated a tree that survived the 200 year simulation, 

and 1 indicated death during the simulation. These binary outputs were summarized to 

quantify three types of mortality (Table 2). For the first type of mortality, the individual 

binary values are representative of tree-level mortality (𝑚𝑔,𝑝) for gap scenario g (g = 1, 2, 
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…, 62) and parameter (trait) set p (p = 1, 2, …., 33000), which were used in addressing 

how environmental factors versus functional traits explain 𝑚𝑔,𝑝 (Q1).  Two additional 

indices of mortality—stand-level (denoted by 𝑚𝑔
𝑆) and phenotype-level (denoted by 

𝑚𝑝
𝜃)—summarize mortality rates for each gap scenario (𝑚𝑔

𝑆, for g = 1, 2, ..., 62) or for an 

individual set of parameters (𝑚𝑝
𝜃, for p = 1, 2, …, 33,000), respectively. (Table 2). 

 Mortality associated with each gap scenario (𝑚𝑔
𝑆) can be thought of as similar to 

stand- level mortality since each set of traits was subjected to a fixed environment. In 

particular, for each gap scenario: 

 
𝑚𝑔

𝑆 =
∑ 𝑚𝑔,𝑝

33,000
𝑝=1

33,000
 (30)  

Thus, there are 62 𝑚𝑔
𝑆 values of stand-level mortality, one for each gap scenario; these 

mortality values were analyzed to evaluate how environmental factors (e.g., time between 

gaps, PARavg) relate to stand-level mortality (Q2). 

Phenotype-level mortality (𝑚𝑝
𝜃) was calculated for each parameter set drawn from 

the original (unfiltered) TTS (Fell et al. in review).  Each parameter set can be thought of 

as a phenotype since it represents a specific combination of functional traits within the 

TTS. Phenotype-level mortality was calculated as: 

 
𝑚𝑝

𝜃 =
∑ 𝑚𝑔,𝑝

62
𝑔=1

62
 (31)  

These mortality values were analyzed to evaluate if, and which, functional traits can 

explain 𝑚𝑝
𝜃 (Q3). Both 𝑚𝑆 and 𝑚𝜃describe the proportion of trees that died for each gap 

scenario and phenotype (parameter set), respectively. 

Statistical Analyses 
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Mortality regressions—We conducted stepwise regression analyses to evaluate 

the factors underlying tree-, stand-, and phenotype-level mortality. In all cases, the 

Bayesian Information Criterion (BIC) was used for the model section criterion because it 

has a greater penalty term for each added variable and it tends to select more 

parsimonious models (Gelman et al. 2014). All stepwise regressions used forward and 

backward selection. 

We evaluated how well the environment and functional traits explain tree-level 

mortality (Q1), 𝑚𝑔,𝑝 (given by 0 [survived] or 1 [died]), by conducting three logistic, 

stepwise regression analyses: (1) light + trait model, (2) trait only model, and (3) light 

only model. Each of these models was fit to half of the 𝑚𝑔,𝑝 values (n = 1,023,000), 

chosen randomly from the full dataset. The remaining 50% of the 𝑚𝑔,𝑝 values were used 

as a test dataset to assess the extent to which 𝑚𝑔,𝑝 could be correctly predicted by each 

model. The light + trait model included each of the 32 TTS functional traits associated 

with each p and the average light for each gap scenario g as potential predictors of 𝑚𝑔,𝑝.  

Interactions between PARavg and each of the 32 traits were included in the full model to 

account for differing effects of the traits depending on light level. The trait only model 

included only the functional trait values associated with each p, and the light only model 

included PARavg associated with each g as the sole explanatory variable. 

 The relationship of stand-level mortality (𝑚𝑔
𝑆) to environmental factors (Q2) was 

addressed by regressing the 62 𝑚𝑔
𝑆 values on each of the gap dynamics variables (gt, ct, 

and tbg) associated with each scenario g. We treated gt, ct, and tbg as categorical factors 

in the regressions. Another simple linear regression was carried out by regressing 𝑚𝑔
𝑆 on 
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the PARavg of each scenario. These regression models allowed an assessment which 

aspect of the gap dynamics process (environment) best explained mortality at the stand 

level. We were also able to confirm that PARavg was an effective composite variable 

representing the environment in each simulation.  

 To evaluate the factors affecting phenotype-level mortality (𝑚𝑝
𝜃; Q3), we 

conducted a stepwise regression where each of the 33,000 𝑚𝑝
𝜃 values were regressed on 

the 32 trait values associated with parameter set p. Two regressions were conducted; one 

with only main effects (main effects only model) and another including main effects and 

all two-way interactions among each of the 32 traits (interaction model). The relative 

importance of each parameter in the main effects only model was determined using the 

“relaimpo” package in R (Grömping 2006), which computes the proportion of variation 

explained by each trait (independent variable) relative to the total variation explained (R2) 

by the model. This was only done for the main effects only model; the complexity of the 

interaction model and the sample size used led to computational challenges when trying 

to calculate the relative importance (the computer’s memory was exceeded). 

 Hypercube trait space analysis —We evaluated how the trait space changed with 

the filtering introduced by the gap scenarios (Q4). As a simple qualitative analysis, plots 

of kernel density estimates for each trait were constructed for each gap scenario, for 

surviving and dead trees (32 traits  62 scenarios  2 types [dead or living]), to visualize 

the separation in trait space between surviving and dead trees. A more rigorous 

evaluation of the emergent trait spaces was achieved by using the “hypercube” package 

in R (Blonder et al. 2014), which allowed us to quantitatively assess how the multi-

dimensional trait space (i.e., hypervolume) shifts as a result of environmental stress. The 
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hypercube package characterizes high-dimensional spaces, and was used to estimate 

hypercube volumes and centroid distances between two hypercubes. We constructed 

hypercubes for the trees that survived and for those that died during each of the 62 gap 

scenarios. The number of parameter sets (trees) differed among the surviving and dead 

groups due to differing mortality rates in each gap scenario. For instance, while 33,000 

trees were simulated in each scenario, half the trees may have died in one scenario, while 

only a little over 3000 died in another, leading to different sample sizes for surviving and 

dead trees. Thus, to construct hypercubes for each stand (gap scenario) and each group of 

trees, 3000 parameter sets were randomly sampled from each group, without 

replacement, to avoid potential problems due to differences in sample sizes.  

To ensure that the above subsampling did not bias our results, the analysis was 

repeated 100 times to assess the effect of subsampling. Furthermore, we also randomly 

sampled from the TTS to construct a data structure similar to each gap scenario; for 

example, if ND
g trees died and NS

g trees survived gap scenario g, we randomly drew two 

groups of parameters sets from the TTS of size ND
g and NS

g. These samples were then 

further subsampled by randomly selecting 3000 parameter sets, which were subsequently 

used to construct hypercubes representative of the TTS, and to evaluate the potential 

effect of differential sample size on the hypercube results.  

One limitation of the hypercube method is that the number of dimensions cannot 

exceed the natural log of the sample size (Blonder et al. 2014). In the case of our model 

output, this allowed a maximum of 8 dimensions (i.e., loge(3000) = 8.01), though we only 

used six. For these analyses, a bandwidth of 0.4 (the lowest value that did not cause 

errors) and a quantile of 0.05 (95% included) were used. With this in mind, the six traits 
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with the greatest relative importance (accounting for over 90% of the R2) in explaining 

𝑚𝑝
𝜃 were included (i.e., Hmax, ε, γX, SO, RmL, and R0; see Figure 3 and Table 1 for a 

description of the traits; hereafter referred to as the “mortality traits”). We also 

constructed hypercubes based on six traits that are related to the LES and WES (i.e., SLA, 

ε, RmL, SL, γX, and ρ; hereafter referred to as the “leaf/wood traits”). For each group of 

traits (mortality traits and leaf/wood traits), we used the aforementioned subsampling 

procedure to construct hypercubes for the surviving and dead trees for each gap scenario, 

as well as for the TTS, which is independent of gap scenario. Using the three constructed 

hypercubes, the traits of surviving and dead trees were compared to each other as well as 

to the TTS, allowing us to assess if stress results in a refinement of the trait space.   

Comparisons of the trait spaces represented by the hypercubes were made by 

calculating the difference in volumes between two hypercubes and the centroid distances. 

Centroid distances and volume differences were found between the TTS hypercube and 

the surviving and dead hypercubes (TS = TTS vs. surviving hypercube, TD = TTS vs. 

dead hypercube), and between the surviving and dead hypercubes (SD = surviving vs. 

dead hypercube) for each of the 62 gap dynamics scenarios. When calculating volume 

differences, surviving and dead hypercubes were subtracted from the TTS hypercubes 

(TTS served as the reference). When comparing the surviving and dead hypercubes, the 

dead hypercubes were subtracted from the surviving hypercubes (surviving served as the 

reference). Linear regressions were used to determine the relationship between centroid 

distances and volume differences, and how these relate to stand-level mortality (𝑚𝑔
𝑆), for 

hypercubes representing both mortality traits and leaf/wood traits. This resulted in 12 
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regressions (322); three (TS, TD, SD) for centroid differences, three (TS, TD, SD) for 

volume differences, with each repeated for the two set of traits (mortality and leaf/wood). 

Tradeoffs analysis—Finally, we investigated how trait tradeoffs are affected by 

environmental filtering (Q5). This was accomplished by conducting a sequence of 

stepwise regressions that treated each of the functional traits (1 of the 32 traits) as the 

dependent variable, and regressed the dependent trait on all the other (31 traits) traits and 

stand-level mortality (𝑚𝑔
𝑆). These regressions included both main effects of the other 

traits and mortality, and all two-way interactions. The regressions were conducted 

separately for trees that died and for trees that survived a particular gap scenario, with 

3000 randomly selected parameter sets representative of each population of trees (dead, 

surviving). The aforementioned hypercube analyses led us to focus our regression 

analysis on the gap dynamics scenario with the lowest mortality (gt=8 years, ct=25 year, 

tbg=35 years) since low mortality was associated with the greatest shift in the parameter 

or trait space (see results below). Thus, 64 (32 traits  2 types [dead or surviving]) 

stepwise regressions were completed. Significant effects of one trait on another suggest 

potential tradeoffs, and these effects were evaluated for both surviving and dead trees.  

 

Results 

Mortality Regressions 

 Tree-level mortality—The logistic regressions for tree-level mortality (𝑚𝑔,𝑝) 

show that the light + trait model was the best at correctly predicting a tree’s live/dead 

status, such that it correctly predicted 82% of the validation cases. The trait only model 
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was comparable (80% correct), but the light only model was notably inferior (42% 

correct) (Figure 1). The light only model performed poorly because it tended to predict 

that nearly all trees died such that it correctly classified 95% of the dead trees, but 

misclassified 90% of the surviving trees (Figure 1).  By comparison, the traits only and 

traits + light models predicted dead tress correctly in 67% and 72% of the test sample, 

respectively, and classified surviving trees correctly in 87% and 88% of the test sample, 

respectively.  

Based on the stepwise regression models involving traits, the specific traits from 

the TTS that had the greatest effect sizes (all significant at p < 0.01) on 𝑚𝑔,𝑝 were, in 

order of decreasing importance, ε (- effect), Hmax (-) , γX (-), SO (+), RmL (+), and R0 (-) for 

the traits only model (see Table S2). For the light + traits model, the traits or predictors 

with the largest effect sizes were ε (-), Hmax (-), γX (-), PARavg (-), SO (+), and RmL (+) (see 

Table S3); some of these traits overlap with the traits only model, but clearly light level is 

also an important predictor of tree-level mortality. See Tables S1, S2 and S3 for a more 

detailed summary of the results (effects) from the three logistic regression models.  

 Stand-level mortality—Of the three gap phase variables, time between gaps (tbg) 

was the best predictor (p < 0.05) of stand-level mortality (𝑚𝑔
𝑆), and the model that only 

included this categorical factor (4 levels) yielded R2 = 0.74 (Table S4, Figure 2 A).  

Mortality increased with increasing tbg in a non-linear fashion such that 𝑚𝑔
𝑆 was less 

sensitive to tbg at higher values. The regressions where 𝑚𝑔
𝑆 was modeled as a function of 

either gap period (gt) or gap closure time (ct) yielded worse fits (R2 = 0.002 and 0.052, 

respectively). Finally, when 𝑚𝑔
𝑆 was regressed on the average light level (PARavg) over 
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the 200-year simulation, PARavg was a significant predictor of 𝑚𝑔
𝑆 (p < 0.05, R2=0.85, 

Figure 2 B). 

 Phenotype-level mortality—The step-wise regression for phenotype-level 

mortality (𝑚𝑝
𝜃) that only involved main effects of tree traits converged to a model 

involving 20 of the original 32 traits (R2 = 0.48; Table S5). The model that included main 

effects and two-way interactions included 72 effects involving 22 main effects and 50 

interaction terms (R2 = 0.62; Table S6). Based on the main effects only model, the six 

traits with the greatest effect sizes were ε (-), Hmax (-), γX (-), SO (-), RmL (+), and R0 (-) 

(Table S5), and these traits accounted for over 93% the overall R2 for (Figure 3 A). 

Though the relative importance (R2 contribution) of each term could not be calculated for 

the model including interactions, of the main effects, these same six traits emerged 

among the top nine with the greatest effect sizes, and they maintained the same 

relationships to mortality (negative or positive) (see Table S6).  

The Multi-dimensional Trait Space 

A general shift was seen in the kernel density estimates for parameters (traits) 

with larger effect sizes in the mortality regressions, as seen by a separation between the 

distributions of traits associated with trees that survived a simulation versus those that 

died (Figure 3 B-D). Such a separation is not apparent for traits, however, that were non-

significant predictors of mortality. 

Centroid differences—The hypercube analysis for the top six traits (ε, Hmax, γX, 

SO, RmL, and R0) identified as the most significant predictors of tree- and phenotype-level 

mortality clearly indicated shifts in the trait spaces for the surviving and dead trees 
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associated with the gap dynamics simulations. Centroid differences between surviving 

trees versus the TTS (TS) had a significant positive relationship with stand-level 

mortality (𝑚𝑔
𝑆; R2 = 0.96, p < 0.01), with distances ranging from 0.18 to 0.65 across the 

62 gap scenarios (distances are unitless because trait values were normalized relative to 

their posterior standard deviations, Figure 4A). This range exceeds the mean and 

maximum centroid distances of 0.14 and 0.18, respectively, found by randomly sampling 

the TTS (Figure 4 A). Distances between centroids for trees that died versus the TTS 

(TD) had a significant negative relationship with 𝑚𝑔
𝑆 (R2

 = 0.95, p < 0.01), with minimum 

and maximum distances of 0.54 and 1.02, respectively (Figure 4 B). Finally, distances 

between centroids for surviving versus dead (SD) trees had a significant negative 

relationship with 𝑚𝑔
𝑆 (R2 = 0.99, p < 0.01), with a range from 0.15 to 0.79 (Figure 4C). 

That is, as 𝑚𝑔
𝑆 increases, the centroids of the surviving and dead trees converge to similar 

values (Figure 4C). These results were essentially the same when the analysis was 

repeated for six leaf/wood traits related to the LES and WES (Figure 5 A-C), with 

comparable R2 values of 0.95, 0.94 and 0.99 for TS, TD, and SD, respectively.  

 Volume differences—Differences between hypercube volumes for both groups of 

traits (mortality and leaf/wood traits) followed the same patterns as the centroid 

distances, with all models being statistically significant (p < 0.01). Volume differences 

spanned a minimum and maximum of ~0 to 51.06, 24.01 to 98.20, and -14.65 to 81.64 

for the TS, TD, and SD comparisons of mortality traits, respectively; these differences 

demonstrate a restriction (shrinking) of the trait space of both surviving and dead trees as 

𝑚𝑔
𝑆 increases. The volume differences between the three hypercubes (TS, TD, and SD) 

exceeded the null model found by randomly sampling the TTS, which yielded mean and 
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maximum volume differences of 0.006 and 0.021, respectively. Though the trends in 

volume differences were in the same direction as those for centroid distances, mortality 

(𝑚𝑔
𝑆) explained less of the variation in the volume differences; R2 = 0.47, 0.78, and 0.84 

for TS, TD, and SD, respectively (Figure 4 D-F). Volume differences between surviving 

and dead trees are greatest under lower stand-level mortality (𝑚𝑔
𝑆), with dead trees 

associated with more restricted trait spaces, but these differences disappear as 𝑚𝑔
𝑆 

approaches 50% (Figure 4F). These results for the hypercube volumes are essentially the 

same when repeated for the leaf/wood traits; regressions of the volume differences versus 

𝑚𝑔
𝑆 gave R2 = 0.59, 0.82, and 0.90 for TS, TD, and SD, respectively (Figure 5 D-F).  

Trait Relationships and Tradeoffs 

 Regressions assessing multivariate relationships between each trait in the TTS and 

the other 31 traits and 𝑚𝑝
𝜃 resulted in significant models for each dependent trait. Most 

main effects and interactions were statistically significant (p < 0.05, Tables S7 and S8), 

but R2 values were generally low. For surviving trees, seven traits resulted in models with 

adjusted R2  0.2 (from highest to lowest R2: ε, γX, SO, Hmax, R40, RmR, RmS), with the 

maximum (R2 = 0.38, 0.35) occurring for ε and γX, (Table S7). For trees that died, nine 

traits had R2  0.2 (from highest to lowest R2: ε, R40, SO, RmL, RmS, RmR, R0, f1, Hmax), with 

the maximum (R2 = 0.63) occurring for ε (Table S8). For the five “top” traits shared 

among surviving and dead trees (i.e., ε, R40, SO, RmS, Hmax), their models tended to include 

many of the same predictor traits (covariates) (e.g., compare Tables S7 and S8). Overall, 

compared to dead trees, the trait models for surviving trees included less covariates (i.e., 

fewer trait main effects and/or interactions), generally had lower adjusted R2 values, and 
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were less likely to include 𝑚𝑝
𝜃 as a main effect (Table S9). There were also some 

differences between surviving and dead trees models with respect to which predictor trait 

main effects and interactions were included and the strength of the effect of a predictor 

trait (Table S9). However, most predictor traits included in the dependent trait models for 

both surviving and dead trees had coefficients with the same sign (Table S9). 

 

Discussion 

Mortality and Functional Traits 

 Stand-level mortality was analyzed in relation to environmental factors (light), 

and we discuss these results in the context of our second research question that focuses 

on how stand-level mortality is related to environmental factors (average light at the 

forest floor and gap simulation variables). Both tree- and phenotype-level mortality were 

related to TTS traits, and subsets of traits emerged as being important predictors of both 

types of mortality. Thus, we discuss results for both tree- and phenotype-level mortality 

simultaneously, in the context of our first and third questions, addressing how 

environment versus functional traits explain mortality, and identifying which functional 

traits (parameters) predict phenotype-level mortality, respectively. We follow this with an 

evaluation of how our results compare to trait patterns reported in the literature. 

Stand-level mortality—Towards addressing how environmental factors relate to 

stand-level mortality (our second question), we found that the average light level at the 

forest floor (PARavg) was an excellent predictor of stand-level mortality (𝑚𝑔
𝑆) (Figure 2B). 

While time between gaps (tbg) was also a good predictor of stand-level mortality (Figure 
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2A), with longer times leading to higher mortality rates, other indices of the gap phase—

such as the length of the forest gap (gt) during which a tree could experience high light or 

the time it takes for the forest canopy to close after a gap has formed (ct)—offered little 

insight into stand-level mortality. PARavg is ultimately a function of the three gap phase 

variables (tbg, gt, and ct), and thus, it is not surprising that PARavg was the best predictor 

of stand-level mortality. For example, of the three gap phase variables, tbg most strongly 

influenced PARavg (Figure S1 C), especially when tbg was long, in which case the gap 

length (gt) and closure time (ct) were less important. In the most extreme case, where tbg 

was equal to the simulation length (200 years), a gap was created at the beginning of the 

simulation, followed by canopy closure and an extended closed canopy phase, leading to 

the lowest PARavg and highest mortality. 

We note that in our simulation study, functional traits were irrelevant for 

understanding stand-level mortality since we did not simulate communities of trees, but 

simply evaluated the proportion of individually simulated trees that died during each gap 

scenario (a “stand”). For approaches that consider an entire community of trees 

competing explicitly for resources—such as the JABOWA (Botkin et al. 1972, Bugmann 

2001), SORTIE (Pacala et al. 1993, 1996), or Ecosystem Demography (Moorcroft et al. 

2001) models—one could compute community-weighted functional traits to determine 

the importance of traits for predicting stand-level mortality.  

 Tree- and phenotype-level mortality—Towards answering how environment 

versus functional traits explain mortality, our first question, we found that simulated tree-

level mortality (𝑚𝑔,𝑝) was better explained by traits in the theoretical trait space (TTS) 

rather than by PARavg (environment). This may not be surprising given that PARavg served 
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as the only environmental predictor, while a total of 32 functional traits were considered. 

PARavg alone successfully predicted death for trees that actually died, but it also predicted 

that most surviving trees would have died during the 200-year simulation. In cases where 

simulated trees died, death was ultimately due to carbon starvation resulting from low 

light. However, the actual light level experienced by the tree—which was not tracked as 

such data would be difficult to obtain for real trees—over the simulation period is 

mediated by the tree’s crown height relative to the forest canopy. Due to this, PARavg—

the quantity considered here—alone cannot discriminate between trees that could succeed 

when overtopped (shade tolerators) versus trees that can grow above the forest canopy 

(shade avoiders) (e.g., Givnish 1988, Falster and Westoby 2005). Thus, average light 

(PARavg) was insufficient to explain tree-level mortality, but the combination of PARavg 

and functional traits improved the ability to successfully predict tree-level mortality 

(Figure 1). Hence, PARavg appears only informative for predicting mortality if key 

functional traits are also considered. 

Towards addressing our third question focused on understanding which trait 

combinations predicts mortality of a specific phenotype, we found that functional traits in 

the TTS reasonably explained variation in phenotype-level mortality (𝑚𝑝
𝜃). In particular, 

48% of the variation was explained by the independent effects of 20 traits, and 62% 

explained by the independent and interacting effects of a subset of traits from the TTS 

(Table S5). The most important traits for predicting phenotype-level mortality were also 

the most important for predicting tree-level mortality. For example, mortality rates were 

lower for trees and phenotypes with greater potential to grow above the forest canopy 

(high Hmax), with higher radiation-use efficiency (high ε), and/or with stems supporting 
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more conducting area (high γX), which would allow for greater investment in height 

growth. 

The tree- and phenotype-level mortality regressions are generally consistent with 

empirical studies. For example, maximum potential height of a mature tree (Hmax) often 

emerges as a predictor of population- or species-level mortality (e.g, Poorter et al. 2008, 

Wright et al. 2010, Ruger et al. 2012); trees or phenotypes associated with high Hmax are 

less likely to die during closed canopy phases. This relationship may be expected if a tree 

with the potential for high Hmax can also grow quickly, allowing it to position its crown 

above the forest canopy. However, some studies show that Hmax is only a weak predictor 

of mortality for species associated with Hmax > 25 m (Ruger et al. 2012), or for seedlings 

as seedling growth rates do not necessarily correlate with Hmax (Wright et al. 2010). Thus, 

it appears that the degree to which Hmax can serve as a predictor of mortality may depend 

on species identity and the growth stage of the tree. 

In addition to Hmax, we also found that radiation-use efficiency (ε) was just as, or 

more, important for predicting mortality. This trait is related to how efficiently light is 

used to acquire carbon, with higher values being especially beneficial in low light. 

Empirical studies indicate that ε is related to leaf nitrogen content (Sinclair and Horie 

1989, Wang et al. 1991, Martin and Jokela 2004), which in-turn is related to a number of 

other leaf traits, including specific leaf area (SLA), leaf lifespan, and mass-based 

photosynthetic rate (Wright et al. 2004). Thus, it is also possible that the importance of ε 

could reflect the contribution of these other, related traits for predicting tree-, phenotype-, 

population-, and/or species-level mortality.  
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While we also found that the conducting area to sapwood area ratio (γX) was an 

important predictor of mortality under light stress, this trait is rarely measured in field 

studies that attempt to link mortality to functional traits. While γX can be measured (e.g., 

Hacke et al. 2001, Kaakinen et al. 2004, Lens et al. 2005, 2011), such measurements are 

time-consuming and potentially challenging, which likely explains the reporting of 

limited data related to this trait. However, our simulation experiments indicate that this 

may be an important trait to target in mortality studies. In contrast, many empirical 

studies have reported relationships between wood density (ρ) and tree mortality, where 

lower ρ is typically related to higher mortality rates (Poorter et al. 2008, Chave et al. 

2009, Wright et al. 2010). But, ρ did not emerge as a top predictor of mortality in our 

analyses. However, ρ in the ACGCA model describes the density of wood formed under 

“optimal” conditions. In reality, bulk ρ varies from year-to-year (Bouriaud et al. 2005, 

Skomarkova et al. 2006), and field-based measurements of ρ represent a composite trait 

that reflects anatomical features, such as γX and cell wall thickness. Thus, our finding that 

conducting area γX is a key predictor of mortality is consistent with the observation that 

field-based ρ is often predictive of mortality.  

The Multi-dimensional Trait Space 

 Centroids and volumes—Towards addressing our fourth question related to how 

environmental filtering can modify the trait space, we found that the trait spaces 

(hypercubes) were altered by selective mortality. This agrees with the concept that 

environmental filtering restricts the functional trait space (Van der Valk 1981, Webb et 

al. 2010). When comparing surviving trees to the potential population of trees, as 

captured by the TTS, both centroid distances and volume differences became greater as 
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mortality increased (e.g., Figures 4A and 4D), implying a restriction of the 

multidimensional trait under light limitation. This is in agreement with a recent empirical 

study—using data from over ten thousand species—that found plants have a highly 

restricted trait space relative to what is theoretically possible given the overall range of 

observed trait values (Diaz et al. 2016); these findings are based on six traits, including 

mass-based leaf nitrogen content, leaf area, SLA, diaspore mass, adult plant height, and 

stem specific density (similar to ). Most of the variation in these traits could be 

attributed to two axes in a PCA (principle components analysis), but the correlative 

nature of the analysis precluded mechanistic explanations for why so many potential trait 

combinations are not realized (Diaz et al. 2016). A few potential explanations include 

mass conservation or engineering tradeoffs (Scheiter et al. 2013), competition, or natural 

selection (Levine 2015). Our study suggests mass conservation and engineering tradeoffs 

are important in that a restricted trait space emerged from an individual-based model 

(ACGCA) subjected to only one environmental limitation (light); however, this finding 

does not exclude competition or natural selection as potentially important since they were 

not explicitly assessed in this study. 

 Trait variation—For those traits that were the strongest predictors of tree- and/or 

phenotype-level mortality, their distributions differed among the surviving and dead 

groups of trees (for Hmax, ε, and γX, see Figure 3 B-D). The location of each distribution 

clearly differed between the two groups (e.g., the mean or mode of Hmax was lower for 

dead compared to surviving trees, Figure 3B), but the spread or variance did not notably 

differ. The location differences agree with the hypercube results in that the centroids (an 

index of location in multi-variate space) significantly differed between the two groups of 
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trees, with distances being highest under gap scenarios leading to low stand-level 

mortality, but approaching zero as mortality approached 50% (Figures 4C, 5C). The 

similarity in spread among the univariate distributions (Figure 3B-D) seemingly conflicts 

with the hypercube volumes (i.e., indices of “spread” in six dimensions). For example, as 

for the centroid distances, volume differences were greatest under low stand-level 

mortality, but disappeared as mortality rates approached 50% (Figs. 4F, 5F). Overall, the 

trait space of dead trees was much narrower (smaller volume) under low mortality 

conditions compared to the surviving trees, indicating that very specific combinations or 

ranges of traits were “selected” against under comparatively low light stress. As light 

stress increased, a larger proportion of trees died, thus expanding the trait space 

associated with the dead group of trees, while simultaneously shrinking the trait space 

associated with surviving trees. 

The apparent inconsistency between the marginal distributions for individual 

traits and the hypercube characteristics can likely be explained by tradeoffs in the 

multidimensional trait space, reflecting the possibility that a tree can respond to a given 

stressor in different ways. In support of this, a simulation that employed a genetic 

algorithm to identify the trait values—for 34 functional traits—that optimize seedling 

growth, survival, and fitness produced multiple, essentially infinite, combinations of 

“optimal” trait values that spanned up to two orders of magnitude (Marks and Lechowicz 

2006). This was attributed to the concept that even in a heterogeneous environment, it is 

possible to have many optimal solutions, provided there are many tradeoffs that can occur 

(Marks and Lechowicz 2006). Similar results were also found in a laboratory study of 

evolution in bacteria where uniform environments were found to lead to similar levels of 
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fitness even though genetic divergence and changes in individual traits occurred over 

1000 generations (Korona 1996). Unfortunately, it would be impractical to conduct an 

observational experiment of this type for long-lived trees, pointing to the utility of 

simulation experiments. 

Though we do not explicitly model competition between individuals, a recent 

study found that trait-dissimilarity is not critical for determining local competitive effects 

on growth.  A tradeoff in performance could permit the coexistence of species with 

diverse traits, when competition is present versus when competition is absent, provided 

disturbance (such as gap formation) creates an environment with multiple successional 

stages (Kunstler et al. 2016). Our results support this in that they generally show wide 

ranges of traits can be present in surviving individuals, even as stand-level mortality 

approaches 50%. This implies multiple strategies exist, allowing individuals to tolerate 

relatively inhospitable environments (here, low light).  However, the trait space would 

likely become highly restricted if stand-level mortality were to continue increasing, and 

as it approaches 100%, we would predict that the trait space describing trees capable of 

tolerating increasingly lower light would become much less variable (narrower 

[univariate] or smaller volume [multi-variate]). 

Trait Relationships and Tradeoffs 

The trait-trait stepwise regressions provide insight into our fifth question, which 

asks how does non-random mortality induced via gap dynamics affect trait tradeoffs? 

Recall that for each of the 32 functional traits, we regressed the values associated with 

one trait (dependent trait) on the values of the other traits (predictor traits or covariates) 

representative of each tree, with separate regressions for trees that died and survived a 
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particular gap scenario. Here, we focus on the gap scenario that produced the lowest 

stand-level mortality (~19%) since this scenario lead to the largest separation in the trait 

hypercubes of the surviving and dead trees (see Figures 4 and 5). Overall, many 

relationships among traits were comparable within the dead and surviving groups of 

trees. For example, whether a trait was positively or negatively correlated with another 

trait was generally consistent between the two groups of trees, suggesting similar trait 

tradeoffs for both populations.  

However, the trait space associated trees that died appeared to contain more 

structure and tighter or stronger tradeoffs compared to the surviving trees (as indicated by 

higher R2 values for all traits; Tables S7 and S8). We highlight three traits (ε, RmL, and γX) 

that are significant predictors of mortality and that are related to the leaf (ε, RmL) and 

wood (γX) economics spectrums. In the ACGCA model, γX is fundamental to computing 

the maximum potential amount of non-structural carbohydrates (NSCs) that can be stored 

in sapwood, and it also trades-off with height growth (Ogle and Pacala 2009). As γX 

increases, the amount of NSCs that can be stored generally decreases, and this reduced 

investment in storage, accompanied by production of lighter bulk wood, tends to facilitate 

rapid height growth. In the regression for γX in surviving trees (Table S7), a number of 

tradeoffs are indicated; γX  is negatively correlated with ε and ρ and positively correlated 

with Hmax. The relationship between γX and Hmax in surviving trees is most likely related 

to growth rate via mass balance constraints (lower γX implies higher ρ and construction 

costs), while its relationship to mortality is likely related to the ability to store NSCs. The 

model for ε revealed tradeoffs with Hmax (negative relationship) and RmL (positive 

relationship). If a tree has a large Hmax, it could avoid investing in highly efficient 
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photosynthetic machinery (high ε) because it would presumably have access to high light 

if its crown extends above the forest canopy. On the other hand, if a tree is overtopped 

and has leaves or needles associated with high maintenance costs (high RmL), one way to 

meet these demands, and avoid carbon starvation, is to increase light-use efficiency 

(higher ε), thus allowing for greater production of photosynthates under low light.    

Limitations and Future Directions 

 The creation of the TTS (Fell et al. in review) and the evaluation of filtering 

processes affecting the functional trait space of trees was based on simulation 

experiments conducted with an individual-based model of tree growth and mortality 

(ACGCA, Ogle and Pacala (2009)). The current version of ACGCA is only driven by one 

environmental variable: light. Given our overarching goal to assess the TTS for North 

American trees and the effect of environmental stress (gap dynamics) on refining this 

trait space, limiting the environmental drivers to only light eased interpretation of the 

results.  However, the simplicity of the gap dynamics simulations and the coarse 

physiology sub-model limit extension of our results to other filtering processes and 

environmental stressors.  In reality, trees can experience a multitude of limitations, 

leading to a wide variety of tradeoffs (Wright et al. 2004, Chave et al. 2009, Scheiter et 

al. 2013, Diaz et al. 2016, Kunstler et al. 2016). Even with the significant limitations 

implied by only considering one environmental variable, meaningful changes in the trait 

space were identified, and the presence of realistic, multidimensional relationships 

between traits emerged. Including more physiological processes and drivers in the 

ACGCA model would allow us to explore the impacts of other stressors (e.g., drought) or 

interacting stressors (e.g., drought and shading) on the trait space. It is likely that the key 



148 

 

traits predicting mortality under different stressors (e.g., drought, nutrient limitation) 

would likely differ from the important traits identified here that relate to mortality under 

light limitation. 

 One of our goals is to integrate the ACGCA model with more detailed 

physiological sub-models (e.g., photosynthesis (Farquhar et al. 1980), stomatal 

conductance (Ball et al. 1987, Medlyn et al. 2011), hydraulics (Sperry et al. 1998, Tuzet 

et al. 2003)), allowing the investigation of additional stressors and associated 

physiological limitations. For instance, incorporation of a sub-model for water uptake, 

transport, and transpiration would permit the integration of soil moisture availability, 

plant water relations, and photosynthesis (Sperry et al. 1998, Tuzet et al. 2003).  A 

second goal is to integrate the ACGCA model with a forest stand model that would 

enable explicit representation of competition and community dynamics—such as the 

Perfect Plasticity Approximation (Purves et al. 2008, Strigul et al. 2008), SORTIE 

(Pacala et al. 1993, 1996), or the Ecosystem Demography (Moorcroft et al. 2001) 

models—thus allowing for the evaluation of both biotic and environmental filters. There 

is the potential to simultaneously implement these modifications, provided the 

computational challenges can be overcome. This may be possible if the sub-models are 

chosen carefully. Some guidance could come from work on dynamic global vegetation 

models (DGVMs) that integrate functional traits and individual-level processes in a 

computationally tractable way (Scheiter et al. 2013, Fyllas et al. 2014). 

Conclusions 

 Through a series of simulation experiments with a semi-mechanistic model of tree 

growth and carbon allocation, we found that non-random mortality induced by light 
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limitation led to a refinement of the functional trait space occupied by trees. This was 

demonstrated through changes in the hypercube characteristics that define the 

multidimensional trait spaces occupied by surviving trees and dead trees compared to the 

theoretical trait space (TTS). The trait space occupied by trees that died due to light stress 

notably differed from that of living trees and the TTS, especially under conditions leading 

to relatively low mortality. Mortality at the stand-level was best explained by light level, 

while tree- and phenotype-level mortality were best explained by a subset of the 32 traits 

in the TTS.  For example, maximum height (Hmax), radiation use efficiency (ε), and the 

conducting area to sapwood area ratio (γX) were consistently identified as important 

predictors of mortality, and ε and γX exhibited fairly strong tradeoffs with other traits. 

Given that only a few traits were strong predictors of mortality, this supports assertions 

that there is an upper limit to the number of traits needed to explain processes such as 

community assembly (Laughlin 2014). Many of the trait-mortality and trait-trait 

relationships that emerged from the relatively simple gap dynamics simulations were 

generally in agreement with empirical studies, suggesting that model-based approaches, 

as described here, may be helpful in understanding how traits are related, as well as 

identifying relationships that may not be evident or practical to investigate through 

empirical approaches. Model-based approaches may also be useful for understanding 

how trees respond to novel environmental conditions, especially if the models include 

additional environmental constraints such as temperature and precipitation and their 

impacts on carbon balance and mortality.  
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Tables 

Table 4.1: Descriptions of the 32 parameters (θk) in the ACGCA model that represent 

tree functional traits, including units of the parameters (dashes indicate unitless 

quantities). Bolded variables are mentioned explicitly in the paper. Table follows from 

Ogle and Pacala (2009). 

 Symbol Unit  Description 

Hmax m Maximum tree height 

φH - Slope at H versus r curve at r = 0 m 

η - Relative height at which trunk transitions from 

paraboloid to cone 

SWmax m Maximum sapwood width 

λS - Proportionality between BT and BO for sapwood 

λH - Proportionality between BT and BO for 

heartwood 

ρ g dw m-3 Wood density  

f1 - Fine root area to leaf area ratio 

f2 - Leaf area to xylem conducting area ratio 

γC g gluc m-3 Maximum storage capacity of living sapwood 

cells 

γW m3 g dw-1 (Inverse) density of sapwood structural tissue 

γX - Xylem conducting area to sapwood area ratio 

CgL g gluc g dw-1 Construction costs of producing leaves 

CgR g gluc g dw-1 Construction costs of producing fine roots 

Cgw g gluc g dw-1 Construction costs of producing sapwood 

δL g gluc g dw-1 Labile carbon storage capacity of leaves 

δR g gluc g dw-1 Labile carbon storage capacity of fine roots 

SL year-1 Senescence rate of leaves 

SLA m2 g dw-1 Specific leaf area 

SR year-1 Senescence rate of fine roots 

SO year-1 Senescence rate of coarse roots and branches 

rR m Average fine root radius 

ρR g dw m-3 Tissue density of fine roots 

RmL g gluc g dw-1 year-1 Maintenance respiration rate of leaves 

RmS g gluc g dw-1 year-1 Maintenance respiration rate of sapwood 

RmR g gluc g dw-1 year-1 Maintenance respiration rate of fine roots 

ηB - Relative height at which trunk transitions from 

neiloid to paraboloid 

k - Crown light extinction coefficient 

ε g gluc MJ-1 Radiation-use efficiency 

m - Maximum relative crown depth 

α - Crown curvature parameter 
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R0 m Maximum potential crown radius of a tree with 

diameter at breast height of 0 m (i.e., for a tree 

that is exactly 1.37 m tall) 

R40 m Maximum potential crown radius of a tree with 

diameter at breast height of 0.4 m (40 cm). 
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Table 4.2: Methods of calculating mortality are shown relative to the simulation design. 

Each entry in the table (one for each trait) represents a single instance of a given vector of 

32 traits (θ) being subjected to a given gap dynamics scenario (62 total scenarios); the 

binary entries indicate tree-level mortality (𝑚𝑔,𝑝; 1= died, 0 = survived). The gap 

scenarios can be thought of as representing different environments, with each denoting an 

environment for a particular forest stand. Thus, stand-level mortality (𝑚𝑔
𝑆) is found by 

averaging across all 33,000 columns for each row to obtain the proportion of trees that 

died in each gap scenario (stand). Each unique vector of θ, representing a particular 

“phenotype,” is subjected to 62 gap scenarios. Thus, phenotype-level mortality (𝑚𝑝
𝜃) is 

found by averaging across all 62 rows within each column, giving the proportion of trees 

that survived across all 62 gap scenarios, for each unique θ.   

  θ (unique traits vector)  

  θ1 θ2 … θ33,000 Simulation (stand-level) 

 1 1 0 … 1 𝑚1
𝑆 

 2 0 1 … 0 𝑚2
𝑆 

 3 1 1 … 0 𝑚3
𝑆 

 ⁞ ⁞ ⁞   ⁞ ⁞ 

Gap scenarios ⁞ ⁞ ⁞   ⁞ ⁞ 

 ⁞ ⁞ ⁞   ⁞ ⁞ 

 61 1 1 … 0 ⁞ 

 62 0 1 … 1 𝑚62
𝑆  

Phenotype level 𝑚1
𝜃 𝑚2

𝜃 … 𝑚33,000
𝜃   
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Figures 

 

Figure 4.1. Percent of trees correctly or incorrectly classified (n = 1,023,000) as dead or 

surviving based on applying each of the three stepwise, logistic models of tree-level 

mortality (𝑚𝑔,𝑝) to a hold-out or test dataset. The traits only model included all 32 

ACGCA traits, but excluding light; the traits + light model included the 32 traits, the 

average light level (PARavg), and all 2-way interactions between PARavg and each trait; the 

light only model only included PARavg (not traits). Overall, we found the light only model 

was best at identifying trees that died, but it did very poorly at identifying trees that 

survived. The models that included the traits were generally similar and successfully 

identified living trees far better than when only PARavg was considered. 
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Figure 4.2. Regression of stand-level mortality (𝑚𝑔
𝑠) as explained by (A) time between 

gaps (tbg) and (B) mean annual light level at the forest floor (PARavg). In (A), black 

symbols are the average mortality across all gt (gap time) and ct (closure time) levels 

within each tbg level; open circles are the mortality values for each simulation. (A) 

Among the three gap phase variables (tbs, gt, ct), tbg was the best predictor out of the 

three gap simulation variables (p < 0.05, R2 = 0.74), and (B) PARavg was the overall best 

predictor of 𝑚𝑔
𝑠  (p < 0.05, R2=0.85). 
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Figure 4.3. Stepwise regression relating phenotype-level mortality (𝑚𝑝
𝜃) to functional 

traits. (A) Variables on the x-axis are the main effects (traits; see Table 4.1) included 

through a stepwise regression that only considered main effects, and the bars indicate the 

relative importance of each trait based on its R2 contribution. The proportions were found 

using the “lmg” method in R, which averages over all possible orderings of variables in 

the model. The sum of the R2 proportions sums to the overall R2 of 0.48. For the top three 

traits in (A), kernel density estimates are shown for normalized (B) Hmax (maximum tree 

height), (C) ε (light-use efficiency), and (D) γX (proportion of xylem conducting area). In 

(B)-(D), grey lines denote trees that died during the gap simulations, and black lines 

denote trees that survive; 62 lines are overlaid for each group (dead and live), one for 

each gap scenario. 

  



165 

 

 

Figure 4.4. Hypercube centroid distances and volume differences based on six-

dimensional hypercubes constructed from “mortality” traits (Hmax, ε, γX, SO, RmL, and R0), 

as a function of stand-level mortality (𝑚𝑔
𝑠 ). TS compares hypercubes representing the 

theoretical trait space (TTS) versus surviving trees; TD compares the TTS versus trees 

that died; SD compares surviving versus dead trees. In particular, centroid differences are 

shown for (A) TS, (B) TD, and (C) SD, and volume differences for (D) TS (i.e., TTS 

volume – surviving volume), (E) TD (TTS – dead), and (F) SD (surviving – dead). Dark 

grey points show estimates for each gap scenario, with the range of values obtained by 

randomly sampling 3000 points from the TTS, surviving, and dead trait spaces, for each 

of the 62 gap dynamics scenarios. Dashed black lines show a linear best fit of the 

distances or volume differences versus 𝑚𝑔
𝑠 . Light grey points show results from 

performing the same analysis for data sampled at random from the TTS to ensure the 

resultant patterns were not an artifact of the analysis structure.  
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Figure 4.5.  Hypercube centroid distances and volume differences based on six-

dimensional hypercubes constructed with leaf/wood traits related to the LES and WES 

(SLA, ε, RmL, SL, γX, and ρ), as a function of stand-level mortality (𝑚𝑔
𝑠 ). See Figure 4.4 for 

details about plots. 
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CHAPTER 5 – CONCLUSION 

 My dissertation work described herein addressed my overall objective: to quantify 

tree functional traits and their interrelationships. I did this through three studies that 

assessed functional traits at varying scales, from traits affecting leaf-level physiology 

(Chapter 2) to traits affecting whole-plant growth and mortality (Chapters 3-4). In 

particular, Chapter 2 focused on a potentially important leaf-level trait (mesophyll 

conductance, gm) affecting photosynthesis, while Chapters 3-4 evaluated relationships 

among 32 traits affecting tree allometries, carbon gain, carbon allocation, growth, and 

mortality. A few general conclusions can be drawn from my work. First, less commonly 

studied traits—such as mesophyll conductance, root respiration rates, root:leaf 

allometries, tissue senescence rates—emerged as being important predictors of tree 

function under different environmental conditions.  Second, the 32-dimensional 

functional trait space occupied by North American trees is complex, but many potential 

trade-offs emerge that are governed by other interacting traits and environmental 

conditions. Third, even though there are many potential traits combinations that could 

lead to a successful tree, it is likely that only a relatively small subset of traits are strongly 

predictive of growth and mortality under particular environmental settings. Below I 

summarize key aspects of my three main research chapters (Chapters 2-4). 

Chapter 2 utilized field data that I directly obtained, complemented by artificially 

generated data, to incorporate new data sources into the Farquhar et al. (1980) (FvCB) 

model of photosynthesis, while also showing that gm varies across an aridity gradient, 

between species, and possibly growth forms (angiosperms vs. gymnosperms). This 

addressed my first overall objective (O1): Improving the quantification of gm by 
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introducing fluorescence data into a biochemically based model of photosynthesis. By 

estimating gm across an aridity gradient, I found that mean gm and its variation decreased 

with increasing aridity in Prosopis velutina. In some cases, estimated mean gm for two 

woody species (P. velutina and Juniperous monosperma) and was low enough to 

significantly impact predicted daily assimilation rates, indicating that gm must be 

accounted for to accurately predict photosynthesis under water limitation. These results 

are relevant to ecological work more broadly because the FvCB model is incorporated 

into other larger-scale models and used to evaluate data obtained from field studies, at 

scales ranging from leaf/canopy levels (Crous and Ellsworth 2004, Cano et al. 2013, 

Peltier and Ibáñez 2014) to the global scale (Shugart and Woodward 2011, Fyllas et al. 

2014). My results indicate that for arid parts of the globe, explicitly incorporating 

variation in gm within the FvCB model is important for obtaining accurate estimates of 

photosynthesis and its underlying biochemical-related parameters. 

Chapter 3 addressed my second objective (O2) of quantifying the functional trait 

space occupied by North American trees. This was accomplished by utilizing a Bayesian 

framework to fit the Allometrically Constrained Growth and Carbon Allocation 

(ACGCA) model (Ogle and Pacala 2009) to forest inventory and analysis (FIA) data—

pooled across species—and literature data (Kattge et al. 2011; Ogle et al. 2013; Ogle et 

al. 2014). The Bayesian approach produced posterior estimates for 32 functional traits, 

which I used to describe the theoretical trait space (TTS) for North American trees. That 

is, the TTS emerges from the relationships inherent in the ACGCA model, as constrained 

by the different data sources. After accounting for relationships between each trait and 

the 31 other traits and light, the directions of trait-trait relationships for a subset of traits 
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were comparable to those in the leaf and wood economics spectra (Wright et al. 2004, 

Chave et al. 2009). My results suggest that these empirical trait spectra represent a subset 

of the TTS reflecting filtering mechanisms limiting the combinations of traits realized. 

Finally, there appears to be many ways of achieving realistic growth despite little 

refinement in the marginal posterior distributions for most of the 32 traits in the ACGCA 

model (Figure 3.2). This, along with the strong dependence of realistic tree growth on 

some traits (Figure 3.3), could be useful in thinking about how coexisting species can 

respond differently to limitations in the environment (Tilman 1985) or respond to 

environmental heterogeneity (Hutchinson 1957, Tilman 2004). However, the number of 

potential combinations will likely be limited by changes in the trait space due to filtering. 

 Chapter 4 addressed my third objective: (O3) assessing the impact of filtering on 

the TTS utilizing a gap dynamics simulation. There were three key findings from this 

work. First, non-random mortality led to a refinement of the TTS, as evidenced by 

decreased volume and increased centroid distance for surviving trees relative to the 

original TTS (Figures 4.4 and 4.5). Trait-trait relationships were strongest at low stand-

level mortality and in trees that died (Figure S4.7 and S4.8). The traits with the greatest 

effect sizes for tree-level mortality were maximum potential tree height (Hmax) and 

radiation-use efficiency (ε); both of these traits clearly relate to a tree’s ability to utilize 

light, the only environmental variable driving tree growth in the ACGCA model (Ogle 

and Pacala 2009).  Other traits may be important if a different filter (e.g., water stress) 

was incorporated into the model.  For instance, if a representation of plant hydraulics 

were integrated, such as those described by Sperry et al. (1998) or Tuzet et al. (2003), 

other traits related to hydraulics and water-use efficiency may be more important. Even 
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given the limitation of only having one environmental filter or driver, important 

predictors of mortality, such as Hmax, are known to be predictive of mortality as shown by 

empirical studies in the tropics (Wright et al. 2010, Ruger et al. 2012). 

 Overall, the most meaningful findings are with respect to the multidimensional 

nature of the TTS.  When filtered by light stress, both surviving and dead trees had a 

subset of traits significantly correlated with other functional traits, indicating potentially 

important tradeoffs. For example, stepwise regression models treating ε as dependent 

variable (trait) on the 31 other traits and light, yielded R2 values of 38% and 63% for 

surviving and dead trees, respectively (Table S4.7 and S4.8). In the context of 

coexistence theory, the wide range of trait values in surviving trees could help explain 

how species with very different traits can both be successful in the same environment.  If 

many axes of variation, differential responses to axes of variation, or some degree of 

environmental heterogeneity (Hutchinson 1957, Tilman 2004) are needed to explain 

coexistence (Tilman 1985), then the multidimensional nature of the TTS seems to imply 

that there are many potential ways for trees or species to respond to a given environment. 

These findings also relate to evolutionary theory with respect to the tradeoffs found 

between traits. For example, if a species is characterized by high specific leaf area (SLA; 

e.g., thinner leaves), this could imply a faster senescence rate and greater leaf respiration 

per unit leaf area (Wright et al. 2004) (Table 3.5). However, one should not expect to find 

a tree with both high xylem conducting area ratio and dense wood (Table 3.5) because of 

potential engineering tradeoffs. Thus, there are many potential combinations of traits that 

may allow a specific tree, or species to cope with the environment, but each species’ 
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functional traits are constrained by tradeoffs between other traits, similarly to what is 

seen in the TTS. 

 Finally, my work could help guide future empirical and modeling studies. For 

example, several traits emerged as being important predictors of mortality and/or that 

played import roles in trait-trait tradeoffs. Some of these traits (e.g., related to root 

function and senescence rates of long-lived tissues) are rarely measured in the field, but 

perhaps should be considered in combination with other commonly measured traits. 

Future work aimed at understanding the TTS could provide explicit information at the 

species level – here, the TTS is representative of a “generic” North American tree – by 

applying the techniques described in Chapter 3 to data pooled across individuals, within a 

species (rather than across all species). I anticipate that the TTS will differ among 

species, especially those with distinctly different life-history characteristics and stress-

tolerance strategies. 
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APPENDIX A 

SUPPLEMENTAL TABLES AND FIGURES REGARDING MESOPHYLL 

CONDUCTANCE 
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Table S2.1: Prior distributions specified for model parameters; normal distributions were 

use for most parameters, with the following prior mean and standard deviations. The 

exceptions were 𝛽 and 𝜑𝑚𝑎𝑥which were given beta distributions. 
Parameter Prior Type 

𝜇𝑔
𝑚

 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10)* SI 

𝜇𝑅
𝑑
 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10)* SI 

𝜇𝐽
𝑚𝑎𝑥

 𝑁𝑜𝑟𝑚𝑎𝑙(0, 100)* SI 

𝜇𝑉
𝑐𝑚𝑎𝑥

 𝑁𝑜𝑟𝑚𝑎𝑙(0, 100)* SI 

ERd 𝑁𝑜𝑟𝑚𝑎𝑙(63.90,4.47) I 

EVcmax 𝑁𝑜𝑟𝑚𝑎𝑙(65.48,4.47) I 

EJmax 𝑁𝑜𝑟𝑚𝑎𝑙(50.13,4.47) I 

Egm 𝑁𝑜𝑟𝑚𝑎𝑙(49.6,4.47) I 

EΓ* 𝑁𝑜𝑟𝑚𝑎𝑙(26.84,4.47) I 

EKc 𝑁𝑜𝑟𝑚𝑎𝑙(70.37,4.47) I 

EKo 𝑁𝑜𝑟𝑚𝑎𝑙(29.83,4.47) I 

Sv 𝑁𝑜𝑟𝑚𝑎𝑙(00.650,0.14) I 

Hv 𝑁𝑜𝑟𝑚𝑎𝑙(200,4.47) I 

Sj 𝑁𝑜𝑟𝑚𝑎𝑙(0.643,0.14) I 

Hj 𝑁𝑜𝑟𝑚𝑎𝑙(200,4.47) I 

𝛤25
∗  𝑁𝑜𝑟𝑚𝑎𝑙(3.6,0.32) I 

𝐾𝑐25 𝑁𝑜𝑟𝑚𝑎𝑙(27.238,1) I 

𝐾𝑜25 𝑁𝑜𝑟𝑚𝑎𝑙(16582,316.23) I 

𝛽 𝐵𝑒𝑡𝑎(10,10) I 

𝜑
𝑚𝑎𝑥

 𝐵𝑒𝑡𝑎(16,4) I 

Priors specified with a mean of 0 and a standard deviation of 100 are relatively non-

informative; the remaining priors are semi-informative with means and standard 

deviations derived from the literature based on Patrick et al. (2009).  *These prior 

distributions were truncated at zero such that the parameters were constrained to be 
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positive values.  The two beta distributions used were informative priors based on the 

literature. 

  



177 

 

Table S2.2: Artificial Data Parameters 

Parameter Acer Larrea Tobacco Source 

𝛼 0.85 0.85 0.85 von Caemmerer 2000 (von Caemmerer 2000) 

𝜃 0.7 0.7 0.7 von Caemmerer 2000 (von Caemmerer 2000) 

𝑓 0.15 0.15 0.15 Evans 1987 (Evans 1987) 

𝑔𝑚 1.67 6 4.5 

Manter and Kerrigan 2004, Patrick et al. 2009, 

Yamori et al. 2010 (Manter and Kerrigan 2004, 

Patrick et al. 2009, Yamori et al. 2010) 

𝑉𝑐𝑚𝑎𝑥  43.8 70 122.9 

Turnbull et al. 2002, Patrick et al. 2009, Yamori et 

al. 2010 (Turnbull et al. 2002, Patrick et al. 2009, 

Yamori et al. 2010) 

𝐽𝑚𝑎𝑥 109 112 159.6 

Turnbull et al. 2002, Patrick et al. 2009, Yamori et 

al 2009 (Turnbull et al. 2002, Patrick et al. 2009, 

Yamori et al. 2010) 

𝑅𝑑 0.45 3.5 3.9 

Weston and Bauerle 2013, Patrick et al. 2009, 

Yamori et al. 2010 (Weston and Bauerle 2007, 

Patrick et al. 2009, Yamori et al. 2010) 

𝐾𝑐 26 30.34 26.34 

von Caemmerer 2000 , Patrick et al. 2009, von 

Caemmerer 2000 (von Caemmerer 2000, Patrick et 

al. 2009) 

𝐾𝑜 17900 16590 16582 

von Caemmerer 2000, Patrick et al. 2009, von 

Caemmerer 2000 (von Caemmerer 2000, Patrick et 

al. 2009) 

𝛤∗ 3.9 5.76 3.9 

von Caemmerer 2000, Patrick et al. 2009, von 

Caemmerer 2000 (von Caemmerer 2000, Patrick et 

al. 2009) 

𝑃 101.325 101.325 101.325 Sea level (constant) 

𝛽 0.5 0.5 0.5 Commonly Assumed 
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Table S2.3: CI widths for full (including φPSII data) and reduced (excluding φPSI data) 

models.  The values were calculated as the 95%  BCI – 2.5% BCI for each of the values 

shown in Fig 6 (n=7 per variable).  The greatest difference in BCI widths is seen in gm 

followed by Jmax while there is less of an effect seen in Vcmax where the intervals are only 

slightly higher for the full model and Rd where the intervals are slightly wider for the full 

model. 

   

  Mean Median 1st Qu. 3rd Qu. Min Max 

gm25       
Full 9.981 5.265 3.772 14.46 2.458 25.69 
reduced 17.96 20.29 15.89 21.11 8.274 23.13 
Rd25       
Full 3.1949 2.73 2.258 4.194 1.781 4.631 

reduced 2.926 2.714 2.448 3.726 1.241 4.177 
Vcmax25       
Full 179.4 173.7 161.1 188.5 148.5 234.4 
reduced 199.3 184.9 168.3 238.2 149.4 247.9 
Jmax25       
full 98.07 102.8 63.06 126 56.96 148.5 

reduced 141.4 123.3 115.4 138 98.38 260.4 
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Table S2.4: Posterior estimates for terminal nodes 

parameter species site mean sd 2.5% BCI 97.5% BCI 

gm25 P. velutina McDowell 3.85 1.36 1.95 7.22 

gm25 P. velutina Sycamore Lowland 12.56 6.52 4.36 30.05 

gm25 S. gooddingii Sycamore Lowland 14.08 5.03 6.24 26.51 

gm25 Q. gambelii Chevelon Lowland 4.30 2.13 1.19 9.83 

gm25 J. monosperma Chevelon Lowland 1.36 1.07 0.14 4.11 

gm25 J. monosperma Chevelon Upland 1.46 0.93 0.20 3.78 

gm25 P. velutina Sycamore Upland  0.75 1.24 0.14 2.60 

Rd25 P. velutina McDowell 2.63 0.53 1.62 3.70 

Rd25 P. velutina Sycamore Lowland 2.66 0.62 1.42 3.86 

Rd25 S. gooddingii Sycamore Lowland 0.74 0.48 0.07 1.86 

Rd25 Q. gambelii Chevelon Lowland 3.97 1.17 1.75 6.38 

Rd25 J. monosperma Chevelon Lowland 4.88 1.11 2.82 7.13 

Rd25 J. monosperma Chevelon Upland 8.43 1.02 6.40 10.48 

Rd25 P. velutina Sycamore Upland  2.68 0.70 1.35 4.08 

Vcmax25 P. velutina McDowell 212.03 48.80 152.65 349.18 

Vcmax25 P. velutina Sycamore Lowland 156.29 46.89 93.83 274.33 

Vcmax25 S. gooddingii Sycamore Lowland 133.71 42.36 81.00 229.50 

Vcmax25 Q. gambelii Chevelon Lowland 225.64 39.38 153.70 307.15 

Vcmax25 J. monosperma Chevelon Lowland 152.37 44.75 78.51 252.20 

Vcmax25 J. monosperma Chevelon Upland 187.07 45.23 121.10 289.95 

Vcmax25 P. velutina Sycamore Upland  176.04 59.12 57.91 292.35 

Jmax25 P. velutina McDowell 118.87 16.84 86.65 152.50 

Jmax25 P. velutina Sycamore Lowland 124.08 14.93 94.15 154.43 

Jmax25 S. gooddingii Sycamore Lowland 113.00 14.45 84.94 141.90 
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Jmax25 Q. gambelii Chevelon Lowland 165.94 30.27 108.38 228.45 

Jmax25 J. monosperma Chevelon Lowland 145.06 34.98 79.63 211.60 

Jmax25 J. monosperma Chevelon Upland 167.89 26.66 117.40 220.23 

Jmax25 P. velutina Sycamore Upland  172.11 39.57 101.30 249.80 

Er P. velutina McDowell 53.98 4.44 45.48 62.38 

Er P. velutina Sycamore Lowland 64.32 4.50 55.58 73.07 

Er S. gooddingii Sycamore Lowland 63.91 4.50 55.09 72.59 

Er Q. gambelii Chevelon Lowland 62.47 4.46 53.89 71.10 

Er J. monosperma Chevelon Lowland 62.29 4.62 53.19 71.47 

Er J. monosperma Chevelon Upland 61.22 4.43 52.65 70.01 

Er P. velutina Sycamore Upland  63.38 4.51 54.35 71.94 

Ev P. velutina McDowell 65.79 3.73 59.02 70.91 

Ev P. velutina Sycamore Lowland 65.75 4.36 57.03 74.22 

Ev S. gooddingii Sycamore Lowland 65.48 4.62 56.78 74.40 

Ev Q. gambelii Chevelon Lowland 71.47 3.28 60.34 73.90 

Ev J. monosperma Chevelon Lowland 66.44 5.13 60.64 74.16 

Ev J. monosperma Chevelon Upland 65.57 4.50 56.63 74.27 

Ev P. velutina Sycamore Upland  65.66 4.49 56.90 74.44 

Ej P. velutina McDowell 52.99 6.36 41.30 60.96 

Ej P. velutina Sycamore Lowland 49.96 4.50 40.98 58.71 

Ej S. gooddingii Sycamore Lowland 49.03 3.98 40.39 56.01 

Ej Q. gambelii Chevelon Lowland 48.98 1.57 45.27 51.59 

Ej J. monosperma Chevelon Lowland 51.90 3.18 47.91 58.80 

Ej J. monosperma Chevelon Upland 50.21 4.55 41.26 59.23 

Ej P. velutina Sycamore Upland  49.87 4.39 41.09 58.42 

Em P. velutina McDowell 47.89 4.50 39.17 56.39 
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Em P. velutina Sycamore Lowland 49.53 4.51 40.71 58.37 

Em S. gooddingii Sycamore Lowland 49.67 4.43 40.84 58.40 

Em Q. gambelii Chevelon Lowland 49.08 4.50 40.32 57.89 

Em J. monosperma Chevelon Lowland 49.09 4.54 40.10 57.66 

Em J. monosperma Chevelon Upland 48.90 4.50 39.95 57.68 

Em P. velutina Sycamore Upland  49.05 4.39 40.28 57.58 

Γ*25 P. velutina Species level 3.39 0.15 3.10 3.69 

Γ*25 S. gooddingii Species level 2.92 0.27 2.41 3.45 

Γ*25 Q. gambelii Species level 3.00 0.27 2.49 3.55 

Γ*25 J. monosperma Species level 4.20 0.28 3.66 4.76 

Kc25 P. velutina Species level 26.98 1.01 25.01 28.96 

Kc25 S. gooddingii Species level 27.08 1.08 24.86 29.06 

Kc25 Q. gambelii Species level 26.96 1.05 24.85 28.97 

Kc25 J. monosperma Species level 27.02 1.01 25.04 29.01 

Ko25 P. velutina Species level 16859.61 78.90 16730.00 16990.00 

Ko25 S. gooddingii Species level 16812.26 345.01 16250.00 17512.50 

Ko25 Q. gambelii Species level 16922.22 198.58 16560.00 17210.00 

Ko25 J. monosperma Species level 17019.62 403.51 16450.00 17640.00 

Eg P. velutina Species level 28.45 1.39 25.72 31.13 

Eg S. gooddingii Species level 26.68 1.42 23.90 29.44 

Eg Q. gambelii Species level 26.60 1.41 23.88 29.32 

Eg J. monosperma Species level 26.99 1.41 24.21 29.74 

Ekc P. velutina Species level 70.38 1.42 67.56 73.14 

Ekc S. gooddingii Species level 70.30 1.42 67.51 73.04 

Ekc Q. gambelii Species level 70.34 1.42 67.52 73.16 

Ekc J. monosperma Species level 70.32 1.44 67.52 73.12 
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Eko P. velutina Species level 29.86 1.38 27.10 32.56 

Eko S. gooddingii Species level 29.87 1.41 27.12 32.57 

Eko Q. gambelii Species level 29.83 1.40 27.13 32.52 

Eko J. monosperma Species level 29.88 1.41 27.14 32.57 

Sv P. velutina Species level 0.53 0.09 0.30 0.64 

Sv S. gooddingii Species level 0.60 0.12 0.36 0.86 

Sv Q. gambelii Species level 0.56 0.11 0.34 0.83 

Sv J. monosperma Species level 0.54 0.09 0.33 0.64 

Hv P. velutina Species level 199.31 3.16 193.60 208.20 

Hv S. gooddingii Species level 201.19 4.38 193.60 209.00 

Hv Q. gambelii Species level 192.84 2.27 189.40 199.10 

Hv J. monosperma Species level 198.25 3.06 192.60 206.30 

Sj P. velutina Species level 0.56 0.09 0.35 0.66 

Sj S. gooddingii Species level 0.54 0.09 0.33 0.65 

Sj Q. gambelii Species level 0.65 0.05 0.48 0.68 

Sj J. monosperma Species level 0.63 0.06 0.42 0.67 

Hj P. velutina Species level 202.92 2.79 198.70 209.10 

Hj S. gooddingii Species level 200.40 3.99 193.78 209.50 

Hj Q. gambelii Species level 201.56 4.03 195.40 206.80 

Hj J. monosperma Species level 201.86 2.11 198.50 206.10 
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Figure S2.1: Log transformed posterior means for curve level predicted gm vs log 

transformed gs (measured by the licor) at ambient CO2 (400 ppm) and saturating light 

(1500 μmol photons m-2 s-1).  The data were log transformed to avoid outliers with high 

leverage.  A weak positive trend (r2 = 0.31) was found between log transformed gs and 

gm.  Both the intercept and slope parameters were significant with P < 0.001.     
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APPENDIX B 

ADDITIONAL MODEL DETAILS AND CODE 
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This appendix aims to provide a simple means of relating the equations in the 

paper to the code provided for the model.  Each equation in the paper and below can be 

easily linked with the provided code for OpenBUGS. 

Eqns. 1-6 in the main text, and eqn. 1-4 in table 3, explain the version of the 

FvCB model used. Multiple parameters from these equations are modeled hierarchically 

as indicated in eqn. 9 and 10.  Below we explicitly state the equations used for each 

parameter given by 𝑌25𝑐
= 𝑅𝑑25, 𝑔𝑚25, 𝑉𝑐𝑚𝑎𝑥25, or 𝐽𝑚𝑎𝑥25 given more generally in eqn. 9 

where c indexes the curve (c = 1,…,46). These curve-level parameters were assumed to 

vary around plant-level mean parameters such that for plant p (p = 1,…,23) as discussed 

in the main text: 

 𝑅𝑑25𝑐
= 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇𝑅𝑑25𝑝

, 𝜎𝑅𝑑25

2 ) 1S.  

 𝑔𝑚25𝑐
= 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇𝑔𝑚25𝑝

, 𝜎𝑔𝑚25
2 ) 2S.  

 𝑉𝑐𝑚𝑎𝑥25𝑐
= 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇𝑉𝑐𝑚𝑎𝑥25𝑝

, 𝜎𝑉𝑐𝑚𝑎𝑥25

2 ) 3S.  

 𝐽𝑚𝑎𝑥25𝑐
= 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇𝐽𝑚𝑎𝑥25𝑝

, 𝜎𝐽𝑚𝑎𝑥25

2 ) 4S.  

 Eqn. 10 described generally how each of the above plant level means varied 

around a species by site level mean parameter where st (st=1,…,7) as discussed in the 

main text:  

 𝜇𝑅𝑑25𝑝
= 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇∗𝑅𝑑25𝑠𝑡

, 𝜎𝑅𝑑25

2∗ ) 5S.  

 𝜇𝑔𝑚25𝑝
= 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇∗𝑅𝑑25𝑠𝑡

, 𝜎𝑅𝑑25

2∗ ) 6S.  

 𝜇𝑉𝑐𝑚𝑎𝑥25𝑝
= 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇∗𝑅𝑑25𝑠𝑡

, 𝜎𝑅𝑑25

2∗ ) 7S.  

 𝜇𝐽𝑚𝑎𝑥25𝑝
= 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇∗𝑅𝑑25𝑠𝑡

, 𝜎𝑅𝑑25

2∗ ) 8S.  
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Model Code: This code implements the HB model in OpenBUGS.  OpenBUGS is free 

software and can be obtained from www.openbugs.net.  

# Model begins here 

Model { 

 for (i in 1:N){ 

   

 # Likelihood for observed photosynthesis data (eqn. 7) 

 Aobs[i] ~ dnorm(mu.A[i],tau.A) 

 

 # Generate predicted data to calculate posterior predictive loss 

(D) 

 Arep[i]~dnorm(mu.A[i],tau.A) 

 Dsq[i]<-pow((Aobs[i]-Arep[i]),2) 

  

# Generate predicted logitPhiPSII 

 logitPhiPSIIrep[i]~dnorm(mu.logit.PhiPSII[i], tau.PSII) 

 PhiPSIIrep[i]<-

exp(logitPhiPSIIrep[i])/(1+exp(logitPhiPSIIrep[i])) 

 

# Convert Ci and O from the Li-6400 into partial pressure using 

ambient #pressure 

 CiP[i]<-Ci[i]*(Pressure[i]/1000) 

 O[i]<-(21/100)*(Pressure[i]*1000) 

  

# mu.A is either limited by carboxylation or electron transport 

or the # constraint mentioned in Gu et al 2010.  The constraint 

in Gu et al  

# 2010 makes sure the correct limitation state is chosen at low 

[CO2]. # (eqn. 1 top) 

 mu.Atemp[i] <- min(Wc[i],Wj[i]) 

  

# Cc is needed for the below step and is temporary in that it is 

not  

# useful for analysis and does not need to be monitored. (eqn. 1  

# bottom) 

 Cc.temp[i] <- CiP[i]-mu.Atemp[i]/gi2[i] 

 

# When step(Gstar2[i]-Cc.temp[i]) is < 0) the expression 

evaluates to  

# 0.  This takes care of the case where Cc < Gstar2. (eqn. 1 

bottom) 

mu.A[i] <- step(Gstar2[i]-Cc.temp[i])*Wc[i]+step(Cc.temp[i]-

Gstar2[i])*mu.Atemp[i] 

   

# if limited by carboxylation (quadratic incorporating mesophyll  

# conductance) (eqn. 2 and Table 3 eqn. 1) 

 Wc[i]<- (-b1[i]+sqrt(max(b24ac1[i],0)))/(2*a1[i]) 

 b24ac1[i]<-pow(b1[i],2)-(4*a1[i]*c1[i]) 

 a1[i]<-(-1/gi2[i]) 

 b1[i]<-(Vcmax2[i]-Rday[i])/gi2[i]+CiP[i]+Kc2[i]*(1+O[i]/Ko2[i]) 

 c1[i]<-Rday[i]*(CiP[i]+Kc2[i]*(1+O[i]/Ko2[i]))-Vcmax2[i]*(CiP[i]-

Gstar2[i]) 
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# if limited by electron transport (quadratic incorporating 

mesophyll  

# conductance) (eqn. 3 and Table 3 eqn. 2) 

 Wj[i]<- (-b2[i]+sqrt(max(b24ac2[i],0)))/(2*a2[i]) 

 b24ac2[i]<-pow(b2[i],2)-(4*a2[i]*c2[i]) 

 a2[i]<-(-1/gi2[i]) 

 b2[i]<-((J[i]/4)-Rday[i])/gi2[i]+CiP[i]+2*Gstar2[i] 

 c2[i]<-Rday[i]*(CiP[i]+2*Gstar2[i])-(J[i]/4)*(CiP[i]-Gstar2[i]) 

 

# Mean model to incorporate Fluorescence data as well as the 

logit  

# transformation used. 

 logit.PhiPSII[i] <- log((PhiPSII[i])/(1-PhiPSII[i])) 

 logit.PhiPSII[i] ~ dnorm(mu.logit.PhiPSII[i], tau.PSII) 

 mu.logit.PhiPSII[i] <- log((mu.PhiPSII[i])/(1-mu.PhiPSII[i])) # 

convert to PhiPSII scale from logit scale 

# This line comes from the function for ETR where ETR = 

J*alpha*beta*Q # (eqn. 6) 

 mu.PhiPSII[i] <-  

J[i]/(Q[i]*alpha[i]*Beta[stind[Plant[Curve[i]]]]+(equals(Q[i],0)))+(equ

als(Q[i],0)*Phimax) 

   

 # Calculate J (rate of electron transport) (eqn. 4 and Table 3 

eqn. 3)  

 J[i]<-(Q2[i]+Jmax2[i]-(sqrt(max(F[i],0))))/(2*Qtheta) 

 F[i]<-pow(Q2[i]+Jmax2[i],2)-4*Qtheta*Q2[i]*Jmax2[i] 

 Q2[i]<-Q[i]*alpha[i]*(1-f)*Beta[stind[Plant[Curve[i]]]] 

 

# Specify which parameters to use from the A-Ci curve if 

including A-Q  

# curve data; i.e., cut function propagates uncertainty in 

parameters, # informed by A-Ci data, to A-Q model equations. 

 eqAQ0[i] <- equals(AQ[i],0) 

 eqAQ1[i] <- equals(AQ[i],1) 

   

 Vcmax2[i] <- eqAQ0[i]*Vcmax[i] + eqAQ1[i]*cut.Vcmax[i] 

 cut.Vcmax[i]<-cut(Vcmax[i]) 

  

 Jmax2[i] <- equals(AQ[i],0)*Jmax[i] + equals(AQ[i],1)*cut.Jmax[i] 

 cut.Jmax[i]<-cut(Jmax[i]) 

   

 # Rday was used above so Rday2 is used here in the function. 

# correct. The light response data alone informs Rday 

 Rday[i] <- equals(AQ[i],1)*Rday2[i] + 

equals(AQ[i],0)*cut.Rday2[i] 

 cut.Rday2[i]<-cut(Rday2[i]) 

 

 # Compute the common temperature "part" of the temperature 

function  

# once (Table 3, eqn. 4 for all temperature corrections other 

than  

# Vcmax and Jmax): 

 CTpart[i] <- exp((KTemp[i]-KTref)/(KTref*R*KTemp[i])) 

  

 #Temp correct gi (mesophyll conductance - gm in paper text)  

gi2[i]<-gi25[Curve[i]]*exp((KTemp[i]-

KTref)*E7[stind[Plant[Curve[i]]]]/(KTref*R*KTemp[i])) 
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 # Temp correct Gstar (CO2 compensation point with 

photorespiration) 

 Gstar2[i]<-

Gstar25[species[Plant[Curve[i]]]]*pow(CTpart[i],E1[species[Plant[Curve[

i]]]]) 

 

 #Temp correct Rday (mitochondrial respiration rate in light) 

 Rday2[i]<-

Rday25[Curve[i]]*pow(CTpart[i],E2[stind[Plant[Curve[i]]]]) 

 

 #Temp correct Kc and Ko (Michaelis constants for CO2 and O2) 

 Kc2[i]<-

Kc25[species[Plant[Curve[i]]]]*pow(CTpart[i],E3[species[Plant[Curve[i]]

]]) 

 

 Ko2[i]<-Ko25[species[Plant[Curve[i]]]]*pow(CTpart[i], 

E4[species[Plant[Curve[i]]]]) 

      

 # Temp correct Vcmax (maximum RuBP saturated rate of 

carboxylation) 

 # (Table 3, eqn. 5 for Vcmax and Jmax) 

 Vcmax[i]<-

Vcmax25[Curve[i]]*firstexpv[i]*(topexpv[species[Plant[Curve[i]]]]/botto

mexpv[i]) 

 firstexpv[i]<- pow(CTpart[i], E5[stind[Plant[Curve[i]]]]) 

 bottomexpv[i]<-(1+exp((Sv[species[Plant[Curve[i]]]]*KTemp[i]-

Hv[species[Plant[Curve[i]]]])/(R*KTemp[i]))) 

 

 # Temp correct Jmax (maximum rate of electron transport) 

 Jmax[i]<-

Jmax25[Curve[i]]*firstexp[i]*(topexp[species[Plant[Curve[i]]]]/bottomex

p[i]) 

 firstexp[i]<- pow(CTpart[i], E6[stind[Plant[Curve[i]]]]) 

 bottomexp[i]<-(1+exp((Sj[species[Plant[Curve[i]]]]*KTemp[i]-

Hj[species[Plant[Curve[i]]]])/(R*KTemp[i]))) 

 

 } # End of the i loop 

 

# To calculate the posterior predictive loss for model comparison  

# uncomment the term below. 

# D <- sum(Dsq[])  

 

 #topexpv and topexp only vary by species, so compute in species 

loop  

# (Table 3 Eqn 5): 

 for (s in 1:Nspecies){ 

  topexpv[s]<-(1+exp((KTref*Sv[s]-Hv[s])/(KTref*R))) 

  topexp[s]<-(1+exp((KTref*Sj[s]-Hj[s])/(KTref*R))) 

 } 

 

 

# Hierarchical priors for photosynthesis parameters 

# Curve level parameters vary around plant-level parameters 

 # Eqn. 2S, 1S, 3S, 4S in descending order below. 

 for (c in 1:Ncurve){ 

  gi25Temp[c]~dnorm(mu.gi25[Plant[c]],tau.gi25)I(0,) 
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  Rday25Temp[c]~dnorm(mu.Rday25[Plant[c]],tau.Rday25)I(0,) 

 

  Vcmax25Temp[c]~dnorm(mu.Vcmax25[Plant[c]],tau.Vcmax25)I(0,) 

 

  Jmax25Temp[c]~dnorm(mu.Jmax25[Plant[c]],tau.Jmax25)I(0,) 

   

# Determine if there is only one curve per plant 

 eqcurve1[c] <- equals(onlycurve[c],1) 

 eqcurve0[c] <- equals(onlycurve[c],0) 

 

# If only one curve for plant, use curve as plant-level mean 

 gi25[c] <- eqcurve1[c]*gi25Temp[c] + 

eqcurve0[c]*mu.gi25[Plant[c]] 

 

 Rday25[c] <- eqcurve1[c]*Rday25Temp[c] + 

eqcurve0[c]*mu.Rday25[Plant[c]] 

 

 Vcmax25[c] <- eqcurve1[c]*Vcmax25Temp[c] + 

eqcurve0[c]*mu.Vcmax25[Plant[c]] 

 

 Jmax25[c] <- eqcurve1[c]*Jmax25Temp[c] + 

eqcurve0[c]*mu.Jmax25[Plant[c]] 

 

# Hierarchical priors for photosynthesis parameters. 

# Plant level parameters vary around species-level parameters 

# Eqn. 6S, 5S, 7S, 8S in descending order below. 

 for (p in 1:Nplant){   

  mu.gi25[p]~dnorm(mu.gis[stind[p]],tau.gip)I(0,) 

 

  mu.Rday25[p]~dnorm(mu.Rdayp[stind[p]],tau.Rdayp)I(0,) 

   

  mu.Vcmax25[p]~dnorm(mu.Vcmaxp[stind[p]],tau.Vcmaxp)I(0,) 

 

  mu.Jmax25[p]~dnorm(mu.Jmaxp[stind[p]],tau.Jmaxp)I(0,) 

 } 

     

# Species and treatment-level parameters vary around population  

# parameters. In this case the treatment is the region. 

 # All normal and beta priors are in Table S1. 

 for (s in 1:Nst){ 

  mu.gis[s]~dnorm(0,0.01)I(0,) 

  mu.Rdayp[s]~dnorm(0,0.01)I(0,) 

  mu.Vcmaxp[s]~dnorm(0,0.0001)I(0,) 

  mu.Jmaxp[s]~dnorm(0,0.00001)I(0,) 

 

# Slightly informative, non-hierarchical priors for energy  

# of activation and kinetic constant parameters 

  E2[s]~dnorm(63.90,0.05) 

  E5[s]~dnorm(65.48,0.05) 

  E6[s]~dnorm(50.13,0.05) 

  E7[s]~dnorm(49.6,0.05) 

    

  # Informative BETA prior for Beta 

  Beta[s] ~ dbeta(10,10) 

 }  
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# prior with mean of 0.8 strongly informative   

# This sets an upper bound on PhiPSII as light decreases 

otherwise  

# there is the potential to have the code fail if Q drops too 

low. 

Phimax ~ dbeta(16,4) 

   

 for(s in 1:Nspecies){  

  E1[s]~dnorm(26.84,0.5) 

  E3[s]~dnorm(70.37,0.5) 

  E4[s]~dnorm(29.83,0.5) 

    

  Sv[s]~dnorm(0.650,50) 

  Hv[s]~dnorm(200,0.05) 

  Sj[s]~dnorm(0.643,50) 

  Hj[s]~dnorm(200,0.05) 

   

  Gstar25[s]~dnorm(3.6,10) 

  Kc25[s]~dnorm(27.238,1) 

  Ko25[s]~dnorm(16582,0.00001) 

 } 

 

KTref<-Tref+273.15 

   

# Prior for “observation” variance 

sig.A~dunif(0,5) 

tau.A<-1/(sig.A*sig.A) 

# Prior for PSII "observation" variance  

sig.PSII~dunif(0,10) 

tau.PSII<-1/(sig.PSII*sig.PSII)  

   

# Priors for precisions (folded Cauchy) 

for (k  in 1:Nsig){ 

    sig[k]<-abs(w[k])/sqrt(t[k]) 

  w[k]~dnorm(0,1) 

  t[k]~dgamma(0.5, beta[k]) 

  beta[k]<-A[k]*A[k]/2 

} 

   

# Set standard deviations and computes associated precisions 

sig.gip<-sig[1] 

tau.gip<-1/(sig.gip*sig.gip) 

 

sig.Rdayp<-sig[2] 

tau.Rdayp<-1/(sig.Rdayp*sig.Rdayp) 

 

sig.Vcmaxp<-sig[3] 

tau.Vcmaxp<-1/(sig.Vcmaxp*sig.Vcmaxp) 

 

sig.Jmaxp<-sig[4] 

tau.Jmaxp<-1/(sig.Jmaxp*sig.Jmaxp) 

 

sig.gi25<-sig[5] 

tau.gi25<-1/(sig.gi25*sig.gi25) 

 

sig.Rday25<-sig[6] 

tau.Rday25<-1/(sig.Rday25*sig.Rday25) 
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sig.Vcmax25<-sig[7] 

tau.Vcmax25<-1/(sig.Vcmax25*sig.Vcmax25) 

 

sig.Jmax25<-sig[8] 

tau.Jmax25<-1/(sig.Jmax25*sig.Jmax25) 

   

# Below is not necessary, but is provided for ease of monitoring 

unknown  

# parameters. Create “dummy” arrays to hold parameters of interest. 

Monitor 

# dummy arrays instead of each individual parameter. 

   

for (p in 1:Ncurve){ 

 mu.c[1,p]<-gi25[p] 

 mu.c[2,p]<-Rday25[p] 

 mu.c[3,p]<-Vcmax25[p] 

 mu.c[4,p]<-Jmax25[p] 

} 

   

for (p in 1:Nplant){ 

 mu.p[1,p]<-mu.gi25[p] 

 mu.p[2,p]<-mu.Rday25[p] 

 mu.p[3,p]<-mu.Vcmax25[p] 

 mu.p[4,p]<-mu.Jmax25[p] 

} 

  

 

for (s in 1:Nst){ 

 mu.s[1,s]<-mu.gis[s] 

 mu.s[2,s]<-mu.Rdayp[s] 

 mu.s[3,s]<-mu.Vcmaxp[s] 

 mu.s[4,s]<-mu.Jmaxp[s] 

 mu.s[5,s]<-E2[s] 

 mu.s[6,s]<-E5[s] 

 mu.s[7,s]<-E6[s] 

 mu.s[8,s]<-E7[s]  

} 

  

for (s in 1:Nspecies){ 

 mu.st[1,s]<-Gstar25[s] 

 mu.st[2,s]<-Kc25[s] 

 mu.st[3,s]<-Ko25[s] 

 mu.st[4,s]<-E1[s] 

 mu.st[5,s]<-E3[s] 

 mu.st[6,s]<-E4[s] 

 mu.st[7,s]<-Sv[s] 

 mu.st[8,s]<-Hv[s] 

 mu.st[9,s]<-Sj[s] 

 mu.st[10,s]<-Hj[s] 

} 

 

sig.all[1]<-sig.gip 

sig.all[2]<-sig.Rdayp 

sig.all[3]<-sig.Vcmaxp 

sig.all[4]<-sig.Jmaxp 

sig.all[5]<-sig.A 
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sig.all[6]<-sig.PSII 

 

} # END model 

 

DATA 

# Input the following data or constraints in addition to rectangular 

array  

# data below. 

 

list(N=905, Nspecies=4, Ncurve=46, Nplant=23, R=0.008314, Qtheta=0.7, 

Tref=25, f=0.15, Nsig=8, A=c(5,5,5,5,5,5,5,5), Nst=7) 

 

# Rectangular array (may be read-in as a separate text file) with a 

subset of # observational data from Li-cor 6400 used in paper.  KTemp 

is Leaf temp in  

# Kelvin.  AQ column designates the curve type, where AQ=0 are data 

from an  

# A-Ci curve and AQ=1 are data from an A-Q curve. PhiPSII comes from 

the LI- 

# 6400 with the fluorometer attachment.   

Cur- 
ve[] AQ[] Aobs[] Ci[] Temp[] Q[] 

Press- 
ure[] KTemp[] ETR[] alpha[] PhiPSII[] 

1 0 7.70 88.0 26.3 1502.3 94.93 299.47 160.6828 0.8499 0.2517 

1 0 4.48 91.4 26.3 1500.7 94.93 299.47 145.9178 0.8499 0.2288 

1 0 -0.08 79.0 26.3 1499.7 94.93 299.40 140.3830 0.8499 0.2203 

1 0 5.09 102.6 26.3 1497.8 94.92 299.47 149.8853 0.8499 0.2355 

1 0 11.18 172.6 26.7 1501.0 94.92 299.83 165.2896 0.8499 0.2591 

1 0 13.65 302.7 26.8 1499.9 94.92 299.97 163.2264 0.8499 0.2561 

1 0 13.91 430.3 27.2 1499.5 94.91 300.33 156.8055 0.8499 0.2461 

1 0 13.50 786.4 27.2 1499.9 94.91 300.32 143.7504 0.8499 0.2255 

1 0 13.72 972.8 27.6 1498.4 94.90 300.73 139.3076 0.8499 0.2188 

1 0 14.52 1261.1 27.7 1497.6 94.91 300.87 150.2152 0.8499 0.2360 

1 1 5.38 144.8 27.8 1499.3 94.92 300.98 158.2335 0.8499 0.2484 

1 1 5.79 161.6 27.4 997.6 94.91 300.59 148.3602 0.8500 0.3499 

1 1 5.98 187.9 27.2 801.3 94.91 300.33 140.0862 0.8501 0.4113 

1 1 5.32 216.4 26.9 498.3 94.91 300.03 101.8373 0.8502 0.4808 

1 1 2.71 289.5 26.4 201.6 94.91 299.58 47.5089 0.8504 0.5543 

1 1 0.83 347.4 26.3 99.3 94.92 299.43 24.8919 0.8500 0.5900 

1 1 -0.39 412.4 26.2 50.7 94.92 299.34 13.1055 0.8510 0.6069 

1 1 -2.02 579.0 26.1 0.3 94.92 299.24 0.0735 0.8553 0.6516 

…(more data) 

END 
 

Along with the above rectangular array and list, a few 

additional files are needed to relate each row in the 

rectangular array with the correct plant and treatments for 

the hierarchical structure to be used.  The below  
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# This rectangular array relates each curve to the appropriate plant. 

Each  

# row corresponds to a specific curve so there is one row per curve  

# indicating which plant the curve went with and if it was the only 

curve for  

# that plant. 

Plant[] onlycurve[] 

1 1 

2 1 

3 1 

4 0 

5 0 

6 0 

7 0 

8 0 

9 0 

10 1 

… More rows 

END 

 

# This vector relates each plant to the right species by site 

combination. 

# The values went from 1-7 for the data in the paper. The rows in this 

list  

# correspond to plants, so there is one row per plant. 

species[] 

1 

1 

1 

1 

1 

1 

2 

2 

2 

1 

… More rows 

END 
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APPENDIX C 

SUPPLEMENTAL TABLES AND FIGURES REGARDING THE ACGCA TRAIT 

SPACE 
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Table S3.1:  Prior distributions used for each θk in the Bayesian model. All priors are 

based on normal or truncated normal distributions. Prior means (mean and transmean) are 

based on a meta-analysis of the TreeTraits database. The standard deviation terms (sd and 

transsd) are the maximum of either the meta-analysis standard deviations or an inflated 

value that guaranteed that the parameter values used in Ogle and Pacala (2009) fell within 

the prior interquartile range defined by the 25th and 75th percentiles for each parameter’s 

prior. Mean and sd are on the untransformed scale (units as in Table 3.1); transmean and 

transsd are on the transformed scale indicated by “transform” (log is natural log). 

Parameter mean sd transsd transmean transform  truncated 

Hmax† 29.412 7.543 0.313 3.339 log yes 

φH 248.620 20.320 0.084 5.512 log no 

Η 0.619 0.059 0.252 0.492 logit yes 

SWmax† 0.050 0.004 0.080 -3.001 log no 

λs* 0.950 0.000 0.200 -0.051 log no 

λh* 0.950 0.000 0.200 -0.051 log no 

Ρ 546599.611 10891.573 0.208 13.191 log yes 

f1‡ 4151.002 872.144 0.231 8.306 log no 

f2* 4.000 0.000 1.028 1.386 log no 

γC 130211.284 77937.409 0.546 11.626 log no 

γX† 0.361 0.044 0.190 -0.575 logit no 

CgL 1.456 0.062 0.044 0.375 log no 

CgR‡ 1.201 0.015 0.013 0.183 log no 

Cgw 1.418 0.026 0.019 0.349 log no 

δL‡ 0.087 0.009 0.119 -2.360 logit no 

δR† 0.059 0.005 0.094 -2.765 logit no 

SL 1.264 0.819 0.979 -0.122 log no 

SLA 0.012 0.006 0.512 -4.512 log no 

SR‡ 1.590 0.330 0.180 0.446 log no 

SO 1.846 0.055 0.030 0.612 log no 

rR† 3.29E-04 3.68E-05 0.108 -8.026 log no 

ρR 146460.965 45063.024 0.362 11.836 log no 

RmL‡ 12.392 4.987 0.350 2.452 log no 

RmS†‡ 1.447 0.380 0.283 0.331 log no 

RmR†‡ 24.842 1.413 0.058 3.211 log no 

ηB* 0.045 0.000 1.272 -3.055 logit yes 

k† 0.495 0.085 0.177 -0.719 log no 

ε‡ 37.815 28.771 0.389 3.522 log no 

m* 0.950 0.000 1.108 2.944 logit no 

α 0.343 0.058 0.262 -0.661 logit no 

R0 1.727 0.487 0.302 0.504 log no 

R40 4.932 1.763 0.426 1.520 log no 

* No data to inform SD value; † SD based on Acer rubrum or ‡ SD based on Pinus taeda 

(Ogle and Pacala 2009).
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Table S3.2: Posterior estimates for all parameters (θk) in the ACGCA model, including 

posterior mean, median, standard deviation (sd), and the 95% credible interval defined by 

the 2.5th and 97.5th percentiles. Values are provided on the untransformed scale, with 

units corresponding to those given in Table 3.1. 

Parameter mean median sd 2.50% 97.50% 

Hmax 32.90 31.40 9.07 19.65 54.66 
φH 248.91 248.00 20.68 210.78 292.12 
η 0.64 0.63 0.07 0.54 0.92 
SWmax 0.04 0.04 0.01 0.02 0.08 
λs 0.98 0.96 0.20 0.64 1.43 
λh 0.96 0.95 0.19 0.64 1.40 
ρ 494085.95 493300.00 69359.19 359527.01 630085.82 
f1 3730.19 3516.00 1284.64 1862.00 6796.27 
f2 4.61 2.72 7.01 0.41 19.59 
γC 131754.86 113100.00 79168.49 38935.50 334706.36 
γX 0.44 0.42 0.18 0.13 0.76 
CgL 1.46 1.45 0.06 1.34 1.58 
CgR 1.20 1.20 0.05 1.11 1.30 
Cgw 1.42 1.42 0.03 1.37 1.47 
δL 0.09 0.09 0.01 0.07 0.11 
δR 0.07 0.06 0.03 0.02 0.15 
SL 1.30 0.84 1.57 0.12 5.26 
SLA 0.01 0.01 0.01 0.00 0.03 
SR 1.80 1.53 1.13 0.49 4.81 
SO 0.14 0.10 0.14 0.01 0.50 
rR 0.00 0.00 0.00 0.00 0.00 
ρR 140264.52 132100.00 51937.56 64121.23 264767.65 
RmL 11.86 7.07 14.55 0.71 51.24 
RmS 0.73 0.19 3.72 0.01 4.58 
RmR 23.33 9.01 47.16 0.44 137.77 
ηB 0.06 0.03 0.07 0.00 0.25 
k 0.49 0.48 0.09 0.33 0.68 
ε 25.43 18.63 20.40 4.60 81.70 
m 0.92 0.95 0.08 0.69 0.99 
α 0.34 0.34 0.06 0.24 0.46 
R0 1.47 1.41 0.45 0.80 2.55 

R40 6.77 6.36 2.48 3.12 12.72 
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Table S3.3:  Model fits (i.e., coefficient of determination, R2) obtained from the best 

subsets and stepwise regressions that included main effects and all two-way interactions 

(“w/ int”) or only main effects (“w/o int”). Within each regression approach, “Diff in R2” 

is the difference in the R2 between the model with and without interactions. Each best 

subsets regression approach only included 10 effects, while the stepwise regressions 

contain various numbers of parameters indicated by “# θs” in the table. Adjusted R2 

values were approximately the same as the R2 values, and thus the simple (non-adjusted) 

R2 values are provide. 

 Best Subsets  Stepwise  
  w/ int w/o int  w/ int w/o int  
θ R2 R2 Diff in R2 R2 # θs R2 # θs Diff in R2 
Hmax 0.01 0.01 0.00 0.01 14 0.01 15 0.00 
φH 0.00 0.00 0.00 - - 0.00 7 - 
η 0.02 0.02 0.00 0.04 52 0.02 17 0.02 
SWmax 0.12 0.10 -0.02 0.15 44 0.11 21 0.04 
λs 0.01 0.01 0.00 0.01 11 0.01 11 0.00 
λh 0.01 0.01 0.00 0.01 6 0.01 5 0.00 
ρ 0.07 0.07 -0.01 0.07 16 0.07 15 0.01 
f2 0.08 0.08 0.00 0.12 56 0.09 15 0.03 
f1 0.35 0.34 -0.01 0.51 117 0.38 23 0.13 
γC 0.00 0.00 0.00 - - - - - 
γX 0.28 0.27 0.00 0.31 63 0.28 22 0.02 
CgL 0.00 0.00 0.00 - - - - - 
CgR 0.00 0.00 0.00 - - - - - 
Cgw 0.00 0.00 0.00 - - - - - 
δL 0.00 0.00 0.00 - - - - - 
δR 0.00 0.00 0.00 0.00 1 0.00 1 0.00 
SL 0.02 0.02 0.00 0.04 51 0.02 14 0.02 
SLA 0.12 0.12 -0.01 0.28 116 0.14 23 0.14 
SR 0.01 0.01 0.00 0.01 22 0.01 13 0.00 
SO 0.18 0.15 -0.03 0.28 98 0.15 15 0.13 
rR 0.08 0.07 -0.01 0.17 87 0.08 19 0.08 
ρR 0.07 0.07 0.00 0.15 88 0.08 19 0.07 
RmL 0.31 0.29 -0.02 0.48 108 0.33 23 0.15 
RmS 0.24 0.20 -0.04 0.30 87 0.20 12 0.10 
RmR 0.38 0.38 0.00 0.53 102 0.42 22 0.12 
ηB 0.01 0.01 0.00 0.01 10 0.01 9 0.00 
k 0.04 0.04 0.00 0.11 83 0.05 19 0.06 
ε 0.71 0.71 0.00 0.82 117 0.74 26 0.08 
m 0.00 0.00 0.00 - - 0.00 11 - 
α 0.02 0.02 0.00 0.05 62 0.02 14 0.03 
R0 0.21 0.18 -0.02 0.27 83 0.20 24 0.07 
R40 0.27 0.26 -0.01 0.53 114 0.32 21 0.21 
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Figure S3.1: The marginal posterior densities for the senescence rate of other (non-trunk) 

woody tissue (SO) shown for each light level (thin gray lines; MJ m-2 year-1) versus the 

prior distribution (thick black line). The posteriors are shifted to the left for all light 

levels, indicating a lower value for SO (i.e., slow senescence or longer life-span) than 

expected based on the prior. The distributions are for log-transformed SO, where SO has 

units of year-1.  
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Figure S3.2: Posterior means (open symbols) and 95% credible intervals (CIs, whiskers) 

for radiation-use efficiency (ε) by light level (PARmax). Posterior means for the highest 

three light levels are significantly different (lower) from the prior, and the two highest 

light levels resulted in ε values that are significantly different from the lowest two light 

levels (letters above each CI indicate differences among light levels). The horizontal 

dotted lines (top and bottom) and dashed line (middle) indicate the prior 95% CI and 

prior mean, respectively.  
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Figure S3.3: An example of how filtering the posterior samples generated from the MH 

algorithm by values of other traits can reveal correlations among pairs of traits. For 

example, the top left (“All”) figure shows the bivariate posterior distribution for samples 

of  and RmR (see Table 3.1 for definitions) prior to filtering by other traits (n = 1.6 

million points from unthinned MH output). Each subsequent plot from the top left (all 

data) to bottom right (filtered by all five variables) shows the addition of a filter based on 

the middle 20% quantile of the variable indicated by text in the lower left corner of each 

plot (see Table 3.1). This shows that as these filters are applied, a bivariate relationship 

can emerge among a pair of traits.  
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APPENDIX D 

SUPPLEMENTAL CODE USED TO GENERATE THE THEORETICAL TRAIT 

SPACE FOR NORTH AMERICAN TREES 
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This appendix contains some of the more novel code written to allow me to 

generate the Theoretical Trait Space for North American Tress. Not all of the code 

necessary to run the model is provided.  Only the code that I felt was unique or that 

allowed me to deal with a number of challenges that came up while trying to implement 

the MCMC used. The first section of code sets up the computing environment for funning 

the MCMC chains, the second contains the code used to call the function containing the 

MCMC, and the third section is the MCMC code used. 

The first section of code was used for managing the computational load required 

for running 55 MCMC chains.  It starts and monitors a number of running R sessions 

input by the user.  When one R sessission (chain) completed another automatically started 

until all 55 were complete.  The code also had limited built in error control to prevent 

crashes from being an issue and the ability to start at the next chain needing to be 

processed if the computer reset unexpectedly or a power outage occurred. 

#######################################################################

###### 

# 

# This function will open each file created in initialization and then 

run 

# each set of parameters in an R session. 

# 

# threads: the number of threads to run 

# its: the number of iterations to run each thread for 

# r0: a vector of starting radii 

# par: a vector of light values as a percent of max par (2060) 

# 

# Initial values should be generated prior to running this function and 

saved 

# to files that contain ALL OF THE VALUES needed to run the ACGCA 

model.  If  

# any of the variables are missing this code will fail.  

# 

# Written by Michael K. Fell on June 3, 2014.  This code is based on my 

code 

# for running the filtered version of the model.  This can be seen in 

the  

# Master MVN code which is a functioning version of the filter and 

sampling 
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# code based on parameter generation using a Latin-hypercube followed 

by a  

# multivariate normal sampling method. 

#######################################################################

######## 

par_MCMC_ACGCA <- function( 

  threads, filestring, extern=0   

){ 

  #library(fork) 

  #Replace fork with Sys.getpid() from the base package 

  source("Source/FileFunctions.r") 

  source("Source/ACGCA_call_met.r") 

  source("Source/generatesamples.r") 

  source("Source/R_error_func.r") 

  source("Source/FilterFunctions_2014_05_09.r") 

  source("FIAdata/FIA_functions_master2015_v2.r") 

  source("Source/MiscFunctions.r") 

  source("Source/MCMC9.r") 

  source("Source/initial_values.r") 

  # Set up files for each R session to run when it starts.  The names  

  # should correspond to the process number. 

  # filestring="parACGCA.Rdata" 

  # there will be one file per PAE (light) and initial radius 

combination 

  #filenumber <- length(r0values) * length(lightper)   

   

  # Open a file connection and that opens the above inputs and then 

 # passes them to parbugs_2 in the WOPR.r source file (this file) 

  fileConn<-file("multi_chain.r") 

  writeLines(c( 

  "", 

  "source(\"Source/MCMC9.r\")", 

  "", 

  "MCMC_ACGCA_file()", 

  "", 

  "" 

  ), #end of file text 

  fileConn) 

  # Close the connection 

  close(fileConn) 

  

  # get the number of files 

  files <- getfiles(filestring=filestring) 

  filenumber <- as.numeric(length(files)) 

  # set a progressBarup 

  # pb <- txtProgressBar(min = 0, max = filenumber, style=3) 

 

  # files needs to be a number here so I set it to 0 its starting value 

  files <- 0 

  started <- 0 

  death.count <- 0 

  PIDlist <- matrix(data=NA, nrow=filenumber, ncol=2) 

  PIDlist[,1] <- PIDlist[,1]<-1:filenumber 

  running <- numeric(filenumber) 

 

  # Run from where the model left off. This works by checking for 

output files 
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  # using the known naming pattern.  It then fills in the running 

vector with  

  # 3's where the files that ran should be.  This way if an early run 

was not  

  # done it will still run it since the runs are not always sequential. 

  # added on 8/11/2014  

  for(i in 1:filenumber){ 

    if(i < 10)( 

      filecheck <- paste("PAR_ACGCA_out_file_0", i, 

"_of_",filenumber,".Rdata", sep="") 

    )else{ 

      filecheck <- paste("PAR_ACGCA_out_file_", i, 

"_of_",filenumber,".Rdata", sep="") 

    } 

    filetest <- length(getfiles(filestring=filecheck)) 

    if(sum(filetest) > 0){ 

      running[i] <- 3 # 3 indicateds that the run is done 

    }   

  } 

 

  while(filenumber > sum(running==3)){  

    files <- length(getfiles(filestring="PAR_ACGCA_out_file_")) 

    if(length(files)==0){files<-0} 

  

    # Find PIDs for running R sessions spawed by this code 

    PIDcheck <- getfiles(filestring="PIDinfo_") 

    if(length(PIDcheck>0)){ 

      for(i in 1:length(PIDcheck)){ 

        PIDmodnum <- scan(file=PIDcheck[i], nlines=1) 

        PIDlist[PIDmodnum,1] <- scan(file=PIDcheck[i], nlines=1) 

        PIDlist[PIDmodnum,2] <- scan(file=PIDcheck[i], nlines=1, 

skip=1) 

        running[PIDmodnum] <- 1 

        # remove files after data is read 

        system(paste("rm ", PIDcheck[i], sep="")) 

      } # end of for 

    }# end of if 

    # check that each PID is associated with a running R session 

    for(i in 1:filenumber){ 

      if(running[i]!=0 & running[i]!=3 & running[i] !=2){ 

        testPID <- paste("ps -p " ,PIDlist[i,2], " -o comm=", sep="") 

        PID_out <- system(testPID, intern=T) 

        if(length(PID_out)==0){PID_out<-0} 

        if(PID_out != "R"){ 

          # Here it is necessary to check if the process stoped due to  

          # completion or because of an error.  To do this check for  

          # the output file. 

 

          if(PIDlist[i,1] <= 9){ 

            filecheck <- paste("PAR_ACGCA_out_file_0", PIDlist[i,1], 

"_of_",filenumber,".Rdata", sep="") 

            filetest <- length(getfiles(filestring=filecheck)) 

          } else if(PIDlist[i,1] > 9){ 

            filecheck <- paste("PAR_ACGCA_out_file_", PIDlist[i,1], 

"_of_",filenumber,".Rdata", sep="") 

            filetest <- length(getfiles(filestring=filecheck)) 

          } 
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          # Check if the file is present.  If not run it again 

          if(filetest != 1){ 

            running[i] <- 2 # 2 indicates to run again 

            death.count <- death.count+1 

          }else if(filetest == 1){ 

            running[i] <- 3 # 3 indicateds that the run is done 

          } 

        }else{ 

          running[i] <- 1 # 1 indicates that the run is still going 

        } 

    }}# end of for and if 

     

     

    #running <- started-files 

 

    print(running) 

    print(started) 

    #print(files) 

    #print(threads) 

    #print(filenumber) 

 

      

    if(sum(running==2)>0){ 

      sel <- running==2 

      # Make sure the Modelcomm file exists 

      #if(length(getfiles(filestring="Modelcomm.txt"))!=1){ 

      #  write(paste(""), file="Modelcomm.txt", append=F) 

      #} 

      # What number should be used for this model? 

      # This must execute before this code is executes 

      # a second time. 

      modnum <- PIDlist[sel,1][1] 

      write(paste(modnum), file="Modelcomm.txt", append=F) 

      running[sel][1] <- 1 

      # run the model 

      system("R  --no-save < multi_chain.r", wait=F, ignore.stdout=T, 

ignore.stderr=T) 

    }else if(sum(running==1)<threads){ 

      started <- started + 1 

 

      sel <- running==0 

      modnum <- PIDlist[sel,1][1] 

      running[sel][1] <- 1 

 

      # Write Modelcomm.txt with modnum which sets the file to use 

      write(paste(modnum), file="Modelcomm.txt", append=F) 

 

      system("R --no-save < multi_chain.r", wait=F, ignore.stdout=T, 

ignore.stderr=T) 

    } 

 

    # this command gets pid information ps -p 4857 -o comm= 

    # update progress bar 

    #setTxtProgressBar(pb, files) 

 

    Sys.sleep(1.0) #Stop execution for 1.0s 



207 

 

    # Keep the loop from running at full speed which is far faster 

    # than what is required here.  

  } 

  

  # Clean up files 

  # system("rm inputs_*_parACGCA.Rdata") 

  system("rm Modelcomm.txt") 

  system("rm multi_chain.r") 

  model.stats <- list(death.count) 

  return(model.stats) 

} 

 

The next block of code was responsible for setting up the ACGCA model to run 

with each set of initial values and was used by the automation code above when it started 

each R session.  

#######################################################################

######## 

# This function is a wrapper for the MCMC_ACGCA function that allows it 

to be 

# called by simply providing an Rdata file that has the starting 

parameters. 

# This method is useful when starting the file from a list of input 

files for  

# instance as part of a batch processing routine. 

# 

# Code set up as a function on May 28, 2014 by Michael Fell 

#######################################################################

######## 

MCMC_ACGCA_file <- function(){ 

  rm(list=ls()) 

  source("Source/FileFunctions.r") 

  source("Source/ACGCA_call_met.r") 

  source("Source/generatesamples.r") 

  source("Source/R_error_func.r") 

  source("Source/FilterFunctions_2014_05_09.r") 

  source("FIAdata/FIA_functions_master2015_v2.r") 

  source("Source/MiscFunctions.r") 

  source("Source/MCMC9.r") 

  #require("truncnorm")  # This is needed for a truncated normal for 

parameters 3 and 28 

  library("truncnorm") 

  #require("fork") 

  #library("fork") 

  #require("ks") 

  #library("ks") 

  #detach("package:ks", unload=TRUE, character.only = TRUE) 

  #detach("package:msm", unload=TRUE, character.only=TRUE) 

  #detach("package:mvtnorm", unload=TRUE, character.only = TRUE) 

  #library("mvtnorm") 

  #library("msm") 

 

   modnum <- 3 
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  # NOTE: the file loaded here MUST contain all of the variables needed 

for the 

  # MCMC_ACGCA call.  These should be generated elsewhere and saved to 

an 

  # Rdata file.  Once loaded they will be available for the MCMC_ACGCA 

call.  

  # The variable names in the file loaded must exactly match those 

below or the 

  # function will fail. 

   

  # Make sure the Modelcomm file exists 

    if(length(getfiles(filestring="Modelcomm.txt"))!=1){ 

      #write(paste(""), file="Modelcomm.txt", append=F) 

      stop() 

    } 

  

  # What number should be used for this model? 

  # This must execute before this code is executes 

  # a second time. 

  fileexist <- getfiles(filestring="Modelcomm.txt") 

  if(length(fileexist) != 0){ 

    modnum <- scan(file="Modelcomm.txt", nlines=1) 

    if(length(modnum)==0){ 

      stop() 

    } 

  } 

 

  # Append the modelcomm file so the next run knows which run it is. 

  # write(paste(modnum+1), file="Modelcomm.txt", append=F) 

 

 

  # start R with a script to run don't wait for it to finish 

 

  # Set the model to run by getting the files and opening the correct 

file 

  files <- getfiles(filestring="parACGCA.Rdata") 

  filenumber <- length(files) 

   

  # Load the files that are needed 

  load(files[modnum]) 

 

  # Get the PID and write it to a new textfile for the master process 

  PID <- Sys.getpid() 

 

  filecom <- paste("PIDinfo_", modnum, ".txt", sep="") 

  fileConn<-file(filecom) 

  writeLines(c( 

  paste(modnum, sep=""), 

  paste(PID, sep="") 

  ), #end of file text 

  fileConn) 

  # Close the connection 

  close(fileConn) 

 

  # sigma small 

  #sigma.start <- sigma.start*0+0.005 
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  #sigma.start <- sigma.start*0+0.01 

  load("FIAdata/FIA_prob_array_nomort_2015_09_15.R")  

 

  ACGCA_out <- MCMC_ACGCA(numparms, eparms, iterations, its.past, 

sigma, names.thetaj, theta.j, transform, disttype, trunca, truncb, 

truncmean, truncprior, gparm, r0, years, minmax, trans.statsmean, 

finalsd, sigma.start, prob.array, min.alive, prob.j, maxwhile, 

tune.start, tune.end, prob.array2, l.prob.array) 

 

  # Save the model output 

  if(modnum <= 9){ 

    save(ACGCA_out, file=paste("PAR_ACGCA_out_file_0", modnum, 

"_of_",filenumber,".Rdata", sep="")) 

  } else if(modnum > 9){ 

    save(ACGCA_out, file=paste("PAR_ACGCA_out_file_", modnum, 

"_of_",filenumber,".Rdata", sep="")) 

  }  

} # End of function 

The Final block of code in the primary script for running the ACGCA model is 

the MCMC routine which is started by the MCMC_ACGCA(…) function call above. 

 
#######################################################################

######## 

# This is the break between the initialization and MCMC part of the 

code 

# 

# I moved this to its own function so it can be called once initial 

values  

# are generated.  This can then be used as part of a script for running 

the  

# code as part of a group of R instances. 

# 

# numparms: the number of parameters to sample 

# eparms: extra parameters not sampled (2 for the ACGCA) 

# iterations: how many samples are desired 

# its.past: how many iterations back to look for tuning.  This does not 

#   correspond directly to iterations above but to the while loop in 

the MCMC 

#   routine. 

# sigma: starting step size (modified for tuning) 

# sigma.start: starting step size (not-modified) 

# names.thetaj: variable names 

# theta.j: starting parameter values (initial values) 

# transform: a vector giving the transforms using codes 1-3. 1:log, 

2:logit, 

#   3:none, 0:none. 

# gparm: model variables that are not in theta.j(sparms in ACGCA) 

# r0: starting radius 

# years: how many years to run ACGCA (100 most of the time) 

# minmax: a matrix of min and max values from FIA data 
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# trans.statsmean: transformed means from kparms generated from 

TreeTraits  

#   database output 

# finalsd: standard deviation to use in the prior.  These must be on 

the  

#   transformed scale 

# 

#######################################################################

######## 

MCMC_ACGCA <- function(numparms, eparms, iterations, its.past, sigma, 

names.thetaj, theta.j, transform, disttype, trunca, truncb, truncmean, 

truncprior, gparm, r0, years, minmax, trans.statsmean, finalsd, 

sigma.start, prob.array, min.alive, prob.j, maxwhile, tune.start, 

tune.end, prob.array2, l.prob.array){ 

  #library("truncnorm") 

 

  # Tracks sigma values associated with rate 

  sigma.rate <- matrix(NA, nrow=numparms, ncol=((tune.end-

tune.start)/(tune.start/2)+2) 

) 

 

  Jtop.theta <- 1 

  Jbottom.j <- 1 

 

  VwVc <- 0.5 

  LCmax <- 7.3861*10^5 

  LT <- 4*10^(-4) 

  beta <- 0.05127 

 

  # Calculate gxmax and set its transformed values as the maximum value 

for  

  # p.gammax which is variable 13.   

  gxmax <- min(min(VwVc/(VwVc+beta), 1/(beta+1)), 1) 

  truncb[13]<-transformvar(gxmax, transform[13]) 

 

 # Set the truncation for gammax - xylem conducting area to sapwood 

area ratio 

 # truncb[13] <- gxmax 

 

  rate.save <- sigma.rate 

  sigma.rate[,1]<-sigma.start 

  sigma.its <- 0 

  rate.v <- matrix(NA, nrow=numparms, ncol=2) 

  sigma.value <- matrix(sigma, nrow=numparms, ncol=2) 

  accept.rate <- matrix(NA, nrow=numparms, ncol=(its.past+1)) 

  accept.rate[,(its.past+1)] <- 1 

  theta.out <- matrix(NA, nrow=iterations, ncol=(numparms+eparms)) 

  colnames(theta.out) <- names.thetaj 

  theta.star <- theta.j   

  prior.j <- numeric(numparms) 

  prior.theta <- numeric(numparms) 

  skip.track <- matrix(NA, nrow=iterations, ncol=(numparms+eparms)) 

  MCMC.track <- array(NA, dim=c(34,11,iterations)) # track alpha, 

alpha.l dunif, accept 

 

  theta.jsave <- theta.j 

  prob.jsave <- prob.j 
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  ###  

  # Constants used to specify contraints on a few "free" growth 

parameters 

  #  

  ### 

  # volume ratio of structural tissue to internal cell for living cells 

in  

  # sapwood (e.g., rays, etc.), also called "alpha" 

  VwVc <- 0.5 

  # Maximum amount of labile carbon that can  

   

 

  # This was taken from ACGCA_call2.r the values can just be appended 

for each 

  # run and then the vectors can be split in the prod.files.MCMC code. 

  output2 <- list(h=numeric(0), r=numeric(0), rBH=numeric(0), 

status=numeric(0), errorind=as.integer(numeric(0)), cs=numeric(0), 

clr=numeric(0), growth_st=as.integer(numeric(0))) 

  # stores the last good output 

  output3 <- list(h=numeric(0), r=numeric(0), rBH=numeric(0), 

status=numeric(0), errorind=as.integer(numeric(0)), cs=numeric(0), 

clr=numeric(0), growth_st=as.integer(numeric(0))) 

  output <- numeric(0) 

 

  # Output variables these should include ACGCA output needed so that 

the model 

  # does not need to be ran again.  This can then be processed in the 

same way 

  # as the output for multiple files was in the filter model. 

  theta.out <- matrix(NA, nrow=iterations, ncol=(numparms+eparms)) 

   

  sigma<-sigma.start # set the starting step size 

  sigma.value[,1] <- sigma 

  start <- proc.time() # save the current time 

 

  # theta.j must be defined before this loop is started 

  for(i in 1:(iterations)){ 

    for(k in 1:(numparms)){ 

      accept <- 0 # accept new parm in vector 

      accept.index <- i #accept.rate[k,(its.past+1)] 

      skip <- 0 #reset skip variable 

 

        print(paste(rep(i,10), "      ", rep(k,10))) # for testing 

        #thetastar2 <- function(parmin, trans=0, sigma) 

        # theta.j[k] is the mean until a value is accepted 

         

 # This is not needed because of the outer if statement 

        if(k != 12 & k != 8 & k != 3 & k != 28){ # don't include gammaw 

or rhomin 

        theta.star[k] <- thetastar2(theta.j[k], trans=transform[k], 

sigma[k]) 

        theta.star[k] <- as.numeric(unlist(theta.star[k])) 

        }else if(k == 12 | k == 8){ 

          skip <- 1 

          accept <- 0 

        } 
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        # These must be generated realative to each other. The 

truncated normal 

        # distribution is used to prevent overlap. theta.star28 <= 

theta.star3. 

        if(k == 3){ 

          theta.star[k] <- tstartruncnorm(theta.j[k], 

trans=transform[k], sigma=sigma[k], a=theta.star[28], b=Inf) 

          trunca[k] <- theta.star[28] 

        } 

        if(k == 28){  

          theta.star[k] <- tstartruncnorm(theta.j[k], 

trans=transform[k], sigma=sigma[k], a=-Inf, b=theta.star[3]) 

          truncb[k] <- theta.star[3] 

        } 

        if(k == 7){ #this is for rhomax it is between rlo and rhi 

          # This is based on gammax which in my code is theta.j[13].  

This is  

          # from the SA code provided by K. Ogle. 

          p.gammax <- exp(theta.j[13])/(1+exp(theta.j[13])) 

          rlo <- (VwVc-p.gammax*(VwVc-beta))/((1+VwVc)*theta.j[12]) 

          rhi <- (1-p.gammax)/theta.j[12] 

 

          # The values for trunca and truncb must be transformed to the 

correct 

          # scale. The third lines runs the truncated normal code whree 

theta.j 

          # is not transformed.  It is transformed in tstartruncnorm.  

This  

          # function is in gereratesamples.r. 

          trunca[k]<-transformvar(rlo, transform[k]) 

          truncb[k]<-transformvar(rhi, transform[k]) 

          theta.star[k] <- tstartruncnorm(theta.j[k], 

trans=transform[k], sigma=sigma[k], a=trunca[k], b=truncb[k]) 

        } 

        if(k == 13){ # This is for gxmax.  gxmax < p.gammax 

          # the truncb points is transformed above when gxmax is 

calculated. 

          theta.star[k] <- tstartruncnorm(theta.j[k], 

trans=transform[k], sigma=sigma[k], a=-Inf, b=truncb[k]) 

        } 

        

        # Stop ACGCA from running if inf/-inf/NA or the code will crash 

also 

        # stop if the generated parameter is 0 don't accept. 

        if(!is.finite(theta.star[k])){ 

          skip <- 2 

          accept <- 0 

          #exp.prob.theta <- 0 

          #stop("inf or -inf or na value detected") 

        }else if(theta.star[k]< 0){ 

          skip <- 3 

          accept <- 0 

          #exp.prob.theta <- 0 

          #stop("theta.star is less than 0") 

        } 
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        if(skip==0){ #only run if no inf/-inf NA values are present 

          # Run the ACGCA model 

          output <- growthloopR(sparms2 = theta.star, gparms2=gparm, 

r0=r0, dim=c(1,1),lenvars2=1)    

 

          # don't accept if there was an error in the ACGCA model 

          if(sum(output$errorind) > 0){ 

            skip <- 6 

            accept <- 0 

            #exp.prob.theta <- 0 

          } 

        } 

         

        # Filter the output at this point so there is only one value 

per year. 

        #if(skip==0){ 

        output <- proc.output(output, years, gparm) 

        #} 

 

        # don't accept if the tree was dead at year 100 

        if(skip == 0){ 

          if(output$status[years+1]==0){ 

            skip <- 5 

            accept <- 0 

            #exp.prob.theta <- 0 

        }} 

 

        if(skip==0){ 

        # calculate dh and dr without using a for loop! 

        dh <- output$h[2:length(output$h)] - 

output$h[1:(length(output$h)-1)] 

        dr <- output$r[2:length(output$r)] - 

output$r[1:(length(output$r)-1)] 

        if(output$status[years+1]==0){ #remove values lescd s than 0 

          sel <- dh < 0 

          dh[sel] <- 0 

          sel <- dr < 0 

          dr[sel] <- 0 

        } 

 

        # I found that these should be in a skip statement on 4/22/2015 

        vars <- matrix(data=c(dr,dh,output$r[2:length(output$r)], 

output$h[2:length(output$h)]), ncol=4, byrow=F) 

        boxarray <- as.matrix(vars) 

        #apply(X=as.matrix(vars), MARGIN=c(1,2), FUN=logbin) 

         

          if(output$status[min.alive]==0){ 

            skip <- 7 

            accept <- 0 

            #exp.prob.theta <- 0 

          } #stop if the tree never lived 

        } # end of skip above dh, dr, calculations. 

         

        boxarray <- log(boxarray) 

        if(sum(!is.finite(boxarray))>0){ 

          skip <- 12 

        } 
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        # Check for values outside of minmax (these result in 

probability 0 

        if(skip == 0){ #don't do this if the tree is dead 

        for(j in 1:4){ 

           # sum(boxarray[,j] < minmax[j,1])+ # removed this because it 

is not needed anymore 

           if((sum(boxarray[,j] > minmax[j,2]))>0){ 

            #exp.prob.theta <- 0 

            skip <- 8 

            accept <- 0 #Added on 10/1/2014 

          } 

          # This prevents the values from being too small. 

          if((sum(boxarray[,j] < minmax[j,1]))>0){ 

            #exp.prob.theta <- 0 

            skip <- 8 

            accept <- 0 #Added on 11/19/2014 

          } 

        }} # end of minmax for 

 

        if(skip == 0){ 

 

          # create a matrix for output 

          binout <- matrix(data = NA, nrow = length(dh), ncol = 4) 

 

          ## This finds which bins each number is in 

          for(j in 1:dim(boxarray)[2]){ 

            binout[,j] <- apply(X=as.matrix(boxarray[,j]), MARGIN=1, 

FUN=findbin, min.interval=minmax[j,])   

          }   

 

          # find probout using a multivariate normal distribution 

          # probout <- mvtnorm::dmvnorm(x=boxarray, 

mean=prob.array2$log.mean, sigma=prob.array2$cov.matrix, log=TRUE) 

          probout <- numeric(dim(binout)[1]) 

 

          # I had an error when I did not do this with a loop so I put 

this back in 

          for(j in 1:length(probout)){ 

            probout[j] <- 

l.prob.array[binout[j,1],binout[j,2],binout[j,3],binout[j,4]] 

          } 

 

          # check that no value in probout is NA if they are theta.j=0 

and the 

          # parameter set is rejected.  This leads to 

theta.star=theta.j. 

          if(sum(!is.finite(probout))>0){ 

            #exp.prob.theta <- 0 

            skip <- 9 

          } 

          if(skip == 0){   

            # find prop.j 

            prob.theta <- (1/years)*sum(probout) 

            #exp.prob.theta <- exp(prob.theta) 

          } 

        #bracket # end of second if 
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        if(is.finite(prob.theta) & skip == 0){ # don't accept if 

prob.theta is 0 

          # calculate the prior values for theta and j. The calc for J 

is not 

          # needed if it is saved from when teh set is accepted. 

          if(i == 1 | i==(tune.end+1)){ # only calculate this for the 

first iteration save values after that 

            if(disttype[k] == 1){ 

              if(!is.finite(trunca[k])){ 

                trunca.use <- -Inf  

              }else{trunca.use<-transformvar(trunca[k], transform[k])} 

              if(!is.finite(truncb[k])){ 

                truncb.use <- Inf 

              }else{truncb.use<-transformvar(truncb[k], transform[k])} 

              prior.j[k] <- 

log(truncnorm::dtruncnorm(x=transformvar(theta.j[k], transform[k]), 

a=trunca.use, b=truncb.use, mean=trans.statsmean[k], sd=finalsd[k])) 

            }else if(disttype[k] == 0){ 

              prior.j[k] <- 

log(dnorm(x=transformvar(theta.j[k],transform[k]), 

mean=trans.statsmean[k], sd=finalsd[k])) 

            } 

          } 

 

            if(disttype[k] == 1){ 

              if(!is.finite(trunca[k])){ 

                trunca.use <- -Inf  

              }else{trunca.use<-transformvar(trunca[k], transform[k])} 

              if(!is.finite(truncb[k])){ 

                truncb.use <- Inf 

              }else{truncb.use<-transformvar(truncb[k], transform[k])} 

 

            # height is truncated to 127 

              if(truncprior[k]==1){ 

                prior.theta[k] <- 

log(truncnorm::dtruncnorm(x=transformvar(theta.star[k], transform[k]), 

a=trunca.use, b=truncb.use, mean=trans.statsmean[k], sd=finalsd[k])) 

              } 

            # Domec 2008 suggest max h is no more than 127m. 

              if(truncmean[k] != 0){ 

                # mean is theta.j with sd = the previous iterations 

step size. 

                Jtop.theta <- 

log(truncnorm::dtruncnorm(x=transformvar(theta.star[k],transform[k]), 

a=trunca.use, b=truncb.use, mean=transformvar(theta.j[k],transform[k]), 

sd=sigma.value[k,2])) 

                # mean is theta.star with sd = the current step size. 

                Jbottom.j <- 

log(truncnorm::dtruncnorm(x=transformvar(theta.j[k],transform[k]), 

a=trunca.use, b=truncb.use, 

mean=transformvar(theta.star[k],transform[k]), sd=sigma.value[k,1])) 

              } 

            } # the below can't be else because it needs to be 

evaluated 

            if(disttype[k] == 0 | truncprior[k]==0){ 
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              # if truncprior==1 then the prior is truncated not the 

likelihood so the correction is not needed. 

              prior.theta[k] <- 

log(dnorm(x=transformvar(theta.star[k],transform[k]), 

mean=trans.statsmean[k], sd=finalsd[k])) 

              # These will just cancel so set them to 1 

              Jtop.theta <- 1 

              Jbottom.j <- 1 

            } 

 

            # I added the following two lines following p279 in Gelman 

2014 

            # Jtop.theta <- 

log(dnorm(x=transformvar(theta.star[k],transform[k]), 

mean=transformvar(theta.j[k],transform[k]), sd=finalsd[k])) 

            # Jbottom.j <- 

log(dnorm(x=transformvar(theta.j[k],transform[k]), 

mean=transformvar(theta.star[k],transform[k]), sd=finalsd[k])) 

 

          if(!is.finite(prior.theta[k])){ # Stop if the value is not 

finite 

            skip <- 10 

            accept <- 0 

          } else{ 

            # save the values going into alpha.l 

            MCMC.track[k,5,i] <- prob.theta 

            MCMC.track[k,6,i] <- prob.j 

            MCMC.track[k,7,i] <- prior.theta[k] 

            MCMC.track[k,8,i] <- prior.j[k] 

            MCMC.track[k,9,i] <- Jtop.theta 

            MCMC.track[k,10,i] <- Jbottom.j 

            MCMC.track[k,11,i] <- -2*prob.theta 

 

            alpha.l <- prob.theta - prob.j + prior.theta[k] - 

prior.j[k] + Jtop.theta - Jbottom.j   

            alpha <- -alpha.l 

           

            # Test for acceptance 

            rexp.track <- rexp(1) 

            MCMC.track[k,1,i] <- alpha # track alpha, alpha.l dunif, 

accept 

            MCMC.track[k,2,i] <- alpha.l 

            MCMC.track[k,3,i] <- rexp.track 

 

            print(rexp.track) 

            print(alpha) 

 

            if(rexp.track > alpha){ 

              accept <- 1 # accept the new value 

              accept.rate[k,counter(i, its.past)] <- 1 

              accept.rate[k,(its.past+1)] <- 

accept.rate[k,(its.past+1)] + 1 

              theta.j[k] <- theta.star[k] # Set theta.j to equal 

theta.star 

              prior.j[k] <- prior.theta[k]  

              prob.j <- prob.theta 
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             # append the output vectors for saving and processing 

             output3$h <- output$h 

             output3$r <- output$r 

             output3$rBH <- output$rBH 

             output3$status <- output$status 

             output3$errorind <- output$errorind 

             output3$cs <- output$cs 

             output3$clr <- output$clr 

             output3$growth_st <- output$growth_st 

 

            }else{accept <- 0} 

          } # end of else 

        }}else{ 

          accept <- 0 

 

        } # end of if 

 

        # If the parameter was not accepted a zero goes in accept.rate 

 if(accept == 0){ 

          accept.rate[k,counter(i, its.past)] <- 0 

          accept.rate[k,(its.past+1)] <- accept.rate[k,(its.past+1)] + 

1 

        } 

 

 # Tune the sigma vector with a target rate of 0.44 

 # Changed to i on 10/6/2014  

 if(i%%(its.past)==0 & i > tune.start & i < tune.end){ 

          rate.v[k,1] <- mean(accept.rate[k,1:(its.past)], na.rm=T) 

          #sigma[k]<-tuneit(accept=rate.v[k,1], target=0.44, 

tpar=sigma[k])  

          sigma[k]<-tuneit(accept=accept.rate[k,1:(its.past)], 

target=0.44, tpar=sigma[k])  

          rate.v[k,2] <- rate.v[k,1] # not really needed  

          if(k == 1){sigma.its <- sigma.its+1} # this must be done 

first so it is 1 

          sigma.rate[k,(sigma.its+1)] <- sigma[k] # Save the new sigma 

value 

          rate.save[k,sigma.its] <- rate.v[k,1] 

          # This saves sigma values for use in the correction function 

          sigma.value[k,2] <- sigma.value[k,1] 

          sigma.value[k,1] <- sigma[k] 

        } 

 

  if(i == tune.end){ 

    # tunewin(rate=rate.save[1,1:50], sigma=sigma.rate[1,1:50], 

winsize=3) 

    tunerate <- numeric(34)*NA 

    tunesigma <-numeric(34)*NA 

    tune.it <- numeric(34)*NA 

    for(j in 1:34){ 

      tuneout <- tunewin(rate=rate.save[j,1:((tune.end-

tune.start)/its.past)], sigma=sigma.rate[j,1:((tune.end-

tune.start)/its.past)], winsize=3, target=0.44) 

      tunerate[j] <- tuneout$best[1] 

      tunesigma[j] <- tuneout$best[2] 

      tune.it[j] <- tuneout$best[3] 

    } 
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    # Reset the parameters to their  

    # Make sure all theta.j and prob.j values are the starting points. 

The 

    # prior will be recalculated above when the next iteration runs. 

    theta.j <- theta.jsave 

    prob.j <- prob.jsave 

    theta.star <- theta.jsave 

    prob.theta <- prob.jsave 

  } 

 

      # print the iteration the loop is on for testing.  This is not 

visible 

      # when running the code using the batch MCMC routine. 

      print(paste("inner for iteration: ", k, ".", sep="")) 

       

      # reset all theta.star values to theta.j if accept == 1 

      if(accept == 0){ 

        theta.star[k] <- theta.j[k] 

        prior.theta[k] <- prior.j[k] 

        prob.theta <- prob.j 

        MCMC.track[k,11,i] <- -2*prob.j 

 

        # append the output vectors for saving and processing 

        output$h <- output3$h 

        output$r <- output3$r 

        output$rBH <- output3$rBH 

        output$status <- output3$status 

        output$errorind <- output3$errorind 

        output$cs <- output3$cs 

        output$clr <- output3$clr 

        output$growth_st <- output3$growth_st 

      }   

 

      skip.track[i, k] <- skip 

     

      #Save the value of accept 

      MCMC.track[k,4,i] <- accept 

    } # End inner for loop 

    # Store the new theta vector 

    theta.out[i,]<-theta.j # Store theta.j  

    # prior.j does not change on a k basis since it does not depend on 

other  

    # parameters so it is updated in the i loop. 

    prior.j <- prior.theta # Store new prior.j values so they don't 

need to be  

    # calculated again 

    theta.j <- theta.star # Set theta.j to equal theta.star 

    prob.j <- prob.theta # Set a new prob for j 

    #print(paste("Iteration: ", i , " of ", iterations, sep="")) 

    #print(paste(rep(i,100))) 

     

    # append the output vectors for saving and processing 

    output2$h <- c(output2$h, output$h) 

    output2$r <- c(output2$r, output$r) 

    output2$rBH <-c(output2$rBH, output$rBH) 

    output2$status <-c(output2$status, output$status) 

    output2$errorind <- c(output2$errorind, output$errorind) 
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    output2$cs <- c(output2$cs, output$cs) # Added 7/21/2014 

    output2$clr <- c(output2$clr, output$clr) # Added 7/21/2014 

    output2$growth_st <- c(output2$growth_st, output$growth_st) # Added 

9/23/14 

 

    if(i%%100==0){ 

      plot(x=1:i, y=theta.out[1:i,1], ylab="height", xlab="iteration", 

type="l") 

    } 

  } # End outer for loop 

 

end <- proc.time() 

time <- end-start 

print(end-start) 

 

# final.rate <- mean(accept.rate[,(its.past+1)]) 

# final.rate=final.rate, 

 

return(list(output=output2, theta.out=theta.out, rate = rate.v, 

accept.rate=accept.rate, r0=r0, gparm=gparm, skip.track=skip.track, 

sigma.rate=sigma.rate, time=time, MCMC.track=MCMC.track, 

rate.save=rate.save, sigma=sigma)) 

} # End of function MCMC_ACGCA 
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APPENDIX E 

SUPPLEMENTAL TABLES AND FIGURES REGARDING THE FILTERING THE 

THEORETICAL TRAIT SPACE FOR NORTH AMERICAN TREES 
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Table S4.1. Coefficient estimates (effect sizes) and p-values for a logistic regression of 

tree-level mortality (𝑚𝑔,𝑝) versus annual average light level at the forest floor (PARavg; 

light only model). 

Coefficient/term Estimate p-value 

Intercept -0.55 < 0.01 

PARavg -0.36 < 0.01 
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Table S4.2. Coefficient estimates (effect sizes) and p-values from a stepwise logistic 

regression of tree-level mortality (𝑚𝑔,𝑝) versus 32 functional traits (see Table 4.1 for a 

description of the traits) that only considered the main effects of the traits, and did not 

consider light (traits only model). The traits are ordered from highest to lowest effect 

size. 

Coefficient/term Estimate p-value 

Intercept -0.89 <0.01 

Hmax -1.24 <0.01 

ε -1.26 <0.01 

γX -0.71 <0.01 

SO 0.56 <0.01 

RmL 0.43 <0.01 

R0 -0.34 <0.01 

SLA -0.25 <0.01 

RmS 0.23 <0.01 

K -0.22 <0.01 

SWmax -0.24 <0.01 

f2 -0.22 <0.01 

f1 0.16 <0.01 

R40 0.13 <0.01 

ρR 0.08 <0.01 

SL 0.08 <0.01 

ηB -0.07 <0.01 

SR 0.06 <0.01 

λh 0.05 <0.01 

γC 0.05 <0.01 

α 0.03 <0.01 

η 0.03 <0.01 

λs 0.03 <0.01 

rR 0.03 <0.01 

φH -0.03 <0.01 

Cgw 0.02 <0.01 

RmR -0.03 <0.01 

δL 0.01 <0.01 

δR 0.01 <0.01 

CgL 0.01 <0.01 
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Table S4.3. Coefficient estimates (effect sizes) and p-values from a stepwise logistic 

regression of tree-level mortality (𝑚𝑔,𝑝) versus 32 functional traits (see Table 4.1 for a 

description of the traits), annual average light level at the forest floor (PARavg), and all 2-

way interactions between PARavg and each trait (traits + light model). Within the main 

effects, the traits are ordered from highest to lowest effect size; within the two-way 

interactions, interactions are ordered from highest to lowest effect size. 

Coefficient/term Estimate p-value 

Intercept -1.00 <0.01 

ε -1.41 <0.01 

Hmax -1.33 <0.01 

γX -0.77 <0.01 

PARavg -0.67 <0.01 

SO 0.59 <0.01 

RmL 0.5 <0.01 

R0 -0.38 <0.01 

SLA -0.29 <0.01 

RmS 0.26 <0.01 

SWmax -0.26 <0.01 

k -0.24 <0.01 

f2 -0.23 <0.01 

f1 0.18 <0.01 

R40 0.12 <0.01 

ρR 0.09 <0.01 

SL 0.09 <0.01 

ηB -0.08 <0.01 

SR 0.07 <0.01 

λh 0.05 <0.01 

γC 0.05 <0.01 

η 0.04 <0.01 

λs 0.04 <0.01 

α 0.04 <0.01 

φH -0.03 <0.01 

rR 0.03 <0.01 

Cgw 0.03 <0.01 

RmR -0.03 <0.01 
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CgL 0.01 <0.01 

δL 0.01 <0.01 

δR 0.01 <0.01 

PARavg  ε -0.32 <0.01 

PARavg  RmL 0.19 <0.01 

PARavg  SO -0.19 <0.01 

PARavg  Hmax 0.16 <0.01 

PARavg  R40 -0.12 <0.01 

PARavg  RmS 0.11 <0.01 

PARavg  SLA -0.08 <0.01 

PARavg  f1 0.07 <0.01 

PARavg  SWmax 0.04 <0.01 

PARavg  η 0.04 <0.01 

PARavg  k -0.03 <0.01 

PARavg  α 0.03 <0.01 

PARavg  SL 0.03 <0.01 

PARavg  R0 -0.03 <0.01 

PARavg  γX 0.03 <0.01 

PARavg  ρR 0.02 <0.01 

PARavg  SR 0.02 <0.01 

PARavg  rR 0.02 <0.01 

PARavg  f2 0.02 <0.01 

PARavg  λs 0.02 <0.01 

PARavg  λh -0.01 <0.01 

PARavg  CgL 0.01 <0.01 
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Table S4.4. Coefficient estimates (effect sizes) and p-values from a regression of stand-

level mortality (𝑚𝑔
𝑠) versus time between gaps (tbg, years), where tbg is treated as a 

categorical variable (factor); p < 0.01 and R2 = 0.74. Models were also conducted that 

separately regressed 𝑚𝑔
𝑠  on gap time (gt) and closure time (ct), with both treated as 

factors; both models had far lower R2 values (0.002 and 0.052). 

Level (tbg) Estimate p-value 

Intercept 0.254 < 0.01 

35 0.034 0.113 

50 0.089 < 0.01 

100 0.179 < 0.01 

200 0.196 < 0.01 
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Table S4.5. Coefficient estimates (effect sizes) and p-values from a stepwise regression 

of phenotype-level mortality (𝑚𝑝
𝜃) versus 32 functional traits (see Table 4.1 for a 

description of the traits) that only considered the main effects of the traits (main effects 

model). The traits are ordered from highest to lowest effect size. 

Coefficient/term Estimate p-value 

Intercept 0.37 <0.01 

ε -0.184 <0.01 

Hmax -0.174 <0.01 

γX -0.102 <0.01 

SO 0.078 <0.01 

RmL 0.063 <0.01 

R0 -0.052 <0.01 

SLA -0.037 <0.01 

SWmax -0.033 <0.01 

RmS 0.031 <0.01 

k -0.031 <0.01 

f2 -0.03 <0.01 

f1 0.024 <0.01 

R40 0.017 <0.01 

SL 0.011 <0.01 

ρR 0.011 <0.01 

ηB -0.011 <0.01 

SR 0.009 <0.01 

λh 0.008 <0.01 

γC 0.006 <0.01 

η 0.005 <0.01 
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Table S4.6. Coefficient estimates (effect sizes) and p-values from a stepwise regression 

of phenotype-level mortality (𝑚𝑝
𝜃) versus 32 functional traits (see Table 4.1 for a 

description of the traits), for the model that considered the main effects of the traits and 

all 2-way interactions among traits. The traits are ordered from highest to lowest effect 

size. 

Coefficient/term Estimate p-value 

Intercept 0.389 <0.01 

ε -0.195 <0.01 

Hmax -0.171 <0.01 

SO 0.103 <0.01 

γX -0.100 <0.01 

RmS 0.076 <0.01 

RmL 0.068 <0.01 

SLA -0.039 <0.01 

k -0.035 <0.01 

R0 -0.031 <0.01 

f2 -0.031 <0.01 

f1 0.021 <0.01 

SWmax -0.015 <0.01 

SL 0.013 <0.01 

ρR 0.011 <0.01 

ηB -0.011 <0.01 

R40 -0.011 <0.01 

λh 0.010 <0.01 

SR 0.010 <0.01 

λs 0.006 <0.01 

η 0.006 <0.01 

φH -0.006 <0.01 

α 0.005 <0.01 

γX  RmS -0.063 <0.01 

ε  SO 0.049 <0.01 

ε  γX 0.042 <0.01 

SO  R40 0.041 <0.01 

Hmax  R40 -0.033 <0.01 

Hmax  γX 0.032 <0.01 

Hmax  SO -0.029 <0.01 

γX  SO -0.024 <0.01 
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SO  RmS -0.023 <0.01 

SO  RmL -0.018 <0.01 

RmL  RmS -0.017 <0.01 

γX  R40 0.017 <0.01 

ε  f2 0.014 <0.01 

R0  R40 0.014 <0.01 

ε  R40 0.014 <0.01 

SO  R0 -0.013 <0.01 

γX  f2 0.012 <0.01 

Hmax  SWmax 0.012 <0.01 

Hmax  R0 0.012 <0.01 

RmS  R40 0.012 <0.01 

ε  f1 0.010 <0.01 

RmS  R0 -0.009 <0.01 

γX  k 0.009 <0.01 

RmS  SWmax -0.009 <0.01 

RmS  SLA 0.009 <0.01 

SO  SLA 0.009 <0.01 

ε  k 0.008 <0.01 

RmL  SL -0.008 <0.01 

ε  RmL -0.008 <0.01 

RmL  f1 -0.008 <0.01 

SO  k 0.008 <0.01 

ε  SWmax 0.007 <0.01 

RmL  SLA -0.007 <0.01 

RmL  R40 0.006 <0.01 

R40  η -0.006 <0.01 

Hmax  φH -0.006 <0.01 

γX  f1 -0.006 <0.01 

R0  f2 -0.006 <0.01 

RmS  f2 -0.006 <0.01 

SO  α -0.006 <0.01 

f1  ρR 0.005 <0.01 

SO  λh -0.005 <0.01 

Hmax  f2 0.005 <0.01 

ε  ηB 0.005 <0.01 

γX  λs -0.005 <0.01 
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RmS  SR -0.005 <0.01 

γX  α -0.005 <0.01 

Hmax  λs 0.005 <0.01 

ε  RmS 0.005 <0.01 

ε  φH 0.005 <0.01 

  



230 

 

Table S4.7. Summary of the trait-trait regressions for surviving trees, where each trait 

was regressed on the remaining 31 traits, phoenotype-level mortality (mort = 𝑚𝑝
𝜃), and all 

2-way interactions. Important main effects and interactions were identified with forward 

and backward stepwise regression using the Bayesian Information Criteria (BIC) for 

model selection. Each column represents the “dependent trait” that was regressed on the 

“predictor” variables (rows) using a randomly selected subset of 3000 parameter sets for 

surviving trees under the gap dynamics scenario that resulted in the lowest mortality rate 

(i.e., gt = 8 years, ct = 25 years, tbg = 35 years, for scenario g = 57, giving 𝑚57
𝑠  = 19%). 

Within each cell, + or – represents the direction of the regression coefficient (or 

correlation between the dependent and independent traits); the number under each 

diagonal line represents the number of interaction terms the variable (e.g., dependent 

trait) was included in (if blank, it was not included in any interactions); blank cells 

indicate variables that were not included in the final model. Cells shaded gray were 

statistically significant (p < 0.05, most at p << 0.05). The three non-significant main 

effects (e.g., associated with the R40 and Hmax models) were included in at least one 

significant interaction. The bottom row contains the overall, adjusted R2 from each 

regression. 
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Table S4.8. Summary of the trait-trait regressions for tree that died, where each trait was 

regressed on the remaining 31 traits, phenotype-level mortality (mort = 𝑚𝑝
𝜃), and all 2-

way interactions. See Table S4.7 for details about the analysis. The stepwise regression 

was applied to a randomly selected subset of 3000 parameter sets for trees that died under 

the gap dynamics scenario that resulted in the lowest mortality rate. Similar to the model 

for surviving trees (Table S4.7), the two non-significant main effects (e.g., associated 

with the RmR model) were included in at least one significant interaction. 
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Table S4.9. Similarities and differences between the trait-trait stepwise regressions for 

surviving (Table S4.7) versus dead trees (Table S4.8). As in Tables S4.7 and S4.8, the 

column headers denote the dependent traits, and the row headers denote the predictor 

variables or traits. Within each cell, + indicates that the regression coefficients from both 

models had the same sign (+ or -), while a – indicates they had opposite signs. A dark 

grey shaded cell indicates a predictor trait that was only included in the model for 

surviving trees, while light grey cells indicate traits that were only included in models for 

dead trees (white cells indicate consistencies between models; either a trait was or was 

not included in both models). The original sign of the coefficients for each model are 

given in Tables S4.7 and S4.8. The difference in R2 (diff R2) between the two models is 

indicated in the second-to-last row, and the difference in the total number of variables 

(diff var) included in each model is given in the last row; differences are calculated as the 

result for surviving trees minus the result for dead trees.
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Figure S4.1. Relationship between the simulated average annual light level at the forest 

floor (PARavg) versus (A) gap closure time (gt, years), (B) canopy closure time (ct, years), 

and (C) time between gaps (tbg, years). In all panels, black symbols are the average 

PARavg across the other gap phase levels with the level indicated by the gap phase 

variable on the x-axes; open circles are the PARavg values for each gap scenario 

simulation. In general, (A) and (B) do not show any relationships between PARavg and gt 

or ct, such that linear regressions associated with each were non-significant (with p = 

0.32 and p = 0.91, respectively); (C) shows that PARavg is well predicted by tbg (p < 0.01, 

R2 = 0.79). 
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