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ABSTRACT

To ensure system integrity, robots need to proactively avoid any unwanted physical

perturbation that may cause damage to the underlying hardware. In this thesis work,

we investigate a machine learning approach that allows robots to anticipate impending

physical perturbations from perceptual cues. In contrast to other approaches that

require knowledge about sources of perturbation to be encoded before deployment,

our method is based on experiential learning. Robots learn to associate visual cues

with subsequent physical perturbations and contacts. In turn, these extracted visual

cues are then used to predict potential future perturbations acting on the robot. To

this end, we introduce a novel deep network architecture which combines multiple sub-

networks for dealing with robot dynamics and perceptual input from the environment.

We present a self-supervised approach for training the system that does not require

any labeling of training data. Extensive experiments in a human-robot interaction

task show that a robot can learn to predict physical contact by a human interaction

partner without any prior information or labeling. Furthermore, the network is able

to successfully predict physical contact from either depth stream input or traditional

video input or using both modalities as input.
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Chapter 1

INTRODUCTION

According to Isaac Asimov’s third law of robotics [2], “a robot must protect its own

existence as long as such protection does not conflict with the First or Second Law”,

i.e., as long as it does not harm a human. Aspects of safety and self-preservation are

tightly coupled to autonomy and longevity of robotic systems. For robots to explore

their environment and engage in physical contact with objects and humans, they need

to ensure that any such interaction may not lead to tear, damage, or irreparable harm

to the underlying hardware. Situations that jeopardize the integrity of the system

need to be detected and actively avoided. This determination can be performed in

either a reactive way, e.g., by using sensors to identify forces acting on the robot, or in

a pro-active way, e.g., by detecting impending collisions. In recent years, a plethora of

safety methods have been proposed that are based on reactive strategy. Approaches

for compliant control and, in particular, impedance control techniques have been

shown to enable safe human-robot interaction [13] in a variety of close-contact tasks.

Such methods are typically referred to as post-contact approaches, since they react

to forces exchanged between the system and its environment after they first occur.

In many application domains, however, robots need to pro-actively reason about

impending damage before it occurs. Methods that tackle these scenarios, have mostly

focused on proximity detection and collision avoidance. Motion tracking or other

sensing devices are used to identify nearby humans and obstacles in order determine

whether they intersect the robot’s path. To this end, a human expert has to reason

about the expected obstacles before deployment and, in turn, hand-code methods

for object recognition, human tracking, or collision detection. Such methods are

1
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Figure 1.1: Baxter robot anticipates physical contact by human.

largely based on the status quo of the environment and do not take in account the

expected future states. For example, the behavior of a human interaction partner

may already provide cues whether or not physical contact is to be expected. In

addition, such methods suffer from limited adaptivity – the robotic system is not

able to incorporate other or new sources of physical perturbations that have not

been considered by the human expert. Changes in the application domain typically

require the expert to specify the set of obstacles/perturbants and how they can be

identified from sensor data. However, for robots to autonomously explore new goals,

tasks, and environments they cannot be constantly relying on human intervention

and involvement. In order to increase resilience of robotic systems, the processes

responsible for ensuring safety should inherently be (a) adaptive to changes that occur

during the cycle of operation and (b) anticipative in nature, so as to proactively avoid

2
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Figure 1.2: Overview of architecture of the Deep Predictive Model for perturbation

prediction from visual cues.

damage.

In biology such processes are common place: humans and animals experience

pain as the guiding signal which ensures self-preservation and safe, “open ended”

exploration of the world. Over time, biological creatures learn to anticipate impending

pain sensations from environmental and proprioceptive cues, e.g., from the velocity

and direction of an obstacle, or an imbalance in posture. The relationship between

pain and learning is bi-directional in humans and vertebrate animals. Our perception

of pain shapes the way we learn, but the perception itself is also shaped by the

experiences we undergo during learning. In particular, repeated exposure to a sensory

cue (e.g. a specific image or object) preceding a negative outcome (e.g. electric shock)

will turn the cue into a conditioned stimulus that helps anticipate the shock in future

trials. This ability to associate a certain stimuli with negative future sensations is

considered to be essential to survival.

Inspired by the relationship between pain and learning in biological creatures, we

propose in this paper a new method for learning to anticipate physical perturbations

3



in robotic systems. Robot safety is realized through an adaptive process in which

prior experiences are used to predict impending harm to the system. These pre-

dictions are based on (1) environmental cues, e.g., camera input, (2) proprioceptive

information, and (3) the intended actions of the robot. We introduce a deep predictive

model (DPM) that leverages all three sources of information in order to anticipate

contact and physical perturbations in a window of future time steps. An important

characteristics or this deep predictive models, is that it differentiates between forces

and perturbations that are the result of an executed robot behavior, e.g., fast arm

movements, and external perturbations that are the result of outside influence. After

learning, the DPM can be used to anticipate future states that result in forces being

applied to the robot. In turn, this information can be used to provide visual feedback

to the user, or actively avoid the predicted states, or change the impedance of the

system.

We will evaluate the introduced system in a set of experiments in which a robot

has to anticipate physical perturbations caused by a human interaction partner. We

will show that the introduced model effectively anticipates contact using either RGB

or RGB-D camera sensors. While the introduced method can be used to actively

avoid noxious states, we will focus our analysis in this paper to the detection of

perturbations only.

4



Chapter 2

RELATED WORK

Safety plays a critical role in the field of robotics. Recently, various methods have

been put forward in order to protect a human interaction partner from harm. The

work in [8], for example, uses proprioceptive sensing to identify collisions and, in turn,

execute a reactive control strategy that enables the robot to retract from the location

of impact. In a similar vein, the work in [14] describes methods for rapid collision

detection and response through trajectory scaling. Many approaches to safe human-

robot interaction are based on rapid sensing through force-torque sensors or tactile

sensors [17]. Another approach is to generate estimates of external forces acting on a

robot using disturbance observers [11]. These approaches, however, require a model

of the underlying plant, which in the case of complex humanoid robots can become

challenging to derive. In addition, nonlinearities underlying the current robot or task

can often lead to instabilities in the system [21]. To circumvent such challenges,

several approaches have been proposed for learning perturbation filters using a data-

driven machine learning method [3, 4, 5]. An alternative, bio-inspired approach was

proposed in [19]. In particular, an “Artificial Robot Nervous System” was introduced

which emulates the human skin structure, as well as the spikes generated whenever

an impact occurs.

All of the above techniques are reactive in nature. Only after contact with its

environment, can a robot detect a physical impact or perturbation and react to it.

However, many critical situations require a proactive avoidance strategy. To this end,

various methods for human motion anticipation have been proposed [20, 23, 1]. Given

a partially observed human motion, a robot can anticipate the goal location and inter-

5



mediate path and accordingly generate a collision free navigation strategy. However,

such approaches are brittle in that they require some form of human tracking. If the

source of the perturbation is non-human, e.g., a moving object then no anticipation

can occur. In this paper, we are interested in dynamic approaches to anticipation of

perturbations. Robots learn to predict contacts or impact by associating them with

visual cues. This is similar in spirit to [6] where dashcam videos were used to predict

car collisions. However, an important difference is that our predictions are based on

both visual cues, proprioceptive sensors, as well as next robot actions.

6



Chapter 3

DEEP PREDICTIVE MODELS OF PHYSICAL PERTURBATIONS

Our goal is to enable an intelligent system to anticipate undesired external pertur-

bations before they occur. Following the biological inspiration, repeated exposure to

a sensory cue preceding a physical perturbation will turn the cue into a predictive

variable that helps anticipate the perturbation. To this end, we propose the deep

predictive model seen in Fig. 1.2. A key insight of our approach, is that a robot can

learn to correlate perceptual data, e.g., camera image, to its future internal states of

the robot. By establishing a mapping between perceptual information and internal

states, the it can anticipate harm before it occurs.

The DPM is based on a modular architecture, in which two modules generate the

necessary relationship in order to map perceptual data to future anticipated noxious

signals. The first module of the DPM is a deep dynamics module that learns to

discriminate between external perturbations caused by outside events and natural

variations of sensor readings due to the currently executed behavior and sensor noise.

The deep dynamics module is trained to generate a signal, whenever the recorded

sensor values cannot be explained by the actions of the robot. This produces a dense

training signal for self-supervised learning of external perturbations. Prediction in

the deep dynamics model is performed within a probabilistic framework in order to

estimate the model uncertainties.

The second module of the DPM is the perceptual anticipation module– a deep

network that takes visual percepts, proprioceptive states, and actions taken as inputs

and generates predictions over future noxious signals. It learns to associate specific

visual and proprioceptive cues to harmful states. The perceptual anticipation module

7



contains convolutional recurrent layers [24], [10] that process the visual input in both

space and time. In addition, it features recurrent and dense layers, that combine

the processed visual information with information about the robot state and actions

to produce multiple predictions over expected perturbations. Learning is performed

using the paradigm of self-supervised learning. More specifically, the training sig-

nal produced by the deep dynamics module is used as a target signal. No human

intervention is need in order to either provide new training data or label existing

data.

Subsequently, we will explain the elements of the introduced network architecture

and describe the underlying training and inference process in more detail.

3.1 Deep Dynamics Model

The task of the deep dynamics model is to identify exogenous perturbations affect-

ing the robot. Detecting such perturbations in the sensor stream can be challenging

when the robot is performing dynamic movements that by themselves cause fluctu-

ation in the sensor readings. To discriminate between exogenous and endogenous

perturbations, we will use a strategy inspired by the human motor system.

Before sending an action at ∈ RQ to the actuators, the robot creates a copy of at,

the so-called efference copy, and predicts the expected sensory stimuli after execution.

This prediction is performed by the deep dynamics model, a neural network that maps

the current state st and intended action at onto the expected next state s∗t+1.

After executing action at, we can measure the discrepancy between the expected

sensations and the measured sensor values, also called the reafference. The degree of

discrepancy is an indicator for external physical perturbations.

This methodology is related to the concept of disturbance observers [11]. However,

in contrast to disturbance observers, no explicit model of the system needs to be

8



provided. Instead, the deep dynamics model is entirely learned, which is particularly

important for compliant and cable-driven robots, for which analytical models can

often be hard to devise and difficult to calibrate.

Next, we will describe how to collect data and perform learning in a deep dynamics

models. Then, we will show how the learned model can be used for probabilistic

inference and perturbation estimation.

Data Collection: Without loss of generality, we define for the remainder of the

paper the system state to be st = [θt, θ̇t, θ̈t,pt]
T ∈ RP which includes joint angles θt,

joint velocities θ̇t, accelerations θ̈t and end-effector pose pt.

To collect training data for training the deep dynamics model, we use motor

babbling [25, 9]. To this end, small changes are applied as the control action at ∈ RQ,

where Q is the number of degrees of freedom for the robot, i.e., the number of joints.

Considering a naive implementation of motor babbling, the action can be sampled

from an isotropic Gaussian distribution at ∼ N (0, σ2I) . However, empirically we

have observed that such a naive sampling approach does not effectively cover the state-

action space by unnecessarily focusing on samples in the center of the distribution.

To alleviate this problem, we use a bi-modal distribution and incorporate a simple

momentum term

π ∼ B(0.5)

u ∼ π N (µ1, σ2I) + (1− π) N (−µ1, σ2I)

at = (u + at−1)/2

(3.1)

Actions sampled using the above strategy effectively cover the state-action space

and generate trajectories without causing wear and tear. The result of the motor

babbling phase, is a dataset for training which consists of N triplets (st, at, st+1)

consisting of the current state, current action, and the next state. The individual

matrices storing all states and actions are denoted by St,St+1 ∈ RN×P and At ∈

9
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Figure 3.1: Visualization of 2-D state-space coverage and the action distributions un-

derlying the motor babbling process. Left: Gaussian distribution resulting in Brow-

nian motion in action space. Middle: Bi-modal distribution. Right: Incorporating

momentum yields smoother motions and better coverage of the state-action space.

RN×Q.

The effects of using momentum are demonstrated in Fig. 3.1 (right) and Fig. 3.2

(right).

Model Learning: The deep dynamics model is an artificial neural network that maps

a state st and action at on to the expected next state s∗t+1. Training is performed

using Dropout [15] and data collected in the motor babbling process. Euclidean loss

function, L = 1
2M

∑M
i=1‖si − ŝi‖, where M is the mini-batch size , is used to identify

the error. To identify the optimal network parameters, we used a grid search over the

network architectures and hyper-parameters yielding the network shown in Fig. 3.3.

The neural network generates a point estimate for any set of inputs. However,

10



Figure 3.2: By visualizing the end-effector coordinates we can also get a perception

of state-action space coverage. On left with gaussian sampled action we can see how

clustered the end-effector coordinates are while using bimodal distribution and using

momentum we can see the state-action space is fairly sampled.

due to the non-determinism and noise underlying such tasks, it is important to reason

about uncertainties when making predictions. To this end, we leverage recent the-

oretical insights in order to generate probabilistic predictions from a trained neural

network. In particular, it was shown in [12] that neural network learning using the

Dropout method [15] is equivalent to a Bayesian approximation of a Gaussian Process

modeling the training data. Following this insight, we generate a set of predictions

{ŝ1,. . . , ŝT} from a trained network through T stochastic forward passes. The gen-

erated predictions form a possibly complex distribution represented as a population

of solutions. We then extract an approximate parametric form of the underlying

11
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distribution through moment matching

E(s∗t+1) ≈
1

T

T∑
i=1

ŝi

Var(s∗t+1) ≈
1

T

T∑
i=1

ŝTi ŝi − E(s∗t+1)
TE(s∗t+1)

(3.2)

Given the above distribution moments we can reason about the uncertainty underlying

the prediction process. We will see in the next section, that this information can be

incorporated into any distance measure used for identifying incongruent sensations.

Perturbation as Predictive Error: As described above and depicted in Fig. 1.2,

we generate in every time step a prediction of the next sensory state s∗t+1 based on

the current state and action. Consequently, after executing the action at, we measure

the true sensor values of the robot and compare them to the prediction, i.e.,

δ = E(s∗t+1)− s∗t+1 (3.3)

Taking the norm of vector δ we get an estimate of the discrepancy between robot

expectation and reality. Assuming a reasonably accurate model, this discrepancy is

an estimate of exogenous perturbations that affected the system dynamics. To correct

for the inherent model uncertainty and the probabilistic nature of the predictions, we

12
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can take an exponential at the confidence bound according to Equ. ??.

τi = exp
(
δi − 2 Var(s∗t+1)i

)
,

∆ =‖τ‖
(3.4)

This approach effectively incorporates the confidence bounds of the prediction into

perturbation estimation and the exponential scaling simplifies the process of discern-

ing nominal behavior from abnormal behavior due to external physical influence.

Fig. 3.4 depicts the effect the exponential scaling at confidence bound. The

ground-truth highlighted in gray was hand-labeled using a video stream as refer-

ence. We can see both predictive error functions produce elevated responses during

moments of contact. Yet, by incorporating an exponential scaling as performed in ∆

we can reduce spurious activations and false-positives.

3.2 Perceptual Anticipation Model

In this section, we will describe how experienced perturbations can be correlated

to predictive visual cues. In turn, these visual cues can later be used to anticipate

the occurrence of physical contact. For example, perceiving an approaching wall may

13



indicate an impending collision. Still, whether or not an external perturbation will

occur is also dependent on the next actions of the robot, e.g., whether or not the robot

will stop its course. Hence, states and actions need to be included in the prediction

process.

In our approach, a dedicated model – the Perceptual Anticipation Model – learns

to predict impending perturbations from a sequence of visual input data, robot ac-

tions, and sensory states. Visual input representing the environment is given by an

R×C grid. Each cell of the grid stores F measurements, i.e., depth or color channels

that may vary over time. Thus, the visual input corresponds to a tensor X ∈ RR×C×F .

Training is based on repeated physical interaction with the environment, e.g., a

human or static objects. Throughout this process, a stream of visuals is recorded

using either a traditional RGB camera or an RGB-D depth camera. The result is

a sequence of observations Xt. As the same time, states st and actions at of the

robot are recorded. In addition, at every time step, the previously introduced deep

dynamics model is run, in order to generate estimates pt of perturbations currently

acting on the robot.

Given the above data sets, the goal of training the Perceptual Anticipation Model

is to approximate the distribution

P (pt+1, . . . , pt+k |Xt−j, . . . ,Xt,

st−j, . . . , st,

at−j, . . . , at)

(3.5)

where j defines a window of past time steps. More specifically, we are interested

in a predictive model that generates expected future perturbations pt+1, · · · , pt+k con-

ditioned on past inputs Xt−j, as well as current and previous robot states and actions.

The presented task requires both attention to spatial patterns within the visual

14



input, as well as attention to temporal patterns and behavioral dynamics. Hence,

special care has to be taken to ensure that the model architecture used for learning

can effectively identify and incorporate both sources of information when making a

prediction.
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Figure 3.5: Perceptual Anticipation Model

Network Architecture: In order to base all predictions on both spatial and tempo-

ral information, we employ a deep convolutional recurrent network to learn the antici-

pation model. The input of the network is a sequence of visual data, the robot states,

and actions. The output of the network is a vector pt = [pt+1, · · · , pt+k]T ∈ Rk that

describes the likelihood of a perturbation at each of the time steps {t+ 1, · · · , t+ k}.

In order to incorporate temporal dynamics, recurrent units are used according to ei-

ther the Long Short Term Memory (LSTM) [16] model or the Gated Recurrent Units

(GRU) [7] model. These recurrent units keep track of a hidden state. In turn, the

next state of the network is calculated as a function of the hidden state and the new

inputs. In the case of using convLSTM units [27], the network output is governed by
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the following set of equations

It = σ(Wxi ∗Xt + Whi ∗Ht−1 + bi)

Jt = tanh(Wxc ∗Xt + Whc ∗Ht−1 + bc)

Ft = σ(Wxf ∗Xt + Whf ∗Ht−1 + bf )

Ot = σ(Wxo ∗Xt + Who ∗Ht−1 + bo)

Ct = Ft �Ct−1 + It � Jt

Ht = Ot � tanh(Ct)

(3.6)

where Xt is the input at time t, Ct is the memory cell output, and Ht is the

hidden state. Using memory cells is a critical element of LSTM and ensures a that

the network output is conditioned on previous activations of the network. The gate

variables It, Ft, Ot of the convLSTM model denote 3D tensors with 2 dimensions as

spatial dimensions and one dimension for the convolution filter dimension. σ denotes

the sigmoid function, ∗ is convolution operation and � is Hadamard multiplication.

In the case of using convGRU units [18], the neural network outputs are defined by

equations

Zt = σ(Wxz ∗Xt + Whz ∗Ht−1 + bz)

Rt = σ(Wxr ∗Xt + Whr ∗Ht−1 + br)

Ĥt = Φ(Wx ∗Xt + Wh ∗ (Rt �Ht−1) + b)

Ht = (1− Zt)�Ht−1 + Zt � Ĥt

(3.7)

with inputs X1,. . . ,Xt, cell outputs/hidden states H1,. . . ,Ht and gates Zt, Rt

of convGRU are 3D tensors with 2 dimensions as the spatial dimensions and one

dimension for the convolution filter dimension. The symbol Φ describes the activation

function used, e.g., tanh or Rectified Linear Unit (ReLU) [22]. Note that the equations

governing the convGRU have fewer parameters, which reduced both training and

execution time. Faster forward passes can be crucial for real-time robotics application
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as the one described here.

Loss Function: In order to train all network parameters, we use a weighted binary

cross-entropy as a loss function

L = − 1

T

T∑
t=1

(
wpt log(p̂t) + (1− pt)

(
1− log(p̂t)

))
(3.8)

where w is weight penalty, pt is the ground truth, and p̂t is the likelihood of

perturbation generated by the network.
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Chapter 4

EXPERIMENTAL RESULTS

As simulation result we have investigated the Perceptual Anticipation Model in a

dynamic environment interacting with the robot. As real world experiment we con-

ducted a human-robot interaction study to investigate the validity of the introduced

approach. In all of the following experiments the prediction rate was 5Hz. System

state dimension P is 28 and degrees of freedom Q is 7. Mean and standard deviation

for action sampling is µ = 0.1, σ = 0.05. Dimension of environment data: R,C = 64

and F = 1 (gray-scale frame channel or depth channel). The parameters of DPM are

set to: k = 10, w = 3, j = 9.

Figure 4.1: Dynamic scenario in V-REP simulation to test the anticipation capability

of the Perceptual Anticipation Model

18



0 2 4 6 8 10

time (s)

(a) Predictions of the likelihood of physical collision generated from a perceptual antici-

pation model which was trained on depth input. The predictors fire at different moments

ahead of the actual moment of contact.
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(b) Predictions of the likelihood of physical collision generated from a perceptual antici-

pation model which was trained on grayscale video input. The predictors fire at different

moments ahead of the actual moment of contact.

Figure 4.2: Example Collision Visualization

4.1 Simulation Experiment

To demonstate the anticipation capability of the Perceptual Anticipation Model,

we have created a dynamic scenario in V-REP simulation as shown in Fig. 4.1. Here

a rod is rotating and also the robot is performing the constant policy. The Perceptual

Anticipation Model has to anticipate the collision between the rotating rod and the

robot arm performing its own actions. The scenario is simple but its non-linear in

nature as the rod is rotating and is non-deterministic in nature as the rod is not
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moving in constant angular velocity.

4.1.1 Simulation Collision Example

A collision scenario and the anticipation capability of the Perceptual Anticipation

Model is demonstrated in Fig. 4.10. Here we can see that the predictions for pt+1, pt+5

and pt+10 are predicting the likelihood of collision 1,5,10 timesteps ahead correspond-

ingly. We also can see that the models are equally adept in extracting visual cues

from both depth and frame data.

4.1.2 Prediction Error on Simulation Training and Test Sets

The prediction error on the training set can be seen in Tab. 4.1 and test set can

be seen in Tab. 4.2. For training different data configurations were used and tested,

namely depth data vs. grayscale frame data and both depth and frame data. The

predictions are thresholded to get optimal MCC (Matthews correlation coefficient) in

each of the configuration.

Config true+ pred+ precision recall MCC

ConvLSTM-SA-D 14693 30887 0.4757 0.7689 0.5675

ConvLSTM-SA-F 14093 28554 0.4936 0.7375 0.5669

ConvLSTM-SA-DF 13346 26081 0.5117 0.6984 0.5622

Table 4.1: Comparison between different configurations of the DPM on Train dataset

(19110 perturbation points in 27000)

This shows when using both modalities of depth and frame, the model has better

capability to generalize and hence has better MMC on test dataset.
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Config true+ pred+ precision recall MCC

ConvLSTM-SA-DF 3114 7146 0.4358 0.7670 0.5389

ConvLSTM-SA-D 3003 6703 0.4480 0.7397 0.5370

ConvLSTM-SA-F 3127 7530 0.4153 0.7702 0.5243

Table 4.2: Comparison between different configurations of the DPM on Test dataset

(4060 perturbation points in 60000)
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Figure 4.3: ROC(Receiver Operating Characteristic) plot for test data with

convLSTM-SA-DF

4.1.3 Test Error for each predictor

Given the above results, we selected a state-action conditioned ConvLSTM with

both depth and frame data(ConvLSTM-SA-DF) as the underlying network model for

the prediction. Consequently, we analyzed the prediction errors for the generated

predictions pt+1, · · · , pt+k separately. Tab. 4.3 show the results of this analysis. We

can see precision and recall deteriorate, as the network produces predictions for longer

horizons.

Similarly in Fig. 4.3 we can see the ROC(Receiver Operating Characteristic) plot

for test data with our selected configuration. Decreasing AUC(area under curve)

indicating how well the different predictors are performing. We can see that as we go
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pred no true+ pred+ precision recall MCC

pt+1 335 453 0.7395 0.8251 0.7644

pt+2 293 419 0.6993 0.7217 0.6890

pt+3 287 483 0.5942 0.7069 0.6203

pt+4 316 637 0.4961 0.7783 0.5878

pt+5 302 677 0.4461 0.7438 0.5373

pt+6 318 817 0.3892 0.7833 0.5083

pt+7 297 769 0.3862 0.7315 0.4863

pt+8 297 783 0.3793 0.7315 0.4807

pt+9 335 1075 0.3116 0.8251 0.4538

pt+10 332 1129 0.2941 0.8177 0.4339

Overall 311 715 0.4358 0.7670 0.5389

Table 4.3: ConvLSTM-SA Depth, Frame Test dataset (406 perturbation points in

6000)

towards higher horizon predictors the AUC decreases, indicating lower predictors are

performing better.

4.1.4 Generalization Test

Here we are checking the generalization capabilities of Perceptual Anticipation

Model trained with data from the stimulation scenario where the bar is just rotating

in the clockwise direction. We test the models learnt on data from scenarios like the

bar rotating in the anticlockwise direction, two bars rotating in different combinations

of rotations as shown in Fig. 4.4

In Fig. 4.5 we can see the spike visualization for different test scenario. The
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Figure 4.4: Dynamic scenario in V-REP simulation to test the generalization capa-

bility of the Perceptual Anticipation Model

configuration being tested is convLSTM-SA-DF. We can clearly see that the model

is performing very well when its tested on data its trained on. Not only that, when

there is a different dynamic object in the form of another rotating, the model is

anticipating very well if the closer bar is rotating in the same direction it was trained

on, irrespective of the rotation of the other bar. But when the closer bar is rotating

towards the other direction the model can not anticipate the collision. Also, Fig. 4.6

show an example excerpt showing the anticipation of collision with the new scenario.

In Tab. 4.4, 4.5, 4.6 we can see the quantified results of the test errors for different

models for different scenarios. We can see for all the models whenever the first bar is

rotating clockwise, the model predictions are very good, while for whenever the first

bar is rotating anti-clockwise the the models are not able to pick up any cues and

hence its not able to anticipate the collision properly.

23



0 20 40 60 80 100 120

time (s)

G
T

p
re
d
ic
ti
on

s
G
T

p
re
d
ic
ti
on

s
G
T

p
re
d
ic
ti
on

s
G
T

p
re
d
ic
ti
on

s
G
T

p
re
d
ic
ti
on

s
G
T

p
re
d
ic
ti
on

s

1 Bar 
Clockwise

1 Bar 
AntiClockwise

2 Bars
Clockwise
Clockwise

2 Bars
Clockwise

AntiClockwise

2 Bars
AntiClockwise
AntiClockwise

2 Bars
AntiClockwise

Clockwise

Figure 4.5: Spike visualization for different test scenarios of convLSTM-SA-DF con-

figuration

4.2 Human-Robot Interaction

In the real-world scenario we have trained and tested the Perceptual Anticipation

Model on anticipation of humans interacting with the robot while its performing a

specific task. For training the anticipation model, we have created an interaction

dataset involving 10 participants. Each participant interacted with the robot for

about ten minutes. This resulted in a data set of 3000 data points per person. The

participants were instructed to move towards the robot and touch its arm at any

location. Throughout this process, the arm of the robot was continuously performing
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Figure 4.6: Predictions of the likelihood of physical perturbation generated from

a perceptual anticipation model on a new scenario where another dynamic object

present.

Scenario precision recall MCC

1-Bar Clockwise 0.4628 0.7649 0.5578

1-Bar Anti-Clockwise 0.0707 0.8552 0.0466

2-Bars Clockwise, Clockwise 0.4764 0.7662 0.5667

2-Bars Clockwise, Anti-Clockwise 0.4268 0.7166 0.5101

2-Bars Anti-Clockwise, Clockwise 0.0735 0.8894 0.0402

2-Bars Anti-Clockwise, Anti-Clockwise 0.0741 0.8816 0.0431

Table 4.4: Test Error for different scenarios for model ConvLSTM-SA-D

a forward-backward movement.

In addition, in 40-50% of the interactions, the participants were instructed to

pretend approaching the robot and then turning back without any contact. Incorpo-

rating such feigning moves on the part of the human interaction partner, as well as a

constant movement of the arm, ensures that the robot has to constantly monitor its

state and the environment in order to appropriately update its belief about impend-
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Scenario precision recall MCC

1-Bar Clockwise 0.5122 0.6356 0.5355

1-Bar Anti-Clockwise 0.0757 0.6247 0.0480

2-Bars Clockwise, Clockwise 0.4636 0.7390 0.5461

2-Bars Clockwise, Anti-Clockwise 0.3747 0.7730 0.4904

2-Bars Anti-Clockwise, Clockwise 0.0774 0.8329 0.0561

2-Bars Anti-Clockwise, Anti-Clockwise 0.0803 0.6087 0.0467

Table 4.5: Test Error for different scenarios for model ConvLSTM-SA-F

Scenario precision recall MCC

1-Bar Clockwise 0.4633 0.7634 0.5576

1-Bar Anti-Clockwise 0.0661 0.9031 0.0158

2-Bars Clockwise, Clockwise 0.4830 0.7662 0.5715

2-Bars Clockwise, Anti-Clockwise 0.4011 0.7664 0.5097

2-Bars Anti-Clockwise, Clockwise 0.0694 0.9923 0.0140

2-Bars Anti-Clockwise, Anti-Clockwise 0.0691 0.9942 0.0066

Table 4.6: Test Error for different scenarios for model ConvLSTM-SA-DF

ing physical contact. Data recorded from 9 of the participants was used for training,

while 1 participant was used for validation. Data from a separate set of 3 participants

was used as test data to evaluate the generalization capabilities of the model.

Two different versions of the training set were generated. First, we created a setup

in which depth images were used as input. In the second setup, we used grayscale

video images as input.
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(a) Detection of physical perturbations using the Deep Dynamics Model. A human subject

approaches the robot, pushes the arm, and moves back. Detected perturbations correspond

to the moment of contact and release.
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(b) Predictions of the likelihood of physical perturbation generated from a perceptual antic-

ipation model which was trained on depth input. The predictors fire at different moments

ahead of the actual moment of contact.

contact
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(c) Predictions of the likelihood of physical perturbation generated from a perceptual antic-

ipation model which was trained on grayscale video input. The predictors fire at different

moments ahead of the actual moment of contact.

Figure 4.7: Example Interaction Visualization
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4.2.1 Example Interaction

Fig. 4.7a shows an example interaction between the robot and a human subject

applying forces on its arm. The perturbation identified by the Deep Dynamics Model

accurately reflects the moment of contact between the human and the robot. These

perturbations are used to train the anticipation model, so that in subsequent inter-

actions the robot can predict the occurrence of a perturbation by only observing the

human approaching and lifting his hand.

This process can be seen in Fig. 4.7b. After training the perceptual anticipation

model, we provide current observations in form of depth images as input. In turn,

the network generates estimates for the next k time steps which reflect the likelihood

of a future perturbation at t+ k. The moment of contact is depicted in Fig. 4.7b by

a vertical line. We can see that the predictions for pt+1, pt+5 and pt+10 are aligned

along a diagonal. The predictor with a larger horizon, i.e., looking ten time steps into

the future, activates early to indicate a high likelihood of a contact. The predictors

with a shorter horizon activate at later time steps, based ont the horizon they have

been trained on. Note the attenuation of the activations, once the robot is outside

the envelope for which the predictors have been trained to fire.

Fig. 4.7c shows the same process with a perceptual anticipation model trained

on typical grayscale video images. Again, the predictors fire mostly within the enve-

lope (gray) imposed by the respective horizons, with pt+10 firing first. However, the

responses are less accentuated when compared with the activations generated from

depth images.
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Figure 4.8: Saliency map visualization of pt+5 predictor. It anticipates any interaction

1s into the future. The images show, highlighted in red, the pixels the network is

paying attention when generating an output. In the beginning, almost no region is

active, but as the human starts approaching the robot, the network focuses on the

human and also on the robot arm. Once the subject is in contact with the robot, the

activations attenuates.

4.2.2 Visualizing Network Saliency

To better understand the decision process by which the perceptual anticipation

model generates predictions, we visualized the underlying saliency using the method

introduced in [26]. Fig. 4.8 shows an example of saliency maps at different moments

in time during a human-robot interaction. Regions highlighted in red or yellow corre-

spond to pixels with a strong influence on the output of the network. Originally, the

network is not focusing on any particular region within the image. However, as the

human subject starts walking in direction of the robot, the network approximately

starts focusing on pixels around the body of both the human subject, as well as the

right arm of the robot. As the human comes closer, the saliency scores for each pixel

become larger, as indicated by the yellow coloring. At the onset of a contact, the

saliency scores attenuate.
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The latter analysis of saliency, is in line with our expectations of features relevant

to the task, i.e., the shape and location of the human and robot arm. It is important

to note that the activations for this particular predictor (pt+5) quickly attenuate as

the human comes close to the robot. We noticed that this pattern is dependent on

the specific predictor. Consequently, the saliency maps for the pt+1 attenuate at a

later moment, while the saliency maps for pt+10 attenuate at an earlier moment.

4.2.3 Prediction Error on Training and Test Sets

The prediction error on the training set can be seen in Tab. 4.7 and test set can be

seen in Tab. 4.8. Different models configurations were tested, namely combinations of

(a) ConvLSTM vs. ConvGRU, (b) state-action conditioned networks vs only visual

data, and (c) depth data vs. grayscale frame data. The predictions are thresholded

to get optimal MCC (Matthews correlation coefficient) in each of the configuration.

Config true+ pred+ precision recall MCC

ConvLSTM-SA-F 7907 12509 0.6321 0.8511 0.7228

ConvLSTM-F 7803 13534 0.5765 0.8399 0.6833

ConvLSTM-D 7624 13027 0.5852 0.8207 0.6804

ConvGRU-D 7711 13451 0.5733 0.8300 0.6769

ConvGRU-SA-D 7724 13680 0.5646 0.8314 0.6720

ConvLSTM-SA-D 7513 13114 0.5729 0.8087 0.6675

ConvGRU-SA-F 7782 14307 0.5439 0.8377 0.6612

ConvGRU-F 7134 13262 0.5379 0.7679 0.6278

Table 4.7: Comparison between different configurations of the DPM on Train dataset

(9290 perturbation points in 270000)
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Config true+ pred+ precision recall MCC

ConvLSTM-SA-D 1907 4607 0.4139 0.6421 0.4953

ConvLSTM-D 2087 5999 0.3479 0.7027 0.4711

ConvGRU-D 1686 4060 0.4153 0.5677 0.4651

ConvGRU-SA-D 1876 5206 0.3604 0.6316 0.4541

ConvGRU-F 2129 6696 0.3180 0.7168 0.4522

ConvGRU-SA-F 2040 6360 0.3208 0.6869 0.4442

ConvLSTM-SA-F 1993 6190 0.3220 0.6710 0.4396

ConvLSTM-F 2127 8039 0.2646 0.7162 0.4060

Table 4.8: Comparison between different configurations of the DPM on Test dataset

(2970 perturbation points in 90000)
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Figure 4.9: Visualization of the ground truth timing (black) of a physical perturbation

and the activations (red) of the anticipation model for two test subjects.

Comparing the performance of different architectures we can say convLSTM type

architectures are performing slightly better than convGRU type architectures. Also,

models trained on depth data are generalizing better than those trained on frame

data.
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pred no true+ pred+ precision recall MCC

pt+1 239 526 0.4544 0.8047 0.5877

pt+2 227 487 0.4661 0.7643 0.5799

pt+3 233 522 0.4464 0.7845 0.5742

pt+4 224 531 0.4218 0.7542 0.5451

pt+5 215 481 0.4470 0.7239 0.5507

pt+6 192 424 0.4528 0.6465 0.5226

pt+7 212 576 0.3681 0.7138 0.4905

pt+8 166 443 0.3747 0.5589 0.4352

pt+9 187 647 0.2890 0.6296 0.3989

pt+10 194 790 0.2456 0.6532 0.3691

Overall 191 461 0.4139 0.6421 0.4953

Table 4.9: ConvLSTM-SA Depth Test dataset (297 perturbation points in 9000)
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Figure 4.10: ROC Plots for Test Data after Model Selection
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pred no true+ pred+ precision recall MCC

pt+1 202 492 0.4106 0.6801 0.5083

pt+2 208 539 0.3859 0.7003 0.4986

pt+3 203 530 0.3830 0.6835 0.4901

pt+4 196 516 0.3798 0.6599 0.4788

pt+5 182 486 0.3745 0.6128 0.4567

pt+6 193 545 0.3541 0.6498 0.4564

pt+7 209 641 0.3261 0.7037 0.4543

pt+8 171 493 0.3469 0.5758 0.4230

pt+9 174 535 0.3252 0.5859 0.4113

pt+10 185 755 0.2450 0.6229 0.3592

Overall 199 619 0.3220 0.6710 0.4396

Table 4.10: ConvLSTM-SA Frame Test dataset (297 perturbation points in 9000)

4.2.4 Test Error after Model Selection

Given the above results, we selected a state-action conditioned ConvLSTM (ConvLSTM-

SA) as the underlying network model for the prediction. Consequently, we analyzed

the prediction errors for the generated predictions pt+1, · · · , pt+k separately. Tab. 4.9

and Tab. 4.10 show the results of this analysis for depth data and frame data re-

spectively. In both cases precision an recall deteriorate, as the network produces

predictions for longer horizons. However, using depth input generates significantly

better results for short horizon predictors.

Similarly in Fig. 4.10a and Fig. 4.10b we can see the ROC(Receiver Operating

Characteristic) plot for test data with different configurations. Decreasing AUC(area

under curve) indicating how well the different predictors are performing. We can see
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that as we go towards higher horizon predictors the AUC decreases, indicating lower

predictors are performing better.
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Figure 4.11: Percentage of times all ten predictors activate ahead of ground truth

activation.

The above tables show a relatively low precision on the test set. To investigate

this phenomenon, we visualized the ground truth versus the generated predictions

by the network. An excerpt of this can be seen in Fig. 4.9. The figure shows the

network activations for two different subjects over time. The black marks indicate

the moments of contact, i.e., the ground truth (GT). The ten plots in red underneath

the ground truth indicate the output predictions of the network. We can see that in

the majority of cases the network performs the right classification. We can also see

that the activations are aligned along a diagonal, since they outputs fire for different

horizons. In some cases (Subject 2, time step 18) the earlier predictors start to fire

but immediately cease thereafter. An analysis of the video showed that these cases

correspond to the feigning moves the subjects were asked to perform from time to

time. This shows that the network performs according to our expectations: the early

predictors fire, while the late predictors are awaiting more evidence. Hence, the low
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accuracy is mostly caused by the network sometimes firing slightly ahead of time.

To get a better estimate of the overall prediction accuracy we performed another

evaluation in which we counted the number of times all ten predictors activate ahead

of a ground truth activation for different participants, see Fig. 4.11. We can see that

the networks performed well for a two out of three subjects, i.e., accuracy of 90%

using depth images. For participant P3, accuracies dropped to about 75% (depth)

and 60% (grayscale frame data).
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Chapter 5

FUTURE WORK

For future work, we aim at extending the framework, such that the predictions can be

conditioned on entire control policies of the robot and not only a single next action.

Furthermore, we will incorporate prediction framework into reinforcement learning,

in order to also autonomously learn preventive motions for avoiding perturbations.
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Chapter 6

CONCLUSIONS

In this thesis work, we introduced a novel methodology that allows robots to associate

perceptual cues with impending physical impact to the body. By learning a mapping

between observed visual features and future perturbations, robots can anticipate up-

coming hazardous or unwanted states. To this end, we introduced a complex neural

network model that combines spatial, temporal, and probabilistic reasoning in order

to generate predictions over a horizon of next time steps. The network learns to focus

on visual features that are most indicative of future exogenous perturbations.

Our experiments show that a humanoid robot can effectively learn when physical

contact with a human interaction partner will occur. The method autonomously

learns to anticipate physical perturbations from any source and is not restricted to

human-robot interactions. One interesting insight is that the network learned to

roughly identify the human shape, as well as the shape of the robot without any

supervised training data or labelling.
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