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ABSTRACT

Large-scale `1-regularized loss minimization problems arise in high-dimensional appli-

cations such as compressed sensing and high-dimensional supervised learning, includ-

ing classification and regression problems. In many applications, it remains challeng-

ing to apply the sparse learning model to large-scale problems that have massive data

samples with high-dimensional features. One popular and promising strategy is to

scaling up the optimization problem in parallel. Parallel solvers run multiple cores on

a shared memory system or a distributed environment to speed up the computation,

while the practical usage is limited by the huge dimension in the feature space and

synchronization problems.

In this dissertation, I carry out the research along the direction with particular

focuses on scaling up the optimization of sparse learning for supervised and unsu-

pervised learning problems. For the supervised learning, I firstly propose an asyn-

chronous parallel solver to optimize the large-scale sparse learning model in a mul-

tithreading environment. Moreover, I propose a distributed framework to conduct

the learning process when the dataset is distributed stored among different machines.

Then the proposed model is further extended to the studies of risk genetic factors for

Alzheimer’s Disease (AD) among different research institutions, integrating a group

feature selection framework to rank the top risk SNPs for AD. For the unsupervised

learning problem, I propose a highly efficient solver, termed Stochastic Coordinate

Coding (SCC), scaling up the optimization of dictionary learning and sparse coding

problems. The common issue for the medical imaging research is that the longitudi-

nal features of patients among different time points are beneficial to study together.

To further improve the dictionary learning model, I propose a multi-task dictionary

learning method, learning the different task simultaneously and utilizing shared and

individual dictionary to encode both consistent and changing imaging features.

i



DEDICATION

To my family

for their everlasting love

and supporting me

all the way.

ii



ACKNOWLEDGMENTS

First and foremost, I would like to express my special appreciation thanks to my

Ph.D. advisor Dr. Jieping Ye, for guiding and supporting me during the period when

I pursue my Ph.D. at ASU. It is the most lucky things in my life to have Dr. Ye’s

guidance for my Ph.D.’s research. He is my research and life mentor to guide me to go

through the long journey of the completion of my dissertation and subsequent Ph.D..

The joy and enthusiasm he has for the research was contagious and motivational for

me, not only during tough times in the Ph.D. pursuit but also my future career.

I would also like to thank my Ph.D. co-advisor Dr. Guoliang Xue, for his tremen-

dous effort and help for the accomplishment of this dissertation. Dr. Xue’s optimiza-

tion and game theory classes give me a lot of innovation and theoretical basis when I

solve the real world machine learning and data mining problems. My sincere thanks

also goes to my dissertation committee members: Dr. Yalin Wang, Dr. Jingrui He

and Dr. Jing Li, for their guidance, insightful comments and understanding.

I am grateful to all the members of the big Yelab’s family: Shuiwang Ji, Liang

Sun, Jianhui Chen, Jiayu Zhou, Sen Yang, Yashu Liu, Shuo Xiang, Qian Sun, Tao

Yang, Zhi Nie, Jie Wang, Zheng Wang, Pinghua Gong, Binbin Lin, Chao Zhang and

Kefei Liu. It is a memorable time for the five years I spend at ASU due to many

other friends. I would like to thank to: Zhiqin Zhu, Lin Chen, Yang Liu, Tianxiang

Gao, Yinghua Wu, Jiliang Tang, Huiji Gao, Bing Li, Guanqiu Qi and Wu Li.

Last but not least, the completion of my Ph.D. could not be achieved without

the support and encouragement from my family, especially my mother and my sister.

The everlasting love from my family drives me to go through the twenty one years

at school, a long journey from primary school, middle school, high school, university

to the accomplishment of Ph.D. in the end. And thank Jie Zhang for her endless

support, patience and encouragement since the day we met during this journey.

iii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 SCALING UP SPARSE REGRESSION MODELS IN PARALLEL . . . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Parallel Screening Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Asynchronous Parallel Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 OPTIMIZE THE DISTRIBUTED SPARSE REGRESSION MODELS

AND STUDIES OF RISK GENETIC FACTOR FOR ALZHEIMER’S

DISEASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 LARGE-SCALE FEATURE SELECTION OF RISK GENETIC FAC-

TORS FOR ALZHEIMER’S DISEASE VIA DISTRIBUTED GROUP

LASSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

iv



CHAPTER Page

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 SCALING UP THE DICTIONARY LEARNING AND SPARSE COD-

ING BY STOCHASTIC COORDINATE CODING . . . . . . . . . . . . . . . . . . . . 66

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Stochastic Coordinate Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 MULTI-SOURCE MULTI-TARGET DICTIONARY LEARNING FOR

PREDICTION OF COGNITIVE DECLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Multi-Source Multi-Target Dictionary Learning . . . . . . . . . . . . . . . . . . . 88

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

v



LIST OF TABLES

Table Page

2.1 A Comparison of PDPP+AGCD and EDPP+SLEP along a Sequence

of 100 Parameter Values on 0.5 Million ADNI Dataset . . . . . . . . . . . . . . . . 27

2.2 Data Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Efficiency Comparison along a Sequence of Parameter Values on MNIST 34

2.4 Efficiency Comparison along a Sequence of Parameter Values on ADNI 2m 35

2.5 Efficiency Comparison along a Sequence of Parameter Values on News20 36

3.1 Top 5 Selected Risk SNPs Associated with Diagnose, the Volume of

Hippocampal, Entorhinal cortex, and Lateral Ventricle at Baseline,

Based on ADNI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Top 5 Selected SNPs with the Volume of Entorhinal Cortex and Hip-

pocampal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 The Comparison of Computational Time Between SCC and ODL for

Different Dictionary Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 A Comparison of SCC and ODL on the Computational Time. . . . . . . . . . 78

6.1 Time Comparisons of MMDL and ODL by Varying Dictionary Size. . . . 99

6.2 The Prediction Results of MMSE on Whole Dataset. . . . . . . . . . . . . . . . . . 102

6.3 The Prediction Results of ADAS-cog on Whole Dataset. . . . . . . . . . . . . . . 103

vi



LIST OF FIGURES

Figure Page

2.1 Illustration of AGCD with Two Threads. The White Blocks in Each

Sample Represent Inactive Features Discarded by Screening Rules.

Thread 1 Chooses the 2nd Active Feature to Evaluate. Firstly, d2 Is

Updated and Evaluated in a Group of {d1, d2, d3}. d2 Wins the Com-

petition and I Follow the Three Steps to Update x4, R and d2. Thread

2 Selects the 5th Candidate. However, It Fails in the Competition and

Update is Terminated for Thread 2 in this Iteration. . . . . . . . . . . . . . . . . . . 22

2.2 Convergence Comparison of Different Solvers When λ = 0.8λmax . . . . . . . 30

2.3 Convergence Comparison of Different Solvers When λ = 0.6λmax . . . . . . . 31

2.4 Speedup Comparison Different Solvers When λ = 0.8λmax . . . . . . . . . . . . . 32

2.5 Speedup Comparison Different Solvers When λ = 0.6λmax . . . . . . . . . . . . . 33

2.6 Speedup of Proposed Methods on 5.9 Million ADNI and Rcv1 Data

Sets, Respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 The Streamline of Proposed Distributed Framework. . . . . . . . . . . . . . . . . . . 41

3.2 The Running Time Comparison of Lasso With and Without D-EDPP

Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 The Proposed Feature Selection Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 The Running Time Comparison of DDPP GL+DBCD with the dis-

tributed ADMM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vii



Figure Page

5.1 Illustration of Our Algorithmic Framework. With an Image Patch xi,

I Perform One Step of Coordinate Descent to Find the Support of

the Sparse Code. Next, I Perform a Few Steps of Coordinate Descent

on the Support to Obtain a New Sparse Code zki . Then I Update

the Support of the Dictionary by Second Order Stochastic Gradient

Descent to Obtain a New Dictionary Dk
i+1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 A Comparison of Different Coordinate Descent Steps. The Figure on

the Left Shows the Objective Value Curves When Varying the Num-

ber of Coordinate Descent Steps. The Horizontal Axis Represents the

Number of Epochs. The Figure on the Right Shows the Computational

Time (in Minutes) of Running 10 Epochs. It Can Be Seen From the

Figure that Using a Great Number of Coordinate Descent Steps Can

Achieve Lower Objective Value. However, the Overall Computational

Time Would Increase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Classification Performance of ODL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Classification Performance of SCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1 The Pipeline of Our Method. I Extracted Hippocampi From MRI

Scans (a), Then I Registered Hippocampal Surfaces (b) and Computed

Surface Multivariate Morphometry Statistics (c). Image Patches Were

Extracted From the Surface Maps to Initialize the Dictionary (d) for

Multi-Source Multi-Target Dictionary Learning (e). I Used Features

from Two Time Points to Predict Five Future Time Points MMSE and

ADAS-cog (f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

viii



Figure Page

6.2 Illustration of the Learning Process of MMDL on ADNI Datasets From

Multiple Different Time Points to Predict Multiple Future Time Points

Clinical Scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Comparison of rMSE Performance by Varying the Size of Common

Dictionary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Scatter Plots of Actual MMSE and ADAS-Cog Versus Predicted Values

on M12 and M48 by Using MMDL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

ix



Chapter 1

INTRODUCTION

Technological advances in data gathering have led to a rapid proliferation of big

data in diverse areas such as the Internet, engineering, climate studies, cosmology,

and medicine. Sparse regression models with `1-regularization are widely used to find

the linear model of best fit. Many research efforts have been devoted to develop effi-

cient solvers for the `1-regularized sparse learning models, such as the Lasso problem

Tibshirani (1996). Recent technological innovations lead to huge data collections that

keep growing rapidly. In order for this massive amount of data to make sense, new

computational approaches are being introduced to let scientists and engineers analyze

their data in a parallel and distributed manner. As a result, in many applications,

running Lasso on huge-scale data sets usually exceeds the computing capacity of a

single machine running single-threaded approaches. I wish to point out that for truly

huge-scale problems it is absolutely necessary to parallelize. Parallelizing the learn-

ing process for the regression problem has recently drawn a lot of interest. This is

in line with the rise and ever increasing availability of high performance computing

systems built around multi-core processors, GPU-accelerators and computer clusters,

the success of which is rooted in massive parallelization.

Scaling up the learning process in parallel can be divided into two categories:

parallel solvers and distributed solvers. Parallel solvers focus on shared-memory ar-

chitectures in a multithreading environment, and in particular most of the solvers use

the multithreading programming model, such as OpenMP. For distributed solvers,

communication among the computing nodes is based on either the shared memory or

distributed memory. In this dissertation, I focus on algorithms using the distributed
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memory, as they can often handle much larger data sets. The infrastructure to de-

ploy and implement the distributed solvers are distributed platform, such as Hadoop,

Spark and MPI. In this study, I carry out research along these directions aiming

to propose novel parallel and distributed solvers to scale up the learning process of

large-scale machine learning problems.

Coordinate descent (CD) is one of the most successful classes of algorithms in the

big data optimization domain. Broadly speaking, CD is based on the strategy of up-

dating a single coordinate (or a single block of coordinates) of the vector of variables

at each iteration. This often drastically reduces memory requirements as well as the

arithmetic complexity of a single iteration, making the methods easily implementable

and scalable. Most of the proposed parallel algorithms are based on Stochastic Co-

ordinate Descent (SCD) Shalev-Shwartz and Tewari (2011) to accelerate the whole

learning process. Many existing parallel solvers, like Shotgun Kyrola et al. (2011),

Parallel Block Coordinate Descent (PBCD) Richtárik and Takáč (2016) and Thread-

Greedy Scherrer et al. (2012b,a), employ multiple-threaded computing by utilizing

multiple cores on a shared memory system. However, the curse-of-dimensionality

is still a great challenge for large-scale problems. High-dimensional data in feature

space means more time spent in the optimization and data synchronization in the

multithreading environment.

To address this issue, screening is one of highly efficient approaches to solve the

high-dimensional problem. Screening pre-identifies inactive features that have zero

components in the solution and remove them from the optimization. As a result, I

can solve the regression problem on the reduced feature matrix, leading to substan-

tial savings in terms of computation and memory usage. The idea of screening has

achieved great success in a large class of `1-regularized problems Ghaoui et al. (2012);

Tibshirani et al. (2012a); Wang et al. (2013a,b); Wang and Ye (2014); Wang et al.
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(2014); Wang and Ye (2015b,a), such as Lasso regression, Logistic regression, elastic

net, multi-task feature learning (MTFL) and more general convex problems. Parallel

screening is a promising strategy to solve the high-dimensional problem in big data

optimization. However, the idea of using screening in the multithreading and dis-

tributed environment has not been investigated, since it is challenging to integrate

screening rules with parallel solvers.

For the distributed solvers, a well-known approach is based on the Alternating Di-

rection Method of Multipliers (ADMM) Boyd et al. (2011), also known as an operator

splitting scheme. For many convex problems including those in sparse optimization,

it gives rise to their parallel and distributed algorithms Mota et al. (2012). However,

distributed ADMM does not scale well; given a fixed amount of data, distributing the

data and ADMM computation to more nodes do not reduce its running time, because

its number of iterations increases with the number of distributed data blocks, the time

saved due to a smaller block size being offset by the increased number of iterations.

In this dissertation, I propose a distributed framework to resolve the above issues.

Another issue in the distributed solvers is data collection and data storage. Recent

advances in data collection technologies Tsai et al. (2013a,b) have made it possible to

collect a large amount of data for many application domains. Very often, these data

come from multiple sources. However, it is not a good idea for distributed solvers to

collect data from multiple sources and store it in every machine. For instance, in the

study of Alzheimer’s Disease (AD), different research institutions share genomic data

publicly under certain conditions, but more commonly, each participating institution

may be required to keep their genomic data private, so collecting all data together

may not be feasible. It is necessary to develop a distributed learning approach to con-

duct the learning process without compromising data privacy for each participating

institutions.

3



A key challenge in applying sparse learning to biological and medical imaging

problems is that the available labeled training samples are very limited. It is neces-

sary to conduct the unsupervised learning to generate the features for the biomedical

problems. Dictionary learning and sparse coding Lee et al. (2007); Mairal et al.

(2009) is one of the highly efficient unsupervised sparse learning methods, using a

small number of basis vectors to represent local features effectively and concisely to

help with image content analysis and other computer vision problems. Sparse coding

concerns the problem of reconstructing data vectors using sparse linear combinations

of basis vectors Olshausen and Field (1996); Chen et al. (2001); Donoho and Elad

(2003). It has become extremely popular for learning the dictionary and extracting

features from images in the last decade. Sparse coding has been applied in many fields

including audio processing Smith and Lewicki (2006), text mining Balakrishnan and

Madigan (2008); Zhang et al. (2014) and image recognition Szlam et al. (2012). Dif-

ferent from traditional feature extraction methods like principal component analysis

and its variants, sparse coding learns non-orthogonal and overcomplete dictionaries

which have more flexibility to represent the data. Sparse coding can also model in-

hibition between the bases by sparsifying their activations. Similar properties have

been observed in biological neurons, thus making sparse coding a plausible model of

the visual cortex Olshausen and Field (1997, 2004). Recently, several work based

on stochastic gradient descent and online learning has been proposed. Mairal et al.

(2009) proposed an online dictionary learning algorithm which updates the dictionary

for each incoming data point. It is expected that the learnt dictionary will converge

faster in the online setting. However, even when the dictionary has been learned, one

has to further learn the sparse code, which is also computationally expensive espe-

cially for large-scale data sets. In this study, I propose a novel approach for efficiently

scaling up the optimization of the dictionary learning and sparse coding problem.
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Algorithmic image-based diagnosis and prognosis of neurodegenerative diseases

on longitudinal data has drawn great interest from computer vision researchers. The

common issue for the medical imaging research is that the longitudinal features of

patients among different time points or features from different region of interests

(ROIs) will always be beneficial to study together. Recently, Multi-Task Learning

(MTL) has been successfully explored for regression with different time slots. The idea

of multi-task learning is to utilize the intrinsic relationships among multiple related

tasks in order to improve the prediction performance. One way of modeling multi-task

relationship is to assume all tasks are related and the task models are connected to

each other Evgeniou et al. (2005), or the tasks are clustered into groups Zhou et al.

(2012). Alternatively, one can assume that tasks share a common subspace Chen

et al. (2009), or a common set of features Argyriou et al. (2008). Recently, Maurer et

al. Maurer et al. (2013) proposed a sparse coding model for MTL problems based on

the generative methods. In this study, I proposed a novel unsupervised multi-source

dictionary learning method to learn the different tasks simultaneously which utilizes

shared and individual dictionaries to encode both consistent and individual imaging

features for longitudinal image data analysis.

The rest of this dissertation is organized as follows. In Chapter 2, I propose a

parallel solver, termed Asynchronous Grouped Coordinate Descent (AGCD), to scale

up the optimization of sparse regression problem in a multithreading environment.

In Chapter 3, I propose a distributed framework to optimize the regression model in

a distributed manner and integrate it with the studies of risk genetics factors of AD.

In Chapter 4, I show that by integrating a distributed group feature selection frame-

work, more associated risk SNPs are detected by the proposed method. In Chapter

5, I propose a unsupervised efficient method, termed Stochastic Coordinate Cod-

ing (SCC), scaling up the dictionary learning and sparse coding problems, applying

5



on feature extraction for image classification and other computer vision application.

In Chapter 6, the proposed SCC is extended to a multi-task learning framework to

deal with the longitudinal data sets since the biomedical subject might have differ-

ent representations at different time points or multiple brain ROIs. I summarize the

major contributions of this dissertation and discuss some future research directions

in Chapter 7.
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Chapter 2

SCALING UP SPARSE REGRESSION MODELS IN PARALLEL

2.1 Introduction

In many real word applications, we encounter very high-dimensional data such as

images, texts, and genomic data when optimizing the machine learning problems. One

promising approach is to parallelize the solver so that the optimization process can

be accelerated by utilizing multiples processors or computation nodes. Most of the

published parallel solvers are based on parallelizing SCD to speedup the optimization

process. The updating strategy of SCD is to randomly select one coordinate to update

in each iteration. Parallelizing SCD allows multi-processors to update the coordinates

concurrently without synchronization. Although it might result in the divergence of

objective function, parallel solvers can achieve dramatic speedup when optimizing the

regression problem in a very high-dimensional feature space. It is shown in Kyrola

et al. (2011) that the dimension of feature space for parallel solvers should be no less

than P
2ρ

when there are P threads, where ρ denotes the spectral radius of ATA, and

A is the feature matrix. When we integrate screening methods with the state-of-the-

art parallel solvers such as Shotgun, PBCD and Asynchronous Stochastic Coordinate

Descent (ASYSCD) Liu et al. (2014), it can result in the divergence of the objective

function since the feature matrix is shrunk to a matrix with a small feature space

after applying screening rules on it. Although we can reduce the number of threads

to guarantee the convergence, it has a negative effect on the scalability of the parallel

method. Since previous parallel solvers cannot satisfy the constraint between the

number of threads and feature space, it is essential to develop a parallel solver to
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optimize the problem in the reduced feature data matrix.

2.2 Problem Formulation

In this study, I consider the following `1-regularized minimization problem:

min
x∈RN

F (x) =
1

2
‖Ax− y‖2

2 + λ‖x‖1, (2.1)

where A is the design matrix and A ∈ RM×N , y ∈ RM is the response vector and x is

the sparse model we need to learn. λ is the regularization parameter and λ > 0.

In this study, I propose a parallel framework to solve the Lasso regression problem

on large-scale datasets with huge dimensional feature space. I parallelize screening

rules by partitioning the sample and feature space to accelerate the screening process.

I propose two parallel safe screening rules: Parallel Strong Rule (PSR) and Parallel

Dual Polytope Projection (PDPP). To optimize the regression problem in parallel on

the reduced feature matrix, I propose an Asynchronous Grouped Coordinate Descent

method (AGCD) to solve the problem of small feature space in the optimization

after employing screening rules. In AGCD, I introduce competition strategy to select

the candidate coordinates that minimize the objective function with the maximum

descent of function value. If the selected coordinate wins the competition in a group

of candidates, that coordinate will be updated at this iteration, otherwise the update

terminates. The main idea of AGCD is to reduce the frequency to update coordinates

and select the most important candidates to update, allowing the solver to converge

in a small feature space. It is different with the random selection strategy in most of

the parallel solvers.

8



Screening

Existing screening methods can be divided into two categories: Safe Screening

Rules and Heuristic Screening Rules. Safe screening rules guarantee that the pre-

dicted inactive features have zero coefficients in the solution. In other words, dis-

carding the inactive features in safe screening rules does not sacrifice the accuracy of

optimization since the corresponding positions in the solution vector are zero in the

ground truth. SAFE Ghaoui et al. (2012) is a safe screening method that estimates

the dual optimal solution of Lasso. Strong rules Tibshirani et al. (2012a) are another

efficient screening methods based on heuristic screening rules. In most of the cases,

strong rules discard more features than SAFE, leading to a substantial speedup. How-

ever, strong rules cannot guarantee that discarded features have zero components in

the solution. To avoid the incorrectly discarded cases, Tibshirani et al. (2012a) pro-

posed a method to check the KKT conditions, ensuring the correctness of screening

results. To optimize the problem along a sequence of parameter values, Enhanced

Dual Polytope Projection (EDPP) Wang et al. (2013a) is an efficient and effective

safe screening method and achieves significant speedup for the Lasso problem.

Parallel Solvers

After we get the reduced feature matrix from screening rules, we can apply differ-

ent solvers to optimize it, such as Stochastic Gradient Descent (SGD) Zhang (2004),

FISTA Beck and Teboulle (2009), ADMM Boyd et al. (2011) and SCD Shalev-Shwartz

and Tewari (2011); Nesterov (2012); Richtárik and Takáč (2014). When we consider

solvers in a multithread environment, a lot of parallel solvers were proposed based on

the SCD. Shotgun Kyrola et al. (2011) is a parallel coordinate descent method which

allows multiple processors to update the coordinates concurrently. PBCD Richtárik
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and Takáč (2016) described a method for the convex composite optimization prob-

lem. In this method, all the processors update randomly selected coordinates or blocks

synchronously at each iteration. The method in Li and Osher (2009); Scherrer et al.

(2012b,a) are based on the greedy coordinate descent. Recently, asynchronous parallel

methods are proposed to accelerate the updating process. Asynchronous Stochastic

Coordinate Descent (ASYSCD) Liu et al. (2014) proved the linear convergence of

asynchronous SCD solver under the essential strong convexity condition. PASSCoDe

Hsieh et al. (2015) is an asynchronous Stochastic Dual Coordinate Descent(SDCD)

method for solving the dual problem. Parallel SDCA Tran et al. (2015) is an asyn-

chronous parallel solver based on the Stochastic Dual Coordinate Ascent (SDCA)

method. Both PassCoDe and Parallel SDCA focus on the `2-regularized models.

2.3 Proposed Framework

In this section, I present the proposed parallel framework based on a shared mem-

ory model with multiple processors. My parallel framework is composed of two main

procedures:

1. Identify the inactive features by the parallel screening rules and remove inactive

features from optimization.

2. Solve the Lasso regression on the reduced feature matrix in parallel.

In step one, I parallelize screening rules to identify and discard inactive features,

significantly accelerating the whole learning process. I propose two parallel screening

rules: PSR and PDPP.

In step two, I propose an asynchronous parallel solver AGCD to solve the Lasso

regression on the reduced data matrix in parallel.
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Safe Screening Rules for Lasso

The dual problem of Lasso (2.1) can be formulated as the following equation:

sup
θ

{
1

2
||y||22 −

λ2

2
||θ − y

λ
||22 :

∣∣[A]Tj θ
∣∣ ≤ 1, j = 1, 2, ..., p

}
, (2.2)

where θ is the dual variable and [A]j denotes the jth column of A. Let θ∗(λ) be the

optimal solution of problem (2.2) and x∗(λ) denotes the optimal solution of problem

(2.1). The Karush–Kuhn–Tucker (KKT) conditions are given by:

y = Ax∗(λ) + λθ∗(λ), (2.3)

[A]Tj θ
∗(λ) ∈

 sign([x∗(λ)]j), If [x∗(λ)]j 6= 0,

[−1, 1], If [x∗(λ)]j = 0,
(2.4)

where [x∗(λ)]k denotes the kth component of x∗(λ). In view of the KKT condition in

equation (2.4), the following rule holds:

∣∣[A]Tj θ
∗(λ)

∣∣ < 1⇒ [x∗(λ)]j = 0⇒ xj is an inactive feature. (2.5)

The inactive features have zero components in the optimal solution vector x∗(λ)

so that we can remove them from the optimization without sacrificing the accuracy

of the optimal value in the objective function (2.1). We call this kind of screening

methods as Safe Screening Rules. SAFE Ghaoui et al. (2012) is one of highly efficient

safe screening methods. In SAFE, the jth entry of x∗(λ) is discarded when

∣∣[A]Tj y
∣∣ < λ− ||[A]j||2||y||2

λmax − λ
λmax

, (2.6)

where λmax = maxj
∣∣[A]Tj y

∣∣. As a result, the optimization can be performed on the

reduced data matrix Ã and the original problem (2.1) can be reformulated as:

min
x̃

1

2
||Ãx̃− y||22 + λ||x̃||1 : x̃ ∈ Rp̃ and Ã ∈ Rn×p̃, (2.7)
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where p̃ is the number of remaining features after employing safe screening rules.

The optimization is performed on a reduced feature matrix, accelerating the whole

learning process significantly.

Strong rules Tibshirani et al. (2012a) are another efficient screening methods based

on heuristic screening method. In strong rules, the ith feature will be discarded when

satisfies the following equation:

|ATi y| < 2λ− λmax. (2.8)

The calculation of λmax follows the same way in SAFE.

2.4 Parallel Screening Rules

Parallel SAFE and Parallel Strong Rules

For large-scale problems, it is necessary to parallelize the learning process. To

speedup the learning process, I parallelize screening rules in a multithreading environ-

ment. Suppose there are P processors, I partition the feature space into P parts. The

jth processor holds a subset Sj of feature space where Sj ⊆ S and S = {1, 2, ......, N}.

To average the performance of parallel solvers, each thread holds N/P coordinates

and the partition is non-overlapped. I summarize the Parallel SAFE rule (PSAFE)

in algorithm (1).

At the beginning, every processor generates the index set Sj and Sj ∈ RN/P . Let

us define some notations here. E is a vector and E ∈ RN/P . [W ]Sj
indicates the

collection of ωth element in W where ω ∈ Sj if W is a vector. When W represents a

matrix, [W ]Sj
denotes the collection of ωth column of W and ω ∈ Sj. Since λmax =

maxi |ATi y|, I first need to compute E = ATy firstly. To achieve this on P processors,

I partition the computation into P parts. Every processor performs [E]Sj
= [A]TSj

y

in parallel. The time complexity is reduced from O(MN) to O(MN/P) since no
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Algorithm 1 Parallel SAFE rule (PSAFE)

Require: A, y and λ.

Ensure: Ã and the selected index set I.

Initialize: I = 0 ∈ RN .

In parallel on P processors.

Generate the index set Sj for the jth processor.

Compute the λmax: [E]Sj
= [A]TSj

y, λmax = ‖E‖∞.

Get the norm of response y: σ = ‖y‖2.

for each element i in the set of Sj do

Get the norm of the ith column of A: τ = ‖Ai‖2.

if |ATi y| ≥ λ− τ ∗ σ ∗ λmax−λ
λmax

then

Ii = true, select ith column of A into Ã.

end if

end for

synchronization is needed between processors. E is stored as a global variable and

can be accessed by all the processors after updated. Then I get λmax by ‖E‖∞. From

the 6th line to the 11th line in algorithm 1, every processor performs screening rules

on its own index set Sj to select the active features. Since A and b are global variables,

all the processors are able to calculate σ and τ in parallel without synchronization. In

the end, I get the selected index set I and reduced feature matrix Ã. Suppose I has

Ñ elements of true values, the dimension of Ã is RM×Ñ . The original optimization

problem (2.1) can be reformulated as:

min
x̃

1

2
‖Ãx̃− y‖

2

2 + λ‖x̃‖1 : x̃ ∈ RÑ . (2.9)

After I obtain the solution vector x̃∗ for problem (2.9), I am able to cover the x∗

by I and x̃∗.
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The implementation of PSR in parallel follows the same way of PSAFE. The only

difference between PSR and PSAFE is that the computation of ‖Ai‖2 and ‖y‖2 in

equation (2.6) is not needed in PSR. I employ the same partition strategy and parallel

technique to parallelize the strong rules in equation (2.8). Therefore, I skip the details

of implementation for brevity.

Parallel Dual Polytope Projection

In many machine learning applications, the optimal value of the regularization

parameter λ is unknown. To tune the value of λ, commonly used methods such

as cross validation needs to solve the Lasso problem along a sequence of parameter

values λ0 > λ1 > ... > λκ , which can be very time-consuming. A sequential version

of strong rules was proposed in Tibshirani et al. (2012a) by utilizing the information

of optimal solutions in the previous parameter. Suppose I have already obtained the

solution vector x(λk−1)∗ at λk−1 where the integer k ∈ [1, κ], the sequential strong

rule rejects the ith feature at λk when the following rule holds:

|ATi (y − Ax(λk−1)∗| < 2λk − λk−1. (2.10)

Although the sequential strong rule is able to predict a large proportion of inactive

features, it might mistakenly discard active features that have nonzero components

in the solution. Therefore, I need to check the KKT conditions to guarantee the

correctness of the predicted results.

EDPP Wang et al. (2013a) is a highly efficient safe screening method that esti-

mates the dual problem and geometric properties of Lasso regression, achieving sig-

nificant speedups for real-world applications. The implementation details of EDPP

is available on the GitHub 1 . I omit the introduction of EPDD for brevity. Based on

1http://dpc-screening.github.io/lasso.html
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the partition strategy and parallel technology employed on PSAFE and PSR, I pro-

pose a parallel safe screening rules, known as the Parallel Dual Polytope Projection

(PDPP), to quickly identify and discard inactive features parallelly in a sequence of

parameters.

To parallelize the screening rules, I need to partition both the feature space and

sample space. In Chapter 2.5.1, this is done in the feature space, and I follow a

similar way to partition it in the sample space. Before introducing the details about

the proposed algorithm, I first introduce notations in the study. As I discussed in

Chapter 2.5.1, I use [W ]Sj
to indicate the collection of elements of W in the index

set Sj if W denotes a vector. When W is a matrix, I use the [W ]Sj
to represent the

corresponding columns of W in the index set Sj. I use the same notations in PDPP.

Suppose there are P processors, I partition the sample space into P parts. The jth

processor holds an index set Tj of sample space, where Tj ⊆ T and T = {1, 2, ......,M}.

Every subset Tj has M/P elements and there is no overlap among them. When W

denotes a vector, {W}Tj indicates the collection of every ωth elements from W in the

index set Tj where ω ∈ Tj. When W is a data matrix, {W}Tj denotes the collection of

every ωth rows in W where ω ∈ Tj. To take {A}Tj as an example, I extract columns

of A in the index set Tj to construct it. So the dimension of {A}Tj is RM
P
×N . I

summarize the PDPP method in algorithm 2.

In PDPP, all the P processors perform the computation in parallel. Firstly, the jth

processor generates the corresponding index set Sj and Tj by the method I discussed

previously. Then I follow the same way in PSAFE and PSR to calculate the λmax

in parallel. The dimensions of θ(λ), v1(λ0), v2(λ, λ0), v⊥2 (λ, λ0) are RM . In PDPP,

I employ partition strategy in sample space on these variables: {θ(λ)}Tj , {v1(λ0)}Tj ,

{v2(λ, λ0)}Tj and {v⊥2 (λ, λ0)}Tj . As a result, the computation of these variables is

performed in parallel. From line 19 to line 25 in algorithm 2, I employ PDPP on a
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Algorithm 2 Parallel Dual Polytope Projection (PDPP)

In parallel on P processors

Generate the Sj and Tj for the jth processor.

Compute the λmax: [E]Sj
= [A]TSj

y, λmax = ‖E‖∞.

φ = argmaxi|E|, v = Aφ, v is the φth column of A.

Let λ0 ∈ (0, λmax] and λ ∈ (0, λ0].

if λ = λmax then

{θ(λ)}Tj =
{y}Tj
λmax

.

else

{θ(λ)}Tj =
{y}Tj−{A}Tjx(λ)∗

λ
.

end if

if λ0 = λmax then

{v1(λ0)}Tj = sign(vTy){v}Tj .

else

{v1(λ0)}Tj =
{y}Tj
λ0
− {θ(λ0)}Tj .

end if

{v2(λ, λ0)}Tj =
{y}Tj
λ
− {θ(λ0)}Tj .

α = <v1(λ0),v2(λ,λ0)>

‖v1(λ0)‖22
.

{v⊥2 (λ, λ0)}Tj = {v2(λ, λ0)}Tj − α{v1(λ0)}Tj .

Given λmax = λ0 > ... > λκ, for k ∈ [1, κ], I make a prediction of screening on λk

if x(λk−1)∗ is known:

[w]Sj
= [A]TSj

(θ(λk−1) + 1
2
v⊥2 (λk, λk−1))

for every element i in the set of Sj do

if wi < 1− 1
2
‖v⊥2 (λk, λk−1)‖2‖Ai‖2 then

Discard the i th column from A.

end if

end for
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sequence of parameter values: λmax = λ0 > ... > λκ. When performing the screening

rule on λk and k ∈ [1, κ], I need to compute w firstly, where w ∈ RN . I perform the

computation of w based on the partition strategy in the feature space:

[w]Sj
= [A]TSj

(θ(λk−1) +
1

2
v⊥2 (λk, λk−1)). (2.11)

Finally, for each element i in the index set Sj, I will identify the ith entry of x(λk)
∗

to be zero if the following rule holds:

wi ≥ 1− 1

2
‖v⊥2 (λk, λk−1)‖2‖Ai‖2. (2.12)

The calculation of ‖v⊥2 (λk, λk−1)‖2 and ‖Ai‖2 in (2.12) is similar to the calculation of

‖y‖2 and ‖Ai‖2 in algorithm 1.

Overall, the time complexity of PDPP is O(MN/P). Regardless of the calculation

and updating on the vector variables, the calculation of these variables is dominant:

w, {θ(λ)}Tj and ‖Ai‖2 where i ∈ Sj. The calculation of all these variables can

be parallelized by the partition strategy in PDPP without synchronization among

processors.

2.5 Asynchronous Parallel Solver

Asynchronous Grouped Coordinate Descent

To address the challenge I discussed in Chapter 2.3.2, I propose a novel parallel

solver, called Asynchronous Grouped Coordinate Descent (AGCD), to solve the Lasso

regression on the reduced feature matrix. Rather than randomly selecting coordinates

or blocks to update asynchronously among threads, AGCD adopts a grouped selection

strategy; that is, chooses the candidate that minimizes the objective function with

the most descent to update among a group of coordinates. The details of AGCD are

given in algorithm 3.
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In AGCD, there are two global variables d and R to store where d ∈ RÑ and

R ∈ RM . I initialize d to be zero and R to be −y. In each iteration, every processor

randomly picks up a coordinate i from {1, 2, ..., Ñ} to estimate and update. The

calculation of the gradient for the ith coordinate, which is denotes as g(x̃)i, can be

written as:

g(x̃)i = ÃTi (Ãx̃− y). (2.13)

To make it more efficient, the calculation of (2.13) can be decomposed into the fol-

lowing steps:

Step1: Calculate the gradient: g(x̃)i = ÃTi R and get ∆x̃i.

Step2: Update R : R = R + ∆x̃iÃ
T
i .

Since R is initialized as −y, R stores the information of ÃTi (Ãx− y) by following the

above updating rules. To calculate ∆x̃i, I apply soft thresholding function Shalev-

Shwartz and Tewari (2011) to get the proximal gradient for x̃i. The definition of soft

thresholding operator Γ is given by :

Γϕ(x) = sign(x)(|x| − ϕ). (2.14)

In algorithm 3, L denotes the Lipschitz constant. For SCD Shalev-Shwartz and

Tewari (2011); Nesterov (2012); Richtárik and Takáč (2014), the Lipschitz constant

is set to be ‖Ai‖2
2 when updating the ith coordinate. Since SCD randomly picks only

one coordinate to update, the problem has a closed-form solution in each iteration.

When considering a multithreading environment, the way to calculate L is different.

PBCD Richtárik and Takáč (2016) employs Expectation Maximization (EM) to get

an approximation model on L but it depends on the sparsity of the feature matrix.

In this study, I employ the same method in Liu et al. (2014) to get the Lipschitz

constant from the Hassian matrix.
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Algorithm 3 Asynchronous Grouped Coordinate Descent (AGCD)

Require: Ã, y and λ.

Ensure: The solution vector x̃ for the problem (4)

Initialize: x̃ = d = 0 ∈ RÑ and R = −y.

while not converged do

In parallel on P processors

Randomly pick i from the index set {1, 2, ..., Ñ}.

Compute the ith gradient: g(x̃)i = ÃTi R.

Get ∆x̃i: ∆x̃i = Γλ/L(x̃i − g(x̃)i
L

)− x̃i.

di = λ(|x̃i| − |x̃i + ∆x̃i|)− g(x̃)i∆xi − 1
2
‖Ãi‖

2

2∆x2
i .

for t = (i− ω/2) to (i+ ω/2) do

if di < dt then

Return and perform the next iteration.

end if

end for

Update x̃i: x̃i = x̃i + ∆x̃i.

Update R: R = R + ∆x̃iÃ
T
i .

Update di by the same way from 5th to 7th line.

end while

L = max
i=1,2,...,Ñ

[∇2F (x̃)]ii. (2.15)

For the Lasso problem, L can be calculated by:

L = max
i=1,2,...,Ñ

‖Ai‖2
2. (2.16)
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Grouped Selection Strategy

The strategy of selecting potential coordinates in AGCD is to evaluate the descent

of objective function for the selected candidate. If the selected coordinate i wins the

competition in a group of candidates, xi will be updated by ∆x̃i. Otherwise this

selection fails and the update in this iteration is terminated. In a multithreading

environment, all the processors perform this process in parallel.

Then I need to estimate the descent of objective function for a specific coordinate.

The descent of the objective function is stored and updated in d. For the ith coor-

dinate, suppose that I have already obtained ∆x̃i and g(x̃)i, di can be estimated by

the following equation:

di = F (x̃)− F (x̃+ ∆x̃iei). (2.17)

where ei is a unit vector in the ith coordinate. When considering the Lasso problem,

di can be rewritten as the following formula:

λ(|x̃i| − |x̃i + ∆x̃i|) +
1

2
(‖Ãx̃− y‖

2

2 − ‖Ãx̃+ ÃTi ∆x̃i − y‖
2

2). (2.18)

Finally, di can be calculated by:

di = λ(|x̃i| − |x̃i + ∆x̃i|)−
1

2
∆x̃i

2‖Ãi‖
2

2 −∆x̃iÃ
T
i R, (2.19)

where ÃTi R equals to g(x̃)i that has already been calculated previously. The value of

‖Ãi‖
2

2 is also obtained when calculating the Lipschitz constant L in equation (2.16).

Thus, the time complexity to update di is O(1).

After di is updated, there is a competition between the ith coordinate and a

group of ω candidates. If di wins, x̃i will be updated. Otherwise the update of the ith

coordinate in this iteration is terminated. Bradley et al.Kyrola et al. (2011) showed

that the number of updated coordinates is at most Ñ/2ρ in one iteration where ρ is

the spectral radius of ÃT Ã. AGCD divides the feature space into Ñ/ω groups, which

20



means there are at most Ñ/ω coordinates to be updated in each iteration. Therefore,

I set the size of group ω to be 2ρ in AGCD. If ω is larger than Ñ , ω is set to be Ñ .

The way I set the candidate group is to select ω number of coordinates that are close

to the ith coordinate. Specifically, the index in the group starts from i − ω/2 and

ends at i+ ω/2. If i− ω/2 ≤ 0, it starts from 1 to ω. When i+ ω/2 ≥ Ñ , it is from

i−ω to i. If the ith coordinate wins the competition, the update is performed by the

following three steps:

Step1: Update x̃i : x̃i + ∆x̃i.

Step2: Update R : R = R + ∆x̃iÃ
T
i .

Step3: Update di by equation (2.13), (2.14) and (2.19).

Fig 2.1 illustrates the process of group selection and asynchronous update flowchart

with two threads. Although di has already been updated at the beginning, AGCD

still needs to perform Step 3 in the above updating rules because I intend to minimize

the effects of un-updated winners’ di to the competition of other candidates. I still

take the example in Figure 1 to illustrate this. After the 2nd coordinate wins the

competition, AGCD performs Step 1 and Step 2 to update x̃i and R. However, di

is not the current descent of object function since xi and R have changed. In the

next iteration, if AGCD selects the 1st coordinate to evaluate, x1 might still not be

updated since d2 > d1 in the last iteration. Although d1 is updated in the next iter-

ation, x1 still has a lower chance to be updated since x2 is the winner last time and

d2 is the “winning distance”. Because of asynchronous characteristic of AGCD, it is

not guaranteed that all the di are updated to the newest one. AGCD makes all the

winners’ di updated to newest value to minimize the effects of winners to competitions

of other candidates.

21



Figure 2.1: Illustration of AGCD with Two Threads. The White Blocks in Each

Sample Represent Inactive Features Discarded by Screening Rules. Thread 1 Chooses

the 2nd Active Feature to Evaluate. Firstly, d2 Is Updated and Evaluated in a Group

of {d1, d2, d3}. d2 Wins the Competition and I Follow the Three Steps to Update x4,

R and d2. Thread 2 Selects the 5th Candidate. However, It Fails in the Competition

and Update is Terminated for Thread 2 in this Iteration.
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Discussion

I apply atomic operations to avoid the synchronization among threads when up-

dating xi, R and di. Since x, R and di are global variables, it is necessary to add

locks on these shared variables when multiple threads attempt to update them simul-

taneously. However, updating a single variable and locking all the variables is not an

efficient strategy since all the other threads have to wait for one thread to finish its

job. I employ atomic operations to write the global variables atomically without any

locks. Liu et al. (2014) and Hsieh et al. (2015) have observed empirical convergence

when applying “atomic writes” on updating the shared variables.

AGCD adopts a grouped selection strategy to update the solution vector by choos-

ing the candidate that minimizes the objective function with the most descent. In

the random selection strategy used in parallel SCD solvers, a number of processors

update the solution vector asynchronously, which is more likely to result in the diver-

gence of the optimization problem in a small feature space. In AGCD, the update of

solution variables is not as frequent as in the random selection strategy. The selected

coordinate has to beat a group of candidates to get the chance to update. In fact,

the selected coordinates will not be updated in most of the iterations since it failed in

the competition. However, this does not mean that the computation spent in a failed

candidate is a waste of time. Although xi is not updated, it updates the descent

value di for that coordinate. Suppose xi is updated, it means that R is changed.

As a result, all the elements in d should be updated by (14). Therefore, updating d

concurrently is critical to guarantee the accurate result of competition in the grouped

selection strategy.
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2.6 Convergence Analysis

In this section, I analyze the convergence of the proposed parallel framework.

PSAFE and PDPP are safe screening rules and it is guaranteed that all the discarded

features have zero coefficients in the solution. PSR is a heuristic screening method

but I can ensure the correctness of result by checking the KKT condition. AGCD

can be safely applied on the reduced feature matrix Ã to optimize the problem (4).

Therefore, the proposed parallel framework will work if I prove the convergence of

AGCD.

I follow the same way in Shalev-Shwartz and Tewari (2011) to rewrite the objective

function (2.1) into an equivalent problem with a twice-differentiable regularizer:

min
x̂

1

2

M∑
j=1

(âTj x̂− yj)2 + λ
2N∑
i=1

x̂i : x̂ ∈ R2N , (2.20)

where aj denotes the jth row of A and the feature space is duplicated as: âj = [aj;−aj]

and âj ∈ R2N . Once the optimal solution x̂∗ of equation (2.20) is obtained, I can

recover the solution vector x∗ of (1) by x∗i = x̂∗d+i − x̂∗i . I denote the objective

function F (x) equal to (15) in the convergence analysis part.

Definition

Let F (x) : R2N → R be a convex function. Assume that there exists β > 0, for

all x and ∆x updated in parallel, I have the following rule:

F (x+ ∆x) ≤ F (x) + ∆xT∇F (x) +
β

2
∆xTATA∆x.

I denote β = 1 for the square loss function and β = 1
4

for the logistic loss function.

Let d̂ = [d̂1, d̂2, ......d̂2N ] represent the potential candidates updated by (12). ∆x

denotes the collective update of x in one iteration. ∆xi is equal to zero when d̂i fails

the competition where i ∈ (1, 2N).
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When there is only one coordinate updated at the same time, I have ∆x = (∆xi)ei

and ei is a unit vector in the ith coordinate. The process of optimization is the same as

the sequential coordinate descent when one coordinate is updated at each iteration.

It was shown in Shalev-Shwartz and Tewari (2011) that the sequential coordinate

descent converges by the following bound:

E[F (x(K))]− F (x∗) ≤ N(β‖x∗‖2
2 + 2F (x(0)))

K + 1
, (2.21)

where F (x(K)) is the output after K iterations. The convergence analysis of AGCD

is the same as sequential coordinate descent if only one coordinate is updated in each

iteration.

When there are more than one candidates winning the competition at the same

time, I summarize the main analysis in the following theorem:

Theorem

Let x∗ be the solution of F(x) and x(K) be the output of AGCD after K iterations.

Let P be the number of processors and Φ denotes the maximum number of candidates

to be updated in one iteration. Suppose F (x) satisfies the assumption of Definition

1; let ε = (Φ−1)(ρ−1)
2N−1

< 1 and ρ be the spectral radius of ATA. I have

E[F (x(K))]− F (x∗) ≤
N(β‖x∗‖2

2 + 2
1−εF (x(0)))

(K + 1)Φ
.

Proof

I use a similar technique in Kyrola et al. (2011) to prove this theorem. Let Θ

denote the index set that collects the winners of competitions in one iteration and

25



Φ = |Θ|. Based on the assumption of Definition 1, I have

EΘ[F (x+ ∆x)− F (x)]

≤ EΘ[∆xT∇F (x) +
β

2
∆xTATA∆x]

= ΦEi[∆xi∇F (x)i +
β

2
(∆xi)

2]

+
β

2
Φ(Φ− 1)Ei,j:i 6=j[∆xi(A

TA)i,j∆xj]

= ΦEi[∆xi∇F (x)i +
β

2
(1 +

(Φ− 1)(ρ− 1)

2N − 1
)(∆xi)

2]

= ΦEi[∆xi∇F (x)i +
β

2
(1 + ε)(∆xi)

2].

Let ρ = maxµ:µTµ=1 µ
T (ATA)µ. Ei,j:i 6=j[∆xi(A

TA)i,j∆xj] is bounded by ρ in terms of

Ei[∆(xi)
2] where i is chosen uniformly at random from {1, ..., 2N}. The rest of proof

follows the same way in Shotgun Kyrola et al. (2011)’s convergence analysis to obtain

the result of Theorem 1. I omit it for brevity.

In Shotgun, it was shown that the number of processors should satisfy P ≤ P ∗ ≈
N
2ρ

and the experiment demonstrates that Shotgun diverges as P exceeds P ∗. As I

discussed in section 3.5, the size of each group is set to be ω = 2ρ. The maximum

number of updated coordinates in one iteration is Φ = N
ω

which satisfy the above

constraint. In the real cases, the number of updated candidates is much smaller than

P since most of the updates happen in the calculation of d. In the grouped selection

strategy of AGCD, each coordinate has a low probability to be updated among ω

candidates. As a result, P can be equal to or larger than N
2ρ

in the real application of

AGCD. I demonstrate it in the experiment that AGCD encountered the cases that

the number of processors is larger than the number of active features while AGCD

still converged to the optimal value.
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Table 2.1: A Comparison of PDPP+AGCD and EDPP+SLEP along a Sequence of

100 Parameter Values on 0.5 Million ADNI Dataset

EDPP+SLEP PDPP+AGCD

λ/λmax nnz in the Objective λ/λmax nnz in the Objective

solution function solution function

1.0 0 373.0 1.0 0 373.0

0.95 4 372.9657 0.95 4 372.9657

0.9 8 372.6708 0.9 8 372.6708

0.8 26 370.5095 0.8 26 370.5095

0.75 46 368.3644 0.75 46 368.3644

0.7 69 364.2990 0.7 69 364.2990

0.6 134 351.0384 0.6 134 351.0384

0.55 169 341.9249 0.55 169 341.9249

0.5 216 327.9936 0.5 216 327.9936

0.4 307 292.8738 0.4 307 292.8738

0.35 364 272.4728 0.35 364 272.4728

0.3 419 244.0223 0.3 418 244.0223

0.2 508 179.7974 0.2 508 179.7974

0.15 571 145.1732 0.15 569 145.1732

0.1 650 98.9118 0.1 651 98.9118
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2.7 Experimental Results

In this section, I conduct several experiments to evaluate the convergence and

speedup of the proposed framework on the following four data sets: ADNI 2 , MNIST

LeCun et al. (1998), rcv1 Lewis et al. (2004) and news20 Keerthi et al. (2005). The

Alzheimer’s Disease NeuroimagingInitiative (ADNI) is a real biomedical dataset col-

lected from neuroimaging and genomic data from elderly individuals across North

America, including 809 patients of Alzheimer’s disease with 5,906,152 features, in-

volving a 80 GB feature matrix with 42 billion nonzeros. For MNIST, rcv1 and

news20, I use the training dataset obtained from LIBSVM data set repository 3 to

construct the feature data matrices and response vectors. I compare our method with

the state-of-the-art algorithms like PBCD Richtárik and Takáč (2016) and ASYSCD

Liu et al. (2014). All the experiments are carried out on an Intel (R) Xeon (R) 48-core

machine with 2.50 GHZ processors and 256 GB of globally addressable memory. I

employ OpenMP as the parallel framework and all the methods are implemented in

C++ for fair comparisons.

Accuracy Evaluation

In this experiment, I examine the accuracy of solution vectors in the proposed

method. I perform PDPP+AGCD along a sequence of 100 parameter values equally

spaced on the linear scale of λ/λmax from 0.1 to 1. To make a comparison, I perform

EDPP using SLEP Liu et al. (2009) as the solver on the same sequence. In SLEP, I

force the “LeastR” function to run 500 iterations. AGCD also executes 500 iterations

using 48 threads. Experiments are conducted on ADNI data sets. I choose the volume

of the right pallidum as the response, including 747 samples by removing samples

2http://www.adni-info.org

3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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Table 2.2: Data Statistics

Dataset Number of features Number of samples

MNIST 780 60000

news20 62061 15935

rcv1 47236 15564

ADNI 1m 1000000 717

ADNI 2m 2000000 717

ADNI 3m 3000000 717

ADNI 5.9m 5906152 717

without labels. The volumes of brain regions are extracted from each subject’s T1

MRI scan using Freesurfer 4 . I randomly select 0.5 million features from ADNI to

construct the feature matrix and normalize the matrix using the “zscore” function in

Matlab . The experimental result is shown in Table 2.1.

I report the result of 15 parameter values from 100 parameters. The first column

in both methods is the position of the parameter in the sequence. The third column

shows the remaining number of features Ñ after applying screening rules. Table 2.1

shows that the optimal value obtained by the PDPP+AGCD and the number of

nonzero in the solution is the same as that of EDPP+SLEP. When λ/λmax is higher

than 0.8, the remaining features after screening is less than the number of threads.

However, PDPP+AGCD is still able to converge to the optimal value.

4http://freesurfer.net/
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Figure 2.2: Convergence Comparison of Different Solvers When λ = 0.8λmax

Convergence Comparison

In this experiment, I evaluate the convergence property of the proposed parallel

methods. I conduct the experiment on PSR+AGCD and compare with state-of-the-

art parallel solvers: PBCD and ASYSCD. I choose two different λ value: 0.8λmax

and 0.6λmax to estimate the convergence of above methods. To prevent PSR from
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Figure 2.3: Convergence Comparison of Different Solvers When λ = 0.6λmax

discarding active features, I check the KKT condition to ensure the correctness of

screening results. To estimate the scalability of above algorithms, the number of

cores is varied from 1 to 32: 1, 2, 4, 8, 16 and 32. For different number of cores,

I show the time of optimization that solvers converged to the same optimal values

with 48 cores. I evaluate the efficiency of parallel solvers on four ADNI dataset:

ADNI 1m, ADNI 2m, ADNI 3m and ADNI 5.9m where feature dimension is varied

from 1 million to 5.9 million. I choose the volume of hippocampus in patients as
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Figure 2.4: Speedup Comparison Different Solvers When λ = 0.8λmax

the response, including 717 samples from the original dataset. I show details of

data sets in Table 2.2 and results of comparison in Fig 2.2, Fig 2.4, Fig 2.3 and Fig

2.5,respectively.

In the Fig 2.2 and Fig 2.3, I evaluate the convergence in terms of time using

48 cores. Note that I use log-scale in x-axis when λ = 0.8λmax. As observed from

the figure, the objective function in PSR+AGCD converged faster than other solvers

since most of inactive features are discarded. Most of time is spent in the screening

part. When λ = 0.6λmax, only part of inactive features are discarded by screening

but PSR+AGCD still has superior performances.

32



Number of cores
0 5 10 15 20 25 30 35

T
im

e
(i
n
 s

e
c
o
n
d

s
)

0

100

200

300

400

500

600

700

800
1 million ADNI

PBCD

ASYSCD

PSR+AGCD

Number of cores
0 5 10 15 20 25 30 35

T
im

e
(i
n

 s
e
c
o
n
d

s
)

0

200

400

600

800

1000

1200

1400

1600
2 million ADNI

PBCD

ASYSCD

PSR+AGCD

Number of cores
0 5 10 15 20 25 30 35

T
im

e
(i
n
 s

e
c
o
n
d
s
)

0

200

400

600

800

1000

1200

1400

1600

1800

2000
3 million ADNI

PBCD

ASYSCD

PSR+AGCD

Number of cores
0 5 10 15 20 25 30 35

T
im

e
(i
n
 s

e
c
o
n
d
s
)

0

1000

2000

3000

4000

5000

6000

7000

8000
5.9 million ADNI

PBCD

ASYSCD

PSR+AGCD

Figure 2.5: Speedup Comparison Different Solvers When λ = 0.6λmax

The Fig 2.4 and Fig 2.5 show the time of different solvers that converged to the

same optimal value of 48 cores when varying the number of cores from 1 to 32. Note

that I use two y-axis when λ equals to 0.8λmax. PBCD and ASYSCD use the left

y-axis while PSR+AGCD uses the right one. PSR+AGCD outperforms the other

solvers when varying the number of cores and the running time of PSR+AGCD is

reduced when there are more cores.
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Table 2.3: Efficiency Comparison along a Sequence of Parameter Values on MNIST

Dataset: MNIST

λ Method
Time spent in different number of cores (in minutes)

1 2 4 8 16 32

ASYSCD 131.08 76.25 62.78 39.17 26.7 23.33

100 PDPP+AGCD 6.37 3.61 2.43 1.49 1.02 0.87

Speedup 20.58 21.12 25.84 26.29 26.178 26.82

ASYSCD 283.43 182.36 116.86 61.96 45.76 38.37

200 PDPP+AGCD 10.9 6.25 3.96 1.96 1.48 1.17

Speedup 26.01 29.18 29.51 31.61 30.92 32.79

ASYSCD 571.46 364.21 238.65 129.24 92.58 71.71

400 PDPP+AGCD 17.14 11.07 7.13 3.86 2.53 1.76

Speedup 33.34 32.90 33.47 33.48 36.59 40.74

Time Efficiency

The advantage of the proposed parallel framework is to solve the Lasso problem

along a sequence of parameter values. In this experiment, I perform PDPP+AGCD

along a sequence of parameter values equally spaced on the linear scale of λ/λmax

from 0.1 to 1. I vary the length of parameter sequences as 100, 200 and 400. As a com-

parison, ASYSCD is performed on the same sequence. The experiment is conducted

at three different data sets: MNIST, news20 and ADNI 2m. Detailed information

about data sets is in Table 2.2. To evaluate the scalability of both methods, I vary

the number of cores as: 1, 2, 4, 8, 16 and 32. The result of comparison is presented

in Table 2.3, Table 2.4 and Table 2.5,respectively.

The experimental results in the tables show that more parameters lead to higher
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Table 2.4: Efficiency Comparison along a Sequence of Parameter Values on ADNI 2m

Dataset: ADNI 2m

λ Method
Time spent in different number of cores (in minutes)

1 2 4 8 16 32

ASYSCD 3205.13 1892.34 1105.21 756.23 435.64 324.81

100 PDPP+AGCD 48.34 23.63 12.21 8.28 5.34 4.03

Speedup 66.30 80.08 90.52 91.33 81.58 80.59

ASYSCD 5614.21 3217.91 1821.87 1345.21 826.51 692.87

200 PDPP+AGCD 63.32 34.07 18.81 12.99 7.44 5.79

Speedup 88.66 94.44 96.86 103.56 111.09 119.67

ASYSCD 11275.34 6328.35 3812.87 2315.34 1521.54 1296.54

400 PDPP+AGCD 95.42 52.17 33.10 18.18 11.06 9.57

Speedup 118.16 119.57 115.19 127.35 137.57 135.47

speedup for PDPP+AGCD compared to ASYSCD. PDPP+AGCD achieved 137 folds

speedup in ADNI 2m dataset, 101 folds in news20, and 40 folds in MNIST over

ASYSCD with 400 parameters. When using more cores, speedups of our method

tend to increase. Thus, in terms of speedup, PDPP+AGCD favors more cores and

sequences with more parameter values.

Scalability

To estimate the scalability of proposed parallel methods, I perform PSR+AGCD

and PDPP+AGCD on 1, 2, 4, 8, 16, 32 and 48 cores to observe the speedup. I give

the definition of speedup by the following criterion:

speedup =
time spent on P processors

time spent on a single processor
.
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Table 2.5: Efficiency Comparison along a Sequence of Parameter Values on News20

Dataset: news20

λ Method
Time spent in different number of cores (in minutes)

1 2 4 8 16 32

ASYSCD 2736.52 1491.26 762.57 403.06 265.71 194.27

100 PDPP+AGCD 40.22 20.69 10.60 5.59 3.67 2.50

Speedup 68.04 72.07 71.93 72.03 72.40 77.67

ASYSCD 5528.48 2813.78 1525.03 804.68 552.83 358.35

200 PDPP+AGCD 64.40 30.07 16.33 8.47 5.69 3.63

Speedup 85.84 93.56 93.38 95.38 97.02 98.77

ASYSCD 10437.35 5480.47 2812.21 1565.12 1057.30 662.792

400 PDPP+AGCD 120.38 64.31 29.05 15.88 10.42 6.67

Speedup 86.70 85.21 96.79 98.54 101.51 99.47

In this experiment, I employ both methods on 5.9 million ADNI and rcv1 data

sets, respectively. PDPP+AGCD is carried out along a 100 linear-scale sequence of

parameter values from 0.1 to 1. For PSR+AGCD, I set the parameter λ to be 0.8λmax

in the optimization. Fig 2.6 presents the result. PDPP+AGCD is more scalable than

PSR+AGCD and achieves approximate 17 and 11.5 folds speedup with 48 cores in

ADNI 5.9m and rcv1 data sets, respectively.

2.8 Summary

This study proposed a parallel framework to solve the `1-regularized minimization

problem on huge dimensional datasets. I introduce screening rules into a parallel

platform to discard the inactive features before optimization, accelerating the whole
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Figure 2.6: Speedup of Proposed Methods on 5.9 Million ADNI and Rcv1 Data Sets,

Respectively

learning process significantly. Then the problem boils down to solve the optimization

problem on a multithreading environment with a small number of feature space. A

grouped selection strategy is proposed to select the candidates that minimize the

objective function with the largest descent. Experiments demonstrate the efficiency

and effective of proposed methods by conducting on different data set of real word

applications. I present how to scale up the sparse regression model in a multithreading

environment. In the next chapter, I will extend it to a distributed environment where

the optimization is conducted with multiple computation nodes.
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Chapter 3

OPTIMIZE THE DISTRIBUTED SPARSE REGRESSION MODELS AND

STUDIES OF RISK GENETIC FACTOR FOR ALZHEIMER’S DISEASE

3.1 Introduction

Starting from this chapter, I present some real world applications where conduct-

ing the sparse learning process in a distributed environment. In this chapter, I propose

a distributed framework for large-scale collaborative Imaging genetics studies across

multiple research institutions.

Alzheimer’s disease (AD) is a severe and growing worldwide health problem, and

it doubles in frequency every five years after age sixty. Patients are progressively

impaired in memory and other aspects of cognitive performance Burns (2009) and

may become incapable of self-care as the disease advances. By 2050, the US may

have 13.5 million clinical AD patients, with cost of care of about 1.1 trillion Asso-

ciation et al. (2011). Many techniques have been developed to investigate AD, such

as magnetic resonance imaging (MRI), genome-wide association studies (GWAS) and

whole genome sequencing (WGS). These techniques can help to identify preclinical

and clinical AD patients relative to cognitively normal elderly controls Dickerson

et al. (2001). Computer-aided diagnosis techniques are promising to help preclinical

AD research, especially given the vast number of data available in 3D brain images.

When a big amount of features are measured from a small number of subjects, it

is often necessary to reduce their dimensions. Therefore, sparse learning Liu et al.

(2009) is a powerful tool to represent local features effectively and concisely, helping

image content analysis.
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GWAS are achieving great success in finding single nucleotide polymorphisms

(SNPs) associated with AD Harold et al. (2009). For example, APOE is a highly

prevalent AD risk gene, and each copy of the adverse variant is associated with a 3-

fold increase in AD risk Corder et al. (1993). The Alzheimer’s Disease Neuroimaging

Initiative (ADNI) collects neuroimaging and genomic data from elderly individuals

across North America, including people with Alzheimer’s disease, and these data are

analyzed by geographically distributed investigators Toga et al. (2010). The ENIGMA

Thompson et al. (2014) Consortium works as a large-scale collaborative network con-

sisting of 185 research institutions around the world, analyzing neuroimaging and

genomic data from over 33,000 subjects, from 35 countries. However, processing and

integrating genetic data across different institutions is challenging. Each participating

institution may wish to collaborate with others, but often legal or ethical regulations

restrict access to individual data, to avoid compromising data privacy. A common

goal is to identify common genetic variants associated with brain measures or with

disease, based on data from different institutions, while preserving privacy.

Some studies, such as ADNI, share genomic data publicly under certain conditions,

but more commonly, each participating institution may be required to keep their ge-

nomic data private, so collecting all data together may not be feasible. To deal with

this challenge, I proposed a novel distributed framework, termed Local Query Model

(LQM), to perform the Lasso regression analysis—a popular sparse learning tech-

nique — in a distributed manner. With LQM, collaborating institutions can learn

and identify genetic risk factors without accessing others’ data. However, applying

LQM for model selection—such as stability selection—can be very time consuming

on a large-scale data set. To speed up the learning process, I proposed a family of

distributed safe screening rules (D-SAFE and D-EDPP) to identify irrelevant features

and remove them from the optimization without sacrificing accuracy. Next, LQM is
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employed on the reduced data matrix to train the model so that each institution

obtains top risk genes for AD by stability selection on the learnt model without re-

vealing its own data set. I evaluate our method on the ADNI GWAS data, which

contains 809 subjects with 5,906,152 SNP features, involving a 80 GB data matrix

with approximate 42 billion nonzero elements, distributed across three research insti-

tutions. Empirical evaluations demonstrate a speedup of 66-fold gained by D-EDPP,

compared to LQM without D-EDPP. Stability selection results show that proposed

framework ranked APOE as the first risk SNPs among all features, offering a powerful

feature selection tool to study AD and its early symptom.

3.2 Data Processing

ADNI GWAS Data

The ADNI GWAS data contains genotype information for each of the 809 ADNI

participants, which consist of 128 patients with AD, 415 with mild cognitive impair-

ment (MCI), 266 cognitively normal (CN). To store statistically relevant SNPs called

using Illuminas CASAVA SNP Caller, the ADNI WGS SNP data is stored in variant

call format (VCF) for storing gene sequence variations. SNPs at approximately 5.9

million specific loci are recorded for each participant. I encode SNPs with the coding

scheme in Sasieni (1997) and apply Minor Allele Frequency (MAF) < 0.05 and Geno-

type Quality (GQ) < 45 as two quality control criteria to filter high quality SNPs

features. I follow the same coding scheme and quality control of Yang et al. (2015).

Data Partition

Lasso Tibshirani (1996) is a widely-used regression technique to find sparse rep-

resentations of data, or predictive models or predictive models based on an efficient
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Figure 3.1: The Streamline of Proposed Distributed Framework.

or low-dimensional predictor set. Standard Lasso takes the form of

min
x

1

2
||Ax− y||22 + λ||x||1 : x ∈ Rp, (3.1)

In this chapter, I use A denotes genomic data sets distributed across different

institutions, y is the response vector (e.g., hippocampus volume or disease status), x

is sparse representation—shared across all institutions—that I need to learn, and λ

is a positive regularization parameter.

Suppose that I have m participating institutions. For the ith institution, I denote

its data set by (Ai, yi), where Ai ∈ Rni×p, ni is the number of subjects in this institu-

tion, p is the number of features, and yi ∈ Rni is the corresponding response vector,

and n =
∑m

i ni. I assume p is the same across all m institutions. Our goal is to apply

Lasso regression to rank the top risk genetic factors of the AD disease based on the

distributed data sets (Ai, yi), i = 1, 2, ...,m.

41



3.3 Methods

Fig 3.1 illustrates the general idea of our distributed framework. Suppose that

each institution maintains the ADNI genome-wide data for a few subjects. (In reality,

all the ADNI data is now available for download from one site, but well-powered

genome-wide association studies, such as ENIGMA Thompson et al. (2014), often

pool 50 or more such genomic datasets from different sites; here I partition the ADNI

data as an example). I first apply the distributed Lasso screening rule to pre-identify

inactive features and remove them from the training phase. Next, I employ the Local

Query Model on the reduced data matrices to perform collaborative analyses across

different institutions without compromising data privacy. Finally, each institution

obtains the learnt model and performs stability selection to rank the SNPs that may

collectively affect AD. The process of stability selection is to count the frequency of

nonzero entries in the solution vectors and select the most frequent ones as the top

risk genes for AD. The whole learning procedure results in the same model for all

institutions, and preserves data privacy at each of them.

Local Query Model

I apply a proximal gradient descent algorithm—the Iterative Shrinkage/Thresholdi-

ng Algorithm (ISTA) Daubechies et al. (2004)—to solve the problem (3.1). I define

the notation g(x;A, y) = ||Ax − y||22 as the least square loss function. The general

updating rule of ISTA is:

xk+1 = Γλtk(xk − tk∇g(xk;A, y)), (3.2)

where k denotes the iteration number, tk denotes an appropriate step size in the kth

iteration, and Γ is the soft thresholding operator Shalev-Shwartz and Tewari (2011)
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defined by the following function:

Γα(x) = sign(x) · (|x| − α)+. (3.3)

In view of (3.2), to solve (3.1), I need to compute the gradient of the loss function

∇g, which equals to AT (Ax− y). However, because the data set (A, y) is distributed

to different institutions, I can not compute the gradient directly. To address this chal-

lenge, I propose a Local Query Model to learn the model x across multiple institutions

without compromising data privacy.

In our study, each institution maintains its own data set (Ai, yi) to preserve their

privacy. To avoid collecting all data matrices Ai, i = 1, 2, ...,m together, I can rewrite

the problem (3.1) as the following equivalent formulation:

min
x

m∑
i

gi(x;Ai, yi) + λ||x||1 : i = 1, 2, ...,m, (3.4)

where gi(x;Ai, yi) = 1
2
||Aix− yi||22 is the least squares loss.

The key of LQM lies in the following decomposition:

∇g = AT (Ax− y) =
m∑
i=1

ATi (Aix− yi) =
m∑
i=1

∇gi. (3.5)

I use “local institution” to denote all the participating institutions and “global

center” to represent the place where intermediate results are calculated. For the

ith local institution, the global center would query the gradient information with

respect to a particular model x. In this case, the ith local center will compute ∇gi =

ATi (Aix − yi). Then, each local institution sends the partial gradient information of

the loss function to the global center. After gathering all the gradient information,

the global center can compute the accurate gradient with respect to x by adding all

∇gi together and send the updated gradient ∇g back to all the local institutions to

compute the model x. In the proposed framework, as LQM only acquires the partial
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gradient from each local institution, it can properly maintain data privacy for all the

institutions.

The master only servers as the computation center and does not store any data

sets. Although the master gets gi, it could not reconstruct Ai and yi. Let gki denote

the kth iteration of gi. Suppose x is initialized to be zero, g1
i = −ATi yi and gki =

Ai(A
T
i x

k−yi). I get ATi Aix by gki −g1
i but Ai can not be reconstructed since updating

and storing x only happens in the workers. As a result, LQM can properly maintain

data privacy for all the institutions.

Distributed Safe Screening Rules for Lasso

As data are distributed to different institutions, I develop a family of distributed

Lasso screening rule to identify and discard inactive features in a distributed environ-

ment. Suppose ith institution holds the data set (Ai, yi), I summarize a distributed

version of SAFE screening rules (D-SAFE) as follows:

Step 1: Qi = [Ai]
Tyi, updateQ =

m∑
i

Qi by LQM.

Step 2: λmax = max
j
|[Q]j| .

Step 3: If
∣∣[A]Tj y

∣∣ < λ− ||[A]j||2||y||2
λmax − λ
λmax

, discard jth feature.

To compute ||[A]j||2 in Step 3, I first compute Hi = ||[Ai]j||22 and perform LQM to

compute H by H =
∑m

i Hi. Then, I have ||[Ai]j||2 =
√
H. Similarly, I can compute

||y||2 in Step 3. As the data communication only requires intermediate results, D-

SAFE preserves the data privacy at each institution.

In many applications, the optimal value of λ is unknown. To tune the value of

λ, commonly used methods such as cross validation need to solve the Lasso problem

along a sequence of parameters λ0 > λ1 > ... > λκ, which can be very time-consuming.

Enhanced Dual Polytope Projection (EDPP) Wang et al. (2013a) is a highly efficient
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Algorithm 4 Distributed Enhanced Dual Polytope Projection (D-EDPP)

Require: A set of data pairs {(A1, y1), (A2, y2), ..., (An, yn)} and ith institution holds

the data pair (Ai, yi). A sequence of parameters: λmax = λ0 > λ1 > ... > λκ.

Ensure: The learnt models: {x∗(λ0), x∗(λ1), ..., x∗(λκ)}.

1: Perform the computation on n institutions. For the ith institution:

2: Let Ri = ATi yi, compute R =
∑m

i Ri by LQM. Then I get λmax by ||R||∞.

3: J = arg maxj |R|, vi = [Ai]J where [Ai]J is the Jth column of Ai.

4: Let λ0 ∈ (0, λmax] and λ ∈ (0, λ0].

5: θi(λ) =


yi

λmax
, if λ = λmax,

yi−Aix
∗(λ)

λ
, if λ ∈ (0, λmax),

6: Ti = vTi ∗ yi, compute T =
∑m

i Ti by LQM.

7: v1(λ0)i =

 sign(T ) ∗ vi, if λ0 = λmax,

yi
λ0
− θi(λ0), if λ0 ∈ (0, λmax),

8: v2(λ, λ0)i = yi
λ
− θi(λ0), Si = ||v1(λ0)i||22, compute S =

∑m
i Si by LQM.

9: v⊥2 (λ, λ0)i = v2(λ, λ0)i − <v1(λ0)i,v2(λ,λ0)i>
S

v1(λ0)i.

10: Given a sequence of parameters: λmax = λ0 > λ1 > ... > λκ, for k ∈ [1, κ], I

make a prediction of screening on λk if x∗(λk−1) is known:

11: for j=1 to p do

12: wi = [Ai]
T
j (θi(λk−1) + 1

2
v⊥2 (λk, λk−1)i), compute w =

∑m
i wi by LQM.

13: if w < 1− 1
2
||v⊥2 (λk, λk−1)||2||[A]j||2 then

14: I identify [x∗(λk)]j = 0.

15: end for
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safe screening rules to quickly identify irrelevant features along a sequence of pa-

rameters by utilizing the information of optimal solutions in the previous parameter,

estimating the dual problem and geometric properties of Lasso regression problem

and achieving about 200x speedups for real-world applications.

Since data are not shared among different institutions, each institution can only

access its own data set. To address the problem of data privacy, I propose a distributed

Lasso screening rule, termed Distributed Enhanced Dual Polytope Projection (D-

EDPP), to identify and discard inactive features along a sequence of parameter values

in a distributed manner. The idea of D-EDPP is similar to LQM. Specifically, to

update the global variables, I apply LQM to query each local center for intermediate

results–computed locally–and I aggregate them at global center. After obtaining the

reduced matrix for each institution, I apply the proposed LQM to solve the Lasso

problem on the reduced data set Ãi, i = 1, ...,m, which may contain a substantially

reduced number of features. As explained in Chapter 3.3.1, solving Lasso on the

reduced data sets by LQM will not compromise data privacy of each participating

institution. I assume that j indicates the jth column in A, j = 1, ..., p, where p is the

number of features. I summarize the proposed D-EDPP in Algorithm 4.

To speed this process up, I introduce a “warm-start” technique into our D-EDPP

algorithm. First of all, I employ D-EDPP to identify the inactive features at λ0. Then,

I compute the optimal solution x∗(λ0) by solving Lasso on the reduced data matrix.

In the next round, after obtaining a reduced matrix by screening, I use x∗(λ0) as the

initial value rather than zero to solve the Lasso problem. The warm-start technique

utilizes the model I solved in the last round to facilitate the optimization.

To calculate R, I apply LQM through aggregating all the Ri together in the

global center by R =
∑m

i Ri and send R back to every institution. The same ap-

proach is used to calculate T , S and w in D-EDPP. The calculation of ||[A]j||2 and
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||v⊥2 (λk, λk−1)||2 follows the same way in D-SAFE. Since only intermediate results are

transferred among institutions, D-EDPP preserves the privacy.

The discarding result of λk relies on the previous optimal solution x∗(λk−1). Es-

pecially, λk equals to λmax when k is zero. Thus, I identify all the elements of x∗(λ0)

to be zero if k is equal to zero. When k is 1, I can perform screening rules based on

x∗(λ0) to discard the inactive features.

Local Query Model for Lasso

To further accelerate the learning process, I apply FISTA Beck and Teboulle

(2009); Peng et al. (2013) to solve the Lasso problem in a distributed manner. The

convergence rate of FISTA is O(1/k2) compared to O(1/k) of ISTA, where k denotes

the iteration number. In this study, I integrate FISTA with LQM, termed as F-LQM,

to solve the Lasso regression problem on the reduced matrix Ãi. I summarize the

updating rule of F-LQM in kth iteration as follows:

Step 1: ∇gki = ÃTi (Ãix
k − yi), update ∇gk =

m∑
i

∇gki by LQM.

Step 2: zk = Γλtk(xk − tk∇gk) and tk+1 =
1 +

√
1 + 4t2k
2

.

Step 3: xk+1 = zk +
tk − 1

tk+1

(zk − zk−1).

The matrix Ãi denotes the reduced matrix for the ith institution obtained by the

proposed D-EDPP rule. I repeat this procedure until a satisfactory global model

is obtained. Step 1 calculates ∇gki from local data (Ãi, yi). Then, each institution

performs LQM to get the gradient ∇gk based on (5). Step 2 updates the auxiliary

variables zk and step size tk. Step 3 updates the model x. Similar to LQM, the data

privacy of all the institutions are well preserved by F-LQM.
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3.4 Experiment

I implement the proposed D-EDPP+LQM approach on a state-of-the-art dis-

tributed computing platform: Apache Spark 1 , which manages query processing

with complex analytics on large clusters. To evaluate our proposed method, I report

the efficiency through a study across three campuses: University of Southern Cali-

fornia (USC), University of Michigan (UMich) and Arizona State University (ASU);

clearly it could be interesting to scale this up to many multi-cohort datasets, as in

ENIGMA Thompson et al. (2014). I show the efficiency of D-EDPP on a sequence of

parameter values and employ stability selection with D-EDPP+LQM to determine

top risk genetic factors associated with the disease AD.

Distributed Platform

Apache Spark is a fast and efficient distributed platform for large-scale data

computing. Compared with Hadoop’s two-stage disk-based MapReduce paradigm,

Spark’s multi-stage in memory design improves the efficiency up to 100 times for

applications. Our Spark platform is deployed at three campuses: USC, UMich, and

ASU. The off-campus project follows the master-workers pattern. Each institution

maintains several machines as a worker node and one particular cluster in UMich

works as the master node.

Comparison of Lasso With and Without D-EDPP Rule

I choose the volume of lateral ventricle as variables being predicted in trials con-

taining 717 subjects by removing subjects without labels. The volumes of brain re-

gions were extracted from each subject’s T1 MRI scan using Freesurfer: http://freesurfer.net.

1http://spark.apache.org/
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Figure 3.2: The Running Time Comparison of Lasso With and Without D-EDPP

Rules.

I evaluate the efficiency of D-EDPP across three research institutions that maintain

326, 215, and 176 subjects, respectively. The subjects are stored as HDFS files. I

solve the Lasso problem along a sequence of 100 parameter values equally spaced on

the linear scale of λ/λmax from 1.00 to 0.05. I randomly select 0.1 million to 1 million

features by applying F-LQM since Beck and Teboulle (2009) proved that FISTA con-

verges faster than ISTA. I report the performance of Lasso with and without D-EDPP

rule in Fig 3.2. I achieved about a speedup of 66-fold compared to F-LQM.

Stability Selection For Top Risk Genetic Factors

I employ stability selection Meinshausen and Buhlmann (2010); Yang et al. (2015)

with D-EDPP+F-LQM to select top risk SNPs from the entire GWAS data set with

5,906,152 features. I conduct four groups of trials using the diagnose at baseline,

the volume of hippocampus, entorhinal cortex and lateral ventricle at baseline as the
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Table 3.1: Top 5 Selected Risk SNPs Associated with Diagnose, the Volume of Hip-

pocampal, Entorhinal cortex, and Lateral Ventricle at Baseline, Based on ADNI.

Diagnose at baseline Hippocampus at baseline

No. Chr RS ID Gene No. Chr RS ID Gene

1 19 rs429358 APOE 1 19 rs429358 APOE

2 19 rs769449 APOE 2 8 rs34173062 SHARPIN

3 12 rs3136564 CD69 3 11 rs10831576 GALNT18

4 1 rs2227203 unknown 4 10 rs12412466 PPA1

5 20 rs6100558 PHACTR3 5 6 rs71573413 unknown

Entorhinal cortex at baseline Lateral ventricle at baseline

No. Chr RS ID Gene No. Chr RS ID Gene

1 19 rs429358 APOE 1 Y rs2261174 unknown

2 15 rs8025377 ABHD2 2 10 rs10994327 ANK3

3 Y rs79584829 unknown 3 Y rs62610496 unknown

4 14 rs41354245 MDGA2 4 1 rs2647521 AK5

5 3 rs55904134 unknown 5 1 rs2629810 SYT6

response variable for each group, respectively. In each trial, D-EDPP+F-LQM is

carried out along a 100 linear-scale sequence of parameter values from 1 to 0.05. I

simulate this 200 times and perform our method on 500 of subjects in each round.

Table 3.1 shows the top 5 selected SNPs. As would be expected, APOE, one of the

top genetic risk factors for AD Liu et al. (2013), is ranked #1 for three groups of

trials: the diagnose, the volume of hippocampal and the volume of entorhinal cortex.
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3.5 Summary

I propose a novel distributed framework for collaborative analyses across institu-

tions while protecting individual data privacy. Safe screening rules are integrated into

our framework to identify irrelevant features and speed up the learning process. Ex-

periments demonstrate the efficiency of the proposed framework. D-EDPP achieved

a speedup of approximate 66 folds compared to the original solver; I identified sev-

eral risk genetics factors that associated with AD via stability selection. In the next

chapter, I extend this distributed framework to investigate group feature discovery

and feature selections across multiple institutions.
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Chapter 4

LARGE-SCALE FEATURE SELECTION OF RISK GENETIC FACTORS FOR

ALZHEIMER’S DISEASE VIA DISTRIBUTED GROUP LASSO

4.1 Introduction

In this chapter, I propose a distributed feature selection framework to conduct the

large-scale imaging genetics studies across multiple institutions. I focus on selecting

the relevant group features of ADNI data set, which is associated with optimizing

the group Lasso problem Yuan and Lin (2006) in a distributed manner. The learning

process is conducted among multiple research institutions without compromising the

data privacy for each participating institution.

Collaborative imaging genetics studies across different research institutions show

the effectiveness of detecting genetic risk factors. However, the high dimensionality of

GWAS data poses significant challenges in detecting risk SNPs for AD. However, pro-

cessing and integrating genetic data across different institutions is challenging. The

first issue is the data privacy since each participating institution wishes to collaborate

with others without revealing its own data set. The second issue is how to conduct

the learning process across different institutions. Local Query Model (LQM) Li et al.

(2016b); Zhu et al. (2017) is proposed to perform the distributed Lasso regression for

large-scale collaborative imaging genetics studies across different institutions while

preserving the data privacy for each of them. However, in some imaging genetics

studies Harold et al. (2009), we are more interested in finding important explanatory

factors in predicting responses, where each explanatory factor is represented by a

group of features since lots of AD genes are continuous or relative with some other

52



features, not individual features. In such cases, the selection of important features

corresponds to the selection of groups of features. As an extension of Lasso, group

Lasso Yuan and Lin (2006) has been proposed for feature selection in a group level

and quite a few efficient algorithms Qin et al. (2013); Boyd et al. (2011) have been

proposed for efficient optimization. However, integrating group Lasso with imaging

genetics studies across multiple institutions has not been studied well.

In this study, I propose a novel Distributed Feature Selection Framework (DFSF)

to conduct the large-scale imaging genetics studies analysis across multiple research

institutions. Our framework has three components. In the first stage, I proposed a

family of distributed group lasso screening rules (DSR and DDPP GL) to identify

inactive features and remove them from the optimization. The second stage is to

perform the group lasso feature selection process in a distributed manner, selecting

the top relevant group features for all the institutions. Finally, each institution obtains

the learnt model and perform the stability selection to rank the top risk genes for

AD. The experiment is conducted on the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) GWAS data set, including approximately 809 subjects with 5.9 million loci.

Empirical studies demonstrate that proposed method the proposed method achieved a

35-fold speedup compared to state-of-the-art distributed solvers like ADMM. Stability

selection results show that the proposed DFSF detects APOE, GRM8, GPC6 and

LOC100506272 as top risk SNPs associated with AD, demonstrating a superior result

compared to Lasso regression methods Li et al. (2016b). The proposed method offers

a powerful feature selection tool to study AD and its early symptom.
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4.2 Problem Statement

Problem Formulation

Group Lasso Yuan and Lin (2006) is a highly efficient feature selection and re-

gression technique used in the model construction. Group Lasso takes the form of

the equation:

min
x∈RN

F (x) =
1

2
||y −

G∑
g=1

[A]g[x]g||22 + λ

G∑
g=1

wg||[x]g||2, (4.1)

where A represents the feature matrix where A ∈ RN×P and y denotes the N di-

mensional response vector. λ is a positive regularization parameter. Different from

the Lasso regression problem Tibshirani (1996), group Lasso partitions the original

feature matrix X into G non-overlapping groups [A]1, [A]2, ......, [A]G and wg denotes

the weight for the g-th group. After solving the group Lasso problem, I get the corre-

sponding G solution vector [x]1, [x]2, ......, [x]G and the dimension of [x]g is the same

as the feature space in the corresponding design matrix [A]g.

ADNI GWAS Data Set

The ADNI GWAS dataset contains genotype information of 809 ADNI partic-

ipants. To store statistically relevant SNPs called using Illuminas CASAVA SNP

Caller, the ADNI WGS SNP data is stored in variant call format (VCF) for storing

gene sequence variations. SNPs at approximately 5.9 million specific loci are recorded

for each participant. I encode SNPs using the coding scheme in Sasieni (1997) and

apply Minor Allele Frequency (MAF) < 0.05 and Genotype Quality (GQ) < 45 as

two quality control criteria to filter high quality SNPs features. I follow the same

SNP genotype coding and quality control scheme in Li et al. (2016b).

I have m institutions to conduct the collaborative learning. The ith institution
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Figure 4.1: The Proposed Feature Selection Framework

maintains its own data set (Ai, yi) where Ai ∈ Rni×P , ni is the sample number, P

is the feature number and yi ∈ Rni is the response and N =
∑m

i ni. I assume P is

the same across m institutions. I aim at conducting the feature selection process of

group lasso on the distributed datasets (Ai, yi), i = 1, 2, ...,m.

4.3 Proposed Framework

In this section, I present the streamline of proposed DFSF framework. The DFSF

framework is composed of three main procedures:

1. Identify the inactive features by the distributed group Lasso screening rules and

remove inactive features from optimization.

2. Solve the group Lasso problem on the reduced feature matrix along a sequence

of parameter values and select the most relevant group features for each partic-

ipating institution.
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3. Perform the stability selection to rank SNPs that may collectively affect AD.

I Illustrate the framework of our proposed DFSF in Fig 4.1. Each participating

institution maintains its own dataset which are a few subjects of GWAS dataset.

Firstly, I perform the distributed group Lasso screening rules to pre-identifying the

inactive features and remove them from the optimization. Then I conduct the learning

process of group Lasso by proposed distributed solver DBCD to select the top relevant

features. Finally, each institution obtains the same selected features and performs

stability selection to rank the top SNPs that may collectively affect AD. The whole

learning procedure results in the same model for all the institutions.

Screening Rules for Group Lasso

Strong rule Tibshirani et al. (2012b) is an efficient screening method for fitting

lasso-like problems by pre-identifying the features which have zero coefficients in the

solution and removing these features from optimization, significantly cutting down

on the computation required for optimization.

For the group lasso problem Yuan and Lin (2006), the gth group of x—[x]g— will

be discarded by strong rules if the following rule holds:

||[A]Tg y||2 ≤ wg(2λ− λmax) (4.2)

The calculation of λmax follows λmax = maxg
||[A]Tg y||2

wg
. [x]g could be discarded in the

optimization without sacrificing the accuracy since all the elements of [x]g are zero in

the optimal solution vector.

Let J denote the index set of groups in the feature space and J = {1, 2, ......, G}.

Suppose that there are G̃ remaining groups after employing screening rules, I use J̃

to represent the index set of remaining groups and J̃ = {1, 2, ......, G̃}. As a result,
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the optimization of group lasso problem (4.1) can be reformulated as:

min
x̃∈RÑ

F (x̃) =
1

2
||y −

G̃∑
g=1

[Ã]g[x̃]g||22 + λ
G̃∑
g=1

wg||[x̃]g||2, (4.3)

where Ñ is the dimension of reduced feature space and x̃ ∈ RÑ .

Distributed Screening Rules for Group Lasso

As the data set are distributed among multiple research institutions, it is necessary

to conduct a distributed learning process without compromising the data privacy for

each institution. LQM Li et al. (2016b); Zhu et al. (2017) is proposed to optimize the

lasso regression while preserving the data privacy for each participating institution.

In this study, I aim at selecting the group features to detect the top risk genetic

factors for the entire GWAS data set. Since each institution maintains its own data

pair (Ai, yi), I develop a family of distributed group Lasso screening to identify and

discard the inactive features in a distributed environment. I summarize the proposed

Distributed Strong Rules (DSR) as follows:

1. For the ith institution, compute Qi by Qi = ATi yi.

2. Update Q =
∑m

i Qi by LQM, then send Q back to all the institutions.

3. In each institution, calculate λmax by: λmax = maxg
||[Q]g ||2
wg

where [Q]g is the

elements of gth group in Q and it is similar as the definition of [A]g.

4. For each gth group in the problem (2.1), I will discard it and remove from the

optimization when the following rule holds: ||[Q]g||2 ≤ wg(2λ− λmax).

In many real word applications, the optimal value of regularization parameter λ

is unknown. To tune the value of λ, commonly used methods such as cross validation

needs to solve the Lasso problem along a sequence of parameter values λ0 > λ1 >
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... > λκ ,which can be very time-consuming. A sequential version of strong rules

was proposed in Tibshirani et al. (2012b) by utilizing the information of optimal

solutions in the previous parameter. Suppose I have already obtained the solution

vector x(λk−1)∗ at λk−1 where the integer k ∈ [1, κ], the sequential strong rule rejects

the ith feature at λk when the following rule holds:

||[A]Tg (y −
G∑
g=1

[A]g[x]g(λk−1))||2 ≤ wg(2λ− λmax). (4.4)

Strongs rule is one of heuristic screening rules which is able to achieve a sub-

stantial speedup by removing inactive features from optimization. However, heuristic

screening rules can not guarantee that discarded features have zero components in

the solution. In other words, it might mistakenly discard active features from opti-

mization. Tibshirani et al. (2012b) solves it by checking KKT conditions to guarantee

the correctness of predicted results.

A sequential version of safe screening rules was proposed in EDPP Wang et al.

(2013a) by utilizing the information of optimal solutions in the previous parameter,

achieving about 200x speedups for real-world applications. The implementation de-

tails of EDPP is available on the GitHub 1 . I omit the introduction of EPDD for

brevity. I propose a distributed safe screening rules for group Lasso, known as the

Distributed Dual Polytope Projection Group Lasso (DDPP GL), to quickly identify

and discard the inactive features along a sequence of parameters in a distributed

manner. I summarize the proposed DDPP GL in the algorithm 5.

Distributed Block Coordinate Descent for Group Lasso

After I apply DDPP GL to discard the inactive features, the feature space shrank

from P to P̃ and there are remaining G̃ groups. The problem of group Lasso (4.1)

1http://dpc-screening.github.io/glasso.html

58



Algorithm 5 Distributed Dual Polytope Projection for Group Lasso

Require: A set of data pairs {(A1, y1), (A2, y2), ..., (Am, ym)} and ith institution

holds the data pair (Ai, yi). A sequence of parameters: λmax = λ0 > ... > λκ.

Ensure: The learnt models: {x∗(λ0), x∗(λ1), ..., x∗(λκ)}.

Let Ri = ATi yi, compute R =
∑m

i=1Ri by LQM.

λmax = maxg
||[R]g ||2
wg

, [R]g represents all the elements in the gth group.

Si = argmax[Ai]g
||Rg ||2
wg

, compute L =
∑m

i=1 S
T
i yi by LQM.

Let λ0 ∈ (0, λmax] and λ ∈ (0, λ0].

θi(λ) =


yi−

∑G
g=1[Ai]g [x∗(λ)]g

λ
, if λ ∈ (0, λmax).

yi
λmax

, if λ = λmax.

v1(λ0)i =


yi
λ0
− θi(λ0), if λ ∈ (0, λmax),

SiL, if λ = λmax

v2(λ, λ0)i = yi
λ
− θi(λ0)

Qi = ||v1(λ0)i||22, compute Q =
∑m

i Qi by LQM.

v⊥2 (λ, λ0)i = v2(λ, λ0)i − <v1(λ0)i,v2(λ,λ0)i>
Q

v1(λ0)i

Given a sequence of parameters λmax = λ0 > ... > λκ, for any integer k ∈ [1, κ], I

make a pre-screen on each groups of [x∗(λk)]g, if [x∗(λk−1)]g is known.

for g = 1 to G do

Qi = [Ai]
T
g (θ∗(λk−1)i + 1

2
v⊥2 (λk, λk−1)i)||2

Compute Q =
∑m

i Qi by LQM.

if Q < 1− 1
2
||v⊥2 (λk, λk−1)||2||[A]g||2 then

I identify all the elements of [x∗(λk)]g to be zero.

end for
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could be reduced as (4.3). I need to optimize (4.3) in a distributed manner. The

block coordinate descent (BCD) Qin et al. (2013) is one of the most efficient solvers

in the big data optimization. BCD optimize the problem by updating one or a few

blocks of variables at a time, rather than updating all the block together. The order

of update can be a deterministic or stochastic sequence. For the group lasso problem,

I can randomly pick up a group of variables to optimize and keeps other groups of

variables fixed. Following this idea, I propose a Distributed Block Coordinate Descent

(DBCD) to optimize the group Lasso problem in the algorithm 6 via a distributed

manner.

In algorithm 6, I use a variable Ri to store the result of Ãix̃− yi. Ri is initialized

as −yi since x̃ is initialized to be zero at the beginning. In DBCD, the update of

gradient can be divided as three steps:

Step 1: Compute the gradient: ∇F ([x̃]g)i = [Ãi]
T
gRi and get ∇F ([x̃]g) by LQM.

Step 2: Get ∆[x̃]g by the gradient information ∇F ([x̃]g).

Step 3: Update Ri: Ri = Ri + ∆[x̃]g[Ãi]
T
g .

The update of [x̃]g follow the equations in 7rd line of algorithm 6. I update [x̃]g

if ||[x̃]g||2 is larger than λwg

Lg
, otherwise all the elements of [x̃]g are set to be zero. Lg

denotes the Lipschitz constant in gth group. For the group Lasso problem, Lg is set

to be ||[A]g||22. DBCD updates Ri at the end of each iteration to make sure Ri stores

the correct information of Ãix̃− yi in each iteration.

Feature Selection by Group Lasso

Given a sequence of parameter values: λ0 > ... > λκ, I can obtain a sequence of

learnt models {x∗(λ0), ..., x∗(λκ)} by employing DDPP GL+DBCD. For each group

g in the feature space G, I count the frequency of nonzero entries in the learnt model
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Algorithm 6 Distributed Block Coordinate Descent

Require: A set of data pairs {(Ã1, y1), (Ã2, y2), ..., (Ãn, yn)} where ith institution

holds the data pair (Ãi, yi) and λ

Ensure: The learnt models: x̃.

Initialize: x̃ = 0 ∈ RP̃ and Ri = −yi.

while not converged do

Randomly pick up g from the index set {1, ..., G̃}.

Compute the gth group’s gradient: ∇F ([x̃]g)i = [Ãi]
T
gRi.

Update ∇F ([x̃]g) by LQM: ∇F ([x̃]g) =
∑m

i ∇F ([x̃]g)i.

Let v = [x̃]g and [x̃]g = [x̃]g − 1
Lg
∇F ([x̃]g)

[x̃]g =

 [x̃]g − λwg

||[x̃]g ||2 [x̃]g, if ||[x̃]g||2 > λwg

Lg
.

0 ∈ RÑ , if ||[x̃]g||2 ≤ λwg

Lg
.

Let compute ∆[x̃]g by: ∆[x̃]g = [x̃]g − v.

Update Ri by: Ri = Ri + ∆[x̃]g[Ãi]
T
g

end while

and rank the frequency by descent to get the top relevant features. I summarize the

top K feature selection process as follows:

1. For each group g in the feature space G, Ig = Ig + 1, If [x∗(λk)]g is not equal to

zero where k ∈ (0, κ) and I ∈ RG.

2. Rank I by descent and select the top K relevant features from Ai to construct

the feature matrix Āi.

After obtaining the relevant features, I perform the stability selection Li et al.

(2016b); Meinshausen and Buhlmann (2010) to rank the top genetic factors that are

associated with the disease AD.
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Figure 4.2: The Running Time Comparison of DDPP GL+DBCD with the dis-

tributed ADMM.

4.4 Experimental Results

In this section, I conduct several experiments to evaluate the efficiency and ef-

fectiveness of our methods. The proposed framework is implemented across three

institutions with thirty computation nodes on Apache Spark 2 , a state-of-the-art

distributed computing platform. I perform DDPP GL+ DBCD on a sequence of pa-

rameter values and employ stability selection with our methods to determine top risk

SNPs related to AD.

Performance Comparison

In this experiment, I choose the volume of lateral ventricle as variables being pre-

dicted which containing 717 subjects by removing subjects without labels. The vol-

umes of brain regions were extracted from each subject’s T1 MRI scan using Freesurfer

2http://spark.apache.org
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3 . The distributed platform is built across three research institutions that maintain

326, 215, and 176 subjects, respectively and each institution has ten computation

nodes. I perform the DDPP GL+DBCD along a sequence of 100 parameter values

equally spaced on the linear scale of λ/λmax from 1.00 to 0.1. As a comparison, I

run the state-of-the-art distributed solver ADMM Boyd et al. (2011) with the same

experiment setup. The group size is set to be 20 and I vary the number of features

by randomly selecting 0.5 million to 5.9 million from GWAS dataset and report the

result in Fig 4.2. The proposed method achieved a 38-fold speedup compared to

ADMM.

Stability Selection for Top Risk Genetic Factors

I employ stability selection Li et al. (2016b); Meinshausen and Buhlmann (2010)

with DDPP GL+DBCD to select top risk SNPs from the entire GWAS data set with

5,906,152 features. I conduct two different groups of trials by choosing the volume

of hippocampus and entorhinal cortex at baseline as the response variable for each

group, respectively. In each trial, DDPP GL+DBCD is carried out along a 100 linear-

scale sequence of parameter values from 1 to 0.05, respectively. Then I select the top

10000 features and perform stability selection Meinshausen and Buhlmann (2010) to

rank the top risk SNPs for AD. As a comparison, I perform D EDPP+F LQM Li

et al. (2016b) with the same environment setup and report the result in Table 4.1. In

the trials, APOE is ranked 1st by both of D EDPP+F LQM and DDPP GL+DBCD.

However, DDPP GL+DBCD detects more risk genes like GRM8, GPC6, PIK3C2G

and LOC100506272 that are associated with the disease AD in GWAS Rouillard

et al. (2016).

3http://freesurfer.net
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Table 4.1: Top 5 Selected SNPs with the Volume of Entorhinal Cortex and Hip-

pocampal.

Hippocampus by D EDPP+F LQM Hippocampus by DDPP GL+DBCD

No. Chr RS ID Gene No. Chr RS ID Gene

1 19 rs429358 APOE 1 19 rs429358 APOE

2 8 rs34173062 SHARPIN 2 7 rs1592376 GRM8

3 6 rs71573413 unknown 3 5 rs6892867 LOC105377696

4 11 rs10831576
GALNT18

4 6 rs71573413 unknown

5 9 rs3010760 unknown 5 13 rs7317246 GPC6

Entorhinal by D EDPP+F LQM Entorhinal by DDPP GL+DBCD

No. Chr RS ID Gene No. Chr RS ID Gene

1 19 rs429358 APOE 1 19 rs429358 APOE

2 15 rs8025377 ABHD2 2 4 rs1876071 LOC100506272

3 Y rs79584829 unknown 3 18 rs4486982 unknown

4 14 rs41354245 MDGA2 4 14 rs41354245 MDGA2

5 3 rs55904134 unknown 5 12 rs12581078 PIK3C2G

4.5 Summary

I propose a novel distributed feature selection framework to select the relevant

group features for the study of risk genetics factors of AD. The feature selection

framework is based on optimizing the distributed group Lasso problem along a se-

quence of parameter values. The group Lasso screening rules are integrated into

our framework to identify irrelevant features and speed up the learning process.
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Experiments demonstrate the efficiency of the proposed framework. The proposed

DDPP GL+DBCD achieved a speedup of approximate 38 folds compared to the

state-of-the-art distributed solver ADMM Boyd et al. (2011). Moreover, the proposed

distributed framework identified more risk genetics factors via stability selection.
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Chapter 5

SCALING UP THE DICTIONARY LEARNING AND SPARSE CODING BY

STOCHASTIC COORDINATE CODING

5.1 Introduction

Sparse dictionary learning is a representation learning method which aims at find-

ing a sparse representation of the input data (also known as sparse coding) in the form

of a linear combination of basic elements as well as those basic elements themselves.

Dictionary learning and sparse representation methodology developed in the machine

learning field has been shown to be efficient in learning adaptive, over-complete and

diverse features for optimal representations. Despite the rich promise of sparse cod-

ing models, sparse coding is computationally expensive especially when dealing with

large-scale data. The main computational cost of sparse coding lies in the updating

of sparse codes and the dictionary. It is known that updating the sparse code is usu-

ally much more time consuming. Therefore, much of recent work has been devoted

to seeking efficient optimization algorithms for updating the sparse code Lee et al.

(2007); Tibshirani et al. (2012a). The basic idea of these methods is to quickly iden-

tify the non-zero entries of the sparse code, thus reducing the search space. However,

most of these algorithms are iterative batch methods which may not scale to very

large data sets Bousquet and Bottou (2008), since updating the dictionary involves

the computation of the full gradient of the dictionary from the whole data set and

is expensive. Solving sparse coding remains a computationally challenging problem,

especially when dealing with large-scale data sets and learning large size dictionar-

ies. In this study, I propose a novel algorithm to solve the dictionary learning and
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sparse coding problem, called Stochastic Coordinate Coding (SCC). The proposed

algorithm alternatively updates the sparse codes via just a few steps of coordinate

descent and updates the dictionary via second order stochastic gradient descent. The

computational cost is further reduced by focusing on the non-zero components of the

sparse codes and the corresponding columns of the dictionary only in the updating

procedure. Thus, the proposed algorithm significantly improves the efficiency and

the scalability, making sparse coding applicable for large-scale data sets and large

dictionary sizes. Our experiments are conducted on the Drosophila gene expression

data sets. Drosophila melanogaster has been established as a model organism for in-

vestigating the fundamental principles of developmental gene interactions. The gene

expression patterns of Drosophila melanogaster can be documented as digital images,

which are annotated with anatomical ontology terms to facilitate pattern discovery

and comparison. The automated annotation of gene expression pattern images has

received increasing attention due to the recent expansion of the image database. The

effectiveness of gene expression pattern annotation relies on the quality of feature

representation. In this study, I conduct an unsupervised dictionary learning method

to learn the features for the Drosophila image database. The experiment demonstrate

the efficiency and the effectiveness of the proposed algorithm.

5.2 Problem Formulation

I first introduce our notation used in this study. Given a data set X = (x1, ..., xn)

of image patches, each image patch is a p-dimensional vector, xi ∈ Rp, i = 1, ..., n.

Moreover, each xi is preprocessed to be zero mean and unit L2 norm. I first ex-

tract meaningful features from these image patches using sparse coding. The learned

features will be used for image annotation. The linear decomposition of an image

patch using a few number of basis or atoms of a learned dictionary has recently led to
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state-of-art performance in numerous signal processing and machine learning tasks.

Specifically, suppose there are m atoms dj ∈ Rp, j = 1, ...,m, where the number of

atoms is usually much smaller than the number of image patches n but larger than

the dimension of the image patch p. Each image patch can then be represented as

xi =
∑m

j=1 zi,jdj. Therefore, each p-dimensional image patch xi is represented by a

m-dimensional vector zi = (zi,1, ..., zi,m). It is further assumed that each image patch

can be represented only by a small group of atoms, that is, the learned feature vector

zi is a sparse vector.

Given one image patch xi, one can formularize the above idea as the following

optimization problem:

min fi(D, zi) =
1

2
||xi −Dzi||22 + λ||zi||1, (5.1)

where λ is the regularization parameter, ||.||is the standard Euclidean norm and

||zi||1 =
∑m

j=1 |zi,j|. The first term of Eq.(5.1) is the reconstruction error, which

measures how well the new feature represents the image patch. The second term of

Eq.(5.1) ensures the sparsity of the learned feature zi. Each zi is often called the

sparse code. Since zi is sparse, there are only a few entries in zi which are non-zero. I

call its non-zero entries as its support, supp (zi) = {zi,j : zi,j 6= 0, j = 1, ...,m} . Here

D = (d1, ...., dm) ∈ Rm×p is called the dictionary. To prevent an arbitrary scaling of

the sparse code, each column of D is restricted to be in a unit ball, dj ≤ 1. Given the

whole data set X = (x1, ..., xn), the sparse coding problem is then given as follows:

min
D∈ψ,z1,...,zm

F (D, z1, ..., zm) =
1

n

n∑
i=1

fi(D, zi), (5.2)

where ψ is the feasible set of D which is defined as follows:

D = {D ∈ Rp×m : ∀j = 1, ...,m, ||dj||2 ≤ 1}. (5.3)

It is a non-convex problem with respect to joint parameters in the dictionary D

and the sparse codes Z = (z1, ..., zn). Therefore, it is often difficult to find a global
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optimum. However, it is a convex problem when either D or Z is fixed. When the

dictionary D is fixed, solving each sparse code zi is the well known lasso problem.

Many methods have been proposed to solve this problem, including Least Angle

Regression (LARS) Efron et al. (2004), Fast Iterative Soft-Thresholding Algorithm

(FISTA) Beck and Teboulle (2009) and Coordinate Descent (CD) Shalev-Shwartz and

Tewari (2011). It might be worth noting that when the feature dimension m is large

which is often the case, solving a lasso problem is very time consuming. When the

sparse codes are fixed, it is a simple quadratic problem. Therefore, one often uses an

alternating optimization approach to solve the sparse coding problem. Specifically,

when D is fixed, I update the sparse code zi for each image patch xi. When the sparse

codes are fixed, I use gradient descent to update the dictionary:

D ← D − η 1

n

n∑
i=1

∇Dfi(D, zi) = D − η 1

n

n∑
i=1

(Dzi − xi)zTi , (5.4)

where η is the step size. However, at each iteration, full gradient descent requires

evaluation of n derivatives, which is very expensive when the data set is of large-scale.

A popular modification is Stochastic Gradient Descent (SGD) Zhang (2004). At each

iteration, I randomly draw an image patch xt, and update the dictionary as follows:

Dt+1 ← Dt − ηt∇Dtft(Dt, zt), (5.5)

where ηt is called the learning rate.

I summarize the optimization methods in the following. First I initialize the dictio-

nary D. Many dictionary initialization methods have been proposed, such as random

weights Jarrett et al. (2009), random patches and k-means. A detailed comparison

of the performance among these initialization methods has been discussed in Coates

and Ng (2011). With the initial dictionary, conventional sparse coding algorithms
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include the following main steps:

Step 1: Get an image patch xi.

Step 2: Calculate the sparse code zi by using LARS, FISTA or coordinate descent.

Step 3: Update the dictionary D by performing stochastic gradient descent.

Step 4: Go to step 1 and iterate.

I call each cycle, each image patch has been trained once, as an epoch. Usually,

several epochs are required to obtain a satisfactory result. When the number of

image patches and the dictionary size is large, step 2 and step 3 are still very slow. I

propose a novel algorithm to improve both of these parts, which is presented in the

next section.

5.3 Stochastic Coordinate Coding

In this chapter, I introduce our Stochastic Coordinate Coding (SCC) algorithm.

It is known that solving the sparse coding problem usually is very time consuming

especially when dealing with large-scale data sets and large size dictionaries Lee et al.

(2007). The proposed algorithm aims to dramatically reduce the computational cost

of the sparse coding while keeping comparable performance.

I detail our algorithm in the following. Initialize the dictionary via any initializa-

tion method and denote it as D1
1. Initialize the sparse code z0

i = 0 for i = 1, ..., n. Here

I use superscript to represent the number of epochs and I use subscript to represent

the index of data points. Then starting from k = 1 and i = 1, I do the following:

1. Get an image patch xi.

2. Update zki via one or a few steps of coordinate descent:

zki = CD(Dk
i , z

k−1
i , xi). (5.6)
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Specifically, for j from 1 tom, I update the j-th coordinate zk−1
i,j of zk−1

i cyclically

as follows:

bj ← (dki,j)
T (xi −Dk

i z
k−1
i ) + zk−1

i,j , (5.7)

zk−1
i,j ← Γλ(bj), (5.8)

where Γ is the soft thresholding shrinkage function Combettes and Wajs (2005).

I call such one updating cycle as one step of coordinate descent. The updated

sparse code is then denoted by the term zik.

3. Update the dictionary D by using stochastic gradient descent:

Dk
i+1 = PΨ(Dk

i − ηki∇Dk
i
fi(D

k
i , z

k
i )), (5.9)

where P denotes the projection operator. I set the learning rate as an approxi-

mation of the inverse of the Hessian matrix. The gradient of Dk
i can be obtained

as follows:

∇Dk
i
fi(D

k
i , z

k
i ) = (Dk

i z
k
i − xi)(zki )T . (5.10)

4. i = i+ 1. If i > n, then set Dk+1
1 = Dk

n+1, k = k + 1 and i = 1.

I illustrate our algorithmic framework in Fig 5.1. At each iteration, I get an image

patch xi. Then I perform one or a few steps of coordinate descent to find the support

of the sparse code. Next, I perform a few steps of coordinate descent on the support

to obtain a new sparse code zki . Then I update the support of the dictionary by

second order stochastic gradient descent.

It is known that the second step - updating the sparse code is the most time

consuming part Balasubramanian et al. (2013). Coordinate descent is known as one

of the state of art methods for solving this lasso problem. Given an image patch xi,

coordinate descent initialize z0
i = 0 and then update the sparse code many times via
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Figure 5.1: Illustration of Our Algorithmic Framework. With an Image Patch xi, I

Perform One Step of Coordinate Descent to Find the Support of the Sparse Code.

Next, I Perform a Few Steps of Coordinate Descent on the Support to Obtain a New

Sparse Code zki . Then I Update the Support of the Dictionary by Second Order

Stochastic Gradient Descent to Obtain a New Dictionary Dk
i+1.

matrix-vector multiplication and thresholding. Empirically, iterations may take tens

hundreds steps to converge. However, after a few steps, the support of coordinates,

the locations of the nonzero entries in zi, is very accurate, usually less than ten steps.

Note that the support of the sparse code is usually more important than the exact

value of the sparse code. Moreover, since the original sparse coding is a non-convex

problem and it involves an alternating updating, I do not need to run the coordinate

descent to final convergence. Therefore, I propose to update the sparse code zi by

using a few steps of coordinate descent. For the k-th epoch, I denote the updated

sparse code as zki . It will be used as an initial sparse code for the k+1th epoch.
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After updating the sparse code, I know its support. One of my key insights is

that when updating the dictionary, I can only need to focus on the support of the

dictionary but not all columns of the dictionary. Let zki,j denote j-th entry of zki and

let dki,j denote the j-th column of the dictionary Dk
i . If zki,j = 0, then ∇dki,j

fi(D
k
i , z

k
i ) =

(Dk
i z

k
i − xi)(zki,j)T = 0. Therefore, dki,j does not need to be updated. Assume zki,j is

non-zero. Let dki,j denote the j-th column of the dictionary Dk
i+1. Then I can update

dki+1,j as follows:

dki+1,j ← dki,j − ηki,j∇dki,j
fi(D

k
i , z

k
i ) = dki,j − ηki,jzi,j(Dk

i z
k
i − xi), (5.11)

Note that zki here is a sparse vector, therefore computing Dk
i z

k
i is very efficient. The

computational cost will be significantly reduced when the support is very small. Note

that for online dictionary learning, one usually has to update all columns of the

dictionary. It is because that online dictionary learning uses the averaged gradient,

which is usually not sparse. In other words, the support of the dictionary is itself.

Therefore, one has to update all columns of the dictionary for each image patch. It

is time consuming especially when the dictionary size is very large.

When the data sets are very large, the learning rate ηki will be very small after

going through large number of image patches. In this case, the dictionary will not

change very much and the efficiency of the training will decrease. In practice, turning

the learning rate is very tricky and sensitive. In this study, I use an adaptive learning

rate. I aim to design a learning rate with the following two principles. The first one

is that for different columns of the dictionary, I may use different learning rates. The

second is that for the same column, the learning rate should decrease. Otherwise,

the algorithm might not converge. To obtain the learning rate, I use the Hessian

matrix of the objective function. It can be shown that the following matrix provides

an approximation of the Hessian: H =
∑

k,i z
k
i (zki )T , when k and i go to infinity.
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Algorithm 7 SCC (Stochastic Coordinate Coding)

Require: Data set X = (x1, ..., xn) ∈ Rp×n.

Ensure: D ∈ Rp×m and Z = (x1, ..., xn) ∈ Rm×n.

Initialize: D1
1 = 0, H = 0 and z0

i = 0 for i = 1, ..., n.

for k = 1 to κ do

for i = 1 to n do

Get an image patch xi.

Update zki via one or a few steps of coordinate descent:

zki ← CD(Dk
i , z

k−1
i , xi).

Update the Hessian matrix and the learning rate:

H ← H + zki (zki )T , ηki,j = 1
hjj

.

Update the support of the dictionary via SGD:

dki+1,j ← dki+1,j − ηki,jzi,j(Dk
i z

k
i − xi).

If i = n, set Dk+1
1 = Dk

n+1.

end for

end for

Output

D = Dκ
n and zi = zκi for i = 1, ..., n.

According to the second order stochastic gradient descent, I should use the inverse

matrix of the Hessian as the learning rate. However, computing a matrix inversion

problem is computationally expensive. In order to obtain the learning rate, I simply

use the diagonal element of the matrix H. Note that if the columns of the dictionary

have low correlation, H is close to a diagonal matrix. Specifically, I first initialize

H = 0. Then update the matrix H as follows:

H ← H + zki (zki )T . (5.12)
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When updating the j-th column for the ith image patch xi, I replace ηki,j in equation

(5.11) by 1/hjj, where hjj is the j-th diagonal element of H. In this way, I do not

have to tune the learning rate parameter. It might be worth noting that I do not

have to store the whole matrix of H but only its diagonal elements. I summarize our

algorithm in Algorithm 7.

5.4 Experiments

In this chapter, I empirically evaluate the efficiency and effectiveness of our pro-

posed Stochastic Coordinate Coding (SCC) algorithm. The code of SCC is available

on the GitHub 1 . A detailed description of data and experimental setting is given

in Chapter 5.4.1. I study the influence of different settings of SCC in Chapter 5.4.2,

including the influence of the number of coordinate descent steps and the learning

rate. Finally, I compare SCC with the state-of-art sparse coding algorithm - Online

Dictionary Learning (ODL) Mairal et al. (2009) in terms of speedup and accuracy.

Data Description and Experimental Setting

The Drosophila gene expression images used in our work are obtained from the Fly-

Express database, which contains standardized images from the Berkeley Drosophila

Genome Project (BDGP). The Drosophila embryogenesis is partitioned into 6 stage

ranges (1-3, 4-6, 7-8, 9-10, 11-12, 13-17) in BDGP. I focus on the later 5 stage ranges

as there are few keywords appeared in the first stage range.

The Drosophila embryos are 3D objects Weber et al. (2009), and the FlyExpress

database contains 2D images that are taken from different views (lateral, dorsal, and

lateral-dorsal) Mace et al. (2010). As majority of images in the database are in lateral

view Ji et al. (2009), I focus on the lateral-view images in our study. For each image,

1https://github.com/liohzhee/Stochastic-Coordinate-Coding
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Table 5.1: The Comparison of Computational Time Between SCC and ODL for

Different Dictionary Sizes

Methods ODL SCC

Dictionary Sizes 500 1000 2000 500 1000 2000

Update Z 2.58 8.83 38.75 0.22 0.39 0.71

Update D 5.23 19.48 63.89 0.03 0.03 0.04

Total time (in

hours)
7.81 28.31 102.64 0.25 0.42 0.75

I first use a 16 × 16 window to obtain a collection of small image patches. Then

I extract a 128-dimensional Scale-Invariant Feature Transform (SIFT) Lowe (1999)

feature from each image patch. Each SIFT feature is further normalized to be zero

mean and unit L2 norm. The patches with small standard deviations were discarded.

After preprocessing the data, I have 555009, 259882, 286349, 989653, 1006012 image

patches for different stage ranges (4-6, 7-8, 9-10, 11-12, 13-17) respectively.

For each state range, I first initialize the dictionary via selecting random patches

Coates and Ng (2011), which has been shown to be a very efficient and effective

initialization method in practice. Then I learn the sparse codes by different sparse

coding methods using the same initial dictionary. All 5 stage ranges are trained for 10

epochs using a batch size of 1. After learning the sparse codes, I apply max pooling

Scherer et al. (2010) to generate the features for annotation. Finally, I employ the

one-against-rest support vector machines (SVM) Chang and Lin (2011) to annotate

the gene expression pattern images.
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The number of Coordinate Descent Steps

In this experiment, I study the influence of the number of coordinate descent steps

to the convergence. I use the state range 2 in our experiments. It has 555009 image

patches and each image patch is of 128 dimensions. The dictionary size is 1000× 128

. I tested 1, 3, 5, 7, 9 steps of coordinate descent. The results are evaluated by the

objective function value and the running time, as shown in Fig 5.2.

It can be seen from Fig 5.2 that using a great number of coordinate descent steps

can achieve lower objective function value, however the computational time would

increase. Therefore I should choose a suitable number of coordinate descent steps.

In practice, I choose 3 steps of coordinate descent, which performs quite well in all

experiments. Also, I can see from the left figure of Fig 5.2 that SCC converges under

coordinate descent steps.

Computational Time Comparison

I first show the computational time of updating the dictionary and updating the

sparse code. Table 5.1 shows the computational time of these two steps on three

different dictionary sizes, 500× 128, 1000× 128 and 2000× 128. It can be seen from

the table that SCC significantly reduces the computational time. Note that when

the size of the dictionary increases, the computational time of OL increases rapidly.

However, for SCC the computational time increases much slower compared to OL,

especially the computational time of updating the dictionary. Therefore, SCC has a

better scalability when dealing with large size dictionaries.

A computational time as well as an objective function value comparison is given

in Table 5.2. It can be seen from the table that SCC archives a very low objective

function value, which is comparable with ODL. Meanwhile, the computational time
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Table 5.2: A Comparison of SCC and ODL on the Computational Time.

128× 500 Stages 4-6 7-8 9-10 11-12 13-17

Objective ODL 0.137 0.150 0.147 0.147 0.149

function value SCC 0.138 0.150 0.148 0.147 0.150

Running time ODL 15.71 7.81 8.60 30.64 31.14

(in hours) SCC 0.144 0.068 0.075 0.257 0.262

Speedup 109.10 114.85 114.67 119.22 118.85

128× 1000 Stages 4-6 7-8 9-10 11-12 13-17

Objective ODL 0.132 0.142 0.140 0.140 0.142

function value SCC 0.132 0.143 0.141 0.141 0.143

Running time ODL 59.61 28.31 30.77 107.80 111.01

(in hours) SCC 0.189 0.090 0.098 0.340 0.347

Speedup 315.39 314.55 313.97 317.05 319.91

128× 2000 Stages 4-6 7-8 9-10 11-12 13-17

Objective ODL 0.127 0.136 0.134 0.134 0.137

function value SCC 0.128 0.137 0.135 0.135 0.138

Running time ODL 219.21 102.64 113.09 390.88 397.34

(in hours) SCC 0.144 0.068 0.075 0.257 0.262

Speedup 1522.3 1509.4 1507.8 1520.9 1516.5
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Figure 5.2: A Comparison of Different Coordinate Descent Steps. The Figure on the

Left Shows the Objective Value Curves When Varying the Number of Coordinate

Descent Steps. The Horizontal Axis Represents the Number of Epochs. The Figure

on the Right Shows the Computational Time (in Minutes) of Running 10 Epochs.

It Can Be Seen From the Figure that Using a Great Number of Coordinate Descent

Steps Can Achieve Lower Objective Value. However, the Overall Computational

Time Would Increase.

of SCC is much less than ODL. Note that when the dictionary size increases, the

objective function value decreases.

In this work, I focus on the the single batch size setting, that is, I process one image

patch in each iteration. I also compare our proposed SCC (with a batch size of 1) with

mini-batch ODL (with a batch size of 512). Our empirical results show that the mini-

batch ODL is about 3-4 times faster than SCC. Note that the mini-batch algorithms

are usually faster than incremental algorithms. In addition, the implementation of

mini-batch ODL is well optimized, making a direct time comparison difficult.
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Classification Performance Comparison

In this experiment, I compare the results of Drosophila gene image annotation by

using learned features from SCC and ODL. I tested all 5 stage ranges with different

dictionary sizes, i.e., 500×128, 1000×128 and 2000×128. I choose four measurements:

accuracy, AUC, sensitivity and specificity to evaluate the performance of different

approaches. Comparison results for all 5 stage ranges by a weighted average of the

top 10 terms are shown in Fig 5.3 and Fig 5.2, respectively.

It can be seen from the figure that when the dictionary size is 500 × 128, ODL

performs slightly better SCC. When the dictionary size is 1000× 128 or 2000× 128,

SCC and ODL achieve comparable results. However, SCC is significantly faster than

ODL in this case. It might be worth noting that when the dictionary size increases,

SCC and ODL both improve their performance.

5.5 Summary

In this study, I propose a novel algorithm called Stochastic Coordinate Coding

(SCC) to solve the dictionary learning and sparse coding problem. In SCC, I perform

a few steps of coordinate descent to update the sparse codes and use second order

stochastic gradient descent to update the dictionary. The sparse code is first updated

via one step of coordinate descent. Then only the nonzero entries of the sparse

code are updated. The computational cost is further reduced by only updating the

support of the sparse codes and the dictionary. What’s more, I propose an addaptive

method to update the learning rate. In SCC, each coordinate of the sparse code

has its own learning rate. The learning rates are updated adaptively. Extensive

experiments on Drosophila gene expression data sets have demonstrated the efficiency

of the proposed algorithm. Compared to the state-of-art sparse coding algorithms, the
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proposed algorithm achieves one or two orders of magnitude speedup when varying

the dictionary size. In the next chapter, I extend the proposed dictionary learning

method to a multi-task learning framework.
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(a) ODL (m = 500)

(b) ODL (m = 1000)

(c) ODL (m = 2000)

Figure 5.3: Classification Performance of ODL
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(a) SCC (m = 500)

(b) SCC (m = 1000)

(c) SCC (m = 2000)

Figure 5.4: Classification Performance of SCC
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Chapter 6

MULTI-SOURCE MULTI-TARGET DICTIONARY LEARNING FOR

PREDICTION OF COGNITIVE DECLINE

6.1 Introduction

In this chapter, I propose a multi-task dictionary learning method to predict the

cognitive decline of AD patients. Recently, Multi-task sparse feature learning has been

successfully applied to many computer vision and biomedical informatics researches.

It aims to improve the generalization performance by exploiting the shared features

among different tasks. However, most of the existing algorithms are formulated as a

supervised learning scheme. Its drawback is with either insufficient feature numbers

or missing label information. To address these challenges, I formulate an unsupervised

framework for multi-task sparse feature learning based on a novel dictionary learning

algorithm. To solve the unsupervised learning problem, I propose a two-stage Multi-

Source Multi-Target Dictionary Learning (MMDL) algorithm. In stage 1, I propose a

multi-source dictionary learning method to utilize the common and individual sparse

features in different time slots. In stage 2, supported by a rigorous theoretical analysis,

I develop a multi-task learning method to solve the missing label problem.

The slow progressive neurodegenerative disorder of AD leads to a loss of mem-

ory and reduction of cognitive function. Many clinical/cognitive measures such as

Mini Mental State Examination (MMSE) and Alzheimer’s Disease Assessment Scale

cognitive subscale (ADAS-Cog) have been designed to evaluate a subject’s cognitive

decline. Subjects are commonly divided into three different groups: AD, Mild Cogni-

tive Impairment (MCI) and Cognitively Unimpaired (CU), defined clinically based on
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behavioral and above assessments. It is crucial to predict AD related cognitive decline

so an early intervention or prevention becomes possible. Prior research have shown

measures from brain magnetic resonance (MR) images correlate closely with cogni-

tive changes and have great potentials to provide early diagnostic markers to predict

cognitive decline presymptomatically in a sufficiently rapid and rigorous manner.

The main challenge in AD diagnosis or prognosis with neuroimaging arises from

the fact that the data dimensionality is intrinsically high while only a small number

of samples are available. In this regard, machine learning has been playing a pivotal

role to overcome this so-called “large p, small n” problem. A dictionary that allows

us to represent original features as superposition of a small number of its elements so

that I can reduce high dimensional image to a small number of features. Dictionary

learning Lee et al. (2006) has been proposed to use a small number of basis vectors

to represent local features effectively and concisely and help image content analysis.

However, most existing works on dictionary learning focused on the prediction of

target at a single time point Zhang et al. (2016b); Nie et al. (2015) or some region-

of-interest Zhang et al. (2016a,c, 2017a). In general, a joint analysis of tasks from

multiple sources is expected to improve the performance but remains challenging.

Although a general unsupervised dictionary learning may overcome the missing

label problem to obtain the sparse features, I still need to consider the prediction

labels at different time points after I learn the sparse features. A forthright method

is to perform linear regression at each time point and determine weighted matrix W

separately. However, even when I have the common dictionary which models the

relationship among different tasks, if prediction is purely based on linear regression

which treats all tasks independently and ignores the useful information reserved in

the change along the time continuum, there still exists strong bias to predict future

multiple targets clinical scores.
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To excavate the correlations among the cognitive scores, several multi-task models

were put forward. Wang et al. (2011a) proposed a sparse multi-task regression and

feature selection method to jointly analyze the neuroimaging and clinical data in

prediction of the memory performance. Zhang and Shen Zhang et al. (2012) exploited

a l2,1-norm based group sparse regression method to select features that could be used

to jointly represent the different clinical status and two clinical scores (MMSE and

ADAS-cog). Xiang et al. (2014) proposed a sparse regression-based feature selection

method for AD/MCI diagnosis to maximally utilize features from multiple sources

by focusing on a missing modality problem. However, the clinical scores for many

patients are missing at some time points, i.e., the target vector yi may be incomplete

and the above methods all failed to model this issue. A simple strategy is to remove

all patients with missing target values. It, however, significantly reduces the number

of samples. Zhou et al. (2012) considered multi-task with missing target values in the

training process, but the algorithm did not incorporate multiple sources data.

In this study, I propose a novel integrated unsupervised framework, termed Multi-

Source Multi-Target Dictionary Learning (MMDL) algorithm, I utilize shared and in-

dividual dictionaries to encode both consistent and changing imaging features along

longitudinal time points. Meanwhile, I also formulate different time point clinical

score predictions as multi-task learning and overcome the missing target values in

the training process. The pipeline of our method is illustrated in Fig 6.1. I evalu-

ate the proposed framework on the N = 3970 longitudinal images from Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database and use longitudinal hippocampal

surface features to predict future cognitive scores. Our experimental results outper-

form some other state-of-the-art methods and demonstrate the effectiveness of the

proposed algorithm.

Our main contributions can be summarized into threefold. Firstly, I considered
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Figure 6.1: The Pipeline of Our Method. I Extracted Hippocampi From MRI Scans

(a), Then I Registered Hippocampal Surfaces (b) and Computed Surface Multivariate

Morphometry Statistics (c). Image Patches Were Extracted From the Surface Maps

to Initialize the Dictionary (d) for Multi-Source Multi-Target Dictionary Learning (e).

I Used Features from Two Time Points to Predict Five Future Time Points MMSE

and ADAS-cog (f).

the variance of subjects from different time points (Multi-Source) and proposed an

unsupervised dictionary learning method in stage 1 of the MMDL algorithm, in which

not only does a patient share features between different time slots but different pa-

tients share some common features within the same time point. I also explore the

relationship between the shared and individual dictionary in stage 1. Secondly, I

use sparse features learned from dictionary learning as an input and multiple future

clinical scores as corresponding labels (Multi-Target) to train the multi-task predic-

tion model in stage 2 of the MMDL Algorithm. To the best of our knowledge, it

is the first learning model which unifies both multiple source inputs and multiple

target outputs with dictionary learning research for brain imaging analysis. Lastly,

I also take into account the incomplete label problem. I deal with the missing label

87



problem during the regression process and theoretically prove the correctness of the

regression model. Our extensive experimental results on the ADNI dataset show the

proposed MMDL achieves faster running speed and lower estimation errors, as well as

reasonable prediction scores when comparing with other state-of-the-art algorithms.

6.2 Multi-Source Multi-Target Dictionary Learning

Stage 1: Multi-Source Dictionary Learning Stage

Given subjects from T time points: {X1, X2, ..., XT}, our goal is to learn a set

of sparse codes {Z1, Z2, ..., ZT} for each time point where Xt ∈ Rp×nt , Zt ∈ Rlt×nt

and t ∈ {1, ..., T}. p is the feature dimension of each subject, nt is the number of

subjects for Xt and lt is the dimension of each sparse code in Zt. When employing

the online dictionary learning (ODL) method Mairal et al. (2009) to learn the sparse

codes Zt by Xt individually, I obtain a set of dictionary {D1, ..., DT} but there is no

correlation between learnt dictionaries. Another solution is to construct the subjects

{X1, ..., XT} into one data matrix X to obtain the dictionary D. However, only one

dictionary D is not sufficient to model the variations among subjects from different

time points. To address this problem, I integrate the idea of multi-task learning

into the ODL method. I propose a novel online dictionary learning algorithm, called

Multi-Source Multi-Target Dictionary Learning (MMDL), to learn the subjects from

different time points.

For the subject matrix Xt of a particular time point, MMDL learns a dictio-

nary Dt and sparse codes Zt. Dt is composed of two parts: Dt = [D̂t, D̄t] where

D̂t ∈ Rp×l̂, D̄t ∈ Rp×l̄t and l̂ + l̄t = lt. D̂t is the common dictionary among all the

learnt dictionaries {D1, ..., DT} while D̄t is different from each other and only learnt

from the corresponding matrix Xt. Therefore, objective function of MMDL can be
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reformulated as follows:

min
D1,··· ,DT∈Ψt

Z1,··· ,ZT

T∑
t=1

1

2
||Xt− [D̂t, D̄t]Zt||2F + λ

T∑
t=1

||Zt||1, subjects to: D̂1 = · · · = D̂T (6.1)

where Ψt = {Dt ∈ Rp×lt : ∀j ∈ 1, ..., lt, ||[Dt]j||2 ≤ 1} (t = 1, 2, · · · , T ) and [Dt]j is

the jth column of Dt.

Fig 6.2 illustrates the framework of MMDL with subjects of ADNI from three

different time points which represents as X1, X2 and X3, respectively. Through the

multi-source dictionary learning stage of MMDL, I obtain the dictionary and sparse

codes for subjects from each time point t: Dt and Zt. In Stage 1, a dictionary Dt is

composed by a shared part D̂t and an individual part D̄t. In this example, D̂1, D̂2

and D̂3 are the same. For the individual part of dictionaries, MMDL learns different

D̄t only from the corresponding matrix Xt. I vary the number of columns l̄t in D̄t to

introduce the variant in the learnt sparse codes Zt. As a result, the feature dimensions

of learnt sparse codes matrix Zt are different from each other. Then I employ the

max-pooling Boureau et al. (2010) method to extract the features and use extracted

features to perform the regression across different time points.

The initialization of dictionaries in MMDL is critical to the whole learning process.

I propose a random patch method to initialize the dictionaries from different time

points. The main idea of the random patch method is to randomly select l image

patches from n subjects {x1, x2, ..., xn} to construct D where D ∈ Rp×l. It is a

similar way to perform the random patch approach in MMDL. In MMDL, the way I

initialize D̂t is to randomly select l̂ subjects from subjects across different time points

{X1, · · · , XT} to construct it. For the individual part of each dictionary, I randomly

select l̄ subjects from the corresponding matrix Xt to construct D̄t. After initializing

dictionary Dt for each time point, I set all the sparse codes Zt to be zero at the

beginning. For each sample Xt at t-th time point, Xt ∈ Rp×nt .
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Figure 6.2: Illustration of the Learning Process of MMDL on ADNI Datasets From

Multiple Different Time Points to Predict Multiple Future Time Points Clinical

Scores.

Stage 2: Multi-Target Learning with Missing Label

In the longitudinal AD study, I measure the cognitive scores of selected patients

at multiple time points. Instead of considering the prediction of cognitive scores

at a single time point as a regression task, I formulate the prediction of clinical

scores at multiple future time points as a multi-task regression problem. I employ

multi-task regression formulations in place of solving a set of independent regression

problems since the intrinsic temporal smoothness information among different tasks

can be incorporated into the model as prior knowledge. However, the clinical scores

for many patients are missing at some time points, especially for 36 and 48 months

ADNI data. It is necessary to formulate a multi-task regression problem with missing

target values to predict clinical scores.

In this study, I use a matrix Θ ∈ Rmt×nt to indicate missing target values, where
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Θi,j = 0 if the target value of label Yt(i, j) is missing and Θi,j = 1 otherwise. Give the

sparse codes {Z1, ..., ZT} and corresponding labels {Y1, ..., YT} from different times

where Yt ∈ Rmt×nt , I formulate the multi-target learning stage with missing target

values as:

min
W1,··· ,WT

T∑
t=1

||Θ(Yt −WtZt)||2F + ξ
T∑
t=1

||Wt||2F (6.2)

Although the Eqn. 6.2 is associated with missing values on the labels, I show that

it has a close form and present the theoretical analysis of stage 2 as follows:

Theorem For the data matrix pair (Zt, Yt), I denote the jth row’s labels Ỹt(j) in

Yt. I use Z̃t and Ỹt(j) to represent the remaining datasets after removing the missing

value in Yt(j). The problem of (Eqn. 6.2) can decomposed as the following equation:

min
wt(j)
||(Ỹt(j)− wt(j)Z̃t)||22 + ξ||wt(j)||22 (6.3)

Proof Eqn (6.3) is known the Ridge regression Hoerl and Kennard (1970). To

optimize the problem, I calculate the gradient and set the gradient to be zero. Then

I can get the optimal wt(j) by the following steps:

2Z̃t(Z̃
T
t wt(j)− Ỹt(j)) + 2ξwt(j) = 0

Z̃tZ̃
T
t wt(j)− Z̃tỸt(j) + ξwt(j) = 0

(Z̃tZ̃
T
t + ξI)wt(j) = Z̃tỸt(j)

wt(j) = (Z̃tZ̃
T
t + ξI)−1Z̃tỸt(j) �

After solving wt(j) for every time point where j ∈ {1, ...,mt}, I can obtain the

learnt model {W1, ...,WT} to predict the clinical scores.

Our MMDL algorithm can be summarized into Algorithm 8. k denotes the epoch

number where k ∈ {1, ..., κ}. Φ represents the shared part of each dictionary Dt which

is initialized by the random patch method. For each image patch xt(i) extracted from
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Algorithm 8 Multi-Source Multi-Target Dictionary Learning (MMDL)

Require: Samples and corresponding labels from different time points:

{X1, X2, .....XT} and {Y1, Y2, .....YT}

Ensure: The model for different time points: {W1, ...,WT}.

1: Stage 1: Multi-Source Dictionary Learning

2: for k = 1 to κ do

3: For each image patch xt(i) from sample Xt, i ∈ {1, ..., nt} and t ∈ {1, ..., T}.

4: Update D̂k
t : D̂

k
t = Φ.

5: Update zk+1
t (i) and index set Ik+1

t (i) by a few steps of CCD:

6: [zk+1
t (i), Ik+1

t (i)] = CCD(D̂k
t , D̄

k
t , xt(i), I

k
t (i), zkt (i)).

7: Update the D̂t and D̄t by one step SGD:

8: [D̂k+1
t , D̄k+1

t ] = SGD(D̂k
t , D̄

k
t , xt(i), I

k+1
t (i), zk+1

t (i)).

9: Normalize D̂k+1
t and D̄k+1

t based on the index set Ik+1
t (i).

10: Update the shared dictionary Φ: Φ = D̂k+1
t .

11: end for

12: Obtain the learnt dictionaries and sparse codes: {D1, ..., DT}, {Z1, ..., ZT}.

13: Stage 2: Multi-Target Regression with incomplete label

14: for t = 1 to T do

15: Given the jth column Yt(j) in Yt, for the jth model wt(j) in Wt

16: wt(j) = (Z̃tZ̃
T
t + ξI)−1Z̃tỸt(j)

17: end for
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Xt, I learn the i-th sparse code zk+1
t (i) from Zt by several steps of Cyclic Coordinate

Descent (CCD) Canutescu and Dunbrack (2003). Then I use learnt sparse codes

zk+1
t (i) to update the dictionary D̂k+1

t and D̄k+1
t by one step Stochastic Gradient

Descent (SGD)Zhang (2004). Since zk+1
t (i) is very sparse, I use the index set Ik+1

t (i)

to record the location of non-zero entries in zk+1
t (i) to accelerate the update of sparse

codes and dictionaries. Φ is updated by the end of the k-th iteration to ensure D̂k+1
t

is the same part among all the dictionaries.

Updating the Sparse Codes

After I pick an image patch xt(i) from the sample Xt at the time point t, I fix

the dictionary and update the sparse codes by following the ODL method. Then the

optimization problem I need to solve becomes the following equation:

min
zt(i)

F (zt(i)) =
1

2
||xt(i)− [D̂t, D̄t]zt(i)||22 + λ||zt(i)||1. (6.4)

It is known as the Lasso problem Tibshirani (1996). Coordinate descent Canutescu

and Dunbrack (2003) is known as one of the state-of-the-art methods for solving

this problem. In this study, I perform the CCD to optimize Eqn (6.4). Empirically,

the iteration may take thousands of steps to converge, which is time-consuming in

the optimization process of dictionary learning. However, I observed that after a

few steps, the support of the coordinates, i.e., the locations of the non-zero entries

in zt(i), becomes very accurate, usually after less than ten steps. In this study, I

perform P steps CCD to generate the non-zero index set Ik+1
t , recording the non-zero

entry of zk+1
t (i). Then I perform S steps CCD to update the sparse codes only on the

non-zero entries of zk+1
t (i), accelerating the learning process significantly. SCC Lin

et al. (2014); Lv et al. (2017) employs a similar strategy to update the sparse codes in

a single task. For the multi-task learning, I summarize the updating rules as follows:
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(a) Perform P steps CCD to update the locations of the non-zero entries Ik+1
t (i)

and the model zt(i)
k+1.

(b) Perform S steps CCD to update the zt(i)
k+1 in the index of Ik+1

t (i).

In (a), for each step CCD, I will pick up j-th coordinate to update the model

zt(i)j and non-zero entries, where j ∈ {1, ..., lt}. I perform the update from the 1st

coordinate to the lt-th coordinate. For each coordinate, I calculate the gradient g

based on the objective function (6.4) then update the model zk+1
t (i)j based on g. The

calculation of g and zk+1
t (i)j follows the equations:

g = [D̂k
t , D̄

k
t ]
T
j (Ω([D̂k

t , D̄
k
t ], z

k
t (i), Ikt (i))− xt(i)), (6.5)

zk+1
t (i)j = Γλ(z

k
t (i)j − g), (6.6)

where Ω is a sparse matrix multiplication function that has three input parameters.

Take Ω(A, b, I) as an example, A denotes a matrix, b is a vector and I is an index set

that records the locations of non-zero entries in b. The returning value of function Ω

is defined as: Ω(A, b, I) = Ab. When multiplying A and b, I only manipulate the non-

zero entries of b and corresponding columns of A based on the index set I, speeding

up the calculation by utilizing the sparsity of b. Γ is the soft thresholding shrinkage

function Combettes and Wajs (2005) and the definition of Γ is given by:

Γϕ(x) = sign(x)(|x| − ϕ). (6.7)

In the end of (a), I count the non-zero entries in zk+1
t (i) and store the non-zero index

in Ik+1
t (i). In (b), I perform S steps CCD by only considering the non-zero entries

in zk+1
t (i) . As a result, for each index µ in Ik+1

t (i), I calculate the gradient g and

update the zk+1
t (i)µ by:

g = [D̂k
t , D̄

k
t ]
T
µ (Ω([D̂k

t , D̄
k
t ], z

k+1
t (i), Ik+1

t (i))− xt(i)), (6.8)
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zk+1
t (i)µ = Γλ((z

k+1
t (i)µ − g). (6.9)

Since I only focus on the non-zero entries of the model and P is less than 10 iteration

and S is a much larger number, I accelerate the learning process of sparse codes

significantly.

Updating the Dictionaries

I update the dictionaries by fixing the sparse codes and updating the current

dictionaries. Then, the optimization problem becomes as follow:

min
D̂t,D̄t

F (D̂t, D̄t) =
1

2
||xt(i)− [D̂t, D̄t]zt(i)||22 (6.10)

After I update the sparse codes, I have already known the non-zero entries of

zk+1
t (i). Another key insight of MMDL is that I just need to focus on updating

the non-zero entries of the dictionaries but not all columns of the dictionaries, and

it accelerates the optimization dramatically. For example, when I update the i-th

column and j-th row’s entry of the dictionary D, the gradient of Dj,i is set to be

∇Dj,i = zi(D
T
j z − xj). If the i-th entry of z is equal to zero, the gradient would be

zero. As a result, I do not need to update the i-th column of the dictionary D. The

learning rate is set to be an approximation of the inverse of the Hessian matrix Hk+1
t ,

which is updated by the sparse codes zk+1
t (i) in k-th iteration. In the beginning, I

update the Hessian matrix by:

Hk+1
t = Hk

t + zk+1
t (i)zk+1

t (i)T . (6.11)

I perform one step SGD to update the dictionaries: D̂k+1
t and D̄k+1

t . To speed up

the computation, I use a vector to store the information Dz − x:

R = Ω([D̂k
t , D̄

k
t ], z

k+1
t (i), Ik+1

t (i))− xt(i). (6.12)
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For entry of dictionary in the µ-th column and j-th row, the procedure of learning

dictionaries take the form of

[D̂k+1
t , D̄k+1

t ]j,µ = [D̂k
t , D̄

k
t ]j,µ −

1

Hk+1
t (µ, µ)

zk+1
t (i)µRj, (6.13)

where µ is the non-zero entry stored in Ik+1
t (i). For the µ-th column of dictionary,

I set the learning rate as the inverse of the diagonal element of the Hessian matrix,

which is 1/Hk+1
t (µ, µ)

Due to Dt ∈ Ψt in equation (6.1), it is necessary to normalize the dictionaries D̂k+1
t

and D̄k+1
t after updating them. I can perform the normalization on the corresponding

columns of non-zero entries from zk+1
t (i) because the dictionaries updating only occurs

on these columns. Utilizing the non-zero information from Ik+1
t (i) can accelerate the

whole learning process significantly.

6.3 Experiments

Experimental Setting

I studied multiple time points structural MR Imaging from ADNI baseline (837)

and 6-month (733) datasets. The responses are the MMSE and ADAS-cog coming

from 5 different time points: M12, M18, M24, M36 and M48. Thus, I learned a total of

3970 images which combines 2 sources and 5 targets. The sample sizes corresponding

to 5 targets are 728, 326, 641, 454 and 251. For the experiments, I used hippocampal

surface multivariate statistics Wang et al. (2011b) as learning features, which is a

4× 1 vector on each vertex of 15000 vertices on every hippocampal surface.

I built a prediction model for the above datasets using MMDL algorithm. The

code of MMDL is available on the GitHub 1 . To train the prediction models, 1102

patches of size 10 × 10 are extracted from surface mesh structures and each patch

1https://github.com/liohzhee/Multi-Task-Dictionary-Learning
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dimension is 400. The model was trained on an Intel(R) Core(TM) i7-6700 K CPU

with 4.0GHz processors, 64 GB of globally addressable memory and a single Nvidia

GeForce GTX TITAN X GPU. In the experimental setting of Stage 1 in MMDL, the

sparsity λ = 0.1. Also, I selected 10 epochs with a batch size of 1 and 3 iterations

of CCD (P is set to be 1 and S is 3). When the dictionaries and sparse codes were

learned, Max-Pooling was used to generate features for annotation and get a 1×1000

vector feature for each images. In the Stage 2, 5-fold cross validation is used to select

model parameters ξ in the training data (between 10−3 and 103).

In order to evaluate the model, I randomly split the data into training and testing

sets using a 9:1 ratio and used 10-fold cross validation to avoid data bias. Lastly,

I evaluated the overall regression performance using weighted correlation coefficient

(wR) and root mean square error (rMSE) for task-specific regression performance

measures. The two measures are defined as wR(Y, Ŷ ) =
∑t

i=1Corr(Yi, Ŷi)ni/
∑t

i=1 ni,

rMSE(y, ŷ) =
√
||y − ŷ||22/n. For wR, Yi is the ground truth of target of task i and

Ŷi is the corresponding predicted value, Corr is the correlation coefficient between

two vectors and ni is the number of subjects of task i. For each task of rMSE, y and

n is the ground truth of target and the number of subjects and ŷ is the corresponding

prediction. The smaller rMSE, the bigger wR mean the better results. I report the

mean and standard deviation based on 50 iterations of experiments on different splits

of data.

I compared MMDL with multiple state-of-the-art methods, ODL-L: the single-task

online dictionary learning Mairal et al. (2009) followed by Lasso, L21: the multi-task

method called L2,1 norm regularization with least square loss Argyriou et al. (2008).

TGL: the disease multi-task progression model called Temporal group Lasso Zhou

et al. (2012), as well as Ridge and Lasso. For the parameters selection, I used the

same method with the experimental setting in our stage 2.
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Figure 6.3: Comparison of rMSE Performance by Varying the Size of Common Dic-

tionary.

Experimental Results

The Size of Common Dictionaries in MMDL. In Stage 1 of MMDL, the

common dictionary is assumed to be shared by different tasks. It is necessary to

evaluate what is an appropriate size of such common dictionary. Therefore, I set the

dictionary size to be 1000 and partitioned the dictionary by different proportions:

125:875, 250:750,500:500, 750:250 and 875:125, where the left number is the size of

common dictionary while the right one is the size of individual dictionary for each

task. Fig 6.3 shows the results of rMSE of MMSE and ADAS-cog prediction. As

it shows in Fig 6.3, the rMSE of MMSE and ADAS-Cog are lowest when I split the

dictionary by half and a half. It means the both of common and individual dictionaries

are of equal importance during the multi-task learning. In all experiments, I use the

split of 500:500 as the size of common and individual dictionaries, the dimension of

each sparse code in MMDL is 1000.

Time Efficiency Comparison I compare the efficiency of our proposed MMDL

with the state-of-the-art online dictionary learning (ODL). In this experiment, I focus
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Table 6.1: Time Comparisons of MMDL and ODL by Varying Dictionary Size.

Dictionary Size MMDL ODL

500 1.74 hour 8.84 hour

1000 3.34 hour 21.95 hour

2000 6.93 hour 49.90 hour

on the single batch size setting, that is, I process one image patch in each iteration.

I vary the dictionary size as: 500, 1000 and 2000. For MMDL, the ratio between the

common dictionary and the individual parts is 1:1. I report the results in Table 6.1.

I observe that the proposed MMDL use less time than ODL. When the size of dictio-

nary are increasing, MMDL is more efficient and has a higher speedup compared to

ODL.

Performance Comparison I report the results of MMDL and other methods

on the prediction model of MMSE with ADNI group in Table 6.2. The proposed

approach MMDL outperformed ODL-L, Lasso and Ridge, in terms of both rMSE

and correlation coefficient wR on four different time points. The results of Lasso and

Ridge are very close while sparse coding methods are superior to them. For sparse

coding models, I observe that MMDL obtained a lower rMSE and higher correlation

result than traditional sparse coding method ODL-L since I consider the correlation

between different time slots for different tasks and the relationship with different time

points on the same patient among all tasks. I also notice that the proposed MMDL’s

significant accuracy improvement for later time points. This may be due to the data

sparseness in later time points, as the proposed sparsity-inducing models are expected

to achieve better prediction performance in this case.

I follow the same experimental procedure in the MMSE study and explore the
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Figure 6.4: Scatter Plots of Actual MMSE and ADAS-Cog Versus Predicted Values

on M12 and M48 by Using MMDL.

prediction model by ADAS-cog scores. The prediction performance results are shown

in Table 6.3. I can observe that the best performance of predicting scores of ADAS-

Cog is achieved by MMDL for four time points.

Comparing with L21, after MMDL dealing with missing label, the results more

linear, reasonable and accurate. Due to the dimension of M36 and M48 is too small,

it is hard to learn a complete model. TGL also considered the issue of missing labels,

however, MMDL still achieved the better results because MMDL incorporates multi-

ple sources data and uses common and individual dictionaries. Although the result
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of MMDL had bias, MMDL still achieved the best result compared with the other

five methods on predicting both MMSE and ADAS-cog, which shows our method is

more efficient about dealing with missing data.

I show the scatter plots for the predicted values versus the actual values for MMSE

and ADAS-Cog on the M12 and M48 in Fig 6.4. In the scatter plots, I see the predicted

values and actual clinical scores have a high correlation. The scatter plots show that

the prediction performance for ADAS-Cog is better than that of MMSE.

6.4 Summary

In this study, I propose a novel Multi-Source Multi-Target Dictionary Learning for

modeling cognitive decline, which allows simultaneous selections of a common set of

biomarkers for multiple time points and specific sets of biomarkers for different time

points using dictionary learning. I consider predicting future clinical scores as multi-

task and deal with the missing labels problem. The effectiveness of the proposed

progression model is supported by extensive experimental studies. The experimental

results demonstrate that the proposed progression model is more effective than other

state-of-the-art methods.

101



T
ab

le
6.

2:
T

h
e

P
re

d
ic

ti
on

R
es

u
lt

s
of

M
M

S
E

on
W

h
ol

e
D

at
as

et
.

M
et

h
o
d
s

w
R

M
12

M
18

M
24

M
36

M
48

L
as

so
0.

40
±

0.
09

4.
04
±

0.
77

3.
46
±

0.
97

5.
53
±

0.
86

4.
39
±

0.
74

4.
73
±

1.
49

R
id

ge
0.

41
±

0.
07

4.
26
±

0.
56

3.
56
±

0.
93

5.
05
±

0.
54

4.
21
±

0.
47

3.
62
±

0.
91

L
21

0.
57
±

0.
01

3.
32
±

0.
63

4.
75
±

0.
75

4.
64
±

0.
88

4.
08
±

1.
01

3.
11
±

1.
05

O
D

L
-L

0.
63
±

0.
08

2.
99
±

0.
63

2
.8

8
±

0
.6

8
4.

29
±

0.
84

3.
62
±

1.
45

2.
93
±

1.
07

T
G

L
0.

70
±

0.
05

2.
73
±

0.
72

4.
00
±

1.
31

4.
00
±

0.
64

3.
19
±

1.
38

2.
60
±

1.
42

M
M

D
L

0
.7

3
±

0
.0

2
2
.6

1
±

0
.5

5
3.

37
±

1.
01

3
.6

6
±

0
.7

8
2
.7

3
±

1
.0

9
2
.5

2
±

1
.2

0

102



T
ab

le
6.

3:
T

h
e

P
re

d
ic

ti
on

R
es

u
lt

s
of

A
D

A
S
-c

og
on

W
h
ol

e
D

at
as

et
.

M
et

h
o
d
s

w
R

M
12

M
18

M
24

M
36

M
48

L
as

so
0.

49
±

0.
05

6.
81
±

1.
03

6.
87
±

0.
74

7.
62
±

0.
87

8.
08
±

1.
39

6.
55
±

1.
34

R
id

ge
0.

46
±

0.
07

7.
68
±

0.
96

6.
89
±

1.
69

7.
84
±

1.
54

8.
59
±

0.
62

6.
64
±

1.
58

L
21

0.
53
±

0.
07

6.
40
±

0.
51

6.
95
±

0.
88

8.
07
±

0.
67

8.
00
±

1.
04

5.
92
±

0.
60

O
D

L
-L

0.
53
±

0.
05

5.
65
±

0.
73

4.
97
±

0.
67

7.
30
±

0.
77

7.
25
±

0.
69

5.
56
±

1.
22

T
G

L
0.

72
±

0.
04

5.
52
±

1.
15

5.
70
±

0.
53

6.
85
±

1.
06

6
.3

6
±

1
.2

2
5.

73
±

0.
61

M
M

D
L

0
.7

7
±

0
.0

2
5
.1

8
±

0
.8

8
4
.6

4
±

1
.1

2
6
.7

6
±

1
.3

5
6.

78
±

1.
54

5
.2

7
±

1
.7

6

103



Chapter 7

CONCLUSION

In this chapter, I summarize the major contributions of this dissertation. More-

over, I will discuss some of the possible future research directions.

7.1 Summary

Sparse learning is a widely used technique in data mining and machine learning for

model selection and feature extraction. Regularization has been commonly employed

to obtain more stable and interpretable models. For the regularized sparse models,

the `1 norm regularization has achieved great success in many applications, such

as Lasso regression Tibshirani (1996). The issue to apply the sparse learning on

real world application is limited by the huge dimension in the sample and feature

space. The major theme of this dissertation is to scale up the optimization of sparse

learning in terms of computational resource, such as multiple-threaded computing

and distributed computing, or utilizing the sparse characteristic of learnt models to

accelerate the optimization.

Firstly, I propose a parallel framework to scale up the `1-norm regularized loss

minimization problem in a multithreading environment. In this framework, I propose

an asynchronous solver (AGCD) to reduce the waiting time when multiple threads

update the model concurrently. The proposed AGCD adopts a grouped selection

strategy to update the coordinates rather than random selection. The selected co-

ordinate has to win the competition among a group of candidates to get updated,

resolving the situation that parallel solvers might diverge with a small feature space.

Moreover, I propose the parallel screening methods to pre-identify the remove the
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inactive features from the optimization, which would result in substantial savings in

computational cost.

Secondly, I propose a distributed framework to scale up the sparse regression

model with multiple machines. Since the data set are distributed among different

institutions, I propose a Local Query Model (LQM) to properly maintain data pri-

vacy for all the institutions. Then the model is learnt by employing the Accelerated

Gradient Method (AGM) in a distributed manner. I develop a family of distributed

Lasso screening rule to reduce the feature space since the data set are distributed

among different institutions. The proposed model is integrated with detecting the

risk genetics factors of AD. In addition, I introduce a group feature selection frame-

work to select the relevant group features for the imaging genetics studies of risk

genetic factors by optimizing the distributed group Lasso in a sequence of regularized

parameter values.

Finally, for many biological and medical imaging problems, the current bottleneck

is the limited amount of available labeled training data. In this dissertation, I pro-

pose a novel unsupervised sparse learning solver (SCC), scaling up the optimization

of dictionary learning and sparse coding problems. SCC demonstrates the effective-

ness and efficiency for the computer vision and real world application, such as the

Drosophila gene expression pattern annotation. Moreover, another issue for the med-

ical imaging research is to deal with the longitudinal features of patients for different

time points. I propose a multi-task dictionary learning method to learn the differ-

ent time point tasks simultaneously by partitioning the dictionaries into the common

and individual parts, considering the variance of subjects from multiple time points

or multiple ROIs. The proposed method is evaluated by predicting the cognitive de-

cline of AD patients, achieving lower MMSE and ADAS-cog scores compared to other

state-of-the-art methods.
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7.2 Future Directions

For further investigation, the following directions appear promising.

Many researches have shown that solving the dual problem using coordinate de-

scent methods is faster on large-scale optimization problems. For example, Stochas-

tic Dual Coordinate Ascent (SDCA) Shalev-Shwartz and Zhang (2013); Johnson and

Zhang (2013); Shalev-Shwartz and Zhang (2014) has become the most widely-used

algorithm for big data optimization. It is interesting to further investigate the idea

to scale up advanced solvers such as SDCA on the optimization of sparse learning

problems. There are already existing works like PASSCoDe Hsieh et al. (2015) and

SA-SDCA Tran et al. (2015), parallelizing SDCA in a multithreading environment.

Although these parallel solvers adopt the asynchronous method to scale up the opti-

mization, the practical usage and scalability is restricted by high dimensionality in the

feature space. This dissertation provides a way to resolve the curse-of-dimensionality

via scaling up the optimization of sparse learning. I have shown such a possibility to

scale up the SDCA in the same direction. Moreover, it is a challenge to scale up the

coordinate descent methods in a distributed environment. Zhang and Kwok (2014)

proposed an asynchronous distributed ADMM method for consensus optimization. It

is essential to employ the asynchronous technology for the optimization of SDCA in

a distributed manner. A good proposal is to choose multiple coordinates to update

in each iteration then update the step size at the end of each iteration, guaranteeing

the convergence of the distributed solver.

To scaling up the unsupervised sparse learning problems, such as the dictionary

learning, I have proposed an efficient solver SCC to resolve the optimization problem.

The future direction is to parallelize SCC in a multithreading or a distributed envi-

ronment. The update of sparse codes is coordinate descent methods essentially. The
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parallelization of coordinate descents is already resolved by synchronous and asyn-

chronous parallel solvers Kyrola et al. (2011); Scherrer et al. (2012b); Liu et al. (2014);

Hsieh et al. (2015); Li et al. (2016a, 2017). SCC adopts one step SGD to update the

dictionary. The parallelization of one step SGD is straightforward. Therefore, this

dissertation shows a possibility to parallelize the dictionary learning and sparse coding

models in the same direction. The parallelization of multi-task sparse codings Zhang

et al. (2017b) could follow the same way to achieve it. To scale up the dictionary

in a distributed manner, Li et al. (2016c) proposed a novel distributed dictionary

learning method to scale up the optimization of dictionary learning on Apache Spark.

However, there are still some issues to be resolved such as reducing the data com-

munication between the computation nodes. This dissertation provides a method to

conduct the research along this direction.
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