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ABSTRACT 

This is a two-part thesis assessing the long-term reliability of photovoltaic modules.  

Part 1: Manufacturing dependent reliability - Adapting FMECA for quality control in PV 

module manufacturing 

This part is aimed at introducing a statistical tool in quality assessments in PV module 

manufacturing. Developed jointly by ASU-PRL and Clean Energy Associates, this work 

adapts the Failure Mode Effect and Criticality Analysis (FMECA, IEC 60812) to quantify 

the impact of failure modes observed at the time of manufacturing. The method was 

developed through analysis of nearly 9000 modules at the pre-shipment evaluation stage 

in module manufacturing facilities across south east Asia. Numerous projects were 

analyzed to generate RPN (Risk Priority Number) scores for projects. In this manner, it 

was possibly to quantitatively assess the risk being carried the project at the time of 

shipment of modules. The objective of this work was to develop a benchmarking system 

that would allow for accurate quantitative estimations of risk mitigation and project 

bankability. 
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Part 2: Climate dependent reliability - Activation energy determination for climate 

specific degradation modes  

This work attempts to model the parameter (Isc or Rs) degradation rate of modules as a 

function of the climatic parameters (i.e. temperature, relative humidity and ultraviolet 

radiation) at the site. The objective of this work was to look beyond the power 

degradation rate and model based on the performance parameter directly affected by the 

degradation mode under investigation (encapsulant browning or IMS degradation of 

solder bonds). Different physical models were tested and validated through comparing 

the activation energy obtained for each degradation mode. It was concluded that, for the 

degradation of the solder bonds within the module, the Pecks equation (function of 

temperature and relative humidity) modelled with Rs increase was the best fit; the 

activation energy ranging from 0.4 – 0.7 eV based on the climate type. For encapsulant 

browning, the Modified Arrhenius equation (function of temperature and UV) seemed to 

be the best fit presently, yielding an activation energy of 0.3 eV. The work was concluded 

by suggesting possible modifications to the models based on degradation pathways 

unaccounted for in the present work. 
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PART 1 

MANUFACTURING DEPENDENT RELIABILITY - ADAPTING FMECA 

FOR QUALITY CONTROL IN PV MODULE MANUFACTURING 
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1.1 INTRODUCTION 

1.1.1 Background 

Photovoltaic modules operating in the field can experience diverse types of failure 

modes, based on three governing factors – the climatic conditions, the electrical 

configurations, and the manufacturing quality. This part of the thesis focusses on the 

failure modes associated with quality at the time of manufacturing.  At present, quality 

control during manufacturing is conducted largely by independent quality assurance firms 

present at the manufacturing locations on behalf of the client. One aspect of quality 

control is pre- shipment evaluation wherein randomly selected modules from ready lots 

are evaluated through tools such as visual inspection, flash testing and 

electroluminescence imaging. The pre-shipment evaluation data of approximately 90000 

modules of similar general construction: glass – polymer – cell – backsheet, was made 

available by a quality assurance firm for the work outlined hereafter.  

This has been a joint effort between ASU-PRL and Clean Energy Associates. This work 

carries out a statistical analysis of the results obtained through the above-mentioned pre-

shipment evaluation by using the Failure Mode, Effect, and Criticality Analysis 

(FMECA) technique. First developed for the automobile industry, this method uses the 

Risk Priority Number (IEC 60812) which is a statistical tool to evaluate the standard of 

manufacturing for production facilities. Based on three defining criteria to evaluate the 

risk carried by an identified defect, this tool has quickly gained prominence across 

industries and has been suitably adapted to fit manufacturing standards for different 

products. This technique has been established in the field of photovoltaics by the 

Photovoltaic Reliability Laboratory at Arizona State University (ASU – PRL) in a prior 
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thesis [1]. The scope of this work is to suitably modify the RPN method for PV module 

manufacturing.  

 

1.1.2 Statement of the Problem 

The present system for evaluating the quality of manufacturing lacks in certain crucial 

assessments.  Firstly, the assessment is limited to providing a percentage based on the 

number of defected modules observed through random sampling. It fails to account for 

the nature of the defect itself, and, more importantly, the effect it could have on the 

lifetime of the module. Hence, although performance evaluation is covered under flash 

testing, there remains a question over the long-term reliability of the modules being 

shipped. Secondly, the result of any quality assurance program should be a detailed 

analysis outlaying the risk being carried by the produced batch; a quantitative analysis 

which will enable comparisons with prior projects and scorecards for manufacturers. As 

the present method fails to provide detailed insight into the defects observed, it requires 

an upgrade to match up to quality control measures prevalent in other manufacturing 

industries. This thesis work outlines the methods involved in suitably adapting the 

FMECA approach to PV module manufacturing such that a benchmarking system is 

incorporated to enable comparisons among projects. 
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1.1.3 Objective 

The main objectives of this study are as follows: 

• Determine the failure modes at the time of manufacturing 

• Define parameters to rank these failure modes on the criteria of severity, 

occurrence, and detectability 

• Linearize the model to enable a comparative study 

• Run the system for different projects to obtain an RPN for each project and set 

limits for manufacturing quality based on the scores obtained 
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1.2 LITERATURE REVIEW 

1.2.1 FMEA/FMECA 

Failure Modes and Effects Analysis (FMEA) is a qualitative method of reliability analysis 

(failure analysis) for any item, component, or system. This analysis is mainly done in 

Reliability, Safety and Quality Engineering and involves reviewing components, 

assemblies, and subsystems to identify failure modes, their causes and effects. During the 

design phase, the result of this analysis prioritizes the failures according to the 

consequences, occurrence, and detectability, thus drawing attention to eventual weaknesses 

in the system, in such a way as to reduce failures with necessary modifications and, more 

generally, improve reliability. [2] [3] [1] 

FMECA extends FMEA with an addition of detailed quantitative analysis of criticality of 

failure modes. FMECA is a method to identify the potential failure modes of a product, 

process, device, or system manufactured with varying technologies (electrical, mechanical, 

hydraulic, etc.). FMEA/FMECA analysis allows a good understanding of the behavior of 

a component of a system, as it determines the effect of each failure mode and its causes. 

This assigns a rank to each of the failure modes according to their criticality, occurrence, 

and detectability. The study of criticality quantifies the effect of each failure mode, so that 

the effect of these failures could be minimized prior to action [3] 

In the FMEA/FMECA analysis, the following procedures are followed[1], [3]:  

• System Description: Defines the system, including its functional, operative, and 

environmental requirements.  
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• Definition of Failure Modes: The modes, the causes and the effects of failures, their 

relative importance, and their means of propagation are defined.  

• Identifying the causes of failures: The causes of each failure mode are identified.  

• Identifying the effects of failure modes: The effects of each failure mode in the 

system leading to different degradation or harm to environment or to the system are 

identified.  

• Definition of measures and methods for identifying and isolating failures: Defines 

the ways and methods for identifying and isolating failures.  

• Classification of the severity of final effects: The classification of the effects is 

carried out per the nature of the system under examination, the performance and 

functional characteristics of the system, especially regarding operator safety, and 

finally, guarantee requirements. 

 

1.2.2 Risk Priority Number 

This follows the IEC 60812 2006-01 Standard. First developed for the automobile 

industry, the Risk Priority Number is a statistical tool to evaluate the standard of 

manufacturing for production facilities. Based on three simple criteria to evaluate the 

overall risk carried by a project, this tool has quickly gained prominence across industries 

and has been suitably adapted to fit manufacturing standards for different products.  

Risk Priority Number (RPN) works by ranking defects on 3 simple criteria, regardless of 

the product being analyzed, as illustrated below: 

RPN = S ×O×D 
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Where S: Severity – Measure of the impact, the failure will have on the lifetime of the 

product 

             O: Occurrence – The frequency of a failure over the sampling size 

             D: Detectability – The difficulty in spotting the failure  

 

Figure 1.2-1 Components of Risk Priority Number 

 

By this method, each failure is ranked from 1 – 10 on each of the above three criteria. 

The product of these ranks results in an RPN for each type of failure from the database 

being considered. Therefore, higher the RPN, higher the risk being carried by the project. 

The defect database will vary across industries. For PV module manufacturing, the defect 

database being implemented consists of 51 defects observed in PV modules at the time of 

production. This list has been developed by experienced professionals through analysis of 

over 3 GW of data of modules. It is to be noted that it is a subset of the entire list of 

defects observed in field aged modules as compiled by ASU-PRL in a prior thesis. [1] 

RPN

Detectability

Occurence

Severity
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Table 1.2-1, Table 1.2-2, and Table 1.2-3 below list the severity, occurrence, and 

detectability rankings as defined by the Standard. 

Table 1.2-1 Determination of Severity 

Severity IEC 60812 criteria Rank 

None No discernible effect 1 

Very minor Fit & finish/squeak and rattle do not conform. Defect 

noticed by discerning customers (less than 25%) 

2 

Minor Fit & finish/squeak and rattle do not conform. Defect 

noticed by discerning customers (less than 50%) 

3 

Very low Fit & finish/squeak and rattle do not conform. Defect 

noticed by discerning customers (less than 75%) 

4 

Low Item operable but comfort/convenience item(s) operable 

at a reduced level of performance. Customer somewhat 

dissatisfied 

5 

Moderate Item operable but comfort/convenience item(s) 

inoperable. Customer dissatisfied 

6 

High Item operable but at a reduced level of performance. 

Customer very dissatisfied 

7 

Very high Item inoperable (loss of primary function) 8 

Hazardous 

with warning 

Very high severity ranking when a potential failure 

mode affects safe operation and/or involves non-

compliance with government regulation with a warning 

9 
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Hazardous 

without 

warning 

Very high severity ranking when a potential failure 

mode affects safe operation and/or involves non-

compliance with government regulation without a 

warning 

10 

 

Table 1.2-2 Determination of Occurrence 

Occurrence Cumulative Number of Defects (CND) 

(IEC 60812) 

Rank 

Remote: Failure is unlikely < 0.01 per thousand items 1 

Low: Relatively few failures < 0.1 per thousand items 2 

< 0.5 per thousand items 3 

Moderate: Occasional 

failures 

< 1 per thousand items 4 

< 2 per thousand items 5 

< 5 per thousand items 6 

High: Repeated failures < 10 per thousand items 7 

< 20 per thousand items 8 

Very high: Failure almost 

inevitable 

< 50 per thousand items 9 

>=100 per thousand items 10 
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Table 1.2-3 Determination of Detectability 

Detection Criteria: Likelihood of detection by design control 

(IEC 60812) 

Rank 

Almost certain Design control will almost certainly detect a potential 

cause/mechanism and subsequent failure mode 

1 

Very high Very high chance design control will detect a potential 

cause/mechanism and subsequent failure mode 

2 

High High chance the design control will detect a potential 

cause/mechanism and subsequent failure mode 

3 

Moderately high Moderately high chance the design control will detect 

a potential cause/mechanism and subsequent failure 

mode 

4 

Moderate Moderate chance the design control will detect a 

potential cause/mechanism and subsequent failure 

mode 

5 

Low Low chance the design control will detect a potential 

cause/mechanism and subsequent failure mode 

6 

Very low Very low chance the design control will detect a 

potential cause/mechanism and subsequent failure 

mode 

7 
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Remote Remote chance the design control will detect a 

potential cause/mechanism and subsequent failure 

mode 

8 

Very remote Very remote chance the design control will detect a 

potential cause/mechanism and subsequent failure 

mode 

9 

Absolutely certain Design control will not and/or cannot detect a 

potential cause mechanism and subsequent failure 

mode; or there is no design control 

10 

 

The computed RPN, together with the level of severity, determines the critical failure 

mode, so that the focus could be concentrated to mitigate the effects from the failure. 

This means that, for failure modes with similar or identical RPN, the failure modes to be 

addressed first are those with the higher severity numbers. The failure modes are then 

ranked per their RPN, and high priority is assigned to high RPN. As we know from the 

above, the RPN is the product of S, O, and D, and the evaluation of RPN can present 

some problems such as [1], [3], [4]  

• Gaps in the range: The RPN values are not continuous, but have only 120 unique 

values: 88% of the range is empty. Multiples of prime numbers greater than 7 do 

not feature in the list. 
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• Duplicate RPNs: Different values of the parameters may generate identical RPN 

values. The RPN numbers 60, 72, and 120 can each be formed from 24 different 

combinations of S, O, and D.  

• High sensitivity to slight changes: Multiplying the numbers comprising the RPN 

is intended to magnify the effects of high risk factors. Thus, even a small variation 

in one of the parameters implies a notable variation in the RPN value.  

• Inadequate scale of RPN: The difference in RPN value might appear negligible, 

whereas it is in fact significant. For example, the RPN1 with 3, 4, and 5 as S, O, 

and D, respectively, gives the value of 60, whereas the RPN2 with 3, 5, and 5 

gives 75. In fact, in RPN2 the failure mode has the twice the occurrence, but the 

RPN value is not doubled. This explains that the RPN values cannot be compared 

linearly.  
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1.3 METHODOLOGY 

The data acquired for this study was from the pre-shipment evaluations of modules in 

typical manufacturing facilities across the PV industry . Random lots were selected from 

the daily batches for inspection. Modules were visually inspected based on a pre-

determined list of defects made available to the on-site engineers. Flash testing and EL 

imaging were performed at the manufacturing facility and the defect results were 

documented.  

In his work on RPN for field aged modules, Shrestha ([1]) outlines the failure modes 

associated with modules aged in the field. On comparison with the defect list used in 

manufacturing quality inspection, it was ascertained that the failure modes being 

considered were, in effect, a subset of the larger set of failure modes seen in the field, as 

reported by ASU-PRL [1]. Failure modes such as discolored encapsulant, resistance 

values (series and shunt) outside accepted limits, and hotspots are not considered in this 

study. This is because, as the module manufacturing process has been standardized, 

certain failure modes arising from inferior quality manufacturing, as the ones described 

above, have been eliminated. Standardization of the manufacturing process has improved 

general internal quality control. Hence, failure modes such as low high shunt resistance, 

due to improper firing, or discolored encapsulant due to poor procurement, have been 

ironed out of the manufacturing process over time. 
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1.3.1 Determination of Severity 

As defined earlier, Severity is a measure of the impact the defect has on the performance 

on the module. As with IEC 60812, the ranking system for PV modules has been 

designed with ascending order of severity - the greater the probable impact, the higher the 

rank.  

For ranking, the list of defects was segregated into 4 types: Cosmetic, Minor, Major, & 

Critical. It is to be noted that, based on the severity, a defect can be minor, major, or 

critical. Each defect from the pre-defined list of defects was then categorized as per the 4 

types based on the potential effect. The definitions for the categories are provided below 

in Table 1.3-1. Cosmetic defects have been defined as those which do not have a tangible 

impact on module performance. Examples include misaligned barcodes and extra sealant. 

However, such defects can point to a general carelessness in production and hence have 

been given a rank of 2. Minor defects are defined as those that have a minimal impact on 

performance and can be corrected. Defects such as small scratches on glass come under 

these defects. Minor defects have been split into 3 categories: Type 1, 2, 3 and hence 

defects falling under these categories are assigned severity ranks of 3, 4, and 5. Major 

defects are viewed as those having definitive impact on module performance. Defects 

such as delamination,  cell mismatch and cell cracks come under this category. Like the 

category of Minor Defects, this category, too, is further sub divided into 3 types – 1, 2, 3 

and defects falling in this category are assigned ranks of 6,7, and 8. The final category of 

defects is the Critical Defects. Complying with the Standard that defines the defect ranks, 

these defects are those which are not only certain to pose performance losses but also 

safety concerns and threat to life or property. Such defects are rarely observed at the end 
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of manufacturing lines as that would be represent a considerably bad manufacturer. 

Moreover, internal inspection ensures that such modules are replaced immediately and 

never make it to external quality inspection. Examples include broken glass and faulty 

wiring in the junction box. Based on a clear perceived threat to life or property, these 

defects are assigned ranks of 9 and 10 which are the highest ranks in this list. 

 

Table 1.3-1 Categorization of defects 

 

As is the norm with quality assurance, the ranking system does include for cases where 

the modules are replaced altogether. Replaced modules are assigned rank 1. However, as 

the sampling sizes are usually 2-3% of the entire production orders, assigning this rank is 

statistically inaccurate as it is not representative of the entire production order. This rank 

Cosmetic 
defects

Although it does not impact module reliability, the carelessness in having this defect 
indicates a general quality of production

Rank: 2

e.g.: Misaligned barcode

Minor defects

Have a minimal impact on reliability and can usually be corrected. Are subdivided into 
Type 1, 2, & 3

Ranks: 3-5

e.g.: Scratches on glass

Major defects

Can have a noticable impact on module reliability. Are subdivided into Type 1, 2, & 3

Ranks: 6-8

e.g.: Delamination

Critical 
defects

Will definitely have a negative impact on reliability and pose a threat to life

Ranks: 9-10

e.g.: Broken glass
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has been reserved for special cases when a more sizable portion of the orders is sampled. 

The ranking order, with a comparison to the original standard, has been provided in Table 

3.1 below. 

 

Table 1.3-2 Comparison of Severity ranks for PV module manufacturing with the 

Standard 

Severity IEC 60812 criteria PV module criteria Rank 

None No discernible effect Replaced 1 

Very 

minor 

Fit & finish/squeak and rattle do not 

conform. Defect noticed by discerning 

customers (less than 25%) 

Cosmetic defect 2 

Minor Fit & finish/squeak and rattle do not 

conform. Defect noticed by discerning 

customers (less than 50%) 

Minor defect type 1 3 

Very low Fit & finish/squeak and rattle do not 

conform. Defect noticed by discerning 

customers (less than 75%) 

Minor defect type 2 4 

Low Item operable but 

comfort/convenience item(s) operable 

at a reduced level of performance. 

Customer somewhat dissatisfied 

Minor defect type 3 5 
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Moderate Item operable but 

comfort/convenience item(s) 

inoperable. Customer dissatisfied 

Major defect type 1 6 

High Item operable but at a reduced level of 

performance. Customer very 

dissatisfied 

Major defect type 2 7 

Very high Item inoperable (loss of primary 

function) 

Major defect type 3 8 

Hazardous 

with 

warning 

Very high severity ranking when a 

potential failure mode affects safe 

operation and/or involves non-

compliance with government 

regulation with a warning 

Critical defect without 

safety concerns 

9 

Hazardous 

without 

warning 

Very high severity ranking when a 

potential failure mode affects safe 

operation and/or involves non-

compliance with government 

regulation without a warning 

Critical defect with 

safety concerns 

10 
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1.3.2 Determination of Occurrence 

The occurrence of the defect has been modelled as the “Cumulative Number of Defects”, 

the formula for which as follows: 

𝐶𝑁𝐷 =
𝑁𝑜. 𝑜𝑓 𝑑𝑒𝑓𝑒𝑐𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠
×

𝑁𝑜. 𝑜𝑓 𝑙𝑜𝑡𝑠 𝑝𝑎𝑠𝑠𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑙𝑜𝑡𝑠
×1000                                                 (1.3-1) 

 

The CND accounts for the total no. of occurrences of each defect through the entire 

order. It also employs a correction factor for the lots passed by the third-party quality 

control firm. As with the case in severity, it would be advisable to include this correction 

factor only in cases where the lots being inspected are a high percentage, hereby ensuring 

that any failed lot does have an impact on the entire order. Lastly, to ensure a 

normalization, a multiplication factor of 1000 has been included – cumulative no. of 

defects per thousand modules. The calculated CND is subjected to the same ranking 

pattern as the standard, as seen in the Table 1.2-2. 

 

1.3.3 Determination of Detectability  

Kuitche et al [5] used an acceleration testing and qualification testing technique to 

determine the probability of detecting a failure mode. However, the FMECA analysis has 

outlined the field evaluation approach to be followed while assigning ranks for 

detectability. Based on this approach, the ranking is structured proportional to the ease of 

detection – the higher the chances of detectability, the lower the rank. In building the 

RPN system for PV Power Plant analysis, the ASU-PRL method defines ranks based on 

the likelihood of detection during field inspection. The lower ranks are reserved for 
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visually observable defects while the higher ranks are assigned based on the equipment 

used to spot the defect; defects spotted using conventional hand held tools used in the 

field (e.g. infrared camera) are assigned 4-6 while defects spotted using performance 

measuring equipment (e.g. I.V. curve tracer). Although this is perfectly applicable to field 

evaluations, translating this system to manufacturing evaluations required considerable 

review. This is because, while performance and durability measuring instruments such as 

I-V curve tracers are not readily available at a power plant site, flash testing and 

electroluminescence imaging systems are installed in-line in manufacturing facilities. 

Hence, detection of defects through these systems in manufacturing facilities is much 

easier than in field inspections. Therefore, detection ranks based on conventional and 

non-conventional instrument use is not applicable for manufacturing activity.     

For the ranking order of detectability in manufacturing quality assurance, the idea was to 

focus directly on the general difficulty level in spotting defects during inspections. 

Subsequently, the defects were assigned ranks based on extensive prior experience of the 

teams in quality inspection projects. Each defect from the pre-determined list of defects 

had been assigned a rank between 1 and 10; higher the difficulty in spotting the defect, 

higher the rank. Hence, the ranking system for detectability remains the same as per the 

guideline in the Standard and has been detailed in Table 1.2-3.  

 

1.3.4 Linearization of RPN  

A major objective of this work has been to develop a method to allow for a quantitative 

comparison among projects. As outlined in section 1.1.2, at present, it is impossible for 
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clients and financers to have quantified assessments of projects in terms of manufacturing 

quality. Hence, it is vital that the RPN method developed takes steps in the direction of 

providing quality assessments of manufacturing which are easily comparable.  

The FMECA approach providing the RPN is a product of 3 whole numbers. With this 

framework, the minimum rank for a defect can be 1 and the maximum can be 1000. 

However, since the RPN is a product of three numbers ranging from 1-10, numbers that 

cannot be expressed as products of such numbers i.e. prime numbers > 2, do not appear in 

the RPN list of numbers. As noted by Shreshtha in his thesis, there are only 120 unique 

values of RPN from 1-1000 which can feature for any defect [1]. As such, an inconsistent 

range does not suit well for rating and comparing projects hereby defeating the point of 

this work.  

A suitable way to tackle this issue is by linearizing the RPN ranks by scaling them from 1 

to 100. This is done by sequentially numbering the 120 RPNs and then dividing the 

sequence by 1.2, hereby obtaining a new scale which will be referred to as Ranked RPN. 

In Figure 1.3-1 below, the plot summarizes the Linearization of RPN. On the x axis are 

the RPN values while the y axis contains the corresponding Ranked RPN values. The 

logarithmic nature of the graph is in close agreement with the general perception of risks 

associated with defects – beyond a critical RPN, the Ranked RPN will always be a high 

value, indicating an elevated risk.  
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Figure 1.3-1 Linearization of RPN 

1.3.5 Project Rank   

Lastly, to arrive at one quantified risk assessment for the project, the individual Ranked 

RPNs of each defect are summed to provide a Project RPN. If linearization were not to be 

carried out, summing up the RPNs would result in an inconclusive result due to the gaps 

in the RPN range. 

𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝑅𝑃𝑁 = ∑ 𝐴𝑣𝑔 𝑜𝑓 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 𝑅𝑃𝑁 𝑜𝑓 𝑚𝑎𝑗𝑜𝑟 𝑡𝑦𝑝𝑒 𝑖

3

𝑖=1

+ ∑ 𝐴𝑣𝑔 𝑜𝑓 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 𝑅𝑃𝑁 𝑜𝑓 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑡𝑦𝑝𝑒 𝑖 

2

𝑖=1

                            (1.3-2) 

 

As can be seen in 𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝑅𝑃𝑁 = ∑ 𝐴𝑣𝑔 𝑜𝑓 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 𝑅𝑃𝑁 𝑜𝑓 𝑚𝑎𝑗𝑜𝑟 𝑡𝑦𝑝𝑒 𝑖 +3
𝑖=1

∑ 𝐴𝑣𝑔 𝑜𝑓 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 𝑅𝑃𝑁 𝑜𝑓 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑡𝑦𝑝𝑒 𝑖 2
𝑖=1 ..                          (113-2), the Project 

RPN is the aggregate of the Ranked RPNs of the individual major and critical defects. 

The two defect types that have been excluded are the cosmetic defects and the minor 
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defects and the reason for this is in the way these two categories were defined. Cosmetic 

defects are defined as those with no impact on module performance and minor defects are 

those with minimal impact on module performance and reliability.  Hence, minor and 

cosmetic defects are not included in Project RPN as they do not largely impact module 

reliability and bankability. 
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1.4 RESULTS AND DISCUSSION 

This chapter deals with the implementation of the modified FMECA technique to 

calculate Ranked RPN values for PV module manufacturing projects. The assessments 

have been conducted based on the in-line visual inspection, electroluminescence imaging, 

and flash testing reports of certain projects. The Ranked RPN technique will be applied to 

three projects (project 1, project 2, and project 3) and the results will be analyzed. Each 

module received and RPN and, subsequently, each project received an RPN, which 

allows for a quantitative comparison system. To remain manufacturer and module blind, 

the manufacturer, the facility, and the module type will not be revealed. 

 

1.4.1 Ranked RPN for project 1 

Let us consider the project detailed in Table 1.4-1 wherein nearly 6000 modules were 

inspected at random as per a pre-decided sampling rate through the quality assurance 

program. With the prevalent system, a defect rate of 5% had been reported which fails to 

provide insight into the nature of defects and the gravity of the risk.  

Table 1.4-1 Project 1 information 

Project Information 

Number of modules 5598 

Defect rate 5% 

Module construction Glass-encapsulant-cell-backsheet 
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The modified FMECA approach has been incorporated to analyze this project. Pre-

shipment evaluations (visual defects and electroluminescence imaging) revealed the 

defects that were identified in the modules. Each defect was then ranked based on 

severity, occurrence, and defect. The product of these ranks resulted in an RPN for each 

defect. The list of defects observed and their corresponding ranked RPNs have been 

detailed in Table 1.4-2 :  

Table 1.4-2 Defect analysis for Project 1 through RPN 

Category Defect RPN 

Ranked 

RPN 

Cell 

Cracked corner & cell chip 84 35 

Cell scratches 24 15 

Cell contamination from non-module 

components 

90 36 

EVA bubble/residue 224 58 

Cell contamination from module components 120 42 

Considerable cell color difference 40 22 

Cell String 

Cell to cell spacing 140 46 

Cell to edge spacing 150 48 

Cell to collection ribbon spacing 56 28 

Ribbon alignment 126 43 

Glass 

Contaminations (finger prints, stains, residual 

encapsulant) on glass 

48 24 
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Scratch on glass 60 28 

Backsheet 

Backsheet contaminations 60 28 

Scratches on backsheet foil 120 42 

Dents on backsheet foil 90 36 

Elevated soldering points 50 26 

Bubbled/voids, wrinkles, holes on backsheet foil 96 37 

Frame 

Frame surface defect (scratches, corrosion, dent, 

blister) 

72 32 

Frame assembly gap in the corner 8 7 

Frame assembly roughness (corner edge) 16 12 

Insufficient/Excessive sealant 48 24 

Junction Box 

Junction box alignment 8 7 

Insufficient/excessive sealant 140 46 

Final 

Assembly 

Unreadable/unclear bar code 8 7 

Other Other 120 42 

EL 

Broken cells 64 30 

Micro cracks 196 55 

Tree shape micro cracks 144 47 

Cell class difference 18 15 
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A better understanding of the distribution of the defects is presented in Figure 1.4-1  

below. It shows the distribution of the Ranked RPNs across the severity types. The even 

spread of the Ranked RPNs suggests no special cause variation i.e. there are many 

common causes inherent in the process which are leading to an even spread of defects. In 

this case, it is suggesting that minor and major types of defects are, both, equally 

prevalent, with moderate average values of Ranked RPNs, considering the highest 

possible is 120.  It is expected to not have critical defects at this stage, due to a 

combination of an optimized manufacturing process and improvements in internal quality 

control. Among the major defects, reliability concerns arising from cell level micro 

cracks and imperfect encapsulant lamination require mitigating efforts.   

 

Figure 1.4-1 Ranked RPN distribution based on severity type 
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The Ranked RPN for this project is 60, which is a significantly high number when 

compared with the present internal benchmarks. It implies that the project carries 

significant risk in terms of the reliability of the modules, a conclusion which was not 

captured in the 5% reported defect rate. 

 

1.4.2 Ranked RPN for project 2 

The second project, detailed in Table 1.4-3 selected for analysis was a quality inspection 

conducted in a different facility. The number of modules inspected, based on a pre-

defined sampling rate, were 13813 from different batches. In this case, the defect rate 

reported was close to 0%, suggesting minimal reliability concerns. 

Table 1.4-3 Project 2 information 

Project Information 

Number of modules 13813 

Defect rate 0% 

Module construction Glass-encapsulant-cell-backsheet 

 

The pre-shipment evaluations threw up the nature of the defects observed. Each defect 

was ranked as per the FMECA process to result in an overall Ranked RPN for the project. 

The list of defects observed, and their corresponding RPNs, is listed in  

 

Table 1.4-4 : 
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Table 1.4-4 Defect analysis for Project 2 through RPN 

Category Defect RPN Ranked RPN 

Cell 

Cell scratches 64 30 

Cell contamination from non-

module components 

42 23 

Cell contamination from module 

components 

60 28 

Cell string 

Cell to cell spacing 48 24 

Cell to collection ribbon spacing 84 35 

Ribbon alignment 96 37 

Glass Scratch on glass 24 15 

Frame 

Frame surface defect (scratches, 

corrosion, dent, blister) 

36 21 

Frame assembly gap in the 

corner 

12 9 

Insufficient/Excessive sealant 70 31 

Junction box 

Junction box alignment 8 7 

Insufficient/excessive sealant 105 39 

Other Other 30 18 

EL EL micro cracks 84 35 
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The plot below is the distribution of the average Ranked RPN based on the severity type. 

As was the case with project 1 analysis, the Ranked RPNs are distributed evenly across 

all the severity types, indicating that the manufacturing process is adequate in quality 

control. However, in comparison with the previous project, the magnitudes are much 

lesser, indicating much lesser risk. Among the major defects, cell contamination and 

ribbon alignment were ascertained as failure modes which could lead to moderate 

reliability issues. As expected, no critical defects were observed. 

 

 

Figure 1.4-2 Ranked RPN distribution based on severity type for Project 2 
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this suggested that the project carried minimal risk in terms of module bankability, which 

agreed with the conclusion drawn from the defect rate analysis.  

 

1.4.3 Ranked RPN for project 3 

The final analysis using the modified FMECA approach is for project 3, detailed in Table 

1.4-5, wherein near 6000 modules were inspected as per the preset sampling rate. The 

defect rate reported for this project was 2%, suggesting minimal module reliability 

concerns.  

Table 1.4-5 Project 3 information 

Project Information 

Number of modules 5893 

Defect rate 2% 

Module construction Glass-encapsulant-cell-backsheet 

 

Based on the pre-shipment evaluations, the defects observed through visual inspections 

and EL imaging were ranked for severity, occurrence, and detectability to yield 

corresponding RPN values. The analysis for the defects is presented in Table 1.4-6: 

Table 1.4-6 Defect analysis for Project 3 through RPN 

Category Defect RPN Ranked RPN 

Cell 

Cracked cell 42 23 

Cracked corner & cell chip 60 28 
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Cell scratches 96 37 

Cell contamination from non-module 

components 

105 39 

EVA bubble/residue 112 41 

Cell contamination from module 

components 

48 24 

Cell string 

Cell to cell spacing 60 28 

Cell to edge spacing 40 22 

Cell to collection ribbon spacing 48 24 

Ribbon alignment 45 23 

Glass 

Inclusions, bubbles on glass 80 33 

Scratch on glass 50 26 

Backsheet 

Backsheet contaminations 36 21 

Scratches on backsheet foil 48 24 

Dents on backsheet foil 42 23 

Frame 

Frame surface defect 60 28 

Frame assembly gap in the corner 16 12 

Insufficient/Excessive sealant 50 26 

Junction box Insufficient/excessive sealant 100 38 

Final 

assembly 

Label alignment/label smear/label 

damaged 

8 7 

Other Other 150 48 
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EL 

Micro cracks 120 42 

Tree shape micro cracks 96 37 

 

The distribution of the average Ranked RPN is illustrated in Figure 1.4-3. The even 

spread of the average Ranked RPNs suggested common cause variation with no specific 

fault in the manufacturing process. The minor defects seem to be slightly higher than the 

major defects. However, there are certain major defects, such as micro cracks, which do 

raise medium concerns on the long-term reliability of the modules. 

 

Figure 1.4-3 Ranked RPN distribution based on severity type for Project 3 
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critical, have raised the overall Ranked RPN for this project, a factor not captured in the 

2% reported defect rate. 

1.4.4 Scope for improvement 

There remains scope for improvement in the FMECA system for PV module 

manufacturing. At present, the severity and detectability ranks have been assigned based 

on prior experience, leading to a subjective evaluation. One recommendation would be to 

have a more objective system of ranking, thereby eliminating human error. ASU-PRL 

have devised a severity ranking system based on the power degradation of the module. 

Attempts were made to translate this to manufacturing but in vain. This is because, the 

flash tests conducted during quality control revealed negligible differences in current 

voltage parameters in comparison with those reported by the manufacturers. As such, 

having a ranking system based on this difference would be implausible. 

One possible solution would be to have a severity ranking system based on the 

electroluminescence imaging of the modules subjected to quality control. These ranks 

would be based on the ratio of light areas to the dark areas of the module or, in other 

words, the ratio of the regions of the module emitting light to those not emitting light 

under the forward bias conditions of this test.      
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1.5 CONCLUSION 

By applying statistical techniques for quality control, the FMECA approach for PV 

module manufacturing can be a step in improving the bankability of modules. As each 

defect is systematically ranked on three criteria, the score of each defect can immediately 

inform the client about the nature of the defect and the overall risk posed by it on the 

project. This can enhance risk mitigation and measures to safeguard against any possible 

effects from these defects.  Moreover, clients will also benefit from an overall quantified 

risk assessment for the project and be in a better position to judge project value.  

  

 

A standardized criterion for quality assurance in PV module manufacturing will also open 

the door for accurate project comparisons across the board. With the analysis of more 

projects through the RPN tool, a ready database will be generated which can allow for 
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ascertaining Ranked RPN benchmarks for quality standards (e.g. high risk, medium risk, 

low risk). Such a system can lead to scorecards for every manufacturer, as have been 

generated through the database at present, which will help clients make more informed 

decisions. 
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2 PART 2: CLIMATE DEPENDENT RELIABILITY - ACTIVATION ENERGY 

DETERMINATION FOR CLIMATE SPECIFIC DEGRADATION MODES 
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2.1 INTRODUCTION 

2.1.1 Background  

Photovoltaic modules operating in the field can experience diverse types of failure 

modes, based on three governing factors – the climatic conditions, the electrical 

configurations, and the manufacturing quality. This part of the thesis focusses on the 

failure modes associated with the climatic conditions the module is exposed to. Different 

climatic degradation modes, such as solder bond degradation, or corrosion, can impact 

the power output of the module to a different degree. It is important to understand the 

impact of each climatic degradation mode to make improvements in the reliability of 

modules in these climates.  

This work attempts to model the influence of specific climatic degradation modes on the 

long- term reliability of modules. The analysis has been conducted by modelling the time 

to failures for modules as functions of a combination of climatic conditions i.e. 

temperature, relative humidity, and ultraviolet radiation. The module time to failure data 

for this analysis was sourced from accelerated tests conducted at ASU-PTL and field data 

obtained through field evaluations conducted by ASU-PRL, amounting to nearly a 1000 

modules. The weather data was obtained through the Typical Meteorological Data files 

available on the NREL website [6]. After analyzing models, the best fit was tested by 

comparing the activation energies obtained for individual degradation modes with those 

reported in literature.       
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2.1.2 Statement of the problem 

The present system to model the impact of individual climatic degradation mode is based 

on the power degradation of the module. Numerous climatic degradation modes can 

affect the power output of the module. Hence, this method of analysis may inaccurately 

estimate the impact of one degradation mode on the overall power output of the module 

or, in other words, this method may inaccurately associate the influence of one 

degradation mode with another since the power output values do not differentiate 

between the different climatic degradation modes. Hence, it is important to develop 

predictive models based on the performance parameter directly influenced by the 

degradation mode under investigation. This thesis work attempts to understand the 

pathways for climatic degradation modes, the performance parameters they impact, and 

develop a model to associate the climatic conditions at the site with the relevant 

performance parameter degradation. 

 

2.1.3 Objectives 

The main objectives of this study are as follows: 

• Identify the performance parameter directly influenced by the degradation mode 

• Develop a predictive model and define the constants 

• Obtain the activation energy for different degradation modes as a way to validate 

the approach 

• Test for different climatic conditions  
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2.2 LITERATURE REVIEW 

2.2.1 Climate based degradation modes 

The power degradation in PV modules can be due to numerous failure modes that build 

within the module over time. A comprehensive list of failure modes has been listed by  

M. Moorthy in his work on Risk Priority Numbers for failure modes in field aged 

modules.[7]. The 86 defects listed can be split into defects which may have occurred due 

to a fault in manufacturing and defects that have built up over time due to climate 

stresses. M. Chicca analyzed Siemens M55 modules recovered from different climate 

zones. The results indicated that the degradation was significantly based on the climate 

type, with the IV parameter most affected differing based on the climate the module was 

in; there was significant short circuit current degradation in the modules fielded in 

Arizona and California while fill factor degradation seemed to dominate in Colorado. [8] 

The section hereafter attempts to relate climate-based degradation modes with the 

primary parameters that govern the power output of the module i.e. Isc, Voc, and FF.   

 

2.2.2 Identifying pathways for short circuit current degradation  

Pern et al. have investigated the browning mechanism and its effect on Isc. [9]. A 

combination of ultraviolet light and temperature is known to cause a degradation reaction 

of the encapsulant (EVA), which results in chromophore formation and subsequent 

browning of the encapsulant. This discoloration directly affects the current generation 

capability of the solar cells, as it limits the number of photons hitting the cells, in turn 

reducing the short circuit current of each cell.    
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Delamination, on the other hand, is the optical decoupling of the encapsulant with the 

solar cell or with the glass on top. This adhesion between the glass, encapsulant, active 

layers, and back layers can be compromised for many reasons. Typically, if the adhesion 

is compromised because of contamination (e.g. improper cleaning of the glass) or 

environmental factors, delamination will occur, followed by moisture ingress and 

corrosion. This results in an airgap, either between the glass and encapsulant or between 

the encapsulant and the cell, or both, which further refracts the incoming light and 

reduces the current generating capacity of the cell [10].  

 

2.2.3  Identifying pathways for open circuit voltage degradation 

The voltage generating capacity of the cell is directly proportional to the bandwidth of the 

material utilized in manufacturing the cell. It can be affected at the time of 

manufacturing, such as due to incorrect firing techniques. As the bandwidth is unaffected 

by weather conditions, Voc degradation is minimal over the lifetime of the module, as 

evidenced by field investigations cited in multiple field evaluation reports prepared by 

ASU-PRL.  

Potential induced degradation is one major degradation mode based on climate and 

electrical configuration that can affect the open circuit voltage., largely affecting regions 

in the strings with a distinct voltage polarity with the ground. The effect can be 

understood as the migration of ions from the front glass through the encapsulant to the 

anti-reflective coating (SiNx) at the cell surface [11] driven by the leakage current in the 

cell to ground circuit. This leakage current is typically in the order of µA and its value is 
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strongly depending on material properties, the surface conditions, and humidity, as well 

as module temperature and the applied voltage. [10] 

 

2.2.4  Identifying climate pathways for Fill Factor degradation 

Fill factor of the module is affected by a degradation of the intermetallic system i.e. 

degradation of the gridlines, bus bars, interconnects and other metallic components in the 

electrical circuit within the module. The IMS degradation can be identified through an 

increase in the resistance values obtained. It has been noted that series resistance is the 

dominant resistance increase. Shunt resistance remains largely unaffected by weather 

conditions as it is a parameter fixed at the time of manufacturing.  

Series resistance, on the other hand, can be affected by solder bond degradation. One 

form of this degradation is a mechanical degradation due to thermal stresses accrued over 

time.  In his work, Dr. Bosco attempted to model solder bond degradation due to thermal 

stresses, known as thermal fatigue, using the Coffin Manson equation; the activation 

energy reported for this degradation mode was 0.12eV [12].  Another pathway for solder 

bond degradation occurs due to the formation of intermetallic compounds (IMC) which 

reduce the conductivity between the ribbons and the bus bars. The formation of IMC’s is 

dependent on the composition of the solder bond, whether it contains lead, and the ratios 

of the other components. Geipel et al. modelled the growth of IMC’s in solar 

interconnects by thermally aging prepared samples and analyzing the results through 

spectroscopy techniques. They reported activation energies for the growth of different 

IMC’s in the solder bonds based on the composition, ranging from 0.8 – 1.5 eV[13].  
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2.2.5  Acceleration factor modelling 

So far, models relating time to failure in accelerated testing environments to time to 

failure in field conditions have been based on power degradation of the modules. Kimball 

et al modelled the time to failures observed in DH1000 to arrive at the following 

expression for a corrosion based degradation mechanism[14]: 

𝑇𝑖𝑚𝑒 𝑡𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 (𝑡𝑡𝑓) 𝑖𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖 =
1

𝜕𝜎
𝜕𝑡

(𝑇, 𝑅𝐻) 𝑖𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖
                       (2.2-1) 

 

Where: 
∂σ

∂t
(T, RH) = A exp (

−Ea

kT
) RHn  

The activation energy reported for the corrosion reaction in this work was 0.79eV. 

Moreover, he defined an acceleration factor to extrapolate the results of DH1000 testing 

to modules installed in the field based on the climate type: 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 =

𝜕𝜎
𝜕𝑡

(𝑇, 𝑅𝐻) 𝑖𝑛 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒𝑑 𝑡𝑒𝑠𝑡

𝜕𝜎
𝜕𝑡

(𝑇, 𝑅𝐻) 𝑖𝑛 𝑓𝑖𝑒𝑙𝑑 𝑡𝑒𝑠𝑡
                                          (2.2-2) 

 

Similarly, Koehl modelled an acceleration factor between DH1000 and field conditions 

based on the climate type in an Arrhenius equation as the following: [15]: 

 a(T1, T2) = exp (
Ea

R
(

1

T1
−

1

T2
); where the activation energy for the degradation mode 

associated with Damp Heat testing varies from 0.2 – 0.9 eV based on the testing time and 

the climate type. 
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2.3 METHODOLOGY 

The analysis to calculate activation energies for different degradation modes has been 

conducted with data available at ASU – PRL. The accelerated testing data for DH1000 

was recovered from the ASU-PTL archives. The data for field aged modules was 

obtained from field evaluations conducted by ASU-PRL.  

 

2.3.1  Isolation of parameter based on degradation mode 

PV modules are subjected to different climate related degradation modes in the field. M. 

Moorthy [7] has listed all the failure modes seen in the field. Some of the common 

degradation modes observed include encapsulant browning, solder bond degradation, and 

corrosion.  As discussed in section 2.1, predictive models assessing the impact of these 

degradation modes are based on Pmax degradation. However, extensive field analysis has 

indicated that individual IV parameters i.e. Isc, Voc, FF are affected to different degrees 

based on the degradation mode.  

Specific degradation modes influence certain IV parameters; using Pmax drop values to 

ascertain the impact of one degradation mode may be inaccurate as the Pmax could 

possibly be affected to a higher extent due to another degradation mode. 

A better approach to predictive models for specific degradation models could be by 

delving one step deeper. 

Pmax is defined as: Pmax = Isc × Voc × FF 
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As Pmax is a product of 3 parameters, the Pmax degradation should be proportional to 

the individual degradations of the three factors respectively. This hypothesis, 

supplemented by the literature surveys cited in section 2.2.1, leads us to a climate-based 

degradation pathway as described in Figure 2.3-1 below.  

 

Figure 2.3-1 Pathways for climatic degradation modes 

 

The degradation pathways give a clearer picture of the effect of each degradation mode. 

open circuit voltage is primarily degraded due to PID effects, which involve a 

combination of voltage polarity and climate conditions. The short circuit current of the 

modules is affected due to encapsulant degradation and delamination.  The fill factor is 

affected due to IMS degradation. IMS degradation can be due to shunt resistance or series 

resistance increase. Hence, depending on the degradation mode being analyzed, the 

appropriate performance parameter directly affected should be assessed. 

Pmax
degradation

Voc 
degradation

PID

Isc
degradation

Browning Delamination

Fill factor 
degradation

IMS 
degradation

Shunt 
resistance 
increase

Series 
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It has been noted that encapsulant degradation and IMS degradation are the two primary 

climate-based degradation modes, and hence are the two degradation modes that are 

being considered in this work. The table below summarizes the IV parameter that was 

focused on based on the degradation mode being considered: 

Table 2-1 Identifying the performance parameter for degradation modes under 

investigation 

Degradation mode IV parameter 

IMS degradation Series resistance (Rs) 

Encapsulant degradation Short circuit current (Isc) 

 

2.3.2  Model development 

The basis for calculating activation energy for each degradation mode is by comparing 

the time to failure of the module at two different temperatures i.e. an acceleration factor 

which can be subsequently modelled based on the climate conditions. 

Hence, the acceleration factor can be defined in two ways – 1) the ratio of the time to 

failure in the field test to the time to failure in the accelerated test 2) the ratio of the stress 

rate in the accelerated test to the field conditions.  

As defined by Kimball et al [14] , time-to-failure (ttf) and stress rate have an inverse 

relationship: 

𝑇𝑖𝑚𝑒 𝑡𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 (𝑡𝑡𝑓) 𝑖𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖 =
1

𝜕𝜎

𝜕𝑡
(𝑇,𝑅𝐻) 𝑖𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖

                                     (2.3-1)   
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Where: 
∂σ

∂t
(T, RH) = A exp (

−Ea

kT
) RHn 

Therefore: 

𝑇𝑖𝑚𝑒 𝑡𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 (𝑡𝑡𝑓) 𝑖𝑛 𝑓𝑖𝑒𝑙𝑑 𝑡𝑒𝑠𝑡

𝑇𝑖𝑚𝑒 𝑡𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 (𝑡𝑡𝑓) 𝑖𝑛 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒𝑑 𝑡𝑒𝑠𝑡
= 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟

=

𝜕𝜎
𝜕𝑡

(𝑇, 𝑅𝐻) 𝑖𝑛 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒𝑑 𝑡𝑒𝑠𝑡

𝜕𝜎
𝜕𝑡

(𝑇, 𝑅𝐻) 𝑖𝑛 𝑓𝑖𝑒𝑙𝑑 𝑡𝑒𝑠𝑡
                                                         (2.3-2) 

 

Consider the left-hand side of equation 2.3-2: 

 
𝑡𝑡𝑓𝑓𝑖𝑒𝑙𝑑

𝑡𝑡𝑓𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒𝑑
= 𝐴𝐹                                                                                                               (2.3-3) 

 

Time to failure is dependent on the pre-determined limit or threshold beyond which the 

module is considered to have failed. Substituting into the equation: 

 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑×
𝑎𝑔𝑒𝑓𝑖𝑒𝑙𝑑

𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛𝑓𝑖𝑒𝑙𝑑

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑×
𝑎𝑔𝑒𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒𝑑

𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒𝑑

= 𝐴𝐹                                                                     (2.3-4) 

 

 

𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒𝑑

𝑎𝑔𝑒𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒𝑑

𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛𝑓𝑖𝑒𝑙𝑑

𝑎𝑔𝑒𝑓𝑖𝑒𝑙𝑑

= 𝐴𝐹                                                                                            (2.3-5) 

 

Solving the above equation leads to: 
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𝑅𝑑𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒𝑑

𝑅𝑑𝑓𝑖𝑒𝑙𝑑
= 𝐴𝐹                                                                                                                 (2.3-6) 

 

The acceleration factor can, hence, be defined as the ratio of the rates of degradation of 

the modules in accelerated testing to field testing respectively.  

Let us now consider the right-hand side of Equation 2.3-2. 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 =

𝜕𝜎
𝜕𝑡

(𝑇, 𝑅𝐻) 𝑖𝑛 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑒𝑑 𝑡𝑒𝑠𝑡

𝜕𝜎
𝜕𝑡

(𝑇, 𝑅𝐻) 𝑖𝑛 𝑓𝑖𝑒𝑙𝑑 𝑡𝑒𝑠𝑡
                                          (2.3-7) 

 

The stress rate is defined using Peck’s equation: 

 𝑆𝑡𝑟𝑒𝑠𝑠 𝑟𝑎𝑡𝑒:   
𝜕𝜎

𝜕𝑡
(𝑇, 𝑅𝐻) = 𝐴 𝑒𝑥𝑝 (

−𝐸𝑎

𝑘𝑇
) 𝑅𝐻𝑛                                                            (2.3-8) 

 

Substituting Equation 2.3-8 in 2.3-7 yields: 

𝐴𝐹 =
𝑒𝑥𝑝 (

−𝐸𝑎
𝑘𝑇𝑎𝑐𝑐

) 𝑅𝐻𝑎𝑐𝑐
𝑛

𝑒𝑥𝑝 (
−𝐸𝑎

𝑘𝑇𝑓𝑖𝑒𝑙𝑑
) 𝑅𝐻𝑓𝑖𝑒𝑙𝑑

𝑛
                                                                                              (2.3-9) 

 

Solving Equation 2.3-9 and equating with 2.3-6 results in: 

𝑅𝑑𝐴𝑐𝑐

𝑅𝑑𝑓𝑖𝑒𝑙𝑑
= 𝐴𝐹 = 𝑒𝑥𝑝 (

−𝐸𝑎

𝑘
(

1

𝑇𝐴𝑐𝑐
−

1

𝑇𝑓𝑖𝑒𝑙𝑑
)) (

𝑅𝐻𝐴𝑐𝑐

𝑅𝐻𝑓𝑖𝑒𝑙𝑑
)

𝑛

                                         (2.3-10) 
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2.3.3 Selecting models for degradation mode 

2.3.3.1 Inter metallic system degradation 

Two types of analysis were considered for IMS degradation: 

1. Accelerated testing degradation to field degradation (A2F): Acceleration factor is 

defined as the ratio of the rate of degradation in accelerated testing (DH1000) to 

the rate of degradation in the field 

 

2. Field 1 degradation to field 2 degradation (F2F): Acceleration factor is defined as 

the ratio of the rate of degradation in one field of a climate type to the rate of 

degradation of another field in another climate type   

 

For both the above types of analysis, two models were considered: 1) the Arrhenius 

equation and 2) the Pecks equation (as developed in the previous section), both of which 

have been defined below. As discussed in 2.3.1, the IV parameter directly affected by 

IMS degradation is series resistance. The series resistance was calculated by the Dobos 

method [16]: 

𝑅𝑠 = 0.34×
𝑉𝑜𝑐 − 𝑉𝑚𝑝

𝐼𝑠𝑐
                                                                                                        (2.3-11) 

The calculation models used were defined as: 

Arrhenius equation: 
𝑅𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑟𝑎𝑡𝑒𝐴𝑐𝑐

𝑅𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑟𝑎𝑡𝑒𝑓𝑖𝑒𝑙𝑑
= 𝐴𝐹 = 𝑒𝑥𝑝 (

−𝐸𝑎

𝑘
(

1

𝑇𝐴𝑐𝑐
−

1

𝑇𝑁𝑌
))               (2.3-12) 
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Pecks equation:  
𝑅𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑟𝑎𝑡𝑒𝐴𝑐𝑐

𝑅𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑟𝑎𝑡𝑒𝑓𝑖𝑒𝑙𝑑
= 𝐴𝐹 = 𝑒𝑥𝑝 (

−𝐸𝑎

𝑘
(

1

𝑇𝐴𝑐𝑐
−

1

𝑇𝑁𝑌
)) (

𝑅𝐻𝐴𝑐𝑐

𝑅𝐻𝑁𝑌
)

𝑛

    (2.3-13) 

 

The difference between the two models is the consideration of relative humidity in the 

Pecks equation.  

 

2.3.3.2 Encapsulant degradation 

The type of analysis conducted for encapsulant degradation was: 

1. Field 1 degradation to field 2 degradation (F2F): Acceleration factor is defined as 

the ratio of the rate of degradation in one field of a climate type to the rate of 

degradation of another field in another climate type.    

In the case of encapsulant degradation, one of the main climate factors is the exposure to 

ultraviolet radiation. So far, the IEC 61215 does not prescribe an accelerated testing 

sequence involving ultraviolet light that is long enough to initiate discoloration of the 

encapsulant. Hence, A2F is not possible due to lack of accelerated testing data. Instead, 

field data from Arizona was considered as accelerated testing data due to the high UV 

dosage all year round there. 

As discussed in the earlier section, the IV parameter considered is the short circuit current 

drop (Isc). 

Three models were considered for data fitting for encapsulant degradation: 
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Arrhenius equation:  
𝐼𝑠𝑐 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛𝐴𝑍

𝐼𝑠𝑐 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛𝑓𝑖𝑒𝑙𝑑
= 𝐴𝐹 = 𝑒𝑥𝑝 (

−𝐸𝑎

𝑘
(

1

𝑇𝐴𝑍
−

1

𝑇𝑓𝑖𝑒𝑙𝑑
))            (2.3-14) 

 

Modified Arrhenius equation: 

 
𝐼𝑠𝑐 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛𝐴𝑍

𝐼𝑠𝑐 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛𝑓𝑖𝑒𝑙𝑑
= 𝐴𝐹 = 𝑒𝑥𝑝 (

−𝐸𝑎

𝑘
(

1

𝑇𝐴𝑍
−

1

𝑇𝑓𝑖𝑒𝑙𝑑
)) (

𝑈𝑉𝐴𝑍

𝑈𝑉𝑓𝑖𝑒𝑙𝑑
)

𝑚

                             (2.3-15) 

 

Modified Pecks equation:  

𝐼𝑠𝑐 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛𝐴𝑍

𝐼𝑠𝑐 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛𝑓𝑖𝑒𝑙𝑑
= 𝐴𝐹

= 𝑒𝑥𝑝 (
−𝐸𝑎

𝑘
(

1

𝑇𝐴𝑍
−

1

𝑇𝑓𝑖𝑒𝑙𝑑
)) (

𝑅𝐻𝐴𝑍

𝑅𝐻𝑓𝑖𝑒𝑙𝑑
)

𝑛

(
𝑈𝑉𝐴𝑍

𝑈𝑉𝑓𝑖𝑒𝑙𝑑
)

𝑚

                   (2.3-16) 

 

The three models allowed to investigate the effect of climate factors on encapsulant 

discoloration. The Arrhenius model checks for the discoloration dependence on solely 

temperature. The modified Arrhenius equation includes a term accounting for the UV 

dosage in the field in comparison with Arizona. The modified Pecks equation considers 

the impact of temperature, UV, and relative humidity in combination on encapsulant 

degradation.  
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2.3.4 Model application 

This section deals with the application of the model developed above in obtaining 

activation energies for each degradation mode. Let us consider the modified Pecks 

equation, as it includes all the climate factors being investigated: 

𝐼𝑠𝑐 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝐴𝑍

𝐼𝑠𝑐 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑓𝑖𝑒𝑙𝑑
= 𝐴𝐹

= 𝑒𝑥𝑝 (
−𝐸𝑎

𝑘
(

1

𝑇𝐴𝑍
−

1

𝑇𝑓𝑖𝑒𝑙𝑑
)) (

𝑅𝐻𝐴𝑍

𝑅𝐻𝑓𝑖𝑒𝑙𝑑
)

𝑛

(
𝑈𝑉𝐴𝑍

𝑈𝑉𝑓𝑖𝑒𝑙𝑑
)

𝑚

                   (2.3-17) 

 

2.3.4.1 Degradation rates:  

The Isc degradation rates (%/year) can be obtained from the information in the database.  

The ratio of these values will result in the AF. 

 

2.3.4.2 Module temperature:  

The Sandia model was utilized to obtain module temperature: 

𝑇𝑚𝑜𝑑𝑢𝑙𝑒 = 𝐸. 𝑒𝑥𝑝(𝑎 + 𝑏. (𝑊𝑆)) + 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡                                                                  (2.3-18) 

Where: E: Plane of array irradiance 

WS: Wind speed 

Constants: a = -3.56, b = -0.075 

The ambient temperature and wind speed were obtained from the TMY files available 

online. Care was taken to select temperature data from a weather station as close as 

possible to the actual site where the modules were installed. The plane of array irradiance 
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was calculated from the direct normal irradiance data in the TMY files through a tool 

sourced from Dr. Kempe at the National Renewable Energy Laboratory, Colorado. 

Hence, the module temperature was obtained on an hourly basis. 

 

2.3.4.3 Ultraviolet light:  

The ultraviolet dosage for any region is assumed to be 5% of the plane of array irradiance 

obtained from the TMY data.  

 

2.3.4.4 Relative Humidity:  

The module relative humidity was calculated using the same tool used for calculating 

plane of array irradiance. The ambient humidity was obtained from TMY files, recorded 

on an hourly basis. However, the tool is limited due to certain factors. Firstly, the choice 

of backsheet material determines the moisture diffusion and oxygen diffusion through to 

the cell. Secondly, the values obtained through the tool indicated relative humidity values 

higher than 100% within the module. This case was observed in New York when 

temperatures were less than -15ᵒC. Although this is possible in cases of super saturation, 

as air pressure is not likely to exceed atmospheric pressure within the module, the tool 

seems to lack in accounting for sub-zero temperatures. Hence, model calculations were 

done using module humidity and ambient humidity.    
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2.3.4.5 Calculation of the activation energy 

The final activation energy is obtained through reverse calculations. Encapsulant 

degradation is known to occur from a set of reactions occurring within the encapsulant 

based on the conditions. However, for one climate, it is plausible to assume that one 

reaction pathway will be the dominant mode. Hence, encapsulant of the same general 

composition should have the same reaction pathway i.e. same activation energy in one 

climate.  

The acceleration factor is obtained through the ratio of the performance parameters: 

𝐼𝑠𝑐 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝐴𝑍

𝐼𝑠𝑐 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑓𝑖𝑒𝑙𝑑
= 𝐴𝐹                                                                                    (2.3-19) 

 

Alternatively, an acceleration factor is obtained for every hour from the right-hand side of 

Equation 2.3-7 using the calculated module temperature, relative humidity, and UV dose, 

and by inserting a guess value for the unknown activation energy. The average of these 

hourly acceleration factors should be equivalent to the acceleration factor obtained from 

the parameter degradation rate. By applying the appropriate Excel tool, the initial guess 

value for activation energy is optimized to arrive at the accepted value of activation 

energy for the degradation mode being considered, which, in this case, is encapsulant 

discoloration. 

The activation energy for IMS degradation has been calculated in an analogous manner, 

with the differences being in the number of inputs; UV dosage is assumed to not play a 

role in IMS degradation.   
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2.3.5 UV fluorescence test 

This test was conducted to visually assess the discoloration of the encapsulant in aged 

modules. Black light i.e. light of 350 nm wavelength was shown on individual cells of the 

module in a dark room and the image was captured on a regular high resolution camera. 

Care was taken to diffuse the light hitting the cell to avoid reflection from direct light 

impacting the final image. 

 

2.3.6 EDAX test 

The EDAX test was conducted to obtain information on the composition of the solder 

ribbon used in the construction of the modules under investigation. It was conducted on 

the Scanning Electron Microscopy imaging instrument at the Leroy laboratory of Solid 

State Physics in ASU. The solder ribbon was extracted from the back surface of the PV 

modules. This was done by first heating a small section of the backsheet using a hot-air 

gun and then carefully slicing off the heated section using a standard blade. The 

encapsulant was heated and sliced in an equivalent manner to expose a small section of 

the solder ribbon underneath which was carefully extracted using tweezers. Care was 

taken to ensure that the blade did not contact the solder ribbon, which could have 

adversely affected the SEM images.  
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2.4 RESULTS AND DISCUSSION 

This section deals with activation energies obtained from the acceleration factors and the 

subsequent analysis. The analysis has been conducted for two types of degradation modes 

commonly observed in the field – intermetallic system degradation, and encapsulant 

degradation. The data for this analysis has been obtained from ASU-PTL archives and 

from field evaluations conducted by ASU-PRL.  

The relevant details regarding the accelerated testing database are listed in table 2.4-1 

below: 

Table 2-2 Accelerated test (DH1000) database 

No. of modules 94 

Median Pmax degradation (%/year) 14.16 

Median Rs increase (%/year) 24.89 

 

The relevant details of the databases are listed as required within each section. 

2.4.1 Intermetallic system (IMS) degradation 

2.4.1.1  Identification of solder bond composition 

The activation energy for IMS degradation will be dependent on the solder ribbon used 

during construction. In this work, three different modules were considered – BP Solar 

MSX, Siemens M55, and Siemens SP75. All three modules were available in ASU-PRL.  
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The composition of the solder bonds was ascertained through EDAX testing. The EDAX 

testing images have been provided below. The results are listed in table 2.4-2. 

Table 2-3 Solder bond material for modules under investigation 

Module type Solder bond composition 

SP75 Sn47Cu7Pb46 

M55 Sn60Pb40 

MSX Sn60Pb40* 

*Data was sourced through personal communications as the module with the exact 

construction was not available 

  

(a) (b) 

Figure 2.4-1 SEM imaging of the solder ribbon extracted from (a) M55 control (b) 

M55 aged 
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Figure 2.4-2 SEM imaging of solder ribbon extracted from aged SP75 module 

 

2.4.1.2  Activation energy for solder bond M55 

This bond type was analyzed for 3 different climate types – Arizona (hot and dry), New 

York (cold and humid), and Colorado (cold and dry). The modules used for this analysis 

were the M55 modules, the degradation patterns for which have been analyzed in a prior 

thesis [8]. The relevant information about these modules is listed in Table 2-4 below. 

Table 2-4 Field database of M55 modules 

Region No. of modules 

Median Pmax 

degradation (%/year) 

Median Rs 

increase (%/year) 

Arizona 3 0.58 1.96 

Colorado 1 0.28 0.69 

Sacramento 1 0.39 0.9 
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• Activation energy in climate type: Hot and dry 

As outlined in section 2.3.3.1, the acceleration factor was obtained as the ratio of the 

series resistance increase of the database of modules in accelerated testing to the M55 

modules recovered from the site in Arizona. The activation energy was calculated using 

different equations – the Arrhenius equation and Pecks equation considering ambient 

humidity and module humidity. Table 2-5 details the results obtained. The activation 

energies have been documented when considering ‘No humidity’ (Arrhenius equation), 

‘Ambient humidity’, and ‘Module humidity’. 

Table 2-5 Activation energy for M55 in hot and dry climate type 

Climate 

type 

Acceleration 

factor 

definition 

AF value 

Activation energy 

No 

humidity 

Ambient 

humidity 

Module 

humidity 

Hot and 

dry 

A2F 12.68 0.39 0.54 0.71 

 

The results indicate a general increase in the activation energy required with the addition 

of humidity. The activation energy using module humidity is similar to the reported 

0.89eV for corrosion degradation mechanism by Kimball et al [14].  

Error! Reference source not found. depicts the hourly variation of the acceleration 

factor over one year, the average of which corresponds to the acceleration factor obtained 

as a ratio of the series resistance increase. As seen, the acceleration factor tends to be 

higher in the winters than in the summer. This is since the acceleration factor is the ratio 
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of the stress rate which defined using the climate conditions. In the winter, the 

temperatures in Arizona are far lower than the set temperature in DH1000 (i.e. 85ᵒC), 

implying a much higher stress rate in the environment chamber than in the field 

conditions. However, in the summer, module temperatures in Arizona are quite close to 

the chamber temperature, resulting in similar stress rates and, subsequently, low 

acceleration factors. 

 

 

Figure 2.4-3 Annual hourly AF variation for M55 module in hot and dry climate type 

 

• Activation energy in climate type – Cold and dry 

The activation energy for IMS degradation in cold and dry conditions was calculated by 

defining the acceleration factor as A2F. The results were then cross checked with the 
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activation energy obtained by defining the acceleration factor as F2F to check the validity 

of the F2F model. The results are listed in Table 2-6.   

Table 2-6 Activation energy for M55 in cold and dry climate 

Climate 

type 

Acceleration 

factor 

definition 

AF value 

Activation energy 

No 

humidity 

Ambient 

humidity 

Module 

humidity 

Cold and 

dry 

A2F 36.01 0.41 0.46 0.53 

F2F 0.74 - 0.15 1.07 0.78 

 

The A2F results indicate the activation energy for IMS degradation in cold and dry 

regions is ranging from 0.4 to 0.55 depending on the model. The variation of the 

acceleration over one year is depicted in Figure 2.4-4. 

 

Figure 2.4-4 Annual hourly AF variation for M55 module in cold and dry climate 
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As was the case with the variation in Figure 2.4-3, the acceleration factor is higher in the 

winters than in the summer due to higher stress rates in the winter conditions. A point to 

note is that the range of the acceleration factor is much higher in comparison to Arizona, 

since temperatures drop much lower in Golden, Colorado than they do in Phoenix, 

Arizona. The plot also throws up a few outliers where the acceleration factor has reached 

extremely high values. These are regions where the temperature in the field had fallen 30 

ᵒC below zero, possibly due to a blizzard, or an imperfect measurement by the station, 

and as such, will be ignored for this analysis.  

The F2F analysis does not seem to yield acceptable values for the activation energy. The 

Arrhenius model results in a negative activation energy, implying that this model is 

invalid for this analysis. The activation energy obtained through the module humidity 

model is close to the accepted value, but the high value from the ambient humidity model 

suggests that the models may not be very stable for comparing these climate types. One 

probable reason for this is the data under consideration. The module data set comprises 

the best 3 out of 12 modules from Arizona while only 1 module from Colorado, leaving 

little margin for error in the case of Colorado. It is possible that the Colorado dataset may 

not be entirely representative of the effects of weather stresses in that region due to a 

prior unobserved manufacturing defect. Hence, a low statistical sampling rate for both 

regions may have compounded the error to yield a seemingly faulty variation as depicted 

in Figure 2.4-5.  
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Figure 2.4-5 Annual hourly AF variation (F2F) for M55 module in cold and dry climate 

 

• Activation energy in climate type – Hot and humid 

As with the previous climate type, the activation energy for IMS degradation was 

obtained by defining acceleration factor as A2F and, subsequently, compared with the 

results obtained through F2F. This analysis was conducted on an M55 module recovered 

from a power plant in Sacramento, California. The performance and reliability 

characterization for this module was done in a prior thesis work.[8] and the results of this 

work can be found in Table 2-7. 
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Table 2-7 Activation energy for M55 module in hot and humid climate 

Climate 

type 

Acceleration 

factor 

definition 

AF value 

Activation energy 

No 

humidity 

Ambient 

humidity 

Module 

humidity 

Hot and 

humid 

A2F 27.73 0.43 0.45 0.59 

F2F 0.74 - 0.13 Does not fit* Does not fit* 

*Does not fit implies that the model could not generate an activation energy value which 

would result in the acceleration factor value observed 

The A2F model indicates an activation energy ranging from 0.4-0.6eV, which is similar 

to the range for cold and dry conditions. Figure 2.4-6 depicts a satisfactory acceleration 

factor variation over one year, with the factor values higher in the winter than in the 

summer as is expected. 

 

Figure 2.4-6 Annual hourly AF variation (A2F) for M55 module in hot and humid 

climate 
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However, the F2F model did not fit for the observed ratio of Rs increase %. The model 

limitations may have risen due to unavailability of statistically backed data as only one 

module from the California site was used in this analysis. Another reason, which cannot 

be ruled out, is the inapplicability of using a field to field acceleration factor. 

 

2.4.1.3 Analysis of model accuracy for M55 solder bond 

The activation energy for IMS degradation for the M55 solder bond was obtained by 

considering different humidity levels. The results obtained have been listed in Table 2-8. 

The Arrhenius model indicates an activation energy centered at 0.42 eV.  

The Pecks model with ambient humidity yields a similar result with the activation energy 

ranging from 0.45 – 0.54eV. The extent of this range is mirrored in the model with 

module humidity, with the activation energy ranging from 0.5 – 0.7eV. The geoplot 

analysis in Figure 2.4-7 shows the variation in activation energy, when going from a low 

level to a high level of temperature on the x axis and, when going from a low level to a 

high level of relative humidity on the y axis.  

 

 

 

Table 2-8 Summary of activation energy for M55 modules in different climate types 

Climate type Acceleration Activation energy (eV) 
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Factor 

No 

humidity 

Ambient 

humidity 

Module 

humidity 

A2F F2F A2F F2F A2F F2F A2F F2F 

Hot and dry 12.68 NA 0.39 NA 0.54 NA* 0.71 NA* 

Hot and 

humid 

27.73 0.96 0.43 -0.13 0.45 No fit** 0.59 No fit** 

Cold and dry 36.01 0.74 0.41 -0.15 0.46 1.07 0.53 0.78 

* NA since the hot and dry climate type was considered as the reference for the F2F 

modelling 

** No fit implies no guess value of activation energy could result in the observed AF 
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Figure 2.4-7 Geoplot analysis of activation energy using Pecks model 

 

The plot seems to indicate an increase in the activation energy value going from a region 

of low temperature to a hot region of high temperature. It is also interesting to note the 

drop in activation energy going from a region of high humidity to a region of lower 

humidity, indicating that relative humidity is playing a role in IMS degradation. 

However, this temperature and relative humidity dependence is subject to the accuracy of 

dataset of the Colorado region. 
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2.4.1.4  Activation energy of solder bond MSX 

The activation energy for IMS degradation for this solder bond type was conducted by 

analyzing two climate types. The details regarding the modules and the series resistance 

increase values is listed in Table 2-9. 

Table 2-9 Field database of MSX modules 

Region No. of modules 

Median Pmax 

degradation (%/year) 

Median Rs 

increase (%/year) 

Arizona 6 0.56 1.11 

New York 2 0.62 0.93 

New York 132 0.66 0.43 

 

Conducting a preliminary analysis, the median Pmax degradation values indicate a 

surprising trend of a higher degradation rate in New York when compared to the 

degradation rate in Arizona. However, this trend disappears in the case of median Rs 

increase %. This seems to further the case being made in this thesis that different 

degradation modes can account for the Pmax degradation and, hence, it is important to go 

one step deeper and investigate based on the parameter directly affected by the 

degradation mode. 
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• Activation energy for climate type – hot and dry 

The activation energy for IMS degradation for the MSX solder bond in the hot and dry 

climate type was calculated using the Arizona module dataset. The results listed below in 

Table 2-10 were obtained by defining acceleration factor as A2F. 

Table 2-10 Activation energy for MSX module in hot and dry climate 

Climate 

type 

Acceleration 

factor 

defined as 

AF value 

Activation energy 

No 

humidity 

Ambient 

humidity 

Module 

humidity 

Hot and 

dry 

A2F 22.43 0.47 0.61 0.79 

 

The Arrhenius model yields an activation energy of 0.47eV, which is similar to the 

activation energy for the M55 solder bond obtained by using this same model. The Pecks 

model yields an activation energy ranging from 0.6 – 0.8 eV depending on the humidity 

values being considered. Looking at the annual hourly AF variation in Figure 2.4-8, it 

indicates a similar trend with higher acceleration factors in the winter than in the summer. 
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Figure 2.4-8 Annual hourly AF variation for MSX module in hot and dry climate 

 

• Activation energy in climate type – cold and humid 

The activation energy for IMS degradation in cold and humid climate was calculated 

using the New York datasets. 2 modules were recovered from the 132 modules evaluated 

at the site itself. However, the high value of Rs increase % of those two modules in 

comparison with the power plant median (0.93% v/s 0.43%) suggests that those two 

modules may not be indicative of the median Rs increase observed in New York. For 

convenience, the two sets of data will be referred to as NY2 (2 modules) and NY132 (132 

modules). The results, detailed below in Table 2-11, were compiled by considering both 

definitions of acceleration factor. 
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Table 2-11 Activation energy for MSX module in cold and humid climate 

Code 

Acceleration 

factor 

defined as 

AF value 

Activation energy 

No 

humidity 

Ambient 

humidity 

Module 

humidity 

NY2 

A2F 26.89 0.40 0.47 0.46 

F2F 1.20 - 0.10 1.58 1.71 

NY132 

A2F 57.93 0.49 0.55 0.54 

F2F 2.58 0.47 0.88 0.83 

 

The Arrhenius model suggests an activation energy ranging between 0.4-0.5 eV. It 

increases marginally when considering Pecks model. Figure 2.4-9 indicates a typical 

variation in the annual hourly acceleration factor with a couple of outliers. Delving 

deeper, these outliers were from cases where the module relative humidity was higher 

than 100%, explainable by supersaturation phenomenon commonly observed in 

calculation models for relative humidity. 
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Figure 2.4-9 Annual hourly AF variation for MSX module in cold and humid climate 

  

The F2F model seems to work better in the case of NY132, yielding slightly higher 

values than those that are expected. The variation in the annual hourly AF, depicted in 

Figure 2.4-10 indicates slightly higher AF values in the summer than in the winter as 

stress levels in the summer in Arizona will be higher than those in New York. However, 

this is counter balanced by the higher relative humidity in New York as compared to 

Arizona during the summer, resulting in narrow range band. 
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Figure 2.4-10 Annual hourly AF variation (F2F) for MSX module in cold and humid 

climate 

 

2.4.1.5 Analysis of model accuracy for solder bond MSX 

Table 2-12 Summary of activation energy results for MSX modules in different climate 

types 

Climate type 

Acceleration Activation energy (eV) 

Factor 

No 

humidity 

Ambient 

humidity 

Module 

humidity 

A2F F2F A2F F2F A2F F2F A2F F2F 

Hot and dry 22.43 NA 0.47 NA 0.61 NA 0.79 NA 

Cold and 

humid 

57.93 2.58 0.49 0.47 0.55 0.88 0.54 0.88 

 

It is interesting to note that the Arrhenius model has consistently maintained an activation 

energy ranging between 0.4-0.5 eV for both solder bonds, apart from two outliers. The 
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activation energy using Pecks model is between 0.5 – 0.6 eV for IMS degradation using 

the A2F model while it jumps up to 0.88 eV for the F2F model, suggesting model 

irregularities.  

 

2.4.1.6  Activation energy of solder bond SP75 

The activation energy for IMS degradation in this case was calculated using field 

evaluation data from a site in Arizona. The details of the modules are listed in Table 2-13 

 

Table 2-13 Field database for SP75 modules 

Region No. of modules 

Median Pmax 

degradation (%/year) 

Median Rs 

increase (%/year) 

Arizona 252 1.23 1.90 

 

The results for activation energy for IMS degradation in hot and dry climate, listed in  

 

 

 

Table 2-14 were obtained by defining the acceleration factor as A2F. 
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Table 2-14 Activation energy for SP75 modules in hot and dry climate 

Climate 

type 

Acceleration 

factor 

defined as 

AF value 

Activation energy 

No 

humidity 

Ambient 

humidity 

Module 

humidity 

Hot and 

dry 

A2F 13.13 0.40 0.54 0.73 

 

 

Figure 2.4-11 Annual hourly AF variation for SP75 modules in hot and dry climate 

 

2.4.1.7 Discussion of results for activation energy of IMS degradation 

Figure 2.4-12 indicates the range of activation energy for the Sn60Pb40 solder bond type in 

the two different module constructions, MSX and M55 based on the A2F model. The 
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results indicate that the consideration of relative humidity to the model increases the 

activation energy. Between the two Peck’s models, the activation energy values are 

higher for the module humidity model as this model will take more time to equilibrate. It 

is also interesting to note that the MSX modules have slightly higher activation energies 

than the M55 modules. This could be due to the 2% Ag addition in the solder bond 

composition of the MSX module, the addition being primarily to hinder the formation of 

the lead-silver ternary alloy.     

 

Figure 2.4-12 Activation energy range for Sn60Pb40 solder bond using A2F model 
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Figure 2.4-13 Activation energy range for Sn60Pb40 solder bond using F2F model 

 

The activation energy values obtained using the Arrhenius model are slightly lower than 

the ones reported by Geipel et al [13] who also used an Arrhenius model. This could be 

because series resistance could be impacted due to IMC formation and thermal fatigue. 

Presently, since our model does not consider the thermal fatigue component, it attributes 

the series resistance increase entirely to the IMC formation, thereby yielding a lower 

activation energy requirement for this degradation mode. The addition of a thermal 

fatigue component, as modelled by Bosco et al [12] could drive up the activation energy 

requirement for IMC formation as its overall influence on series resistance increase will 

be reduced.   
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2.4.2 Activation energy for encapsulant degradation 

For encapsulant degradation, the parameter focused on is Isc degradation. The results 

have been analyzed under the assumption that minor variation in the encapsulant 

composition does not overtly change the activation energy for its degradation. 

The acceleration factor has been defined as F2F, where it has been modelled as the ratio 

of Isc degradation in Arizona to the Isc degradation in the other climate types. 

The parameters for the modules used for in this analysis have been detailed in Table 2-15. 

As described in section 2.3.3.2, this analysis includes modified Pecks equation and the 

modified Arrhenius equation. 

Table 2-15 Field database for modules used in encapsulant degradation analysis 

Region 

Module 

type 

No. of 

modules 

Median Pmax 

degradation 

(%/year) 

Median Isc 

degradation 

(%/year) 

AZ | NY MSX 6 | 2 0.56 | 0.66 0.43 | 0.59 

AZ | CO M55 3 | 1 0.96 | 0.28 0.23 | 0.31 

 

The activation energies have been obtained for two climate types – cold and humid (NY) 

and cold and dry (CO) when compared with the degradation pattern in Arizona. The 

results for encapsulant degradation have been detailed in Table 2-15 below, with the 

models defined in the following manner: 
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• Arrhenius equation: f (T) 

• Modified Pecks equation: f (T, UV, RH ambient/module) 

• Modified Arrhenius equation: f (T, UV) 

Table 2-16 Activation energy results for encapsulant degradation 

F2F regions 

AF 

value 

Activation energy 

f (T) f (T, UV, RH amb) f (T, UV, RH mod) f (T, UV) 

AZ | NY 0.73 -0.16 1.83 2.28 0.31 

AZ | CO 0.74 -0.15 1.11 0.92 0.29 

 

The Arrhenius model yields negative activation energies for both regions, indicating that 

this model may not be applicable for this degradation mode. Similarly, the activation 

energies yielded through Pecks modified equations are much higher than expected. The 

modified Arrhenius equation results in activation energies centered around 0.3 eV, which 

is close to the accepted value. Figure 2.4-14 and Figure 2.4-15 indicates the day-time 

hourly variation of acceleration factors. Since the modules will be exposed to UV light 

only during the day, it makes sense to look at the acceleration factors only during day 

time. 
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Figure 2.4-14 Annual day-time AF variation for cold and dry climate type 

 

 

Figure 2.4-15 Annual day-time AF variation for cold and humid climate type 

 

The plots indicate a marginal increase in acceleration factors over the winter as compared 

to summer. This is since Arizona will receive more UV light in the winter as compared to 

Colorado and New York.  
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2.4.2.1  Discussion on the impact of oxygen bleaching 

Oxygen bleaching seems to play an important role in encapsulant degradation. At present, 

the model does not account for the impact of oxygen bleaching, resulting in incorrect 

results where bleaching has affected the Isc. Hence, the AF equation needs to be of the 

form as outlined below: 

𝐴𝐹 = 𝑑𝑖𝑠𝑐𝑜𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 − 𝑜𝑥𝑦𝑔𝑒𝑛 𝑏𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛                                (2.4-1) 

The rate of oxygen difusion can play a significant role in the rate of oxygen bleaching. A 

reasonable understanding can be obtained through the pattern of browning obtained 

through UV fluorescence imaging of the MSX modules. The browning seems to be in 

between the bus bars of the AZ modules while it covers a larger surface area in New 

York. This can be attributed to the rate of diffusion of oxygen, with the modules from 

Arizona having a higher rate due to higher average temperatures than New York.  

  

(a) (b) 

Figure 2.4-16 UV fluorescence imaging for module in (a) Arizona and (b) New York 

 

 



 

81 

To model the rate of oxygen bleaching, it is important to understand whether this reaction 

is mass transfer controlled or reaction controlled i.e. whether it is to be modelled as per 

Fickian law or reaction equilibrium law. As seen in the figures above, oxygen seems to 

diffuse from the sides of the cells towards the center, indicating that the bleaching 

reaction occurs as far as the oxygen diffuses through the encapsulant. This suggests that 

the reaction is, in fact, mass transfer controlled and attempts can be made to model it as 

per Fickian Law. The acceleration factor for oxygen bleaching could be modelled as a 

function of the ratio of the oxygen concentration gradient in the encapsulant from the side 

of the cell to the center of the cell: 

𝐴𝐹 =
𝐷𝑒1

𝜕𝐶1

𝜕𝑥

𝐷𝑒2
𝜕𝐶2

𝜕𝑥

                                                                                                                          (2.4-2) 

Where: De = Doexp (
−Ea

kT
); with Do being the mass transfer coefficient for oxygen in the   

encapsulant and ‘1’ and ‘2’ are the two climate types under consideration 

Leading to the following expression for encapsulant time-to-failure: 

𝐴𝐹 = 𝑒𝑥𝑝 (
−𝐸𝑎

𝑘
(

1

𝑇𝐴𝑍
−

1

𝑇𝑓𝑖𝑒𝑙𝑑
)) (

𝑅𝐻𝐴𝑍

𝑅𝐻𝑓𝑖𝑒𝑙𝑑
)

𝑛

(
𝑈𝑉𝐴𝑍

𝑈𝑉𝑓𝑖𝑒𝑙𝑑
)

𝑚

±  
𝐷𝑜1

𝐷𝑜2
𝑒𝑥𝑝 (

−𝐸𝑎

𝑘
(

1

𝑇1
−

1

𝑇2
))

𝜕𝐶1

𝜕𝑥
𝜕𝐶2

𝜕𝑥

                                                          (2.4-3) 

 

The AF values obtained presently are less than 1, indicating that, contrary to the accepted 

notion, the rate of encapsulant degradation is lesser in Arizona than in Colorado/New 

York. This inherent logic of Equation 2.3-14 could be the cause for the high activation 
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energies presently obtained. Introducing the oxygen bleaching component, as seen in 

Equation 2.4-3, could account for the higher rate oxygen bleaching in Arizona, as 

compared to New York/Colorado, and drive down the activation energies to the accepted 

value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

83 

2.5 CONCLUSIONS 

The objective of this work was to identify the performance parameter directly affected by 

a climatic degradation mode and model its degradation as a function of the combination 

of the three primary climate factors: T, RH, and UV. The combination of these factors 

resulted in different models, all of which were validated through comparison of the 

activation energy obtained with that reported in literature. The following conclusions can 

be drawn through the results: 

1. IMS degradation directly affects the series resistance while encapsulant 

degradation impacts the short circuit current. 

2. The activation energy for IMS degradation was calculated through two models – 

A2F and F2F. For each model, different functions were considered. Although the 

idea of the F2F model has been introduced as a way to replace accelerated testing 

data requirement for time to failure modelling, it will require larger datasets for 

reliable results. At present, its close association with the results of the A2F model 

indicated its validity of use in encapsulant degradation modelling. The A2F model 

yielded activation energies in the range of 0.4 – 0.8eV based on the climate type 

for the Sn60Pb40 solder bond. As discussed in Section 2.4.1.7, this value is 

expected to increase once the thermal fatigue component is added to the model. 

At present, the IMS degradation has been modelled as: 

 

Rs increase rateAcc

Rs increase ratefield
= AF = exp (

−(0.4 − 0.8eV)

k
(

1

TAcc
−

1

Tfield
)) (

RHAcc

RHfield
)

−2.2
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3. The activation energy for encapsulant browning was calculated using the F2F 

model. Numerous functions were considered with combinations of T, UV and 

RH. The results indicated that the Modified Arrhenius model (f(T,UV)) i.e. 

Equation 2.3-15 was the best fit as the activation energy yielded was 0.3eV which 

was close to the value reported in literature[17]. However, this was probably since 

the model does not consider the impact of oxygen bleaching. It is possible that the 

addition of such a term may result in the Modified Pecks equation (f(T, UV, RH)) 

being the best fit. As such, at present, the equation below was the best fit: 

 

𝐼𝑠𝑐 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛𝐴𝑍

𝐼𝑠𝑐 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛𝑓𝑖𝑒𝑙𝑑
= 𝐴𝐹 = 𝑒𝑥𝑝 (

−0.3𝑒𝑉

𝑘
(

1

𝑇𝐴𝑍
−

1

𝑇𝑓𝑖𝑒𝑙𝑑
)) (

𝑈𝑉𝐴𝑍

𝑈𝑉𝑓𝑖𝑒𝑙𝑑
)

0.6
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