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ABSTRACT 

Distributed Renewable energy generators are now contributing a significant amount of 

energy into the energy grid. Consequently, reliability adequacy of such energy generators 

will depend on making accurate forecasts of energy produced by them. Power outputs of 

Solar PV systems depend on the stochastic variation of environmental factors (solar 

irradiance, ambient temperature & wind speed) and random mechanical failures/repairs. 

Monte Carlo Simulation which is typically used to model such problems becomes too 

computationally intensive leading to simplifying state-space assumptions. Multi-state 

models for power system reliability offer a higher flexibility in providing a description of 

system state evolution and an accurate representation of probability. In this study, 

Universal Generating Functions (UGF) were used to solve such combinatorial problems. 8 

grid connected Solar PV systems were analyzed with a combined capacity of about 5MW 

located in a hot-dry climate (Arizona) and accuracy of 98% was achieved when validated 

with real-time data. An analytics framework is provided to grid operators and utilities to 

effectively forecast energy produced by distributed energy assets and in turn, develop 

strategies for effective Demand Response in times of increased share of renewable 

distributed energy assets in the grid.  Second part of this thesis extends the environmental 

modelling approach to develop an aging test to be run in conjunction with an accelerated 

test of Solar PV modules.  Accelerated Lifetime Testing procedures in the industry are used 

to determine the dominant failure modes which the product undergoes in the field, as well 

as predict the lifetime of the product. UV stressor is one of the ten stressors which a PV 

module undergoes in the field. UV exposure causes browning of modules leading to drop 

in Short Circuit Current. This thesis presents an environmental modelling approach for the 
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hot-dry climate and extends it to develop an aging test methodology. This along with the 

accelerated tests would help achieve the goal of correlating field failures with accelerated 

tests and obtain acceleration factor. This knowledge would help predict PV module 

degradation in the field within 30% of the actual value and help in knowing the PV module 

lifetime accurately.  
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PART 1: PHOTOVOLTAIC SYSTEMS: FORECASTING FOR DEMAND 

RESPONSE MANAGEMENT 

1.0 INTRODUCTION 

 

1.1       Background 

 
As the threat of climate change looms, countries across the world are setting up 

ambitious targets to achieve the goal of cutting carbon emissions. A big part of those 

plans is deploying renewable energy sources like Solar, Wind, etc. to comprise 20-30% 

of the country’s electric grid. The biggest challenges in doing so are two-fold: 1. Tackling 

the intermittent nature of these renewable sources of energy which calls for effective 

forecasts to maintain predictability of energy supply. 2. Successful integration of 

independent distributed sources of energy into the grid. These challenges are key in 

bringing cost of renewable sources of energy equivalent to other conventional forms of 

energy. Markets have been very instrumental in bringing cost of manufacturing and 

deployment of Solar PV down to 12 cents/W. Aided with renewable tax credit (RTC) 

here in the US, Solar PV deployment is increasing at a rapid pace where many states have 

carved out ambitious targets for Solar PV.  

As we move towards increased deployment of Solar PV, the focus of the industry 

has been slowly shifting from investing in efficiency gains to investing in quality and 

reliability. With most of the deployment slated to happen in the coming decade, 

Crystalline Silicon technologies have demonstrated their leadership in the market. This 

has called for increased focus on reliability of Crystalline Silicon PV modules. Although 

significant studies have been performed on PV module reliability, both from the 

perspective of module manufacturers and the PV system owners, not many significant 
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studies have been conducted evaluating PV system reliability from the perspective of a 

grid operator.  

As more Solar PV rooftop systems come online, grid operators face an unique 

challenge. The electricity grid has been an aging system, built almost a century ago 

supporting only one-way transfer of energy. With the rise of renewable sources of energy, 

energy production is no longer concentrated but more distributed in nature, making 

people owning these systems not just mere consumers of energy from the grid but traders 

of energy. The trade of energy is entirely based on supply-demand fluctuations and has 

created the need for utilities and grid operators to come up with a customer friendly net-

metering policies. However, with a grid built on one-way transfer of power, grid 

operators have seen escalating costs and reliability issues caused due to Solar PV energy 

production peaking at times of low-demand. Not only the nature of production of energy 

is changing, also the nature of energy consumption is changing with smart appliances, 

connected home devices and electric vehicles changing energy consumption patterns.  

Smart meters and smart grids have been the way forward for many utilities, who 

have made significant investments to make the grid support such two-way energy 

transfer. Combining this with sophisticated IT systems powered with analytics, utilities 

and grid operators have been exploring new ways to remain profitable in this changing 

landscape. Concept of Virtual Power Plant and using analytics to manage Demand-

Response rather than changing the supply side has proven viable for many utilities.  

These changes have to brought in by focusing on the underlying energy forecasts 

and system reliability calculations, on which business models and operating models of 

these grid operators depend.  
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1.2       Scope of Work 

 
This thesis deals with PV system reliability in the context of energy supplied. PV module 

degradation affects the reliability with which the Module supplies the rated energy. PV 

modules have two major sources of stochasticity- fluctuating weather and internal 

mechanical degradation. In this thesis, quantitative and statistical models were explored 

to model the weather and internal mechanical degradation. Also, a technique was 

developed in evaluating both the sources of fluctuations probabilistically and calculate 

its impact against satisfying the load requirements of the system. To demonstrate this, 8 

rooftop ASU PV systems were considered and this analysis was carried out against each 

building’s load. The long-term system reliability was measured using the reliability 

indices Loss of Load Expectation (LOLE) and Expected Energy Not Supplied (EENS).  

There was also a need to develop short term energy forecasts which can be accurate 

enough so that the grid operators or the utilities can forecast energy production by each 

of their customers having Solar PV rooftop systems. This thesis provides with various 

machine learning models which can learn from previous environment data to provide 

accurate forecasts of energy.  

The methodology detailed in this thesis provides an analytics framework for a grid 

operator to assess long term reliability of distributed energy assets which will help them 

with capacity planning (no. of backup transformers, energy storage, etc.) and financial 

planning. Short term forecasts help utilities design targeted Demand-Response plans 

using predictive analytics which can be specific to every customer’s energy 

production/usage patterns.  
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2. LITERATURE REVIEW 

 

Distributed Grid resource modelling has been a field which has gained a lot of importance 

as the share of renewable energy in the energy grid has increased. This has called for 

accurate mapping of resources which affect the generation of renewable energy. 

Traditionally simulation techniques were widely used to understand system behavior. 

These techniques are well developed and are widely used in many different industries to 

predict the behavior of systems. To develop a system reliability approach for a distributed 

grid, modelling behavior of every component in the grid is of utmost importance. This 

section is further divided into subsections detailing the prevailing literature on modelling 

individual system components and it’s demonstrated use in the energy industry to 

effectively lower costs for grid operators and make it attractive for customers to depend on 

renewables to partly power their energy demands.  

2.1 Weather Models 

 

Weather fluctuation is the major cause for PV energy generation intermittency. The effect 

of solar irradiance fluctuation on PV Energy production and the power quality is well 

described by a study on 14 PV power plants by Patsalides M et al [1]. It was concluded 

that during low irradiance levels system generation was severely impacted. Effect of wind 

speed, Cell temperature and Irradiance levels on the performance of PV modules and PV 

arrays were modelled by King et al [2]. Electrical, thermal and optical characteristics of 

the PV modules are addressed in the above referred publication.  
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Weather modelling is of interest to many different industries and the science of numerical 

prediction of weather is well captured by Bauer et al [3]. Markov models are used majorly 

to model the transition between different weather states, as used by Billinton and Gao for 

assessing wind energy states [4]. For this thesis, emphasis was placed on statistical methods 

of weather fluctuation. Irradiance, Temperature and Wind speed were the variables of 

choice, which needed to be evaluated. R E Thomas et al developed an approach of 

“Environmental Cell” which is a discrete approach to model the changes in weather 

variables [5]. It involves measuring statistics pertaining to frequency of occurrence of a 

particular weather condition, and analyzing transition between different states of weather 

conditions using descriptive statistics. These help us achieve probabilistic states of weather 

which are used in Universal Generating Function approach developed by Ushakov [6].  

Continuous models, namely time-series models are very popular in modelling weather 

variables like temperature. Pan et al demonstrate a ARIMA time-series approach to model 

the temperature of a hot-dry climate [7]. Though continuous models are more useful in 

describing the variable’s fluctuations, their ability to create long term forecasts breaks 

down due to error accumulation. The environmental cell approach and the ARIMA 

approach were majorly explored in this thesis to achieve a simple probabilistic forecast for 

future time-periods. Other continuous models were further explored from the intention of 

generating short-term forecasts.  

2.2 Degradation models 

 

In Reliability studies, to effectively model system reliability one must carefully consider 

component degradation. For PV modules, Jordan et al have reviewed the various 
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degradation modes and assessed thousands of modules to find the median degradation rates 

for different climates [8]. It’s concluded that for most of the PV modules, linear 

degradation has been observed, although it should be noted that for the study only 4% of 

the total population of PV modules have been evaluated, so such a conclusion might change 

subject to more degradation studies. Kuitche et al performed FMEA and data-mining 

techniques to find out the dominant failure modes and its impact on PV module reliability 

and performance [9]. Statistical reliability theory suggests various ways of modelling 

degradation [10]. Meeker & Escobar present various methods to assess time-to-failures of 

right censored and left censored data which can be used to assess time to failures of PV 

modules [11]. Pan et al used an ARIMA model of temperature and found a correlation 

between temperature and its impact on PV module degradation [7]. Mancenido 

demonstrated an online monitoring methodology to capture the non-stationary degradation 

as a stochastic process [12]. This method involves fitting a ARIMA model to power output 

of PV modules to model the degradation path. Though such methods are suitable, it’s 

difficult to find raw KWh data of the lifetime of PV modules for such models to fit and PV 

module lifetime analysis is plagued by a lot of censored data.   

Degradation can be modelled by various techniques. Markovian models are used widely in 

literature to model stochastic non-stationary process. Zuo et al demonstrated an approach 

to fit a markov model to degradation data to obtain failure and repair rates for the system 

[13]. Meeker presented a Monte-Carlo simulation based method to obtain failure rate and 

repair rate of a system using degradation data [14]. Park et al demonstrate the use of 10-

state markov model, to model irradiance variation and the degradation function [15].  
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For Multi-state Reliability modelling Theristis et al demonstrated the use of Markov chains 

to model the system degradation and PV system Uptime and Downtime [16]. Using 

Markov chains, they calculate system Reliability Indices as Loss of Load Probability and 

Expected Energy Not Supplied, using which system sizing methodology and its impact on 

LCOE is shown. Markov models require less computation and steady state probabilities 

obtained by markovian models have proved their usage in reliability models. Kumar et al 

demonstrated the use of markovian models with 4 states of module operation- Working, 

partial degradation, major failures and complete failures. [17] Albeit the approach used in 

this thesis would be to characterize states as number of modules working or not working, 

where a module is considered not working when it reaches 20% degradation.  

2.3 System Reliability  

 

Calculating the system reliability is a combinatorial problem, involving combinations of 

multiple operating levels of different components and developing an analytical model to 

find out the net effect of all possible combinations. Billinton & Gao applied multi-state 

reliability models to wind generating units to assess system reliability [4]. Massim et al do 

the same to assess repairs/degradation of components [18].   

Khattam et al demonstrate this using Monte-Carlo Simulation to find out the stability of 

the grid [19]. Monte-Carlo simulation being computationally expensive, often leads to 

simple binary state representations of complex systems. This leads to drop in accuracy. 

To evaluate the entire distributed grid, a less computationally expensive method is 

required. Ushakov demonstrated the use of UGF (Universal Generating Functions), 

which converts discrete probabilistic states into a polynomial, on which simple 
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mathematical operations can be done [6]. Li et al demonstrated the use of UGF to 

evaluate a distributed grid, although the solar PV states were simplified due to lack of 

degradation data  [20]. This approach can be extended to this thesis, where significant 

degradation studies have been published by PRL, using which more accurate reliability 

estimates can be found out.  Coupled with short term forecasts, a complete analytical tool 

can be developed giving grid operators long-term reliability estimates to plan and design 

the grid and the short term forecasts helping in better targeting of consumers for Demand-

Response programs. 

 

2.4 Short Term Forecasts 

 

Forecasting is a very important science, which has gained relevance in the advent of very 

accurate forecasting techniques available today, due to the rise of machine learning and 

cheap computation. The recent advances in Deep Neural Networks has sparked interest in 

using the other learning algorithms traditionally used in the domains of computer vision 

and commerce.  

Forecasting energy demand and supply has become ever important in a time where 

renewables are increasing their share in the grid. Since these sources are intermittent, there 

is a growing need to accurately estimate energy production of Solar PV assets. Perera et al 

have demonstrated the use of machine learning in generating energy forecasts for 

distributed grid components like Wind Generators and Solar PV generators [21]. Such a 

forecasting scheme is explained from the context of its application in a smart grid, complete 

with sensors at every point of the grid helping both energy producers and consumers have 
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more information. Zurborg explains how a concept of “Virtual Power Plant” powered by 

smart grids can help utilities and grid operators reduce  operational cost as well as 

incentivize users to use distributed energy resources by offering better net-metering deals 

[22]. The analytical backbone for such a system requires accurate short term energy 

forecasts as well as long term reliability indices. Long term reliability indices have been 

explained in the previous sections. Short term forecasts of Solar Energy requires accurate 

forecasts of Irradiance and Ambient temperature, the two main variables effecting Solar 

Generator output in the short term. Pan et al have developed a ARIMA time series approach 

to generate forecasts of Temperature [7]. Various techniques like Neural networks have 

been used in previous literature in fault detection of PV modules [23]. Ren at al have 

described all the techniques prevalent today in Solar Irradiance and Wind forecasting, 

doing a comparative analysis between various ensemble techniques [24]. Out of all the 

techniques, Support Vector Machines have proved to be the best performing method to 

forecast Irradiance, especially its ability to model non-linear parameters well. SVMs have 

been extremely effective at non-linear learning tasks [25]. In PV energy forecasting, 

Sharma et al demonstrated use of Support Vector Regression in being accurate to predict 

Solar irradiance in the short term (1-2 days ) [26]. Yerrapragada et al further developed 

this approach to produce a modified SVR called least squares SVR which gave more 

accurate results [27]. A Support Vector Regression technique was expanded in this thesis 

using a combination of all tuning parameters mentioned in the above literature, also with a 

different set of features from that in the literature. Comparable accuracy was obtained for 

relatively higher forecast period (7-10 days).  
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With short term energy forecasts, grid operators can move towards a data-driven Demand 

Response schemes to manage supply-demand of energy as well as manage distributed 

energy resources like Solar, Wind, Electric Vehicles, etc.   
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3.0 METHODOLOGY 

 

When modelling the energy output of a solar generator, the meteorological data of the 

site is of primary importance. Shaping, formatting and transformation of that data to fit 

the requirements is one of the vital components of this thesis. Obtaining degradation 

data for the modules to obtain probabilistic states of existence was done by the periodic 

performance data collected by PRL at various PV power plants. The flowchart given 

below gives an overview of the steps required to be taken to forecast Loss of Load 

(LOL)  

 

Load 
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Figure 1-Loss of load simplified plot 
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Figure 2- Flow chart representing the logical flow of the program developed to 

calculate the reliability indices of a given Solar PV system  
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3.1 Environmental Model 

 

Input for the developed forecasting tool is the environmental model. It can be defined 

as an appropriate way to represent the field conditions of the site in which the PV 

system is located, over the long term. The subject of interest was to see how 

fluctuations in weather affect the energy production of the modules, using which 

probabilistic states of energy were developed. Five years of data from Solar Anywhere 

database for the Tempe area was used to build the environmental model. The input 

variables to build the model included Direct Normal Irradiance (DNI) and Ambient 

temperature. The frequency of the observations were 10 minutes i.e. the data was 

captured every 10 minutes. This gave a very high resolution of fluctuations in weather. 

Once the data was shaped and formatted, which included removing missing values it 

was compiled and imported into the R programming environment for further analysis. 

Two types of weather models were considered for analysis- Discrete model and 

continuous model. Discrete model of weather involved dividing different input 

variables into different ranges called bins and observing the occurrence of those 

discrete bins. Continuous model involved observing the weather variables as a 

continuous function and then observing the fluctuations of weather over time.  

 

3.1.1 Discrete Environmental Model 

 

Discretization process involves converting a continuous variable like Temperature and 

Irradiance into a non-continuous format by dividing the variables into different range 

bins and observing which bin does each observation fall into. To create a discrete 
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model, the weather data was imported into the R programming environment, since it’s 

convenient for statistical analysis. Primary interest in analyzing weather data was to 

observe the fluctuations in energy production by each individual solar module. The 

energy produced by each module is a function of both irradiance and ambient 

temperature. Ambient temperature has an indirect effect on energy produced by the 

module, it has a direct impact on different variables like Isc, Voc, FF which in turn 

affect the energy produced by each solar module.  

𝑃(𝑆𝑖, 𝑛𝑠𝑚) = 𝑛𝑠𝑚 ∙ 𝐹𝐹 ∙ 𝑉𝑦 ∙ 𝐼𝑦 

𝐼𝑦 = 𝑆𝑖 ∙ [𝐼𝑆𝐶 + 𝛼(𝑇𝑐 − 25)] 

𝑉𝑦 = 𝑉𝑂𝐶 − 𝛽 ∙ 𝑇𝑐 

𝑇𝑐 = 𝑆𝑖𝑒
(-3.56-0.075xW.S) + 𝑇 

𝐹𝐹 =
𝑉𝑀𝑃 ∙ 𝐼𝑀𝑃

𝑉𝑂𝐶 ∙ 𝐼𝑆𝐶
 

Where: 

𝑃(𝑆𝑖, 𝑛𝑠𝑚) is the output power of the solar generator at Solar irradiance Bin 𝑆𝑖 with 

𝑛𝑠𝑚 functioning PV modules 

𝛼 and 𝛽 are the current temperature coefficient  (A/⁰C) and voltage temperature 

coefficients (V/⁰C) respectively 

𝑇𝑐 is the module temperature  

𝑇 is the ambient temperature 

FF is the fill factor. 

𝑃(𝑆𝑖, 𝑛𝑠𝑚) shown above is the total power produced by the solar generator. Total 

power produced is a function of fluctuating environment variables (Ambient 
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temperature & Solar irradiance) and fluctuating functioning solar modules (varying 

Degradation rates of modules). Environmental variables are modelled using the 

discrete environmental model described below. The fluctuating functioning solar 

modules are modelled using degradation modeling described in the subsequent section.  

The ambient temperatures were converted to module temperatures using the Sandia 

King model after considering other temperature models [2]. Once the data was in the 

desirable format with Irradiance and Module Temperature being consistent without any 

missing values, the data was used for further analysis. The discretizing scheme used 

here was used by JPL et. al  to study the impact of environmental stresses on Solar 

Module degradation [5]. The approach involved discretizing Irradiance and Module 

Temperature into different bins and considering the combined effect of both the 

variables in the form of a bin. For example, a bin code of 12 represents irradiance state 

as bin 1 (range= 0-300 W/sq. m) and a module temperature bin of 2 (range= 35-500 C). 

The figure given below shows the environmental bin model visually. All three 

variables considered by JPL et al are represented by their discrete bins in the form of a 

3-Dimensional cube, where each smaller cubes referring to simultaneous values of 

Temperature, Humidity and Irradiance. Such a discretizing process considers the 

simultaneous occurrence of environmental variables which affect the energy 

generation of solar modules 
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Figure 3- Environmental bin representation. The different axes show different variables 

and each smaller cube represents one environmental bin [5] 

 

Once the discretizing process was completed and for each observation (row) a bin was 

assigned. Then a simple counting algorithm was used to generate the frequencies of 

each bin and probabilities were calculated by simply dividing the frequencies by the 

total count. These probabilities were stored for its subsequent use in the Universal 

Generating Function which will be explained in the coming sections.  
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Bins Frequencies 

11 138838 

12 9114 

13 1 

21 7774 

22 6004 

23 337 

31 15288 

32 32308 

33 15970 

34 11 

Table 1- Table showing the number of times each bin has occurred in the past 

 

Bin statistics can be used to achieve more insight into which bins are occurring more 

than the others. To achieve higher resolution into the bins of interest, further 

discretization of those specific ranges can be done. For example, if the bin 11, bin 32 

and bin 12 have high counts of frequency, those bins can be analyzed more closely. On 

doing that its analyzed that bin 11 is the low irradiance low module temperature bin, 

which likely doesn’t effect energy production to a high extent. But bin 32 is the high 

irradiance bin which needs some more resolution. Adding another discrete range can 

help get more detail. The irradiance bin 3 (600-1000 W/sq. m ) can be divided into 2 

bins of ranges 600-800 W/sq.m and 800-1000 W/sq. m. Doing so increases the number 

of computations, but gives more accurate results. This discretization process to achieve 

a greater level of detailed bins can be done continually so, but it comes at a cost which 

in this case is computational power. The higher the number of bins used, the 

computational complexity increases exponentially in the UGF structure. More on UGF 

will be explained in the subsequent sections. The above-mentioned procedure can help 

us convert continuous random variables (Irradiance, Temperature) into discrete 
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random variables. But for specific calculations, each bin needs to represent a value. 

Multiple methods were used to select the bin value. A simple average of the upper limit 

and lower limit of the bin can give us a value for each bin. But this is least likely to be 

accurate, because the univariate distributions of irradiance and temperature don’t 

follow the uniform distributions. They tend to be more normal in nature, with Means 

of those distributions being the most accurate measure of its central tendency. Medians 

also tend to be a good measure of central tendency in the case of data containing lot of 

outliers, but since the data was cleaned and discretized, Mean seems to be a better a 

measure to use. Also, the outliers tend to be more concentrated in the lower range 

values of Irradiance (Due to Pyranometers malfunctions) [26].  

After using filters multiple times, the means of each bin are recorded. The advantage 

of this method is, the bin means are taken from many years of detailed historical data. 

This will help us make accurate forecasts of bins in the future which are most likely to 

follow a similar pattern in the future as they did in the past.  

 

3.1.2 Continuous Environmental Model  

 

Although the discrete modelling is very convenient and easily interpretable there is 

likely to be some loss of details associated with discretization process. Continuous 

models use the data to fit a continuous, smooth model. Such a model might be 

beneficial for studying the variations in the environmental conditions. Pan et al had 

developed a time-series model for temperature using the historical dataset for Mesa, 

AZ. Time series models are usually preferred for modelling variables which vary over 

time.  
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3.1.2.1 Time Series Models 

ARIMA models and Holt Winter’s smoothing methods are dominantly used in research 

and industry to explain variations in variables with respect to time [28][12][7]. 

Our interest here was to model the variables of our choice- Irradiance and Module 

Temperature. The approach was to see the comparison between individual Univariate 

Time series models for each variable i.e. study the variation of each of our variables 

with respect to time taken one at a time. When two different ARIMA models for each 

of the variables were obtained, the models can be combined to see how environment 

has behaved in the past. A seasonal ARIMA model approach is used to model both 

irradiance and temperature. Such a model works well on data which has seasonality, 

daily fluctuations and has an yearly pattern.  

 

Figure 4-Time series plot of temperature 
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Figure 5- ARIMA model of temperature 
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Figure 6-Time series of Irradiance 
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Figure 7-Statistics of ARIMA model for irradiance 

 

As noted in the summary statistics for the temperature model, a seasonal ARIMA 

(1,1,1)(1,1,1) 8 has been used. It means the temperature model can be split into two 

parts- one is the variation of temperature with time and another is the variation of 

temperature with cyclic variation (diurnal variations) and seasonal variations. 

Appropriate differencing order, Autoregressive order and Moving average order is 

chosen by the JMP program by conducting successive iterations of model fitting and 

choosing the model based on best values of fit (R-Square), MAPE (Mean Absolute 
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error), RMSE (Root mean squared error), information criterion (AIC and BIC). The 

model achieves a good fit of R-square 97% 

Similarly, a seasonal ARIMA model for irradiance is built using data for 5 years. The 

picture above shows that the model fits poorly. It has an R-square of 39% and almost 

every other measure is in poor shape. On closer observation of residuals, the model has 

high residuals during the night hours when irradiance drops to 0. This seemed to distort 

the model towards a lot of noise. Removing all the night time observations and running 

a similar model on data from 8am to 7pm seems to improve the accuracy a little. It 

improves the fit to 77% and all the other accuracy measures improve, but it’s still not 

a good model.  

A multi-variate time series of Irradiance and Temperature was considered, but 

preliminary analysis revealed very weak cross-correlation between Irradiance and 

Temperature. Such a weak correlation between the two variables might not improve 

the fit of the model.  

On further investigation, it seems logical to conclude that irradiance models are usually 

non-linear in nature [29]. Irradiance seems to vary in relation to many other parameters 

in the weather data, like temperature, cloud cover, chance of precipitation, wind speed 

etc. There is a need to find a model which can model irradiance based on all the above 

presented variables and effectively capture all the non-linear relationships between the 

above given variables.  
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3.1.2.2 Support Vector Machines 

Machine learning methods were explored to develop a model to predict Solar 

Irradiance. Sharma et al used a support vector regression method to model the Solar 

irradiance [26]. Yerrapragada et al used a variation of support vector machines called 

Least Squares Support vector regression to achieve accurate models to predict solar 

irradiance [27]  

A support vector regression model was built to predict Solar Irradiance. Data was 

transformed to a format where the output variable was the target hour of solar 

irradiance, and the independent variables were the solar irradiance of the same target 

hour but with a lag of 7,8,9,10,11 days. These variables made sure the time-series 

dependence of Irradiance was maintained. Along with these, temperature, wind speed 

of the target hour was added too. This technique is significantly different from the 

techniques presented in the literature. It doesn’t use any other parameter like cloud 

cover, precipitation data or any other meteorological inputs from satellite data and yet 

produces a reliable model. 

A regular Support Vector Regression model using a RBF kernel is used with a 

complexity parameter of 1000 and a gamma value of 0.00001. When tested on a test 

set of a week ahead values, the predictions produced were highly accurate with a MAE 

(Mean absolute Error) of 93 W/sq. m. So, this proved that the model fits well on both 

seen and unseen data.  
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Figure 8- Representation of Support Vector Regression. The legend shows different 

decision boundaries for different types of SVM models and tuning parameters. 

 

Continuous models provide a greater fit to the data than the discrete model, however 

generating long term forecasts of PV Loss of Load and Energy Supply was of greater 

interest. It was learnt that continuous models are useful in providing highly accurate 

short term forecasts whereas discrete models perform well for long term forecasts. For 

the UGF approach discrete model was chosen, whereas for the short-term forecast 

generation continuous models were used.  

Keeping in mind this distinction it was decided to produce two types of forecasts-  

1. Long term forecasts of Loss of Load which would help give an insight into Grid 

Stability, Contribution of Distributed sources to the grid.  
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2. Short term forecasts to help Utilities gain unique insights into customers owning 

PV systems on residential and commercial buildings. These insights include- 

better targeting customers who have PV systems in Load Shedding programs 

during peak demand times, potentially reducing costs for the utilities.  

 

3.2 Degradation Models 

 

Any long-term PV Energy forecasts must consider the effect of degradation of modules 

over time. Several degradation studies have shown the linear nature of degradation of 

rated Power of Crystalline silicon modules [7][10].  Multiple failure modes have been 

identified and NREL has identified 87 types of defects which affect the safety and 

performance of a PV module [8] System modeling software packages like SAM and 

PVSyst do consider the effect of degradation over the long-term energy forecast of the 

system. But due to lack of degradation data they assume a mean degradation rate of 

0.8% with a user input of a RMS value. Jordan et al have reviewed the mean 

degradation rates for PV modules by different regions and climates around the world 

[8]. They conclude the median degradation rates have been consistently around 0.5% 

with the mean being around 0.8%.  
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Figure 9- Distribution of Degradation [8] 

 

Figure 10-Tempe warehouse degradation distribution 
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Figure 11- Rogers1 degradation distribution 

 

For this thesis, PV power plant degradation was our main concern. When analyzing 

individual module, I-V data done over the years for the Tempe Warehouse and Rogers-

1 power plants, the distribution of degradation rates for different modules confirm 

Jordan et al findings about the nature of the distribution, though higher degradation 

rates were observed for the power plant under study. The distribution was normal, but 

skewed to the left. For such distributions median is a better representation of central 

tendency than the mean. The median degradation was found to be  0.99 % /year. So, 

the failure rate for each module was defined as the rate at which the modules reach a 

degradation of 20%. This failure rate was found to be 0.050 / year. This is important, 

because the failure rates are used in the Markov Process calculations to achieve steady 

state probabilities of different working-not working modules. More on markov 

processes will be explained in the forthcoming section.  
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3.3 Markov Processes 

 

A markov process is a stochastic process which is used to represent the chance that a 

random variable is going to take a particular value. Markov processes are based on a 

central assumption that, the next value of a process (random variable) depends on the 

current value only and is independent of the previous states’ values. The random 

variable is represented by multiple values/states, the transition between states being 

represented by failure rates and repair rates.  

Markov processes are a very popular method of modelling stochastic processes. A 

process is called stochastic when its variations are random in nature. For example, 

random variables like number of machines breaking down can be represented as 

markov chains. At any given point, to find out how many machines are broken down 

needs us to evaluate multiple failure rates and repair rates of many machines together. 

Failure rates and repair rates of a machine are competing processes which decide if at 

a given time a machine has failed or is still working. The problem becomes more 

complex when there are multiple machines as described above which have competing 

failure and repair rates. It cannot be stated certainly that at a given time how many 

machines would be working or not working. But using markov processes one can find 

out the probability of being in every state. This is called the steady state probability of 

markov process.  

From the context of this thesis, markov processes was used to model the random event 

of multiple modules degrading in a power plant, leading to multiple competing 

processes. At a given time it’s difficult to predict the proportion of modules performing 
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at different degradation levels, since each module has its own degradation rate as a 

result of difference in manufacturing quality and various other factors. So one might 

wonder as to how to find the proportion of modules working at different levels of 

degradation. Markov processes offers an effective way to model this phenomenon. The 

mean failure rate, mean repair rate (assuming if the modules are replaced after they 

degrade 20%) is found out and the expected probabilities of being in each state can be 

calculated.  

 

Figure 12- Markov Model showing transition between different functioning states. The 

failure rates and the repair rates represent the transition between different states.  

 

The figure above shows us the different markov chain. If our system has 400 modules, 

it can be discretized into different states. It should be noted that, a module is 

represented as working (100% Pmax) and not working (Pmax<80% of original). For a 

system of 400 modules, it can be discretized into 5 states as represented in the figure. 

For a state representing 300 modules working, means that 300 modules are working at 

100% Pmax, and 100 are working at 80% Pmax degradation. This can be represented 

mathematically by a transition diagram as shown below. Assuming the states are 1, 2, 

3….., r; the transition matrix is given below.  
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Figure 13- Transition matrix representing transition probabilities/failure rates of a markov 

process. Pij represents probability/rate of transition from state i to j 

 

Through recursive matrix multiplication, the steady state probabilities of each state can 

be found out. This tells us, at a given time when looked at the power plant, the chance 

of finding the plant in the respective states is given by the steady state probability 

calculated. It’s evident by looking at the explanation that the more states the process is 

divided into, more detailed representation of the working of the power plant can be 

obtained.  

 

3.4 Universal Generating Functions 

 

Ushakov et al demonstrated the use of universal generating functions to evaluate joint 

probability distribution of multiple discrete random variables. Universal Generating 

Functions (UGF) convert a probability distribution into a discrete polynomial function. 

Such a representation is very convenient to carry out mathematical operations like 

multiplication, addition and subtraction. The general format of a UGF is given below.  

𝑢(𝐼𝑅) =  ∑(𝑝𝑖
𝐼𝑅 ∗ 𝑍𝑦(𝑖)) 
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Here ‘𝑝𝑖
𝐼𝑅’ represents the probability of the discrete variable i, value of which is given 

by 𝑦(ⅈ). More discrete states result in a long UGF.  

 

3.4.1 UGF of Solar Energy States  

 

As per the discrete environmental model explained before, the output obtained there is 

the different environmental bins and the respective frequencies and probabilities of the 

bins. Using the following information, energy produced by each bin is given by a 

energy function.  

Energy produced by a solar module is a function of environmental conditions. It 

directly depends on Solar Irradiance and the operating module temperature [2].  

𝑃(𝑜𝑛𝑒 𝑠𝑜𝑙𝑎𝑟 𝑚𝑜𝑑𝑢𝑙𝑒) =  𝐹𝐹 ∙ 𝑉𝑦 ∙ 𝐼𝑦 

𝐼𝑦 = 𝑆𝑖 ∙ [𝐼𝑆𝐶 + 𝛼(𝑇𝑐 − 25)] 

𝑉𝑦 = 𝑉𝑂𝐶 − 𝛽 ∙ 𝑇𝑐 

𝑇𝑐 = 𝑆𝑖𝑒
(-3.56-0.075xW.S) + 𝑇 

𝐹𝐹 =
𝑉𝑀𝑃 ∙ 𝐼𝑀𝑃

𝑉𝑂𝐶 ∙ 𝐼𝑆𝐶
 

 

Vy and Iy are calculated for each bin. And then the energy produced by each 

environmental bin is calculated. So for each bin, the probability associated with it and 

the energy produced by it is obtained. This can be expressed as a UGF.  

𝑢𝑌(𝑍) = ∑ 𝑝(𝑌 = ⅈ)𝑍ℎ𝑖

𝑛𝐸−1

𝑖=0
 

Where: 
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hi denotes the power output of a single solar module at state i 

p(∙) denotes the state probability distribution 

This represents the UGF of solar energy states.  

 

3.4.2 UGF of Solar Module Degradation  

 

Energy produced by a solar power plant depends not only on the weather states, but 

also on the number of functional PV modules. By functional, if a PV module is working 

at 100% of its rated power, then its fully functional. If it is working at 80% or lower of 

its rated power then its considered as not working. From the markov process model of 

degradation, the steady state probability of each degradation state is calculated. That’s 

given below. 

 

States Modules effectively 

working - 𝒈(ⅈ) 

Probability of the 

state 

400 modules working 400 𝑝1
𝑑𝑒𝑔

 

300 modules working 380 𝑝2
𝑑𝑒𝑔

 

200 modules working 360 𝑝3
𝑑𝑒𝑔

 

100 modules working 340 𝑝4
𝑑𝑒𝑔

 

0 modules working 320 𝑝5
𝑑𝑒𝑔

 

Table 2- Steady state probabilities of number of functioning modules. A module is 

considered functioning if degradation is 0%. A module is considered failed if degradation 

is greater than 20%. 
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the UGF of Degradation states can be written as given below 

𝑢𝑋(𝑍) = ∑ 𝑝(𝑋 = ⅈ)𝑍𝑔𝑖

𝑛𝑀−1

𝑖=0
 

Where: 

gi denotes the number of working modules at state i 

p(∙) denotes the state probability distribution 

 

3.4.3 Combined Energy UGF  

 

When the combined effect of modules degrading over time and fluctuations in weather 

is analyzed, the actual Energy output expected from the PV system can be calculated. 

Using the UGF approach, every fluctuation is reduced to probabilities or chance. When 

the UGFs are combined, its equivalent to taking the joint probability distribution of 

multiple random variables. Essentially, it’s like calculating the chance that all the 

fluctuations (fluctuation in weather & degradation) occur simultaneously and 

estimating its impact on energy generation.  

System modelling software like PVSyst perform this operation, by reducing weather 

fluctuation to a single TMY file which is generated using iterative sub sampling 

techniques. Even the degradation states are randomly subsampled and then combined 

in a Monte-Carlo simulation to see the combined effect. UGF provides us a method 

which is computationally less expensive and doesn’t lose a lot of detail as in the case 

of TMY compression.  

Combined representation of Solar Energy States and Module Degradation States is 

given below. 
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Assuming independence between X and Y, the u-function for the solar generator power 

output can be written as: 

𝑢𝑆(𝑍) = 𝑢𝑋(𝑍)⨂×𝑢𝑌(𝑍) 

The ⊗ symbol is like the multiplication operator. It is used here in context of 

multiplying two UGFs. Multiplying the two UGFs must be done in a fashion as shown 

below.  

𝑢𝑆(𝑍) = ∑ ∑ 𝑝(𝑋 = ⅈ)𝑝(𝑌 = 𝑗)𝑍𝑔𝑖×ℎ𝑗

𝑛𝐸−1

𝑗=0

𝑛𝑀−1

𝑖=0
 

 

3.4.4 Load Data 

 

The load data of the site was obtained and a simple discretization rule was followed. 

The load data was divided into bins, and the mean of each bin was found from the 

actual load file. Once frequencies were obtained for each bin, it was converted to 

probabilities. This was represented in the form of a UGF for the load file.  

𝑢𝑙𝑜𝑎𝑑(𝑍) = ∑ 𝑝(𝑙𝑜𝑎𝑑 = ⅈ)𝑍𝑙𝑖

𝑛𝑙𝑜𝑎𝑑−1

𝑖=0
 

 

3.4.5 Loss of Load Estimate (LOLE) 

 

LOLE is a reliability index which is used frequently by utilities to characterize the 

stability of a power system with respect to meeting energy needs. Its represented in 

percentages and it quantifies the amount of time the load requirement won’t be satisfied 

by the solar generator. The general procedure to calculate LOLE involves comparing 

hourly Solar Generator output to that of the hourly load demand. The number of hours 
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load exceeds the amount of energy produced is divided by the total number of hours to 

result in a fraction. This fraction gives us the reliability of a Solar generator, signifying 

how effective is the solar generator in satisfying the load requirement.  

𝐿𝑂𝐿𝐸 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑢𝑟𝑠 (𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 < 𝑙𝑜𝑎𝑑 𝑑𝑒𝑚𝑎𝑛𝑑)

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑢𝑟𝑠 𝑠ⅈ𝑚𝑢𝑙𝑎𝑡𝑒𝑑
 

For the UGF approach, the combined UGF obtained above is compared to the load 

UGF using a special operator as defined below.  

 

 

Here Gi represents the solar generator output and Li represents the load demand. The 

distributive operator 𝛹 is used to carry out this desired operation. In simple terms, what 

the distributive operator does is, it carries out a simple polynomial multiplication of 

combined energy UGF and the load UGF and keeps the probabilities of all the terms 

where Gi (generated energy at the ith hour ) is less than the Li (load requirement at the 

ith hour). Once all the probabilities are obtained, it can be simply summed up to get the 

total probability. This total probability represents the LOLE in probability terms. So 

instead of getting percentages of LOLE, fractional values are obtained. If this 

probability is multiplied with time (number of hours in a year), our LOLE estimate 

would then indicate how many hours in a year the system wouldn’t satisfy the load 

demand. This can be represented mathematically as given below. 
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Here the distributive operator 𝛹 is being applied on the multiplication of the combined 

energy UGF and Load UGF, the result being multiplied again by the total time steps 

Nt.  

 

3.4.6 Expected Energy Not Supplied (EENS)  

 

In the previous subsection, it was demonstrated how to obtain the LOLE which 

represented the time the load demand won’t be met by the solar generator. It would 

also be of importance to know the combined difference of the load demand and actual 

energy produced. It would help us estimate by how much does the solar generator fall 

short of the load requirement. For utilities, such information helps them know their 

customer’s energy needs better, since they would know the quantity by which these 

solar generators miss load demand. It also helps the system designers to design systems 

more effectively.  

For this study, EENS is calculated from UGFs. The EENS would be calculated by the 

equation given below.  

𝐸𝐸𝑁𝑆 =  𝛴(𝑙𝑜𝑎𝑑 − 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑)….[when load > energy produced] 

 

Here gj
L-gi

G represents the difference of the load demand and the energy produced by 

the solar generator at that time step. Similar to LOLE, a simple polynomial 
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multiplication is performed between the combined energy UGF and the Load UGF. 

The distributive operator is used to keep the combined probabilities only whose load 

demand exceed the energy supplied. In addition to that, the difference by which the 

load demand is missed is also multiplied with the above probabilities, as shown in the 

formula above. The result of the summation would give us the amount of energy not 

supplied per unit time. When this term is multiplied by the total time, it results in the 

total energy not supplied.  
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4.0 RESULTS AND DISCUSSIONS 

 

The discrete and continuous environmental models are discussed first. Following 

which, their outputs are plugged into the Universal Generating Functions (UGF). In 

the subsequent sections calculations showing combining energy and degradation UGFs 

to obtain combined energy UGFs and the load UGF is shown and discussed. 

Calculations of LOLE and EENS as a function of number of chosen states are shown 

and discussed. 

Following which, comparisons with PVSyst outputs for similar systems is shown to 

get an estimate the performance and accuracy of the model presented.  

The system in consideration was Tempe Warehouse. The details of the system is given 

below in the table.  

Date Isc 

(A) 

Voc 

(V) 

Imax 

(A) 

Vmax 

(V) 

FF 

(%) 

Pmax 

(W) 

23/4/2013 6.50 60.00 5.80 51.00 75.85 300.00 

Table 3- Tempe Warehouse module specifications 

 

Some of the key assumptions to be made before analyzing the results are-  

1. The degradation data is compiled using the I-V curves taken at the individual 

module level. Not all the modules are tested, so its assumed that the sample of 

modules tested represents the entire population of the modules of the power 

plant.  

2. This analysis can be easily translated to string level analysis by taking the raw 

KWh degradation data.  
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4.1 Discrete Environmental Model UGF 

 

Initially for the first iteration, the irradiance was divided into 3 ranges which were- 0-

300, 300-600, 600-1000 W/m2. This was done by taking into account the most dense 

regions of the Irradiance distribution [5]. 

The module temperatures were divided into 5 ranges- 0-35, 35-50, 50-65, 65-80, 80-

100. So overall there are 3x5, 15 bins. But not all the bins have occurred, so the table 

given below summarizes only the bins that have occurred.  

Bin Probability 

11 0.614488 

12 0.040338 

13 4.43E-06 

21 0.034407 

22 0.026573 

23 0.001492 

31 0.067664 

32 0.142993 

33 0.070682 

34 4.87E-05 

Table 4-Bins and their probability of occurrence 
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Figure 14-Bar chart of bin frequencies 

 

The range of the bins are given below and the average values of Irradiance and 

Temperature for each bin is given below in the figure.  

 

Bins 

Irradiance Range 

(W/m^2) T-cell Range (0C)  

11 0-300 0-35 

12 0-300 35-50 

13 0-300 50-65 

21 300-600 0-35 

22 300-600 35-50 

23 300-600 50-65 

31 600-1000 0-35 

32 600-1000 35-50 

33 600-1000 50-65 

34 600-1000 65-80 

Table 5- Bin ranges 
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Figure 15-Average Irradiance and Average module temperature for each bin 

 

Since a continuous data format is converted to a discrete one by dividing into bins, one 

can easily convert this to a UGF format. As mentioned in the previous section, a UGF 

converts a discrete probability distribution like the ones for the environmental bins, 

into a polynomial format. For doing so, one would need the energy output of each bin. 

This can be summarized as in the table below.  
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Bin 

Irradiance 

mean 

(W/m2) 

T-cell 

Mean 

(0C) Vy Iy 

Power 

(W) Probability 

11 10.16476 18.21282 61.40495 66.10542 3.122337 0.614488 

12 42.71431 37.63772 57.38399 277.3731 12.24318 0.040338 

13 268.6 50.17182 54.78943 1742.519 73.4368 4.43E-06 

21 452.09789 21.00461 60.82704 2939.539 137.5357 0.034407 

22 477.76128 41.07223 56.67305 3101.609 135.2082 0.026573 

23 546.10208 51.60014 54.49377 3542.4 148.4854 0.001492 

31 819.19571 10.44618 63.01264 5330.733 258.377 0.067664 

32 845.92158 42.978 56.27855 5490.886 237.6975 0.142993 

33 896.97351 53.91979 54.0136 5817.358 241.6953 0.070682 

34 996.36364 66.76615 51.35441 6455.557 255.0062 4.87E-05 

Table 6- State Probabilities and Energy values 

 

𝑢𝑋(𝑍) = ∑ 𝑝(𝑋 = ⅈ)𝑍𝑔𝑖
𝑛𝑀−1
𝑖=0   

𝑢𝑋(𝑍) = [ 0.6144𝑍3.12𝑊 + 0.040𝑍12.24𝑊 +  0.00000443𝑍73.43𝑊 + 0.034𝑍137.53𝑊 +
0.0265𝑍135.2082𝑊 + 0.00149𝑍148.48𝑊 + 0.067𝑍258.37𝑊 + 0.14𝑍237.69𝑊 +
 0.0707𝑍241.69𝑊 +  0.000048𝑍255𝑊] 

   

Above given UGF, 𝑢𝑋(𝑍) is described for a single Solar Module. It is represented as a 

10 state UGF for a single solar module in a solar generator.  But the energy produced 

by the entire solar power plant is the product of the energy produced by the module 

and the number of modules present in the power plant.  
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4.2 UGF of Degradation States 

 

The UGF of degradation states gives us the variation in the number of modules at a 

power plant. For example, if out of 400 modules 10 modules are working at 80% Pmax 

rating and rest are at 100% , then the effective number of modules of the power plant 

are 390 + 0.8*10 which is 398 effectively working modules. Markov chains are used 

to find out the different probability states involving modules working or not working 

as explained in previous section.  

 

Figure 16- Markov model for Tempe Warehouse 

 

An excel tool was built to calculate the steady state probability. The transition matrix, 

steady state matrix and the steady state probabilities are shown in the image below.  

 

Figure 17- Markov States calculator tool. On entering the failure rate and repair rate, we 

obtain the steady state probabilities associated with each state. 
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Steady state 

probability 

Modules 

working Effective number of Modules 

0.018 400 400 

0.024 300 380 

0.036 200 360 

0.0721 100 340 

0.8499 0 320 

Table 7- Markovian steady states 

 

The UGF of the following degradation model can be written below 

𝑢𝑌(𝑍) = ∑ 𝑝(𝑌 = ⅈ)𝑍ℎ𝑖

𝑛𝐸−1

𝑖=0
 

ℎ𝑖 denotes the number of working modules at state i 

𝑝(∙) denotes the state probability distribution 

𝑢𝑌(𝑍) = [ 0.018𝑍400 + 0.024𝑍380 + 0.036𝑍360 + 0.0721𝑍340 + 0.8499𝑍320] 

 

This UGF describes the state-space model of the degrading modules. The degradation 

UGF and the UGF for a single Solar Module is combined to see the combined effect 

of both the varying parameters.  

 

4.3 UGF of the Combined Energy Model 

 

Both the UGFs obtained above are combined using the ⊗ operator. This operator uses 

polynomial multiplication to achieve the combinatorial representation.  
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Assuming independence between X and Y, the u-function for the solar generator power 

output can be written as: 

𝑢𝑆(𝑍) = 𝑢𝑋(𝑍)⨂×𝑢𝑌(𝑍) 

𝑢𝑆(𝑍) = ∑ ∑ 𝑝(𝑋 = ⅈ)𝑝(𝑌 = 𝑗)𝑍𝑔𝑖×ℎ𝑗

𝑛𝐸−1

𝑗=0

𝑛𝑀−1

𝑖=0
 

𝑢𝑆(𝑍) = [0.6144𝑍3.12𝑊 +  0.040𝑍12.24𝑊 +  0.00000443𝑍73.43𝑊 + 0.034𝑍137.53𝑊 +

0.0265𝑍135.2082𝑊 + 0.00149𝑍148.48𝑊 + 0.067𝑍258.37𝑊 + 0.14𝑍237.69𝑊 +

 0.0707𝑍241.69𝑊 +  0.000048𝑍255𝑊]] ⨂×[ 0.018𝑍400 + 0.024𝑍380 + 0.036𝑍360 + 

0.0721𝑍340 + 0.8499𝑍320] 

𝑢𝑆(𝑍) = [  0.0110𝑍1.2480𝐾𝑊 + 0.01477𝑍1.186𝐾𝑊 +
⋯ … … … … … … … . . + 0.0000415𝑍81.65𝐾𝑊] {50 terms} 

 

4.4 Load UGF  

The load file is simulated to approximately mimic the actual load on the system. The load 

variation is shown in the image below. Its average load is 85KW. The file simulated is for 

a year. 

  

Figure 18- Time series of the simulated load file 
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The load file is partitioned in different bins which is shown below in the table.  

 

Bin Average 

(KW) Frequency Probability 

30 1631 0.185679 

80 5159 0.587318 

150 1989 0.226434 

225 4 0.000455 

Table 8- Load file UGF 

The UGF for the load file can be written as 

𝑢𝑙𝑜𝑎𝑑(𝑍) = 0.1856𝑍30𝐾𝑊 + 0.5873𝑍80𝐾𝑊 + 0.2264𝑍150𝐾𝑊 + 0.000455𝑍225𝐾𝑊 

 

4.5 LOLE and EENS 

 

The LOLE and EENS are calculated by comparing the combined energy UGF and the load 

UGF. The equations used to obtain the indices was described in the previous section.  

The LOLE is obtained by using the 𝛹 operator which returns the product of the 

probabilities of the Combined energy UGF and the load UGF only when the load term 

exceeds the energy UGF term.  

 𝛹{𝑢𝑆(𝑍) ⊗ 𝑢𝑙𝑜𝑎𝑑(𝑍)} = 𝛹{[ 0.0110𝑍1.2480𝐾𝑊 + 0.01477𝑍1.186𝐾𝑊 +

⋯ … … … … … … … . . + 0.0000415𝑍81.65𝐾𝑊] ⊗ [ 0.1856𝑍30𝐾𝑊 + 0.5873𝑍80𝐾𝑊 +

0.2264𝑍150𝐾𝑊 + 0.000455𝑍225𝐾𝑊]}  

𝛹{𝑢𝑆(𝑍) ⊗ 𝑢𝑙𝑜𝑎𝑑(𝑍)} = 0.8381  

LOLE= 8784 x 0.8381= 7361.8704 hours/year  
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As shown above, the Loss of Load Estimate for this system for the given load is 7361.8704 

hours per year for its whole lifetime.  This means that 83.81% of the time in a year the 

system doesn’t satisfy the load demand.  

EENS is obtained by multiplying the difference in load demand states and the energy 

produced states. It can be represented as the formula given below.  

EENS= 8736 ∗ [(𝑔𝑖,𝑙𝑜𝑎𝑑−𝑔𝑗,𝑒𝑛𝑒𝑟𝑔𝑦) ∗ 𝛹{𝑢𝑆(𝑍) ⊗ 𝑢𝑙𝑜𝑎𝑑(𝑍)} ] =557.370 MWh/ year 

This represents the sum of energy deficit of the system, i.e. the average sum of all the 

missed load demand for an year for the given system. The value is 557.370 MWh/ year. 

Both LOLE and EENS quantifies the reliability of the system. These values help us predict 

for a given system, what is the expected energy output over its lifetime. It be must be noted 

here that these two reliability indices might be giving us a conservative estimate for the 

first few years of the operation of the system as there is no significant impact of degradation 

during the early years of the power plant. But when looking at the average impact of power 

degradation over its lifetime, it can be seen that LOLE and EENS indices are close to what 

was predicted by the developed program.   

To get an insight into the functioning of the program, the number of states were varied. 

Particularly the number of bins of irradiance was varied to achieve more states and hence 

increase the resolution of the data. Increasing the number of states increases the complexity 

of calculations, but it achieves better accuracy. The tables given below summarizes all the 

possible combinations which were tried and it’s impact on LOLE and EENS was recorded.  
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No. 

Irradiance 

bins 

No. of 

Temperature 

bins 

Total 

environment 

bins 

No. of 

Degradation 

states 

Total 

States LOLE EENS 

3 5 15 5 75 0.8381 557.370 

4 5 20 5 100 0.82766 553.541 

5 5 25 5 125 0.81955 548.690 

6 5 30 5 150 0.81065 547.866 

Table 9- LOLE and EENS as a function of states 

 

Figure 19- EENS V/s No. of states 
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Figure 20- LOLE V/s no. of states 

 

The graphs shown above show, as the number of states are increased the results get more 

precise. As the solar irradiance bins are increased, more states of solar irradiance are 

captured. This improves the energy estimates and both LOLE and EENS go down.  

The same procedure was expanded to calculate the system reliability for the ASU 

renewable energy systems. ASU has established one of the largest installed Solar PV 

systems, providing energy to its buildings and facilities, with a total energy production of 

24MW/hour. The energy produced by the renewable energy systems and the load 

requirements of the building is calculated and documented by ASU and made available as 

a part of ASU metabolism. This web interface provides us with the load files for an year at 

an hourly frequency. The specification details of each ASU Solar PV system are 

maintained at ASU-PRL and can be found in the appendix. These specifications and 

degradation studies done at those sites were utilized for our study here.  
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Structure LOLE 

EENS 

(MWh/year) 

Actual EENS 

(MWh/Year) 

Accuracy 

(%) 

Barrett 0.998 296.1 301.4 98.24 

Computing Commons 0.998 180.1 182.4 98.73 

Cowden 0.827 236.1 236.8 99.67 

Hayden 0.847 112.5 123.1 91.42 

ISTB1 0.998 838.4 840.5 99.75 

Weatherup 0.877 621.2 626 99.23 

Wrigley 0.997 580.2 603.4 96.15 

Table 10(a)-LOLE and EENS for different systems on a 24-hourly basis. The table 

compares the actual EENS values obtained from the real-time data of ASU systems to the 

EENS values calculated by the program developed. Accuracy scores show that the 

Program developed is highly accurate.  

 

8 ASU systems were analyzed, Solar Energy UGF is developed using the historical 

environmental data used for Tempe Warehouse system and the degradation data which is 

specific to each system.  
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Figure 21-Comparison of Actual V/s Calculated EENS 
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Figure 22-Comparison of Accuracy scores for different systems 

 

To benchmark the UGF program developed, there is a need to compare it to a real-world 

measure which will validate the approach and prove the underlying assumptions to be a 

good approximation of the natural energy production pattern of a PV system. For this 

purpose, ASU Systems data was the benchmark as the data is continuously monitored and 

using smart systems its continually being relayed to a web interface. The actual energy 

produced by the Solar PV systems is captured and yearly summaries are available on ASU 

metabolism. LOLE reliability index is a measure which is good to approximate the 

system’s reliability measure but it’s an analytical measure. It is not captured by the energy 

data acquisition system. But EENS is a reliability index which can be calculated from live 

real time data. ASU metabolism provides us the yearly load on a system and yearly energy 
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generation of each system. The difference of these two parameters give us the actual 

Energy Not Supplied (EENS).  

𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝐸𝑁𝑆 =  𝐿𝑜𝑎𝑑 𝑟𝑒𝑞𝑢ⅈ𝑟𝑒𝑚𝑒𝑛𝑡 − 𝑌𝑒𝑎𝑟𝑙𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡ⅈ𝑜𝑛(𝐾𝑊ℎ𝑟/𝑦𝑟)  

When this was compared with the calculated EENS, accuracy measure is obtained.  

The figure above shows that the calculated EENS is very accurate and the model is 

performing well.  

 

4.6 Short Term Energy Forecasts 

 

Support vector regression proved to be the most accurate forecasting technique to forecast 

irradiance values. For utilities and grid operators, short term solar energy forecasts are very 

important to assess the energy production of solar assets connected to the grid. Since most 

grids are decades old, they were built for one-way energy transfer, i.e. from the grid to the 

consumer. But the rise of distributed renewable sources like Solar PV has seen the 

emergence of two-way energy flow. Since the grids are not clearly built for such two-way 

transfer of energy, an increase in share of renewables will cause much damage to the grid. 

Accurate forecasts in the short term would help utilities measure energy outputs into the 

grid by their customers who have Solar modules installed on their assets. Such forecasts 

also give an insight into which customers are likely to participate in load reduction 

programs and also helps the utilities create better pricing structure for such customers. 

For the weather dataset for the Tempe area, a training set was built using the data from the 

year 2000-2003. The test set was the first few weeks of year 2004. The data was filtered 
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only to include the peak sun hours and night time values were discarded. The prediction 

tool would predict solar irradiance with a Mean absolute error of 93 W/m2. for up to a week 

in the future by observing the past. Stretching the prediction interval to more than one week 

can lead to accumulation of errors. The graph given below shows how the predicted values 

compare to the actual values observed during the first week of 2004. 

 

Figure 23- Irradiance comparison. Actual irradiance values observed is compared the 

forecasts developed for the same period. The plot shows the hourly irradiance plots and 

shows that forecasts seem to be very closely moving with actual irradiance values. Except 

for hour 61-64 where sudden drop in actual irradiance might be due to sensor malfunction 

where forecasts don’t match the actual values.  
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Table 11- SVR parameter configuration. For cost=1300, epsilon=0.0001 and 

gamma=0.001, we achieve the least generalization error rate on the test set.  

 

The figure above shows all the configurations tried to achieve the best accuracy score. The 

Mean Absolute error is a good estimate of the generalization error. For the highlighted 

configuration, it achieved the best MAE estimate of 93 W/m2. A high cost parameter “c”, 

makes sure that any test set misclassification is penalized over training set error. This gives 

us a better estimate of generalization error but there are significantly more training errors.  

CV=10, Radial

Y~ t.7+t.8+t.9+temp+wind, cost = 1300, epsilon= 0.1

Gamma RMSE MAE

0.00001 145.5662 102.209

0.0001 143.4722 103.0585

0.001 132.9151 95.00883

0.01 164.6386 133.5802

Cost RMSE MAE

1300 132.9151 95.00883

1400 132.4574 94.60482

1500 132.7152 94.82422

Y~ t.7+t.8+t.9+temp+wind, cost = 1300, gamma = 0.001

Episilon RMSE MAE

0.1 132.9151 95.00883

0.01 133.8429 94.30791

0.001 133.3623 93.90498

0.0001 133.1546 93.71868

Gamma RMSE MAE MAPE

0.01 161.2736 128.6586 0.31557

0.001 133.7187 93.71868

0.0001 144.5915 103.2527

0.00001 145.5922 99.80352

Y~ t.7+t.8+t.9+temp+wind, epsilon= 0.1, gamma = 0.00001

Cost RMSE MAE

1300 145.5662 102.209

1400 146.0646 102.7776

1500 146.0047 102.7252

Y~ t.7+t.8+t.9+temp, train, cross = 10, kernel = "radial", cost = 1300, epsilon= 0.1, gamma = 0.001

RMSE MAE

W/O wind 145.1355 95.83027

Y~ t.7+t.8+t.9+temp+wind, epsilon= 0.1, gamma = 0.001

Y~ t.7+t.8+t.9+temp+wind, cost = 1300, epsilon= 0.0001
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The results obtained from SVR were encouraging, though further work could be done 

LSTM (Long-Short Term Memory) Neural networks, which are found to work the best on 

time series datasets. Including more features like cloud cover index, precipitation, etc can 

fetch better accuracy scores.  
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5.0 CONCLUSION 

 
As described in the previous chapter, the UGF approach was applied to 8 systems 

and their LOLE and EENS values were calculated, when compared their load data. It was 

seen that as the number of states are increased, the LOLE and EENS values decrease 

marginally and those results are more accurate as more granularity is achieved. The values 

of the above-mentioned reliability indices will help utilities and grid operators assess the 

impact of renewables on the grid as the amount of energy not supplied by these assets is 

obtained. When this program works at scale, it can evaluate the impact of multiple Solar 

PV systems simultaneously, reducing complex combinatorial calculations to simple 

probabilistic calculations using Universal Generating Functions. The Support Vector 

Regression model developed forecasts Solar Irradiance for a week with an accuracy of 93 

W/m2. This short-term forecasting tool can forecast energy accurately, helping grid 

operators gain more information on customers’ energy consumption/production. Such 

information can provide utilities the base to design custom demand-response programs for 

its customers as managing demand-response is easier than regulating the supply-side of 

energy. This has the potential to lower operational costs for utilities, which might result in 

better net-metering incentives for customers. Increase in adoption of smart grids and smart 

meters, along with industrial internet will pave the need for efficient forecasts.  

The UGF approach can be extended to other components of the distributed grid. 

For a PV power system, inverters can be modelled into the UGF equation. Wind energy 

assets and Electric Cars can be modelled probabilistically into the UGF. The distributed 

grid reliability can be modelled by UGF approach and a fault tree diagram of the entire 

distributed grid can be performed. Instead of modelling the degradation states using steady 
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state markov assumptions, different iterations of state probabilities can be performed and 

compared. When extended to other components of the grid, a realistic estimate of system 

reliability of a distributed grid can be obtained as well as a direction to reduce costs and 

increase profitability for the grid operators and utilities.  
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PART 2: ENVIRONMENTAL MODELLING TO DESIGN AN AGING TEST 

1.0 INTRODUCTION 

1.1 Background 

 

Accelerated tests are critical in defining quality and performance standards for PV 

modules. As Solar PV assets are increasingly being financed by high proportion of debt, a 

1 percent change in performance output might mean a 10% difference in return on 

investment. Reliability of the PV modules are important in defining the Levelized cost of 

energy being produced by them. PV module degradation has been proven as the primary 

reason of long term drop in performance of a PV system when compared to other 

components in the system. Accelerated Lifetime Testing (ALT) procedures have been 

developed to effectively predict lifetimes of PV modules, study the dominant failure modes 

and their effect on reduction in performance output. The qualification tests do not identify 

all the possible field failures and are often minimum requirements to start a reliability 

testing methodology.  

The traditional approach to Accelerated Testing has involved identifying the dominant 

failure modes using FMEA by looking at field failure data. Different environmental 

stresses were identified and ALT specification had been developed. Acceleration factors 

for different climate types and for different environmental stress variables have been 

demonstrated. There is a high confidence in the quality of the modules if the module has 

undergone Accelerated Lifetime Testing. But such a procedure is expensive and testing 

protocol has not been developed. There is need to develop climate-specific and technology 

specific ALT methodology which can be used to develop acceleration factors and predict 

lifetime of modules specific to region.  
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To develop a climate specific testing methodology, an effective way to model the 

environment as well as correlating the field environmental conditions to the actual testing 

environment is required. A methodology to validate the physical models of degradation 

with climate specific field degradation is also needed. 

 

1.2 Scope  

 

This thesis is mainly focused on developing an environmental model for the accelerated 

test to study the effect of UV stressor and develop climate specific ALT with Phoenix (hot-

dry) and New York (Cold-dry). UV radiation mainly affects the Encapsulant by causing 

browning and delamination. The aim of this accelerated test is to predict the degradation 

rates in the field for Arizona within 30% accuracy of the actual field degradation rates. 

This thesis presents the discrete environmental modelling approach which can be used to 

design an aging test, which will serve as a validation for the Arrhenius model which serves 

as a base for the Accelerated Test.  
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2. LITERATURE REVIEW 

 

To design an appropriate environmental model to mimic the field conditions, JPL had 

developed an environmental cell/bin approach [5]. This approach was used to assess 

combined impact of different environmental variables like ambient temperature, Irradiance 

(UV exposure) and Relative Humidity on the degradation of PV modules. This approach 

forms the basis of developing an aging test in conjunction with an accelerated test. 

Accelerated testing is done mainly to identify all the potential failure modes and compress 

field degradation into a shorter time, so potential impacts of degradation can be measured 

in testing conditions. Tamizhmani et al describe and review various qualification standards 

and accelerated testing parameters, summarizing the differences between different types of 

accelerated tests [30].  For every environmental stressor, its respective acceleration testing 

standards are described.  There is a need to develop a climate-specific and technology 

agnostic rating system and a lifetime rating system. JPL demonstrated an approach using 

reliability ratio to generate universal ratings for modules [31]. This environmental 

qualification testing methodology was one of the first steps in moving towards a climate 

specific approach. To determine the different modelling approaches which have 

conventionally been used, Tamizhmani et al have described various white box and black 

box modelling techniques used to calculate AF is described [30]. Also JPL has done 

significant work on understanding the effects of UV stressor on PV module encapsulants 

[32].   Based on reviewing work in the field, it’s found that there is a need to develop a 

database of climate-specific degradation mechanisms and correlate it to the defects and 

performance degradation occurred in the field. Although a lot of testing protocols have 

been existing, with increased data sharing a need to develop universal standards has risen. 
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The focus on climate-specific results has led to the need to accurately develop 

environmental models which can correlate the physical models with actual field 

degradations. C-Si technology provides us with ample field data to design the kind of aging 

test presented in the thesis, which can be used in conjunction with an accelerated test.  
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3.0 METHODOLOGY 

 

To fulfill the objectives of predicting the acceleration factor of UV degradation a 

combination of accelerated tests and sequential tests were designed. The objective of this 

thesis is to scientifically design the sequential aging test, to replicate the field conditions in 

the weather chambers and report the degradation which is seen. This aging test is used as 

a validation tool for the accelerated test. The accelerated tests are being designed to obtain 

the Activation Energy in the Arrhenius model, which is believed to be the primary 

mechanism behind UV caused degradation.  Having an aging test would help verify the 

degradation mechanism and quantify the degradation due to each set of conditions.  

 

3.1 Environmental Model 

 

Environmental variables are continuous in nature, i.e. they vary continuously with time and 

don’t have any breaks in their measurements. Examples of continuous functions include 

the sine function, exponential function etc. Examples of discrete functions are step 

functions, binary outputs, etc. There are several ways to model the environment. But two 

of the most relevant classifications can be made namely- discrete method and continuous 

method. For this thesis, the environmental model was restricted to the discrete model, since 

the requirement for designing the aging test was discrete values of the test conditions.  

The JPL approach to environmental modelling was the primary focus of this thesis. This 

approach involved discretizing different environmental variables into different ranges 

called “bins”. The purpose of this modelling approach is to seek the combined effect of all 

the environmental variables taken together. So henceforth, each bin represents a collective 
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state of all the considered environmental bins. For designing an aging test for PV modules, 

there was need to identify the environmental variables which are the major stressors for a 

PV module. As the literature suggests, Module temperature (function of ambient 

temperature and wind speed), Irradiance and Relative Humidity are the main PV stressors 

[32]. 

Irradiance contains Ultraviolet radiation as a part of the spectrum of light, which causes 

encapsulant browning and bleaching [32]. 

The approach used involved discretizing the 3 main environmental variables- Irradiance, 

Module temperature and Relative Humidity. To design an effective accelerated test, the 

weather conditions of the region of interest, their interplay and the effect of the conditions 

on the field modules must be understood [1]. Most tests focus mainly on one variable and 

base their results on the impact that variable had on the test specimen. But the combined 

effect of all these variables on the modules in field is of interest here. The environmental 

data was compiled from different sources and was merged.  The frequency of the 

observation was set to every 10 minutes since the data was available at such a detailed 

level. For long term climatic exposures, 10 minute interval data is adequate to estimate the 

environmental conditions prevailing at the particular region. Also, to observe how the 

environment condition shifts from one bin to the other, it’s important to keep the resolution 

of the data at as high resolution as possible.  

Once the data was compiled, a simple algorithm was written in the R programming 

language to discretize the variables into different bins. Discretization process was done 

keeping in mind the range of Temperature, Irradiance and Relative Humidity values 

observed in the field. The values of temperature obtained were the ambient temperature 
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values. To design the aging test for PV modules, Module temperatures were of higher 

significance as they directly correlate with some of the failure modes. The ambient 

temperatures were converted to module temperatures using the Sandia-King model. This 

model represents module temperature as a function of Ambient temperature and Wind 

speed. Both these variables are available in the Raw data. Using this information, the three 

variables of importance are decided to be- Irradiance, Module Temperature and Relative 

Humidity.  

 

The range values set were setup appropriately to capture all the variation in these variables.  

Temperature was divided into 4 ranges; 0-35 °C, 35-50 °C, 50-65 °C, 65- 80 °C 

Irradiance was divided into 3 ranges: 0-400 W/m2, 400-700 W/m2, 700-1050 W/m2 

Relative Humidity was divided into 3 ranges: 0-30%, 30-60%, 60-100% 
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Figure 24- Environmental Bin representation [5] 

 

Overall there are 4× 3 × 3 = 36 environmental bins which are created because of 

discretizing the environmental variables. The above figure represents the concept of 

environmental bin. The environmental bin can be visualized as a 3-dimensional cube, with 

each axis representing a particular environmental variable. The number of divisions on 

each axis represents the ranges the variable is divided into. Looking at the figure it can be 

seen as each bin being a smaller cube within the bigger cube.  

Analytically, each bin represents an environment condition. Each bin is a given a code. For 

example, if at a given time the temperature is 26 °C, Irradiance is 1000W/m2 and Relative 

Humidity is 90 % then the bin code is 131. With the environmental bins created and 

mapped, a frequency distribution for every bin is obtained along with how long the 

conditions stay in that bin. 
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3.2 Environmental Bin Statistics 

 

A lot of insight can be gained about the nature of the changing environmental conditions 

by observing different Bin Statistics. Bin statistics refers to statistically analyzing how the 

bins are changing over time. For the aging test, two things are of utmost importance which 

need to be analyzed from the past data.  

1. How many times is a particular environmental condition (Bin) occurring 

2. For how long does the Environment stay in the same Bin 

 

For the first condition, a simple counting algorithm was written in the R language, which 

generated a frequency distribution of all the bins and its respective counts for the previous 

5 years of data. This distribution helps us see which Bins have occurred the most amount 

of time. When designing an aging test, the bins with the highest frequencies have to be 

picked, and approximate the ones which occur less number of times by not including them 

in the test. It also helps identify environmental conditions which are more important from 

a degradation point of view. By knowing the exact distribution of environmental conditions 

(Bins), the nature of the environment for the future can be predicted, assuming that over 

the long-term weather fluctuations remain more or less similar to that of the past. If a large 

dataset is analyzed, then it can be approximated that, the patterns observed in the past 

remain similar as what would be observed in the future. If short term forecasts are analyzed, 

they might be different from that of the past values at that time. But if averaged it to a long 

period, then the environment fluctuations have a typical behavior for every region.   
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Another interesting Environment Bin statistic is the frequency of duration of a 

environmental condition. This is shown in the figure below.  

 

Figure 25- Environmental Bin duration frequencies [5] 

 

This represents the frequency distribution of successive repetitions of the same bin 

consecutively. Such graphs are produced for each of the 36 bins and analyzed. When 

choosing the specific bins conditions which will be used for the aging test, this frequency 

distribution is also analyzed. If a bin has two or more successive occurrences, it is given 

more importance in getting chosen. For example, 3 successive measurements in the past 

data shows that for 30 minutes (3x10) the environment remained in the same condition. 

Frequency of this phenomenon helps analyze the duration of the condition. If the nature of 

the duration of a condition is understood, then correlation of a specific degradation 
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mechanism with such exposures can be understood too.  In some cases, degradation 

mechanisms are not simply additive, i.e. they only take place after sufficient exposure to 

an environmental factor is seen [5]. Along with frequency of the bin, the nature of its 

duration also needs to be studied.  

 

3.3 Aging Test  

 

To validate the acceleration factor obtained from the accelerated test, an aging test needs 

to be designed which exactly mimics the field conditions. The acceleration factor is 

obtained using the Arrhenius model, by running the accelerated test at 3 different 

temperatures. This gives the required slope to calculate the activation energy, which in turn 

helps calculate the acceleration factor. To verify that the acceleration factor obtained 

corresponds to the actual field degradation, simultaneously testing of the field degradation 

on similar modules needs to be done. The degradation rates obtained by the aging test run 

at field exposure conditions are verified by the Arrhenius model used by Shantanu et al at 

ASU-PRL.  

The primary method used to run the aging test is by exactly replicating the field conditions 

in the aging test. For this test, the artificial weather chamber is used. This chamber can vary 

the Module temperature, UV dosage and Relative humidity is kept constant at around 20%. 

The UV lamps are used to simulate the UV intensity present in sunlight, which is around 

5% of actual irradiance values. The UV intensity also influences the operating module 

temperature. To achieve variations in module temperature, a differential rack is being 

developed which can change the distances between the UV lamps and the modules. This 

difference in distances between the modules and the UV lamps act as a Module temperature 
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differential. With the physical construction completed, the test conditions needed to be 

decided. Since the one run of the entire aging test might take several months, the number 

of environmental bins to be simulated is limited. Some of the bins can be eliminated.  

The UV induced browning takes place mainly as a function of UV insolation, i.e. product 

total UV irradiance and the time. The different Irradiance bins and their relative frequencies 

are converted to Insolation and then 5% of those values are UV insolation values. The total 

testing time is calculated based on the rating of the UV lamp present at PRL’s environment 

chambers and the temperature at which the modules are exposed.  

Literature shows that for module temperatures below 350C, Isc degradation doesn’t take 

place [30].  Also when the Air mass value is above 1.5 the UV intensity is too low to be of 

any significance to the Encapsulant browning as the UV photons are dispersed in the 

atmosphere, hence the data is filtered to consider data only from 9AM- 5PM. Taking into 

account the following changes, the aging test conditions were designed which is elaborated 

in the subsequent section.  

The modules used for the test were M55 modules. These modules are similar in 

construction type and technology to the MSX60 modules undergoing the accelerated test. 

This makes it scientifically accurate to compare the two types of modules. 
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3.4 Nesting of Test Conditions 

 

While designing the aging test, it needs to be noted that the test is sequential. It’s important 

to design the test conditions as well as the order in which the sequential test should 

progress. UV stressor is the primary reason which causes Encapsulant Browning. This 

problem is accelerated due to higher module operating temperatures. But at high 

temperatures oxygen causes a bleaching reaction which causes the browning to reduce. So 

there is a need to capture only the effect of browning for which oxygen bleaching’s effects 

should be negated.  

This makes designing an aging test very challenging. Nesting of test conditions ensures 

that the aging test proceeds in the decreasing order of environmental stress. This is done to 

preserve the combinatorial nature of stresses, i.e. it makes a difference when trying to 

achieve the combined effect of UV stressors (UV dosage and High Module Temperatures) 

and relative humidity. Considering the effect of high values for only one stressor won’t 

achieve the actual degradation mode, so there is a need to see the effect of all the stressors 

which causes a net high environmental stress. In this test, high values of UV dosage, 

Module temperature and relative humidity causes the highest stress. So the nested 

conditions for the environmental variables are arranged in the decreasing order of their 

values. Relative humidity doesn’t have a significant impact on the browning reaction, 

hence an average humidity of 20% is maintained.  

The test times are calculated based on the time taken to reach the UV insolation in field, 

which is calculated from the environmental bins produced. 
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4.0 RESULTS AND DISCUSSION 

 

Raw data used here was obtained from the Solar Anywhere database, for the years 2000-

2004. The data consisted of 265566 data points taken at 10 minute intervals. The variables 

of focus were Direct Normal Irradiance, Relative Humidity and Ambient Temperature 

(Module Temperature).  

 

Figure 26- Weather Dataset showing all the parameters.  

 

This figure shows the format of the raw data and the columns. This raw data was filtered 

in the following ways using R programming language 

1. Missing values were replaced with the mean values of their neighborhood points.  

2. Data was filtered to include only values from 9AM-5PM at 10 minute frequencies. 

3. The data obtained was converted to bins and it’s frequencies were noted.  

4. Initial analysis with all module temperatures were considered 

5. Finally, module temperatures above 350C were chosen to reduce the test time.  

 



74 
 

Initially the bins generated for all the module temperature bins. This is done to verify that 

the UV insolation obtained by modelling matches the actual studies done on UV insolation. 

The frequency distribution of the Environmental Bins is shown below. This distribution 

represents for all module temperatures.  

 

Figure 27- Environmental Bin Frequencies for years 2000-2004 

 

Only the high frequency bins are considered and the respective bin details are represented 

in the table given below. The UV insolation is obtained from the mean Irradiance of each 

bin multiplied by its frequency of occurrence.   The Histogram given below also shows us 

the distribution of Irradiance values between 9AM-5PM. It shows majority of the values 

are lying towards the right at higher irradiance levels. It’s evident which irradiance bins are 

repeating in high frequency. Irradiance bins 2 & 3 are the ones which are repeated the most. 
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Table 12- Insolation of UV for 5 years of data 

 

Table 13- Insolation of UV Annually 
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Figure 28-Irradiance Histogram. X-axis represents different bins of histogram and y-axis 

represents its frequency. It can be seen that for the filtered 9am-5pm data, irradiance is 

mostly in the range 800-1000 W/m2 for Phoenix, AZ.  

 

This data from the field is compared to UV studies done in the past. Koehl et al conducted 

UV insolation studies at PRL [33]. According to these studies, annual UV insolation in 

Arizona (hot-dry) climate is around 120 KW/m2. This data was verified and proven to be 

the most accurate UV estimate obtained for Phoenix area. According to the data analyzed 

in this thesis, a UV insolation of 440 KW/m2 is obtained. The data considered for 2000-

2004 contains a lot of missing values in the year 2004, so the number of years considered 

comes up to 4.25 years and not 5 years. Taking this into account, it turns out that annual 

UV insolation according to the environmental bin approach is around 104 KWh/m2 as 

shown in Table 13. This is close to the values obtained previously, validating the 

environmental bin approach used. The graphs below show a comparison between UV 

insolation obtained in literature to that obtained by environmental modelling.  
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Figure 29- Annual UV insolation for different Module Temperatures. The desert climate 

plot is of interest here. The area under the Red Curve comes up to 120KW/m2 [33] 

 

  

Figure 30- UV Insolation as a function of Module Temperature obtained from 

environmental bin approach. This is for years 2000-2004. 
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The plot shown here is like the one obtained by Koehl et al. The plot obtained here is not 

as smooth since it’s based on a discrete environment model. The sum of the area under the 

curve gives 440KW/ m2.  

Looking at Table 12, necessary test conditions can be designed. Since there are a lot of 

bins, bins are nested together to reduce the number of conditions. To not lose any detail, 

bins are nested based on common conditions. For the UV browning reaction, the module 

temperature decides the rate of the reaction. So, the bins with the same module temperature 

bins were nested together and their respective UV insolation doses were added. Bin 341 

occurs only 11 times in 5 years of data, so it can be ignored. Three testing conditions to be 

run at three different module temperatures and UV doses are obtained. Time to simulate 

the aging test is calculated based on how long it will take to reach the UV dosage for each 

bin. The UV lamps used at PRL have a rating of 250 W/m2. This reduces the time of the 

aging test as its being accelerated.  

 

Table 14- Final conditions for the aging test for 7 years in hot-dry climate, Phoenix AZ 

(2000-2004). Note: These conditions which were used are for the data recorded between 

9am and 5pm at 10 minute intervals. 

 

When its assumed that the future environmental conditions remain the same as the past, 

the bin frequencies and the observed times can be extrapolated to the future as well. The 

MS55 modules are field exposed for 18 years. After being exposed for 25 years, the 
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degradation mechanisms change as widely reported in literature. For the aging test, we 

have limited time and limited runs. The aim here is to simulate aging for additional 7 years. 

Table 13 shows, to achieve the given UV insolation for each bin, the insolation values are 

divided by UV lamps’ rating. This would help achieve the time to run the test for simulating 

5 years in the field. Temperature factor is taken into account, because its reported in 

previous studies that with every 100C rise in temperature the reaction rate doubles [33]. 

Considering both the factors, aging test times to simulate 7 years in the field is generated. 

As seen in Table 13, 3 different conditions are generated. The variables to be controlled in 

the environmental chambers are- module temperature and the time of exposure. The time 

to run this test comes up to 200 days. If the effect of module temperatures below 350C is 

not considered, then the first condition can be eliminated. This brings down the test time 

to 70 days.   
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5.0 CONCLUSION 

 
An experimental methodology in developing an aging test in conjunction with a traditional 

accelerated test was presented in this thesis. The different environmental conditions and 

their respective run-times in the environmental chambers is quantified and presented. 

These results provide a framework in simulating actual environmental conditions of the 

field responsible for encapsulant browning failure mode for a hot-dry climate. This aging 

test proves as a validation for the physical Arrhenius model driving the Browning reaction 

mechanism. The activation energy obtained from running the accelerated test at 3 different 

conditions can be verified by measuring the performance drop experienced by the aging 

test. This validation will prove useful when trying to predict the field degradation for other 

modules in the future.  

When conducted successfully and the validation is successful, a design of experiments 

approach could be used to statistically validate the degradation being caused by the failure 

modes attributed to UV degradation. Such an experiment setup was out of scope for the 

current project, but could be developed to quantify the degradation caused by UV Stressor. 

Designed experiment should be done in such a way that it falls within the time constraint, 

as well as doesn’t induce different failure modes. By avoiding these pitfalls further 

quantifiable studies could be made, which will validate physical models hence improving 

our definition of module reliability and at the same time developing new standards which 

educates the industry about the nature of such failures.  
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APPENDIX-A 

 

R-CODE TO OBTAIN THE MULTI-STATE RELIABILITY MODELS AND SVM 

MODELS 
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