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Voltage gated ion channels play a major role in determining a neuron’s firing behavior,

resulting in the specific processing of synaptic input patterns. Drosophila and other

invertebrates provide valuable model systems for investigating ion channel kinetics

and their impact on firing properties. Despite the increasing importance of Drosophila

as a model system, few computational models of its ion channel kinetics have been

developed. In this study, experimentally observed biophysical properties of voltage

gated ion channels from the fruitfly Drosophila melanogaster are used to develop a

minimal, conductance based neuron model. We investigate the impact of the densities

of these channels on the excitability of the model neuron. Changing the channel densities

reproduces different in situ observed firing patterns and induces a switch from integrator

to resonator properties. Further, we analyze the preference to input frequency and

how it depends on the channel densities and the resulting bifurcation type the system

undergoes. An extension to a three dimensional model demonstrates that the inactivation

kinetics of the sodium channels play an important role, allowing for firing patterns

with a delayed first spike and subsequent high frequency firing as often observed in

invertebrates, without altering the kinetics of the delayed rectifier current.

Keywords: membrane excitability, ion channel kinetics, Drosophilamodel, neuronal dynamics, bifurcation studies

1. INTRODUCTION

It is well-known that different neuron types exhibit distinct characteristic features under
standardized or similar conditions such as constant current injection, due in part to the influence
of differing ion channel kinetics and distributions (Shepherd, 2004). Experimental and theoretical
studies show that differences in spiking patterns can be related to different combinations of ion
channel densities (Goldman et al., 2001; Zeberg et al., 2010) with different channel kinetics. These
differences affect the timing of action potentials (APs) and influence subthreshold integration of
synaptic input and the filtering properties of the neuronal structure, resulting in bandpass or
highpass filtering properties. Consequently, the response of a neuron to synaptic input depends
on the underlying dynamics of membrane excitability. Hodgkin classified neurons according
to their spiking behavior upon steady current injection, and the resulting frequency–current
relationships (f –I curves) generally can be divided into three distinct classes (Hodgkin, 1948).
Numerous subsequent studies have analyzed the relationship between this classification and the
output properties of amodel neuron (Ermentrout, 1996; Rinzel and Ermentrout, 1998; Gutkin et al.,
2003; St-Hilaire and Longtin, 2004; Tateno et al., 2004; Tateno and Robinson, 2006, 2007) and, from
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a dynamical systems point of view, how this classification
relates to the underlying mathematical structure of the model
(Izhikevich, 2007; Prescott et al., 2008).

In spite of these theoretical studies, the impact of specific
ion channel kinetics on neuronal function remains largely
unclear. Drosophila provides a valuable model system for
investigating ion channel kinetics and their impact on firing
properties. Neurons can be identified individually, and many
molecular mechanisms are comparable to those in vertebrate
systems. The spiking responses and neuronal morphology in
these neurons have been investigated at different developmental
stages (Choi et al., 2004) and changes in these properties
have been observed during development (Duch and Levine,
2000), after targeted genetic manipulations, and under different
pharmacological conditions (Peng and Wu, 2007; Duch et al.,
2008; Ryglewski and Duch, 2009). In particular, the use of
Drosophila in research is of great interest due to the development
of new genetic tools for experimentation. Despite the increasing
importance of Drosophila as a model system (reviewed by Baines
and Pym, 2006 and Corty et al., 2009), few computational
models of its ion channels have been developed. The use
of computational modeling techniques can help predict the
behavior of membrane dynamics at experimentally inaccessible
locations and help connect electrophysiological and other
molecular biological findings to neuronal function. Here, we
create mathematical models, based on experimental data from
Drosophila, in order to conduct a computational study that
investigates how changes of different parameters in physiological
ranges influence the input-output properties of neurons. We
focus on the identified Drosophilamotoneuron 5 (MN5) since its
morphology, electrophysiology and certain aspects of its behavior
during flight have been well-characterized experimentally.

The generation of action potentials, along with their shape and
firing patterns, depends in large part on voltage gated sodium
(Na+) and potassium (K+) channels. Drosophila has only one
confirmed Na+ channel gene DmNav (Miyazaki et al., 1996;
Mee et al., 2004), which is subject to alternative splicing. The
voltage dependence of the macroscopic currents carried by the
different splice variants has been characterized in heterologous
expression systems using voltage clamp recordings (Olson et al.,
2008; Lin et al., 2009). K+ channels show the greatest diversity
among ion channels (Jan et al., 1977; Coetzee et al., 1999), where
voltage gated ion channels fall roughly into two categories, the
non-inactivating or slowly inactivating delayed rectifier and the
rapidly inactivating, transient A-type currents (Hille, 1992). In
Drosophila neurons two genes, Shab and Shaw, encode delayed
rectifier current conducting channels. Shab and Shaw channels
are members of the Kv2 and Kv3 subfamilies, respectively (Wei
et al., 1990; Covarrubias et al., 1991; Tsunoda and Salkoff,
1995a,b). Shaw channels demonstrate low voltage sensitivity,
suggesting that they operate as leak channels, while Shab channels
conduct the majority of delayed rectifier currents (Tsunoda and
Salkoff, 1995b). The kinetics of the Shab channel are reported
to be comparable to the classical (as described by Hodgkin–
Huxley) delayed rectifier K+ channel (Tsunoda and Salkoff,
1995b). Two further genes encode channels conducting A-type
currents that show fast inactivation kinetics. Activation and

inactivation properties of Drosophila voltage gated K+ channels
have been characterized in homologous expression systems as
well as in Drosophila neurons (Covarrubias et al., 1991; Islas
and Sigworth, 1999; Tsunoda and Salkoff, 1995b; Gasque et al.,
2005). Their contributions to firing properties have been studied
using pharmacology and genetical manipulations in order to
remove the currents (Choi et al., 2004; Gasque et al., 2005;
Peng and Wu, 2007; Ryglewski and Duch, 2009; Ping et al.,
2011). Comparing different mutant neurons indicates that Shab
is required for repetitive spiking, while A-type channels regulate
the firing frequency and lower the spike threshold to induce a
delay to first spike (Choi et al., 2004; Ping et al., 2011).

However, accessing the specific role of different ion channels
is challenged by the considerable amount of variability across
individuals. Drosophila MN5 shows considerable animal to
animal variation in spiking behaviors upon current injection
(Duch et al., 2008), ranging from non-repetitive responses (single
spikes or single graded responses) to repetitive spiking with
different f –I curves and varying delays to first spike. Data
from intracellular recordings in whole cell patch configuration
(shown in Figure 1) demonstrate different firing behaviors seen
in DrosophilaMN5. Some cells exhibit a single AP with no delay
to first spike for small Iapp or display only a slight increase in firing
frequency with increasing Iapp. This indicates a discontinuous
f –I curve and relates to a dynamical system close to a Hopf
bifurcation (type II dynamics). Other cells have a comparably
lower firing threshold, where smaller Iapp-values induce low
frequency spiking. In this case a continuous f –I curve is possible,
which can be related to a saddle node on invariant cycle (SNIC)
bifurcation (type I dynamics). In rare cases, repetitive spiking
occurs after a long delay, where the interspike intervall (ISI) is
smaller than the initial delay and higher amplitudes elicit higher
frequency spiking without initial delay (see Herrera-Valdez et al.,
2013). In dynamical systems this type of behavior is observed
if the system is close to a saddle small homoclinic bifurcation
(Izhikevich, 2007).

In addition to animal to animal variability, compensation
mechanisms and modulation adjust the membrane properties
of neurons, and experimental studies using genetic knock
downs can be compromised by these homeostatic regulation
mechanisms (Marder, 2011). Here we determine whether this
known variability can be captured sufficiently by a minimal
model with only two realistic channel types. This provides a
foundation for understanding the roles of these channels and
for future studies with additional channel types where detailed
mathematical analysis is not possible due to the large number
of variables. We begin with a model of a patch of excitable
membrane where we carefully develop models of Na+ and K+

voltage gated ion channels displaying kinetics based on channels
expressed in Drosophila. The Na+ channel is based on kinetics
of DmNaV29, which mediates a fast inward current, and the K+

channel is based on kinetics of Shab, which mediates a delayed
rectifier outward current. In contrast to the electro-diffusion
based model in our previous work (Herrera-Valdez et al., 2013),
here we use a conductance-based model, where the parameters
of the model are adjusted to better resemble published data.
First, using amathematically reduced two dimensional model, we
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FIGURE 1 | Different firing behaviors from three Drosophila MN5s. Intracellular recordings in whole cell patch configuration carried out by S. Ryglewski in the

Duch laboratory reveal substantial animal to animal variation in the responses to current pulses (n = 52). Cell 1 (38%): A single action potential for a low-amplitude

current stimulation, with repetitive spiking that adapts in frequency for slightly increased stimulation. Firing frequency increases with stimulation amplitude. Cell 2 (8%):

A very low-amplitude stimulation produces repetitive spiking with a relatively large duration of single APs. Stimulations with an amplitude that is close to the firing

threshold observed in the other cases (0.4 nA) induces a large initial spike with subsequent broader spikes that diminish in amplitude. Increasing the stimulation

amplitude further results in dampening oscillations that finalize in a depolarization block. Cell 3 (42%): Repetitive firing is induced by a stimulation amplitude of 0.4 nA,

while the cell remains quiescent with stimulation amplitudes of 0.3 nA. Higher stimulus amplitudes result in only a slight increase in firing frequency (42%).

Experimental methods provided by Ryglewski and Duch (2009).

ask whether changing the density of Shab channels is sufficient
to switch between bifurcation types and whether this can cause
the different observed response properties. Employing sinusoidal
current stimulation, we confirm the occurrence of qualitatively
different responses to rhythmic synaptic input. Next, we extend
the model to three dimensions and find that adjusting the
inactivation kinetics of Na+ promotes a saddle small homoclinic
bifurcation leading to a delayed first spike, without changing the
kinetics of the Shab channels.

2. MATERIALS AND METHODS

2.1. Conductance Based Membrane Model
Membrane potential (Vm) dynamics are described with a
Hodgkin–Huxley type conductance based model (Hodgkin and
Huxley, 1952), where the current balance equation takes the form

cm
dVm(t)

dt
= −

∑

i

Ii + Iapp. (1)

Here cm is the membrane capacitance, Iapp the applied current,
and Ii is the ionic current mediated by channel type i. The value
of cm was determined using the whole cell capacitance (≈ 1.3 nF)
as measured in voltage clamp (Ryglewski and Duch, 2009) and
the surface area of MN5 (≈ 10, 000µm2) as determined by
geometric reconstruction from confocal image stacks (Vonhoff
and Duch, 2010). Ii are modeled according to Ohm’s law:

Ii = gi(Vm − Vi), (2)

where gi is the voltage dependent conductance and Vi is the
reversal potential of channel i. The general formulation for
gi includes two gating variables representing activation and
inactivation kinetics, p and q, respectively. Each gating variable

is associated with a number of independently operating gates j
and k, respectively; such that

gi = gip
j
iq
k
i , (3)

where gi is the maximal conductance of channel type i. The open
probability of a gate p is described with

dp

dt
=

p∞(Vm)− p

τp(Vm)
, (4)

where p∞ is the steady state function and τp is the voltage
dependent change of the time constant. The description of gate
q takes the same form. By assuming that opening or closing of a
gate results from charged particles moving across the membrane
in response to an electric field, p∞ and τp become

p∞(Vm) =
1

1+ exp

(
−zpe(Vm − VH

p )
kBT

) and

τp(Vm) =
exp

(
−γpzpe(Vm − VH

p )
kBT

)

rp

(
1+ exp

(
zpe(Vm − VH

p )
kBT

)) , (5)

where kB ≈ 1.3806582 × 10−23 Jk−1 is the Boltzmann constant,
T = 295.15K the temperature, VH

p the half activation voltage, rp
the rate of activation, and γp the relative position of the energy
barrier for a gating particle in the membrane. zpe is the gating
charge, where e ≈ 1.60217733×10−19C is the elementary charge
and zp reflects the amount and distance the gating particle is
moved (Willms et al., 1999; Destexhe and Huguenard, 2000). The
parameter values are summarized in Table 1.
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TABLE 1 | Parameters used in the models.

Name (unit) Description Value

cm (nF) Membrane capacitance 0.13

VL (mV) Reversal potential of the leak current –60

VK (mV) Reversal potential of the K+ current –72

VNa (mV) Reversal potential of the Na+ current 55

gNa (µS) Maximal conductance of DmNav channels 15.62

g̃L Ratio of the maximal conductance of leak

and DmNav channels

0.036

Excluding parameters for ion channel kinetics.

2.2. Minimal Ion Channel Model
For the minimal model, one Na+ current, one K+ current, and
one leak current determine the intrinsic dynamics of Vm. The
voltage dependence of the Na+ current (INa) is based on currents
mediated by channels encoded by the splice variant DmNav29,
which is among others expressed in adult Drosophila neurons.
The K+ current (Isb) is a delayed rectifier current based on
kinetics reported for Shab channels, where we neglect the slow
inactivation of those channels to aid with mathematical analysis.
The leak current, ILeak, accounts for currents with relatively small
voltage dependence. Generally, the membrane currents for Na+

and K+ and the leak current take the form

INa = gNam
3h(Vm − VNa), (6)

Isb = gsbb
4(Vm − VK), (7)

ILeak = gL(Vm − VL); (8)

however, we consider several variations on this model in order
determine and understand the range of cell dynamic behaviors
while fitting the parameters to experimental data.

To begin, the fast activation is assumed to be at steady state,
and we assume that the inactivation kinetics can be represented
as a function of the activation kinetics of the Shab channel gating
(Rinzel, 1985; Av-Ron et al., 1991) in order to reduce the model
to two dimensions. Further discussion of these assumptions is
provided below. This reduced system takes the form

INa = gNam
3
∞(1− b)(Vm − VNa), (9)

Isb = gsbb
4(Vm − VK), (10)

ILeak = gL(Vm − VL), (11)

allowing for phase plane analysis. Voltage clamp recordings are
used to constrain the parameters. When the voltage is held
constant at Vcl, the solution to Equation (4) is

p(t) = p∞(Vcl)+
(
p0 − p∞(Vcl)

)
exp

(
−t

τp(Vcl)

)
; (12)

therefore, the membrane current mediated by a channel denoted
by the index i becomes

Ii = gi

(
p∞(Vcl)+

(
p0 − p∞(Vcl)

)
exp

(
−t

τp(Vcl)

))j

(
q∞(Vcl)+

(
q0 − q∞(Vcl)

)
exp

(
−t

τp(Vcl)

))k

(Vcl − Vi). (13)

To model the activation gating (m) of the DmNaV29 channel,
we use previously published parameters (Herrera-Valdez et al.,
2010). Recall that, initially, the parameters for the inactivation
gating (h) are the same as the parameters for the activation
gating (b) of the Shab channels. The activation and inactivation
curves as reported by Olson et al. (2008) were used to evaluate
the channel model. The experimental Na+ activation curve was
obtained by clamping the cell at a holding potential of −120mV
and recording the current in response to step potentials from
−120 to 60mV in 5mV increments. The peak currents for each
step potential are divided by (Vm − VNa) to obtain the peak
conductance. In experiments, Olson et al. (2008) obtained the
steady state inactivation curve for Na+ using pre-steps from
−120 to 40mV followed by a step potential of −5mV. The pre-
step potential is assumed to be sufficiently low so that essentially
all inactivation gates (h) are open and all activation gates (m)
are closed. The duration of the pre-step is assumed to be long
enough that the system is at steady state. The peak current of each
trace is divided by the maximal peak current among all steps,
which is the one in response to the most hyperpolarized pre-
step and assumed to be the current amplitude, given all channels
are in the open state. We simulate those experiments using
Equation (13) for comparison. Subsequently, we incorporate
independent Na+ inactivation by restoring the third gating
variable, h using parameters reported for inactivation. Again we
simulate the experiments using Equation (13) for comparison of
the activation and inactivation curves.

The parameters for Isb were constrained using voltage clamp
recordings from Drosophila embryonal cell cultures (Tsunoda
and Salkoff, 1995b). Cells were clamped to a holding potential
of −50mV, and the current in response to step potentials
from −20 to 50mV in 10mV increments was recorded. The
published traces were digitized and fitted simultaneously to
Equation (13) using a non-linear least-squares optimization
algorithm. Different initial conditions were used, that converged
all to the same values.

Maximal conductances gNa and gsb can be seen as the
combination of the amount of channels in the membrane and
the maximal conductance of the corresponding single channels.
These values were also fitted but since the number of channels can
be very different in different neurons, in what follows we focus on
the relative amounts of these values.

2.3. Software
Bifurcation diagrams were generated with numerical
continuation methods, using PyCont a sub-package of PyDSTool
(Clewley et al., 2007), which provides an interface to AUTO
(Doedel et al., 2000). Phase response curves (PRCs) were
calculated with the adjoint method implemented in PyDSTool.
Stable and unstable manifolds for saddle points were obtained
using XPPAUT (Ermentrout, 2002) with a time step of 0.001ms.
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The phase responses were determined by calculating the
system’s adjoint (Ermentrout and Kopell, 1991) using PyDSTool.
Numerical simulations were performed using Python 2.7. The
systems of ordinary differential equations are integrated using
odeint with default settings from the scipy package, which
uses lsoda from the FORTRAN odepac. For nonstiff problems,
AdamsĂŹ method was used, and for stiff problems, a method
based on backward differentiation formulas was used. Results
are compared to results obtained with XPPAUT using time
steps of 0.05 and 0.01ms to ensure accuracy. Fitting of the
electrophysiological data was performed using leastsq from the
scipy optimization package.

3. RESULTS

3.1. Fitting of Ion Channel Models
To obtain models for Shab channels, traces from voltage
clamp recordings (Tsunoda and Salkoff, 1995b) are fit with
Equation (13) as described above. The number of gates are
usually chosen to best represent the experimentally measured
ion current dynamics. Since the inactivation of Shab channels is
small, we set the number of inactivation gates to zero as shown
in the Section 2 above. For the activation gating (b) we use a
power of four as used by Hodgkin and Huxley (1952), but also
investigate a power of one as in Herrera-Valdez et al. (2013).
Both powers provide fits that are in good agreement with the
voltage clamp recordings of Shab currents (Figure 2A) although
they require different values for other parameters in order to
best fit the data. The values of the different parameter sets are
summarized in Table 2. In Equation (13) the electromotive force
is based on Ohms’s law, as it is commonly described in Hodgkin–
Huxley type conductance based models and displays a linear
current–voltage relationship.

For Na+ channels, only the parameters for curves used to fit
the peak and tail currents from voltage clamp experiments are

available (Olson et al., 2008). Therefore, only zm, zh, VH
m , and

VH
h

can be assessed. For the two dimensional reduced model
where the inactivation curve for INa depends on the activation
of the Shab channels, inactivation is represented best using the
term (1 − b) with a power of one for the Shab gating variable
(b) (Table 2, Figure 2B) because the half activation of a single
gate is close to the value reported for DmNav29 (Table 3). The
half inactivation values for other DmNav splice variants are
between −34.9 and −66.4mV (Olson et al., 2008; Lin et al.,
2009), where none of these reported splice variants has a half
inactivation that is close to the value found for Shab channel
activation using a power of one. In addition, the slope of the
resulting inactivation curve for INa is too flat, indicating that the
gating charge zb is too small. The Shab channel kinetics were
adjusted in an attempt to improve zb, leading to parameter set
sbdef ; however, only a slight improvement could be achieved
without compromising the Shab kinetics (Figure 2B). Due to
these issues, after analyzing the two dimensional model, we
extend the model to three dimensions by restoring the variable
h for INa inactivation, which allows for different parameters
for Na+ inactivation and K+ activation. Adjusting the gating
parameter as summarized in Table 2 leads to a good agreement
between model and data (Figure 2B) for the three dimensional
system.

In the following we use sbdef as shown in Table 2 as a default
parameter set to model Shab channels dynamics in order to relate
the two dimensional analysis to the three dimensional results.
As described below, the results for the three dimensional system
agree with the characterization of the reduced two dimensional
model.

3.2. General Behavior of the Two
Dimensional Membrane Model
In the following we keep gNa constant and vary the dimensionless
ratio g̃sb of gsb and gNa. This serves as a measure for the Shab

FIGURE 2 | Data fits of Shab and DmNav29 channel parameters. (A) Digitized points from Figure 4A from Tsunoda and Salkoff (1995b) are marked as black

circles. Model of Shab channels with parameters obtained from fits with power one (sb1), power four (sb4), hand tuned parameters (sbdef ) and fits with power four

and fixed zb (sbz ). Compare with Figure 7 from Herrera-Valdez et al. (2013). (B) Steady state activation and inactivation curves of DmNav29 according to Olson et al.

(2008) (gray) and from models (note that the activation kinetics are the same in all models). Results using parameter sets sb1, sb4, sbdef , and independent inactivation

used in the three dimensional model.
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TABLE 2 | Parameter sets for Isb.

Name Description sbpup sb1 sb4 sbdef sbz

(Published (Fits with (Fits with (Hand tuned (Fits with power four

dataa) power one) power four) from sb4) and fixed zb)

VHb (mV) Half-maximum activation voltage for b gate –1.05± 1.20 2.20 –39.3 –42.1 –28.1

zb Movement of gate b gating particle 1.59 ± 0.10 1.51 0.94 1.1 1.5

rb (ms−1) Rate of activation for b gate – 0.14 0.17 0.2 0.26

γb Position of the energy barrier for b gate – 0.46 0.49 0.38 0.3

Number of gates Number of independent b gates 1 1 4 4 4

Comparison of published values, fits of digitized experimental data with Equation (13), and hand tuned parameters.
aTsunoda and Salkoff (1995b).

TABLE 3 | Parameters for INa.

Name Description Published experimental data Model parameter

a b 2D 3D

VHm (mV) Half-maximum activation voltage for m gate –25.9 ± 1.2 –27.3 ± 1.3 –33.00 –33.00

zm Movement of gate m gating particle – – 3.00 3.00

km (mV) Slope factor: kBT/(ezm10−3) 4.0 ± 0.3 – ≈ 8.5 ≈ 8.5

rm (ms−1) Rate of activation for m gate – – ∞ ∞

powerm # of independent m gates 1 1 3 3

VHh (mV) Half-maximum inactivation voltage for h gate –38.9 ± 0.3 –48.1 ± 1.3 –42.14 –39.14

zh Movement of gate h gating particle – – 1.11 5.20

kh (mV) Slope factor: kBT/(ezh10
−3) 4.8 ± 0.1 – ≈ 23.07 ≈ 4.91

rh (ms−1) Rate of activation for h gate – – 0.2 0.2

γh Position of the energy barrier for h gate – – 0.38 0.38

powerh Number of independent h gates 1 1 1 1

Comparison of published values derived from fits of voltage clamp data with values used in the models.
aOlson et al. (2008);
bLin et al. (2009).

channel density, assuming that the maximal conductance is the
product of the amount of channels in the membrane and the
conductance of a single channel in the open state.

With a g̃sb = 1.1347, the model resembles the basic features
of Drosophila MN5 (Figure 3A) in response to steady current
injection. Current pulses with amplitudes of the same order
of magnitude as used in experiments cause the model to fire
repetitively. However, compared to the majority of available
recordings, the AP duration is longer and the firing frequency is
higher (Figure 3A). It is likely that these features can be adjusted
by adding A-type currents to themodel. Shaker current is thought
to adjust the spike shape (Peng and Wu, 2007), and Shal current
is thought to decrease the firing frequency (Tsunoda and Salkoff,
1995a). Yet in some experimental recordings, the AP duration
is even longer than in the model (Figure 3B). In contrast to our
earlier models (Herrera-Valdez et al., 2013), in this model APs
appear on elevated potentials for a wide range of parameters,
including the default parameter set sbdef . This is a consequence
of the combination of slightly different values for γb, zb, and rb.

In large part, the density of Na+ channels determines the
maximal rate of change of the voltage (dVm/dt) during the rising
phase of an action potential. A phase-plane plot showing dVm/dt

vs. Vm for three different recordings as well as the model is
depicted in Figure 3B. The maximal value of dVm/dt varies among
cells and is between 55 and 20mV/ms.

With a gNa of 15.62 µS (Figure 3B right, black trace) dVm/dt

for the model takes a maximal value of 35mV/ms, which is
between the observed values. Increasing gNa to 20 µS results in
a maximal dVm/dt of about 55mV/ms during the rising phase,
which corresponds to the largest observed values (Figure 3B,
right, gray trace). In the following we show results for gNa =

15.62 µS. However, a model with gNa = 20 µS in combination
with a smaller gL (0.01 µS for example) shows qualitatively similar
behavior.

3.3. Shab Channel Density Determines
Bifurcation Type
In order to compare the model response to published
experimental data, we examine the behavior of Vm over time
(Figure 4). Visual inspection reveals that changing g̃sb has little
influence on the spike shape.With g̃sb = 0.6, arbitrarily low firing
frequencies with long delays to spike can be evoked, indicating
type I dynamics. Current pulses with an amplitude of 0.8 nA
elicit a single spike and subsequent low amplitude oscillations.
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FIGURE 3 | Comparison of electrophysiological data and model behavior. (A) Membrane potential in response to squared pulse current injections of different

amplitudes in the model and three different cells. (B) Phase plots of electrophysiological recordings and the model in response to squared pulse current injection.

Experimental methods provided by Ryglewski and Duch (2009).

Although the transition from rest to spiking occurs via different
bifurcations, similar firing patterns are elicited with g̃sb-values of
0.782 and 1.1347. In both cases a single spike can be elicited with
small Iapp, while slightly increased stimulus amplitudes induce
repetitive spiking with relatively high frequencies, indicating type
II dynamics. Furthermore, the delay of spiking is small compared
to observations when g̃sb = 0.6. In contrast to what was reported
by Herrera-Valdez et al. (2013), the frequently observed pattern
of a single spike with small and repetitive spiking with increased
stimulus amplitudes in experiments can be generated with a
system near a Hopf (Figure 4, bottom) as well as with a system
near a saddle node bifurcation (Figure 4, middle). Note however
that the range of current amplitudes where a single spike is
elicited is narrow.

The two parameter bifurcation diagram (Figure 6B) displays
the change of the locations of saddle-nodes and Hopf points
in the Iapp - g̃sb plane. Low levels of Shab density result in a
saddle node bifurcation, and the saddle-nodes remain until g̃sb
is about 1.2216, where the two branches collide at a cusp point.
However, near g̃sb = 0.7895 and Iapp = 0.4087 nA there is
a Bogdanov–Takens bifurcation. At this point the saddle node
curve meets a Hopf curve, and for higher values of g̃sb, the fixed
point loses stability at a Hopf point. This demonstrates that a
non-monotonic I–V-curve does not necessarily indicate a loss
of stability via a saddle node bifurcation. At g̃sb ≈ 0.7 the right
branch of the Hopf curve crosses the right branch of the saddle
node curve, meaning that the system has two stable fixed points
for an increasing range of Iapp.

We use phase plane analysis to further investigate the
characteristics of the system with three chosen g̃sb-values, for

which stable periodic solutions can be induced. The model
is stimulated with constant current injections of different
amplitudes. The amplitudes were chosen to be just below, at and
just above the emergence of the limit cycle as determined by
the bifurcation diagram of Figure 6. Figure 5 shows the phase
plane indicating the fixed points and the stable and unstable
manifolds of the neutral saddle, when they exist. Without or
with small subthreshold Iapp, the unstable manifold connects
the saddle node and the stable fix point to form a heteroclinic
trajectory (Figures 5A,B, left). Letting g̃sb = 0.6, and injecting a
current of 0.296 nA, the unstable saddle point and stable node
coalesce and disappear. The trajectory becomes a homoclinic
invariant circle and gives rise to a limit cycle with infinite period;
that is, stability is lost via a SNIC bifurcation. When Iapp is
increased further, low frequency spiking is induced (Figure 5A,
right).

Increasing g̃sb to 0.782, a single spike can be elicited with
Iapp = 0.39 nA. At this value the unstable manifolds still forms
a heteroclinic orbit; however, the shape of the stable manifold
changes so that it separates the initial values at rest and the
stable fixed point (Figure 5B, middle). Hence a single spike is
elicited because the trajectory must take a large excursion in
order to approach the equilibrium. At Iapp = 0.395 nA, one
unstablemanifold converges onto itself, and a limit cycle attractor
appears (Figure 5B, right). The trajectory moves around the
stable fixed point indicating a saddle big homoclinic bifurcation,
where a stable and unstable manifold of a saddle point coincide
and form a homoclinic orbit, and the two other branches lie
inside the homoclinic orbit. The unstable manifold separates the
stable fixed point and the initial conditions at rest, resulting in
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FIGURE 4 | Firing behavior for different relative Shab densities in the two dimensional model. Responses to steady current injection (left) and f–I curves
(right), from top to bottom g̃sb: 0.6, 0.782, 1.1347 with Rin 70.2, 69.5, 65.4 and 59.4 M�. Note that changing the Shab densities affects Rin.

repetitive spiking. A saddle node bifurcation occurs for Iapp above
0.4 nA.

When increasing g̃sb to 1.1347, stability is lost via a Hopf
bifurcation (Figure 5C). With Iapp = 0.55 nA, a single spike
is elicited (Figure 5C, left). A stable limit cycle appears with
Iapp = 0.6 nA, while the fixed point remains stable (Figure 5C,
middle). The fixed point becomes unstable when increasing Iapp
(Figure 5C, right).

We find that changing g̃sb results in different bifurcation types
as the system undergoes a transition from rest to spiking in
response to current injection (Figure 6) where low levels of Shab
result in a saddle node bifurcation and high levels in a Hopf
bifurcation. Figure 6A shows the bifurcation diagram for g̃sb-
values of 0.57, 0.6, 0.782, and 1.347. This diagram shows the local
stability of the fixed points (black) of the system and indicates
Hopf points (blue) and saddle nodes (green). In all cases there
are saddle nodes, but for g̃sb = 1.347 the stability changes via
a subcritical Hopf bifurcation at Iapp = 0.653 nA. A stable limit
cycle emerges at Iapp = 0.595 nA, hence a stable fixed point and
stable limit cycle coexist. The coexistence of a stable fixed point
and a stable limit cycle is also given with g̃sb = 0.782. Yet, the
stability of the fixed point is lost via a saddle node bifurcation
at Iapp = 0.4037 nA, while the stable limit cycle appears at
Iapp = 0.3958 nA via a global fold bifurcation of limit cycles
(Figure 6A, bottom left panel inset). Decreasing g̃sb further to
0.6, the stable fixed point looses stability at Iapp = 0.4037 nA
and a stable limit cycle emerges (Figure 6A, top right panel inset),
indicating a saddle node on invariant cycle bifurcation and hence
type I excitability. The saddle node bifurcation is also present
with g̃sb = 0.57, yet no stable limit cycle could be found. Instead,
an unstable limit cycle appears at about Iapp = 0.248 nA and
remains unstable until it disappears at the Hopf bifurcation. The
trajectories of the system will traverse the phase space toward

the more depolarized stable fixed point, if the system is pushed
beyond the bifurcation point.

3.4. Responses to Time Varying Input
These different bifurcation types imply different phase response
curves (PRCs) and different responses to periodic forcing.
Therefore, the next step is to calculate the PRCs and analyze the
model behavior for periodic current stimulation.

We use periodic current injections with the shape of a sine
wave with varying periods to assess the model response to
periodic forcing and to find the preferred frequency of the
model. The frequency sweeps from 0 to 30Hz linearly over
a time interval of 10 s. As expected, systems near a saddle
node bifurcation with g̃sb of 0.6 or 0.782 displays integrator
properties, behaving as a low-pass filter of the input current
(Figure 7A, top and middle panel). In both cases the amplitude
of Vm decreases with stimulus frequency. Current amplitudes
above the respective bifurcation points are required to induce
APs even at low frequencies. With larger amplitudes repetitive
firing is induced at low frequencies and the spike count per
cycle declines with increasing frequency. In contrast, with g̃sb =

1.1347, the model exhibits resonator properties, acting as a band-
pass filter of input current. Stimulation with low amplitude
swept sine current injection reveals that frequencies around
15Hz elicit APs, while higher and lower frequencies only cause
graded responses (Figure 7A, bottom panel). Upon increasing
the stimulus amplitude, the frequency band that yields spiking
becomes larger. Sinusoidal current injections confirm that with
an amplitude of 0.55 nA a frequency of 15Hz, but not 14 or 16Hz
results in the generation of APs (Figure 7B). In summary, while
the response properties to constant current injection with g̃sb
of 0.782 and 1.1347 are quite similar, the responses to periodic
forcing are dramatically different.
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FIGURE 5 | Changes of fixed point types and trajectories with increased constant current injection in phase space. g̃sb 0.6 (A), 0.782 (B), and 1.1347

(C). Trajectories corresponding to initial conditions of the steady state without current injection are color coded from yellow (t = t0) to red (t = tmax ). Fixed points,

unstable and stable manifolds of the saddle from left to right for in increasing Iapp as indicated.

How a rhythmically firing neuron responds to perturbations
can be analyzed with the PRC, which provides a measure for the
timing of the subsequent AP after a brief stimulus at a specific
time during the spiking cycle. If a neuron spikes repetitively with
a specific frequency with constant Iapp or without a driving force,
the state of the neuron can be expressed by a single phase variable.
To obtain the phase, the time of a peak voltage equates to a phase
of zero and subsequent times are divided by the spiking period.

The PRC gives the phase shift induced by a perturbation as a
function of the phase at which the perturbation occurs. Positive
values indicate a phase advance, which means the next AP will
be sooner, while negative values indicate a phase delay, which
means the next AP will be later than without perturbation. PRCs
that are mostly positive are called type I, whereas PRCs that have
a positive and a negative component are classified as type II. In
order to classify PRCs as type I or type II, Tateno and Robinson
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FIGURE 6 | Bifurcation structure for different relative Shab densities. (A) One parameter bifurcation diagrams for g̃sb: 0.57, 0.6, 0.782, 1.1347 (black to gray

lines). Increasing g̃sb changes the transition from rest into spiking from a saddle node (green points) to a Hopf (blue points) bifurcation. Note that the stable branch

continues outside of the shown region for negative values of Iapp. The minimum and maximum of periodic solutions are marked by red to orange lines for increasing

g̃sb. The lines style indicates the stability (solid: stable; dashed: unstable). (B) Two parameter bifurcation diagram showing the course of the Hopf (blue) and saddle

node (green) curves in the Iapp x g̃sb plane.

(2007) introduced a r-value, the ratio of maximal phase delay and
advance, of 0.175.

Figure 8 shows the PRCs of the model for the different
indicated g̃sb-values. For each parameterization of g̃sb three
different values for Iapp were used, which starts close to the firing
threshold and is increased subsequently. With g̃sb = 0.6 the PRC
can be classified as type I, with r-values of 0.01, 0.04, and 0.15
for Iapp 0.297, 0.3, and 0.37nA. By increasing g̃sb to 0.782, the
PRC has small negative values for small phase values, but the
r-values with 0.067, 0.064, and 0.14 for Iapp 0.397, 0.4 , and 0.5
still leads to a classification as type I. With a further increase of
g̃sb to 1.1347, the negative values in the early phase increase, for
small baseline Iapp of 0.596 and 0.6 nA the PRC is type II, with
r-value of 0.192 and 0.179 bigger than 0.175. However, with a
baseline Iapp of 0.7 nA the r-value is 0.130. As can be seen by the
bifurcation diagram in Figure 6, although the stable fixed point
loses stability via a Hopf bifurcation, there is also a saddle node
bifurcation near Iapp = 0.7 nA, which might influence the vector
field in a way that the model exhibits a type I PRC. For higher
baseline Iapp the r-value increases and exhibits a PRC classified
as type II (not shown). Also when increasing g̃sb to 1.5 the PRC
is classified type II for all probed stimulus amplitudes that elicit
repetitive spiking (not shown).

The PRC corresponding to all three g̃sb-values have in
common that they are relatively insensitive to perturbations
at the beginning and the end of the cycle shortly before
and after the peak of the AP. Further, the maximum

of the PRC shifts to the right with higher baseline
stimulation.

3.5. Small Parameter Changes Induce
Delay to First Spike
The only firing profile that could not be reproduced by changing
g̃sb is an onset with a long delay and subsequent higher
frequency firing. Usually a saddle small homoclinic bifurcation
is responsible for such behavior (Izhikevich, 2007). We explored
the parameter space further in order to find a regime where the
system undergoes this bifurcation. We set zb to a constant value
of 1.5 in order to obtain a better description of the Na+ channel
inactivation (see Section 3.1). Then we performed the fitting
routine, resulting in the parameter set sbz (see Table 2) with
which the desired firing profile can be reproduced (Figure 9C).
The bifurcation diagram for g̃sb = 1.35 reveals that at Iapp ≈

0.1392 nA the minimum on the periodic orbit collides with
the saddle node, and the coexisting stable fixed point is at a
smaller Vm (Figure 9A). By increasing g̃sb, the system exhibits
the same bifurcation types as with the default parameters sbdef .
With this set of parameters g̃sb must be much higher in order to
produce the various firing patterns than with the previously used
parameters.

Phase plane analysis confirms that the underlying bifurcation
when g̃sb = 1.35 is indeed a saddle small homoclinic bifurcation
(Figure 9B), where one stable and one unstable manifold of
the saddle node collide and form a homoclinic orbit; the
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FIGURE 7 | Firing behavior in response to periodic forcing for different relative Shab densities in the two dimensional model. (A) Responses to swept

sine current injection, with frequencies from 0 to 30 Hz. From top to bottom g̃sb: 0.6, 0.782, 1.1347. (B) Responses of the model with g̃sb = 1.1347 to sinusoidal

forcing with three different frequencies.

FIGURE 8 | Phase response curves for different relative Shab densities (indicated by colors) and from left to right for increasing Iapp, as indicated.

remaining two manifolds lie outside the homoclinic orbit. At
low values of Iapp, one of the unstable manifolds connects to
the less depolarized stable fixed point, traversing around the
more depolarized stable fixed point as well as around the stable
manifold that emerges from the unstable periodic orbit around
that fixed point (Figure 9B, left). Increasing Iapp beyond the
bifurcation point, the unstable manifold for the saddle node
converges onto itself and the stable manifold is now on the
outside of the resulting limit cycle (Figure 9B, middle right). The
saddle point and the stable node both remain, hence the model

is bistable. A constant current pulse does not induce repetitive
spiking, because the state of the system is not pushed beyond the
stable manifold. Applying an additional short pulse can push the
system onto a trajectory that converges onto the periodic orbit
(Figure 9B, right and Figure 9C, yellow line). However, the range
of Iapp-values where this occurs is extremely narrow, suggesting
that it is not likely to be observed experimentally.

As expected for a system near a saddle node bifurcation,
the model exhibits integrator properties, as revealed by swept
sinusoidal current injection (Figure 9D). The PRC is biphasic
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FIGURE 9 | Saddle small homoclinic bifurcation with changed Shab parameters. (A) Right: Bifurcation diagram shows, that with g̃sb = 1.35 a stable limit cycle

(dark red) coincides with the curve of saddle nodes (black dots), while the stable fixed point vanishes via a saddle node bifurcation at a bigger Iapp. Middle: Increasing

g̃sb (dark to lighter brown and orange for fixed points and periodic solutions) changes the transition from rest into spiking from a saddle node (green points) to a Hopf

(blue points) bifurcation. Dashed and solid lines mark stability (solid: stable; dashed unstable). Left: Two parameter bifurcation diagram indicating the location of Hopf

points (blue) and saddle nodes (green) as well as the Bogdanov–Takens (square) and cusp (triangle) points with respect to g̃sb. (B) Changes of fixed point types and

trajectories for different Iapp in phase space. From left to right Iapp increases as indicated. Trajectories corresponding to initial conditions of the steady state without

current injection are color coded from yellow (t = t0) to red (t = tmax ). (C) Left: Responses to constant current injection. The stimulus inducing the response shown in

yellow exhibits an additional short current pulse (Is) with 30 ms and 0.01 nA at t = 150 ms. Right: f–I curve. (D) Responses to swept sine current injection, with

frequencies from 0 to 30 Hz. (E) PRCs for increasing Iapp, as indicated.

(Figure 9E) with an r-value above 0.175, but differs from those
shown in Figure 8. A perturbation shortly before, during and
after the peak of anAP results in a delay of the subsequent AP. For

small Iapp, the region where a perturbation causes the strongest
phase advance is shortly after the peak of the AP and much
earlier during the spiking cycle at a phase of approximately 0.1.
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Increasing Iapp to 0.3 nA, the peak of the phase advance shifts to
the right, and the PRC has more resemblance to the ones shown
in Figure 8.

3.6. Impact of Leak Conductance
An estimate for the input resistance (Rin) is obtained by applying
Ohm’s law to the steady state voltage response for small Iapp.
With the chosen value of 0.036 for g̃L, depending on the Shab
density, Rin is between 59.4 and 70.2M� (Figure 10A, top left).
g̃L is the dimensionless ratio of gL and gNa. This is below the
experimentally measured Rin in MN5 of 97±31M� (Duch et al.,
2008). However, the amplitude of Iapp for which the stable fixed
point loses stability and/or a stable limit cycle emerges for small
g̃sb is below 0.4 nA (Figure 10A, middle left), which is the typical
amplitude that induces repetitive spiking in MN5. For higher g̃sb,
on the other hand, the spiking threshold is too high. Rin and
the inversely related amplitude of Iapp that elicits APs can be
adjusted by changing g̃L. We decrease g̃L to 0.02 and investigate
whether this changes the bifurcations the system exhibits. As
before, g̃sb was set to different values and the fixed points, periodic

solutions and bifurcations that occur as Iapp is changed are
determined using numerical continuation. To resolve whether
a limit cycle occurs via a SNIC or homoclinic bifurcation, we
compare the minimal Iapp for which a periodic solution was
found with Iapp of the saddle node bifurcation (Figures 10A,B,
middle). Equal amplitudes of Iapp indicate a SNIC, otherwise a
saddle homoclinic bifurcation is indicated. To further distinguish
between a small and big homoclinic bifurcation, the value of Vm

at the fixed point and at the minimum of the periodic orbit are
compared (Figures 10A,B, bottom). This analysis reveals that
with increased g̃L, the same bifurcation types can be elicited by
changing g̃sb. The change between bifurcations may occur at
different g̃sb levels; i.e. with g̃sb = 0.8 stability is lost via Hopf
bifurcation when g̃L = 0.036, while it is lost via a saddle node
bifurcation when g̃L = 0.02. However, increasing g̃L leads to
spiking onset in response to smaller Iapp (Figure 10A, middle)
and decreasing g̃L further ultimately results in an unstable steady
state without current injection, with small g̃sb. Therefore, a loss
of stability via a Hopf bifurcation is the only possibility for a
model that is quiescent with Iapp = 0 nA. Also, it cannot be

FIGURE 10 | Small changes of g̃L adjust for Rin, but have no influence on bifurcation types the system can exhibit. Different aspects of the model behavior

as function of g̃sb for two different g̃L. In panels (A) and (B) the default and changed Shab channel models are used, respectively. Top panels show Rin measured with

small current injections. Middle panels show the minimal amplitudes of Iapp for which a stable limit cycle emerges (red pluses) and the fixed point loses stability (blue

and green crosses). Bottom panels show Vm of the fixed points near the bifurcation (blue and green crosses) and the minimum and maximum of the limit cycles (red

pluses).
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excluded that there exists a g̃sb-value for which the model exhibits
a saddle small homoclinic bifurcation resulting in the appearance
of a stable limit cycle, but this value was not found.

The chosen default value for the leak conductance is a
compromise in the attempt to match sensitivity to current
injection and input resistance with experimental data. The
apparent missmatch might be a consequence of the fact that the
model incorporates only two channel types. With the changed
Shab parameters, the default value of g̃L with 0.036 results in
higher Rin, but in turn, the bifurcations occur at rather small
values of Iapp. Therefore, g̃L is increased to 0.05. Figure 10B
demonstrates that the change in g̃L is not the cause of the saddle
small homoclinic bifurcation resulting in the appearance of a
stable limit cycle.

3.7. Independent Na+ Channel Inactivation
To further investigate whether the changed bifurcation structure
found with the new parameter set sbz is a consequence of altering
the activation of the Shab current, the inactivation of the Na+

current or whether it is necessary to alter both channels, we
reintroduce an additional variable representing the gating of the
Na+ channel inactivation. This allows for a better fit of the Na+

inactivation as demonstrated in Section 3.1. Increasing the gating
charge results in a good match to the inactivation curve derived
by Olson et al. (2008) (Figure 2B). However, the time constants
are not available from these data. Using the same values as before,
the model exhibits APs with a peak of −10mV and the maximal

dVm/dt is below 20mV/ms. This is adjusted by increasing gNa to
20 µS and decreasing g̃L to 0.02.

With the three dimensional formulation, similarly to the
two dimensional model, high Shab densities result in a Hopf
bifurcation, while low densities result in a saddle node bifurcation
(Figure 11). Firing patterns similar to those observed with the
two dimensional model are generated. With very low g̃sb levels,
the branch of the minimas of the periodic solution coincides
with the unstable branch of saddle points (Figure 11A, upper
left panel and inset). The minimum of the periodic orbit is
therefore above the stable fixed point, which coexists at the
stimulus amplitude where the limit cycle emerges. In the two
dimensional model, this was due to a saddle small homoclinic
bifurcation (see Section 3.5). As in the two dimensional case,
the membrane responds with a long delay to first spike and
subsequent higher firing frequency to small square pulse current
injections (Figure 12A, first panel), the model acts as low-
pass filter (Figure 12B, first panel), and the PRC is biphasic
displaying a phase delay shortly before and after an AP. A phase
advance occurs at < 0.1 and > 0.9 of the phase; systems with
other bifurcation structures display only weak responsiveness
to perturbations at this time within the cycle (Figure 12C).
Increasing g̃sb to 0.5, stability is lost via a SNIC bifurcation
(Figure 11A, lower left panel and inset). The model exhibits
infinitely low frequency and a delay to first spike with the same
duration as the following ISI (Figure 12A second panel), low-
pass filter (Figure 12B, second panel) properties, and a type I
PRC (Figure 12C). With g̃sb = 0.7 the stable fixed point still

FIGURE 11 | Bifurcation structure for different Shab channel densities in the three dimensional model. (A) Bifurcation diagram shows that increasing g̃sb
changes the transition from rest into spiking from a saddle node bifurcation (blue points) to a Hopf bifurcation (green points). Fixed points are drawn in black to gray

and the minimum and maximum of the periodic solutions shown in red to yellow for g̃sb: 0.3, 0.5, 0.7 and 0.8. Dashed and solid lines mark stability (solid: stable;

dashed unstable). (B) Two parameter bifurcation diagram indicating the location of Hopf points (blue) and saddle nodes (green) with respect to g̃sb.
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FIGURE 12 | Firing behavior and PRC for different Shab channel densities in the three dimensional model. Responses to (A) steady and (B) swept sine

(frequencies 0–30 Hz) current injection for (from top to bottom) g̃sb: 0.3, 0.5, 0.7, 0.8; with Rin 94.5, 82.7, 75.1 and 72.1 M�. (C) PRCs for increasing Iapp, as indicated.

loses stability via a saddle node bifurcation; however, a periodic
orbit emerges before that point (Figure 11A), lower left panel
and inset), with the minimal value of Vm smaller than for the
stable fixed point. In the two dimensional model, phase plane
analysis revealed that this is due to a saddle big homoclinic
bifurcation. With g̃sb-values of 0.7 and 0.8, a single spike is
induced for sufficiently low current stimulation. With higher
current injection, a shorter delay to first spike than the following

ISI (Figure 12A third and fourth panel) is seen. The PRCs are
similar as well (Figure 12C), but the model shows resonator
properties only when stability is lost via a Hopf bifurcation with
g̃sb = 0.8 (Figure 12B).

In summary, with this model, smaller current injection leads
to repetitive spiking, and the changes between bifurcation types
occur for smaller g̃sb. Furthermore, increasing the stimulus
amplitude results in spikes with smaller amplitude, and the
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transition out of spiking at high current levels occurs via
a subcritical Hopf bifurcation. As in the two dimensional
model with the changed parameters for the Shab channels, the
three dimensional model displays four types of bifurcations
when varying the Shab channel density by a factor of 4. This
demonstrates that the additional bifurcation due to changed
parameters in the two dimensional model (see Section 3.5) can
be achieved by simply adjusting the Na+ channel inactivation
kinetics.

4. DISCUSSION

In this study, we develop a two dimensional excitable membrane
model with currents based on biophysical features of Drosophila
Shab and DmNav29 channels. This model was used to assess
which features of experimentally observed firing behavior can be
produced by varying only the Shab channel density. Using phase
plane and bifurcation analysis, the model was investigated and
tuned to reproduce experimentally observed firing patterns. The
bifurcation types the models undergo as current is injected were
assessed as channel densities varied using stability analysis. The
two dimensional model was then extended to a three dimensional
model in order to include independent Na+ inactivation.

In previous studies, we investigated the influence of A-type
channels on Drosophila MN5 firing behavior and found that,
in accordance with experimental results, Shal and Shaker can
influence the firing patterns and bifurcation structure of a
neuron differently (Herrera-Valdez et al., 2009, 2010). It is known
that regenerative currents like the persistent Na+ and A-type
K+ current support aggregator properties connected to SNIC
bifurcations, the type I PRCs, and class I f –I curves. On the
other hand, for example the delayed rectifier K+ current evokes
resonator properties associated with a Hopf bifurcation, type II
PRCs, and the class II f –I curves (Hutcheon and Yarom, 2000;
Ermentrout et al., 2001). However, in order to determine for
which behaviors the incorporation of K+ channels with voltage
dependent inactivation kinetics are necessary, it is useful to know
whether those properties can be induced without those channels.

We find that a wide array of firing patterns can be generated
with only two currents. Specifically, properties like the long delay
to first spike and slow firing frequencies, that were thought to
be unique features requiring A-type channels (Choi et al., 2004;
Schaefer et al., 2010; Ping et al., 2011), can be induced in our
model.

4.1. Minimal Excitable Membrane Model
We developed a minimal model consisting of one regenerative
current that amplifies changes, one linear leak current, and
one restorative current that counteracts changes of Vm. The
regenerative current is a Na+ current; the restorative current is a
delayed rectifier K+ current based on channels encoded by Shab.
In Drosophila there are only four genes, Shaw, Shab, Shal, and
Shaker, that encode voltage gated K+ channels. Shab channels
were chosen because it has been shown that they provide delayed
rectification in Drosophila and are required to induce repetitive
firing, which also can be inferred by the different dynamics of
the channels. Shaw channels have a very low voltage sensitivity

and mediate a leak current. Shaker and Shal channels mediate
transient A-type current, where their steady state activation
curves are more hyperpolarized than the one associated with
Shab channels, and they express fast inactivation kinetics. This
indicates a role in regulating spike initiation and repetitive firing
patterns rather than a major contribution to inducing repetitive
firing. Additionally, Shaker mutants display broader APs and
higher firing frequencies, while Shal has been reported to increase
the spiking threshold and to induce a delay to first spike (Choi
et al., 2004; Ping et al., 2011).

In the model, gNa was assigned by comparing the wave forms
in response to current injection of the in situmeasured Vm at the
soma of MN5 and the model. We did not aim to reproduce the
shape of the APs exactly, since we only incorporate a small subset
of channels in our models, and it is likely that the additional
channels influence the shape measured in MN5. Instead the
maximal dVm/dt was compared. However, it is not clear whether
the depolarization observed at the soma results from passive
spread of APs, whether there is an additional spike generating
zone close by or at the soma, or whether active properties at the
soma boost the AP generated at the spike initiation zone (SIZ).
When the SIZ is far away from the soma it is possible that the
shape of APs observed at the soma is attenuated and broader
than at the SIZ due to the filtering properties of passive structures.
The maximal dVm/dt measured from recordings of MN5 is small
compared to values reported in other preparations, where it is
about 100 and 300mV/ms in neurons of the cat visual cortex in
vivo and in vitro (Naundorf et al., 2006) or about 200mV/ms in
ganglion cells from the tiger salamander (Fohlmeister andMiller,
1997). This means that the maximal dVm/dt at the SIZ, and thus
gNa may be higher.

4.2. Relation of Channel Density and Firing
Patterns
Our results demonstrate that small changes in g̃sb are sufficient
to produce a variety of different firing patterns that relate to
those observed experimentally. The differences can be linked
to a change in the underlying mathematical structure of the
system, yielding qualitatively different transitions between rest
and spiking. The differences in observed firing behaviors of MN5
in situ indicate that the neuron might be close to a bifurcation
with co-dimension greater than one, where such a change of
the bifurcation type with respect to Iapp occurs. However, MNs
are required to exhibit reliable outputs during behavior since
they are the final processing station, and alternating input-
output behavior cannot be adjusted by network properties.
Therefore, the observed differences could be due to different
modulatory states that tune the neurons’ output for specific
needs. For example, biogenic amines like octopamine and
tyramine influence the take-off likelihood and flight maintenance
significantly (Brembs et al., 2007). Further, MN5 exhibits tonic
firing during flight, only single APs and no doublets or triplets
are observed; during male courtship song, pulse firing is shown.
Although this could be due to different input, the different firing
patterns may also be supported by differences in the intrinsic
excitability and thus the modulatory state.
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In the model, low Shab channel concentrations induce
behavior thought to be induced by A-type channels. However,
at small g̃sb, the range of stimulus amplitudes for which a stable
periodic solution exists is rather narrow. In the three dimensional
model and the model with altered channels kinetics, the AP
amplitude increases drastically with increased current.

Some experimentally observed features of the firing patterns
could not be reproduced well by this model. Further channels
may be necessary to support some behavior combinations like
integrator properties together with a higher input resistance and
a higher firing threshold. Furthermore, adaptation could not be
generated, since it requires a third time scale, and therefore a
further variable (Guckenheimer et al., 1997).

Bistability occurs in the model for a very specific combination
of constant stimulus amplitude and timing of pulse stimulation.
Although bistability has not been reported for experimental
studies, the model results suggest that it is unlikely this
phenomenon would be observed. If observed, the neuron might
be rejected and assessed as being not intact. Further, a long
delay to first spike with subsequent ISI of similar duration, as
typical for a system close to a SNIC bifurcation, was not reported
as an observed firing pattern in Herrera-Valdez et al. (2013).
However, this firing pattern was recorded at least once in eag
and Shaker double knock downs, as shown in the Figure 2C
of Duch et al. (2008). It must be noted that the quantification
of firing patterns of wild type MN5 as reported in Duch et al.
(2008) and Herrera-Valdez et al. (2013) is different, indicating
that perhaps the recording conditions changed between these sets
of experiments.

4.3. Variability in Ion Channel Density
It has been shown that ion channel expression, as well as
the maximal conductances of ion currents in neurons, can
be extremely variable. Shab mRNA in MNs of the crustacean
stomatogastric nervous system vary two- to four-fold (Schulz
et al., 2006, 2007) and four-fold in gastric mill neurons. In
DrosophilaMN5, voltage clamp recordings reveal that the peak of
the total K+ current can vary by a factor of about four (Ryglewski
and Duch, 2009). In our models a variation of up to four-fold is
sufficient to produce the different firing patterns and bifurcation
structures. However, it has also been shown that the expression
patterns of certain ion channel combinations are coordinated,
where the specific combinations depend on the cell type. In
gastric mill neurons Na+ and Shab channels are correlated,
but in all other investigated cells, the mRNA abundance of
the genes encoding these two channels is independent (Schulz
et al., 2007). In a recent review article Marder (2011) pointed
out that these findings indicate the need “to measure as many
system components as possible within an individual” and that
the process of fitting and combining independently obtained
and averaged experimental data is unlikely to reproduce realistic
model behavior. Especially in the small Drosophila, it is hard
to measure a variety of system parameters simultaneously.
Similarly, pharmacological manipulations may suffer from low
specificity of drugs (Greenwood and Leblanc, 2007). These issues
can potentially lead to incorrect conclusions about the role of a
certain ion channel, however, the use of computational models

can help resolve these issues, by allowing for controlled and
independent variation of specific parameters to understand the
impact of biological variations and allow for an examination
of the impact of parameters that are not experimentally
separable.

4.4. Influence of Phasic Input on Output
Behavior
During flight, the firing frequency of the MNs is modulated
simultaneously (Levine and Wyman, 1973) and studies support
the idea that the firing frequency is an inherent property of
the neurons (Harcombe and Wyman, 1977), which changes
when the required power output is changed (Gordon and
Dickinson, 2006). Together with the observation that two MNs
never fire in a time window of about 5ms, it was concluded
that all MNs receive common excitatory input and that the
MNs interact reciprocally (Harcombe and Wyman, 1977). In
other words, the common excitatory input induces periodic
spiking of the units, and the reciprocal interactions cause a
perturbation of the period depending on the phase when the
input is received. An analysis of how a neuron responds to
phasic input while firing repetitively is measured with PRCs.
The claim of Harcombe and Wyman (1977) and Koenig and
Ikeda (1983) that there is a strong interaction if one MN
fires simultaneously or shortly before another MN, requires a
PRC with large phase shifts at the very beginning and end
of the period, as observed in models close to a saddle small
homoclinic circle. Those models also display a long delay to
first spike with shorter ISIs to constant current injection, a
firing pattern that is often observed in neurons at larval stage,
but rather seldom in adult MN5s. However, in our model,
this pattern corresponds to current injections very close to the
spiking threshold. Therefore, it could also mean that this pattern
manifests at stimulus amplitudes that fall between the probed
current steps.

In the two dimensional model with the default channel
kinetics, a delay to first spike could not be reproduced. We have
shownwith the electro-diffusionmodel, that this does not require
the introduction of a further variable (Herrera-Valdez et al., 2013)
rather a change of zb in combination with a low g̃sb-value elicits
this behavior. In the model investigated here, a simple change of
zb is not sufficient to produce this profile. However, it is produced
by models with moderate changes in more than one parameter
and more importantly, after incorporating independent Na+

inactivation dynamics.

4.5. Comparison to Other Excitable
Membrane Models
Various minimal conductance based models have been employed
in previous studies in order to analyze the electrical behavior
of neurons. For example Prescott et al. (2008) employed a
two dimensional model based on the Morris–Lecar model
(Morris and Lecar, 1981; Rinzel and Ermentrout, 1998) and
showed that all three types of excitability could be reproduced.
However, here we show that a neuron model based on more
realistic ion channel mechanisms also can exhibit all three
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types of firing behavior. Zeberg et al. (2010) used models in
which diverse K+ currents were combined as one recovery
variable and found that the variation of channel densities can
switch the model from resonator to integrator. This study
demonstrates that incorporating only one delayed rectifier K+

channel in themodel and varying its density is sufficient to induce
this switch.

In an earlier modeling effort, we contributed to the
development of an electro-diffusion based model for MN5
membrane potential dynamics (Herrera-Valdez et al., 2013).
However, this previous model falls short in reproducing the
Na+ channel kinetics, and it is not clear whether the theoretical
improvement of the electro-diffusion based model justifies the
accompanied increase in complexity. In general, an advantage
of the electo-diffusion approach is that the maximal currents
can be fitted directly to electrophysiological data. However,
electrophysiological data are often preprocessed under the
assumption of a linear current–voltage relationship, for example
when leak currents are subtracted from the traces. Unlike the
conductance-based model that we present here, the previous
electro-diffusion based model also fails to generate spikes on
elevated potentials as observed experimentally. However, this
in situ observation can also emerge when the recording site
is far away from the SIZ, which cannot be addressed with a
minimal model approach employed by Herrera-Valdez (2012)
and here.

In another recent study, a model of Drosophila third-instar
larval motoneuron was developed in order to investigate the
impact of alternative splicing of Na+ channels (Lin et al., 2012).
In that model the Na+ channels have activation kinetics as
in the classical Hodgkin–Huxley model formalism, and the
time constant is based on electrophysiological recordings in
embryonicDrosophilamotoneuron (O’Dowd and Aldrich, 1988).
The measured Na+ current is possibly a combination of currents
mediated by different splice variants of the DmNav29 gene that
are specific to embryonic neurons. Here, we use instantaneous
activation of Na+ channels for two reasons: first due to the
advantage of reducing the model to only two dimensions and

second because there are no data for the time course of specific
splice variants available.

In conclusion, we find that a wide array of firing patterns
like those seen in experimental studies can be generated with
only two currents, and we show that a neuron model based on
realistic ion channel mechanisms can exhibit all three types of
firing behavior. This study demonstrates that incorporating only
one delayed rectifier K+ channel in the model and increasing its
density is sufficient to induce a switch from type I excitability to
type II excitability, with a corresponding switch from integrator
to resonator properties. Additionally, properties like the long
delay to first spike and slow firing frequencies, that were
thought to be unique features requiring A-type channels (Choi
et al., 2004; Schaefer et al., 2010; Ping et al., 2011), can be
induced in our model. As described above, additional channel
types are known to be present and play a role in Drosophila
motoneuron dynamics, leading to many possible, more complex
alternatives for obtaining similar results. It is plausible that
having more channels that in different combinations produce a
similar behavior can add to the robustness of the system and
provide a way to adjust for natural variability. Certainly, the
minimal model described here can guide our understanding of
the interactions among channel types in this important model
system.
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