
RESEARCH ARTICLE

Path Similarity Analysis: A Method for
Quantifying Macromolecular Pathways
Sean L. Seyler1, Avishek Kumar1, M. F. Thorpe1,2, Oliver Beckstein1*

1Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United
States of America, 2Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United
Kingdom

* oliver.beckstein@asu.edu

Abstract
Diverse classes of proteins function through large-scale conformational changes and vari-

ous sophisticated computational algorithms have been proposed to enhance sampling of

these macromolecular transition paths. Because such paths are curves in a high-dimen-

sional space, it has been difficult to quantitatively compare multiple paths, a necessary pre-

requisite to, for instance, assess the quality of different algorithms. We introduce a method

named Path Similarity Analysis (PSA) that enables us to quantify the similarity between two

arbitrary paths and extract the atomic-scale determinants responsible for their differences.

PSA utilizes the full information available in 3N-dimensional configuration space trajectories

by employing the Hausdorff or Fréchet metrics (adopted from computational geometry) to

quantify the degree of similarity between piecewise-linear curves. It thus completely avoids

relying on projections into low dimensional spaces, as used in traditional approaches. To

elucidate the principles of PSA, we quantified the effect of path roughness induced by ther-

mal fluctuations using a toy model system. Using, as an example, the closed-to-open transi-

tions of the enzyme adenylate kinase (AdK) in its substrate-free form, we compared a range

of protein transition path-generating algorithms. Molecular dynamics-based dynamic impor-

tance sampling (DIMS) MD and targeted MD (TMD) and the purely geometric FRODA

(Framework Rigidity Optimized Dynamics Algorithm) were tested along with seven other

methods publicly available on servers, including several based on the popular elastic net-

work model (ENM). PSA with clustering revealed that paths produced by a given method

are more similar to each other than to those from another method and, for instance, that the

ENM-based methods produced relatively similar paths. PSA applied to ensembles of DIMS

MD and FRODA trajectories of the conformational transition of diphtheria toxin, a particu-

larly challenging example, showed that the geometry-based FRODA occasionally sampled

the pathway space of force field-based DIMS MD. For the AdK transition, the new concept

of a Hausdorff-pair map enabled us to extract the molecular structural determinants respon-

sible for differences in pathways, namely a set of conserved salt bridges whose charge-

charge interactions are fully modelled in DIMSMD but not in FRODA. PSA has the potential

to enhance our understanding of transition path sampling methods, validate them, and to

provide a new approach to analyzing conformational transitions.
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Author Summary

Many proteins are nanomachines that performmechanical or chemical work by changing
their three-dimensional shape and cycle between multiple conformational states. Computer
simulations of such conformational transitions provide mechanistic insights into protein
function but such simulations have been challenging. In particular, it is not clear how to
quantitatively compare current simulation methods or to assess their accuracy. To that end,
we present a general and flexible computational framework for quantifying transition paths
—by measuring mutual geometric similarity—that, compared with existing approaches,
requires minimal a-priori assumptions and can take advantage of full atomic detail alongside
heuristic information derived from intuition. Using our Path Similarity Analysis (PSA)
framework in parallel with several existing quantitative approaches, we examine transitions
generated for a toy model of a transition and two biological systems, the enzyme adenylate
kinase and diphtheria toxin. Our results show that PSA enables the quantitative comparison
of different path sampling methods and aids the identification of potentially important atom-
istic motions by exploiting geometric information in transition paths. The method has the
potential to enhance our understanding of transition path sampling methods, validate them,
and to provide a new approach to analyzing macromolecular conformational transitions.

This is a PLOS Computational BiologyMethods paper.

Introduction
Protein function is intimately linked with the mechanistic nature of conformational transitions
—a central problem in computational biophysics is to determine the function of a protein
given its 3D structure [1–3]. Proteins such as enzymes, molecular motors and membrane trans-
porters behave much like nano-molecular machines that perform mechanical or chemical
work by undergoing conformational transitions between two or more metastable states. Large
scale conformational changes comprise the slowest frequency motions of a macromolecule and
can take place on the millisecond time scale and beyond. Equilibrium molecular dynamics
(MD) is arguably one of the most robust approaches to simulating macromolecular dynamics,
in large part due to the availability of full atomistic detail [4]. It has has been the workhorse
tool for studying the protein structure–function connection [5]. However, conformational
transitions are rare events: crossing events in the transition region of phase space take place
much faster than the (waiting) time scales of metastable equilibria, often by several orders of
magnitude. Equilibrium simulations thus disproportionately sample metastable states instead
of transition events—the so-called sampling problem—greatly limiting their ability to generate
conformational transition paths [6].

Enhanced path-sampling methods and other computational approaches have been developed
to mitigate the sampling problem inherent to macromolecular transition events, permitting the
observation of physics on time- and length-scales inaccessible to equilibriumMD (see [7–12]
for reviews). Conformational sampling in trajectory-based (i.e., dynamics-based) methods [13–
21] is accelerated by reducing the computational cost per time step and/or by minimizing the
total number of time steps needed for sampling [10]. Non-dynamical approaches can be roughly
divided into the class of minimum (free) energy path (MEP/MFEP) methods [22–30], including
elastic network model (ENM) approaches [31–35], and prior-information/geometry-based algo-
rithms [36–39]. A large number of the aforementioned methods overlap algorithmically or are
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similar in spirit; many are also directly amenable (or can be adapted) to performing free energy
calculations. Presently, however, the full extent to which such coarse-grained (CG) or biased
MD approaches can replicate physical transition ensembles is unknown, especially given the
diversity of physical assumptions of the various models. Thus, tools aiding more rigorous
inspection of the capabilities and effectiveness of path-sampling methods are needed. In a more
general sense we need a means to compare the protein motions, i.e. the transition paths, in an
unbiased manner that makes use of all the available structural information.

Approaches to transition path analysis
Conformational transition paths are represented by sequences of (snapshots of) conformers in
3N-dimensional configuration space, making it difficult to examine—both visually and quanti-
tatively—their character without resorting to dimensionality reduction in a collective variable
(CV) space. Native contacts analysis (NCA), for example, is a general approach frequently used
to characterize protein folding pathways [40] and enables dimensionality reduction via a pro-
jection onto 2D native contacts (NC) space. NCA has the property that structural contacts are
defined without reference to another structure, making NC space projections particularly use-
ful when good reaction coordinates are not known a priori. Another common approach is
principal component analysis (PCA), a tool that can be used to visualize conformational
dynamics in a lower-dimensional subspace spanned by several principle components (PCs)
[41, 42]. An important aspect of PCA is that motion along PCs can be viewed in real space,
helping make complicated dynamical motions visually tractable.

Using NCA, PCA or other CV approaches cannot, however, guarantee that important
dynamical motions will be captured in the projections—whether (and what) dynamical infor-
mation is lost depends on the projection itself. It is clear that a quantitative method that can
examine a full 3N-dimensional trajectory would help mitigate biases inherent to selecting a
coordinate projection. We propose a general computational method named Path Similarity
Analysis (PSA) to quantitatively compare 3N-dimensional macromolecular transition paths,
which is based on the idea of measuring the geometric similarity between pairs of paths using
path similarity metrics. Once distances are assigned to all pairs of paths, trajectories are then
clustered by similarity. The structural determinants responsible for the difference between any
two trajectories are extracted at the atomic level by exploiting properties of the underlying met-
ric. Here we introduce the PSA approach, examine its suitability, performance, and limitations
as a computational approach to quantifying path similarity and apply it to a toy system and
conformational transitions of two proteins.

Path metrics for measuring transition path similarity
Path similarity analysis (PSA) exploits the properties of a (path) metric function, δ, that mea-
sures a distance between a pair of piecewise-linear or polygonal curves, i.e., an ordered set of
vertices connected by edges. A metric δ applied to curves A, B, C has the properties

dðA;BÞ � 0 ð1aÞ

dðA;BÞ ¼ 0 , A ¼ B ð1bÞ

dðA; BÞ ¼ dðB;AÞ ð1cÞ

dðA;CÞ � dðA;BÞ þ dðB;CÞ: ð1dÞ
In particular, Eq 1b, the identity property, is essential since it implies that, given two curves A
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and B, if B were to be continuously deformed so as to monotonically decrease the distance δ(A,
B), then δ(A, B)! 0 as B! A. That is, two curves must become identical as their mutual dis-
tance approaches zero so that decreasing values of δ correspond to increasing similarity. The
other properties—non-negativity (Eq 1a), commutativity (Eq 1c) and triangle inequality (Eq
1d)—guarantee that δ behaves in the same way as any other metric usually used in structural
comparisons (such as root mean squared distance) even though it compares whole paths and
not just individual conformations.

PSA does not require the use of true metrics and can be used with any path distance func-
tion or other dissimilarity measure where only Eqs 1a–1c are satisfied. The triangle inequality
(Eq 1d), which is a generalization of the transitive property, says that when two objects, A and
B, in some metric space, are each close to a third object, C, in the same space, then A is close to
B in the sense that the triangle inequality, d(A, B)� d(A, C) + d(B, C), provides an upper
bound on their distance apart. The triangle inequality is therefore important when comparing
more than two objects, which is the common scenario when analyzing many conformational
transitions. Although in the following we only consider true metrics, we also explore several
distance functions that violate the triangle inequality in S1 Text. In the main part of this study,
we consider two candidates for δ—the Hausdorff metric [43–45] and the discrete Fréchet met-
ric [46, 47]—and illuminate situations where one might be selected in favor of the other. Given
two paths as input, both metrics locate two points, one per path, corresponding to some notion
of a maximal deviation between the paths. An important property of these metrics is that they
are sensitive only to path geometry; they are insensitive to dynamical motions and associated
physical time scales along paths. We provide a brief overview of these two path metrics in the
context of conformational transitions.

Hausdorff metric. We start with a 3N-dimensional configuration space containing two
paths P andQ represented, respectively, as sequences of conformations

fðpkÞnk¼1 j pk 2 R
3N ; k ¼ 1; . . . ; ng and fðqkÞmk¼1 j qk 2 R

3N ; k ¼ 1; . . . ;mg. TheHausdorff dis-
tance is defined as

dHðP;QÞ ¼ maxfdhðP j QÞ; dhðQ j PÞg; ð2Þ

where

dhðP j QÞ ¼ max
p2P

min
q2Q

dðp; qÞ ð3Þ

is the directed Hausdorff distance from P toQ, and d is a distance metric onR3N (measuring
point distances) [43]; the vertical bar (PjQ) emphasizes that δh(PjQ) is not commutative. The
function δh(PjQ) selects the point p� 2 P, among all points in P, with the most distant nearest
neighbor q� 2 Q (as measured by d(p�,q�)). In the language of conformational transitions, we
interpret d(p, q) as a putative structural similarity measure between conformers p and q, so that
for some conformer pk 2 P, its structural “nearest neighbor” inQ is given by minq 2 Q d(pk, q).
Thus, δh(PjQ) is the distance d associated with the conformer in P having themost distant or
least similar nearest neighbor (inQ). The Hausdorff distance between P andQ, δH(P,Q), is there-
fore the distance associated with the point—of all points in P and Q—with the least similar near-
est neighbor, and implies that all points have a nearest neighbor that is at most δH(P, Q) away.

Fréchet metric. Unlike the Hausdorff metric, Fréchet metrics are sensitive to the orienta-
tion (i.e., directionality) of paths; real transition paths are inherently directional which in prin-
ciple makes Fréchet metrics superior to the Hausdorff metric. Informally, the continuous
Fréchet distance can be visualized by considering a man walking on a path P and his dog on
another path Q [47]. Both start at the initial points of their respective paths, and they are imag-
ined to be connected by an elastic leash that remains taught so as to measure the distance
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separating them at all times. We then allow the man and dog to move independently on their
respective paths under the condition that each progresses in a monotonic fashion (i.e., no back-
ward steps) from start to finish. The Fréchet distance between P and Q is then defined as the
length of the shortest leash necessary for the man and dog to move along their respective paths
from beginning to end according to the aforementioned constraints. Formally, for two continu-
ous curves P : [a0, a1]! R

3N, a0 < a1 and Q : [b0, b1]! R
3N, b0 < b1 that are parameterized

with a real parameter, the continuous Fréchet distance corresponds to finding two specific con-
tinuous and monotonous parameterizations α:[0, 1]! [a0, a1] and β:[0, 1]! [b0, b1] (the
“schedules” of the man and the dog along their paths) so that the largest point distance d for a
given set of parameterizations is minimized [47],

dFðP;QÞ ¼ min
a;b

max
t2½0;1�

dðPðaðtÞÞ;QðbðtÞÞÞ: ð4Þ

Algorithms exist to solve this difficult problem in O(nm log nm) time for polygonal curves
(where n andm are the number of vertices in each curve) [47] and various faster approximate
solutions have been suggested [48, 49].

In this paper, however, we exclusively use the discrete Fréchet distance, δdF, with the algo-
rithm outlined by [50] as it is simpler and faster to compute (in O(nm) time) than its continu-
ous counterpart, δF. The formal definition of δdF considers two polygonal curves P and Q that
are defined respectively by n andm ordered points in a metric space (V, d) for some metric d.
Let the corresponding sequence of endpoints of the line segments of P and Q be respectively
defined as σ(P) = (p1, . . ., pn) and σ(Q) = (q1, . . ., qm). In the product space σ(Q, P)� σ(P) × σ
(Q), we define a coupling between two polygonal curves P and Q as a sequence,

CðP;QÞ � ðpa1 ; qb1Þ; ðpa2 ; qb2Þ; � � � ; ðpaL ; qbLÞ; ð5Þ

of L unique pairs of points (i.e., number of links) satisfying the following conditions: (1) The
first/last pairs correspond to the first/last points of the respective paths (a1 = b1 = 1, aL = n and
bL =m); (2) at least one point on a path (for a pair of points, one per path) must be advanced to
its successive point, i.e., (ai+1 = ai and bi+1 = bi + 1) or (ai+1 = ai + 1 and bi+1 = bi) or (ai+1 = ai
+ 1 and bi+1 = bi + 1) for all i = 1, . . ., L. The largest distance between a pair of points (pai, qbi)
for a given coupling C defines the coupling distance

k C k� max
i¼1;...;L

dðpai ; qbiÞ: ð6Þ

Given the space of all possible couplings between P and Q, ΓP, Q, the discrete Fréchet distance
between P and Q is the minimum coupling distance among all couplings in ΓP, Q:

ddFðP;QÞ ¼ min
C2GP;Q

k C k : ð7Þ

The continuous Fréchet distance constitutes a lower bound on the discrete Fréchet distance,
δF� δdF, because δF accounts for points along the (straight) edges connecting the vertices,
whereas δdF only takes the vertices themselves into consideration [50]. Furthermore, if we
define the maximum edge length for a polygonal curve P to be the largest distance between
consecutive points in P, dmax(P)�maxi = 1, . . ., p−1 d(pi, pi+1), we can set an upper bound on δdF
given two polygonal curves P and Q so that δF(P, Q)� δdF(P, Q)� δF(P, Q) + max{dmax(P),
dmax(Q)} [50]. Thus, δdF differs from δF by no more than the longest edge among both paths
and, to good approximation, δdF � δF for typical trajectories with regularly spaced conforma-
tions. Hereafter we refer to the discrete Fréchet distance as simply the Fréchet metric (distance)
with symbol δF for brevity. The Fréchet distance is bounded from below by the Hausdorff dis-
tance for any given pair of piecewise-linear curves [51] (δF � δH) because for convex polygonal
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curves the Fréchet and Hausdorff distances are equal [52] while for other path geometries the
Fréchet distance can become arbitrarily larger than the Hausdorff distance [48]. In the case of
macromolecular trajectories, the case of backtracking appears particularly relevant because of
its conceptual link to a random walk and its connection to thermal fluctuations. If one path
runs backward along some portion relative to another path, the Fréchet distance will increase
with the extent of the backtracking, whereas the Hausdorff distance will be unaffected since it
ignores the direction of path traversal (Fig 1).

Measuring structural similarity. Both the Hausdorff and Fréchet distances defined in Eq
2 and Eq 7, respectively, are defined in terms of a point metric d(p, q) on 3N-dimensional con-
figuration space that measures the distance (i.e., similarity) between conformations p and q.
We employ the root mean square distance (rmsd) defined in the usual way as

dRMSðp; qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X3N
i¼1

ðpi 	 qiÞ2
s

; ð8Þ

where N is the number of atoms, and fpig3Ni¼1 and fqig3Ni¼1 define the configuration space coordi-
nates of conformations p and q, respectively.

It should be noted that Hausdorff and Fréchet metrics can be defined in terms of other
point metrics to measure and thus emphasize different aspects of macromolecular structure or
topology. For example, one could choose to measure the similarity of two protein conformers
by quantifying the percentage of shared contacts. Another promising approach may be to inte-
grate information-based metrics used for measuring the similarity of protein ensembles [53].
In this paper, we exclusively used the best-fit rmsd as the point metric due to its simplicity and
widespread use, helping to connect with familiar intuitions and avoid obfuscating the examina-
tion of the path metrics themselves.

Previous studies and alternative approaches. The Hausdorff metric has found applications
in image comparison [43], while the orientation-dependent Fréchet metric has been used for
handwriting recognition and searching handwritten documents [54], and comparing trajectories
of moving objects in geographic information systems [55]. Both metrics have also found applica-
tions in biology for protein structure alignment [56, 57] and protein homology analysis [58, 59].

To our knowledge, the Hausdorff and Fréchet metrics have not been widely used as general
tools to quantify macromolecular pathways. However, recently two studies employed Fréchet
distances to assess convergence of transition paths to an optimal path. Jiang et al. [60] used the
same discrete Fréchet metric as used in this study to assess the convergence of a swarms-of-

Fig 1. Comparison of Hausdorff and Fréchet distance. Two paths P (green) andQ (cyan) begin at state
c0 and end at state cfwith directionality indicated by the arrows. The Fréchet distance δF and Hausdorff
distance δH are given by the lengths of the purple and orange lines, respectively. The purple lines are the
same length and correspond to the minimally stretched Fréchet “leash”; the orange line spans a pair of points
separated by the Hausdorff distance (only one is shown because in this case there are infinitely many pairs of
points with the same δH). Due to the backtracking of path P toward state A, combined with the monotonicity
(no-backward-movement) constraint of the Fréchet metric, δF > δH.

doi:10.1371/journal.pcbi.1004568.g001
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trajectories string method. Dickson et al. [61] employed a variation of the discrete Fréchet dis-
tance where the coupling distance was defined as the average distance between all pairs in a
coupling (instead of the maximum distance as in Eq 6); this discrete average Fréchet distance
was used in combination with an adaptive biasing force method to assess the convergence to
an optimal path in an a priori CV space and was found to produce easier-to-read results by
reducing statistical noise compared to the conventional metric. We explore this distance func-
tion in more detail in S1 Text along with a type of average Hausdorff distance. Protein folding
pathways have been compared quantitatively but not with Hausdorff or Fréchet metrics. Sev-
eral such studies utilized native contacts-based path (dis)similarity measures [62–65]. In partic-
ular, both Graham et al. [64] and Lindorff-Larsen et al. [65] used dissimilarity scores to assign
individual paths to folding pathways using clustering. Different methods to sample conforma-
tional transitions were compared by Huang et al. [66], who contrasted the original targeted
MD (TMD) algorithm [13] with a harmonic restraint variation of TMD (also known as
“steered MD” (SMD) or “restrained TMD” (rTMD) [67])—and biased MD (BMD)
approaches, and Ovchinnikov and Karplus [68], who analyzed the free energy profiles along
the transition tubes surrounding the paths produced by several TMD variants.

The use of the Fréchet and Hausdorff path metrics on transition paths itself is not new; how-
ever, their application as general-purpose tools for quantitatively analyzing and comparing
ensembles of transition paths—and extracting the molecular-scale determinants that dictate
their differences—is, to our knowledge, novel. A particularly important advantage of the Haus-
dorff and Fréchet metrics is that they do not require a choice of progress variable, unlike met-
rics based on binning trajectory snapshots to compute path rmsds. While we emphasize that
PSA suggests a general approach to quantitative transition path analysis using different struc-
tural and path metrics, we restricted our study to the Hausdorff and Fréchet path metrics
implemented with the rmsd (as a structural similarity metric) to demonstrate the viability of a
basic approach. We attempted to keep the underlying principles of PSA in view to engender
future PSA-based analyses (such as quantifying putative reaction coordinates) and we stress
that this study does not purport to exhaust all applications of PSA, nor represent an optimized
application. Other path metrics—e.g., Fréchet with speed limits, direction-based Fréchet [69],
or Fréchet with shortcuts for the analysis of noisy data [70]—may offer advantages in carrying
out various analyses. The Hausdorff distance can be generalized as well to measure, for
instance, distances between surfaces (instead of 1D curves) [71]. The multitudinous permuta-
tions that can be selected among the various path metrics, structural similarity metrics, cluster-
ing algorithms, etc. make PSA a flexible tool for trajectory analysis.

Model systems
To investigate the applicability of the Hausdorff and Fréchet metrics to the problem of quanti-
fying transition paths, we generated trajectories using an abstract toy system and we simulated
conformational transitions of two globular proteins, the enzyme adenylate kinase (AdK) in its
ligand-free form and diphtheria toxin (DT). The toy model was designed to gain an intuition
for the path metrics and their applicability to highly fluctuating paths in high dimensions.
AdK’s closed/open transition (Fig 2A) is a standard test case that captures general, essential
features of conformational changes in proteins [12]. Alongside AdK in our analysis of transi-
tion ensembles, we also examined closed! open DT transitions (Fig 2B), which serves as a
more challenging example due to the difficultly of capturing the putative unfolding and refold-
ing required for conformational change [72].

AdK is divided into three domains: the ATP-binding (or “LID”) domain, residues 122–159
in the mesophilic Escherichia coli sequence (AKeco), and the AMP-binding (or “NMP” or
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“AMPbd”) domain, residues 30–59, move relative to the CORE domain [73–77] around con-
served hinges [78] (Fig 2A). The conformational change can occur in the ligand-free (apo)
state as demonstrated in multiple experimental studies [78–81] and corroborated by computa-
tional analyses (reviewed by Seyler and Beckstein [12]). Therefore, the apo AKeco enzyme is a
particularly suitable model system for studying general conformational transitions [12]. We
produced transition paths between an open conformation of AdK [represented by chain A of
PDB id 4AKE [77] from the Protein Data Bank [82] (PDB)], and a closed conformation (chain
A of 1AKE [83] with ligand removed).

DT is believed to undergo a transition from an inactive closed conformation to an active
open one, which includes a 180° rotation of a mobile domain [84] (Fig 2B). An open conforma-
tion was captured in a domain-swapped dimeric structure [85] and compared to the closed
monomeric structure [86]. DT is divided into three domains, with the translocation (T)
domain, residues 179–379, being responsible for the majority of the opening and unrolling
conformational motion about the receptor-binding (R) domain, residues 380–535, and the cat-
alytic (C) domain, residues 1–178. The conformational transition of a DT monomer was simu-
lated previously and considered challenging for simulation methods [39, 72]. We simulated
transition pathways of DT between a closed and open conformation based on chain A from the
monomeric structure (PDB id: 1MDT [86]) and chain A from the domain-swapped dimeric
structure (PDB id: 1DDT [85]), respectively.

Methods
In the following we define the PSA approach as implemented in this study (using the metrics
described in the Introduction), and we also summarize several alternative approaches to analyz-
ing transitions that we employed alongside PSA for comparison.We describe how a range of con-
formational transition paths were generated to supply a variety of contexts in which to test PSA.

Molecular images were created with VMD [87] and the Bendix plugin [88]. Graphs were
plotted with the Python libraries matplotlib [89] and seaborn [90], in particular its implemen-
tation of violin plots [91].

Characterizing transition paths
Path similarity analysis (PSA). The Hausdorff metric, δH, and the discrete Fréchet metric,

δdF, defined in Eq 2 and Eq 7, respectively, were computed as described in the Introduction.
Further details on the numerical implementation are provided in S2 Text. Both metrics are
implemented as part of the MDAnalysis Python package [92] in the module MDAnalysis.

Fig 2. Macromolecular transitions studied with PSA. (A) The closed$ open transition for adenylate kinase (AdK) involves the hinge-like motion of the
LID (green) and NMP (cyan) domains about the relatively stable CORE (gray). (B) Diphtheria toxin (DT) can exist in two different crystallographic
conformations that are connected by a closed$ open transition involving the unravelling and swinging-open of the Translocation (T or Middle) domain
(gray), about the Catalytic (C or N-terminal; green) and the Receptor-binding (R or C-terminal; cyan) domains.

doi:10.1371/journal.pcbi.1004568.g002
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analysis.psa, which is available as open source at www.mdanalysis.org under the GNU
General Public License 2.

To analyze a set of N paths, we compute the N(N − 1)/2 unique pairwise Hausdorff and Fré-
chet distances. To present the data efficiently, we levied the versatility of hierarchical clustering
[93] along with the visual power of a heat map-dendrogram representation to present a quanti-
tative approach to visualizing the similarities of collections of paths. In agglomerative hierar-
chical clustering, similar objects are linked together in a pairwise fashion to form growing
clusters in a bottom-up approach. The similarity between two objects is defined by a metric,
while the similarity of clusters (i.e., sets of objects) is uniquely determined by a linkage criterion
that computes inter-cluster similarity as a function of the pairwise similarities of the objects
comprising each cluster.

Using the Hausdorff and Fréchet metrics as similarity measures, we employed Ward’s
method [94] in conjunction with agglomerative hierarchical clustering as implemented in the
SciPy Python package [95]. The Ward linkage criterion specifies a minimum variance criterion
that minimizes the total intra-cluster variance. In light of the focus of this paper, we restrict our
study to hierarchical clustering using primarily Ward linkage—details regarding this restriction
are provided in S3 Text in the Supporting Information along with other relevant considerations
in using cluster analysis to facilitate PSA.

Native contacts analysis (NCA). For consistency with other methods used in this paper,
we define a contact to be a residue pair whose Cα atoms are separated by a distance smaller
than 8 Å. A native contact is a contact present in a reference structure. Given a transition path,
the fraction of native contacts Q [96] is the fraction of contacts in a native structure that are
present in a transition structure. We then define Q1 and Q2, for any intermediate conformer
in a transition, as the fractions of native contacts with respect to an initial and final structure,
respectively. Transition paths are projected onto 2D Q1-Q2 (NC) space by parametrically plot-
ting the percentage of contacts relative to the initial and final states.

Comparison with a linearly interpolated path. A simple way to quantify the geometry of
a single transition path is to measure its orthogonal separation, ρ, from a reference path as a
function of progress, z, along the reference path (Fig 3). In this way, any transition path can be
projected in a 2D space depicting “displacement” (ρ) versus “progress” (z) relative to a refer-
ence path. We selected naive linear interpolation (LinInt) to serve as a simple zeroth-order ref-
erence. Note that, in comparison with PSA, this approach necessitates defining an explicit
progress measure in the form of a reference path—which may not be appropriate beyond rela-
tively simple examples like the AdK transition—and is furthermore not amenable to direct
pairwise comparisons among a large ensemble of transition paths.

Fig 3. Comparison with a linearly interpolated path. A hypothetical transition pathway P (cyan line) in
a 3D configuration space composed of a discrete number of conformer snapshots (cyan circles)
connects an initial state (green circle), c0, and final state (red diamond), cf. The reference path R (black
line) is represented by LinInt. Each snapshot pk is associated with its projection, rk, on R; the progress, ζ(k), is
the rmsd between rk and cf (dashed purple line along R) and the displacement, ρ(k), is the rmsd between pk
and rk (dashed purple line perpendicular to R).

doi:10.1371/journal.pcbi.1004568.g003
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Given two boundary conformations {c0, cf} 2 R
3N in 3N-dimensional configuration space

with reference path R embedded in R
3N (that linearly interpolates c0 and cf), and a piecewise-

linear (transition) path P embedded in R
3N and composed of a sequence of conformations,

ðpkÞmk¼1, wherem is the number of time steps, we compute for each pk: (1) the rmsd between pk
and its orthogonal projection onto R, rk,

rðkÞ ¼ dRMSðpk; rkÞ; ð9Þ
and (2) the rmsd between rk and final state cf,

zðkÞ ¼ dRMSðrk; cf Þ ð10Þ

(see Fig 3). A transition path can then be projected onto z-ρ space by parametrically plotting z
(k) versus ρ(k) for all values of k. For a path beginning at r0 = c0, the rmsd to the final structure
is given by the rmsd between the initial and final states, z(0) = dRMS(c0, cf), while the rmsd for a
path ending at rm = cf is z(m) = dRMS(cf, cf) = 0.

Defining ρ using the rmsd permits a close connection with PSA in the following way: the
maximal rmsd of a path P from LinInt, max m

k¼1frðkÞg will be the Hausdorff distance between
P and LinInt, δH(P,LinInt), when P is restricted to the region of configuration space between
the boundary conformations (and assuming that structural alignment prior to rmsd measure-
ment was performed identically). Furthermore, when P does not “backtrack”, z(k) is monotoni-
cally decreasing—indeed, P can be said to backtrack (with respect to some reference path)
when z(k) is notmonotone—and the Hausdorff and Fréchet distances coincide:
max m

k¼1frðkÞg ¼ dFðP; LinIntÞ ¼ dHðP; LinIntÞ.
Heuristic collective variables. While dimensionality reduction can be useful for visualiz-

ing and identifying functional protein motions, selecting the collective variables that span the
projected space and adequately describe a conformational transition is nontrivial [97, 98].
Choosing heuristic coordinates for a given system often requires strong physical intuition,
something that may be absent when studying new or complicated transitions. In general, the
determination of reaction coordinates and/or order parameters can be guided by quantitative
methods, such as principal component analysis or the construction of isocommittor surfaces.
In the relatively simple case of AdK’s closed$ open transition, several viable order parameters
have been used as low-dimensional descriptions [12].

To explicitly illustrate the uses and limitations of heuristic collective variables, and to make
a connection with previous work, we examine the AdK closed$ open transition (Fig 2A) in
2D angle-angle space [99]. The NMP-CORE angle θNMP is formed by the geometric centers of
residues 115–125 (CORE-LID), 90–100 (CORE), and 35–55 (NMP) of E. coli AdK. Likewise,
θLID is defined as the angle between residues 179–185 (CORE), 115–125 (CORE-hinge-LID),
and 125–153 (LID). As many of the methods we studied used Cα-only models, we defined
NMP-CORE and LID-CORE angles by exclusively using the Cα atoms of the residues. The
angle-angle space defined by (θNMP, θLID) quantifies the degree to which NMP and LID are
open and the sequence in which they open (close) for the closed! open (open! closed)
transition.

Generating transition paths
We first describe the toy model system used to supply simple transitions for testing purposes.
We then summarize the path generation—using a variety of enhanced path-sampling methods
—of closed! open transitions of AdK and DT, which serve as more realistic representations
of conformational transitions.
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Toy model: Double-barrel potential. To determine the extent to which the Hausdorff
and Fréchet metrics are suitable for measuring transition paths, we constructed a toy system to
generate well-defined trajectories driven by a one-way ramp potential and subject to thermal
noise; the resulting paths in configuration space can be viewed as thermally-perturbed straight
lines. For our purposes, transition progress was measured by the center-of-mass distance of a
group of particles moving along the ramp so that a transition was completed once the center-
of-mass trajectory crossed a threshold value.

The toy system is defined as a group of N particles connected by harmonic springs subject
to Brownian dynamics in a 3D potential energy landscape (Fig 4). Individual particles were
connected in analogy to a complete graph, with vertices and edges respectively representing
particles and springs. Spring equilibrium distances were set to zero separation for simplicity.
Differing dimensionalities of the configuration space were examined by varying the number of
particles N. The external potential was given a double-well shape in the y-direction and a para-
bolic shape in the x-direction (centered at x = y = 0), ensuring that particle clusters are confined
to one of two “barrels” running along the z-direction (Fig 4). The energy barrier between the
tubes was set to a height of 2 kB T (* 5 kJ/mol) at T = 300 K. We set up a ramp potential slop-
ing down toward increasing z (i.e., a constant potential energy gradient in the positive z direc-
tion) to induce large-scale transitions from small to large values of z.

To construct a properly coarse-grained system, we required zero-temperature cluster
dynamics to be identical for all N-particle clusters (given sensibly chosen initial conditions).
Spring constants, particle masses and sizes, and the external potentials were scaled so as to pre-
serve the average diffusive behavior of a cluster. Furthermore, spring constants were chosen to
be large enough to prevent clusters from splitting themselves across the central barrier (where
some particles in the cluster fall to one tube and some fall to the other). Particles comprising a
cluster were furthermore initialized at the same location so that zero temperature center-of-
mass trajectories would be independent of particle number, N. It should be emphasized that
this toy model was not intended to replicate a real physical system, but primarily served to

Fig 4. The toy model consists of a cluster of connected particles moving in a double-well potential
along the z-axis under the influence of a linear ramp potential (not shown). In the cluster for N = 8, each
particle (red) is connected to every other particle with a harmonic spring (blue) of equilibrium length 0 (cluster
not shown to scale.) The potential landscape for constant z forms a “double barrel”—red (blue) regions
correspond to high (low) energies—is parabolic along the x-direction (cyan line), and has a double-well shape
in the y-direction (purple line), which produces a central barrier separating two “barrels” (gray crosshatching).
A saddle point is located at the intersection of the cyan and purple lines. Motion in this landscape is biased
toward either of the low-energy barrels, but transitions between barrels are possible at finite temperatures.

doi:10.1371/journal.pcbi.1004568.g004
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build intuition prior to studying conformational pathways in realistic protein systems. More
detailed information about the construction of the double-barrel system is provided in S4 Text
in the Supporting Information.

Simulation methods and systems. The path-sampling methods comparison was per-
formed using the AdK closed! open transition—between the (initial) closed conformation
(PDB id 1AKE:A) and final (open) conformation (PDB id 4AKE:A)—as a testbed. We used
eight methods available on publicly accessible servers [31, 72, 100–104], two in-house methods
(DIMS, dynamic importance sampling [105], and FRODA, Framework Rigidity Optimized
Dynamics Algorithm [39]), and targeted MD (rTMD [67]) using local simulation resources
(see Tables 1 and 2 for overviews). DIMS and FRODA were additionally used to generate
example ensembles of AdK and DT transitions (200 transitions per method per protein, 800
total) for ensemble-based and Hausdorff pairs analysis. In principle, other path-sampling
methods could be included in a comparison and, in the future, it would be worth exploring
alternative methods such as the finite-temperature string method [106], weighted ensemble
dynamics [107, 108], milestoning [109], transition path sampling [110], non-equilibrium
umbrella sampling [111] or forward flux sampling [112], to name a few. Key aspects of each
method used in this study are summarized below to help connect our results with physical
intuition about the models. Each path-sampling method is described in the context of the ener-
getics they model (Table 1) and the schemes by which paths are propagated or generated

Table 1. Modeling of energetics in tested path-sampling methods.

Resa Name Force field/potentialb Solvent energeticsc Mixing function/other energeticsd

all-atom DIMS[105] CHARMM22/CMAP ACS/ACE2 IS T = 300 K

rTMD[67] CHARMM22/CMAP Generalized Born IS T = 300 K

MDdMD[100] bonds/angles: inf. sq-well Lazaridis-Karplus IS NBF: simple vdW/electrostatic, T = 300 K

FRODA[39] stereochemical constraints hydrophobic contacts* overlap/angle/H-bond constraints

Morph[72] CHARMM/XPLOR†
– energy minimization of intermediate snapshots

LinInt – – –

Cα-only GOdMD[101] bonds: inf. sq-well – NBF: Go-like + ENM-MetaD

ANMP[102] double-well ANM – Emix = min{Ui, Uf}

iENM[103] double-well ANM – Emix = F(Ui, Uf) (arbitrary), collision penalty

MAP[31] two ANMs, OM dynamics overdamped Langevin‡ minimum OM action ! 2 ODEs+BCs ! path

MENM-SD/SP[104] double-well ANM – Emix = β−1ln{exp[−β(Ui + �i)] + exp(−β(Uf + �f)]}

All MD-based methods use atomic resolution; Morph and LinInt are the only other methods with greater than Cα resolution. Except for MAP, ENM-based

models define double-well potentials using different mixing functions of each anisotropic network model (ANM) constructed about each native states. MAP

uses 2 ODEs, found by minimizing the Onsager-Machlup action for each ANM about the native states, and satisfying continuity conditions for positions

and velocities at their interface. MENM-SD/SP assumes weak mixing: Tm = T (β = 1/kTm, is an adjustable parameter); in the limit of vanishing mixing, Tm
! 0+, Emix = min{Ui, Uf}, which is the same double-well potential used by ANMP.
aResolution of the model.
binf. sq-well, infinite square well; ANM, anisotropic network model; OM, Onsager-Machlup.
cIS, implicit solvent; FRODA does not have a solvent model; MAP assumes overdamped Langevin dynamics in using the Onsager-Machlup action.
dNBF, non-bonded forces; vdW, van der Waals potential; ENM-MetaD, elastic network model-based metadynamics; Emix, mixing function for two-state

potential; Ui (Uf), potential energy function about the initial (final) native state; OM, Onsager-Machlup; ODEs+BCs, ordinary differential equations plus

boundary conditions.

*FRODA does not use a solvent model.
†Morph uses CHARMM/XPLOR relaxation to minimize energy of intermediate snapshots.
‡MAP assumes overdamped Langevin dynamics in using the Onsager-Machlup action.

doi:10.1371/journal.pcbi.1004568.t001
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(Table 2). Additional details about the methods and the corresponding simulation settings that
were used can be found in S5 Text.

Two of the tested methods are based on MD combined with perturbation techniques (per-
turbation MD) designed to drive transitions between initial and final states. Two MDmethods
—DIMSMD [15, 105] (implemented in CHARMM c36b2 [113]) and TMD (implemented in
NAMD 2.10 [114])—used the all-atom CHARMM22/CMAP force field [115, 116] with Lange-
vin dynamics and implicit solvents (ACE [117] in CHARMM, Generalized Born [118] in
NAMD) in the NVT ensemble at 300 K. NAMD’s TMD implementation uses a time-depen-
dent harmonic restraint that moves toward a target conformation with constant velocity [67],
instead of the original TMD approach introduced by Schlitter [13] that employed a stepwise
holonomic constraint; in accordance with Ovchinnikov and Karplus [68], we refer to the
NAMD implementation as restrained TMD (rTMD) to distinguish it from the original algo-
rithm. DIMS and rTMD transitions were driven using the heavy-atom rmsd to the target struc-
ture. The soft-ratcheting DIMS algorithm moves towards the target by taking trial MD steps.
Steps toward the target (decreasing rmsd-to-target) are accepted whereas backward steps are
rejected with a finite probability; velocities are re-sampled (according to Maxwell-Boltzmann)
until the step is accepted. rTMDmoves a harmonic restraint to linearly decrease the rmsd-to-
target. We generated three rTMD paths using a fast pulling speed and three with slower pull-
ing. rTMD differs from DIMS in that explicit forces are introduced into the system Hamilto-
nian whereas DIMS effectively introduces an entropic force.

Maxwell-Demon discrete Molecular Dynamics [100] (MDdMD) and GOdMD [101] are
similar in spirit and are the only two methods based on a physical dynamical model among the

Table 2. Approach to generating paths in tested path-samplingmethods.

Type Name Dynamics Path propagation/biasinga Revb TS/Stochc Progress variable

perturbation MD DIMS[105] Langevin NVT SR N Y/Y rmsd-to-target

rTMD[67] Langevin NVT moving harmonic restraint N Y/Y rmsd-to-target

MDdMD[100] discrete MD SR + essential dynamics N Y/Y ssd-to-target†

GOdMD[101] discrete CG-MD SR + metadynamics N Y/Y ssd-to-target†

geometric targeting FRODA[39] – stepwise-enforced rmsd constraint* N Y/(Y/N) rmsd-to-target

CG-ENM ANMP[102] – SD from SP (cusp min.) to minima Y N/N –

iENM[103] – parametric SP/fixed-point eqn. Y N/N –

MAP[31] – OM minimum action path Y N/N –

MENM-SD[104] – SD from SP to minima Y N/N –

MENM-SP[104] – parametric SP/fixed-point eqn. Y N/N –

adiabatic mapping Morph[72] – linearly interpolated snapshots Y N/N –

linear interpolation LinInt – linearly interpolated snapshots Y N/N –

DIMS, rTMD, MDdMD, and GOdMD are all non-deterministic MD-based methods. DIMS and rTMD employ a conventional force field and Langevin

dynamics in the canonical ensemble; the discrete MD algorithms used by MDdMD and GOdMD assume ballistic particle motion until a collision occurs—

along with the depth of the interatomic square wells, momentum and energy conservation are used to determine outgoing momenta without explicitly

computing forces. FRODA uses a non-physical dynamical algorithm to path-search stereochemically correct regions of configuration space. CG-ENM

methods generate transitions by constructing low-energy paths in the potential energy landscape. Morph and LinInt linearly interpolate the position of each

atom between the initial and final states.
aSR, soft ratcheting; SD, steepest descent; SP, saddle point; OM, Onsager-Machlup.
bIs the method exactly reversible?
cIs the algorithm based on a (physical or non-physical) time step? Is it stochastic?

*At each step, rmsd reduced by fixed amount while simultaneously enforcing other constraints.
†ssd, sum of squared distances to target (includes weighting that varies between MDdMD and GOdMD.

doi:10.1371/journal.pcbi.1004568.t002
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server-based transition path generation methods. Both are based on discrete MD combined
with soft ratcheting and a type of essential dynamics sampling. MDdMD utilizes an atomistic
representation and an implicit solvent model; GOdMD uses a Cα representation and neglects
solvent effects. Both methods model bonded forces with infinite square-wells although
MDdMD incorporates further detail by using simple potentials to describe van der Waals and
electrostatic forces; GOdMD uses a Go-like potential to describe non-bonded forces. Both also
include an additional form of biasing to ensure transitions follow essential deformation move-
ments of a protein: MDdMD accepts steps when the transition vector (from the current
conformer to the target) overlaps sufficiently with an essential transition vector (defined using
eigenvectors from NMA on a Go-like potential about the initial or final state); GOdMD uses
an ENM-based metadynamics approach to bias the sampling of essential deformation modes
and to ensure that trajectories escape the initial minima.

The geometrical targeting algorithm, FRODA [39], is an approach designed to produce
stereochemically acceptable transition paths. FRODA moves a structure toward a target con-
formation by decreasing the rmsd-to-target while enforcing stereochemical constraints such as
bond distances and angles, backbone dihedrals, and contact constraints. In particular, FRODA
can avoid steric clashes in an all-atom structure, something that may not be achieved by
coarse-grained elastic network models (CG-ENMs) or algorithms using simple linear
interpolation.

We also generated transitions using five CG-ENM-based methods. These particular models
first construct two harmonic potential energy functions, based on anisotropic network models
(ANMs), about initial and final native (crystallographic) states, which has the general form

UðXÞ ¼ 1

2

X
d 0
ij
<Rc

Cijðdij 	 d 0
ij Þ2 þ DU;

where the sum is taken over all unique pairs of Cα atoms separated by less than a specified cutoff
distance, Rc, and ΔU is the energy difference between the two states. For atoms i and j, Cij is the
force constant, dij is the Euclidean distance between them, and d 0

ij is the corresponding distance

in the native (crystallographic) structure. Force constants can be determined by fitting to isotro-
pic crystallographic B-factors for instance. A double-well (two-state) potential landscape is con-
structed by combining the separate potentials. Given a two-state potential, transition paths are
generated by connecting the two (end-state) minima along low-energy pathways. The ENM-
based methods are distinguished primarily by their two-state energetics (i.e., mixing potential)
and method of defining and searching for low-energy transition paths. The cutoff distance, Rc,
can be adjusted to some degree for all the tested ENM-based approaches, but a couple also
enable modification of the force (spring) constants, Cij, and the end state energy difference, ΔU.

ANMPathway [102] (ANMP) forms a double-well landscape where the energy at each point
is taken to be the smaller of the energies specified by the two wells; the wells intersect to form a
cusp hypersurface in configuration space. A path is found by locating the minimum along the
cusp and performing steepest descent (SD) toward both well minima. The Mixed Elastic Net-
work Model [104] (MENM) employs a double-well function with a tunable mixing temperature
whose purpose is to modulate the cusp-like intersection to provide a smooth transition in
energy between the two wells. The method locates saddle points (SPs), and can use a steepest
descent (SD) mode (MENM-SD) to generate paths from the SPs to the minima, or it can pro-
vide a parametric equation describing an SP path through the fixed points of the landscape. The
interpolated Elastic Network Model [103] (iENM) is similar to MENM-SP in that it analytically
solves for a parametric SP path, although it only requires a general form of a double-well poten-
tial function (does not use an explicit mixing function). Unlike the other ENM-based methods,
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MinActionPath [31] (MAP) does not use a mixing function. Instead, a path is generated by
minimizing the Onsager- Machlup (OM) action—which assumes overdamped Langevin
dynamics—with the two separate ANMs for the native states to derive two one-dimensional dif-
ferential equations describing the minimum action paths in the region of each ANM. A unique
transition path between the initial and final states is found by satisfying continuity boundary
conditions in the positions and velocities at the interface.

To provide a point of comparison to one of the most simple approaches, we used the Yale
morph server [72, 119] (Morph), which combines linear interpolation and optional energy
minimization of the intermediate snapshots (i.e., adiabatic mapping), and we also used explicit
linear interpolation to generate a single path between the end states (LinInt).

The main thrust of the path-sampling methods comparison is to demonstrate PSA’s viabil-
ity and not necessarily to directly evaluate the performance of the sampling algorithms. As
such, adjustable parameters for all simulations were left at their default values unless explicitly
stated. Transitions were produced using the highest allowable resolution, i.e., using all non-
hydrogen atoms when possible or only Cα atoms otherwise. For each method, three unique
paths were generated by either re-running those with stochastic algorithms or, for the deter-
ministic ones, by adjusting a single parameter; in the case of rTMD, six total simulations were
performed [three each for fast (* 1 Å/ps) and slow (* 0.01 Å/ps) pulling speed; see S5 Text
for further details]. DIMS, FRODA and MDdMD simulations, which produce a unique trajec-
tory every run, were run three times each without altering initial settings. Three GOdMD runs
were performed by changing the relaxation window (20, 50 and 100). Distinct trajectories for
the deterministic, ENM- based algorithms were obtained by varying spring cutoff distances:
one transition at the default value and two by decreasing/increasing the cutoff. Morph trajecto-
ries were produced by toggling energy minimization and structural pre-alignment settings, and
a single LinInt trajectory was included as a zeroth-order reference. All other simulation settings
were left at default values where possible. Simulations and analyses performed in this study are
summarized in Table 3. Furthermore, as half of the methods were limited to Cα structures as
inputs—the coarsest representation among the methods—all analyses were restricted to Cα tra-
jectory representations to provide a lowest common denominator. Trajectories were also
aligned to a common reference structure generated by aligning and averaging the CORE Cα

coordinates of the 1AKE:A and 4AKE:A structures (see S6 Text in the Supporting Information
for a description of the structural alignment procedures).

Results and Discussion
We subdivided our study in four parts to show how PSA can be used to answer a range of ques-
tions about macromolecular transition paths and pathways (see Table 3): (1) The path metrics

Table 3. Summary of simulations, calculations, and analyses.

Assessment System Transition Path generation # path samples Analysis methods†

(1) Intuition and viability double-barrel z: 0 ! 4 nm Brownian + ramp 4×(2 ICs) PSA (δF), δF -δH distr/corr*

(2) Methods comparison AdK closed ! open various methods 3×(11 methods) PSA (δF/δH *), NCA, ζ-ρ, AA

(3) Transition ensembles AdK closed ! open DIMS, FRODA 200×(2 methods) PSA (δF *), δF-δH distr/corr*

DT closed ! open DIMS, FRODA 200×(2 methods) PSA (δF), δF-δH distr/corr*

(4) Atomic detail from PSA AdK closed ! open DIMS, FRODA 200×(2 methods) PSA (δH-pairs)

*Result in Supporting Information
†Analysis methods: PSA, path similarity analysis; δF, Fréchet distance; δH, Hausdorff distance; δF-δH distr/corr, Fréchet -Hausdorff distribution/correlation

analysis; NCA, native contacts analysis; ζ-ρ, progress vs. displacement along path of linear interpolation; AA, angle-angle space.

doi:10.1371/journal.pcbi.1004568.t003
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were able to distinguish and categorize simple trajectories in a toy system, taking thermal
motion and varying number of particles into account. (2) PSA could be used to compare differ-
ent path-sampling methods and, when combined with more traditional low-dimensional pro-
jections on collective variables, provide insights into similarities and differences between
different methods. (3) PSA was able to analyze path ensembles, opening the door to analyzing
dynamical simulations with statistical approaches. (4) PSA enabled us to extract the molecular
structural determinants responsible for differences in paths, thus linking the general analysis of
high-dimensional transition paths to the specific molecular detail.

Path similarity analysis of toy model transitions
We simulated one- and eight-particle cluster transitions in the double-barrel potential energy
landscape between a starting state (defined as a center-of-mass location below z = 0nm) and a
final state (z� 4nm). Eight-particle simulations at zero and 250 K are shown in Fig. 5. The par-
ticles were weakly confined to one of two potential energy barrels separated by a 2 kBT barrier
at 250 K (Fig 5A and 5D) and evolved under the influence of thermal diffusion and drift due to
a linearly decreasing ramp potential in the z direction (Fig 5B and 5E). Simulations were run at
temperatures between 0 K and 600 K in 50 K increments, with eight runs at each temperature.
Trajectories were initialized such that two distinct groups of paths would be produced at zero

Fig 5. Double-barrel potential energy landscape projected onto the xy-plane and yz-plane.Groups of point masses (clusters) mutually connected by
harmonic springs move under the influence of a transition-inducing ramp potential in the positive z direction and the two low-energy minima of the “barrels” at
y = ±0.8. Colored lines depict the center of mass trajectories for each cluster. (A–C) trajectories at T = 0 K. (D–F) trajectories at T = 250 K. (A, D) Projection of
paths onto the xy-plane together with the double-barrel potential. (B, E) Projection of paths onto the yz-plane. (C, E) Clustered heat maps summarize the
Fréchet distances for all pairs of trajectories; dendrograms record cluster distances according to the Ward criterion. Trajectory colors in each row match the
corresponding path(s) in the dendrogram. The trajectory-averaged radius of gyration for clusters at finite temperature is 0.35 (black circles).

doi:10.1371/journal.pcbi.1004568.g005
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temperature: for each temperature, we initialized half of the simulations to one side of the cen-
tral barrier at (x0, y0) = (0 nm, 0.4 nm) and the other half at (0 nm, −0.4 nm).

At zero temperature, trajectories initiated at the same point progressed along identical paths
due to the absence of thermal diffusion. Two trajectory groups were formed (Fig 5A and 5B),
consistent with what was expected from the initial conditions. A clustered heat map of the Fré-
chet distances between the T = 0 K trajectories clearly showed two well-defined clusters (Fig
5C), containing four trajectories each, in both the structure of the dendrogram as well as the
color division in the heat map. Due to thermal perturbations, higher-temperature trajectories
exhibited substantial wandering (Fig 5D and 5E) and even produced a transition across the
central barrier (blue trajectory in Fig 5E). In contrast with the zero temperature case, both the
number of clusters and the clusters themselves were much more vaguely defined. Two clusters
with four trajectories per cluster (red and green/blue trajectories, Fig 5D–5F) were still formed,
although the blue trajectory, which underwent a barrier-crossing transition near z = −0.5 nm,
is an outlier in the cluster with the three green trajectories.

Trajectory categorization for the toy model with PSA did not depend strongly on the
dimensionality (cluster size) as thermal noise alone appeared to have a much more substantial
influence (S1 Fig). In particular, we could not discern meaningful differences in the center of
mass motions between one- and eight-particle clusters from the data. Furthermore, in the
eight-particle case at 250 K, performing PSA using the full (24-dimensional) configuration
space trajectories did not produce a different clustering than PSA applied only to the center of
mass trajectories. The same analysis as above was carried out with the Hausdorff distance
instead of the Fréchet distance to assess their relative discriminative powers. Both metrics pro-
duce similar results at temperatures below 300 K, each identifying two distinct pathways (S2
Fig). Between 350 K and 500 K, however, Hausdorff and Fréchet distance measurements
started to become substantially uncorrelated (S3 Fig). This effect is likely due in part to the sen-
sitivity of the Fréchet metric to backtracking (Fig 1), which may be amplified when the typical
energy of thermal perturbations become comparable to the height of a potential barrier (2kBT
at 300 K). High-temperature simulations (�300 K) began to explore both tubes as if they were
a single pathway (S2 Fig and S4 Fig).

Taken together, PSA was able to distinguish groups of paths in the presence of stochastic
thermal motions as long as the thermal energy was lower than the energy scale of distinguishing
features in the underlying energy landscape. The dimensionality of the problem did not appear
to be an important factor. Fréchet and Hausdorff distances discriminated paths equally well
with some small differences at high temperatures that likely reflect trajectory backtracking.

Comparing enhanced path-sampling methods
In order to compare a selection of fast transition path sampling methods, three distinct trajec-
tories were generated for the closed! open AdK transition as described in Methods.

Direct comparison using PSA. A total of 37 paths (eleven methods, three paths per
method with the exception of six paths for rTMD, plus one LinInt path) were analyzed by com-
puting the Fréchet distance between all possible pairs and clustering of the resulting (symmet-
ric) distance matrix (S5 Fig). Using the same approach as with the toy model, the clustered
distance matrix was translated to a heat map-dendrogram representation (Fig 6).

Paths from a given method were more similar to other paths from the same method than to
those produced by a different method, as indicated by well-defined 3 × 3 squares along the heat
map diagonal. Methods based on similar physical models tended to sample relatively similar
pathways, while algorithmically distinct approaches appeared less likely to produce similar
paths. For instance, Morph and LinInt both implement linear coordinate interpolation. Their
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paths are essentially identical (δF� 0.5 Å), which indicates that additional features implemented
in Morph, such as checking for steric overlaps, may not be relevant for the AdK transition.
Another cluster was formed by the two MD-based importance sampling methods, DIMS and
MDdMD, together with MD-based rTMD at slow pulling velocity (“rTMD-S”; Fréchet distance
2.1 Å� δF� 2.7 Å). In other cases, similarities and differences did not always follow an imme-
diately obvious pattern. FRODA, which satisfies rigidity constraints during a transition but does
not employ a potential energy function, nevertheless formed a cluster with DIMS, MDdMD,
and rTMD-S (2.6 Å� δF� 3.1 Å). The grouping of FRODA with DIMS/MDdMD/rTMD-S
appears, however, less strong than, for instance, the clustering of DIMS with MDdMD because
for other choices of the linkage criterion FRODA is more distantly associated with the DIMS/
MDdMD/rTMD-S cluster and a robust cluster of MAP/Morph/LinInt trajectories (see S6B–
S6D Fig and further discussion in S3 Text). The fast-pulling rTMD (“rTMD-F”) and MAP tra-
jectories were strikingly similar to the Morph paths (δF� 1 Å), even though rTMD-F performs
MD with an atomistic physics-based force field, whereas MAP’s energy function is based on an
elastic network model and the path is generated via minimization of Onsager-Machlup action
(and not just linear interpolation). Interestingly, the MAP/rTMD-F/Morph sub-cluster was
grouped with the cluster formed by four of the dynamical algorithms (DIMS, MDdMD,
rTMD-S, FRODA). The other four ENM algorithms—iENM, MENM-SD/SP, and ANMP—

Fig 6. Path similarity analysis of trajectories generated by different path-samplingmethods. The AdK closed! open transition was sampled three
times (except LinInt) with different methods (see text). Smaller distances indicate transition paths with greater similarity. The dendrogram depicts a hierarchy
of clusters where smaller node heights of parent clusters indicate greater similarity between child clusters. Fréchet distances δF are in Å and correspond to a
structural rmsd in accordance with the rmsd point metric. See text for a description of the methods. S5 Fig contains the same data annotated with numerical
values of δF.

doi:10.1371/journal.pcbi.1004568.g006
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produced their own cluster, with MENM-SD and iENM being the most similar to each other. A
careful examination of the heat map revealed that althoughMAP, rTMD-F, and Morph paths
somewhat resembled iENM andMENM-SD paths (δF� 2.5 Å), their overall patterns of Fréchet
distances were very similar to DIMS/MDdMD/rTMD-S (as seen in the similar overall striping
in the shading of the heat map) so that the “Morph-like cluster” rather clustered with these
dynamical methods than with the “ENM cluster”. The GOdMD paths formed their own outlier
cluster, appearing substantially different from all other methods (δF> 3 Å).

The classification of trajectories was found to be robust against use of different linkage func-
tions in the clustering algorithm, provided that the linkage primarily assessed the dissimilarity
of clusters (such as Ward’s criterion in Fig 6 and the complete/average/weighted linkage in
S6B–S6D Fig) instead of similarity (single linkage in S6A Fig). Using the Hausdorff metric
instead of the Fréchet metric did not change the clustering either and the Pearson correlation
coefficient between δH and δF was very close to unity (S7 Fig). In S1 Text, alternative distance
definitions, namely averaged Fréchet and Hausdorff distances (which are, however, not proper
metrics), reduced the amount of detail in the clustering and resulted in an amalgamation of
clusters into one large “dynamical methods cluster” (TMD-S, DIMS, MDdMD, GOdMD,
FRODA), a “Morph-like cluster” (Morph, LinInt, TMD-S, MAP), and an “ENM cluster”
(ANMP, iENM, MENM-SP/SD).

Without any input except the trajectories themselves, PSA produced distinct clusters that
appeared to broadly distinguish between dynamical and non-dynamical path sampling meth-
ods. With the help of more specialized analyses to be described next we sought to further ratio-
nalize the observed pattern of clustering.

Native Contacts Analysis. We performed two dimensional NCA on trajectories by mea-
suring (for each conformer snapshot) the fraction of native contacts relative to the closed start-
ing state (Q1ake) and to the open target conformation (Q4ake) as collective variables (Fig 7A).
Using the NC trajectories, we examined the dynamic relationship of contact formation and
breaking for each method. In general, the closed! open trajectories began on or near the right
vertical axis, corresponding to the first conformers of the paths having (nearly) 100% of their
contacts in common with the closed structure and around 95% of open state contacts. Most
trajectories terminated at the top horizontal axis with the final conformers containing close to
100% of the final, open 4AKE:A structure contacts and about 93% of 1AKE:A contacts. The
starting conformers of the DIMS NC paths only contained 96% of the contacts seen in the
1AKE crystal structure (Q1ake = 0.96), which is to be expected given that the initial closed struc-
ture was energy-minimized and equilibrated prior to performing MD.

The five dynamical methods—DIMS, rTMD, FRODA, MDdMD, and GOdMD—produced
somewhat noisy paths where the fluctuations took place along a positively sloping direction in
NC space. A positive slope implies that contacts were simultaneously formed or broken relative
to both native structures, which can be taken to be indicative of passage through a transition
state that is distinct from either end state conformation. DIMS trajectories did not exactly
reach the target structure (Q4ake � 0.98) as DIMS simulations were considered complete as
soon as a conformer was within 0.5 Å heavy atom (non-hydrogen) rmsd from the target crystal
structure 4AKE. MDdMD paths partly overlapped with DIMS paths during contact breaking
but failed to reform them (Q4ake < 0.94); as with DIMS, transition completion is determined
by a cutoff—manually set to 1.5 Å Cα rmsd—due to the difficulties of convergence to a target
using the soft-ratcheting biasing approach in MDdMD. DIMS and MDdMD broke a similar
number of contacts relative to both states (around 8–9% and 9–10%, respectively). rTMD-S
showed qualitatively similar behavior but broke up to about 12% of native contacts. The
closely-knit cluster of DIMS, MDdMD and rTMD-S paths produced by PSA reflects the quali-
tative similarity of their NC trajectories. DIMS, MDdMD and FRODA all generated noisy, V-
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Fig 7. Projections of trajectory 2 of the AdK closed! open transition from each path-samplingmethod onto low-dimensional collective variables.
The location of the initial structure is shown in each plot by the green circle, while the final structure is represented by the red diamond. (A) Projection of all
pathways from the various path-sampling methods onto NC space. The horizontal axis corresponds to the percentage of contacts (of a transition snapshot)
shared with the initial 1AKE:A structure (green circle) and the percentage of contacts in common with the final 4AKE:A structure (red diamond) is displayed
on the vertical axis. The top-left legend identifies EN-based methods; the other methods are listed in the bottom legend. The LinInt path is shown for
reference as a broken black curve. (B) Projection on NMP angle (θNMP) vs LID angle (θLID). In B and C, trajectories generated by the dynamical methods
(DIMS, rTMD, FRODA, MDdMD, GOdMD) are plotted with diamonds and non-dynamical method trajectories with circles. (C) ζ-ρ space projection using
LinInt as the reference path. Trajectory progress in ζ-ρ space is from left to right from higher to lower values of the progress variable ζ. MDdMD terminates at
1.5 Å Cα rmsd from 4AKE (red diamond); DIMSMD terminates at 0.5 Å heavy atom rmsd.

doi:10.1371/journal.pcbi.1004568.g007

Path Similarity Analysis

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004568 October 21, 2015 20 / 37



shaped NC pathways suggestive of a transition region, which supports the picture from PSA
where these three methods form a loose cluster apart from the non-dynamical methods.
FRODA clustered somewhat apart from the other three, correlating with the observation that
FRODA trajectories in NC space exhibited the greatest contact breaking (Q1ake = 0.82, Q4ake =
0.80) of all methods tested. This behavior is not unexpected because FRODA achieves random
motion by randomly displacing and rotating rigid units of the protein at the sub-amino acid
level at each step prior to re-enforcing geometric constraints. As such, Cα fluctuations and,
thus, native contact dynamics that would be prohibited by conventional potentials are permit-
ted by the geometric model although constraints on the overall sequence and structure would
nevertheless limit dramatic perturbations to the Cα rmsd. GOdMD paths, though quite noisy,
followed a path more closely resembling those from the non-dynamical methods, particularly
MAP and Morph.

Morph, LinInt, and two of the five ENM-based methods (ANMP and iENM) produced the
shortest NC trajectories progressing directly to the target conformation with relatively little
wandering, whereas the six MENM paths deviated noticeably toward the DIMS and FRODA
trajectories in the latter half of the transition; MAP paths were also nearer the MENM path-
ways in location and shape than to the paths from the other ENM-based methods. The MENM
paths and two MAP paths were unique among the non-dynamical methods in that they each
contained a V-shaped, cusp-like feature where extra 4AKE:A contacts were broken (Q4ake �
0.91, 0.91 and 0.92, respectively) that were subsequently reformed toward the end of the transi-
tion. The rTMD-F NC paths were situated in an intermediate position between the other
dynamical methods and the non-dynamical methods. Initially, only 1AKE:A contacts that do
not exist in 4AKE:A were broken. Then the missing 4AKE:A native contacts were formed. The
Morph, LinInt, ANMP and iENM paths, which were divided between two clusters in PSA,
exhibited progress along negatively sloped NC space trajectories during which 4AKE:A con-
tacts were formed while 1AKE:A contacts were simultaneously broken. However, the close
structural correspondence between MAP, rTMD-F, and Morph paths in PSA was not recapitu-
lated in NCA. On the other hand, the ANMP paths, which were reasonably similar to iENM in
PSA (1.4 Å� δF � 2.7 Å in Fig 6) but fairly different fromMorph (2.8 Å� δF � 3.1 Å),
appeared fairly similar to both iENM and Morph in NC space.

Comparison of the NC projections of rTMD-S and rTMD-F indicated that the pulling
velocity in rTMD directly affected the degree to which native contacts were broken and
reformed. Consequently, different transition pathways were followed, as indicated by PSA,
where rTMD-S clustered with the other dynamical methods and rTMD-F was most similar to
LinInt and Morph.

NCA identified the same general division between the dynamical and non-dynamical meth-
ods as PSA, while some subdivisions within the dynamical/non-dynamical dichotomy are also
borne out by both analyses, such as the closer grouping of MDdMD/rTMD-S/DIMS than
FRODA/DIMS or FRODA/MDdMD. However, the cusp-like feature and overall qualitative
similarity of the MENM and MAP trajectories in NC space that set them apart from the other
non-dynamical methods is not obviously captured by PSA. The NC projection did not offer a
clear hint as to why ANMP, iENM, and MENM-SD/SP were subdivided as they were in PSA
and why GOdMD appeared as an outlier—two questions addressed by the following analysis
of the transition paths projected onto z-ρ and angle-angle coordinates.

Projections into z-ρ and angle-angle space. PSA and NCA are both general transition
path analysis methods that do not require knowledge of any system-specific order parameters
or collective variables. We employ the z-ρ projection (distance from and progress along the
path of linear interpolation) in order to resolve the remaining apparent discrepancies between
PSA and NCA. Because good collective variables are known for the AdK transition [12], we
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also use a 2D projection onto domain angles [99] to connect the conclusions derived from the
general analyses to visually intuitive structural motions of the closed! open transition.

In the z-ρ space projection (Fig 7C), the dynamical methods tended to obtain the greatest
distance from the LinInt reference path near the end of the transition (z ≲ 3.5 Å) whereas the
non-dynamical methods peaked nearer the beginning. Thus, the dynamical/non-dynamical
method dichotomy previously observed in both NCA and PSA was also present in z-ρ space.
The structural interpretation of this behavior is, based on the projection into angle-angle space
(Fig 7B), that the dynamical methods favored a pathway during which first the LID domain
opens, followed by the NMP domain. Non-dynamical methods produced either NMP-open-
ing-first paths or paths with brief LID-opening motions. In z-ρ space, however, dynamical
methods produced paths with a greater average and peak (orthogonal) displacement from
LinInt than non-dynamical methods (which cannot be discerned by apparent displacements in
angle-angle space), further corroborating the clusterings from PSA.

Fast-pulling rTMD (rTMD-F), as a dynamical method, appeared as an exception to the
dynamical/non-dynamical method dichotomy. However, both the projection onto domain
angles and especially the z-ρ projection clearly showed that the rTMD-F path was very similar
to LinInt (ρ< 1 Å in Fig 7C). rTMD with very high pulling velocities of the restraint potential
moves the system almost exlusively in the direction of the restraint force. For an rmsd restraint,
the gradient points exactly along the LinInt path. Therefore, rTMD-F functions more like
LinInt or Morph and less like equilibrium MD with an additional bias potential and hence PSA
clustered rTMD-F with LinInt and Morph (Fig 6).

MENM-SP was the most distant member in the cluster of the four ENM-based methods in
PSA (Fig 6). Careful inspection of both angle-angle space (Fig 7B) and z-ρ (Fig 7C) revealed
that the MENM-SP path contained a very large gap in the trajectory snapshots; the penultimate
conformer was located in the first half of the transition (z> 4 Å), while the final snapshot was
the open crystal structure end state. Such a big gap in the path affects the discrete Hausdorff/
Fréchet distances because the distance between two MENM-SP paths with well-aligned gaps is
unaffected whereas the distance between an MENM-SP path and one without gaps tends to be
somewhat larger due to large point distances originating from the latter’s conformers in the
portion of the transition where the gap occurs. ANMP was also somewhat of an outlier within
the ENM cluster (Fig 6), which can be traced to its path being much farther away from the
LinInt reference than any other ENM/Morph method (ρ� 2.2 . . .2.3 Å versus ρ� 1.3 Å; Fig
7C). Structurally, the NMP domain opened nearly all the way before much of the LID motion
took place, in contrast with every other method (Fig 7B).

GOdMD produced the path with the greatest peak displacement (ρ� 2.8 Å; Fig 7C), corre-
sponding to complete LID opening before substantial NMP movement occured (Fig 7B). The
results from GOdMD are unlike any of the other methods and therefore GOdMD is well-classi-
fied as an outlier by PSA (Fig 6).

PSA was able to group fast transition path sampling methods into distinct clusters. These
groupings could be rationalized by employing projections on more specialized collective vari-
ables. An important observation was that transition paths were most similar to other transition
paths generated by the same method. This conclusion was, however, based on a small sample
of three paths per method. We then sought to extend our analysis to larger ensembles of paths
that would provide a statistically more meaningful comparison.

Comparing DIMS and FRODA transition ensembles
We applied PSA to transition path ensembles containing hundreds of trajectories to highlight
several approaches to handling the statistical nature of dynamical path-sampling methods and
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illustrate the portability of our analyses to other systems. Ensembles of the AdK and DT closed
! open transitions were analyzed. DT was selected in part to make contact with a previous
study by Farrell et al. [39] as well as provide a more challenging example to demonstrate the
ease with which PSA can filter erroneous trajectories from an ensemble. We focused on two
methods, DIMS MD and FRODA, because they differ fundamentally in their energetic consid-
erations yet still share several salient features: Heavy-atom representations were used for both
methods for both AdK and DT. Both methods can generate path ensembles by employing a
form of stochastic dynamics, and they both drive transitions (toward a target structure) with
similar rmsd-to-target progress variables (DIMS uses the heavy-atom rmsd-to-target for the
soft-ratcheting coordinate; FRODA attempts to gradually decrease the Cα rmsd to the target).
Furthermore, our in-house implementations of DIMS MDmethods allowed us to efficiently
generate large numbers of transitions. Four unique ensembles and 800 total trajectories were
generated: 200 pathways per method per protein. Details about trajectory alignment for both
AdK and DT are provided in S6 Text of the Supporting Information.

For AdK, transition path trajectories generated with DIMS formed one cluster that was dis-
tinct from a second cluster containing all FRODA trajectories (see S8 Fig in the Supporting
Information). The mean Fréchet distance hδFi between DIMS and FRODA trajectories was
2.9 ± 0.1 Å, significantly higher than the mean within the FRODA (2.2 ± 0.1 Å) and DIMS
ensemble (1.4 ± 0.2 Å). DIMS generated paths with smaller Fréchet distances among them-
selves than FRODA, while paths produced by a given method were notably more similar
among themselves than when compared with paths from the other method, with no difference
between Fréchet and Hausdorff distance (S10A Fig). These observations imply that while
FRODA produced paths that sampled a larger region of AdK’s configuration space than DIMS,
each method generated a unique pathway that can be viewed as a tube in configuration space
whose diameter was smaller than the typical distance between the tubes.

While the AdK analysis was relatively straightforward, the DT heat map immediately
revealed nine erroneous FRODA trajectories producing Fréchet distances upwards of 5 Å from
any other path (see S9 Fig for the original clustering). Erroneous paths were removed by speci-
fying a distance cutoff and re-clustering using the trimmed FRODA ensemble. Visual inspec-
tion of the omitted trajectories confirmed that they either stopped short of the target or that
they came somewhat near the target but continued to dramatically wander in its vicinity. All
the DIMS trajectories and most of the FRODA trajectories formed two large, separate clusters
(Fig 8). Interestingly, five FRODA paths were among the cluster of DIMS paths (Fig 8 insets)
whereas there was no intermixing between DIMS and FRODA among AdK trajectories (S8
Fig). Furthermore, the DIMS–DIMS, FRODA–FRODA, and DIMS–FRODA distributions of
Fréchet (and Hausdorff) distances for the DT transitions overlap (S10B Fig), which indicates
(via the triangle inequality of the metric) that DIMS and FRODA paths are situated in each
others’ vicinity.

The observation of intermixing supports the idea that the geometrical targeting procedure
of FRODA is able to sample the space of trajectories accessible to the force field-based DIMS
MD. As FRODA is guaranteed to produce stereochemically correct transitions without regards
to the energetics, the set of possible paths that it can produce ought to be a superset of all trajec-
tories produced by other sampling algorithms that, in addition to preserving stereochemistry,
implement more detailed energetics that would further constrain the sampling space. The find-
ing that several FRODA trajectories cluster with the DT DIMS ensemble hints at the possibility
that there exists a hierarchy of accessible path spaces that can be sampled by different methods
depending on the energetics.

The fact that no intermixing was observed in the AdK transitions does not necessarily con-
tradict the hypothesis that FRODA trajectory space contains DIMS trajectory space, because
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the specifics of the AdK transition and the nature of the FRODA sampling algorithm seem to
make it less likely that FRODA would actually sample a DIMS pathway (as discussed in more
detail in S7 Text). It is not immediately obvious how one would tune one particular path-gener-
ating algorithm (such as FRODA) to increase its likelihood to produce a path characteristic of
another algorithm (such as DIMS), although we already observed that the variation of the pull-
ing speed in the rTMDmethod led to quantitatively (Fig 6) and qualitatively (Fig 7) different
paths. In particular, fast pulling (rTMD-F) generated paths similar to linear interpolation
(LinInt), whereas slow pulling (rTMD-S) paths were more similar to DIMS and MDdMD.
Thus, although we do not yet understand the general relationship between the pathways sam-
pled by different algorithms, PSA appears to be a useful tool to tackle this question.

The ultimate goal is, of course, to find a method that reliably samples transitions realized in
the real system. The analyses presented here should also aid in identifying the overlap between
different sampling methods and experimental data (e.g. from femtosecond structural biology
experiments) when such data become available.

Hausdorff pairs connect PSA to molecular detail
PSA is a general approach that can operate on the full 3N-dimensional trajectories without
requiring any system-specific knowledge. It provides a very broad means to categorize transi-
tions as distinct from one other. But as described so far, it is difficult to relate the global PSA
analysis to physically relevant differences at the molecular level. To address this question we
introduce the new concept of “Hausdorff pairs” (or “Fréchet pairs”) that allows us to pinpoint

Fig 8. Clustered heat map comparing ensembles of diphtheria toxin (1MDT to 1DDT) transition
pathways produced by DIMS (blue bars) and FRODA (red bars) using the Fréchet distance δF. All
clusterings are produced using the Ward’s criterion in ascending distance order; incomplete trajectories were
filtered and not displayed (see text). The insets show that five FRODA trajectories cluster together with the
DIMS ensemble.

doi:10.1371/journal.pcbi.1004568.g008
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conformations that may be more likely to exhibit geometric (structural) features relevant to
conformational change.

By construction, the Hausdorff and the Fréchet distances identify a point-wise distance
between two particular conformers, one on each path, as the global distance between the paths.
The path metrics therefore induce a map between a conformer on one path to a conformer on
another whose separation distance is, in some sense, a maximal deviation between the paths.
We term such a pair of conformers aHausdorff pair (δH-pair) or a Fréchet pair (δF-pair). These
conformers can be examined at the molecular or atomic level to reveal the specific structural
discrepancies that give rise to large deviations in configuration space between pairs of paths.

As an explicit example, we identified three Hausdorff pairs for the DIMS and FRODA
closed! open AdK transition ensembles and projected them in AA space (Fig 9A). We first
segregated the full set of Hausdorff distance measurements into: (1) mutual distances among
DIMS paths, (2) mutual distances among FRODA paths, and (3) inter-method distances mea-
sured between a DIMS and a FRODA path. A total of N(N−1)/2 = 79800 δH-pairs were identi-
fied for the ensemble of N = 400 paths. In order to present representative data for the whole
ensemble, we identified the two δH-pairs associated with the median and maximum Hausdorff
distances for each comparison (1), (2), and (3) as defined above.

As a typical example we explicitly examined the median δH-pair identified for the inter-
method comparisons and projected the atomic displacements onto each structure to locate
regions of large deviation (see structures in Fig 9A). It became apparent that the NMP domain
in the DIMS structure was closer to the LID domain because a number of evolutionary con-
served salt bridges (D33–R156, R36–D158, D54–K157) persisted late into the transition due to
the strong electrostatic interaction between the acidic and basic moieties [99] (Fig 9B).
FRODA, on the other hand, operating on purely geometric principles and neglecting Coulomb
interactions, does not account for the influence of salt bridges on the transition and the associ-
ated δH-pair structure exhibited broken salt bridges in the inter-LID/NMP region (Fig 9C). It is
therefore not surprising that the FRODA trajectory did not show the “salt-bridge zipper” [99],
which manifested itself as discerning difference between the DIMS and FRODA trajectories.
With salt bridges located across the NMP domain but primarily on the side of the LID, the LID
is relatively free to move to an open configuration, whereas the NMP domain is prevented
from fully opening until the salt bridges are broken. These considerations are consistent with
the tendency of DIMS paths to primarily favor a LID-opening pathway (Fig 9A, blue circles),
while FRODA paths (Fig 9A, green circles) sampled the region around LinInt (Fig 9A, black
dashed line) corresponding to simultaneous LID/NMP-opening.

A Hausdorff pair describes the two frames at which the two trajectories in question differ
most. Additionally, the regions where trajectories differ to varying degrees from each other
might also be of interest. This kind of information is provided by the set of nearest neighbor
distances along a path. Eq 3 defines the nearest neighbor distance of point pk on path P from
path Q as δh(k; P j Q)≔ δh(pk j Q)≔minq 2 Q d(pk, q) and the nearest neighbor distance of
point qk on path Q from path P as δh(k; Q j P). In general, these two distances are not symmet-
ric, i.e. δh(k; P j Q) 6¼ δh(j; Q j P) for any conformations j, k. When δh(k(ξ); P j Q) and δh(j(ξ); Q
j P) are plotted against a suitable common order parameter ξ, the regions of large and small dif-
ferences between trajectories can be quantified. For example, in S11 Fig, the nearest neighbor
distances of the three pairs of trajectories corresponding to the median Hausdorff pairs in Fig
9A showed that the DIMS and FRODA trajectories primarily differed in the first* 60% of the
transition, which corresponds to LID-opening in DIMS and simultaneous LID/NMP-opening
in FRODA. The DIMS trajectories differed almost uniformly along the whole path by only ≲
1.3 Å, suggesting that they follow a similar path perturbed by thermal fluctuations. The
FRODA trajectories differed by* 2 Å during the middle half of the transition but practically
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Fig 9. “Hausdorff pairs” (δH-pairs) analysis using 200 DIMS (cyan) and 200 FRODA (light green) trajectories projected into AA space.Hausdorff
distances were computed for all unique path pairs. (A) Conformer pairs—corresponding to the δH-pairs with the median and maximumHausdorff distances
(solid and dashed lines, respectively)—are projected onto the domain angle space for the following comparisons: DIMS–FRODA (purple), DIMS–DIMS (red),
and FRODA–FRODA (blue). Experimental crystal structures, including some intermediates, are shown as stars [99], with further details available in S1
Table. Insets: Two heavy-atom representations are shown for the median δH-pair between a DIMS path and FRODA path, corresponding to snapshots from
the respective trajectories. The magnitude of the displacement vector between the two conformations is projected onto each atom. Color bar units for atomic
displacement are in Ångström. The initial and final conformations (green circle and red diamond, respectively) are shown along with the linear interpolation
path LinInt—black dashed line) for reference. (B,C) Salt bridges in the DIMS and FRODA conformers from the DIMS-FRODAmedian Hausdorff pair. Three
LID-NMP salt bridges (R156-D33, D158-R36, and K157-D54) and a CORE-NMP salt bridge (E170-K57) are intact in the DIMS structure (B) that are broken in
the FRODA structure (C). The residues responsible for these salt bridges tug on the NMP domain more substantially than their counterparts in the LID
domain, which are located toward the base of the LID.

doi:10.1371/journal.pcbi.1004568.g009
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coincided at beginning and end, showing that FRODA can accurately connect two given end-
point structures even with its stochastic component enabled.

The Hausdorff-pair and nearest neighbor distance analysis naturally followed from the for-
mulation of PSA. Even though only Cα atoms were used to distinguish DIMS from FRODA
trajectories hence the level of detail of PSA was primarily restricted to conformational differ-
ences in the protein backbone, atomic-scale analysis of Hausdorff-pairs was able to reveal the
molecular determinants responsible for the structural differences.

Conclusions
Summary. We have developed a flexible and quantitative framework for analyzing macro-

molecular transition paths using path metrics as a means to measure the mutual similarity of
paths in configuration space, potentially using the full 3N-dimensional configuration space
information. As far as we are aware, there is currently no standard procedure for quantitatively
analyzing and characterizing transition paths. After comparing a set of transitions from a vari-
ety of path-sampling algorithms and analyzing transition ensembles of two sets of dynamical,
stochastic trajectories, the viability of PSA (Path Similarity Analysis) as a tool to quantitatively
compare transition paths appears promising.

In particular, PSA demonstrated that for the adenylate kinase closed! open transition, fast
path sampling methods generated paths that were more similar to other paths produced by the
same method than to any other paths, suggesting that among these methods there is currently
no real consensus for what a realistic conformational transition looks like. Hierarchical cluster-
ing in combination with a heat map representation indicated broad patterns whereby dynam-
ical methods tended to be clustered with each other while non-dynamical ones (especially most
of the elastic network-based ones) were more similar to each other than to methods such as
dynamic importance sampling (DIMS) or the Framework Rigidity OptimizedDynamics Algo-
rithm (FRODA). The clustering was qualitatively confirmed by a range of low-dimensional
projections on collective variables, which can be used synergistically with PSA once additional
knowledge about the system of interest is available.

Analysis of ensembles of closed! open transition of diphtheria toxin produced with the
computationally very distinct DIMS and FRODA methods showed that in about 2.5% of the
cases, FRODA sampled a similar region of path space as DIMS. The finding suggests a picture
of path space where different methods preferentially generate trajectories in their own region
even though in rare cases neighboring regions are sampled. It will be of interest to determine
regions of this space where multiple methods overlap and evaluate such consensus regions as
candidates for more realistic transition pathways. The ensemble analysis also clearly showed
that at least for large scale macromolecular transitions, the Fréchet and the Hausdorff distance
are equally appropriate measures for path similarity, with the Hausdorff distance being cheaper
to compute.

A key advantage of PSA is its generality in that no system specific knowledge is required
and all trajectory data can easily be used. That generality might, however, obscure the physical
and biological detail that is important for a mechanistic understanding of protein function.
The new concept of Hausdorff (or Fréchet) pairs within the context of PSA suggests an effective
approach to identifying the molecular determinants responsible for differences in paths
between sampling methods, which could be related to variations in protein function, differ-
ences in path-sampling algorithms/models, or some combination of both (as demonstrated for
the comparison between DIMS and FRODA).

Future directions. The rmsd proved a useful choice for the point metric to measure struc-
tural similarity as its preponderance in the literature helps to connect path metric distance

Path Similarity Analysis

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004568 October 21, 2015 27 / 37



measurements to familiar intuitions although its interpretation is not entirely obvious across
disparate contexts [120]. A further study would, for instance, benefit from a revised definition of
native contacts where consecutive alpha carbons (within the cutoff distance) would be ignored.
As such, a revised native- or self-contacts measure could be used as a point metric instead of
rmsd. We also plan to employ k-medoids clustering—used to identify a “median” element (i.e.,
a medoid) in a set—as one possible approach to identifying representative transition paths,
bringing us a step closer to identifying transition tubes or candidates for reaction coordinates.

Furthermore, PSA can aid the assessment of enhanced path-sampling algorithms and their
performance by quantifying the degree of similarity to gold-standard transition paths (for
instance, equilibrium MD transitions or—when available—experimental time-resolved struc-
tural data). Such quantitative comparisons would be key to assessing the physical plausibility of
transitions generated by enhanced sampling methods. However, comparison of such transition
paths to true equilibrium paths will require the development of a method to identify the actual
transition events in the equilibrium data and to distinguish them from residency in (meta) sta-
ble states, ideally without introducing problem-specific order parameters. Possible approaches
may include an analysis of the distribution of Hausdorff nearest neighbor distances or discrete
Fréchet couplings or techniques to match subtrajectories [121, 122] but identifying barrier
crossing events from coordinate trajectories in a general manner alone remains an open prob-
lem. By extending the analysis of Hausdorff pairs we should also be able to better pinpoint key
structural events or mutations that affect the function of biomolecules and so improve our
understanding of the connection between protein structure, dynamics and function.

Supporting Information
S1 Text. Alternative distance functions: average Hausdorff and discrete average Fréchet.
This text explores variations of the Hausdorff and discrete Fréchet metrics based on averages
rather than maxima, which are intended to reduce sensitivity to outliers. Definitions are pro-
vided and are shown, via example, to violate the triangle inequality. We repeat the path-sam-
pling methods comparison and discuss the behavior of these distance functions in the context
of PSA.
(PDF)

S2 Text. Comments on the numerical implementation of path metrics.We informally dis-
cuss and comment on the numerical aspects of computing transition path similarity and the
algorithms used to calculate Hausdorff and Fréchet distances.
(PDF)

S3 Text. Comments on the selection and validation of clustering algorithms. In this text we
mention qualitative and quantitative considerations in selecting the Ward linkage criterion for
hierarchical clustering, in the context of other linkage criteria. Some comments on potential
data interpretation pitfalls when performing general cluster analyses are provided with a view
toward viable approaches to PSA cluster and data validation.
(PDF)

S4 Text. Mathematical details for the energetics and dynamics of the double-barrel model.
Mathematical details are provided for the simulation of the double-barrel model. The system
assumes overdamped Langevin dynamics (Brownian motion) and numerical integration was
performed using a first-order scheme in time. The construction of the model permits consis-
tent coarse-graining with respect to the number of particles in a cluster, allowing tuning of the
number of degrees of freedom, or the dimensionality of the configuration space.
(PDF)
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S5 Text. Expanded overview of the transition path generating algorithms used in this
study.Here we provide a short review—for reader convenience—of the transition path gener-
ating algorithms used in the comparison of sampling methods. We summarize the key aspects
of each of the physical models and path generating algorithms to help lay the groundwork for
connecting algorithmic/model differences to differences between the respective transition
paths that were produced.
(PDF)

S6 Text. Details of structural alignment procedures for protein alignment prior to path
similarity analysis. This text summarizes the considerations involved in structurally aligning
conformer snapshots prior to running path similarity analysis on a set of transition paths. We
provide specific details and motivations as to the alignment procedures used for AdK and DT
trajectories.
(PDF)

S7 Text. Discussion of FRODA trajectories as a superset of other trajectory-generating
algorithms. In this text we qualitatively discuss the difference between the adenylate kinase
(AdK) and diphtheria toxin transition (DT). These differences rationalize the observation that
for the DT transition some FRODA trajectories overlap with the ensemble of DIMS trajectories
whereas no such overlap was observed in the case of AdK.
(PDF)

S1 Fig. Effect of temperature and dimensionality on the distribution of path metrics. Violin
plots [91] show the distributions of discrete Fréchet distances for double-barrel simulations of
one particle (orange) and eight particles (purple) for temperatures ranging between 0 and 500
in 50 increments (panels A–K) and at 600 (panel L). Black points correspond to individual Fré-
chet distance measurements, with distance units in nm rmsd. A kernel density estimate (kde) is
shown for each N, T pair to qualitatively emphasize the behaviors of the distributions across
the entire temperature range; the bandwidth for each pair is explicitly set to produce two dis-
tinct distributions at low temperatures and gradually increased to generate smooth, single dis-
tributions at high temperatures. The separated distributions at low temperatures merge
between 300 K to 450 K, with the eight-particle simulations merging toward higher tempera-
tures relative to the one-particle simulations.
(PDF)

S2 Fig. Correlation analysis of Fréchet and Hausdorff distances in the toy model. Regres-
sion analyses examining the correlation between corresponding Fréchet (horizontal axes) and
Hausdorff (vertical axes) distance measurements are plotted along with the joint distributions
plots for double-barrel simulations of one particle (orange points) and eight particles (purple)
for temperatures ranging between 0 and 500 K in 50 K increments (panels A–K) and at 600 K
(panel L). Scatter points correspond to individual Fréchet distance measurements in nm rmsd
and are plotted with the line produced by linear regression. The shading about the regression
lines correspond to a 95% confidence interval. Kernel density estimates (kde) are shown for
each N, T pair and are computed using the same set of bandwidth constants specified in S1 Fig.
The separated distributions at low temperatures merge between 300 K to 450 K, with a notable
narrowing of the range of distance measurements occuring between 400 K to 450 K.
(PDF)

S3 Fig. Effect of temperature and dimensionality on the correlation between Fréchet and
Hausdorff distance. Coefficients of the Pearson correlation between Hausdorff and Fréchet
distances for one- and eight-particle simulations plotted as a function of temperature. Path
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distances remain well correlated up to 300 K and are least correlated at 500 K, with the one-
particle simulations exhibiting a substantially larger drop in correlation. At the highest temper-
ature the central barrier becomes negligible and the simulations start to equally sample a single
tube dominated by the steep repulsive walls. Therefore, the paths start becoming more similar
between the N = 1 and N = 8 clusters and the correlation coefficient increases.
(PDF)

S4 Fig. Temperature-dependent transition from two to one distinct paths in the toy model.
The means and standard deviations of the discrete Fréchet (blue) and Hausdorff (red) distances
for double-barrel simulations of one particle (A) and eight particles (B) are shown as a function
of temperature. Measurements for simulations at 250 K and below were divided into an upper
and lower distribution by separating distance measurements above and below a 1.25 nm cutoff.
Above the temperature cutoff, all measurements were treated as part of the same distribution.
Both the Fréchet and Hausdorff metric lose the ability to distinguish between the two barrels as
the paths begin to wander out of well-defined pathways when the temperature is on the order
of the equivalent energy of the central barrier (2kB T at 300 K). At higher temperatures, thermal
perturbations become large relative to the barrier, permitting particle clusters to explore the
full width of the potential spanning both barrels so as to generate trajectories confined to a sin-
gle, unified pathway.
(PDF)

S5 Fig. Annotated Fréchet distance matrix of AdK transition trajectories generated by dif-
ferent path-sampling methods. The Fréchet distance matrix from Fig 6 is shown with the
numerical values of δF (rounded to one decimal) superimposed. Due to the size of the distance
matrix, the high resolution image is provided as a simple means for online data exploration
with the help of the zoom function of an image viewer.
(PDF)

S6 Fig. Influence of the linkage algorithm on the clustered PSA comparison of different
path sampling methods. Different linkage algorithms were used to cluster the Fréchet dis-
tances produced by path-sampling methods for the AdK closed! open transition. Smaller dis-
tances (in units of Å rmsd) indicate transition paths with greater similarity. Dendrograms for
each heat map correspond to the hierarchical clustering produced by the single (A), complete
(B), average (C), and weighted (D) linkage algorithms, and depict a hierarchy of clusters with
smaller node heights of parent clusters indicating greater similarity between child clusters.
(PDF)

S7 Fig. PSA comparison of different path sampling methods based on the Hausdorff dis-
tance. (A) Heat map for path-sampling methods for the AdK closed! open transition of
Hausdorff distances produced using the Ward algorithm. Clusters are identical to the Ward
clustering for Fréchet distances in Fig 6. (B) Correlation and joint distributions between dis-
crete Fréchet versus Hausdorff distance measurements (in Å rmsd) for the AdK closed! open
methods comparison. Strong linear correlation indicated by the scatter plot, with a Pearson
correlation coefficient very close to unity, indicates that either metric could have been used to
perform the path-sampling methods analysis with essentially identical results. A slight devia-
tion of the scatter points below the line of unity slope is consistent with the fact that Fréchet
distances are bounded from below by corresponding Hausdorff distances.
(PDF)

S8 Fig. Clustered PSA heat map of AdK transition ensembles. Clustered heat map compar-
ing path ensembles of adenylate kinase (1AKE:A to 4AKE:A) transition paths produced by
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DIMS (red bars) and FRODA (blue bars) using the discrete Fréchet distance δF are summarized
by heat map cluster analysis. Clustering was produced using the Ward algorithm in ascending
distance order.
(PDF)

S9 Fig. Clustered PSA heat map of raw DT transition ensembles. Clustered heat map com-
paring the raw path ensembles of diphtheria toxin (1MDT:A to 1DDT:A) transition paths pro-
duced by DIMS (red bars) and FRODA (blue bars) using the discrete Fréchet distance δF.
Clustering was produced using the Ward algorithm in ascending distance order. Nine errone-
ous FRODA paths (orange cluster) were very distant from all other paths—all nine were
removed from the ensemble and to produce the heat map dendrogram in Fig 8.
(PDF)

S10 Fig. Correlation between Fréchet and Hausdorff distance in ensemble comparisons.
Correlations and joint distributions of discrete Fréchet versus Hausdorff distance measure-
ments (in Å rmsd) of the AdK (A) and DT (B) ensemble analyses are shown. Measurements
are divided into three separate distributions: (1) mutual distances among DIMS paths (red), (2)
mutual distances among FRODA paths (green), and (3) inter-method distances measured
between a DIMS and a FRODA path (blue). Both scatter plots show strong correlation between
the path metrics for all the distributions, with Pearson correlation coefficients equal to unity
and p-values equal to zero to two decimal places, indicating that either metric could have been
used to perform the path-sampling methods analysis to obtain essentially identical results. A
slight deviation of the scatter points below the line of unity slope is consistent with the fact that
Fréchet distances are bounded from below by corresponding Hausdorff distances. DIMS simu-
lations exhibited less variation than FRODA in the AdK transition, but had a larger average
variation in the DT transition. In both cases, inter-method DIMS-FRODA comparisons were
substantially larger than comparisons of pairs of paths produced within a single method.
(PDF)

S11 Fig. Nearest neighbor distances along trajectories for the median Hausdorff pairs in
the AdK ensemble comparison. The nearest neighbor distances δh(k; Q j P) (solid line,——)
and δh(k; P j Q) (dashed line,——) between pairs of paths P/Q belonging to the three median
Hausdorff pairs in the AdK ensemble comparison (Fig 9A) are shown for DIMS/FRODA (pur-
ple), DIMS/DIMS (blue), and FRODA/FRODA (green). The largest value maxk, j(δh(k; Q j P),
δh(j; P j Q)) is the actual Hausdorff distance. For illustration purposes, nearest neighbor dis-
tances are plotted as a function of frame number k normalized to the interval [0, 1] (i.e., k/jPj),
where 0 (1) corresponds to the first (last) frame. In general, an appropriate one-dimensional
order parameter should be chosen in order to plot nearest neighbor distances for structurally
corresponding trajectory frames.
(PDF)

S1 Table. Numerical values for domain angles for experimental crystal structures of AdK.
The NMP-CORE angle and LID-CORE angle for E. coli EcoAdK or models of EcoAdK based
on crystal structures of homologous proteins [99] was computed from the Cα atoms in the
NMP, LID and CORE domain as described in Methods. The angles are plotted in Fig 9A.
(PDF)
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