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Abstract

Sequential affect dynamics generated during the interaction of intimate dyads, such as mar-
ried couples, are associated with a cascade of effects—some good and some bad—on
each partner, close family members, and other social contacts. Although the effects are well
documented, the probabilistic structures associated with micro-social processes connected
to the varied outcomes remain enigmatic. Using extant data we developed a method of clas-
sifying and subsequently generating couple dynamics using a Hierarchical Dirichlet Pro-
cess Hidden semi-Markov Model (HDP-HSMM). Our findings indicate that several key
aspects of existing models of marital interaction are inadequate: affect state emissions and
their durations, along with the expected variability differences between distressed and non-
distressed couples are present but highly nuanced; and most surprisingly, heterogeneity
among highly satisfied couples necessitate that they be divided into subgroups. We review
how this unsupervised learning technique generates plausible dyadic sequences that are
sensitive to relationship quality and provide a natural mechanism for computational models
of behavioral and affective micro-social processes.

Introduction

Decades of marital interaction research demonstrate an unequivocal relationship between
moment-to-moment behavioral exchanges seen in a conversing couple and the quality of their
relationship: each gesture and word is cradled in affect; each nuanced pause conveys a semi-
private message understood only to the inhabitants of the relationship and the entire process is
uniquely sensitive to the situation. The language is public but the conversation is private. And
despite almost forty years of investigators dissecting sequential verbal and non-verbal data, the
micro-social processes that critically determine and reflect marital quality remain opaque.
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Social scientists studying the dynamics of ubiquitous self-organizing dyadic processes—
either as family units or merely actors in a fecundity play—have little insight into the critical
features that predict, or even describe, sustained coupling. For humans, this is critically impor-
tant: Evidence suggests that the marital relationship has unequivocal effects on health—a good
one protects and buffers its constituents whereas bad one is associated with increased risks for
physical maladies [1, 2], along with increases in drug and alcohol use, reported depression, and
job instability. These effects extend beyond the dyad—a distressed marriage has a corrosive
effect on parent-child relationships and increases psychological problems in children. Should
the relationship end, neither the children or the adults are immune, each endures greater stress
and accompanying decreases in health and financial stability [3].

Since observational studies of marital interaction began in the mid-1970s, investigators had
hoped to establish a set of critical macro-level behavior patterns, derived from micro-social
processes, that predict marital quality beyond the observed constituent micro-social behaviors
(e.g., negative begets negative) [4]. Collectively these studies show that although each dyad is
unique, when aggregated across differing levels of self-report marital satisfaction, they show
consistent, albeit slight, structural differences at each level of aggregation. These composite
structures, using the prevalent categorical coding systems of the time—composed of verbal
statements, behaviors and affect—uniquely characterize within group satisfaction levels. Most
of these studies sought to illustrate how sequential couple behavior integrates with affect.
Emphasis was on analyzing, illustrating, and classifying one or two modalities of behavior (e.g.,
nonverbal) that effectively discriminates couple type by satisfaction level. To date, however,
only two process features reliably, albeit weakly, signify marital distress: greater negativity and
longer chains of negative reciprocity; aside from these, no summary or sequential features of a
dyad interacting consistently reflect marital quality, and none foretell marital outcome [5].

In effect, and not surprisingly, these findings suggest that marital quality determines the
affective and behavioral generating process which, in turn, instantiates the observed dyadic
behaviors. At this point, however, it’s unknown how the constituent parts—temporal and
behavioral—of the generating process are interrelated or arranged (i.e., its topology); nor has
there been any attempt to articulate a catholic analytic solution allowing investigators to reana-
lyze extant data, with the hope of uncovering additional crucial tempo-behavioral facets linked
to self-report satisfaction in intimate dyads. This deficient exists, in large part, due to the lack
of appropriate analytic tools.

Over the last few decades most of the significant insights into couple dynamics arose not
from better data or measurement methods but improved data analytic strategies [6]: the area
moved steadily from summary statistics describing individual behavior during an interaction
(e.g., mean number of positive statements) to probability estimates of shifting dyadic structures
(e.g., sequential analysis [7]) to state transition models (e.g., Hidden Markov Models [8]).

Despite these analytic advances, it's commonly acknowledged that the algorithms that gen-
erate the evolving contingency structures embedded in sequential data are not well understood
[5]; in turn, this has severely limited attempts to model dyadic interaction (cf. [9] or more
recently, [6] [mother-child interactions]). Even with the abundance of real-time couple interac-
tion data from multiple labs throughout the world there are no published generative models of
dyad dynamics and certainty none that discriminate by relationship satisfaction level. To con-
struct realistic and informative generative models of dyadic interactions three analytic prob-
lems need addressing: (1) how to articulate the state space of the dyad; (2) how to generate a
tenable state transition matrix; and (3) how to incorporate duration expectancy into states and
transitions.

The emerging field of Affective Computing offers a glimpse of how to build these generative
models. Affective Computing focuses on, by combining computer science and engineering,
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methods of generating plausible affect associated with social interaction for the purpose of
building realistic robots and avatars, as well as constructing better algorithms and computa-
tional models of affect, its expression and use, in social dynamics [10, 11]. In practice, Affective
Computing is a scientific chimera that integrates existing literature on verbal and non-verbal
social behavior, such as that cited above, incorporates ongoing laboratory studies on affect
(e.g., computer-user interfaces) and builds computational models using methods drawn from
the machine learning field [12]. It’s this latter ability that is lacking in the existing marital inter-
action literature—reinvigorating this area requires moving from the language of social science
and into the realm of computer science: specifically, to advance our understanding of intimate
dyadic affective and behavioral structures we need generative models of sequential latent pro-
cesses, i.e., profiles of sequential movement across latent states with estimated probabilistic
structures [13].

Fortunately over the last decade analyzing latent generating processes became a cornerstone
of contemporary machine learning theory [14]. With the advent of faster computers, and theo-
retical advances in Bayesian methods, emphasis shifted toward discovering methods that cap-
ture temporal clustering and feature extraction in sequential data. At the forefront of this area
is the family of nonparametric Bayesian techniques. For example, Hierarchical Dirichlet Pro-
cess methods permit investigators to partition data into topics [15] and sequence sensitive fea-
ture states [16]. Likewise, renewed interest in the traditional Hidden Markov Model (HMM)
has resulted in several revised multi-state, hierarchical models having the ability to capture
time-sensitive latent state transition processes (see e.g., infinite HMM [17, 18]; Hierarchical
Dirichlet Process-HMM (HDP-HMM), [15, 19]).

Initially, HMMs were used as tools for voice recognition [20] and only later adopted for
myriad recognition tasks, ranging from social dynamics [8] and biological sequences [21] to
economic and hydrological time-series [22]. Recently HMM methodologies began incorporat-
ing the capacity of nonparametric Bayesian approaches to define prior distributions on transi-
tion matrices over countably infinite state spaces; adopting this technique allows a greater
range of use with real, somewhat messy, data [23, 24]. Contemporaneously, Fox and colleagues
[23] began developing algorithms that parameterize the likelihood of state self-transitions; this,
combined with the use of a Hierarchical Dirichlet process to generate priors while leaving
unspecified the expected number of states, permits the modeling of duration sensitive latent
state transitions (i.e., semi-Markovian processes). Such models are more realistic of natural
dynamic stochastic processes [25].

Borrowing heavily from the innovations of Fox and colleagues [23] along with the recent
work by Johnson and Willsky [24], we use a explicit-duration HDP-HSMM of couple affect
dynamics to build generative models illustrating differential affect patterns in marital couples
classified by self-report satisfaction. This paper illustrates how this methodology can capture
pertinent sequential dyadic state dynamics and accurately discriminate affective processes asso-
ciated with relationship satisfaction.

Preliminary Work

Almost a decade ago Griffin [8] used dyadic affect sequences from 30 couples to develop a
10-state 4-symbol HMM that classified distressed from non-distressed couples with an accu-
racy rate of 91%; he found a decidedly different distribution in the observables for self-transi-
tions and states transitions among maritally satisfied couples—there was substantially greater
mutual positive affect during the middle phase of the sequence. Three aspects of this research
were noteworthy. First, the classification rate of 91% is below expectation in a well developed
HMM, but this value is acceptable, especially in this social science area, given the small sample
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size and low dimensional vector used to create the data string. Second, although no substantive
conclusions were forwarded, results demonstrated that couple interactions were patterned and
that accurate machine learning and classification can occur without supervision. And third,
when these analyses occurred, Hidden semi-Markov Models, although well articulated in the-
ory and few examples were in the literature, practical implementation was years away [25].

Although a decade ago HMMs were well developed mathematically, their traditional use
required the investigator to assume time-invariant geometric state distributions and a fixed
known number of states. In a dynamical system, by definition, time in state is a critical feature;
likewise, accurate descriptions and models of different systems require differing number of
states. Finally, the original investigation divided the couples into non-distressed and distressed,
and although consistent with literature, this simple dichotomy constrained the ability to
explore the subtle behavioral differences that exist among couples expressing a diverse range of
marital satisfaction levels.

Fortunately, with increased investigations of real-world complex datasets, the standard
HMM has been transformed over the last decade—computer scientists created numerous
sequential analytic techniques that are sensitive to the nuances of evolving latent structures
(e.g., infinite HMMs) akin to the type seen in micro-social dynamics [14]. Among these is the
HDP-HMM [15]. The hierarchical Dirichlet process (HDP)-a nonparametric technique using
the Dirichlet process (i.e., a distribution over distributions)-models the dependence among
groups through sharing the same set of discrete parameters. Yet its assumption of exchange-
ability make it inappropriate for sequential data [26]; fortunately this restrictive assumption
spurred new models that are appropriate for time sensitive data [13, 27].

For example, Fox, Willsky, and colleagues [23] were able to extend the standard HDP by
introducing a method of parameterizing the self-transition bias, the state persistence problem,
which in turn, allowed them to develop a fully nonparametric HMM—effectively removing the
need to specify, a priori, the number of states associated with a system. This method, termed
the Sticky HDP-HMM, despite being a radical improvement, suffered the same duration
distribution constraint as the standard HMM: state durations are time-invariant. Fortunately
Johnson and Willsky [24] quickly extended the work of Fox et al. [23] by combining semi-Mar-
kovian ideas with the Sticky HDP-HMM to construct a general class of models that incorpo-
rated duration distributions. The recent models are well described in the aforementioned
references. A methodological overview of these techniques is given in S1 Appendix.

The present work incorporates the methodology developed by Johnson and Willsky; our
goal of extracting patterns from sequential data is conceptually and quantitatively similar to
their search for structure in real and synthetic data. Whereas they used multiple time-series of
household appliance data, we inserted husband and wife sequence data, and we have added the
additional dimension of relationship satisfaction as a classification problem. Additionally, our
simulations are written in Python, as is their publicly available code, thus it was modified to fit
our research questions, output plots, and GUI development.

Theoretical models of real-time observable dyadic processes, especially marital dynamics as
well as parent-child or mother-infant interactions, ceased evolving over a decade ago [5]; this
epoch of stagnation resulted from at least two factors: (1) increasing costs made collecting lab
based observation data very expensive; (2) sequential data from behavioral interaction labs
used data analytic methods that, although state-of-the-art at the time [7], severely lag behind
contemporary machine—learning techniques that analytically integrate event duration and
pattern recognition methods [28, 29]. Likewise, Affective Computing, a scientific area at the
forefront of computational modeling of social processes, lacks representative models of inti-
mate relationships—that is, paired individuals who have a history of interactions where the
affective exchanges have unique meanings within the context of the couple and their history.
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Thus for this study we show that integrating temporal and event data with modern machine
learning—techniques provides a novel way of capturing the nuances of sequential dyadic data
that differentiate couples by levels of satisfaction and provide the foundation for building
robust computational models in both areas.

Materials and Methods

To use the HDP-HSMM methodology required that we partition the couples into homoge-
neous sub-groups. To do this, we moved away from the traditional reliance on self-report data
and developed a dyad feature set which allowed us to use hierarchical clustering techniques to
construct the sub-groups. Using a data driven feature set for generating sub-groups among
marital dyads is novel; to clarify how this was done we have included a description of the clus-
tering process in this Methods section, and in addition, because of the added interpretative
value the clustering provides, we added a Clustering component to the Results section. An over-
view of data processing scheme encompassing the extant data, creating sub-groups and then
modeling the derived clusters followed by simulations is shown in Fig 1.

Sample and Recruitment

During 1992-1993 thirty married couples responded to newspaper advertisements offering
twenty-five dollars for participating in a study about marital communication. Participants were
recruited from among married couples living in a large metropolitan area in the Southwestern
United States. In the first wave, 38 participants (19 couples) were recruited; five of the 19 cou-
ples reported marital distress based on a standard marital satisfaction questionnaire [30]. A
subsequent modified newspaper advertisement asked couples to participate in the study if they
felt their marriages were distressed; of the 11 married couples recruited in the second wave,
two were nondistressed and nine qualified as distressed; in aggregate, 14 distressed and 16 non-
distressed married couples are used in the current study.

Couples in the study were typical of those found in marital interaction studies: relatively
young and moderately educated lower-middle-class couples with one child at home. A series
of t-tests found that, other than the number of children in the home (# (28) = 2.10, p < .05,
df = 28; distressed = 1.42, nondistressed = .81), the groups were not statistically significantly
different on salient demographic features. Eighty percent (24) of the couples were Caucasian,
16 percent (5) were mixed ethnically, and one was African-American. See [31, 32] for addi-
tional recruitment and demographic information. Prior to commencing the study, the data col-
lection procedure along with all questionnaires including consent forms and data storage plans
were submitted to and approved by the Arizona State University (USA) Human Subjects Inter-
nal Review Board. All participants signed the approved consent forms detailing rights of with-
drawal along with the constraints on data usage and storage. All data are maintained without
identifying information and available via request to the corresponding author. Additional
social and demographic information in provided in S1 Text.

Laboratory Procedure

After arriving at the university Marital Interaction Lab, couples were seated in a room con-
structed to resemble a small living area containing wall prints, curtains, plants, and two chairs
in the center of the room. Two unobtrusive, partially concealed, remotely controlled cameras
were mounted on the walls at head level behind each chair. All audio-visual and mixing equip-
ment was controlled from a room adjacent to the interaction. Video signals were combined
producing a split screen image with audio being obtained from lavaliere microphones worn by
each spouse.
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Fig 1. Process Flow Of Data Preparation, Modeling, and Simulation.

doi:10.1371/journal.pone.0155706.g001

Problem Solving Task

After completing informed consent forms, couples were given the Areas of Disagreement
Inventory [33]. From a list of typical areas of conflict in a marriage, each marital partner
selected and ranked three topics that he or she thought was most problematic in their relation-
ship. With the help of a lab assistant the couples then negotiated on the top three areas from
their joint list. Prior to beginning an interaction based on these topics the couple moved to sep-
arate section of the laboratory and was shown how to use the affect rating software (see below).
After becoming familiar with the software, they returned to their chairs and the lab assistant,
prior to leaving the room, instructed the couple to attempt to resolve the topics while engaging
in a 12-minute discussion. This is a common task used to evoke relevant interaction in married
dyads [34]. After leaving the room, a small red light indicated to the couple to commence their
discussion; after 12 minutes the light was turned off and each dyad member separated and
independently rated the interaction (see Affect Rating).

Affect Rating

Spouses were separated immediately after the conversation and taken to another section of the
lab where each individual simultaneously rated his or her own affect during the interaction
while viewing a split-screen playback. Separated by a large solid partition and wearing audio
headsets, husbands and wives could not see or hear their spouse while reviewing the videotape.
Video feed was played back through a specially configured computer using software that
overlays a 9-level, color-coded, vertical bar on the 19-inch color video monitor. This overlay
was positioned beside the face on the monitor of the individual reviewing the video. Affect rat-
ings ranged from extreme negative (red), through neutral (gray) to extreme positive (blue), and
was controlled by a pc mouse. Extreme negative was at the monitor bottom, neutral at mid-
monitor, and positive at the top of the monitor; bar width varied at each affect level (5 pixel
increments) corresponding to the intensity of the affect, neutral being the thinnest; at its widest
—extreme negative and positive—the bar was 28 pixels wide (1.5 cm). As the reviewer moved
the mouse, the affect bar was high-lighted corresponding to the degree and direction of the
affect. Prior to reviewing the video, and viewing only his or her own rating, each spouse was
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asked to move the mouse to reflect affect experience during the interaction (i.e., “How were
you feeling at each moment?”). Software recorded the location of the bar position every second,
providing a continuous measure of affect throughout the interaction. The assistant left the
room as the playback began; to insure participant compliance, the reviewing process was moni-
tored in the adjacent equipment control room. Validity for this procedure was established by
Gottman and Levenson in 1985 by comparing participant ratings to observational coding [35].

In this method of metric retrieval, each affect has a subjective reference that is unique to the
rater, within the context of the interaction, given the dyad’s history. For each individual there is
only an internal template referencing their affective state; an internal state that is pleasant to
one individual may be only neutral to another. Moreover, because it is self-report, it arguable
that such a recall procedure provides a good proxy of the true affect state, and requires less
inference than other, outsider perspective data collection procedures. This method of assessing
affect effectively discriminates, by sex, the propensity to exit negative states [31], and Griffin
[8], using Hidden Markov Models, found that affect ratings and their durations successfully
discriminated distressed and nondistressed couples.

During the 12-minute interaction each couple produced approximately 720 seconds of
affect recording (p = 717; variation due to equipment error). General descriptive moments of
the original 9-point scale show the expected tendencies: distressed couples expressed more
negative affect (4 = 4.79, 0 = 1.05) than the nondistressed couples (4 = 3.76, 0 = 1.37), 1(28) =
3.27, p < .000 (one-tailed) and within sex across group ratings were also significantly different;
males (distressed y = 4.56, 0 = .91, nondistressed y = 3.7, 0 = 1.41): #(28) = 1.98, p < .02 (one-
tailed); females (distressed y = 5.03, 0 = .1.16, nondistressed y = 3.82, 0 = 1.38): #(28) = 2.59,

p < .001. Within group across sex differences were not significant.

States Construction

Inclusion of self-report affect as a dyadic feature is relatively straightforward: we assume, based
on ample evidence, that happily married couples interact differently than those who are dissat-
isfied [5]. This suggests that dyads, of any type or configuration, can be categorized by their
qualitative state, and the criteria for categorizing would be based on measurable characteristics
observable during intra—dyadic interactions [36]. Assuming that the feelings of one spouse
toward their partner is generated by an attribution set—a cognitive structure that evolved dur-
ing the couple’s history and is maintained by current events—it follows that the internal feel-
ings manifested by the attribution set are expressed as observable verbal statements and
nonverbal behaviors along with self-report affect [37].

In the original data, individual affect ranged from 0 (extreme positive) to 8 (extreme nega-
tive); these values where then converted to a 5-point scale to ease interpretation: 1-extreme
positive; 2-positive; 3-neutral; 4-negative; 5-extreme negative. Next, the sum of the joint affects
were used to create a couple States score. Generating States this way assumes that the States
variable is an estimate of the proximal relationship quality of the couple, being composed of
his and her joint state; the sum indicates the overall condition expressed as a single state. The
States range from 1-9, lower values reflect greater positive affect. The States construction
scheme is shown in Fig 2. In this configuration, States, being comprised of multiple discrete
states, forms an ordered multinomial distribution.

Clustering

Historically couples were classified as either distressed or non-distressed according to their joint
score on one of several self-report marital satisfaction instruments, the most common being the
Marital Adjustment Test (MAT; [30]; see Methods section for an overview). Although most
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Fig 2. States Data Reduction Scheme. Original categories are shown at the top; these were collapsed and summed within dyad.
Profiles of possible frequencies and summed values are shown at the bottom, left and right, respectively.

doi:10.1371/journal.pone.0155706.9002

investigators knew that a simple cut-score (MAT > 100) was a crude way to discriminate dis-
tressed marriages from those that professed higher levels of satisfaction, nonetheless most data
samples were too small to be analyzed on a continuum. At best, with modestly large samples, it
was possible to divide the couples into quantiles, but even then distributing couples into discrete
groups based on continuous scores was mostly for intuitive convenience and not on known fea-
ture differences. Once placed into categories, investigators tried to find differences in affect,
along with verbal and nonverbal behaviors, among the classified groups (see [34]for an overview
of this work). Likewise, we initially used the traditional MAT > 100 score to separate the couples
into distressed and non-distressed groups; with some preliminary analyzes it was immediately
clear that this simple split contained heterogeneous affect distribution subgroups. Next we split
the couples into (Low, Medium, High) tertiles; cut-points were L < 95;< M <;117.5 < H. Again
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it became obvious that within group heterogeneity, at least relative to affect ratings, made sub-
stantive interpretations about the appropriate category impossible. We then decided to create a

multi-dimensional feature set to cluster and classify couples.

Feature Set Moving away from the traditional one source method of classifying couples we
constructed a 5-dimension feature set derived from three sources: (1) the States variable—(a)
Shannon entropy, (b) mean, (c) standard deviation; (2) intradyadic, cross-sex, affect expression

similarity—(d) dynamic time warping (DTW); and (3) (e) self-reported marital satisfaction.

Entropy Estimates From the States variable we derived a Shannon entropy estimate [38].
Entropy in this circumstance reflects the dyad’s affect distribution given the local context (i.e.,
conversation, behaviors observed, etc.) and distal sentiment about the relationship [37]; we
assume that proximal and distal influences are not exclusive of each other. Comparing Shan-
non entropies among couples requires that their state space be equal; to construct equivalent
spaces we used the Bayesian technique of regularizing the cell counts by converting the States

distribution into a Dirichlet multinomial distribution using Jeffreys prior [39] and the Kri-

chevsky-Trofimov estimator [40, 41]. Estimates were generated using the R program entropy

[42]. States entropies ranged from 1.324-3.041 (u = 2.382, 0 = 0.412).

Means & Standard Deviations Two additional features were also taken from the States vari-
able; the first is the average States score, values ranged from 2.001 to 7.467 (4 = 5.336, 0 = 1.463);
lower scores indicate greater positive affect. Second, we used the States standard deviation; values
ranged from 0.654 to 2.282 (u = 1.479, 0 = 0.445). Inter-feature correlations are shown in Fig 3;
note that, not surprisingly, entropy and the States standard deviation are highly correlated, others

are in the expected direction and range.

§ 0.26 -0.45
3
&8 0.23
Q’(‘
2
E @é?
g

0.28

0.89

0.24

-0.15

0.14

0.22

0.091

&

9

1.0

0.8

0.6

0.4

0.2

0.0

Fig 3. Feature Set Correlation Matrix. MAT refers to marital satisfaction; Mean refers to States mean; Std

refers to States standard deviation.

doi:10.1371/journal.pone.0155706.g003
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Dynamic Time Warping A feature of any intradyadic interaction is the discrepancy of rele-
vant behaviors between the interactants—in these data it’s affect rating. Rather than take a sim-
ple distance measure we used Dynamic Time Warping (DTW) [43, 44] to estimate the cost of
aligning the affect sequence values. We used the raw male and female reduced 5-point scale rat-
ings. Estimates of the DTW were done with the R program dtw [43]. Higher values indicate
greater discrepancy between the interactant’s affect ratings. Dyad level dynamic time warping
values ranged from 24 to 991 (u = 291.633, 0 = 191.883).

Marital Adjustment Test Self-report marital satisfaction is typically assessed using a few
well established inventories, among these is the Marital Adjustment Test (MAT) [30];itisa
widely used measure of each spouse’s degree of marital satisfaction [45] and has the greatest
number of reliability and validity studies of all self-report marital adjustment measures [46].
Reliability coefficients for the MAT range from .73 to .90 [30]; internal consistency is .83 [47].
The MAT is a Likert—type instrument that enables researchers to discriminate distressed from
nondistressed married couples; scores can range from 2 to 158, the extremes of distress and
nondistress, respectively. The couple score is the average of the husband and wife score. A
score of 101 or greater indicates a nondistressed marital dyad and a score less than 101 indi-
cates marital distress. For this sample, item analysis using Cronbach’s alpha showed moderate
and adequate internal consistency; .75 across the entire sample of males and females, .79 for all
males, and .73 for all females. Participants in the current study had couple MAT scores ranging
from 44 to 138 (u = 101.433, 0= 25.903).

Consistent with the current practice of initially examining the differences by distress level,
within group across sex differences in reported marital satisfaction (MAT) was not significant
in either group according to the results of paired t-tests. As expected, the groups differed by
marital satisfaction whether assessing within sex (husbands: (#(28) = 7.06, p < .001; wives:
#(28) = 5.80, p < .001) or averaged at the couple level (#(28) = 7.87, p < 001.

The Hierarchical Dirichlet Process Hidden semi-Markov Model
(HDP-HSMM)

Parameter Setup

For analyzing dyadic interaction, either, e.g., mother-child or spousal interactions, the capabili-
ties of the explicit-duration HDP-HSMM extends the traditional Hidden Markov Model in
two fundamental ways: (1) by incorporating varying state durations, micro-social event
dynamics are not constrained to a geometric form—acknowledging that time in state makes a
difference in sequential behavior; and (2) by allowing a countably infinite number of states the
model incorporates dyadic histories with ideographic state spaces—each dyad has a unique
number of states that best capture their behavioral propensities. To incorporate duration distri-
butions and transitions likelihoods the models described herein used four basic distributions:
observations, durations, states, and transitions [23, 24]. See S1 Appendix for an overview of
these methods. In typical nonparametric Bayesian modeling fashion, each was generated with a
conjugate prior using hyperparameters [19, 23]. Of these, Observations and Durations used
informed priors.

Observations Observations (i.e., affect ratings) were modeled using a continuous Gaussian
distribution. To generate the Gaussian distributions we used its conjugate prior—the normal-
inverse-Wishart distribution, a multivariate four-parameter (4 = prior mean, A = scale matrix,
Kk = prior observations, v = degrees of freedom) family of continuous probability distributions.
Of the four hyperparameters, two have only minimal effects on the model and are set during
initialization: k¥ = .25, and v = 4, where v represents the number of dimensions (i.e., male and
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female affect ratings) * 2; the other two, 4 and A (covariance), were generated from realized
data for each cluster.

Durations State durations were modeled as Poisson distributed, with parameter 4; appro-
priate parameters were estimated using hyperparameters (k = shape, 8 = scale) for a Gamma
conjugate prior. Using the durations of each States state, the gamma parameters for each clus-
ter were estimated by using L-moments [48] from realized data.

States A single parameter Dirichlet Process conjugate prior using an initial concentration
parameter a generated the multinomial distribution of states.

Transitions State transition distributions were represented as a Hierarchical Dirichlet Pro-
cess (HDP) across couples. Initial construction of the HDP model was controlled by 2 hyper-
parameters: & and y; where « represented the total mass concentration for each row of the
transition matrix and y was the hyperparameter used in the stick breaking distribution
(denoted as GEM) to generate the random base measure [49]. At each couple level the transi-
tion matrix was generated as a Dirichlet Process, where collectively, they were tied together via
the HDP through f3, where § ~ GEM(y).

Model Selection

Models were selected by minimizing the difference between the realized and simulated data.
Specially, model selection was done by comparing and selecting the best fitting model derived
from 50,000 Gibbs samples over a parameter sweep of values that initial analyzes suggested
were most sensitive to model fit; these were: Transitions: o {4, 8} and y {4, 8}; Maximum state
duration {30, 60, 90}; and Maximum number of states {15, 20}. Each parameter sweep con-
sisted of 24 separate runs (Transitions[a](2) * Transitions[y](2)* Duration(3)* MaxStates(2)),
each with 10,000 Gibbs samples for all 30 couples; this was done for 5 independent waves of
analysis for each Cluster. We did not assume that clusters required similar models. It was possi-
ble therefore to have 5 best models, one for each cluster. Alternatively, it was possible that each
individual dyad would have a best fit irrespective of which cluster they was assigned.

Model selection was determined by assessing sequence dissimilarity between the model sim-
ulated sequence and the raw data for each couple within a cluster; best fit was derived by aver-
aging the 5 waves of each parameter configuration and the combination with the smallest
average difference was considered the best model. We used the States values for comparison.
Comparisons were done using TraMineR [50], an R based tool that estimates differences
between sequential categorical data. We used two distance estimators: Hamming distance and
Dynamic Hamming Distance (DHD); this latter method estimates distance by uncovering con-
temporaneous similarities and generating substitution costs as a function of transition densities
[51].

Results
Clusters

Each feature (MAT Score, States mean, States standard deviation, Shannon entropy, Dynamic
Time Warping) was initially normalized (0,1) using the MinMax method. After normalizing
the data, a series of pair-wise euclidean distance estimates were taken (row 1 vs row 2, etc).
This normalized distance matrix was then used to construct clusters.

To generate clusters we employed hierarchical clustering techniques, alternating between
average linkage and Ward’s method [52]; the eventual number of clusters varied between 4 and
5, and both techniques produced similar, although not identical clusters. The average linkage
method with 5 clusters was slightly different than the Ward’s method for a single couple; it left
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1.0

a singleton whereas the same dyad was inserted into an existing cluster using the Ward’s
method. We finally settled on the 5-cluster model using Ward’s method [53].

The final clusters varied in sample size from 3 couples (Cluster 4) to 10 (Cluster 2), and in
reference to marital satisfaction, the final clusters represented 1 low (Cluster 5), 2 medium
(Clusters 2,3), and 2 high satisfaction groupings (Clusters 1,4). Several methods, intuitively and
statistically, were used to verify the validity of the clusters.

Because of the small and varied sizes for the number of couples comprising the clusters, tra-
ditional statistical methods were not appropriate; however, it was possible to use the Bayesian
BEST method to compare aggregate raw States values by cluster [54, 55]. A Bayesian analog to
the traditional parametric two—sample t-test, BEST estimates the difference in means between
two groups and yields a probability distribution over the difference. None of the States pairwise
cluster comparisons spanned 0, indicating significant differences within each pairing.

Examining Fig 4 shows how the Clusters differed in the five couple normalized feature
domains. Its evident that Clusters 1 and 4 are the high self-reported marital satisfaction groups
(MAT) whereas Cluster 5 has the lowest satisfaction score. Moreover, the two high satisfaction
Clusters differ significantly in their Mean Affect Scores (i.e., for States, lower values indicate
more positive affect); in addition, the standard deviation of the affect was minimal in Cluster 4
whereas Cluster 1 had the highest among all Clusters. Finally, note that the DTW estimate is
lowest in Cluster 4 and highest in Cluster 1. Thus, among all clusters, the highest discrepancy
in computational cost of matching the male and female affects is greatest between high satisfac-
tion subgroups. In essence, these data suggest there is at least two types of interaction among
highly satisfied couples.

Simply plotting the respective States distributions show a clear distinction between these two
clusters (see Fig 5). By overlaying the cumulative density function (CDF) with the probability

0.8

o
o

Magnitude (Normalized)
o
=

0.2

0.0

. MAT

I Entropy
Bl Affect Mean
Bl Mean Std
. DTW

2 3 4 5
Cluster

Fig 4. Distribution of Normalized Features. MAT refers to reported marital satisfaction; States Mean refers to joint affect expression.
MAT and Mean are inversely scales.

doi:10.1371/journal.pone.0155706.g004
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Fig 5. Stacked bars showing PMF and CDF of Clusters 1 and 4. States distributions indicate that unlike the couples in Cluster 4,
Cluster 1 couples distribute affect across the range of States.

doi:10.1371/journal.pone.0155706.9005

mass function (PMF), it’s evidence that Cluster 1 disperses affect across the possible range
whereas Cluster 4 is constrained to the most positive States.

Additional evidence for this interpretation comes by aggregating the States distributions
within clusters and quantifying the similarity between their probability distributions using the
Jensen—Shannon divergence (JSD) method [56, 57]. The JSD method is a symmetrized version
of Kullback-Leibler divergence, it has a lower and upper bound, 0 < JSD < 1, and has been
shown to be the square of a metric. The JSD comparisons are shown in Fig 6. Note that for
Cluster 1, the greatest distributional divergence is with Cluster 4, the other high satisfaction
cluster; Clusters 2 and 3, the middle satisfaction groups are very difference from Cluster 4
whereas they are only moderately divergent from Cluster 1. Likewise, Cluster 5, the low satis-
faction group, is vastly different than Cluster 4 but not Cluster 1.

HDP-HSMM Fit

A summary of the results showed minimal differences between the Hamming and the Dynamic
Hamming distances, thus for we only report the Hamming distance. With one exception, all
best fit combinations were with 20 States. Using the best fitting model criteria, aside from max-
imum number of States, no other single parameter (e.g., & or y in the transition distribution)
predominated, either at the couple level or within Cluster.

One clear pattern emerged for the Distance estimates: Cluster types clearly determine the
magnitude of the of the average distance between realized and simulated data. As shown in Fig
7, the low satisfaction couples of Cluster 5 and the traditional high satisfied couples of Cluster
4 showed the best simulation estimates; conversely Cluster 1—the highly satisfied but negativ-
ity laced couples showed substantially poorer fit. As expected, Cluster 2 and 3, those with the
moderate satisfaction levels showed estimates between the extremes. Although Cluster 1 and

PLOS ONE | DOI:10.1371/journal.pone.0155706 May 17,2016 13/21



@. PLOS | ONE Using HDP-HSMMs to Disentangle Affect

. -
1 0.95
0.90
S
2 0.85 5
2>
g
c 0.80 5
L
(V]
0.70 &
()]
4 g
0.65 %
. 0.60
5
- 0‘55
1 2 3 4 5
Cluster

Fig 6. Jensen-Shannon Matrix. Note the large divergence between Clusters 1 and 4, both high marital
satisfaction clusters.

doi:10.1371/journal.pone.0155706.g006

1.0

Distance

1 2 3 4 5
Cluster

Fig 7. Estimated Hamming Distance Between Simulated and Realized Data by Cluster. Vertical bars reflect the Standard Error.
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Cluster 4 consist of highly satisfied couples, Cluster 1 distance estimates were almost 7 times
greater than Cluster 4 and 9.15 times greater than Cluster 5.

As expected from Fig 2, MAT level and Distance are correlated (r = .56), but this relation-
ship is mitigated by the effects of Cluster 1; a clearer interpretation emerges using the correla-
tion between Distance and Entropy (r = .8). It appears that States distribution and structural
variability better predicts model fit than couple satisfaction; the best fitting models from Clus-
ters 4 and 5 were from couples showing constrained behavior, either expressing consistently
negative (Cluster 5) or consistently positive (Cluster 4) affect. Additionally, we constructed,
post analysis, an estimate of entropy rate by Cluster. Entropy rate, an estimate of uncertainty
associated with the emergence of symbols in a sequence, also correlated with Distance (r = .6),
but less than Entropy. This suggests that the overall absence of structure (i.e., Entropy) shows
greater association to model fit than entropy rate’s moment-to-moment uncertainty.

Simulating Dyadic Affective Processes

These generative models provide not only a reconstruction of the affect dynamics of a specific
interaction but more importantly they provide a means of constructing profiles of hypothetical
interactions by actors who like each other in varying degrees. With the HDP-HSMM described
herein, modified from code taken from [24], we generate an overall profile showing multiple
perspectives of the interactions, illustrating: (1) a 2-dimensional Gaussian distribution reflect-
ing interactant affect; (2) the duration distribution; (3) a sequence and duration profile; (4) a
trace of the simulated data; and (5) if applicable, a comparable male-female trace of the realized
data. Thus, for example, we can generate an aggregate profile for each Cluster type that reflects
the expected behavior from a couple drawn from the Cluster. In Fig 8, we illustrate, a compari-
son between a simulated distressed couple and their comparable trace from realized data in
Cluster 1; additionally, Fig 9 shows a couple States profile from Cluster 1, consisting of highly
satistied couples that express higher than expected levels of negativity. Even this poorest fitting
group generate realistic fits to the realized data.

Thus each HDP-HSMM used in this study generates a model reflecting state transitions
with expected durations (i.e., A from the Poisson) for each generated state; a draw from each
along with the generated transition matrix is then used to generate a plausible sequence of
interaction. Likewise, in aggregate, a generic sequence is produced that represents the Cluster
tendencies. This potential is illustrated by generating a trace for each cluster type as shown in
Fig 10); the sensitivity of interactant relationship satisfaction is evident by the disparate trace
patterns. Note especially the contrasting profiles of the highly nondistressed Clusters 1 and 4.
Affect in Cluster 4 is positive and constrained whereas Cluster 1 shows moderate affect and
high variability. Conversely Cluster 5, the highly distressed group, generates constrained nega-
tive affect, consistent with the existing literature [34].

Discussion

We illustrate how contemporary Bayesian extensions of traditional HMMs can generate realis-
tic multidimensional (i.e., dyadic) interactions. These new methods add realism by incorporat-
ing state durations along with the ability to model a countably infinite number of states. These
HDP-HSMMs permit investigators to model complex social processes that can vary substan-
tially as a function of the relationship quality of the interactants. Our current study had two
objectives: First, we sought to classify dyad dynamics, using self-report affect, into homoge-
neous groups beyond what had been obtained in the existing literature in this area; Second, we
sought to build generative models of these dynamics using contemporary Bayesian machine
learning techniques.
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Relative to the first objective, historically the method of classifying couple dynamics came
from a simple measure of self-report marital satisfaction; our initial attempt to produce homo-
geneous groups based this single measure were equally inadequate—within group heterogeneity
prevented us from building a generic model for each group. Next, using a multi-dimensional
feature set, cluster analysis generated five clusters of dyadic interaction styles. Roughly, they
broke out into 2 mid-satisfaction level clusters, 1 low satisfaction cluster, and most importantly,
2 high satisfaction clusters—one was typical of the literature—interaction characterized by posi-
tive interaction—while the other contained unexpectedly greater variability of affect including
high rates of negativity.
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Next we used realized data extracted from each cluster to build a HDP-HSMM. These gen-
erative models provided a simulation of the captured data as well as a generic model of the
dyadic interactions observed in the cluster. Not surprisingly, clusters having greater entropy fit
less well than lower entropy clusters, as measured by their Hamming distance. This suggests
that affect variability associated with specific satisfaction types influences model fit. Couples
with constrained affect—low and traditional high marital satisfaction—mapped very well with
the models. Those in the mid-range of MAT scores (e.g., 90-110) produced mid-range fit val-
ues, whereas the high-satisfied couples with moderate to high negativity still generated a good
model (Cluster 1; see Fig 8), but their fit was the least accurate among all clusters.

These results have a clear implication for subsequent work in Affective Computing—among
some actors in an intimate relationship, even those reporting high levels of attraction or satis-
faction, sometimes generate elevated and variable levels of negativity. Prior research in the area
of couple dynamics report, or assumed, that highly satisfied couples were generally homoge-
neous and characterized by consistent and high levels of positive behavior and affect. This
assumption is inconsistent with the clusters derived from the current data. Although some
high satisfied couples were consistently positive (Cluster 4), just as distressed couples were con-
sistently negative (Cluster 5), a sub-group of high satisfied couples also exhibited high level of
negativity (Cluster 1). This last group is the most scientifically intriguing: How do couples
reporting moderate to high levels of negative affect sustain a satisfying relationship? Its appar-
ent that model fit is not simply a function of affect level but more subtlety the combination of
affect and its variability. We assume that some pattern or patterns of variability are associated
with each Cluster type—thus the recognition problem becomes an affect * variability categori-
zation task. We are examining that now.

The HDP-HSMM effectively reproduced the realized data across all cluster types, even those
with greater affect variability (e.g., Clusters 1, 2, 3). These generative models demonstrated it is
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possible to take multi-dimensional data reflecting social processes and reasonably recreate com-
plex interactions. To our knowledge this is the first study to demonstrate the applicability of this
hierarchical Bayesian technique to social dynamics. Not surprisingly, our results suggest that
well-behaved data are easier to model, yet even the poorer fitting models did an acceptable job
of capturing duration sensitive state transition dynamics.
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