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Abstract
The apolipoprotein E (APOE) e4 genotype is a powerful risk factor for late-onset Alzhei-

mer’s disease (AD). In the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, we

previously reported significant baseline structural differences in APOE e4 carriers relative

to non-carriers, involving the left hippocampus more than the right—a difference more pro-

nounced in e4 homozygotes than heterozygotes. We now examine the longitudinal effects

of APOE genotype on hippocampal morphometry at 6-, 12- and 24-months, in the ADNI

cohort. We employed a new automated surface registration system based on conformal

geometry and tensor-based morphometry. Among different hippocampal surfaces, we com-

puted high-order correspondences, using a novel inverse-consistent surface-based fluid

registration method and multivariate statistics consisting of multivariate tensor-based mor-

phometry (mTBM) and radial distance. At each time point, using Hotelling’s T2 test, we
found significant morphological deformation in APOE e4 carriers relative to non-carriers in

the full cohort as well as in the non-demented (pooled MCI and control) subjects at each fol-

low-up interval. In the complete ADNI cohort, we found greater atrophy of the left hippocam-

pus than the right, and this asymmetry was more pronounced in e4 homozygotes than

heterozygotes. These findings, combined with our earlier investigations, demonstrate an e4

dose effect on accelerated hippocampal atrophy, and support the enrichment of prevention

trial cohorts with e4 carriers.

Introduction
Alzheimer’s disease (AD) is the most common cause of dementia, accounting for 60–80% of
cases [1, 2]. Effective presymptomatic diagnosis and treatment of AD could have enormous
public health benefits. The underlying pathology of AD precedes the onset of cognitive
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symptoms by many years, and efforts are underway to find reliable preclinical diagnostic bio-
markers. The discovery of APOE as the most prevalent known genetic risk factor for AD [3, 4]
has made it possible to study large numbers of genetically at-risk individuals before the onset
of symptomatic memory impairment. This led to the concept of preclinical AD [5], which has
now been validated in autopsy studies of non-demented elderly subjects with neuropathologi-
cal evidence of AD [6–10], brain imaging studies [11–19], amyloid detection [20], and neuro-
psychological studies [21, 22]. Surface-based subregional structure analysis may offer
additional benefits [17, 23–26], such as better visualization and increased statistical power,
especially when detecting subtle genetic effects. As the paradigm in experimental therapeutics
shifts toward earlier intervention and prevention, enrichment of treatment cohorts with APOE
e4 carriers may improve diagnostic accuracy and may make it faster to evaluate treatments for
preclinical AD [27, 28].

Structural magnetic resonance imaging (MRI) measurements of regional and whole brain
tissue shrinkage, together with fluorodeoxyglucose positron emission tomography (FDG PET)
measures of decline in the regional cerebral metabolic rate for glucose (CMRgl), and PET mea-
surements of fibrillar amyloid-β (Aβ) burden are among the best established imaging biomark-
ers for preclinical detection and tracking of AD [29]. In AD research, commonly-used
structural MRI measures include whole-brain [30–32], entorhinal cortex [33], hippocampus
[25, 34–38], and temporal lobe volumes [39], as well as ventricular enlargement [35, 38, 40,
41]. Reductions in hippocampal and entorhinal cortex volumes become apparent in the early
stages of memory decline and may anticipate progression to MCI and AD [42, 43]. Hippocam-
pal atrophy measures from structural MRI are widely used, but do not generally detect more
subtle alterations in hippocampal morphometry that may provide even more sensitive detec-
tion of early change.

In our recent work [25], we automatically segmented and constructed hippocampal surfaces
from the baseline MR images of 725 subjects with known APOE genotype—including 167 with
sporadic AD, 354 with MCI, and 204 normal controls. We also built high-order correspon-
dences between hippocampal surfaces and computed multivariate statistics consisting of multi-
variate tensor-based morphometry (mTBM) and radial distance. Using Hotelling’s T2 test, we
found significant morphological deformation in APOE e4 carriers relative to non-carriers in
the entire cohort as well as in the non-demented (pooled MCI and control) subjects, affecting
the left hippocampus more than the right (left hippocampus has a greater dose effect of APOE
e4 than the right), and this effect was more pronounced in e4 homozygotes than heterozygotes.
We now extend our work to a large, longitudinal dataset of brain MR images (N = 1925) from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) acquired at baseline, 6-month
(N = 724), 12-month (N = 673) and 24-month (N = 533) intervals. We applied a novel surface
mTBM system [40, 44–47] to create 3D maps of hippocampal atrophy associated with the
APOE4 genotype. We hypothesized that (1) we would observe similar patterns of hippocampal
deformation at each time points, as previously observed in the baseline study [25], and (2) the
severity of hippocampal deformation and rate of decline would parallel APOE e4 gene dose.

Subjects and Methods

Subjects
Data used in this paper were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 by the National Insti-
tute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering
(NIBIB), the Food and Drug Administration (FDA), private pharmaceutical companies and
non-profit organizations, as a $60 million, 5-year public-private partnership. The primary goal
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of ADNI has been to test whether serial magnetic reasonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild cognitive impairment (MCI) and
early Alzheimer’s disease (AD). Determination of sensitive and specific markers of very early
AD progression is intended to aid researchers and clinicians to develop new treatments and
monitor their effectiveness, as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VAMedical Center
and University of California—San Francisco. ADNI is the result of efforts of many co-investi-
gators from a broad range of academic institutions and private corporations, and subjects have
been recruited from over 50 sites across the U.S. and Canada. The initial goal of ADNI was to
recruit 800 subjects but ADNI has been followed by ADNI-GO and ADNI-2. To date these
three protocols have recruited over 1500 adults, ages 55 to 90, to participate in the research,
consisting of cognitively normal older individuals, people with early or late MCI, and people
with early AD. The follow up duration of each group is specified in the protocols for ADNI-1,
ADNI-2 and ADNIGO. Subjects originally recruited for ADNI-1 and ADNI-GO had the
option to be followed in ADNI-2. For up-to-date information, see www.adni-info.org.

At the time of downloading (September 2011), the baseline dataset consisted of 843 adults,
including 233 elderly healthy controls (CTL), 410 subjects with mild cognitive impairment
(MCI) and 200 AD patients. The 6-month follow up cohort consisted of 738 adults, including
214 elderly healthy controls (CTL), 359 subjects with mild cognitive impairment (MCI) and 165
AD patients. The 12-month follow up cohort consisted of 685 adults, including 203 elderly
healthy controls (CTL), 338 subjects with mild cognitive impairment (MCI) and 144 AD
patients. The 24-month follow up cohort consisted of 543 adults, including 178 elderly healthy
controls (CTL), 254 subjects with mild cognitive impairment (MCI) and 111 AD patients. All
subjects underwent thorough clinical and cognitive assessment at the time of acquisition,
including the Mini-Mental State Examination [48], Clinical Dementia Rating (CDR) [49], and
Delayed Logical Memory Test [50]. APOE genotyping was performed on DNA samples
obtained from subjects’ blood, using an APOE genotyping kit, as described in http://www.adni-
info.org/Scientists/Pdfs/adniproceduresmanual12.pdf (also see http://www.adni-info.org for
detailed information on blood sample collection, DNA preparation, and genotyping methods).

Participants were scanned with a standardized MRI protocol developed for this cohort [51].
We applied our hippocampal morphometry pipeline [25, 46] to reconstruct hippocampal
meshes (detailed in Sec. 2.3). As a quality control, we manually checked all the constructed
meshes. Similar to our prior work [25, 46], the exclusion criteria include: (1) failing the FIRST
segmentation step probably due to the original images’ resolution or contrast issue; (2) wrong
surface topologies, such as the generated hippocampal surfaces have handles. In 6-month data,
we manually excluded 3 subjects from CTL group, 6 subjects from MCI group and 5 subjects
from AD group with wrong surface topologies. Similarly, in 12-month data, we manually
excluded 3 subjects from CTL group, 8 subjects fromMCI group, and 1 subject from AD
group. In 24-month data, we manually excluded 2 subjects from CTL group, 5 subjects from
MCI group, and 3 subjects from AD group. As a result, a total of 1925 ADNI longitudinal
brain MR scans, including 211 controls (with a mean age of 76.41), 353 MCI (mean age:
75.06), and 160 AD (mean age: 74.88) from the 6-month follow-up cohort, 200 controls (mean
age: 76.38), 330 MCI (mean age: 74.82), and 143 AD (mean age: 75.63) from the 12-month fol-
low-up cohort, 176 controls (mean age: 76.44), 249 MCI (mean age: 74.75), and 108 AD (mean
age: 75.17) from the 24-month follow-up cohort, were analyzed in the study. Table 1 gives
detailed demographic data information on the subjects.

In our study, following prior work [23, 25, 46, 52], at each time point we pooled both the
subjects who are heterozygotes APOE e4 carriers (e3/e4) and homozygotes APOE e4 carriers
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(e4/e4) together to form the APOE e4 carriers group and correlated presence of the APOE e4
allele with hippocampal morphometry, both (1) in the entire sample and (2) in non-demented
(pooled MCI and controls) subjects. Throughout the paper, we call these two populations as
the full ADNI cohort and non-demented cohort, respectively.

Processing Pipeline
Fig 1 summarizes the overall processing sequence. The original input data were the three-
dimensional (3D) T1-weighted images from ADNI dataset (6-months, 12-months and
24-months), an example image is shown in Fig 1(a). First, we used the FIRST (FMRIB’s Inte-
grated Registration and Segmentation Tool) software [53] to segment the original data and
obtain the hippocampus substructure. The hippocampal surfaces were automatically recon-
structed based on binary segmentation results [25, 46]. Second, we generated a conformal grid
for each surface with the holomorphic 1-form basis [54]. With the help of conformal grid, we
can compute the conformal representation as the “feature image” of a surface. Third, we regis-
tered the feature image of each surface in the dataset to a common template with an inverse
consistent surface fluid registration algorithm. Finally, we studied the longitudinal differences
between different groups with the mTBM statistics [44] together with the radial distance. The
similar processing pipeline was used in several of our prior works [25, 40, 47, 55–57].

Table 1. Table of Demographic Data by Diagnositic and Genotype Groups. Demographic data by diagnositic and genotype groups. N6, N12, and N24

indicate sample size of the 6-month, 12-month and 24-month follow up cohorts, respectively. The number of women in the samples is indicated in parenthe-
ses. Means are followed by standard deviations in parentheses for age and MMSEmeasures.

APOE genotype CTL MCI AD Total

0 APOE e4 allele (e3/e3)

N6 115(52) 127(44) 43(21) 285(117)

N12 104(46) 120(41) 40(18) 264(105)

N24 98(46) 90(33) 28(13) 216(92)

Age 76.51(±4.91) 76.13(±7.53) 76.82(±8.55) 76.39(±6.75)

MMSE 29.10(±1.13) 26.54(±3.36) 20.79(±5.00) 26.77(±4.06)

1 APOE e4 allele (e3/e4)

N6 43(21) 125(44) 61(25) 229(90)

N12 44(21) 117(41) 58(25) 219(87)

N24 40(19) 86(26) 45(18) 171(63)

Age 76.43(±4.42) 74.67(±6.65) 75.70(±6.06) 75.30(±6.13)

MMSE 28.79(±2.92) 25.41(±3.59) 21.25(±4.66) 24.96(±4.69)

2 APOE e4 alleles (e4/e4)

N6 3(1) 41(18) 32(13) 76(32)

N12 4(2) 39(16) 28(10) 71(28)

N24 4(2) 31(12) 21(9) 56(23)

Age 73.36(±2.92) 71.82(±5.74) 72.07(±6.91) 72.00(±6.13)

MMSE 29.09(±1.58) 25.68(±3.31) 20.72(±5.23) 23.88(±4.92)

Total

N6 161(74) 293(106) 136(59) 590(239)

N12 152(69) 276(98) 126(53) 554(220)

N24 142(67) 207(71) 94(40) 443(178)

Age 76.41(±4.76) 74.89(±7.07) 75.22(±7.31) 75.40(±6.58)

MMSE 29.01(±1.82) 25.94(±3.49) 20.99(±4.89) 25.71(±4.52)

doi:10.1371/journal.pone.0152901.t001
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Hippocampus Segmentation and Surface Modeling
In the process of segmentation, we used FIRST [53] to automatically process all T1-weighted
MR images. FIRST is a model based subcortical structure segmentation and registration tool
developed as part of the FSL library, which is written mainly by members of the Analysis
Group, FMRIB, Oxford, UK. Within FIRST, we ran the run_first_all routine with default
parameters tuned by FIRST as optimal for hippocampal segmentation. For now, we took three-
phase image which contains the labels of the left and right hippocampi. The binary image of
each side of hippocampus was obtained by a simple thresholding process. Fig 1(b) shows an

Fig 1. Overall Processing Sequence. (a): Longitudinal data (6-months, 12-months and 24-months) were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database; (b) automatic hippocampus segmentation with FIRST software [53]; (c) hippocamal surface reconstruction with
marching cube method [58]; (d) hippocampal surface conformal parameterization with holomorphic 1-forms [54]; (e) inverse consistent surface fluid
registration of hippocampal surfaces [46]; (f) multivariate statistics [44] consisting of mTBM and radial distance; (g) longitudinal genetic influence of APOE e4
allele on hippocampal morphometry.

doi:10.1371/journal.pone.0152901.g001
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example of segmented hippocampus substructure. Then hippocampal surfaces were con-
structed with the marching cubes algorithm [58]. After mesh refinement [25, 46], we obtained
smooth surfaces that are suitable for generating conformal grids. Finally, with the help of global
affine transformation with a nine-parameter (three parameters for translation, three parame-
ters for rotation, and three parameters for scaling) matrix that was computed by FIRST, the
smoothed meshes were aligned into the MNI standard space. Fig 1(c) shows a pair of recon-
structed hippocampal surfaces.

Conformal Grid Generation and Surface Conformal Representation
To facilitate hippocampal shape analysis, we generated a conformal grid on each surface,
which is used as a canonical space for surface registration. On each hippocampal surface, we
computed its conformal grid with holomorphic 1-form basis [44, 54]. Fig 1(d) shows an exam-
ple hippocampal surface with its exact 1-form basis, conjugate 1-form basis and holomorphic
1-form basis [44, 54]. In the picture, the overlaid texture is used to demonstrate the computed
1-form bases. The checkboard texture is used to show the angle preserving property.

We adopted surface conformal representation [25, 46] to obtain surface geometric features for
automated surface registration. It consists of the conformal factor and mean curvature, encoding
both intrinsic surface structure and information on its 3D embedding. After we computed these
two local features on each surface point, we computed their summation and then linearly scaled
the dynamic range of the summation into [0, 255] to obtain a feature image for the surface.

Hippocampal Surface Registration with Inverse-Consistent Surface
Fluid Registration
For longitudinal morphometric analysis, we need to register each individual hippocampal sur-
face to a common template surface. With surface conformal parameterization and conformal
representation, we generalized the well-studied image fluid registration algorithm [59, 60] to
general surfaces. Furthermore, most image registration algorithms in the literature are not
symmetric, i.e., the correspondences established between the two images depend on which
image is assigned as the deforming image and which is the non-deforming target image. An
asymmetric algorithm can be problematic as it tends to penalize the expansion of image regions
more than shrinkage [61]. Thus, in our system, we further extended the surface fluid registra-
tion method to an inverse-consistent framework [62]. The obtained surface registration is dif-
feomorphic. For details of our inverse-consistent surface fluid registration method, we refer to
[46]. Fig 1(e) illustrates the surface inverse consistent fluid registration method.

Surface Multivariate Morphometry Statistics
Our multivariate morphometry statistical analysis consists of mTBM [25, 40, 44, 46] and radial
distance analysis [35, 63]. This combines complementary information from mTBM, which
measures deformation within surfaces, and radial distance, which measures hippocampal size
in terms of the surface normal direction.

As in our prior work [44], the mTBMwas computed as a 3 × 1 vector consisting of the “Log-
Euclidean metric” [64], computed as the matrix logarithm of the deformation tensor. mTBM
statistics have been carefully studied in brain structure morphology analyses and they can detect
signals more powerfully than more standard Jacobian matrix statistics [40, 45–47, 55]. Given the
hippocampal tube-like shape, its atrophy and enlargement directly affect the distance from each
surface point to its medial core (analogous to the center line in a tube). We call this distance the
radial distance of a hippocampal surface. We formed the new multivariate surface morphometry
statistic as a 4 × 1 vector consisting of the mTBM and radial distance (Fig 1(f)).
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Statistical Group Difference
To assess group differences with multivariate statistics, we applied Hotelling's T2 test [65–68]
on sets of values of the new multivariate statistics. For each surface vertex, given two groups of
n×4-dimensional vectors, Si, i = 1,2,. . ., p,Tj, j = 1,2,. . ., q, we used the Mahalanobis distanceM
to measure the group mean difference,

M ¼ NSNT

NS þ NT

ð�S � �T ÞTS�1ð�S � �T Þ:

where Ns and NT are the numbers of subjects in the two groups, �S and �T are the means of the
two groups and S is the combined covariance matrix of the two groups [40, 44, 69].

Next, for each hippocampal surface point, we ran a permutation test with 10,000 random
assignments of subjects to different groups to estimate the statistical significance of the areas
with group difference in surface morphometry. We also used a pre-defined statistical threshold
of p = 0.05 at each surface point to estimate the overall significance of the group difference maps
by non-parametric permutation testing [70, 71]. In each case, the covariate (group membership)
was permuted 10,000 times and a null distribution was developed for the area of the average sur-
face with group difference statistics above the pre-defined threshold in the significance map.
The overall significance of the map is defined as the probability of finding, by chance alone, a sta-
tistical map with at least as large a surface area beating the pre-defined statistical threshold of
p = 0.05. The permutation test on the overall rejection areas is used to evaluate the significance
of overall experimental results and correct the overall significant p-values for multiple compari-
sons. Fig 1(g) shows an example of the significance p-map with uncorrected p-values, which is
used to visualize the surface regions with significant differences between groups.

Results
Similar to our prior work [25], we mainly focused on studying the effects of APOE e4 genotype
on hippocampal morphometry in two populations, (1) the full ADNI cohort; and (2) the non-
demented cohort, i.e., people with MCI and normal control subjects. APOE e3 is the most
prevalent allelic variant and considered the human wild type. In a gene-dose dependent pat-
tern, APOE e4 increases and APOE e2 decreases susceptibility to “sporadic” and late onset AD
[3, 4, 72–75]. APOE e4 is the focus of research in this paper. We took an approach similar to
our prior work [23, 25], and excluded e2 carriers (with the result that a total of 60 e2 allele car-
riers were excluded from the study).

Results in the Full ADNI Cohorts for Three Follow Up Intervals
To explore whether the presence of the APOE e4 allele was associated with greater hippocam-
pal atrophy, we studied the effects of APOE e4 genotype in three follow up full ADNI cohorts.
Fig 2 shows the statistical p-maps for comparisons between e4 carriers (e3/e4 and e4/e4) and
e4 non-carriers (e3/e3) in these three different follow up intervals, specifically, (a) for 6-month
follow up (N = 590, 285 non-carriers vs. 305 carriers), (b) for 12-month (N = 555, 265 non-car-
riers vs. 290 carriers), and (c) for 24-month (N = 444, 218 non-carriers vs. 226 carriers). Non-
blue colours show vertices with statistical differences at the nominal 0.05 level, uncorrected for
multiple comparisons. After correcting for multiple comparisons, the differences remained
highly significant (p<0.0001 for 6-months and 12-months, p<0.0005 for 24-months).

To explore whether APOE e4 allele dose affects hippocampal surface morphometry and
how this atrophy is related to normal aging, we studied hippocampal morphometry differences
between persons homozygous for the APOE e4 allele and those heterozygous in three follow
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up cohorts. Fig 3 shows the statistical p-maps for these three different follow up time intervals,
specifically, (a) for 6-month follow up (N = 305, 76 e4 homozygotes vs. 229 e4 heterozygots),
(b) for 12-month (N = 290, 71 e4 homozygotes vs. 219 heterozygots), and (c) for 24-month
(N = 226, 56 e4 homozygotes vs. 170 heterozygots). After correcting for multiple comparisons,

Fig 2. Shape Differences between Non-carriers and Carriers in Full ADNI. (a), (b) and (c): Illustration of
local shape differences (p-values) between the APOE e4 carriers (e3/e4 and e4/e4) and non-carriers (e3/e3)
in the full ADNI cohorts at 6-months, 12-months and 24-months respectively. Non-blue colours show vertices
with statistical differences, at the nominal 0.05 level, uncorrected. The overall significance after multiple
comparisons with permutation test is: (a) p < 0.0001, (b) p < 0.0001, (c) p < 0.0005.

doi:10.1371/journal.pone.0152901.g002
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the differences remained significant for the 6- and 12-month but not for the 24-month follow
up cohort (p<0.0117 for 6-months, p<0.0024 for 12-months, p<0.0959 for 24-months).

We also studied hippocampal morphometry differences between APOE e4 non-carriers
and carriers with different e4 dose. Figs 4 and 5 show how APOE e4 non-carriers differ in

Fig 3. Shape Differences between Heterozygotes and Homozygotes in Full ADNI. (a), (b) and (c):
Illustration of local shape differences (p-values) between the APOE e4 homozygotes (e4/e4) and
heterozygotes (e3/e4) in the full ADNI cohorts at 6-months, 12-months and 24 months, respectively. Non-
blue colours show vertices with statistical differences, at the nominal 0.05 level, uncorrected. The overall
significance after multiple comparisons with permutation test is: (a) p < 0.0117, (b) p < 0.0024, (c) p < 0.0959.

doi:10.1371/journal.pone.0152901.g003
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hippocampal shape from e4 homozygotes and heterozygotes, respectively. Fig 4 shows the
statistical p-maps for comparisons between e4 homozygotes and non-carriers for (a)
6-month follow up (N = 361, 76 e4 homozygotes vs. 285 non-carriers), (b) for 12-month
(N = 336, 71 e4 homozygotes vs. 265 non-carriers), and (c) for 24-month (N = 274, 56 e4

Fig 4. Shape Differences between Non-carriers and Homozygotes in Full ADNI. (a), (b) and (c):
Illustration of local shape differences (p-values) between the APOE e4 homozygotes (e4/e4) and non-
carriers (e3/e3) in the full ADNI cohorts at 6-months, 12-months and 24 months, respectively. Non-blue
colours show vertices with statistical differences, at the nominal 0.05 level, uncorrected. The overall
significance after multiple comparisons with permutation test is: (a) p < 0.0001, (b) p < 0.0001, (c) p < 0.0001.

doi:10.1371/journal.pone.0152901.g004
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homozygotes vs. 170 non-carriers). After correcting for multiple comparisons, the differences
remained significant for all three cohorts (p<0.0001 for all timepoints). Fig 5 shows the sta-
tistical p-maps for comparisons between e4 heterozygotes and non-carriers for (a) for
6-month follow up (N = 514, 229 e4 heterozygotes vs. 285 non-carriers), (b) for 12-month

Fig 5. Shape Differences between Non-carriers and Heterozygotes in Full ADNI. (a), (b) and (c):
Illustration of local shape differences (p-values) between the APOE e4 heterozygotes (e3/e4) and non-
carriers (e3/e3) in the full ADNI cohorts at 6-months, 12-months and 24 months, respectively. Non-blue
colours show vertices with statistical differences, at the nominal 0.05 level, uncorrected. The overall
significance after multiple comparisons with permutation test is: (a) p < 0.0116, (b) p < 0.0039, (c) p < 0.0003.

doi:10.1371/journal.pone.0152901.g005
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(N = 484, 219 e4 heterozygotes vs. 265 non-carriers), and (c) for 24-month (N = 388, 170 e4
heterozygotes vs. 218 non-carriers). After correcting for multiple comparisons, the differ-
ences remained significant for all three cohorts (p<0.0116 for 6-months, p<0.0039 for
12-months, p<0.0003 for 24-months).

Results in the Non-demented ADNI Cohorts for Three Follow Up
Intervals
We also conducted similar studies of APOE e4 genotype in three follow up non-demented
ADNI cohorts. Fig 6 shows statistical p-maps for comparisons between e4 carriers and non-
carriers in non-demented cohorts of three different follow up intervals, specifically, (a) for
6-month follow up (N = 454, 242 non-carriers vs. 212 e4 carriers), (b) for 12-month (N = 429,
225 non-carriers vs. 204 e4 carriers), and (c) for 24-month (N = 350, 190 non-carriers vs. 160
e4 carriers). Non-blue colours show vertices with statistical differences at the nominal 0.05
level, uncorrected for multiple comparisons. After correcting for multiple comparisons, the dif-
ferences remained significant for all three cohorts (p<0.0010 for 6-months, p<0.0005 for
12-months, p<0.0015 for 24-months).

Similar to the full ADNI cohort studies, Fig 7 shows the statistical p-maps for comparisons
between e4 homozygotes and heterozygotes in non-demented cohorts of three different follow
up intervals, specifically, (a) for 6-month follow up (N = 212, 44 homozygotes vs. 168 heterozy-
gotes), (b) for 12-month (N = 204, 43 homozygotes vs. 161 heterozygotes), and (c) for
24-month (N = 160, 35 homozygotes vs. 125 heterozygotes). After correcting for multiple com-
parisons, the differences only remained significant for 12-month follow up cohort (p<0.0204)
and not for the other two cohorts (p<0.1351 for 6-months, p<0.1870 for 24-months).

We also studied hippocampal morphometry differnces between APOE e4 non-carriers and
carriers with different e4 dose in the non-demented cohorts. Fig 8 shows the statistical p-maps
for comparisons between e4 homozygotes and non-carriers in three different follow up inter-
vals, specifically, (a) for 6-month follow up (N = 286, 44 homozygotes vs. 242 non-carriers),
(b) for 12-month (N = 268, 43 homozygotes vs. 225 non-carriers), and (c) for 24-month
(N = 225, 35 homozygotes vs. 190 non-carriers). After correcting for multiple comparisons, the
differences remained significant for 6- and 12-month follow up cohorts (p<0.0035 for
6-months and p<0.0010 for 12-months) but not for 24-month cohorts (p<0.0770 for
24-months Fig 9). shows the statistical p-maps for comparisons between e4 heterozygotes and
e4 non-carriers, specifically, (a) for 6-month follow up (N = 410, 168 heterozygotes vs. 242
non-carriers), (b) for 12-month (N = 386, 161 homozygotes vs. 225 non-carriers), and (c) for
24-month (N = 315, 125 heterozygotes vs. 190 non-carriers). After correcting for multiple
comparisons, the differences remained significant for 6- and 24-month follow up cohorts
(p<0.0058 for 6-months and p<0.0110 for 24-months) but not for 12-month follow up cohorts
(p<0.1191 for 12-months).

Cumulative Distribution Functions of the p-values in the Statistical p-
maps
In Fig 10, we created a set of cumulative distribution functions (CDF) of the p-values
observed in four group difference experiments in the full ADNI cohort. We chose those
experimental results that passed the permutation based multiple comparison tests (i.e., after
correcting for multiple comparisons, p<0.05). Since there are too few homozygote samples in
the 24-month follow up cohort (56 subjects in the full ADNI cohort), we also excluded the
homozygote related CDFs from the 24-month follow up cohort. The CDFs of p-values are
plotted against the corresponding p-value that would be expected, under the null hypothesis
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of no group difference, for all above experiments shown in Fig 10. For null distributions, the
cumulative distribution of p-values is expected to fall approximately along the dotted line.
Large deviations from that curve are associated with significant signal, and greater effect sizes
represented by larger deviations. The theory of false discovery rates (FDR) [76] gives

Fig 6. Shape Differences between Non-carriers and Carriers in Nondemented. (a), (b) and (c):
Illustration of local shape differences (p-values) between the APOE e4 carriers (e3/e4 and e4/e4) and non-
carriers (e3/e3) in the non-demented cohorts at 6-months, 12-months and 24-months, respectively. Non-blue
colours show vertices with statistical differences, at the nominal 0.05 level, uncorrected. The overall
significance after multiple comparisons with permutation test is: (a) p < 0.001, (b) p < 0.0005, (c) p < 0.0015.

doi:10.1371/journal.pone.0152901.g006
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formulae for thresholds that tend to control false positives at a known rate. This protocol was
adopted in several of our prior papers [25, 40, 44, 46, 47, 55, 77] as an empirical standard to
compare effects in group difference analysis. The deviation of the statistics from the null dis-
tribution generally increased longitudinally from 6-month, to 12-month and 24-month

Fig 7. Shape Differences between Heterozygotes and Homozygotes in Nondemented. (a), (b) and (c):
Illustration of local shape differences (p-values) between the APOE e4 homozygotes (e4/e4) and
heterozygotes (e3/e4) in the non-demented cohorts at 6-months, 12-months and 24-months, respectively.
Non-blue colours show vertices with statistical differences, at the nominal 0.05 level, uncorrected. The overall
significance after multiple comparisons with permutation test is: (a) p < 0.1351, (b) p < 0.0204, (c) p < 0.187.

doi:10.1371/journal.pone.0152901.g007
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follow up data in the full ADNI cohort. It shows that the continually increasing differences in
atrophy between APOE e4 carriers and non-carriers (Fig 10(a)), APOE e4 heterozygotes and
homozygotes (Fig 10(b)), APOE e4 homozygotes and non-carriers (Fig 10(c)), and APOE e4
heterozygotes and non-carriers (Fig 10(d)).

Fig 8. Shape Differences between Non-carriers and Homozygotes in Nondemented. (a), (b) and (c):
Illustration of local shape differences (p-values) between the APOE e4 homozygotes (e4/e4) and non-
carriers (e3/e3) in the non-demented cohorts at 6-months, 12-months and 24-months, respectively. Non-blue
colours show vertices with statistical differences, at the nominal 0.05 level, uncorrected. The overall
significance after multiple comparisons with permutation test is: (a) p < 0.0035, (b) p < 0.001, (c) p < 0.077.

doi:10.1371/journal.pone.0152901.g008
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Discussion
Our analyses of the full ADNI cohort revealed significant differences between APOE e4 carriers
and non-carriers in all three follow up cohorts (Fig 2), between e4 homozygotes and

Fig 9. Shape Differences between Non-carriers and Heterozygotes in Nondemented. (a), (b) and (c):
Illustration of local shape differences (p-values) between the APOE e4 heterozygotes (e3/e4) and non-
carriers (e3/e3) in the non-demented cohorts at 6-months, 12-months and 24-months, respectively. Non-blue
colours show vertices with statistical differences, at the nominal 0.05 level, uncorrected. The overall
significance after multiple comparisons with permutation test is: (a) p < 0.0058, (b) p < 0.1191, (c) p < 0.011.

doi:10.1371/journal.pone.0152901.g009
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heterozygotes in the 6- and 12-month follow up cohorts (Fig 3), between e4 homozygotes and
non-carriers in all three follow up cohorts (Fig 4), and between e4 heterozygotes and non-carri-
ers in all three follow up cohorts (Fig 5). Also, from the CDFs shown in Fig 10, there is a trend
for group differences to generally become sharper over time. These results are consistent with
our observations in the baseline cohort [25] and another prior work [78] in a relatively small
dataset, showing a clear relationship between APOE genotype and hippocampal atrophy in the
full ADNI cohort at all three follow up time intervals. In contrast, some investigators, e.g. [79–
83], detected no APOE e4 gene dose effect on hippocampal atrophy. In the full ADNI cohort, a
relatively large imaging cohort (N = 1925), we found that the APOE e4 dose was associated
with greater hippocampal deformation (i.e., the CDF curves in Fig 10(c) are much steeper than
those in Fig 10(d)). Although more rigorous statistical comparisons are necessary, from the p-

Fig 10. Cumulative Distribution Function Plots Comparison. Cumulative Distribution Function (CDF) plots comparison, between: (a). APOE e4 carriers
(e3/e4 and e4/e4) and non-carriers (e3/e3), (b). APOE e4 homozygotes (e4/e4) and heterozygotes (e3/e4), (c). APOE e4 homozygotes (e4/e4) and non-
carriers (e3/e3), (d). APOE e4 heterozygotes (e3/e4) and non-carriers (e3/e3) in the full ADNI cohorts. The results demonstrate the accelarated hippocampal
atrophy in the longitudinal study.

doi:10.1371/journal.pone.0152901.g010
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maps and CDF plots, we can observe the trend that in these groups shown in Fig 10(c) and 10
(d), APOE e4 homozygotes appear to differ more from non-carriers than do e4 heterozygotes.
To our knowledge, this is the first study to apply a surface-based approach to evaluate longitu-
dinal APOE e4 gene dose effects on hippocampal morphometry. Our findings confirm and
extend our observation that APOE e4 gene dose correlates with the severity of hippocampal
deformation, and support the use of MRI hippocampal morphometry as a valid imaging bio-
marker to track AD progression.

Findings in the non-demented subset were consistent with our previously reported baseline
findings [25]. With few exceptions (homozygotes vs heterozygotes in 6- and 24-month follow
up cohorts, heterozygotes and non-carriers in the 12-month follow up cohort and homozy-
gotes and non-carriers in the 24-month follow up cohort), we found significant differences in
APOE subgroups in all comparisons in each follow up cohort. However, the effects of e4 homo-
zygosity on regional patterns of hippocampal morphometry at 24-months did not pass the per-
mutation tests when compared to heterozygotes or non-carriers, probably reflecting
insufficient statistical power, as sample sizes were much smaller (N = 35) than other subject
numbers. In our prior work [25], we did not detect statistically significant differences between
homozygotes and heterozygotes at baseline in the non-demented cohort, but we now find
increasing differences between non-demented homozygotes and heterozygotes in the
12-month follow up cohort, as well as between homozygotes and non-carriers in both the 6-
and 12-month follow up cohorts, supporting our hypothesis that there is an e4 gene dose effect
for hippocampal deformation in the non-demented population.

Previous investigators [80, 84–86] reported greater atrophy of the right hippocampus when
comparing e4 heterozygotes and homozygotes with non-carriers. In contrast, our results sug-
gest e4 carriers in general, as well as heterozygous and homozygous subgroups have greater
deformity of the left hippocampus compared to non-carriers. By contrast, differences between
the e4 heterozygous and homozygous subgroups were greater on the right side than on the left.
Our results are consistent with some prior work [23, 25, 78]. The reason for this laterality effect
is unclear, but may suggest that the APOE e4 dose effects start from the left side and subse-
quently extend to the right.

There is an ever growing variety of methods for examining the structure and function of the
hippocampus via in vivoMR images [87, 88]. Some examine the subfields of the hippocampal
formation and subregions of the parahippocampal gyrus [89–94], which segment hippocampus
into different regions and analyze the volume and shape changes in these subfields. These
methods compute volumetric image registration between template and individual subjects and
translate and visualize the deformation of surfaces. Surface-based hippocampal shape analyses
rely primarily on two components. First, they build an appropriate representation and corre-
spondence between hippocampal shapes. Second, they carry out group analysis within this
common domain. Surface parameterization methods [54, 95, 96] create a canonical space to
match hippocampal surfaces. When the canonical space is a sphere, approaches based on
spherical harmonic functions (SPHARM) [97–99] use coefficients of the harmonic expansion
to infer shape differences between patient groups and controls. Another group of methods
aims to build dense correspondence between surfaces [40, 100, 101]. For example, the Large
Deformation Diffeomorphic Metric Mapping (LDDMM) [102] has been used to deform
labeled anatomical templates of the hippocampus onto new images, using a combination of
manual landmarking of points on the hippocampus and 3D fluid image registration [100, 101,
103]. Other dense mapping methods register hippocampal surfaces with surface geometric fea-
tures [24, 35, 46, 52, 104, 105]. For group difference analysis, some groups have used a single
low dimensional feature vector [106–108], or other detailed local geometric features such as
medial distance [35], the LDDMMmetric [109], and tensor-based morphometry [40] for
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detailed statistical shape analysis. This type of method benefits from high resolution informa-
tion in the hippocampal surface representation and efficient numerical solutions to register
and analyze surface deformations across subjects.

As noted in Shi, et al. [25], our current work has two main caveats. First, the ADNI partici-
pants are generally elderly, so they may not ideally represent patient populations in clinical pre-
vention trials. Still, our current findings support the genetic influence of APOE genotype in
non-demented cohorts. Second, we excluded APOE e2 carriers from our current study for a
more focused study. We expect to conduct a thorough study on APOE e2 effects in our future
research.

In conclusion, by applying our novel hippocampal morphometry system in the longitudinal
ADNI datasets, we replicated the influence of APOE genotype on hippocampal morphometry
observed at baseline [25], and demonstrated strong APOE e4 gene dose effects in the 6-month
and 12-month follow up cohorts. In the future, we will continue developing novel imaging
shape analysis systems to better detect genetic influences on the brain. We plan to apply this
framework together with our ventricular morphometry system [40] and cortical thickness esti-
mation system [77] in cognitively normal subjects to help detect preclinical AD [110, 111].

Acknowledgments
This work was funded by the National Institute on Aging (R21AG043760 to BL, JS, LCB, RJC
and YW, R21AG049216 to JS, PMT and YW, R01AG031581 and P30AG19610 to RJC), the
National Science Foundation (DMS-1413417, IIS-1421165 to YW), and the Arizona Alzhei-
mer’s Consortium (ADHS14-052688 to BL, JS and YW). BAG, PMT and YW are also sup-
ported, in part, by the NIH ENIGMA Center grant U54EB020403, which is supported by the
Big Data to Knowledge (BD2K) Centers of Excellence program.

Data collection and sharing for this project was funded by the Alzheimer's Disease Neuro-
imaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD
ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI-PI is Michael W.
Weiner, MD(email: Michael.Weiner@ucsf.edu). A complete listing of ADNI investigators can
be found at https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf. Data used in preparation of this article were obtained from the
ADNI (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the
design and implementation of ADNI and/or provided data but did not participate in analysis
or writing of this report. ADNI is funded by the National Institute on Aging, the National Insti-
tute of Biomedical Imaging and Bioengineering, and through generous contributions from the
following: Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech;
BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceu-
ticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated
company Genentech, Inc.; Fujirebio; GE Healthcare;; IXICO Ltd.; Janssen Alzheimer Immuno-
therapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research &
Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx
Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Pira-
mal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Insti-
tutes of Rev December 5, 2013 Health Research is providing funds to support ADNI clinical
sites in Canada. Private sector contributions are facilitated by the Foundation for the National
Institutes of Health (www.fnih.org). The grantee organization is the Northern California Insti-
tute for Research and Education, and the study is coordinated by the Alzheimer's Disease
Cooperative Study at the University of California, San Diego. ADNI data are disseminated by
the Laboratory for Neuro Imaging at the University of Southern California.

Influence of APOEGenotype on Hippocampal Atrophy over Time

PLOSONE | DOI:10.1371/journal.pone.0152901 April 11, 2016 19 / 26

https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://www.fnih.org


Author Contributions
Conceived and designed the experiments: YW. Performed the experiments: BL JS YW. Ana-
lyzed the data: PMT RJC YW. Contributed reagents/materials/analysis tools: BAG LCB. Wrote
the paper: BL PMT RJC YW.

References
1. Frey BJ. Alzheimer's disease.". 2003. Encyclopedia.com. 27 Mar. 2015 2003. Available from: http://

www.encyclopedia.com/doc/1G2-3405700022.html.

2. Villemagne VL, Ataka S, Mizuno T, Brooks WS, Wada Y, Kondo M, et al. High striatal amyloid beta-
peptide deposition across different autosomal Alzheimer disease mutation types. Arch Neurol. 2009;
66(12):1537–44. doi: 10.1001/archneurol.2009.285 PMID: 20008660.

3. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose
of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science.
1993; 261(5123):921–3. Epub 1993/08/13. PMID: 8346443.

4. Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, et al.
Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's dis-
ease. Neurology. 1993; 43(8):1467–72. PMID: 8350998.

5. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclin-
ical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's
Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;
7(3):280–92. Epub 2011/04/26. doi: 10.1016/j.jalz.2011.03.003 PMID: 21514248; PubMed Central
PMCID: PMC3220946.

6. Dickson DW, Crystal HA, Mattiace LA, Masur DM, Blau AD, Davies P, et al. Identification of normal
and pathological aging in prospectively studied nondemented elderly humans. Neurobiol Aging. 1992;
13(1):179–89. Epub 1992/01/01. PMID: 1311804.

7. Gouras GK, Relkin NR, Sweeney D, Munoz DG, Mackenzie IR, Gandy S. Increased apolipoprotein E
epsilon 4 in epilepsy with senile plaques. Ann Neurol. 1997; 41(3):402–4. Epub 1997/03/01. doi: 10.
1002/ana.410410317 PMID: 9066363.

8. Bennett DA, De Jager PL, Leurgans SE, Schneider JA. Neuropathologic intermediate phenotypes
enhance association to Alzheimer susceptibility alleles. Neurology. 2009; 72(17):1495–503. Epub
2009/04/29. doi: 10.1212/WNL.0b013e3181a2e87d PMID: 19398704; PubMed Central PMCID:
PMC2677477.

9. Kok E, Haikonen S, Luoto T, Huhtala H, Goebeler S, Haapasalo H, et al. Apolipoprotein E-dependent
accumulation of Alzheimer disease-related lesions begins in middle age. Ann Neurol. 2009; 65
(6):650–7. Epub 2009/06/27. doi: 10.1002/ana.21696 PMID: 19557866.

10. Caselli RJ, Walker D, Sue L, Sabbagh M, Beach T. Amyloid load in nondemented brains correlates
with APOE e4. Neurosci Lett. 2010; 473(3):168–71. Epub 2010/02/16. doi: 10.1016/j.neulet.2010.02.
016 PMID: 20153809; PubMed Central PMCID: PMC2851172.

11. Knickmeyer RC, Wang J, Zhu H, Geng X, Woolson S, Hamer RM, et al. Common variants in psychiat-
ric risk genes predict brain structure at birth. Cereb Cortex. 2014; 24(5):1230–46. Epub 2013/01/04.
doi: 10.1093/cercor/bhs401 PMID: 23283688; PubMed Central PMCID: PMC3977618.

12. Dean DC 3rd, Jerskey BA, Chen K, Protas H, Thiyyagura P, Roontiva A, et al. Brain differences in
infants at differential genetic risk for late-onset Alzheimer disease: a cross-sectional imaging study.
JAMA Neurol. 2014; 71(1):11–22. doi: 10.1001/jamaneurol.2013.4544 PMID: 24276092; PubMed
Central PMCID: PMC4056558.

13. Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S, et al. Preclinical evidence of Alzhei-
mer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med.
1996; 334(12):752–8. Epub 1996/03/21. doi: 10.1056/NEJM199603213341202 PMID: 8592548.

14. Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D, et al. Correlations between
apolipoprotein E epsilon4 gene dose and brain-imaging measurements of regional hypometabolism.
Proc Natl Acad Sci U S A. 2005; 102(23):8299–302. Epub 2005/06/04. 0500579102 [pii] doi: 10.1073/
pnas.0500579102 PMID: 15932949; PubMed Central PMCID: PMC1149416.

15. Reiman EM, Chen K, Liu X, Bandy D, Yu M, LeeW, et al. Fibrillar amyloid-beta burden in cognitively
normal people at 3 levels of genetic risk for Alzheimer's disease. Proc Natl Acad Sci U S A. 2009; 106
(16):6820–5. Epub 2009/04/07. 0900345106 [pii] doi: 10.1073/pnas.0900345106 PMID: 19346482;
PubMed Central PMCID: PMC2665196.

Influence of APOEGenotype on Hippocampal Atrophy over Time

PLOSONE | DOI:10.1371/journal.pone.0152901 April 11, 2016 20 / 26

http://www.encyclopedia.com/doc/1G2-3405700022.html
http://www.encyclopedia.com/doc/1G2-3405700022.html
http://dx.doi.org/10.1001/archneurol.2009.285
http://www.ncbi.nlm.nih.gov/pubmed/20008660
http://www.ncbi.nlm.nih.gov/pubmed/8346443
http://www.ncbi.nlm.nih.gov/pubmed/8350998
http://dx.doi.org/10.1016/j.jalz.2011.03.003
http://www.ncbi.nlm.nih.gov/pubmed/21514248
http://www.ncbi.nlm.nih.gov/pubmed/1311804
http://dx.doi.org/10.1002/ana.410410317
http://dx.doi.org/10.1002/ana.410410317
http://www.ncbi.nlm.nih.gov/pubmed/9066363
http://dx.doi.org/10.1212/WNL.0b013e3181a2e87d
http://www.ncbi.nlm.nih.gov/pubmed/19398704
http://dx.doi.org/10.1002/ana.21696
http://www.ncbi.nlm.nih.gov/pubmed/19557866
http://dx.doi.org/10.1016/j.neulet.2010.02.016
http://dx.doi.org/10.1016/j.neulet.2010.02.016
http://www.ncbi.nlm.nih.gov/pubmed/20153809
http://dx.doi.org/10.1093/cercor/bhs401
http://www.ncbi.nlm.nih.gov/pubmed/23283688
http://dx.doi.org/10.1001/jamaneurol.2013.4544
http://www.ncbi.nlm.nih.gov/pubmed/24276092
http://dx.doi.org/10.1056/NEJM199603213341202
http://www.ncbi.nlm.nih.gov/pubmed/8592548
http://dx.doi.org/10.1073/pnas.0500579102
http://dx.doi.org/10.1073/pnas.0500579102
http://www.ncbi.nlm.nih.gov/pubmed/15932949
http://dx.doi.org/10.1073/pnas.0900345106
http://www.ncbi.nlm.nih.gov/pubmed/19346482


16. Morris JC, Roe CM, Xiong C, Fagan AM, Goate AM, Holtzman DM, et al. APOE predicts amyloid-beta
but not tau Alzheimer pathology in cognitively normal aging. Ann Neurol. 2010; 67(1):122–31. Epub
2010/02/27. doi: 10.1002/ana.21843 PMID: 20186853; PubMed Central PMCID: PMC2830375.

17. Roussotte FF, Gutman BA, Madsen SK, Colby JB, Narr KL, Thompson PM, et al. Apolipoprotein E
epsilon 4 allele is associated with ventricular expansion rate and surface morphology in dementia and
normal aging. Neurobiol Aging. 2014; 35(6):1309–17. doi: 10.1016/j.neurobiolaging.2013.11.030
PMID: 24411483; PubMed Central PMCID: PMC3961511.

18. Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM, et al. Distinct patterns of
brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci U S A. 2009; 106
(17):7209–14. doi: 10.1073/pnas.0811879106 PMID: 19357304; PubMed Central PMCID:
PMC2678478.

19. Erten-Lyons D, Dodge HH, Woltjer R, Silbert LC, Howieson DB, Kramer P, et al. Neuropathologic
basis of age-associated brain atrophy. JAMA Neurol. 2013; 70(5):616–22. doi: 10.1001/jamaneurol.
2013.1957 PMID: 23552688; PubMed Central PMCID: PMC3898525.

20. Baltes C, Princz-Kranz F, Rudin M, Mueggler T. Detecting amyloid-beta plaques in Alzheimer's dis-
ease. Methods Mol Biol. 2011; 711:511–33. doi: 10.1007/978-1-61737-992-5_26 PMID: 21279620.

21. Caselli RJ, Dueck AC, Osborne D, Sabbagh MN, Connor DJ, Ahern GL, et al. Longitudinal modeling
of age-related memory decline and the APOE epsilon4 effect. N Engl J Med. 2009; 361(3):255–63.
Epub 2009/07/17. doi: 10.1056/NEJMoa0809437 PMID: 19605830; PubMed Central PMCID:
PMC2928998.

22. Caselli RJ, Dueck AC, Locke DE, Sabbagh MN, Ahern GL, Rapcsak SZ, et al. Cerebrovascular risk
factors and preclinical memory decline in healthy APOE epsilon4 homozygotes. Neurology. 2011; 76
(12):1078–84. Epub 2011/02/18. doi: 10.1212/WNL.0b013e318211c3ae PMID: 21325652; PubMed
Central PMCID: PMC3068011.

23. Morra JH, Tu Z, Apostolova LG, Green AE, Avedissian C, Madsen SK, et al. Automated mapping of
hippocampal atrophy in 1-year repeat MRI data from 490 subjects with Alzheimer's disease, mild cog-
nitive impairment, and elderly controls. NeuroImage. 2009; 45(1, Supplement 1):S3—S15. PMID:
19041724.

24. Qiu A, Taylor WD, Zhao Z, MacFall JR, Miller MI, Key CR, et al. APOE related hippocampal shape
alteration in geriatric depression. NeuroImage. 2009; 44(3):620–6. Epub 2008/11/18. S1053-8119
(08)01121-X [pii] doi: 10.1016/j.neuroimage.2008.10.010 PMID: 19010425; PubMed Central PMCID:
PMC2648826.

25. Shi J, Lepore N, Gutman BA, Thompson PM, Baxter LC, Caselli RJ, et al. Genetic influence of apoli-
poprotein E4 genotype on hippocampal morphometry: An N = 725 surface-based Alzheimer's disease
neuroimaging initiative study. Hum Brain Mapp. 2014; 35(8):3903–18. Epub 2014/01/24. doi: 10.
1002/hbm.22447 PMID: 24453132; PubMed Central PMCID: PMC4269525.

26. Roussotte FF, Gutman BA, Madsen SK, Colby JB, Thompson PM, Alzheimer's Disease Neuroimag-
ing I. Combined effects of Alzheimer risk variants in the CLU and ApoE genes on ventricular expan-
sion patterns in the elderly. J Neurosci. 2014; 34(19):6537–45. doi: 10.1523/JNEUROSCI.5236-13.
2014 PMID: 24806679; PubMed Central PMCID: PMC4012312.

27. Caselli RJ, Reiman EM. Characterizing the preclinical stages of Alzheimer's disease and the prospect
of presymptomatic intervention. J Alzheimers Dis. 2013; 33 Suppl 1:S405–16. doi: 10.3233/JAD-
2012-129026 PMID: 22695623; PubMed Central PMCID: PMC3628721.

28. Langbaum JB, Fleisher AS, Chen K, Ayutyanont N, Lopera F, Quiroz YT, et al. Ushering in the study
and treatment of preclinical Alzheimer disease. Nat Rev Neurol. 2013; 9(7):371–81. doi: 10.1038/
nrneurol.2013.107 PMID: 23752908; PubMed Central PMCID: PMC4084675.

29. Reiman EM, Jagust WJ. Brain imaging in the study of Alzheimer's disease. Neuroimage. 2012; 61
(2):505–16. doi: 10.1016/j.neuroimage.2011.11.075 PMID: 22173295; PubMed Central PMCID:
PMC3351556.

30. Fox NC, Scahill RI, CrumWR, Rossor MN. Correlation between rates of brain atrophy and cognitive
decline in AD. Neurology. 1999; 52(8):1687–9. Epub 1999/05/20. PMID: 10331700.

31. Chen K, Reiman EM, Alexander GE, Caselli RJ, Gerkin R, Bandy D, et al. Correlations between apoli-
poprotein E epsilon4 gene dose and whole brain atrophy rates. Am J Psychiatry. 2007; 164(6):916–
21. Epub 2007/06/02. 164/6/916 [pii] doi: 10.1176/appi.ajp.164.6.916 PMID: 17541051.

32. Stonnington CM, Chu C, Kloppel S, Jack CR Jr., Ashburner J, Frackowiak RS. Predicting clinical
scores frommagnetic resonance scans in Alzheimer's disease. Neuroimage. 2010; 51(4):1405–13.
Epub 2010/03/30. S1053-8119(10)00338-1 [pii] doi: 10.1016/j.neuroimage.2010.03.051 PMID:
20347044; PubMed Central PMCID: PMC2871976.

Influence of APOEGenotype on Hippocampal Atrophy over Time

PLOSONE | DOI:10.1371/journal.pone.0152901 April 11, 2016 21 / 26

http://dx.doi.org/10.1002/ana.21843
http://www.ncbi.nlm.nih.gov/pubmed/20186853
http://dx.doi.org/10.1016/j.neurobiolaging.2013.11.030
http://www.ncbi.nlm.nih.gov/pubmed/24411483
http://dx.doi.org/10.1073/pnas.0811879106
http://www.ncbi.nlm.nih.gov/pubmed/19357304
http://dx.doi.org/10.1001/jamaneurol.2013.1957
http://dx.doi.org/10.1001/jamaneurol.2013.1957
http://www.ncbi.nlm.nih.gov/pubmed/23552688
http://dx.doi.org/10.1007/978-1-61737-992-5_26
http://www.ncbi.nlm.nih.gov/pubmed/21279620
http://dx.doi.org/10.1056/NEJMoa0809437
http://www.ncbi.nlm.nih.gov/pubmed/19605830
http://dx.doi.org/10.1212/WNL.0b013e318211c3ae
http://www.ncbi.nlm.nih.gov/pubmed/21325652
http://www.ncbi.nlm.nih.gov/pubmed/19041724
http://dx.doi.org/10.1016/j.neuroimage.2008.10.010
http://www.ncbi.nlm.nih.gov/pubmed/19010425
http://dx.doi.org/10.1002/hbm.22447
http://dx.doi.org/10.1002/hbm.22447
http://www.ncbi.nlm.nih.gov/pubmed/24453132
http://dx.doi.org/10.1523/JNEUROSCI.5236-13.2014
http://dx.doi.org/10.1523/JNEUROSCI.5236-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24806679
http://dx.doi.org/10.3233/JAD-2012-129026
http://dx.doi.org/10.3233/JAD-2012-129026
http://www.ncbi.nlm.nih.gov/pubmed/22695623
http://dx.doi.org/10.1038/nrneurol.2013.107
http://dx.doi.org/10.1038/nrneurol.2013.107
http://www.ncbi.nlm.nih.gov/pubmed/23752908
http://dx.doi.org/10.1016/j.neuroimage.2011.11.075
http://www.ncbi.nlm.nih.gov/pubmed/22173295
http://www.ncbi.nlm.nih.gov/pubmed/10331700
http://dx.doi.org/10.1176/appi.ajp.164.6.916
http://www.ncbi.nlm.nih.gov/pubmed/17541051
http://dx.doi.org/10.1016/j.neuroimage.2010.03.051
http://www.ncbi.nlm.nih.gov/pubmed/20347044


33. Cardenas VA, Chao LL, Studholme C, Yaffe K, Miller BL, Madison C, et al. Brain atrophy associated
with baseline and longitudinal measures of cognition. Neurobiol Aging. 2009. Epub 2009/05/19.
S0197-4580(09)00139-0 [pii] doi: 10.1016/j.neurobiolaging.2009.04.011 PMID: 19446370.

34. Reiman EM, Uecker A, Caselli RJ, Lewis S, Bandy D, de Leon MJ, et al. Hippocampal volumes in cog-
nitively normal persons at genetic risk for Alzheimer's disease. Ann Neurol. 1998; 44(2):288–91. Epub
1998/08/26. doi: 10.1002/ana.410440226 PMID: 9708558.

35. Thompson PM, Hayashi KM, de Zubicaray GI, Janke AL, Rose SE, Semple J, et al. Mapping hippo-
campal and ventricular change in Alzheimer's disease. NeuroImage. 2004; 22(4):1754–66. PMID:
15275931.

36. den Heijer T, van der Lijn F, Koudstaal PJ, Hofman A, van der Lugt A, Krestin GP, et al. A 10-year fol-
low-up of hippocampal volume on magnetic resonance imaging in early dementia and cognitive
decline. Brain. 2010; 133(4):1163–72. doi: 10.1093/brain/awq048 PMID: 20375138.

37. Wolz R, Heckemann RA, Aljabar P, Hajnal JV, Hammers A, Lötjönen J, et al. Measurement of hippo-
campal atrophy using 4D graph-cut segmentation: Application to ADNI. NeuroImage. 2010; 52
(1):109–18. PMID: 20382238. doi: 10.1016/j.neuroimage.2010.04.006

38. Jack CR Jr., Slomkowski M, Gracon S, Hoover TM, Felmlee JP, Stewart K, et al. MRI as a biomarker
of disease progression in a therapeutic trial of milameline for AD. Neurology. 2003; 60(2):253–60.
Epub 2003/01/29. PMID: 12552040; PubMed Central PMCID: PMC2745302.

39. Hua X, Lee S, Hibar DP, Yanovsky I, Leow AD, Toga AW, et al. Mapping Alzheimer's disease progres-
sion in 1309 MRI scans: Power estimates for different inter-scan intervals. NeuroImage. 2010; 51
(1):63–75. PMID: 20139010. doi: 10.1016/j.neuroimage.2010.01.104

40. Wang Y, Song Y, Rajagopalan P, An T, Liu K, Chou YY, et al. Surface-based TBM boosts power to
detect disease effects on the brain: An N = 804 ADNI study. Neuroimage. 2011; 56(4):1993–2010.
Epub 2011/03/29. S1053-8119(11)00318-1 [pii] doi: 10.1016/j.neuroimage.2011.03.040 PMID:
21440071.

41. Shi J, Stonnington CM, Thompson PM, Chen K, Gutman B, Reschke C, et al. Studying ventricular
abnormalities in mild cognitive impairment with hyperbolic Ricci flow and tensor-based morphometry.
Neuroimage. 2015; 104:1–20. doi: 10.1016/j.neuroimage.2014.09.062 PMID: 25285374; PubMed
Central PMCID: PMC4252650.

42. de Leon MJ, George AE, Stylopoulos LA, Smith G, Miller DC. Early marker for Alzheimer's disease:
the atrophic hippocampus. Lancet. 1989; 2(8664):672–3. PMID: 2570916.

43. Jack CR Jr., Shiung MM, Gunter JL, O'Brien PC, Weigand SD, Knopman DS, et al. Comparison of dif-
ferent MRI brain atrophy rate measures with clinical disease progression in AD. Neurology. 2004; 62
(4):591–600. PMID: 14981176; PubMed Central PMCID: PMC2730165.

44. Wang Y, Zhang J, Gutman B, Chan TF, Becker JT, Aizenstein HJ, et al. Multivariate tensor-based
morphometry on surfaces: Application to mapping ventricular abnormalities in HIV/AIDS. Neuro-
Image. 2010; 49(3):2141–57. Epub 2009/11/11. S1053-8119(09)01158-6 [pii] doi: 10.1016/j.
neuroimage.2009.10.086 PMID: 19900560.

45. Wang Y, Shi J, Yin X, Gu X, Chan TF, Yau S-T, et al. Brain Surface Conformal Parameterization with
the Ricci Flow. IEEE Trans Med Imag. 2012; 31(2):251–64. PMID: 21926017.

46. Shi J, Thompson PM, Gutman B, Wang Y. Surface fluid registration of conformal representation:
Application to detect disease burden and genetic influence on hippocampus. Neuroimage. 2013;
78C:111–34. Epub 2013/04/17. doi: 10.1016/j.neuroimage.2013.04.018 PMID: 23587689.

47. Shi J, Wang Y, Ceschin R, An X, Lao Y, Vanderbilt D, et al. A Multivariate Surface-Based Analysis of
the Putamen in Premature Newborns: Regional Differences within the Ventral Striatum. PLoS One.
2013; 8(7):e66736. Epub 2013/07/12. doi: 10.1371/journal.pone.0066736 PMID: 23843961; PubMed
Central PMCID: PMC3700976.

48. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cogni-
tive state of patients for the clinician. J Psychiatr Res. 1975; 12(3):189–98. Epub 1975/11/01. 0022-
3956(75)90026-6 [pii]. PMID: 1202204.

49. Berg L. Clinical Dementia Rating (CDR). Psychopharmacol Bull. 1988; 24(4):637–9. Epub 1988/01/
01. PMID: 3249765.

50. Wechsler D. Wechsler Memory Scale-Revised Manual. San Antonio, TX: Psychological Corporation;
1987.

51. Jack CR Jr., Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, et al. The Alzheimer's dis-
ease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging. 2008;
27(4):685–91. PMID: 18302232; PubMed Central PMCID: PMCPMC2544629. doi: 10.1002/jmri.
21049

Influence of APOEGenotype on Hippocampal Atrophy over Time

PLOSONE | DOI:10.1371/journal.pone.0152901 April 11, 2016 22 / 26

http://dx.doi.org/10.1016/j.neurobiolaging.2009.04.011
http://www.ncbi.nlm.nih.gov/pubmed/19446370
http://dx.doi.org/10.1002/ana.410440226
http://www.ncbi.nlm.nih.gov/pubmed/9708558
http://www.ncbi.nlm.nih.gov/pubmed/15275931
http://dx.doi.org/10.1093/brain/awq048
http://www.ncbi.nlm.nih.gov/pubmed/20375138
http://www.ncbi.nlm.nih.gov/pubmed/20382238
http://dx.doi.org/10.1016/j.neuroimage.2010.04.006
http://www.ncbi.nlm.nih.gov/pubmed/12552040
http://www.ncbi.nlm.nih.gov/pubmed/20139010
http://dx.doi.org/10.1016/j.neuroimage.2010.01.104
http://dx.doi.org/10.1016/j.neuroimage.2011.03.040
http://www.ncbi.nlm.nih.gov/pubmed/21440071
http://dx.doi.org/10.1016/j.neuroimage.2014.09.062
http://www.ncbi.nlm.nih.gov/pubmed/25285374
http://www.ncbi.nlm.nih.gov/pubmed/2570916
http://www.ncbi.nlm.nih.gov/pubmed/14981176
http://dx.doi.org/10.1016/j.neuroimage.2009.10.086
http://dx.doi.org/10.1016/j.neuroimage.2009.10.086
http://www.ncbi.nlm.nih.gov/pubmed/19900560
http://www.ncbi.nlm.nih.gov/pubmed/21926017
http://dx.doi.org/10.1016/j.neuroimage.2013.04.018
http://www.ncbi.nlm.nih.gov/pubmed/23587689
http://dx.doi.org/10.1371/journal.pone.0066736
http://www.ncbi.nlm.nih.gov/pubmed/23843961
http://www.ncbi.nlm.nih.gov/pubmed/1202204
http://www.ncbi.nlm.nih.gov/pubmed/3249765
http://www.ncbi.nlm.nih.gov/pubmed/18302232
http://dx.doi.org/10.1002/jmri.21049
http://dx.doi.org/10.1002/jmri.21049


52. Morra JH, Tu Z, Apostolova LG, Green AE, Avedissian C, Madsen SK, et al. Automated 3D mapping
of hippocampal atrophy and its clinical correlates in 400 subjects with Alzheimer's disease, mild cogni-
tive impairment, and elderly controls. Hum Brain Mapp. 2009; 30(9):2766–88. Epub 2009/01/28. doi:
10.1002/hbm.20708 PMID: 19172649; PubMed Central PMCID: PMC2733926.

53. Patenaude B, Smith SM, Kennedy DN, Jenkinson M. A Bayesian model of shape and appearance for
subcortical brain segmentation. Neuroimage. 2011; 56(3):907–22. Epub 2011/03/01. doi: 10.1016/j.
neuroimage.2011.02.046 PMID: 21352927.

54. Wang Y, Lui LM, Gu X, Hayashi KM, Chan TF, Toga AW, et al. Brain Surface Conformal Parameteri-
zation using Riemann Surface Structure. IEEE Trans Med Imag. 2007; 26(6):853–65. PMID:
17679336.

55. Wang Y, Yuan L, Shi J, Greve A, Ye J, Toga AW, et al. Applying tensor-based morphometry to
parametric surfaces can improve MRI-based disease diagnosis. Neuroimage. 2013; 74:209–30.
Epub 2013/02/26. doi: 10.1016/j.neuroimage.2013.02.011 PMID: 23435208; PubMed Central
PMCID: PMC3641904.

56. Lao Y, Wang Y, Shi J, Ceschin R, Nelson MD, Panigrahy A, et al. Thalamic alterations in preterm neo-
nates and their relation to ventral striatum disturbances revealed by a combined shape and pose anal-
ysis. Brain Struct Funct. 2014. doi: 10.1007/s00429-014-0921-7 PMID: 25366970.

57. Joshi SH, Espinoza RT, Pirnia T, Shi J, Wang Y, Ayers B, et al. Structural plasticity of the hippocam-
pus and amygdala induced by electroconvulsive therapy in major depression. Biological Psychiatry.
2015. doi: 10.1016/j.biopsych.2015.02.029

58. LorensenWE, Cline HE. Marching cubes: A high resolution 3D surface construction algorithm. SIG-
GRAPH Comput Graph. 1987; 21(4):163–9. doi: 10.1145/37402.37422

59. Bro-Nielsen M, Gramkow C. Fast fluid registration of medical images. Visualization in Biomedical
Computing (VBC'96) Springer; 1996. p. 267–76.

60. D'Agostino E, Maes F, Vandermeulen D, Suetens P. A viscous fluid model for multimodal non-rigid
image registration using mutual information. Med Image Anal. 2003; 7(4):565–75. Epub 2003/10/17.
PMID: 14561559.

61. Rey D, Subsol G, Delingette H, Ayache N. Automatic detection and segmentation of evolving pro-
cesses in 3Dmedical images: Application to multiple sclerosis. Med Image Anal. 2002; 6(2):163–79.
Epub 2002/06/05. S1361841502000567 [pii]. PMID: 12045002.

62. Leow A, Huang SC, Geng A, Becker J, Davis S, Toga A, et al. Inverse consistent mapping in 3D
deformable image registration: its construction and statistical properties. Inf Process Med Imaging.
2005; 19:493–503. Epub 2007/03/16. PMID: 17354720.

63. Pizer S, Fritsch D, Yushkevich P, Johnson V, Chaney E. Segmentation, registration, and measure-
ment of shape variation via image object shape. IEEE Trans Med Imag. 1999; 18:851–65. PMID:
10628945.

64. Arsigny V, Fillard P, Pennec X, Ayache N. Log-Euclidean Metrics for Fast and Simple Calculus on Dif-
fusion Tensors. Magn Reson Med. 2006; 56(2):411–21. PMID: 16788917.

65. Hotelling H. The generalization of Student's ratio. Ann Math Statist. 1931; 2:360–78.

66. Cao J, Worsley KJ. The detection of local shape changes via the geometry of Hotelling's T2 fields.
Ann Statist. 1999; 27(3):925–42.

67. Thirion JP, Prima S, Subsol G, Roberts N. Statistical analysis of normal and abnormal dissymmetry in
volumetric medical images. Med Image Anal. 2000; 4(2):111–21. PMID: 10972325

68. KimWH, Pachauri D, Hatt C, Chung MK, Johnson SC, Singh V, editors. Wavelet based multi-scale
shape features on arbitrary surfaces for cortical thickness discrimination. Advances in Neural Infor-
mation Processing Systems (NIPS) 2012.

69. Leporé N, Brun C, Chou Y-Y, Chiang M-C, Dutton RA, Hayashi KM, et al. Generalized Tensor-Based
Morphometry of HIV/AIDS Using Multivariate Statistics on Deformation Tensors. IEEE Trans Med
Imag. 2008; 27(1):129–41. PMID: 18270068.

70. Holmes AP, Blair RC, Watson JD, Ford I. Nonparametric analysis of statistic images from functional
mapping experiments. J Cereb Blood FlowMetab. 1996; 16(1):7–22. Epub 1996/01/01. doi: 10.1097/
00004647-199601000-00002 PMID: 8530558.

71. Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with
examples. Hum Brain Mapp. 2002; 15(1):1–25. Epub 2001/12/18. doi: 10.1002/hbm.1058 [pii]. PMID:
11747097.

72. Zannis VI, Breslow JL. Apolipoprotein E. Mol Cell Biochem. 1982; 42(1):3–20. PMID: 7038438.

73. Zannis VI, Breslow JL, Utermann G, Mahley RW,Weisgraber KH, Havel RJ, et al. Proposed nomen-
clature of apoE isoproteins, apoE genotypes, and phenotypes. J Lipid Res. 1982; 23(6):911–4. PMID:
7130859.

Influence of APOEGenotype on Hippocampal Atrophy over Time

PLOSONE | DOI:10.1371/journal.pone.0152901 April 11, 2016 23 / 26

http://dx.doi.org/10.1002/hbm.20708
http://www.ncbi.nlm.nih.gov/pubmed/19172649
http://dx.doi.org/10.1016/j.neuroimage.2011.02.046
http://dx.doi.org/10.1016/j.neuroimage.2011.02.046
http://www.ncbi.nlm.nih.gov/pubmed/21352927
http://www.ncbi.nlm.nih.gov/pubmed/17679336
http://dx.doi.org/10.1016/j.neuroimage.2013.02.011
http://www.ncbi.nlm.nih.gov/pubmed/23435208
http://dx.doi.org/10.1007/s00429-014-0921-7
http://www.ncbi.nlm.nih.gov/pubmed/25366970
http://dx.doi.org/10.1016/j.biopsych.2015.02.029
http://dx.doi.org/10.1145/37402.37422
http://www.ncbi.nlm.nih.gov/pubmed/14561559
http://www.ncbi.nlm.nih.gov/pubmed/12045002
http://www.ncbi.nlm.nih.gov/pubmed/17354720
http://www.ncbi.nlm.nih.gov/pubmed/10628945
http://www.ncbi.nlm.nih.gov/pubmed/16788917
http://www.ncbi.nlm.nih.gov/pubmed/10972325
http://www.ncbi.nlm.nih.gov/pubmed/18270068
http://dx.doi.org/10.1097/00004647-199601000-00002
http://dx.doi.org/10.1097/00004647-199601000-00002
http://www.ncbi.nlm.nih.gov/pubmed/8530558
http://dx.doi.org/10.1002/hbm.1058
http://www.ncbi.nlm.nih.gov/pubmed/11747097
http://www.ncbi.nlm.nih.gov/pubmed/7038438
http://www.ncbi.nlm.nih.gov/pubmed/7130859


74. Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC Jr., et al. Protective
effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet. 1994; 7(2):180–4.
doi: 10.1038/ng0694-180 PMID: 7920638.

75. Blacker D, Lee H, Muzikansky A, Martin EC, Tanzi R, McArdle JJ, et al. Neuropsychological measures
in normal individuals that predict subsequent cognitive decline. Arch Neurol. 2007; 64(6):862–71. doi:
10.1001/archneur.64.6.862 PMID: 17562935.

76. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach
to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 1995; 57
(1):289–300. citeulike-article-id:1042553.

77. Wang G, Zhang X, Su Q, Shi J, Caselli RJ, Wang Y, et al. A novel cortical thickness estimation method
based on volumetric Laplace-Beltrami operator and heat kernel. Med Image Anal. 2015; 22(1):1–20.
doi: 10.1016/j.media.2015.01.005 PMID: 25700360.

78. Pievani M, Galluzzi S, Thompson PM, Rasser PE, Bonetti M, Frisoni GB. APOE4 is associated with
greater atrophy of the hippocampal formation in Alzheimer's disease. Neuroimage. 2011; 55(3):909–
19. Epub 2011/01/13. S1053-8119(11)00005-X [pii] doi: 10.1016/j.neuroimage.2010.12.081 PMID:
21224004.

79. Soininen H, Partanen K, Pitkanen A, Hallikainen M, Hanninen T, Helisalmi S, et al. Decreased hippo-
campal volume asymmetry on MRIs in nondemented elderly subjects carrying the apolipoprotein E
epsilon 4 allele. Neurology. 1995; 45(2):391–2. PMID: 7854548.

80. Lemaitre H, Crivello F, Dufouil C, Grassiot B, Tzourio C, Alperovitch A, et al. No epsilon4 gene dose
effect on hippocampal atrophy in a large MRI database of healthy elderly subjects. Neuroimage.
2005; 24(4):1205–13. Epub 2005/01/27. S1053-8119(04)00618-4 [pii] doi: 10.1016/j.neuroimage.
2004.10.016 PMID: 15670698.

81. Crivello F, Lemaitre H, Dufouil C, Grassiot B, Delcroix N, Tzourio-Mazoyer N, et al. Effects of ApoE-
epsilon4 allele load and age on the rates of grey matter and hippocampal volumes loss in a longitudi-
nal cohort of 1186 healthy elderly persons. Neuroimage. 2010; 53(3):1064–9. doi: 10.1016/j.
neuroimage.2009.12.116 PMID: 20060049.

82. Protas HD, Chen K, Langbaum JB, Fleisher AS, Alexander GE, LeeW, et al. Posterior cingulate glu-
cose metabolism, hippocampal glucose metabolism, and hippocampal volume in cognitively normal,
late-middle-aged persons at 3 levels of genetic risk for Alzheimer disease. JAMA Neurol. 2013; 70
(3):320–5. doi: 10.1001/2013.jamaneurol.286 PMID: 23599929; PubMed Central PMCID:
PMC3745014.

83. Lyall DM, Royle NA, Harris SE, Bastin ME, Maniega SM, Murray C, et al. Alzheimer's disease suscep-
tibility genes APOE and TOMM40, and hippocampal volumes in the Lothian birth cohort 1936. PLoS
One. 2013; 8(11):e80513. doi: 10.1371/journal.pone.0080513 PMID: 24260406; PubMed Central
PMCID: PMC3829876.

84. Cohen RM, Small C, Lalonde F, Friz J, Sunderland T. Effect of apolipoprotein E genotype on hippo-
campal volume loss in aging healthy women. Neurology. 2001; 57(12):2223–8. PMID: 11756601.

85. O'Dwyer L, Lamberton F, Matura S, Tanner C, Scheibe M, Miller J, et al. Reduced hippocampal vol-
ume in healthy young ApoE4 carriers: an MRI study. PLoS One. 2012; 7(11):e48895. doi: 10.1371/
journal.pone.0048895 PMID: 23152815; PubMed Central PMCID: PMC3494711.

86. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, et al. Effects of age, sex, and eth-
nicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis.
APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997; 278(16):1349–56. Epub
1997/10/29. PMID: 9343467.

87. de Flores R, La Joie R, Landeau B, Perrotin A, Mezenge F, de La Sayette V, et al. Effects of age and
Alzheimer's disease on hippocampal subfields: comparison between manual and FreeSurfer volume-
try. Hum Brain Mapp. 2015; 36(2):463–74. doi: 10.1002/hbm.22640 PMID: 25231681.

88. Hao Y, Wang T, Zhang X, Duan Y, Yu C, Jiang T, et al. Local label learning (LLL) for subcortical struc-
ture segmentation: application to hippocampus segmentation. Hum Brain Mapp. 2014; 35(6):2674–
97. doi: 10.1002/hbm.22359 PMID: 24151008.

89. Wang L, Swank JS, Glick IE, Gado MH, Miller MI, Morris JC, et al. Changes in hippocampal volume
and shape across time distinguish dementia of the Alzheimer type from healthy aging. NeuroImage.
2003; 20(2):667–82. PMID: 14568443.

90. Wang L, Miller JP, Gado MH, McKeel DW, Rothermich M, Miller MI, et al. Abnormalities of hippocam-
pal surface structure in very mild dementia of the Alzheimer type. Neuroimage. 2006; 30(1):52–60.
Epub 2005/10/26. S1053-8119(05)00716-0 [pii] doi: 10.1016/j.neuroimage.2005.09.017 PMID:
16243546; PubMed Central PMCID: PMC2853193.

91. Van Leemput K, Bakkour A, Benner T, Wiggins G, Wald LL, Augustinack J, et al. Automated segmen-
tation of hippocampal subfields from ultra-high resolution in vivo MRI. Hippocampus. 2009; 19

Influence of APOEGenotype on Hippocampal Atrophy over Time

PLOSONE | DOI:10.1371/journal.pone.0152901 April 11, 2016 24 / 26

http://dx.doi.org/10.1038/ng0694-180
http://www.ncbi.nlm.nih.gov/pubmed/7920638
http://dx.doi.org/10.1001/archneur.64.6.862
http://www.ncbi.nlm.nih.gov/pubmed/17562935
http://dx.doi.org/10.1016/j.media.2015.01.005
http://www.ncbi.nlm.nih.gov/pubmed/25700360
http://dx.doi.org/10.1016/j.neuroimage.2010.12.081
http://www.ncbi.nlm.nih.gov/pubmed/21224004
http://www.ncbi.nlm.nih.gov/pubmed/7854548
http://dx.doi.org/10.1016/j.neuroimage.2004.10.016
http://dx.doi.org/10.1016/j.neuroimage.2004.10.016
http://www.ncbi.nlm.nih.gov/pubmed/15670698
http://dx.doi.org/10.1016/j.neuroimage.2009.12.116
http://dx.doi.org/10.1016/j.neuroimage.2009.12.116
http://www.ncbi.nlm.nih.gov/pubmed/20060049
http://dx.doi.org/10.1001/2013.jamaneurol.286
http://www.ncbi.nlm.nih.gov/pubmed/23599929
http://dx.doi.org/10.1371/journal.pone.0080513
http://www.ncbi.nlm.nih.gov/pubmed/24260406
http://www.ncbi.nlm.nih.gov/pubmed/11756601
http://dx.doi.org/10.1371/journal.pone.0048895
http://dx.doi.org/10.1371/journal.pone.0048895
http://www.ncbi.nlm.nih.gov/pubmed/23152815
http://www.ncbi.nlm.nih.gov/pubmed/9343467
http://dx.doi.org/10.1002/hbm.22640
http://www.ncbi.nlm.nih.gov/pubmed/25231681
http://dx.doi.org/10.1002/hbm.22359
http://www.ncbi.nlm.nih.gov/pubmed/24151008
http://www.ncbi.nlm.nih.gov/pubmed/14568443
http://dx.doi.org/10.1016/j.neuroimage.2005.09.017
http://www.ncbi.nlm.nih.gov/pubmed/16243546


(6):549–57. Epub 2009/05/01. doi: 10.1002/hipo.20615 PMID: 19405131; PubMed Central PMCID:
PMC2739884.

92. Yassa MA, Stark SM, Bakker A, Albert MS, Gallagher M, Stark CE. High-resolution structural and
functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic Mild Cognitive
Impairment. Neuroimage. 2010; 51(3):1242–52. Epub 2010/03/27. doi: 10.1016/j.neuroimage.2010.
03.040 PMID: 20338246; PubMed Central PMCID: PMC2909476.

93. Yushkevich PA, Amaral RS, Augustinack JC, Bender AR, Bernstein JD, Boccardi M, et al. Quantita-
tive comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions
in in vivo MRI: Towards a harmonized segmentation protocol. Neuroimage. 2015. doi: 10.1016/j.
neuroimage.2015.01.004 PMID: 25596463.

94. Yushkevich PA, Pluta JB, Wang H, Xie L, Ding SL, Gertje EC, et al. Automated volumetry and regional
thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive
impairment. Hum Brain Mapp. 2015; 36(1):258–87. doi: 10.1002/hbm.22627 PMID: 25181316;
PubMed Central PMCID: PMC4313574.

95. Brechbühler C, Gerig G, Kübler O. Parametrization of Closed Surfaces for 3-D Shape Description.
Computer Vision and Image Understanding. 1995; 61(2):154–70. doi: 10.1006/cviu.1995.1013

96. Gu X, Wang Y, Chan TF, Thompson PM, Yau S-T. Genus zero surface conformal mapping and its
application to brain surface mapping. IEEE Trans Med Imag. 2004; 23(8):949–58. PMID: 15338729.

97. Styner M, Lieberman JA, Pantazis D, Gerig G. Boundary and medial shape analysis of the hippocam-
pus in schizophrenia. Med Image Anal. 2004; 8(3):197–203. Epub 2004/09/29. doi: 10.1016/j.media.
2004.06.004 PMID: 15450215.

98. Shen L, Firpi HA, Saykin AJ, West JD. Parametric surface modeling and registration for comparison
of manual and automated segmentation of the hippocampus. Hippocampus. 2009; 19(6):588–95.
Epub 2009/05/01. doi: 10.1002/hipo.20613 PMID: 19405146; PubMed Central PMCID:
PMC2849649.

99. Gutman B, Wang Y, Morra J, Toga AW, Thompson PM. Disease classification with hippocampal
shape invariants. Hippocampus. 2009; 19(6):572–8. PMID: 19437498. doi: 10.1002/hipo.20627

100. Csernansky JG, Wang L, Joshi S, Miller JP, Gado M, Kido D, et al. Early DAT is distinguished from
aging by high-dimensional mapping of the hippocampus. Dementia of the Alzheimer type. Neurology.
2000; 55(11):1636–43. Epub 2000/12/13. PMID: 11113216.

101. Wang L, Beg F, Ratnanather T, Ceritoglu C, Younes L, Morris JC, et al. Large deformation diffeo-
morphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer
type. IEEE Trans Med Imaging. 2007; 26(4):462–70. Epub 2007/04/13. doi: 10.1109/TMI.2005.
853923 PMID: 17427733; PubMed Central PMCID: PMC2848689.

102. Joshi SC, Miller MI. Landmark matching via large deformation diffeomorphisms. IEEE Trans Image
Process. 2000; 9(8):1357–70. Epub 2008/02/12. doi: 10.1109/83.855431 PMID: 18262973.

103. Haller JW, Christensen GE, Joshi SC, Newcomer JW, Miller MI, Csernansky JG, et al. Hippocampal
MR imaging morphometry by means of general pattern matching. Radiology. 1996; 199(3):787–91.
Epub 1996/06/01. PMID: 8638006.

104. Apostolova LG, Morra JH, Green AE, Hwang KS, Avedissian C, Woo E, et al. Automated 3D mapping
of baseline and 12-month associations between three verbal memory measures and hippocampal
atrophy in 490 ADNI subjects. Neuroimage. 2010; 51(1):488–99. Epub 2010/01/20. doi: 10.1016/j.
neuroimage.2009.12.125 PMID: 20083211; PubMed Central PMCID: PMC2847034.

105. Cho Y, Seong JK, Shin SY, Jeong Y, Kim JH, Qiu A, et al. A multi-resolution scheme for distortion-min-
imizing mapping between human subcortical structures based on geodesic construction on Riemann-
ian manifolds. Neuroimage. 2011; 57(4):1376–92. Epub 2011/06/11. S1053-8119(11)00574-X [pii]
doi: 10.1016/j.neuroimage.2011.05.066 PMID: 21658456.

106. Kim S-G, Chung MK, Schaefer SM, van ReekumC, Davidson RJ. Sparse Shape Representation
using the Laplace-Beltrami Eigenfunctions and Its Application to Modeling Subcortical Structures.
Proceedings / sponsored by IEEE Computer Society Technical Committee on Pattern Analysis and
Machine Intelligence Workshop on Mathematical Methods in Biomedical Image Analysis. 2012:25–
32. doi: 10.1109/MMBIA.2012.6164736. PMC3684562.

107. Wachinger C, Golland P, KremenW, Fischl B, Reuter M, Alzheimer's Disease Neuroimaging I. Brain-
Print: A discriminative characterization of brain morphology. Neuroimage. 2015; 109:232–48. doi: 10.
1016/j.neuroimage.2015.01.032 PMID: 25613439; PubMed Central PMCID: PMC4340729.

108. Yang X, Goh A, Chen SH, Qiu A. Evolution of hippocampal shapes across the human lifespan. Hum
Brain Mapp. 2013; 34(11):3075–85. doi: 10.1002/hbm.22125 PMID: 22815197.

109. Younes L, Ratnanather JT, Brown T, Aylward E, Nopoulos P, Johnson H, et al. Regionally selective
atrophy of subcortical structures in prodromal HD as revealed by statistical shape analysis. Hum

Influence of APOEGenotype on Hippocampal Atrophy over Time

PLOSONE | DOI:10.1371/journal.pone.0152901 April 11, 2016 25 / 26

http://dx.doi.org/10.1002/hipo.20615
http://www.ncbi.nlm.nih.gov/pubmed/19405131
http://dx.doi.org/10.1016/j.neuroimage.2010.03.040
http://dx.doi.org/10.1016/j.neuroimage.2010.03.040
http://www.ncbi.nlm.nih.gov/pubmed/20338246
http://dx.doi.org/10.1016/j.neuroimage.2015.01.004
http://dx.doi.org/10.1016/j.neuroimage.2015.01.004
http://www.ncbi.nlm.nih.gov/pubmed/25596463
http://dx.doi.org/10.1002/hbm.22627
http://www.ncbi.nlm.nih.gov/pubmed/25181316
http://dx.doi.org/10.1006/cviu.1995.1013
http://www.ncbi.nlm.nih.gov/pubmed/15338729
http://dx.doi.org/10.1016/j.media.2004.06.004
http://dx.doi.org/10.1016/j.media.2004.06.004
http://www.ncbi.nlm.nih.gov/pubmed/15450215
http://dx.doi.org/10.1002/hipo.20613
http://www.ncbi.nlm.nih.gov/pubmed/19405146
http://www.ncbi.nlm.nih.gov/pubmed/19437498
http://dx.doi.org/10.1002/hipo.20627
http://www.ncbi.nlm.nih.gov/pubmed/11113216
http://dx.doi.org/10.1109/TMI.2005.853923
http://dx.doi.org/10.1109/TMI.2005.853923
http://www.ncbi.nlm.nih.gov/pubmed/17427733
http://dx.doi.org/10.1109/83.855431
http://www.ncbi.nlm.nih.gov/pubmed/18262973
http://www.ncbi.nlm.nih.gov/pubmed/8638006
http://dx.doi.org/10.1016/j.neuroimage.2009.12.125
http://dx.doi.org/10.1016/j.neuroimage.2009.12.125
http://www.ncbi.nlm.nih.gov/pubmed/20083211
http://dx.doi.org/10.1016/j.neuroimage.2011.05.066
http://www.ncbi.nlm.nih.gov/pubmed/21658456
http://dx.doi.org/10.1109/MMBIA.2012.6164736
http://dx.doi.org/10.1016/j.neuroimage.2015.01.032
http://dx.doi.org/10.1016/j.neuroimage.2015.01.032
http://www.ncbi.nlm.nih.gov/pubmed/25613439
http://dx.doi.org/10.1002/hbm.22125
http://www.ncbi.nlm.nih.gov/pubmed/22815197


Brain Mapp. 2014; 35(3):792–809. doi: 10.1002/hbm.22214 PMID: 23281100; PubMed Central
PMCID: PMC3715588.

110. Li B, Mcmahon T, Shi J, Gutman BA, Thompson PM, Baxter LC, et al. Correlation between ApoE4
Genotype and Hippocampal Atrophy on Arizona APOECohort: A Surface Multivariate Tensor-based
Morphometry Study Arizona Alzheimer's Consortium Annual Scientific Conference; Tempe, AZ2015.

111. ZhangW, Shi J, Chen K, Baxter LC, Reiman EM, Caselli RJ, et al. An Automatic Surface-based Ven-
tricular Morphometry Pipeline and Its Application in Alzheimer’s Disease Research. Arizona Alzhei-
mer's Consortium Annual Scientific Conference; Tempe, AZ2015.

Influence of APOEGenotype on Hippocampal Atrophy over Time

PLOSONE | DOI:10.1371/journal.pone.0152901 April 11, 2016 26 / 26

http://dx.doi.org/10.1002/hbm.22214
http://www.ncbi.nlm.nih.gov/pubmed/23281100

