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Abstract

Background:With the large amount of pharmacological and biological knowledge available in literature, finding novel drug
indications for existing drugs using in silico approaches has become increasingly feasible. Typical literature-based
approaches generate new hypotheses in the form of protein-protein interactions networks by means of linking concepts
based on their cooccurrences within abstracts. However, this kind of approaches tends to generate too many hypotheses,
and identifying new drug indications from large networks can be a time-consuming process.

Methodology: In this work, we developed a method that acquires the necessary facts from literature and knowledge bases,
and identifies new drug indications through automated reasoning. This is achieved by encoding the molecular effects
caused by drug-target interactions and links to various diseases and drug mechanism as domain knowledge in AnsProlog,
a declarative language that is useful for automated reasoning, including reasoning with incomplete information. Unlike
other literature-based approaches, our approach is more fine-grained, especially in identifying indirect relationships for drug
indications.

Conclusion/Significance: To evaluate the capability of our approach in inferring novel drug indications, we applied our
method to 943 drugs from DrugBank and asked if any of these drugs have potential anti-cancer activities based on
information on their targets and molecular interaction types alone. A total of 507 drugs were found to have the potential to
be used for cancer treatments. Among the potential anti-cancer drugs, 67 out of 81 drugs (a recall of 82.7%) are indeed
known cancer drugs. In addition, 144 out of 289 drugs (a recall of 49.8%) are non-cancer drugs that are currently tested in
clinical trials for cancer treatments. These results suggest that our method is able to infer drug indications (original or
alternative) based on their molecular targets and interactions alone and has the potential to discover novel drug indications
for existing drugs.
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Introduction

The current model of drug discovery and development is

perceived as a costly and time-consuming process [1]. To reduce

the cost and shorten the duration for drug development, drug

repurposing, also known as drug repositioning, has become an

attractive alternative to traditional drug development aiming to

shorten the development process. Drug repurposing is the process

of finding a new indication for existing drug compounds. In other

words, it is a discovery process on how an existing drug compound

can be used for the treatment of diseases other than its original

indication. Reusing these drug compounds has the advantage of

bypassing many of the expensive steps of drug development, such

as in vitro and in vivo screening, chemical optimization,

toxicology, bulk manufacturing, formulation development. This

reduces cost and development risks, as well as shortens the typical

10–17 year process of drug development to 3–12 years [2]. The

best known success story of drug repositioning is the development

of sildenafil, a compound that was developed by Pfizer and

intended for the treatment of angina. Clinical trials of the drug

showed unexpected side effects that led to the treatment of erectile

dysfunction, and sildenafil became the blockbuster drug more

commonly known as ViagraH. Further studies and repositioning of

the drug compound showed yet another therapeutic indication for

treating pulmonary arterial hypertension, marketed as RevatioH.
This is due to the fact that sildenafil is an inhibitor of

phosphodiesterase-5 (PDE-5) proteins, and PDE-5 is known to

be expressed in pulmonary hypertensive lungs [3].

The main concept behind drug repurposing is that novel

drug indications can be identified based on the principle that
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the primary target of a drug can be associated with diseases

other than its original drug indication. In addition, as drugs can

act on multiple targets, secondary targets can be utilized for

novel drug indications as well. Several systematic approaches of

finding new uses for old drugs have been proposed. These

methods can be broadly classified into two categories: target

discovery based on chemical compound similarity [4] and

literature-based discovery [5]. Compound similarity has been

a popular approach to identify drug targets for drug repurpos-

ing. The assumption is that similar drug compounds have

similar targets so that targets that are not shared between a pair

of similar compounds can be identified as novel targets to the

other. By identifying new targets for existing compounds, new

drug indications can then be proposed. On the other hand,

typical text mining methods focus on the extraction of

knowledge such as protein-protein interactions from biomedical

literature. These text mining efforts including the BioCreAtIvE

challenge [6], a community effort that aims to advance the

development of biological knowledge extraction systems, focus

on the extraction of biological knowledge that is explicitly stated

in the literature. Literature-based discovery methods go a step

further by identifying relevant knowledge through text mining

so that new knowledge can be inferred from existing knowledge.

Swanson’s ABC Model [7] is a popular literature-based

discovery methodology that was proposed to link two concepts

through a commonly shared concept. Scientific concepts A and

C form a relationship when concept A cooccurs with concept B

in one publication while concepts B and C cooccur in another

publication. Variations of Swanson’s ABC models have been

described in the literature for the identification of indirect

relationships [8,9]. However, approaches based on cooccur-

rences of concepts within abstracts tend to generate too many

hypotheses. Another direction for network-based approaches

aims to uncover knowledge through the creation of biological

networks. STITCH [10] and ChemProt [11] are examples of

network-based approaches that take interactions extracted from

literature and integrates with data from biological knowledge

bases to create chemical compound-protein interaction net-

works. This kind of approach in linking the concepts does not

consider the inherent relationships between the pairs of concepts

such as interaction type and directionality of interactions, thus

leading to a large number of hypotheses. To handle large

networks that are generated by means of literature mining and

other data sources, visualization tools have been proposed to

assist the discovery of novel drug indications [12,13].

In this paper, we propose a new literature-based discovery

approach for drug repurposing that integrates facts from various

sources to infer novel indications by means of automated

reasoning. Our approach captures the various effects of drug-

target interactions inside cells as well as the molecular mechanisms

of diseases. Using cancer as an example, we utilized the wealth of

knowledge about cancer and encoded oncogenes and tumor

suppressors as well as cancer-related biological processes as the

domain knowledge for our method. Together with the protein-

protein interactions and gene-disease associations acquired from

the literature, our approach identified drugs that are potential

candidates for the treatment of cancer. By considering the

interaction types and their directionality and the domain

knowledge involved in the mechanism of action of drugs, our

approach aims to produce biologically meaningful hypotheses for

novel drug indications and can significantly reduce the number of

hypotheses as compared to previous text mining and literature-

based discovery approaches.

Methods

Our approach can be divided into three main components: (i)

the knowledge acquisition component; (ii) the knowledge representation

component; and (iii) the reasoning component. The knowledge acquisi-

tion component includes publicly available curated sources as well

as the relevant facts for the identification of drug indications

acquired using text mining. To automatically propose alternative

drug indications, it is necessary to first represent the mechanism of

drug action in the form of logic rules. With the facts acquired from

the knowledge acquisition component and the logic rules defined

in the knowledge representation component, the reasoning engine

utilizes the logic rules to find interactions that link drugs with the

corresponding drug indications.

Mechanism of Action of Drugs
The basic mechanism of drug action involves the activation or

inhibition of the function of drug targets that are responsible for

certain diseases, and this interaction translates into clinical effects

of the drug. One example is the drug levodopa, which is an agonist

that targets the dopamine receptors to increase dopamine levels for

the treatment of Parkinson’s disease [14]. Inhibition or activation

of drug targets such as oncogenes and tumor suppressors can also

trigger cancer-related biological processes and pathways. An

example of such drug action is erlotinib, an antagonist that targets

the oncogene known as the epidermal growth factor receptor

(EGFR) and alters the signal transduction in the EGFR signaling

pathway [15]. It is typical that a drug interacts with multiple

targets, in which the original indication is related to the primary

target. Alternative indications can be hypothesized through the

secondary targets and their corresponding roles in diseases. On the

other hand, a target can be involved in various diseases and

biological pathways. By studying the roles of the target in diseases

and pathways, alternative indications can be proposed through

deeper understanding of the targets.

Knowledge Acquisition
To identify novel drug indications, the first step of our approach

is to acquire various types of knowledge that are relevant to the

mechanism of action (MOA) of the drug. Such knowledge includes

(i) drug-target interactions; (ii) oncogenes and tumor suppressors;

(iii) genes involved in cancer-related biological processes; (iv) gene-

disease relations; (iv) protein-protein interactions. Table 1 provides

a summary of sources that are used to acquire knowledge for our

approach. DrugBank [16] was used as the source of knowledge for

drug-target relations, i.e. whether a drug is an antagonist or an

agonist for a drug target. Several sources are utilized as there is no

single source of complete knowledge on oncogenes and tumor

suppressors. Specifically UniProt (http://www.uniprot.org), En-

trez Gene (http://www.ncbi.nlm.nih.gov/gene) and CancerQuest

(http://www.cancerquest.org/oncogene-table and http://www.

cancerquest.org/tumor-suppressors-table) were considered in our

approach. For UniProt and Entrez Gene, the list of cancer genes

was obtained by using the keywords ‘‘oncogene’’ and ‘‘tumor

suppressor’’ as search criteria. Genes belonging to cancer-related

biological processes such as ‘‘cell proliferation’’, ‘‘apoptosis’’ and

‘‘angiogenesis’’ were obtained from the Gene Ontology annota-

tions (http://www.geneontology.org/GO.downloads.annotations.

shtm).

While databases such as PharmGKB [17] and IntAct [18] are

great resources for gene-disease relations and protein-protein

interactions, such databases are limited in terms of the coverage of

the literature due to the time-intensive process of manual curation.

More importantly, it is commonly the case that the type of the
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interactions is not captured in these databases. This becomes an

obstacle when the interactions from these databases are used in the

discovery of new knowledge. Suppose we know that a protein

interacts with an oncogene. The consequence of the interaction,

i.e. whether the function of the oncogene is activated or suppressed

due to the interaction, is an important factor when the interaction

is considered as part of the mechanism of a drug for treating

cancer. To capture the types of the interactions, our approach is to

utilize text mining so that appropriate interactions can be

identified efficiently from the literature.

Our text mining approach is to rely on grammatical structures

and keywords to capture the directionality and the types of the

interactions for the extraction of gene-disease relations and

protein-protein interactions. The parse tree query language (PTQL)

[19] is a suitable language that allows extraction patterns to be

defined over keywords and grammatical structures. PTQL is

a query language designed for information extraction over

a database of syntactic structures of text known as the parse tree

database (PTDB). Our latest version of the PTDB contains

a collection of 19 million Medline abstracts, and the Stanford

parser [20] is utilized to create parse trees of sentences. BANNER

[21] is used for the recognition of gene names from text, and the

recognized gene names are then mapped to official gene symbols

using GNAT [22]. By defining the keywords and extraction

patterns in the form of PTQL queries, it becomes possible to

extract the directionality and the types of interactions for gene-

disease relations and protein-protein interactions. Specifically, the

following types of interactions are extracted: (i) association of over-

or under-expressed genes with diseases (denoted as ,over2/

under-expressed p, associated with, d., where p corresponds to

a gene/protein name and d for a disease name); (ii) stimulation or

inhibition of proteins by other proteins (denoted as ,p1, induces/

inhibits, p2., where p1 and p2 are gene/protein names and p1 acts

on p2 in the interaction). Examples of these interactions are listed

in Table 2.

Knowledge Representation
To identify drug indications through automated reasoning, it is

important to properly represent our knowledge on basic drug

mechanism. This requires the formation of the logic facts for the

knowledge acquired from various sources as described in the

previous subsection. In addition, logic rules are used to represent the

properties of drug mechanism. We adopted a popular knowledge

representation language called AnsProlog [23,24] for the repre-

sentation of the logic facts and rules.

AnsProlog is a declarative language that is useful for reasoning,

including reasoning with incomplete information. One of the

advantages of using a declarative language is that we define what

the program should achieve and not how it should be achieved. It

is important to notice that AnsProlog is a declarative language

different from Prolog. While Prolog is a programming language

with roots in logic, it includes many non-logical features that are

not declarative, making it unsuitable for knowledge representation.

Here we give a brief introduction to the syntax of AnsProlog.

An AnsProlog rule is of the form:

l/l0, . . . ,lm,not lmz1, . . . ,not ln:

where lis are literals and not represents negation as failures. The

intuitive meaning of the above rule is that if it is known that literals

l0,..., lm are to be true and if lm+1,..., ln can assume to be false, then l

must be true. A literal is defined as either an atom or an atom

preceded by the symbol that indicates classical negation. If there is

no literal l in the head of a rule, then the rule is referred as

a constraint. On the other hand, if there are no literals in the body of

a rule, then the rule is referred as a fact, and its short hand of the

representation of a fact is simply the head literal itself. An answer

set program is composed of a set of AnsProlog rules, and the

interpretation of an answer set program is called answer sets.

Readers can refer to [25] for more details on the syntax and

semantics of AnsProlog.

Table 1. Different types of knowledge used in our approach and their sources.

Types of knowledge Sources

Drug-target interactions DrugBank

Oncogenes and tumor suppressors UniProt, Entrez Gene, CancerQuest

Genes involved in cancer-related biological processes Gene Ontology

Gene-disease relations Medline abstracts by text mining

Protein-protein interactions Medline abstracts by text mining

doi:10.1371/journal.pone.0040946.t001

Table 2. Examples of extracted gene-disease relationships and protein-protein interactions with their support evidences.

Evidences Extracted relationships

The results of our study demonstrate that AMACR expression is upregulated in
gastric cancer (PMID: 18787636)

,over-expressed AMACR, associated with, gastric cancer.

Therefore, inactivation of Rb protein by HPV 18 E7 protein may be associated with
carcinogenesis of small cell carcinoma (PMID:14506638)

,under-expressed RB1, associated with, small cell carcinoma.

Moreover, HER-2 expression was stimulated by EGF addition in young cells (PMID:8028398) ,EGF, induces, ERBB2.

Inhibition of PPARgamma activity by TNF-alpha is involved in pathogenesis of insulin
resistance (PMID: 18655773)

,TNF, inhibits, PPARG.

doi:10.1371/journal.pone.0040946.t002
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Logic Facts
Two basic types of logic facts are represented in our drug

mechanism domain: (i) entities and classes such as proteins and

drugs that are involved in drug mechanism; (ii) interactions such as

gene-disease relationships. The class protein is represented in the

form of protein(Prot), in which Prot is a variable for the class, and

protein(tp53) is an instance of the class protein. The entities and

their logic forms are shown in Table 3.

The class cancer-resisting biological process involves the

following instances of Gene Ontology terms:

N Negative regulation of cell proliferation (GO:0008285)

N Positive regulation of apoptosis (GO:0043065)

N Negative regulation of angiogenesis (GO:0016525)

On the other hand, the class cancer-promoting biological

process involves these instances:

N Positive regulation of cell proliferation (GO:0008284)

N Negative regulation of apoptosis (GO:0043066)

N Positive regulation of angiogenesis (GO:0045766)

For the interactions involved in the domain, they are

represented with the predicate interaction for drug-target and

protein-protein interactions and relation for gene-disease as well as

gene-biological process relations. For instance, the logic form of

the gene-disease relation ,over-expressed AMACR, associated

with, gastric cancer. is represented as relation(overexpressed(a-

macr), associated_with, gastric_cancer) while interaction(egf,

induces, erbb2) is the logic form for the protein-protein interaction

,EGF, induces, ERBB2., and EGF is the interactor of the

interaction that acts upon ERBB2, the interactee of the interaction.

A complete list of logic forms for the interactions is shown in

Table 4.

Logic Rules
In representing the process of drug mechanism, logic rules are

used to describe how a drug triggers the effect of the proteins based

on the acquired interactions. Through the effects of the proteins,

a series of steps eventually leads to the therapeutic relationship

between the drug and the corresponding disease. We represent

each triggering step on how a drug Dr affects the state of a protein

Prot in the form of trigger(Dr, Action, Prot, Step). Action is a class of

effects such as activates (a drug activating a protein) and inactivates (a

drug inhibiting a protein). Step is a variable indicating the order of

the triggering step in the series. For instance, trigger(moclobemide,

inactivates, maoa, 1) indicates that moclobemide inhibits the function

of MAOA in step 1.

The core idea of the representation of mechanism of actions is

to encode the pre- and post-conditions of interactions, also known

as the executability and direct effects of actions. Using the effect of

the activation of a tumor suppressor (denoted as Prot) as an

example, cancer is identified as an indication for drug Dr when

activation of the tumor suppressor is triggered by Dr previously.

This mechanism is captured by the following AnsProlog rule:

trigger Dr, treats, cancer, Sz1ð Þ/trigger Dr, activates, Prot, Sð Þ,

suppressor Protð Þ, drug Drð Þ, step Sð Þ:

The principles behind the representation of mechanism of drug

action are described below:

N Drug Dr triggers the inhibition (respectively activation) of protein

Prot when Dr acts as an antagonist (respectively an agonist) for

Prot. This is the initial step to trigger the mechanism.

N Drug Dr triggers the activation (respectively inactivation) of the

function of protein Prot2 when protein Prot1 has been activated

by Dr and the activated Prot1 increases (respectively decreases) the

expression of Prot2.

N Drug Dr is identified as a treatment for cancer when protein

Prot has been inhibited (respectively induced) by Dr and

overexpressed (respectively underexpressed) Prot is known to be

associated with cancer.

N Drug Dr is identified as a treatment for cancer when oncogene

Prot has been inhibited by Dr.

N Drug Dr is identified as a treatment for cancer when tumor

suppressor Prot has been activated by Dr.

N Drug Dr is identified as a treatment for cancer when protein

Prot, which is involved in cancer-promoting biological process,

has been inhibited by Dr.

N Drug Dr is identified as a treatment for cancer when protein

Prot, which is involved in cancer-resisting biological process,

has been activated by Dr.

A list of AnsProlog logic rules describing the actions and effects

involved in drug mechanism can be found in Tables S1 and S2 of

the supplementary information.

Table 3. Logic forms for the classes and entities involved in the drug mechanism domain.

Facts Logic forms Examples

Prot is a protein, e.g. P53 protein(Prot) protein(tp53)

Prot is an oncogene, e.g. EGFR oncogene(Prot) oncogene(egfr)

Prot is a tumor suppressor, e.g. P53 suppressor(Prot) suppressor(tp53)

Dr is a drug, e.g. moclobemide drug(Dr) drug(moclobemide)

Dise is a disease, e.g. depression disease(Dise) disease(depression)

Bp is a cancer-promoting biological process, e.g. positive
regulation of cell proliferation

cancer_promoting_bioprocess(Bp) cancer_promoting_bioprocess(pos_reg_cell_proliferation)

Bp is a cancer-resisting biological process, e.g. positive
regulation of apoptosis

cancer_resisting_bioprocess(Bp) cancer_resisting_bioprocess(pos_reg_apoptosis)

doi:10.1371/journal.pone.0040946.t003
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Reasoning
With the acquired facts in logic form and the drug mechanism

of actions described in logic rules, the next step is to define our

goal – find a series of steps that eventually identifies a possible drug

indication. Unlike semantic technologies such as SPARQL where

the user has to explicitly define the right kind of queries in order to

link up various sources of knowledge, the AnsProlog logic rules

defined in the previous section only describe the effects of actions

for the next step given the state of the current step and the logic

facts. It is the task of the reasoning component to link up various

sources and assign ordering of the steps that lead to a series of steps

for drug indication. Our expectation is that the inference has to

include: (i) a series of steps that involves a triggering step on how

a drug Dr can be used for the treatment of cancer in the form of

trigger(Dr, treats, cancer, S); (ii) the triggering step trigger(Dr, treats,

cancer, S) as the last step of the inference. To compute the answer

sets that infer drug indications, an AnsProlog solver called clingo

[26] is utilized to compute direct and indirect inferences based on

the logic rules and the acquired logic facts.

Scenarios
Two types of inferences can be generated by our method: direct

inference and indirect inference. Direct inference corresponds to

drug indications that are directly triggered by drug targets, while

drug targets play an indirect role in diseases in indirect inference.

We illustrate each of the steps involved in inferring alternative

drug indications for dipyridamole and tazarotene.

Example of a Direct Inference: Dipyridamole as
a Treatment for Leukemia
Dipyridamole is used to reduce blood clots through the

inhibition of adenosine deaminase [PubMed-Health: Dipyrida-

mole]. To find alternative indications for dipyridamole, the first

step of our method is to acquire the necessary knowledge such as

drug-target interactions and gene-disease relations. In this case,

the following facts were acquired:

N interaction(dipyridamole, inhibits, ada): dipyridamole acts as

an antagonist for adenosine deaminase (ADA) [Source:

DrugBank]

N relation(overexpressed(ada), associated_with, cancer): High

levels of adenosine deaminase (ADA) activity have been

associated with normal T cell differentiation and T cell disease,

such as acute lymphoblastic leukemia [Source: PMID:

6981287]

Dipyridamole is proposed as a potential treatment for cancer as

ADA can be inhibited by dipyridamole and overexpression of

ADA is associated with acute lymphoblastic leukemia. As of

September 2011, dipyridamole is under phase I clinical trial for

treatment of hepatic metastases from solid tumors [27].

N trigger(dipyridamole, inactivates, ada, 1)

N trigger(dipyridamole, treats, cancer, 2)

Figure 1 illustrates the steps involved in the direct inference of

drug indication for dipyridamole.

Table 4. Logic forms for the interactions involved in the drug mechanism domain.

Relations Logic forms

Drug Dr induces the activity of protein Prot interaction(Dr, induces, Prot)

Drug Dr inhibits the activity of protein Prot interaction(Dr, inhibits, Prot)

Protein Prot1 induces the activity of Protein Prot2 interaction(Prot1, induces, Prot2)

Protein Prot1 inhibits the activity of Protein Prot2 interaction(Prot1, inhibits, Prot2)

Overexpressed protein Prot is associated with disease Dise relation(overexpressed(Prot), associated_with, Dise)

Underexpressed protein Prot is associated with disease Dise relation(underexpressed(Prot), associated_with, Dise)

Protein Prot plays a role in biological process Bp relation(Prot, is_associated, Bp)

doi:10.1371/journal.pone.0040946.t004

Figure 1. A diagrammatic view of (a) direct and (b) indirect inferences for dipyridamole and tazarotene as novel cancer indications.
doi:10.1371/journal.pone.0040946.g001

Novel Drug Indications through Automated Reasoning
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Example of an Indirect Inference: Tazarotene as
a Treatment for Cancer
Tazarotene is approved for the treatment of psoriasis and acne.

The facts below are acquired from different sources to identify

alternative indication of tazarotene.

N interaction(tazarotene, induces, rara): tazarotene acts as an

agonist for retinoic acid receptor alpha (RARA) [Source:

DrugBank]

N interaction(rara, inhibits, egfr): These results suggest that RAR

ligand-associated down-regulation of EGFR activity reduces

cell proliferation by reducing the magnitude and duration of

EGF-dependent ERK1/2 activation. [Source: PMID:

11788593]

N oncogene(efgr) [Source: CancerQuest]

With the acquired facts and the logic rules, the following steps in

the inference are triggered:

N trigger(tazarotene, activates, RARA, 1)

N trigger(tazarotene, inactivates, EGFR, 2)

N trigger(tazarotene, treats, cancer, 3)

The indirect inference generated by our method shows that

RARA can be activated by the agonist tazarotene. The activated

RARA inhibits EGFR expression, and the inhibition of the

oncogene EGFR can lead to cancer treatment. This inference is

illustrated in Figure 1(b). As of April 2009, a phase II trial is

currently underway to study the effectiveness of tazarotene in

treating patients with basal cell skin cancer. The study is estimated

to be completed by June 2013 [28].

Results

For the knowledge acquisition component, we first compiled

a list of drugs from DrugBank that contain information on their

targets and interaction types, i.e. whether a drug is an antagonist

or agonist for a target. This results in a list of 943 drugs that

constitute 1704 drug-target interactions. In addition, a list of 265

cancer-related genes was obtained from UniProt, Entrez Gene and

CancerQuest and another 1420 genes that are involved in cancer-

related biological processes were acquired from the Gene

Ontology. Together with 16816 protein-protein interactions and

25866 gene-disease relations extracted from the literature, these

form a knowledge base of facts that are relevant to the mechanism

of actions of drugs.

To assess the performance of our approach, our evaluation

involves two aspects: (i) whether the drug indications suggested by

our MOA-based approach are indeed the original indications of

the drugs, without the direct use of such information; (ii) whether

our suggested drug indications are currently under clinical trials

for the indications according to ClinicalTrials.gov. Among the 943

drugs that were obtained from DrugBank, 81 of them are

indicated as cancer drugs according to DrugBank. We also

downloaded the records of the clinical trials from http://

clinicaltrials.gov dated in December 2011. 289 drugs that do not

have cancer as their original indications are found to be currently

investigated as therapeutics for various types of cancers.

Table 5. Evaluation of the inferences using a list of 943 drugs based on original indication and clinical trials.

Cancer genes GO Text mining All

Cancer as original indication (81) 25 43 58 67 (82.7%)

Non-cancer drugs under clinical trials for cancer (289) 46 95 133 144 (49.8%)

Total inferences 171 335 455 507

% inferences confirmed to be cancer-related 41.5% 41.2% 42.0% 41.6%

doi:10.1371/journal.pone.0040946.t005

Figure 2. Treatment distribution for the 296 inferred drugs that neither have cancer as the original indication nor in clinical trials
for cancer.
doi:10.1371/journal.pone.0040946.g002

Novel Drug Indications through Automated Reasoning
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Our method suggested 507 drugs that have the potential to be

used for cancer treatments. Among the suggested drug uses, 67 out

of 81 drugs (a recall of 82.7%) are indeed drugs with cancer as

their original indications. In addition, 144 out of 289 drugs (a

recall of 49.8%) are non-cancer drugs that are in clinical trials for

cancer. In other words, 211 out of the 507 inferred drug

indications are confirmed to be cancer-related. These results,

summarized in Table 5, show that our method is capable of

assigning correct drug indications. We also compared the

contribution in inferring drug indications among the various

different sources of knowledge, i.e. the use of cancer-related genes

(denoted as Cancer genes, genes involved in cancer-related biological

processes (GO) and relations extracted from literature (Text mining).

We found that the inferences generated based on each of the three

sources has about the same reliability in terms of the number of

inferences that are confirmed to be cancer-related. All three of

them are in the range of 41% to 42%, as illustrated in Table 5.

This shows that relations extracted by means of text mining can be

as reliable as other sources for inference of alternative indications.

With the broad coverage of relations obtained from text mining,

findings for alternative indications can be more comprehensive

than solely using manual curated sources.

We first performed analysis on the known cancer drugs that

have been missed in our prediction. As indicated in Table 5, 67 of

the 81 known cancer drugs are correctly predicted to be drugs for

cancer treatment by our system. Among the 14 missed cancer

drugs, interactions related to the drug targets of 8 of these cancer

drugs cannot be found in the knowledge sources that were used by

our system. The other 6 include contradictory interactions for the

drugs and their drug targets within our knowledge sources. For

example, PNP is one of the drug targets for cladribine, and it is

known to be an agonist for PNP according to DrugBank.

However, PNP is involved in the positive regulation of cell

proliferation (GO:0042102) based on Gene Ontology. Activated

PNP would lead to increase rate of cell proliferation, which is not

ideal to be used for cancer treatment according to our system.

Details of the analysis can be found in Table S3 of the

supplementary information.

We further characterize the remaining 296 drugs that do not

have cancer as original indications nor found to be in clinical trials

for cancer. We first categorized the drugs in major treatment

categories, and found that 17.7% of these drugs are currently used

for treatments of inflammation. Links between Inflammation and

tumor progression has been previously established in literature

[29]. Another major category is the treatment of cardiovascular

diseases constituting about 21.2%. The distribution of the main

disease types is summarized in Figure 2.

Evaluation of Text Mining Results
The inference of new indications for drugs largely depends on

the correctness of the interactions extracted from the literature.

Here we performed evaluation for the extraction of gene-disease

relations and protein-protein interactions using various corpora.

We adopted a corpus of gene-disease relations annotated from

5720 GeneRIF sentences [30] using the altered expression category

for the evaluation of our gene-disease relations. The altered

expression category contains 1044 gene-disease relations that

correspond to the change of gene expression and its relations with

diseases. In our evaluation we focused on relations that indicate

overexpression or underexpression of genes to reflect our model of

drug mechanism, and this forms a subset of 674 gene-disease

relations. Our evaluation indicates that the extracted gene-disease

relations result in a precision of 93.61%. The results of the

evaluation are summarized in Table 6. Further analysis revealed

that 50% of the incorrect gene-disease relations (i.e. false positives)

are due to negation and another 28% of the false positives involved

incorrect interactors or interactees in the extracted relations.

Examples of incorrectly extracted gene-disease relations are shown

in Table 7.

For protein-protein interactions, we performed the evaluation

using the BioInfer corpus [31], one of the commonly used corpora

for the evaluation of protein-protein interaction extraction. The

BioInfer corpus contains 1100 sentences from Medline abstracts

annotated with various biological relationships that include 425

protein-protein interactions. In this evaluation we focused on

interactions that indicate the increase or decrease of the expression

of a protein by another protein, and this forms a subset of 170

protein-protein interactions. Our evaluation indicates that the

extracted protein-protein interactions results in a precision of

52.63%. The results of the evaluation are summarized in Table 6.

Further analysis revealed that 50% of the false positives are due to

incorrect interactee and another 27.8% of the false positives

involved incorrect interactors. The rest of the false positives

include both incorrect interactors and interactees such that the

pair of entities has no actual relation to each other.

Table 6. Performance of the extraction of gene-disease
relations (GDRs) and protein-protein interactions (PPIs).

GDRs
(Bundschus corpus) PPIs (Bioinfer corpus)

True Positives (TP) 205 20

False Positives (FP) 14 18

False Negatives (FN) 469 150

Precision 93.61% 52.63%

Recall 30.42% 11.76%

F-measure 45.91% 19.23%

doi:10.1371/journal.pone.0040946.t006

Table 7. Examples of incorrectly extracted gene-disease relations due to negation (E1) and wrong interactor (E2).

Gene-disease relation Sentence

E1 ,overexpressed CCR7, associated with, lymphocyte-predominant
Hodgkin disease.

Up-regulation of CCR7 in classical but not in lymphocyte-predominant Hodgkin disease
correlates with ….

E2 ,overexpressed Bcl-2, associated with, acute myelogenous
leukemia.

Synergistic induction of apoptosis by simultaneous disruption of the Bcl-2 and MEK/
MAPK pathways in acute myelogenous leukemia.

doi:10.1371/journal.pone.0040946.t007
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Discussion

Automated reasoning is a powerful technique in artificial

intelligence that enables knowledge inference based on domain

knowledge and multiple data sources. In the biomedical domain

the capabilities of reasoning have been demonstrated in the

synthesis of pharmacokinetic pathways [32] and identification of

drug-drug interactions [33]. Here we demonstrate the capability of

automated reasoning to another important aspect of the drug

development process – identification of novel drug indications for

existing drugs. Unlike typical literature-based approaches that

produce large network of biological entities based on coocur-

rences, our approach takes interaction types and directionality into

consideration so that the search space is more computationally

feasible. In addition, the hypotheses generated by our approach

reflect the mechanism of action of drugs as well as the key

mechanisms of cancer. This eliminates the time-consuming

process of using network visualization to sift through the large

network of interactions manually to identify novel drug indica-

tions. Our results showed that a significant number of drugs

predicted by our method indeed have cancer as the original

indication. Some of our findings even showed that the drugs are

indeed currently under clinical trials for cancer.

While our method is capable of making not only correct but also

novel drug indications, our current approach is limited to the

identification of cancer treatment. In addition, the false positives

for the relations obtained from text mining may contribute to the

overall false positives in our predictions. Further improvement of

our text mining method is needed to produce even more reliable

inferences. To predict alternative indications for other disease

areas, the domain knowledge has to be extended to encode the

mechanism of other kinds of diseases and signaling pathways.

Another future direction is to capture chemical structure in-

formation of drug compounds in order to identify alternative drug

indications.
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ChemProt: a disease chemical biology database. Nucleic acids research 39:

D367–72. doi:10.1093/nar/gkq906.

12. Ha S, Seo Y-J, Kwon M-S, Chang B-H, Han C-K, et al. (2008) IDMap:

facilitating the detection of potential leads with therapeutic targets. Bioinfor-

matics 24: 1413–1415. doi:10.1093/bioinformatics/btn138.

13. Andronis C, Sharma A, Virvilis V, Deftereos S, Persidis A (2011) Literature

mining, ontologies and information visualization for drug repurposing. Briefings

in Bioinformatics 12: 357–368. doi:10.1093/bib/bbr005.

14. Lewitt PA (2008) Levodopa for the treatment of Parkinson’s disease. The New

England Journal of Medicine 359: 2468–2476. doi:10.1056/NEJMct0800326.

15. Lo H-W, Hsu S-C, Hung M-C (2006) EGFR signaling pathway in breast

cancers: from traditional signal transduction to direct nuclear translocalization.

Breast Cancer Research and Treatment 95: 211–218. doi:10.1007/s10549-005-

9011-0.

16. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, et al. (2006)

DrugBank: a comprehensive resource for in silico drug discovery and

exploration. Nucleic acids research 34: D668–72. doi:10.1093/nar/gkj067.

17. Klein TE, Chang JT, Cho MK, Easton KL, Fergerson R, et al. (2001)

Integrating genotype and phenotype information: an overview of the

PharmGKB project. Pharmacogenetics Research Network and Knowledge

Base. The Pharmacogenomics Journal 1: 167–170.

18. Aranda B, Achuthan P, Alam-Faruque Y, Armean I, Bridge A, et al. (2010) The

IntAct molecular interaction database in 2010. Nucleic Acids Research 38:

D525–31. doi:10.1093/nar/gkp878.

19. Tari L, Tu PH, Hakenberg J, Chen Y, Son TC, et al. (2012) Incremental

Information Extraction Using Relational Databases. IEEE Transactions on

Knowledge and Data Engineering 24: 86–99. doi:10.1109/TKDE.2010.214.

20. Klein D, Manning CD (2003) Accurate unlexicalized parsing. Proceedings of the

41st Annual Meeting on Association for Computational Linguistics (ACL’03).

Vol. 1. 423–430. doi:10.3115/1075096.1075150.

21. Leaman R, Gonzalez G (2008) BANNER: an executable survey of advances in

biomedical named entity recognition. Pacific Symposium on Biocomputing.

652–663.

22. Hakenberg J, Plake C, Leaman R, Schroeder M, Gonzalez G (2008) Inter-

species normalization of gene mentions with GNAT. Bioinformatics 24: i126–

132. doi:10.1093/bioinformatics/btn299.

23. Gelfond M, Lifschitz V (1988) The Stable Model Semantics For Logic

Programming. International Symposium on Logic Programming. 1070–1080.

24. Gelfond M, Lifschitz V (1991) Classical Negation in Logic Programs and

Disjunctive Databases. New Generation Computing: 365–387.

25. Baral C (2003) Knowledge representation, reasoning and declarative problem

solving. Cambridge University Press.

26. Gebser M, Ostrowski M, Schaub T (2009) Constraint Answer Set Solving.

Proceedings of the Twenty-fifth International Conference on Logic Pro-

gramming (ICLP’09). Vol. 5649. 235–249. doi:10.1007/978-3-642-02846-5.

27. Phase I Study of Disulfiram and Copper Gluconate for the Treatment of

Refractory Solid Tumors Involving the Liver (2008). Available:http://

clinicaltrials.gov/ct2/show/NCT00742911.

28. Topical Tazarotene in Treating Patients With Basal Cell Skin Cancer and Basal

Cell Nevus Syndrome on the Chest and Back (2008). Available:http://

clinicaltrials.gov/ct2/show/NCT00783965.

29. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420: 860–867.

doi:10.1038/nature01322.

Novel Drug Indications through Automated Reasoning

PLoS ONE | www.plosone.org 8 July 2012 | Volume 7 | Issue 7 | e40946



30. Bundschus M, Dejori M, Stetter M, Tresp V, Kriegel H-P (2008) Extraction of

semantic biomedical relations from text using conditional random fields. BMC
Bioinformatics 9: 207. doi:10.1186/1471-2105-9-207.

31. Pyysalo S, Ginter F, Heimonen J, Björne J, Boberg J, et al. (2007) BioInfer:

a corpus for information extraction in the biomedical domain. BMC
Bioinformatics 8: 50. doi:10.1186/1471-2105-8-50.

32. Tari L, Anwar S, Liang S, Hakenberg J, Baral C (2010) Synthesis of

pharmacokinetic pathways through knowledge acquisition and automated
reasoning. Pacific Symposium on Biocomputing. Vol. 476. 465–476.

33. Tari L, Anwar S, Liang S, Cai J, Baral C (2010) Discovering drug-drug

interactions: a text-mining and reasoning approach based on properties of drug
metabolism. Bioinformatics 26: i547–53. doi:10.1093/bioinformatics/btq382.

Novel Drug Indications through Automated Reasoning

PLoS ONE | www.plosone.org 9 July 2012 | Volume 7 | Issue 7 | e40946


