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Abstract

Fully-connected triads (FCTs), such as the Oct4-Sox2-Nanog triad, have been implicated as recurring transcriptional motifs
embedded within the regulatory networks that specify and maintain cellular states. To explore the possible connections
between FCT topologies and cell fate determinations, we employed computational network screening to search all possible
FCT topologies for multistability, a dynamic property that allows the rise of alternate regulatory states from the same
transcriptional network. The search yielded a hierarchy of FCTs with various potentials for multistability, including several
topologies capable of reaching eight distinct stable states. Our analyses suggested that complete auto-activation is an
effective indicator for multistability, and, when gene expression noise was incorporated into the model, the networks were
able to transit multiple states spontaneously. Different levels of stochasticity were found to either induce or disrupt random
state transitioning with some transitions requiring layovers at one or more intermediate states. Using this framework we
simulated a simplified model of induced pluripotency by including constitutive overexpression terms. The corresponding
FCT showed random state transitioning from a terminal state to the pluripotent state, with the temporal distribution of this
transition matching published experimental data. This work establishes a potential theoretical framework for understanding
cell fate determinations by connecting conserved regulatory modules with network dynamics. Our results could also be
employed experimentally, using established developmental transcription factors as seeds, to locate cell lineage specification
networks by using auto-activation as a cipher.
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Introduction

Embryonic stem cells have the capacity to differentiate into

more than 200 isogenic progenitor and terminal cell types [1],

each of which represents a stable cellular state. The potential for a

system to realize multiple states is termed multistability, which has

been proposed as the mechanism underlying cell differentiation for

over half a century, with stable states represented as either valleys

in the developmental landscape [2,3] or as dynamic attractors in

high-dimensional gene expression space [4–6]. Bistability is the

simplest form of multistability, which has been studied extensively

both in natural contexts [7] and in synthetic systems [8–13]. It has

been shown to be responsible for both normal cell fate

determination in Xenopus oocyte maturation [14] and oncogenesis

[15]. Additionally, recent work in hematopoietic stem cells (HSC)

implies that more complicated cases of multistability help in

canalizing HSC lineage determination [16]. The discovery of

induced pluripotent stem cells (iPSC) [17–20] further demon-

strates that cellular state transitioning within a multistable system is

a reversible process that can potentially be engineered for

therapeutic purposes.

Despite evidence for the existence of multiple substates of

pluripotent and hematopoietic stem cells [21–25], the molecular

mechanisms responsible for generating complex multistability are

poorly understood. Transitions between stable states may underlie

widely observed stem cell population heterogeneity [23,25–34],

random latency in induced pluripotency [34,35], and even the

progression of diseases such as cancer [36,37]. According to this

view, regulatory networks capable of adopting multiple stable

states may enable cells to explore adjacent fate possibilities through

state transitions, thereby enabling differentiation in the case of

stem cells, or generating phenotypic diversity for selection to act

upon in the case of tumor evolution. Recent studies have

implicated the fully-connected triad (FCT) [38–40] as a recurring

network motif among the transcriptional regulatory circuits that

control the development and maintenance of cellular states. Most
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notably, the Oct4-Sox2-Nanog triad is believed to be the key

functional module in the maintenance of stem cell pluripotency

[41–43]. The success of induced pluripotency through the

overexpression of transcription factors alone further indicates the

dominant role of transcription factor networks in maintaining

pluripotency and directing cellular reprogramming. All this

suggests a strong relationship between biological multistability

and the conserved FCT network of transcription factors (Figure 1),

and motivates a need for understanding the relationship between

FCT regulatory relationships and multistability.

Here we developed a high-throughput computational approach

to search the network dynamics of all fully-connected transcription

triads for their potential to realize multistability. Our computa-

tional searches identified complete auto-activation, (i.e.: all three

nodes activate themselves), as a topological feature of triads

capable of multiple stable steady states (SSS). Detailed analyses

were performed on network topologies selected for a high

likelihood of multistability. These analyses show that the relative

stability of SSS can be tuned by adjusting the network regulatory

strengths between nodes. After incorporation of gene expression

noise in stochastic simulations, the system was able to spontane-

ously transit from metastable (SSS with relatively lower stabilities)

to differentiated states (SSS with at least one gene OFF and high

stabilities), behaving like a three-dimensional Markovian jump

system with bias. This is also consistent with experimentally

demonstrated stochastic cancer cell state transitions [44], which

result in a phenotypic equilibrium in populations of cancer cells.

Different levels of noise, designed to mimic degrees of ‘‘noisy’’

transcriptional activity in cellular systems, were found to either

promote or disrupt state transitions, with some transitions

requiring layovers at one or more intermediate states. Such

connections between gene expression noise and cell state

transitions have also been demonstrated in many biological

processes [45]. Finally, in our simplified theoretical simulation of

reprogramming to generate induced pluripotent stem cells, the

distribution of random temporal latency could be described by an

Inverse Gaussian distribution, a finding consistent with experi-

mental observations [34]. Taken together, our work illustrates that

computational screening, analysis, and simulation of network

dynamics can serve as valuable tools for connecting conserved

regulatory modules with complex biological processes, such as

development, disease and stem cell reprogramming.

Results

Network Enumeration and Parameter Scanning for
Multistability

To define the set of FCT networks with a high likelihood for

multistability, we first enumerated all possible fully-connected

three-node topologies (Figure 2A). Here, nodes represent tran-

scription factors and edges represent possible transcriptional

regulations. After taking into account topological equivalencies,

we were left with 104 unique FCTs as candidate topologies, which

fully represent all 29 = 512 possible FCT topologies (see Support-

ing Information (SI), Figure S1 and MATERIALS AND

METHODS for details).

Each FCT candidate was generally modeled by a set of three-

variable ordinary differential equations (ODEs), with each variable

representing the abundance of a single transcription factor and

each of the nine tunable parameters representing a single

regulation strength (Figure 2A). The activation and repression of

each gene by other factors are modeled additively to account for

reported mechanistic independence of transcription regulations

[16,40,46] (MATERIALS AND METHODS). This simplification

can be expanded to include more mechanistic details of specific

networks without altering the general conclusion of this screening.

A state of the network is then defined as an equilibrium or SSS if

all transcription factor abundances do not change over time. An

algorithm was developed to automate the search process to

identify all possible states.

Figure 1. Multistability arises from small gene networks and underlies cell differentiation. Fully-connected triads (FCTs) are important,
recurring transcriptional networks in the development and maintenance of cellular states. Notably, the Oct4-Sox2-Nanog triad has been implicated in
inducing and maintaining stem cell pluripotency. In the Waddington model for cell differentiation [3], the cell’s underlying developmental landscape
is governed by the dynamical potential of these small gene networks to realize multistability. Transition from one state to another can be guided via
altered topology or strength of wiring.
doi:10.1371/journal.pone.0102873.g001
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Figure 2. High-throughput computational screening for multistable networks. (A) FCTs were enumerated and modeled by ODEs
(parameters denoted as P). (B) The probability of multistability for each of the 104 FCTs generated by the computational screen is plotted. FCTs with a
high probability of multistability are marked with an X with the color representing the multistability group; the two highest probability groups are
labeled by their indices. Colored backgrounds serve as visual aids to distinguish the top three groups. (C) Fifteen FCTs with significant multistable
potentials are listed with groups ranked according to their probability for multistability. The red arrows indicate activating regulation and blue T-head
arrows indicate inhibitory regulation. Network 54 was included because it was the only network with complete auto-activation that did not have a
high multistable potential.
doi:10.1371/journal.pone.0102873.g002
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Specifically, to measure the probability of multistability, we

scanned N = 421,875 parameter sets for each of the 104 networks

to identify all possible states. The values of these parameters are

generic but cover a wide range to serve as a proof of principle for

diverse biological scenarios. The probability of multistability was

then defined as the number of parameter sets giving rise to at least

5 stable steady states divided by N. This probability reflects the

robustness of certain FCT’s multistability, and hence quantifies its

possible natural presence frequency. The entire FCT multistability

screen is an ensemble of many independent computations and, as

a result, was run in parallel and performed in high-throughput

computer clusters (see MATERIALS AND METHODS). Such

large-scale screening is computationally intensive and is only

possible with simplified model equations. Therefore the chosen

forms of our ODE models omit many biochemical details such as

epigenetics and transcriptional factor co-binding. The models

serve as a general abstraction and system specific details could be

incorporated later in light of specific experimental evidence.

Complete Auto-Activation Contributes to Multistability
Using our network screening approach, we quantified and

ranked the potential for multistability of all 104 possible FCTs

(Figure 2A). Of the 104, 15 showed significant probability for

multistability (marked in Figure 2B and topologies drawn in

Figure 2C).

The multistable FCTs were empirically categorized into three

groups according to their probability of multistability (color shaded

in Figure 2B,C). The first group, which had the highest probability

of realizing multistability and with the potential for eight states,

consisted of a single network (Network 84) with all positive auto-

regulation and all mutual inhibition. The second group of

multistable FCTs, consisting of Networks 8, 38, 60, and 62, was

also exclusively positive auto-regulating but displayed a mixture of

positive and negative mutual regulation. Specifically, these

networks were either enriched for mutual inhibition (Networks

60 and 62) or displayed symmetrical topologies (Network 8 and

38). The third group, which was comprised of 10 FCTs that

exhibited lower but still significant potential for multistability, once

again featured similar positive auto-regulation as a common

attribute. The networks of the third group had either asymmetric

topologies (Networks 3, 10, 12, 27, 36 and 56) or competing

mutual regulation of target genes (Network 5, 25, and 30), except

for Network 1, which was entirely void of inhibitory regulation.

These results suggest that an appropriate combination of mutual

inhibitory and activating regulation helps to increase the potential

for a network to realize multistability, a finding that is consistent

with previous theoretical studies [47].

From our screen, we were able to identify a set of important,

minimum topological features capable of multistability. In

particular, of the possible 16 FCTs with complete positive auto-

regulation, our screen selected 15 as having a high likelihood for

multistability. Network 54 was the only FCT displaying complete

auto-activation with insignificant potential for multistability, likely

because of competing mutual activation and repression of all the

nodes (bottom of Figure 2C).

Indeed, positive auto-regulation has been shown to be an

important feature of bistable systems [7,9,10,14,48,49], and recent

experimental work also suggests it could be necessary for

maintaining multipotency in stem cells [50]. The role of positive

feedback in multistability has been well studied [9,14,51], and the

interconnected autoregulatory loop formed by Oct4, Sox2, and

Nanog is thought to underlie the bistable switch between ESC self-

renewal and differentiation, and the ability of core ESC regulators

to ‘boot up’ the pluripotency transcriptional program by forced

expression during reprogramming [52]. Our computational results

similarly suggest that, within the limits of the study, complete

positive auto-regulation is an important contributor to the

generation of high-dimensional multistability across diverse FCT

topologies. It is striking to note that one or two instances of auto-

activation, no matter how strong, are not sufficient to generate

multistability in our simulations. Therefore, it is possible that

complete auto-activation of FCTs could be used as an important

hallmark in the identification of new multistable gene networks.

Sensitivity and bifurcation of multistability
Network 84 (Figure 3A, all positive auto-regulation and all

mutual inhibition) yielded the highest potential for multistability in

our screen (Figure 2C). To gain a deeper understanding of this

FCT, we performed a bifurcation analysis [53,54] to investigate

how the change of one regulation strength affects the number,

stability, and location of all states, while other parameters are kept

constant (Figures 3B and S2). Bifurcation analysis is a useful

analytical tool that can reveal when and where one state can

bifurcate into two or more states in response to a changing

parameter. This is analogous to a progenitor cell transitioning

from a self-renewing phase to a multi-lineage differentiating phase

in response to a stimulus [16].

In the bifurcation diagram of Network 84 (Figures 3B and S2),

locations of both SSS (thick colored lines) and unstable steady

states (thin grayed lines) are plotted. X and Y indicate the

abundance of gene product of X and Y. The axis of a represents

the strength of all self-activation, while other parameters are kept

constant. Gene product Z is omitted because only three quantities

can be visualized in the plot. Nevertheless, its abundance can be

inferred from that of X and Y. Thus the figure provides the

position of SSS as the concentration of the three transcription

factors, and their self-activation strength, varies.

As can be seen in Figure 3B, Network 84 has complex

dynamics. When auto-activation is very weak (a less than 1), the

system only has one SSS (the black line), which corresponds to the

state in which the abundances of all three gene products are very

low and could be roughly categorized as all genes OFF. This

finding intuitively makes sense considering the mutual repression

of Network 84’s topology, which under weak auto-activation does

not support individual genes overcoming degradation to support

the ON state. However, as the strengths of auto-activation increase

beyond a threshold, the system suddenly demonstrates many more

SSS (colored solid lines). All of these SSS branch out from the all-

OFF state, which is the typical nature of bifurcation. When a= 1,

the system can assume its maximum of eight states (illustrated in

Figure 3B as red circles). These states include the following

possible binary combinations: all three genes ON (orange); all

three genes OFF (black); two genes ON and one gene OFF (blue,

cyan, and purple); and, one gene ON and two genes OFF (green,

brown, and yellow). The locations of these eight SSS are also

plotted in Figure 3C in XYZ coordinate. The sizes of the circles

correspond to each state’s stability (details below). Network 84 is

able to maintain multiple SSS for a wide parameter range of auto-

activation. The all-OFF state (Figure 3B black line) disappears

when auto-activation strengths become greater than 1.05 (Fig-

ure 3B gray circles illustrate locations of SSS when a= 5). As the

auto-activations become stronger (e.g., a greater than 7), all three

one-gene-ON (green, brown, and yellow) states disappeared,

leaving only two-gene-ON and all-ON states to be SSS (blue,

cyan, purple, and orange lines in Figure 3B).

The potential for this three-node gene network to yield as many

as eight stable states underscores the idea that many cell types (e.g.,

over 200) could be generated from networks comprised of a small

Multistability and Stochasticity of Network Triads
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number of nodes. Taken further, a fully-connected network with

only eight nodes could produce 256 states [47]. While only

theoretical, it is an example of the potential for such combinatorial

complexity and provides a plausible mechanism for cell lineage

determination, where different gene product abundances and ON-

OFF combinations could drive the system towards a spectrum of

cell fates. Coupled with our bifurcation analysis, where we

modeled the abrupt appearance or collapse of SSS in this

topology, FCTs could also lead to discrete jumps between states

in response to a changing cellular environment or signaling. The

phenomenon of hysteresis, when such jumps cannot be reversed

by returning to the previous environmental conditions, has been

established as the mechanism for many irreversible cell fate

determinations[55].

Stochastic State Transitioning
Next, we investigated the effects of gene expression fluctuations

on the multistability potential of Network 84. Fluctuations in gene

expression under constant environmental conditions may arise

from inherent stochastic fluctuations in gene expression, or from

regulatory architecture, chromatin structure, or transcriptional

bursting. Here, we use the broad term ‘gene expression noise’ to

encompass all these possibilities. Gene expression noise has been

shown to affect cellular physiology in single-cell organisms [56–

62], and has also been linked to random developmental patterns

and cell fate decisions in multicellular organisms [63–67]. The

mechanisms underlying the utilization and regulation of gene

expression noise in higher organisms, however, are not well

understood. We introduced such noise into our model by

Figure 3. Bifurcation and Stochastic Analysis of Network 84. (A) The topology of Network 84 was predicted to have the highest probability
for multistability. (B) The bifurcation diagram of Network 84 plots transcription factor concentrations of X and Y at each SSS against a, the self-
activation strength. The mutual inhibition parameters are also set equal and referred to as b. Here b is set to 0.1 and a is used as the bifurcation
parameter ranging between .01 and 100. By including both stable (colored) and unstable (grey) steady states we can see that as a increases the SSS
move to higher concentrations, approximately at the same rate as the increase in a. SSS are color coded and listed in the legend to distinguish
different SSS, where ‘+’ indicates the gene is ‘ON’ and ‘-’ means ‘OFF’. Spheres are also attached to each SSS at a= 1 (red) and a= 5 (gray), sphere size
correlates with the size of the spectral radius, a measure of SSS stability. (C) Simulations of noise-induced state transitioning in Network 84 under
different levels of noise. Simulations were performed with auto-regulation equal to 1 and mutual inhibition equal to 0.1, with noise levels of 0.5, 0.85,
and 1 from left to right. The locations of the deterministically calculated states are indicated with red spheres, with their size correlated to their
spectral radius. The blue ribbons indicate the temporal trajectories of the simulations. The black arrows indicate initial direction of state transitions.
Potential cloud shape for each SSS is illustrated in Figure S6A. (D) The number of states traveled in the stochastic simulations plotted versus noise
strength. The red line represents simulations that were initiated from the all-ON state, and the blue line represents simulations that were initiated
from the origin.
doi:10.1371/journal.pone.0102873.g003
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modifying the algorithm from Adalsteinsson et al. [68] to help

understand how inherent stochasticity affects cell differentiation

(see MATERIALS AND METHODS).

Using our modified algorithm, we simulated the temporal

evolution of all three gene product abundances under the

influence of different levels of gene expression noise. The sum of

these calculated measures can be visualized as the time-lapse

movie of a FCT’s fate over time (Movie S1). The system was

initialized at the all-ON state to mimic the promiscuous gene

expression state that is often observed when various progenitor

cells start to differentiate [69–73]. The locations of eight SSS when

a= 1 are indicated by the red spheres in Figure 3C, where the size

of the spheres represents the stability of each state as measured by

its spectral radius [74,75]. As shown in Figure 3C, at small noise

levels (Figure 3C, left panel), expression of all three genes

displayed fluctuations, yet the trajectory remained focused around

the initial all-ON state, indicating that small levels of gene

expression noise were not sufficient to induce spontaneous state

transitioning in Network 84. This also indicates the stability of the

network under well-buffered conditions. As the level of noise was

increased to an intermediate level (Figure 3C, middle panel), the

system began to transition from the initial all-ON state to a two-

ON-one-OFF state and later to a two-OFF-one-ON state. Within

the time frame simulated, the system transitioned back and forth

between these two latter states and spent most of the time in the

vicinity of these two states. When the noise level was increased

further, the system was able to visit all six states with at least one

gene ON and one gene OFF (Figure 3C, right panel; Movie S1).

The results of the stochastic state-transition simulations have

several interesting biological implications. First, the system

transitioned exclusively between states with at least one gene

ON and one gene OFF. After jumping out of the initial state, it

never returned to the all-ON state within the simulation time

frame; moreover, it never reached the all-OFF state. For this

topology, the all-ON and all-OFF states are significantly less stable

than the other six states, and thus serve as weaker attractors.

Specifically, it is the fine balance in the abundance of all gene

products that determines the stability of the all-ON and all-OFF

states, and this balance is easily disrupted by random perturbations

such as gene expression noise. These results provide a simplified

and yet concrete demonstration of the recently proposed concept

of ‘‘dynamic equilibrium’’ [76], in which individual cells can jump

between states randomly, while the proportion of cells in a

population at one specific state remains constant. Here we can see

the proportion (probability) of cells in one state is determined by

the stability of each state, which in turn is determined by network

topology and system parameters. Therefore when one single

fluorescence reporter tagged to one gene is experimentally used to

track single cell dynamics, the cell population will exhibit a broad

distribution because this multi-dimensional system is projected

onto a single measured dimension.

Second, state transitions were only observed between two

adjacent states and not between non-neighboring states. In other

words, the transition from one state to another non-neighboring

state required layovers at one or more intermediate states. This

phenomenon resembles the experimental observation that pro-

genitor cells pass through multiple intermediate states as they

differentiate [5]. Moreover, these simulations also highlight that

the transition of a triad from one state to another can take multiple

possible routes. Similar results have been observed at the cellular

level, where recent progress in de-differentiation [17,19,20] and

trans-differentiation [77] has shown that natural developmental

cellular state transitions may be only one of many possible routes

between cell types [78].

Third, trajectories of the stochastic simulation showed a

directional bias in gene expression state space, presumably due

to mutual repression. For instance, when the system was in the X-

ON/Y-ON/Z-OFF state, its trajectory was virtually limited to the

X-Y plane, with little fluctuation in the Z direction (Figure 3C,

middle and right panels). The result is that each state in these

simulations was functionally ‘‘flat’’ and comprised of the expres-

sion from only two genes. Similarly, the one-ON states had a polar

or single dimensional expression distribution.

Next, we subjected the system to a range of noise levels to gain a

deeper understanding of the system’s response and pattern of state

transitioning. Noise strengths ranging from 0.4 to 1.2 were selected

for analysis. Plotted in Figure 3D (red line) is the number of states

traveled by the system, from the all ON state, within the simulated

time versus the noise strength. The result shows a step function-

like increase in the number of states with increasing noise strength.

A similar pattern was observed when the simulation was initiated

at the origin (blue line) rather than the all-ON state. One

exception is that from this alternative starting point the system

could not travel to the all-ON state and therefore had only six

accessible states.

In both simulations, the sharp increase in the number of states

traveled occurred between noise strengths of 0.8 and 1

(Figure 3D). This appears to be the critical threshold for

overcoming the stability barrier between states and for complete

noise-induced state transitioning. The existence of such a critical

noise threshold suggests that natural systems may have the ability

to operate in different regimes that either utilize or repress gene

expression stochasticity to achieve distinct physiological goals.

SSS Analysis
To further explore Network 84’s response to two or more

simultaneously changing parameters, we conducted more thor-

ough parameter scanning (see MATERIALS AND METHODS

for details). First, two parameter combination regimes shown in

Figure 4A and B suggest that, with strong auto-activation,

Network 84 is ensured to have at least four states (bottom two

rows). Under these conditions, weak mutual inhibition led to seven

or eight states (orange and green boxes) while strong mutual

inhibition led to only four: all two-ON-one-OFF combinations and

all-ON (purple box). However, when both mutual inhibition and

auto-activation are weak, Network 84 assumes only one state, that

of all genes OFF (Figure 4A, blue box). When auto-activation is

weak and mutual inhibition is strong the system is capable of the

three two-ON-one-OFF states (Figure 4A, red box, locations of

SSS not shown). Taken together, this again reinforces the

importance of strong auto-activation in generating multistability

and hence the potential to canalize cell differentiation. As a third

parameter combination regime, we tested the effect of asymmet-

rical regulation on multistability (Figure 4C, see MATERIALS

AND METHODS for details). Here we increased the mutual

repression of a single pair of genes for the conditions represented

by the green and orange boxes (Figure 4A, auto-regulatory

strength between 1–5) and saw the number of SSS fall to six.

Other similar simulations of asymmetrical regulation have been

included in the supplementary information (Figure S3). These

findings provide possible insight into why certain network

topologies have been adopted by evolution for particular

regulatory tasks. For example, Network 84 demonstrates a broad,

multistable parameter space that can be tuned, through regulatory

strengths, for the step-wise control of the maximal number of

states. Such a mechanism could be envisioned to transit cellular

identity from a pluripotent state to multi- or uni-potent state

during differentiation.

Multistability and Stochasticity of Network Triads
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A Regulatory Network for Pluripotency
Experiments probing the structure and function of the

regulatory network governing pluripotency suggest that the core

pluripotency regulators Oct4, Sox2, and Nanog are organized into

a regulatory topology of mutual activation that is shared with

Network 1 selected by our screen, [21,79]. This fully intercon-

nected autoregulatory loop is believed to stabilize self-renewal,

govern the bistable switch between ES cell self-renewal and

differentiation, and underlie the ability of selected pluripotency

regulators to ‘boot up’ the pluripotency transcriptional program-

ming upon forced expression in somatic cells, thereby reprogram-

ming them to a stem cell-like state [52]. Additional layers of

regulatory complexity have been described in this network,

including autorepression by Nanog [80,81] and differential cell

phenotypes in response to varying levels of these factors [82–84].

Moreover, Nanog acts as a homodimer [85], while Sox2 and Oct4

heterodimerize to regulate transcription [86], and attempts have

been made to model the regulatory dynamics of these transcrip-

tional complexes and their interaction with signaling factors [87].

Further adding to the complexity, Oct4 may also partner with

other Sox factors to form alternative regulatory complexes that

bind a distinct set of enhancers [88].

Notably, protein levels of the core pluripotency regulator Nanog

have been observed to fluctuate in cultured pluripotent stem cell

populations [23,24,89–92], suggesting that this regulatory network

is capable of adopting multiple states. To further explore possible

roles of multistability in stem cell transcriptional regulation, we

carried out detailed analysis on this network topology (Figure 5A).

Our goal in doing so is not to capture every regulatory complexity

present in the endogenous biological network, but rather to

provide a theoretical framework for how this simplified network

topology and fluctuations in network components might affect

multistability. As with Network 84, we first carried out the

bifurcation analysis for Network 1 (Figures 5B and S4). Consid-

ering the topology of Network 1 consists solely of positive

regulation, one might expect that the network would primarily

assume the all OFF ‘‘resting’’ or all ON ‘‘activated’’ states. This

intuition is largely correct but not complete. While network 1 does

tend toward the all-OFF state it is also capable of generating eight

states when the strengths of auto-regulation and mutual regulation

are 1 and 0.1, respectively (Figure 5B and C; 6A). This diagram

(Figure 5B) shares some similarities with that of Network 84

(Figure 3B). For instance, both networks exhibit eight SSS when

auto-activation strength is equal to 1, and fewer as auto-activation

strength increases. Likewise, when auto-activation is reduced to be

smaller than 1, both networks collapse to only support one SSS

(the black line). Thus Network 1 also displays discrete emergence

and collapse, or hysteresis, of SSS, allowing it to potentially serve

as a foundation for irreversible cell fate decision-making. It is

interesting that while the two-ON states (blue, cyan, and purple

lines) collapse readily as a increases, the one-ON states (green,

brown, and yellow lines) and the all-ON and all-OFF states

(orange, black), are stable over a wide range of parameter values. It

is also important to note that despite similarities in the state space

locations of each of the eight SSS in Networks 1 and 84, there are

considerable differences in their relative stabilities.

As with Network 84, we next incorporated different strengths of

gene expression stochasticity, or noise, to simulate state transition-

ing (Figure 5C). The simulations were started from the all-ON

state to mimic the all-ON pluripotent state of the Oct4-Sox2-

Nanog triad. In the presence of small levels of noise, the system

remained in the initial state throughout the duration of the

simulation (Figure 5C, left panel). When the noise level was

Figure 4. Stable Steady State Analysis of Network 84. (A) A matrix presenting the number of stable steady states generated by combinations
of different auto-regulatory strengths (rows) and mutual-regulatory strengths (columns). This provides an overview of network stability at various
points in the parameter regulation space; the green and orange regions are visualized as FCT diagrams independently in B. (B) The green-boxed
diagram corresponds to the green-boxed parameter combination regime from (A), where genes have regulatory strengths a= 1 and b= 0.1. By
contrast, the orange-boxed diagram corresponds to the orange-boxed parameter combination regime from (A), where nodes have regulatory
strengths a= 5 and b= 0.1. This parameter combination regime allows the system to be stable in 7 of the 8 SSS, losing only the all-OFF state. (C) Many
of the parameter combinations yielding multi-stable systems are not represented by the matrix, and are instead abstracted here. As an example, here
we present a parameter combination regime that can support 6 SSS and auto-activation strengths are similar to those in the orange box (thick red
arrows) but have one unrestrained pair of mutual inhibition that can exist at a very high strength (blue T-head repression lines).
doi:10.1371/journal.pone.0102873.g004
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increased, the system was able to spontaneously transition to other

states before settling in the all-OFF state, which represents the all-

OFF terminal, or differentiated, state (Figure 5C, middle panel;

Movie S2). When the noise level was increased further, the system

transitioned out of the initial state much earlier toward the all-OFF

state via an intermediate state (Figure 5C, right panel), confirming

that the all-OFF state is indeed the terminal state and robust to

different levels of noise.

It should be noted that simulation times were the same for each

panel (Figure 5C). In the high noise level simulation (Figure 5C,

right panel), the system reverted to the all-OFF state relatively

quickly and exhibited small stochastic deviations that rarely

exceeded the boundary of the sphere representing the state. This

could perhaps be likened to the terminal state of the Oct4-Sox2-

Nanog triad after cell differentiation, where expression of these

genes is markedly depressed in gene expression profiles. Further-

more, for the modeling of cell fate decisions during development,

the binary nature of these simulations appears to mimic the

observed stable states of the Oct4-Sox2-Nanog triad, typically in

either the all-ON or all-OFF state, with partial activation visible

transiently during iPSC induction [17,18,93].

Much like the trajectories observed for Network 84, those for

Network 1 exhibited the ability to transition between many states

stochastically, with the potential of accessing five of the eight

possible states. Although, as depicted, the residence time of states

for Network 1 was largely restricted to either all-ON or all-OFF

(Figures 3C, 5C). Network 1 simulations could not access the three

two-ON-one-OFF states unless initiated there, presumably

because of the states’ low stabilities. Moreover, unlike Network

84, all the simulation trajectories for Network 1 ultimately reached

and remained at the all-OFF state, a result of Network 1’s topology

and the superior stability of the all-OFF state. This also led to a

lower average number of states traveled by Network 1 at higher

noise levels (Figure 5D). A higher noise threshold for state

switching of this sort could serve as added protection against

aberrant regulation of pluripotency. From a modeling perspective,

these results offer a useful means of rapidly predicting the

dynamical stochastic trajectory of a network based on state

stabilities, without having to run entire stochastic simulations.

Figure 5. Bifurcation and Stochastic Analysis of Network 1. (A) The topology of Network 1 was also predicted to have high probability for
multistability. Network 1 shares the topological architecture of the Oct4-Sox2-Nanog triad, and is believed to underlie stem cell differentiation and
reprogramming. (B) As in Figure 3B, the X and Y protein concentrations of stable (colored) and unstable (gray) steady states at various self-activation
strengths can be seen. A legend is shown as in Figure 3. (C) Simulations of noise-induced state transitioning in Network 1 under different levels of
noise. Simulations were performed with auto-regulation equal to 1 and mutual regulation equal to 0.1, with noise levels of 0.5, 0.85, and 1 from left to
right. The locations of the deterministically calculated states are indicated with red spheres, with their size being correlated to their spectral radius.
The blue ribbons indicate the temporal trajectories of the simulations. The black arrows indicate initial direction of state transitions. Potential cloud
shape for each SSS is illustrated in Figure S6B. (D) The number of states traveled in the stochastic simulations plotted versus noise strength.
doi:10.1371/journal.pone.0102873.g005
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As with Network 84, we tested the sensitivity of Network 1 to

different combinations of regulation strengths (Figure 6). Again,

weak mutual activation and strong auto-activation gave rise to the

maximal number of states (Figure 6A, green and orange boxes).

Interestingly, however, the remainder of the regulation parameter

space was much simpler than that of Network 84, yielding only

one or two states (Figure 5A, blue and red boxes). Again,

independent manipulation of mutual regulatory interactions can

also lead to parameter combinations that enable multistability. A

thorough parameter scan for such multistability found a third

interesting configuration, one where a gene (Z) propagates signal

to downstream genes (X and Y), which also have strong auto-

activation (Figure 6C). This pattern has one defining characteristic

in that it maintains multi-stability as long as there is only one

master while the promoted genes have weak interactions with each

other. Such multi-stability is lost when the system adopts a two-

driver gene topology. Therefore Network 1 may be considered a

largely bimodal topology that retains the potential for greater state

diversity, but only within a narrow parameter window (Figure 5B

and 6A). This characterization of Network 1 topology is supported

by other studies. Specifically, while claims of monoallelic

expression of Nanog [89] have been contested [24,76], a common

finding across the literature is heterogenous expression of

endogenous Nanog protein in cultured ES cells by immunostain-

ing [23,24,75,76,89,90]. These findings suggest bistable expression

of Nanog, and support the idea that the Oct4-Sox2-Nanog

network may exist in at least four stable states (all high; Oct4 and

Sox2 high but Nanog low, as occurs in low Nanog ESCs; high

Sox2 but low Nanog and Oct4 as occurs in neural progenitor cells

[94]; or all low/off in the differentiated state).

Analysis of the regulatory parameter space for networks 1 and

84 raises an important consideration that may be broadly

applicable. Could progressive lineage determination, or restriction

of pluripotency, be correlated with the strength of mutual

regulation? For both of the networks analyzed, the highest

potential for multistability (eight states) was found in a parameter

space with weak mutual regulation (Figures 4A and 6A). As the

strength of mutual regulation increases from this point, more

restricted potential fates predominate, much as would be expected

as cell lines differentiate. The influence of greater mutual

regulation on the potential for multistability would be interesting

to explore, and perhaps is well-suited to modeling in the

hematopoietic system where hematopoietic stem cells (HSCs) or

multi-potent progenitors could be compared with bi-potent

progenitors.

In Silico Induced Pluripotency
Reprogramming mature cell types into iPSCs is achieved by the

overexpression of a number of defined transcription factors

(typically including Oct4, Sox2, c-Myc, and Klf-4) that regulate

the necessary pluripotency phenotypes as well as each other’s

expression [18–20]. Recently, it has been shown that overexpres-

sion of only Oct4, Sox2, and Nanog results in similar rates of iPSC

generation from human amnion cells [95], and, importantly, the

Oct4-Sox2-Nanog triad is highly expressed and appears to be the

core regulatory circuit for pluripotency in stem cells [96]. To

construct a simplified in silico version of the iPSC experiment

involving the Oct4-Sox2-Nanog triad, we added a constitutive

expression term to each gene of Network 1 (Figure 7A, see

MATERIALS AND METHODS).

To begin, we performed bifurcation analysis on the network 1

topology with an added term for constitutive expression (Figur-

es 7B and S5). The addition of a basal level of expression to

Network 1 resulted in at most five possible states, two of which (the

Figure 6. Stable Steady State Analysis of Network 1. (A) A matrix defined by examining the number of SSS present at points where all auto-
regulatory strengths (row) are equal and mutual-regulatory strengths (column) are also equal. This provides an overview of network stability at
various points in the parameter regulation space; the green and brown regions are visualized as FCT diagrams independently in B. (B) The green-
boxed diagram corresponds to the green-boxed parameter combination regime from (A), where genes have regulatory strengths a= 1 and b= 0.1.
The orange-boxed diagram corresponds to the orange-boxed parameter combination regime from (A), where nodes have regulatory strengths a= 5
and b= 0.1. This parameter combination regime allows the system stability in 5 of the 8 Stable Steady States, losing only the two-ON states. (C) As in
Figure 4C, there exist parameter combinations not captured by the matrix representation, where increased strength of any one of the five regulations
(represented by thick arrows) will enable 5 SSS.
doi:10.1371/journal.pone.0102873.g006
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orange all-ON and black all-OFF lines) possessed considerably

higher stabilities than the others (Figure 7B). All one-ON-two-

OFF SSS (green, brown, and yellow lines) are only stable for a

narrow range of a. Even when they are stable, their stabilities are

insignificant. Looking closely we can see that between the red,

green, and yellow lines there are 3 unstable paths without a stable

component. These lines would be the locations of two-ON-one-

OFF states if they achieved stability. More importantly, as auto-

activation strengthens, even the all-OFF state’s stability becomes

insignificant when compared with the all-ON state (Figure 7B gray

circles).

A comparison of bifurcation diagrams of Network 1 with and

without the constitutive expression term (Figure 5B, 7B) highlights

some striking and important differences. Firstly, as observed

experimentally, by adding the constitutive basal expression term to

all three genes, there is increase in the stability of the all-ON state.

Moreover, our simulation predicts a reduction in the number of

possible SSS from eight to five, as well as a significant reduction in

the stability of the non all-ON or all-OFF states. While these

findings must be considered within the limits of our study, they

suggest constitutive expression could help to canalize the transition

from all-OFF to all-ON by simplifying the triad’s regulatory space,

and thus provide a foundation for induced pluripotency.

To further examine modified Network 1, the effects of gene

expression noise were investigated through stochastic simulation

from the all-OFF state with a moderate level of noise (see

MATERIALS AND METHODS). Consistent with experimental

evidence [34], at the start of the simulation, the system hovered

near the origin for a period of time and then began to transition

toward the all-ON state. Once again, by adding a basal

overexpression term to the genes, we found that the stability of

the all-ON state was increased to be greater than that of the all-

OFF state (Figure 7C; Movie S3). As a result, the system was

attracted to the all-ON ‘‘pluripotent’’ state in a way that was not

observed with the unmodified Network 1 (Figure 5C).

These findings reflect observations from the experimental

practice of induced pluripotency in which the reprogramming

factors are strongly overexpressed, and may shed light on the

regulatory mechanisms behind induced pluripotency. For in-

stance, the overexpression of defined transcription factors in

differentiated cell types may alter the regulatory parameters of the

FCT into ones that prefer the all-ON ‘‘pluripotent’’ state. Affected

cells would then gradually transition from their original state to the

preferred all-ON state. Further, as is often done experimentally,

we removed the constitutive expression term from our simulation

and found the system to return to an unmodified Network 1

behavior. Much like iPSCs, the network was able to re-

differentiate to the all-OFF state or to remain in the all-ON state,

under conditions of low noise or high auto-activation respectively.

To further test the utility of our model as an abstraction for the

transcriptional regulation of stem cells and stem cell reprogram-

ming, we next used our model to predict the temporal dynamics of

stochastic reprogramming. We first investigated the time required

for the system to transition from the all-OFF to the all-ON state,

which is termed the first passage time (FPT) [97]. An FPT

distribution of induced pluripotency was generated by running

2000 simulations with our modified Network 1, resulting in a

characteristic asymmetrical bell shape distribution with a long tail

and a peak at approximately 50 normalized time units (Figure 8A).

To ensure the generality of this observation, an FPT distribution

for the transition from one state to another in Network 84 was

similarly generated and found to yield the same pattern

(Figure 8B). Such a skewed bell shape distribution is consistent

with published experimental data [34].

Discussion

Over fifty years have passed since the connection between

development and multistability was first proposed [3]. However,

despite efforts in the last decade to reverse engineer transcription

regulatory networks, the molecular basis for multistability is still

not well understood. Likewise, multistable systems with more than

two states have not yet been constructed de novo. We address this

challenge with a high-throughput, dynamical systems search

algorithm, powered by parallel computing, that identifies gene

network topologies enriched in their capacity to realize multi-

stability.

Focusing our screen on FCTs, our algorithm identified complete

auto-activation as an important topological feature for high-

dimensional multistability, along with a variety of combinations of

Figure 7. Bifurcation and Stochastic Analysis of Network 1 with constitutive basal expression. (A) The topology of Network 1 is used to
mimic iPSC experiments with added constitutive expression of all three genes. (B) As in Figure 5B, the X and Y protein concentrations of stable and
unstable steady states are plotted against self-activation strengths. With the addition of the constitutive expression we can see a further decrease in
stabilities, specifically two-ON states are never stable. Additionally one-ON states lose stability very rapidly, approximately at a= 1, and the all-OFF
state destabilizes after a= 9 leaving only the all-ON state. This can also be seen in the sizes of the spectral radii, deterministically these steady states
exist but in practice they have very little influence. (C) Simulations of Network 1 modeled in the presence of an additional constitutive overexpression
term consistently show a transition from an all-OFF state to an all-ON state after a period of latency.
doi:10.1371/journal.pone.0102873.g007
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mutual regulation. Our analyses shed light on existing ideas and

generate new testable hypotheses for some of the regulatory

mechanisms underlying cell fate determination. Many of the

seemingly disparate experimental observations including random

reprogramming latency, the existence of intermediate states during

differentiation and reprogramming, population heterogeneity, and

alternate routes of cellular state transitioning [5,27,34,96,98], can

potentially be connected and addressed by our dynamical analyses

of FCTs.

The central importance of complete auto-activation in multi-

stable triads suggests that nodes for such regulatory networks could

be identified in exogenous overexpression screens for known key

regulators. In such a screen, the components of multistable FCTs

would self-identify, by maintaining their own expression after the

withdrawal of candidate transcription factor overexpression.

Transcription factors identified this way could represent ‘‘pio-

neers’’, those capable of activating regulatory partners or

overcoming transcriptional inaccessibility, i.e., silenced loci, such

as Oct4.

The identification of regulatory partners (mutual regulation)

could also be characterized by the analysis of promoter/enhancer

regions upstream of identified auto-activation transcription factors.

Such a ‘‘guilt by association’’ method may also help to infer the

function of the triad as a whole, or lesser-known regulatory

partners. Thus, using established developmental transcription

factors as seeds, the Waddington landscapes of whole cell lineages

could perhaps be mapped by using auto-activation as a cipher.

The notion that specific topologies may serve particular

regulatory roles better than others is supported by the identifica-

tion of an additional Network 1 regulatory topology in a stem cell

population. The transcription factors Gata2, Fli1 and Scl/Tal1

form a regulatory triad that operates through mutual and auto-

activation to promote hematopoiesis in the mouse embryo [99]. As

discussed in the context of the Oct4-Sox2-Nanog triad, the

Network 1 topology has a tendency to operate in a bimodal and

terminal manner, meaning that once switched to the all-ON state

the triad has a tendency to be locked into that state. Such a

regulatory system would impart a sort of cell ‘‘memory’’, perhaps

allowing newly formed HSCs to travel from the aorta-gonad-

mesonephros (AGM) or primordial niche to the fetal liver and

bone marrow niche without losing their multipotent state [99,100].

Importantly, regulatory triads do not exist in isolation and are

not static entities. Rather, inputs from the environment and other

signaling pathways can influence the state or composition of

endogenous triads through the perturbation of regulatory

relationships. The consequence of such influence was evident in

our bifurcation analysis of Networks 84, 1, and modified 1, where

small changes to the strengths of the network regulation created or

eliminated SSS. Thus, under the influence of external signaling

(e.g., post-translational modification), subcellular localization of

co-factors or regulatory ligands [101–103], the same network

topology may alternate between different regulatory state config-

urations. Such state switching could be an effective regulatory

strategy for responding to changing environmental and develop-

mental cues.

While gene expression stochasticity is an accepted factor of cell

fate determination [61], its role in complex processes such as

differentiation remains elusive. We subjected our chosen multi-

stable networks (e.g., Network 84) to stochastic simulations and

found that moderate levels of gene expression noise were sufficient

to disrupt the balance of protein abundances required for

maintaining all-ON and all-OFF states, even with high protein

levels. In other words, our simulations suggest that noise is critical

to a biological system’s ability to transition from meta-stable states

to differentiated states. Moreover, noise-induced transitioning

showed multiple possible routes from one state to another, with the

trajectories traversing step-wise through adjacent states (Figur-

es 3C, 5C). This is possibly the in silico manifestation of

experimental observations showing progenitor cells passing

through alternate intermediate states on the way to a differentiated

state [5]. Additionally, by testing a range of noise levels, we found

that the number of states traveled by these multistable systems

increased sharply at specific noise levels (Figures 3C, 5C). Perhaps

cellular systems straddle such a threshold, whereby gene expres-

sion noise can either be suppressed or amplified to realize very

different physiological outcomes. The advent of single-cell gene

expression profiling methods [104] affords new windows on

cellular heterogeneity, and theoretical frameworks such as we

Figure 8. Stochastic simulations capture latency distributions in induced pluripotency. (A) Distribution of simulated latency for the
modified Network 1 model illustrates a skewed bell shape. The histogram was generated from 2000 simulations. (B) Similar results generated from
2000 simulations with Network 84.
doi:10.1371/journal.pone.0102873.g008
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present here may provide valuable insights when informed by the

experimental data these technologies will provide.

Like signaling cascades in their simplest form, the regulatory

relationships between the genes of FCTs define their meta-

properties. In a manner reminiscent of the low-pass filtering

capacity of cascades, our stochastic simulations detected network-

specific variation in tolerance for noise. Specifically, in the analyses

of Networks 1 and 84, significantly different noise thresholds for

multistability were measured—0.8 and 1.4, respectively (Figures 3

and 5). This observation suggests that, along with other measures,

networks may be tuned for unique noise-switching thresholds. For

example, the Gata2-Fli1-Sci/Tal1 triad (Network 1) would be

predicted to remain in the all-ON state as long as noise levels are

maintained low, but to transition quickly to an all-OFF state under

high noise. This could be tested experimentally using tunable

synthetic noise controllers [94] or generators [105] upstream of

these HSC regulators to apply large fluctuations to the system.

As such, differentiation or pluripotency may provide readily

accessible experimental models. One possible method to induce

noise could be the expression of splice isoforms [106,107].

Focusing on the endogenous triads discussed, state change

dynamics could be evaluated under the perturbations of either

single or multiple splice isoforms. Thus, while controlling for total

protein expression within a particular triad, one could evaluate

whether ‘‘noise’’, derived from the concurrent expression of

multiple isoforms, influences the product or rate of the induced

state transition. If so, an interesting outcome may be that

individual differentiation pathways could be primed for state

change by expressing tailored suites of splice-isoforms or in the

case of iPSC reprogramming, perhaps accelerate the rate of state

switching.

Finally, our work offers new directions for synthetic biology

[11,12,108–112]. As a tool, the application of synthetic biology to

disease-related or developmental triads may allow for true reverse

engineering of in vivo processes. For example, the regulatory

dynamics of Network 1 (Gata2-Fli1-Scl/Tal1 and Oct4-Sox2-

Nanog) or Network 84 (RUNX2, SOX9 and PPAR-c) topologies

could be systematically examined for response to perturbation or

noise by constructing such FCTs in an orthogonal environment

(e.g., bacteria). Similarly, the effects of stochasticity on the

regulation of pluripotency could be studied directly in mammalian

systems using tunable synthetic noise generators. Such a system

could vary the gene expression of triad components, while keeping

their mean expression level constant, to evaluate the influence of

noise on network state change [57,113]. Our work here provides a

starting point for the design of next-generation synthetic circuits

that could exploit multistability and its physiological consequences.

Materials and Methods

Enumerating and Eliminating Redundant Networks
Three-node networks can have 39 = 19683 configurations, each

with nine edges that consist of positive, negative or null regulations

between the nodes. Our focus on FCTs resulted in a total of

29 = 512 possible configurations because each edge can only

represent positive or negative regulation. Through permutation

analysis many of these 512 networks were found to be identical to

each other. Identical networks were eliminated, leaving us with

104 unique networks (see SI).

ODE Modeling and High-Throughput Screening
A three-node gene regulatory network can be described by a

three-dimensional ODE:

dx

dt
~a1f1(x)zb1g1(y)zc1h1(z){dx ð1Þ

dy

dt
~a2f2(x)zb2g2(y)zc2h2(z){dy ð2Þ

dz

dt
~a3f3(x)zb3g3(y)zc3h3(z){dz ð3Þ

In this formulation each variable (x,y,z) represents the protein

abundance of one gene product (Equations 1–3). Here only one

generic equation is used to describe the gene expression regulation

including transcription, translation, and other post-transcriptional

and post-translational modifications. Each equation captures the

core nonlinear dynamics of gene expression regulation and omits

details of the fine-tuning of it. The parameters (a1–3, b1–3, c1–3)

represent the strength of mutual or auto-regulation, be it activation

or inhibition. Each function (f, g or h) has the form Fn / (kn + Fn)

when representing activation, and the form kn/(kn+Fn) when

representing inhibition, where F can be either x, y, or z. The

activation and repression of each gene by other factors are

modeled additively to account for reported mechanistic indepen-

dence of transcription regulations [16,40,46]. For example,

Network 84 shown in Figure 3A can be described by the ODE:

dx

dt
~a1

xn

knzxn
zb1

kn

knzyn
zc1

kn

knzzn
{dx ð4Þ

dy

dt
~a2

kn

knzxn
zb2

yn

knzyn
zc2

kn

knzzn
{dy ð5Þ

dz

dt
~a3

kn

knzxn
zb3

kn

knzyn
zc3

zn

knzzn
{dz ð6Þ

In the models values of n = 4 and k = 0.5 were assumed for all

genes (Equations 4–6). While it is known that transcription factors

critical in stem cell programming often form homodimers [85,114]

or heterodimers [115], n is set to be equal 4 because the

nonlinearity quantified by n is often affected by many factors in

addition to protein multimerization [11]. A hill coefficient of 4 has

been used previously to demonstrate generic behavior of stem cell

differentiation [16]. Recently, hill coefficients up to 9 have also

been used [40] to construct models with experimentally verified

predictions. It is also found in our study that hill coefficient values

affect the region of multistability but not general conclusions.

While it did not affect the results of steady-state calculations, d was

set to be 1; this assumption can be adjusted in light of future

available experimental results. For mutual regulation strength, the

parameters (b1, c1, a2, c2, a3, b3) were set to [0.1, 0.2, 0.5, 1 or 5];

for auto-regulation strength, the parameters (a1, b2, c3) were set to

0.1, 0.5 or 1. These parameter possibilities lead to a total of

56*33 = 421,875 parameter sets to test.

We numerically solved for the root of the right-hand side of

each ODE set with over 1000 different initial guesses uniformly

distributed over the entire state space. Measuring the probability

of multistability for each FCT was accomplished by analyzing all
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421,875 parameter sets. A parallel algorithm was developed to

distribute this task as an ensemble of independent computations

(See the SI).

Analysis of the Parameter Space
In addition to the tabular data (Figure 4A and 6A) that is useful

for quick visualizations and analysis of stabilities, it is desirable to

recognize key patterns of parameter combinations (PCs) yielding

multistability. Therefore networks chosen (Network 84 and 1) for

in-depth analysis had their results recomputed with a wider sample

of parameter spaces. Specifically the PCs were expanded to five

levels for each edge, [0.1 0.5 1 2 6], yielding 5‘9 = 1,953,125

possible PCs. The found clusters can then be generalized to create

the FCT diagrams in Figures 4C and 6C.

Bifurcation Analysis
Bifurcation diagrams were generated using MatCont [116], a

continuation toolbox for MATLAB. Bifurcation analysis was

performed on the auto-activation strength; mutual-regulation

strengths were set at .1. Spectral radii were gathered at specific

intervals to compare the stability of the stable steady states. Stable

and unstable steady state information was graphed to generate

Figures 3B, 5B, and 7B, for more information please see SI.

Stochastic Simulations
The ODE model can be converted to chemical Langevin

equations to introduce stochasticity while approximating the

Gillespie algorithm [68,117]. All parameters were scaled up so

that copy numbers of gene products are in biologically reasonable

quantities and can reach over one hundred. This was done by

multiplying the coefficients in a, b, c and k by 100 with other

parameters unchanged. This linear shift does not alter the

bifurcation dynamics or the relative locations of SSS. At each

iteration, all chemical species are updated using the equation:

N(tzDt)~N(t)zDtA(N(t))zS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt(F(N(t))zB(N(t)))

p
z(t) ð7Þ

In this equation, N(t) represents the abundance of chemical

species, A(t) is the right-hand side the ODE, and F and B are the

forward and backward reaction terms in each equation, respec-

tively, which were extracted from corresponding ODEs. z(t) are

the standard Normal variables, S is the stoichiometric matrix of

the biochemical reactions (refer to [68] for additional details). In

our modified algorithm, we added one parameter, a, to Equation

(13) to represent the tunable noise strength:

N(tzDt)~

N(t)zDtA(N(t))za � S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt(F(N(t))zB(N(t)))

p
z(t)

ð8Þ

Here a was the noise strength used in Figures 3C and 5C.

Therefore, the results were comparable to pure discrete simula-

tions when a equals 1. Modulation of the noise strength(a) was

used to facilitate investigations of the system’s dynamics in

response to different noise levels. The multiplicative noise term

is chosen for simplicity without loss of generality.

Statistical Tests
All statistical tests were performed using Matlab. The param-

eters for each distribution were estimated using the Matlab

command mle. Chi-square (X2) statistics for each distribution were

computed with the chi2gof command.

Supporting Information

Figure S1 An example of the connection matrices and

topological permutations used to identify unique FCTs. In the

two FCT connection matrices illustrated, each row represents the

source of regulation and each column the recipient of regulation,

with symbols representing the activation or repression. As

indicated by the arrows, these two matrices are permutations of

each other after switching the Y and Z labels. Complete

permutation analysis involved both row and column switching.

(PDF)

Figure S2 Bifurcation diagram in Figure 3B shown with

different viewing angles and visual assistance. (A) The bifurcation

diagram of Figure3B is illustrated again to provide a frame of

reference; the figure legend is consistent among all subfigures. (B)

Bifurcation diagram is shown from the same angle as in A with

planes drawn at a= 1 and a= 5 where the red and gray points lie

precisely on the plane. (C) Bifurcation diagram drawn with a

different angle to emphasize differences in y-locations of each SSS.

Three planes drawn at y = 0.1, 1, and 5. Two gray points and two

red points lie on the bottom plane, four red points lie on the

middle plane, the SSS from the orange and blue lines overlap due

to our projection, and four gray points lie on the top plane, again

two points are overlapping, and one is out of the bounds of the

graph. (D) Bifurcation diagram drawn with another different angle

to emphasize differences in x-locations of each SSS. Three planes

drawn at x = 0.1, 1, and 5. Four gray points lie on the left plane,

with two overlapping, and one out of the bounds, four red points

lie on the middle plane, with two overlapping, and two gray and

two red points lie on the right plane.

(PDF)

Figure S3 Perturbations to network regulatory strengths affect

the probability distribution of network states. Regulatory strengths

for Network 84 were perturbed and the corresponding state

probability distributions were generated using results of stochastic

simulation. (A)–(C) Parameter strengths are identical to the green

box in Figure 4, with simulation state plotted as point collections

in B, and presented as a pie chart in C. (D)–(F) Random small

perturbations to the regulatory strengths and corresponding state

probability distributions. (G)–(I) Doubling in the strength of Y’s

inhibition of Z and corresponding state probability distributions.

The magnitudes of perturbations are labeled on each network

edge and are also represented by edge thickness. Axis labels of E

and H are the same as those of B. Simulations for these

distributions were calculated in the presence of a noise strength

equal to 1, and each perturbation was simulated ten times. The

point collections are color-coded based on their closest stable

steady state, and their probabilities are summarized in panels C, F

and I, respectively.

(PDF)

Figure S4 Bifurcation diagram in Figure 5B shown with

different viewing angles and visual assistance. (A) The bifurcation

diagram of Figure5B is illustrated again to provide a frame of

reference; the figure legend is consistent among all subfigures. The

position of the all-OFF states have been shifted due to the

logarithmic graphing, and that the all-OFF state remains at 0

concentration of x,y, and z regardless of alpha. (B) Bifurcation

diagram is shown from the same angle as in A with planes drawn

at a= 1 and a= 5 where the red and gray points lie precisely on

the plane. (C) Bifurcation diagram drawn with a different angle to
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emphasize differences in y-locations of each SSS. Three planes

drawn at y = 0.1, 1, and 5. Two gray points and three red points lie

on the bottom plane, four red points lie on the middle plane, the

SSS from the orange and blue lines overlap due to our projection,

and two gray points lie on the top plane. (D) Bifurcation diagram

drawn with another different angle to emphasize differences in x-

locations of each SSS. Three planes drawn at x = 0.1, 1, and 5.

Two gray points lie on the left plane, four red points lie on the

middle plane, with two overlapping, and two gray and two red

points lie on the right plane.

(PDF)

Figure S5 Bifurcation diagram in Figure 7B shown with

different viewing angles and visual assistance. (A) The bifurcation

diagram of Figure7B is illustrated again to provide a frame of

reference; the figure legend is consistent among all subfigures. (B)

Bifurcation diagram is shown from the same angle as in A with

planes drawn at a= 1 and a= 5 where the red and gray points lie

precisely on the plane. (C) Bifurcation diagram drawn with a

different angle to emphasize differences in y-locations of each SSS.

Three planes drawn at y = 0.1, 1, and 5. One gray point and one

red point lie on the bottom plane, two red points exist between the

lower and middle planes (approximately 0.3), two red points lie on

the middle plane, and one gray point lies on the top plane. (D)

Bifurcation diagram drawn with another different angle to

emphasize differences in x-locations of each SSS. Three planes

drawn at x = 0.1, 1, and 5. One gray point lies on the left plane,

two red points lie on the middle plane, two red points exist

between the middle and right planes and one gray point and one

red point lie on the right plane.

(PDF)

Figure S6 Visual representation of constrained steady state sub-

space under noise perturbations. (A) Trajectory clouds displayed in

Figures 3C are approximated by 3D ellipsoids. The radius in each

dimension is correlated with the inverse of the strength of the

eigenvalue corresponding to a particular eigenvector. i.e. if the

eigenvalue for an eigenvector is only weakly negative, then the

cloud will be large in the direction of that eigenvector. Here the

all-OFF cloud is scaled down in size manually so that it fits on the

graph. The all-OFF and all-ON states are both disk-shaped, with

their primary eigenvalue being significantly stronger and facing

[1,1,1]. (B) Similarly, 3D ellipsoids were used to visualize possible

cloud shape shown in Figure 5C. Different scaling parameters are

used due to 1-ON and 2-ON states having a large difference in

eigenvalue strength. Even with the modified parameters the 2-ON

states are barely visible in the graph. This is consistent with

stochastic simulation results shown in Figure 5C, where the

trajectories barely spend any time in any of the 2-ON states.

(PDF)

Movie S1 A movie showing the simulated temporal evolution of

chemical species in Figure 3. The temporal evolution of

transcription factors is shown as an elongating blue ribbon. All

conditions are the same as in the right panel of Figure 3C. Only

the first 5000 time points were animated.

(MOV)

Movie S2 A movie showing the simulated temporal evolution of

chemical species in Figure 5. The temporal evolution of

transcription factors is shown as an elongating blue ribbon. All

conditions are the same as in right panel of Figure 5C. Only the

first 5000 time points are animated.

(MOV)

Movie S3 A movie showing the simulated temporal evolution of

chemical species in Figure 7. The temporal evolution of

transcription factors is shown as an elongating blue ribbon. All

conditions are the same as in Figure 6A. Noise strength is 1.5.

Only the first 200 time points are animated because the simulation

equilibrated rapidly.

(MOV)

Text S1 Supplementary texts of Materials and Methods.

(DOCX)
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