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Abstract

International trade networks are manifestations of a complex combination of diverse underlying factors, both natural and
social. Here we apply social network analytics to the international trade network of agricultural products to better
understand the nature of this network and its relation to patterns of international development. Using a network tool
known as triadic analysis we develop triad significance profiles for a series of agricultural commodities traded among
countries. Results reveal a novel network ‘‘superfamily’’ combining properties of biological information processing networks
and human social networks. To better understand this unique network signature, we examine in more detail the degree and
triadic distributions within the trade network by country and commodity. Our results show that countries fall into two very
distinct classes based on their triadic frequencies. Roughly 165 countries fall into one class while 18, all highly isolated with
respect to international agricultural trade, fall into the other. Only Vietnam stands out as a unique case. Finally, we show
that as a country becomes less isolated with respect to number of trading partners, the country’s triadic signature follows a
predictable trajectory that may correspond to a trajectory of development.
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Introduction

Network analysis has been increasingly used to disentangle and

uncover patterns in a wide variety of complex systems, ranging

from molecular (e.g., signal transduction pathways [1] to

individual (e.g., social networks [2,3]) to global (e.g., world city

networks [4,5]) scales. In this paper, we apply both contemporary

and novel network analysis techniques to the global trade networks

of agricultural products. While some analysis of trade networks has

been conducted previously [6,7], this study advances research on

the topic through its foci on in-depth analysis of triads (three-node

directed subgraphs) and on agricultural products.

We focus on agricultural products as they are necessary goods

for all people, regardless of whether they reside in developing or

developed countries. These goods are also responsible for

substantial flows of virtual water between nations, significantly

affecting a country’s water footprint [8]. The trade networks of the

agricultural products are subsets of the global trade web, which

exhibits well-defined network characteristics [6,9,10]. Drivers of

the topology of these trade networks include international politics,

which affects the formation of trading partners, and heterogeneous

environmental conditions, which constrain the ability of countries

to produce certain agricultural products, thereby making these

networks complex, important, and informative.

To better understand how trade networks vary across countries

at different developmental stages and by traded agricultural

products, we analyze the local structure of the trade networks,

namely their triads. Although techniques of tabulating and

analyzing triads in real networks has been used in social research

for many years [11], a recent technique has been to compare the

actual census of networks’ triads to its expected frequencies. This

technique has revealed that a small number of groups can describe

a wide variety of real world networks, from gene transcription

pathways to the world wide web [1,12]. Here, we apply and

extend this technique to the trade networks of agricultural

products. This technique complements more traditional network

analysis, which focuses on aggregate properties such as degree

distribution, assortativeness/dissortativeness, or clustering patterns

[13]. It focuses instead on local properties of the network topology

and in particular we examine the ‘role’ that nodes play in their

local triadic structures, not just whether they are a member of a

triad or not. This analysis adds some ‘character’ to nodes, which

has practical implications for understanding the status and

development of different countries. To some extent this echoes a

claim by Derudder and Witlox [4] that:

to understand the dynamics of ‘development’ in a given

place, research should focus on how places are being

transformed by their insertion in networks of commodities,

knowledge, capital, labour, power, and how, at the same

time, places and their institutional and social fabrics are

transforming those networks as they locate in place-specific

domains.

PLoS ONE | www.plosone.org 1 July 2012 | Volume 7 | Issue 7 | e39756



Methods

We extracted national bilateral trade statistics for several

agricultural commodities for the year 2000 from the online public

databases of the Food and Agriculture Organization of the United

Nations (faostat.fao.org, 2011). Data were modified as described in

[10] (section 2.2). We used the existence of any level of trade to

signify a directed trade link from the exporting country to the

importing country; that is, our networks are not weighted. This is

in contrast to [10], in which links were weighted by both the

volume of trade and the water content of the commodity traded.

Using this dataset, we first considered the overall topology of the

full trade network by analyzing the degree distribution of both

exports and imports and used Kolmogorov-Smirnov tests to

determine whether those degree distributions statistically matched

known distributions.

We then focus on the local structure of global agricultural trade

networks by analyzing the frequency of different triads occurring

in the networks. A triad is a connected subset, or subgraph, of

three nodes within a network. Differences in the way that three

nodes can be connected lead to 13 possible triad types in a directed

network (bottom of Figure 1). Methods have long been used that

involve tabulating the frequency of occurrence within a subject

network of each of the 13 possible triad types and then making

comparisons across networks [11]. A more recent methodological

advance has been to compare the census of a network’s triads to

what would be expected from a randomly generated network

[1,12]. Frequencies of actual occurrence are compared to an

expected frequency based on the how frequently they are observed

in networks generated randomly while maintaining the same

degree sequence. For each triad type this difference is then

normalized and assigned a z-score:

z~
Nactual{Nrandom

stdev(Nrandom)

Graphing of z-scores versus triad type (e.g. Figure 1) gives the

network’s triad significance profile (TSP). Because z-scores are

normalized and dimensionless, TSPs can be compared between

networks governing vastly different systems regardless of differ-

ences in network size or density. Using this method Milo et al. 1]

showed structural commonalities and differences across networks

as varied as cellular signal transduction pathways, the world-wide

web, personal acquaintance networks, and neural networks. Milo

et al. grouped networks with highly similar TSPs, into what they

call a network ‘‘superfamily.’’ We compared our overall trade

network TSP with the two superfamilies that Milo et al. call

biological regulatory networks and human social networks.

Triads having a high positive z-score, meaning that the triad

appears much more often than expected, are termed motifs of the

network. For example, in the TSPs for agricultural trade networks

presented in Figure 1, triads 7, 9, 10 and 13 would likely be

considered motifs, depending on the product under consideration.

Those triads having highly negative z-scores are termed anti-

motifs.

To assess the robustness of our TSP results to network

perturbations, we removed large subsets of the full trade network

and then reran the triadic analysis, comparing the resulting TSPs

with the unaltered network’s TSP. Because our trade links were

not weighted we tested robustness by systematically removing sets

of nodes before rerunning the triadic analysis. To determine which

nodes to remove, we ranked nodes based on both in-degree and

out-degree in the directed network, and by degree in the

undirected version of the full trade network. We then removed

25%, 50%, and 75% of the least connected nodes from each of the

three node lists before creating a new TSP. Differences between

the TSPs of the original network and the nine versions of reduced

networks were compared both graphically and numerically using

Pearson correlations for each pairwise comparison.

Finally, we also examined in greater detail the roles that

countries play in their local trade triads by analyzing their triad

frequency distributions, as well as how these roles interplay with

degree of connectedness.

Results and Discussion

Global network topology
We first consider the overall topology of the combined

agricultural trade network by analyzing the degree distributions

of both import and export links. We concur with the authors of

[10] that the export degree distribution seemingly follows an
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Figure 1. Triad significance profiles of agricultural trade networks: by product. These networks form a distinct superfamily not previously
reported for other networks, including an international cargo shipping network.
doi:10.1371/journal.pone.0039756.g001
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exponential distribution, though we find that this is not statistically

supported (Kolmogorov-Smirnov, h0: exponential distribution,

d = 0.20018, p,0.01). One might also argue that the distribution

qualitatively follows a power-law, lognormal, or other distribution

with ‘‘fat tails’’. Such distributions, or approximations of them, are

typical of the scale-free architecture of regulatory networks.

However, we find that the distribution of import degrees follows

a normal distribution (Kolmogorov-Smirnov, h0: normal distribu-

tion, d = 0.05938, p = n.s.), which is more reminiscent of small-

world networks typical in human societies [14].

Triad significance analysis and an agricultural trade
superfamily

Construction of TSPs for the trade networks of several

agricultural commodities as well as the full trade network, are

presented in Figure 1. Our analysis reveals that TSPs for networks

describing the global trade patterns for several agricultural

products form a cohesive network superfamily distinct from those

previously reported [1]. This is true even compared to the TSP

exhibited by the international cargo shipping network [15], which
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Figure 2. Comparison of the agricultural trade network TSP with known network superfamilies. The overall agricultural trade network
compared to (A) biological regulatory networks and (B) human social networks. See Table 1 for correlation coefficients.
doi:10.1371/journal.pone.0039756.g002

Table 1. Pearson pairwise correlations (R-values) comparing the triad significance profile (TSP) of the full agricultural trade
network to TSPs of networks analyzed in [1] (Figure 1).

Biological information processing networks

SIGNAL TRANS 0.5289

TRANSC-DROSOPHILA 0.5577

TRANSC-SEA URCHIN 0.6150

NEURONS 0.7301

Human social networks

WWW-1 0.8676

WWW-3 0.7546

SOCIAL-1 0.8807

SOCIAL-2 0.8255

Note: See [1] for detail description of networks above.
doi:10.1371/journal.pone.0039756.t001
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adheres to the superfamily characterizing the world-wide web and

human social networks.

When compared to networks analyzed in [1], agricultural trade

networks appear to share similarities with both the superfamilies of

biological information processing networks (motifs 9 and 10) and

human social networks (motif 13 and anti-motif 6). Motif 13,

which is the hallmark of human social networks [1], is especially

prominent in the TSPs of all agricultural commodities. Figure 2

presents a visual comparison of the overall agricultural trade

network with those analyzed in [1]. Pearson correlations between

the agricultural trade network TSP and those analyzed in [1]

(Table 1) are stronger for human social networks (mean R = 0.83)

than for biological networks (mean R = 0.61). Given the finding

above that the aggregate network topology exhibits an export

degree distribution typical of regulatory networks and an import

distribution typical of small-world networks, it is to some extent

consistent that the overall TSP displays a combination of both

biological regulatory networks and human social networks.

We speculate that the existence of this unique superfamily is

partly the result of the complex interplay between geography,

climate, and politics. Superfamilies thus far uncovered are based

on networks that are either a function of geographical proximity

only or have no relation to geography at all. However, proximity

alone does not capture the heterogeneity of climate, politics, and

culture that are exhibited by countries comprising the global trade
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Figure 3. Robustness of the agricultural trade network to node deletion. Comparison of the TSP of the unaltered trade network to those of
the same network when (A) 25%, (B) 50% and (C) 75% of the networks’ more isolated nodes have been removed. Three methods of node removal
included the nodes rank based on its in-degree, out-degree, and undirected degree. See Table 2 for correlation coefficients.
doi:10.1371/journal.pone.0039756.g003

Table 2. Pearson pairwise correlations (R-values) comparing
the triad significance profile (TSP) of the full unaltered trade
network and TSPs of the network after node removal.

Basis of ranking nodes for removal

Pct. of nodes
removed

Undirected
degree In-degree Out-degree

25% 0.9966 0.9950 0.9829

50% 0.9340 0.9238 0.9547

75% 0.6091 0.7929 0.5787

doi:10.1371/journal.pone.0039756.t002
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networks for agricultural products and this mixture of biophysical

and social factors may be responsible for the emergence of the

distinct superfamily.

In addition, certain products, such as wheat and barley, exhibit

some features different from other food commodities, namely triad

10 being more pronounced and triad 9 being significantly

suppressed. It should also be noted that the aggregate network

(in which a connection between two countries is considered

established if at least one type of agricultural product is traded

between the two) has the highest z-score for triad 13. This is not

surprising. Given that this profile is derived from the aggregate

network of several products, one would expect it to be the most

densely connected.

In addition, in the aggregate TSP for all agricultural products,

triad 6 had the lowest z-score, meaning that it occurred rarely

compared to the frequency expected in the randomized networks.

Interestingly, this particular triad is one that Facchettie et al. [16]

refer to as unbalanced (sometimes called the ‘frustration’

configuration) because the middle node has positive relationships

with two partners who are not connected and may have a negative

disposition towards one another. The low z-score for triad 6

supports a long held view of social networks known as the

structural balance theory [17], which asserts that unbalanced

triads like triad 6 will tend to be underrepresented in human social

networks as a way of avoiding potential conflict.

Robustness of the triadic analysis
When removing large subsets of more isolated nodes from the

full trade network as described above, our results remain quite

robust (Figure 3). Pearson pairwise correlations are presented in

Table 2 comparing the unaltered network before and after various

treatments of node deletion. Removing the 25% of least connected

nodes resulted in almost no difference in TSP (Figure 3A). When

half the network’s nodes were removed, resulting TSPs (Figure 3B)

remained largely unchanged (Pearson correlations, R.0.92 in all

cases). With 75% of nodes removed, TSPs begin to look

qualitatively different (Figure 3C), though correlations remain

relatively high (Pearsons correlation, 0.58.R.0.79).

This result indicates that the TSP for the global agricultural

trade network is relatively stable and is likely robust to large and

sudden changes in global trade patterns. It should be noted that

this conclusion is in regard to the local-scale topological structure of

the trade network only and one should not conclude that

individual countries or the global economy would be unaffected

by such disruptions in trading patterns.

Trade isolation vs. simple triad distribution
The TSPs presented above offer a helpful tool for classifying

and comparing networks across a broad range of complex systems.

Once candidate networks of a superfamily are identified, insights

from one member network may be transferred to others. However,

such analysis alone does not offer much in the way of explaining

why such superfamilies have evolved or how superfamily members

might be related (but see [18] for a promising method of

explaining evolutionary origins of some network superfamilies).

One reason is that by comparing actual triad frequencies with

those in a randomized network with the same degree sequence and

the same numbers of directed and mutual edges, as in [1], the

analysis does not consider why the network has its particular

degree sequence and edges in the first place. Especially in this case,

where trade networks emerge as a distinct superfamily, we must

examine their network structures at a more fundamental level to

obtain a better understanding.

To this end, we first consider each country’s simple triad

frequency distribution. That is, for each country, all triads to

which it belongs are classified into one of the 13 triad types, and

the relative frequency of each triad type calculated. This is in
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Figure 4. Triad distribution for two groups of countries. Most
countries (166) share a similar triad distribution. However, 18 countries
(listed in Table 3) differ distinctively from the majority group.
doi:10.1371/journal.pone.0039756.g004

Table 3. Countries (18) whose trade network triad distributions deviate significantly from those of all other countries (166) and
their global ranking in terms of isolation in the global agricultural trade network (i.e. Lesotho ranks as the least connected country).

Country Trade isolation rank Country Trade isolation rank

Lesotho 1 Bhutan 10

Chad 2 Liberia 11

Guinea-Bissau 3 Mozambique 12

Tajikistan 4 Uzbekistan 13

Iraq 5 Afghanistan 14

Angola 6 Dominican Republic 17

Somalia 7 Laos 18

Haiti 8 Myanmar 21

Turkmenistan 9 Vietnam 138

doi:10.1371/journal.pone.0039756.t003
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contrast to the normalized frequency relative to that of a

randomized network (sensu [1]) that generates the TSPs above.

We then group countries by their degrees, or numbers of trade

partners, including all three types: import, export, and mutual. Of

the 184 countries included in the aggregate network, 166 display a

remarkable similarity in their triad distributions with triads 1 and 5

generally being most frequent (Figure 4). However, 18 countries

(Table 3) exhibit a distinctly different distribution with triads 1 and

5 being highly infrequent or non-existent, and triads 2, 3, and 4

being very frequent (Figure 4).

Our initial hypothesis regarding countries deviating from the

dominant triad distribution was that these deviating countries

lagged other countries in some metric of development (i.e.

industrialization, trade integration, market infrastructure) or

environmental impact (carbon footprint, ecological footprint).

However, a review of the deviating countries found no correlation

between these countries and the United Nations Human

Development Index, membership in the World Trade Organiza-

tion, nominal classification as a 3rd world country, or trade-based

carbon footprint. Although most members of the deviating group

do share a degree of underdevelopment, many other countries that

would also be considered developmentally similar fit neatly into

the dominant profile (e.g. Malawi, Cambodia, and Gambia,

among others).

Our analysis does show that these deviating countries share

substantially one attribute – low connectedness to the global

agricultural trade network. Table 3 reveals that of the 18 deviating

countries, 17 rank among 21 least connected, or most isolated,

countries with respect to agricultural trade links. Other countries

that rank high in terms of isolation, but still conform to the

dominant profile, are predominantly small island countries (Cook

Islands 15th, Kiribati 16th, Tonga 19th, Solomon Islands 20th,

Montserrat 23rd, Faroe Islands 24th).

Figure 5 exhibits the relative frequency of each triad type as a

function of country degree or connectedness. The results show that

as countries leave the most isolated group and enter the less

isolated ones, the changes in their triad profiles are marked

primarily by sharp rises of triad types 1 and 5 and sharp drops in

triad types 2, 3, and 4.

Subtriadic analysis: exporter, importer or trade facilitator?
To understand these patterns, one needs to look not only at the

triad types in which a country participates but also what role it

plays within that triad. Accordingly, Figure 6 shows how the three

types of edges, or trade connections – import, export, and mutual

– are allocated as countries become more and more connected.

The general trend is as follows. Countries seek a trade surplus

through increased exports but must follow a trajectory through

different phases of economic interconnectedness. As a country

increasingly engages in global trade, it develops a demand for

goods that must be imported from elsewhere. This continues until

a country establishes approximately 50 trade partners. At that

point the country has sufficiently developed to produce goods and

export them to other countries, both new countries and those who

are already their trade partners. This increases the country’s

export edges and converts import edges into mutual links

(Figure 6b). This increasing trend of export continues as countries

become more integrated into the global trade network.

This is consistent with patterns shown in Figure 7, which

considers the frequency of distinct roles played by countries in a
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given triad type. For a given triad 1, agricultural products tend to

flow from more connected (more developed?) countries to those

that are more isolated. For a given triad 5, the most connected

country (with (in, out) = (1,2)) tends to link up its two other less

connected partners, exporting to the more isolated one and

exchanging products with the more connected. In contrast, the

only somewhat consistent trend for triads 2, 3, and 4 is that more

connected countries tend to play the role of a ‘‘connector’’ linking

two more isolated partners, a pattern similar to triad 5. The lack of

clear trends for import and export links for these types suggests the

possible signature of a transition period during which countries

experiment with different trading partners. At the same time, large

fractions of triads 1, 5, 6, 10, 12, and 13 seem to represent more

mature economies (Figure 5).

Bilateral trade of a single commodity
An interesting aspect of the individual commodity trade

networks is the existence of bilateral trade of a single good,

meaning that country A exports a commodity to country B while

country B exports the same commodity to country A. While two

nations exporting to each other in the overall trade network is

expected, it is not clear why two countries would export the same

commodity to each other. Yet such bilateral trade relationships are

an integral part of many of the over-represented triads,

particularly triads 9, 10, 12, and 13 (Figure 1). In fact, 18.4% of

all pairwise relationships in the various individual commodity

networks are bilateral.

Our data as supplied by the FAO have no further detail on what

constitutes the goods within each FAO category. However, we

offer three plausible explanations for the relatively high incidence

of bilateral trade links for a given commodity:

1. Different breeds or varieties of goods are consolidated in the

FAO groupings. For instance, country A may export Indica

rice to country B, while country B exports aromatic rice to

country A. Because the FAO classification scheme does not

distinguish among varieties, this would appear as bilateral trade

of rice.

2. Seasonal differences. Countries A and B may have different

growing seasons for the exact same agricultural commodity so

that trade flows from A to B part of the year, and from B to A

in other parts of the year.

3. Geographical proximity to foreign markets. In a hypothetical

example, assume the only two suppliers in North America for a

certain commodity are in Vancouver, Canada, and Boston,

USA. Because of proximity and transportation costs, the

supplier in Vancouver may supply most of the Western USA

while the supplier in Boston supplies most of Eastern Canada.

Again this would appear as bilateral trade of the hypothetical

commodity.

The curious case of Viet Nam
Analysis by country of local structure in the world agricultural

trade network revealed that Viet Nam alone did not fit neatly into

the two groupings described above. Though its triad distribution

essentially matches that of the isolated group, Viet Nam is

nevertheless quite well connected with respect to agricultural

trade. It ranks near the top quartile of countries most connected to

the world trade network for agricultural products. One possible

explanation is that, despite its status as a rapidly developing market

and its large number of trading partners, its trade policies have

affected its transition to the majority distribution group. This

speculation is somewhat supported by Athukorala’s 19] claim that

Viet Nam’s protectionist trade policies make the country out of

step with other major trading nations. If this holds true, the triadic

analysis methods used in this study may be a useful tool for policy

makers by revealing whether their policies are facilitating or

hindering integration into the world trade network.

Final remarks
In summary we have applied and extended triadic network

analysis to the global trade networks of agricultural products.

Results show that such networks exhibit a distinct triad signifi-

cance profile (TSP), or ‘‘superfamily,’’ distinguishable from other

networks reported thus far by its combination of elements from

biological regulatory networks and human social networks. A more

fundamental analysis of triad distribution indicates that relatively

isolated and connected countries engage in very different

configurations of triads. Furthermore, the roles played by the

countries (e.g., importer, exporter, or trade facilitator) in a given

triad type change with their interconnectedness, which could

potentially be indicative of their economic developmental stages.

We anticipate that both findings and methods reported herein

should contribute to understanding this and other types of global

networks. One promising potential contribution is the application

of this method to trade networks with cities as nodes. The

differences and similarities across spatial scales will potentially lead

to the transferability of knowledge and understanding from one

scale to another. In addition, analyzing the same network at

different times could further contribute to supporting or refuting

some of the conjectures presented in this paper.
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