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ABSTRACT

Imaging genetics is an emerging and promising technique that investigates how

genetic variations affect brain development, structure, and function. By exploiting

disorder-related neuroimaging phenotypes, this class of studies provides a novel direc-

tion to reveal and understand the complex genetic mechanisms. Oftentimes, imaging

genetics studies are challenging due to the relatively small number of subjects but ex-

tremely high-dimensionality of both imaging data and genomic data. In this disserta-

tion, I carry on my research on imaging genetics with particular focuses on two tasks—

building predictive models between neuroimaging data and genomic data, and iden-

tifying disorder-related genetic risk factors through image-based biomarkers. To this

end, I consider a suite of structured sparse methods—that can produce interpretable

models and are robust to overfitting—for imaging genetics. With carefully-designed

sparse-inducing regularizers, different biological priors are incorporated into learning

models. More specifically, in the Allen brain image–gene expression study, I adopt an

advanced sparse coding approach for image feature extraction and employ a multi-task

learning approach for multi-class annotation. Moreover, I propose a label structured-

based two-stage learning framework, which utilizes the hierarchical structure among

labels, for multi-label annotation. In the Alzheimer’s disease neuroimaging initiative

(ADNI) imaging genetics study, I employ Lasso together with EDPP (enhanced dual

polytope projections) screening rules to fast identify Alzheimer’s disease risk SNPs.

I also adopt the tree-structured group Lasso with MLFre (multi-layer feature reduc-

tion) screening rules to incorporate linkage disequilibrium information into modeling.

Moreover, I propose a novel absolute fused Lasso model for ADNI imaging genetics.

This method utilizes SNP spatial structure and is robust to the choice of reference

alleles of genotype coding. In addition, I propose a two-level structured sparse model

that incorporates gene-level networks through a graph penalty into SNP-level model
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construction. Lastly, I explore a convolutional neural network approach for accurate

predicting Alzheimer’s disease related imaging phenotypes. Experimental results on

real-world imaging genetics applications demonstrate the efficiency and effectiveness

of the proposed structured sparse methods.
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Chapter 1

INTRODUCTION AND BACKGROUND

1.1 Imaging Genetics

In the past decade, imaging genetics has attracted increasing attention. It has

been widely recognized by molecular geneticists that some common genetic variants

in single nucleotide polymorphisms (SNPs) could lead to common disorders [Cirulli

and Goldstein (2010)]. Imaging genetics studies disorder-related genetic variation by

taking advantage of neuroimaging phenotypes, as imaging phenotypes are closer to the

biology of genetic function than disease or cognitive phenotypes [Meyer-Lindenberg

(2012)] . With the involvement of molecular genetics and disorder-related neuroimag-

ing phenotypes, imaging genetics provides a unique opportunity to reveal and under-

stand the impact of genetic variation, i.e., how individual differences in terms of SNPs

affect brain development, structure, and function [Hariri et al. (2006); Thompson et al.

(2013)].

Previous studies demonstrate the great promise of imaging genetics. For instance,

on Chromosome 19, the ε4 allele of gene Apolipoprotein E (a.k.a., ApoE4) is one

of the well-known genetic risk factors for Alzheimer’s disease (AD). From the neu-

roimaging perspective, the degeneration of brain tissue of ApoE4 carriers is faster

as they age; young adults ApoE4 carriers often exhibit thinner cortical gray matter

than noncarriers [Shaw et al. (2007)]. In the meantime, as has been verified in a

series of genome-wide association (GWA) studies of AD, ApoE4 is strongly associ-

ated with the volumes of key brain regions, such as the hippocampus and entorhinal

cortex [Potkin et al. (2009); Stein et al. (2012); Yang et al. (2015b)]. More recently,
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worldwide consortium efforts, such as ENIGMA (Enhancing Neuroimaging Genetics

through Meta-Analysis, [Stein et al. (2012)] and CHARGE (Cohorts for Heart and

Aging Research in Genomic Epidemiology, [Bis et al. (2012); Psaty et al. (2009)]),

enable us to investigate robust common neuroimaging genetic associations [Medland

et al. (2014)].

Oftentimes in practice, imaging genetics studies are challenging due to the rela-

tively small number of subjects but extremely high dimensionality of both neuroimag-

ing data and genomic data. For example, neuroimaging data sets are typical of very

high-resolution, in which an image file may contain hundreds of thousands of voxels

(or imaging phenotypes). As a consequence, it could be extremely hard to identify

or extract disorder-related phenotypes from the raw image data. In the meantime,

advances in modern sequencing techniques lead to the huge scale of genome sequenc-

ing data. Typically, an SNPs data set may contain millions of loci (or say base pairs,

i.e., positions on the genome). The two facts mentioned above significantly limit

the practical usage of traditional learning methods, as they are not effective in the

high-dimensional scenario (e.g., prone to overfitting).

There have been several practical attempts on imaging genetics. Indeed, we can

categorize existing methodological approaches of imaging genetics into three classes

[Thompson et al. (2013)]:

• Univariate-imaging univariate-genetic association analysis. This class of ap-

proaches performs a univariate statistical test on each SNP-voxel pair individ-

ually. It has been widely used in previous GWA studies. However, it fails to

reveal scenarios such as the joint effects of multiple SNPs or SNP-SNP interac-

tions, which occur commonly during gene expression [Singh et al. (2011); Dinu

et al. (2012); Cornelis et al. (2009); Yang et al. (2012a)]. For genetics, the ag-

gregate effects are usually more significant than individual effects. Moreover, it
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is worth indicating that this kind of approaches is computationally inefficient.

• Univariate-imaging multivariate-genetic association analysis. Based on a pre-

selected candidate imaging phenotype, a typical multivariate approach utilizes

sparse models, e.g., Lasso (least absolute shrinkage and selection operator, [Tib-

shirani (1996); Yang et al. (2015b)]), to perform simultaneous model fitting and

model selection (i.e., identify causal SNPs). There are also attempts to in-

corporate different biological prior knowledge during model constructions. For

example, Wang et al. (2012) employ group Lasso [Yuan and Lin (2006)] to lo-

cate groups of candidate SNPs, where SNP groups are pre-defined by linkage

disequilibrium (LD) information.

• Joint multivariate association analysis. This class of approaches investigates

the relationships between two sets of variables; for example, canonical correla-

tion analysis (CCA) and partial least squares (PLS) regression. However, as a

side note, a clear drawback is that the detected genetic variants and imaging

phenotypes may not be immediately related to a disorder [Batmanghelich et al.

(2013)].

In this dissertation, I concentrate on the second class of methodologies, i.e., the

univariate-imaging multivariate-genetic association approaches, for imaging genet-

ics. More specifically, I carry on my research with two particular focuses in imaging

genetics: 1) building predictive models between genomic data and neuroimaging phe-

notypes, and 2) identifying disorder-related genetic risk factors through image-based

biomarkers. Research work presented in this dissertation are primarily based on my

previous work: Wang et al. (2016a); Yang et al. (2015c,b, 2016); Li et al. (2016b,a).

In the next section, I brief introduce a suite of structured sparse methods for

addressing imaging genetics problems.
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1.2 Structured Sparse Methods

Most traditional statistical learning methods are intended for the low-dimensional

scenario [James et al. (2013)], where the number of subjects n is usually much larger

than the number of features p. However, in imaging genetics studies, we usually have

p� n, where p refers to the feature dimension of the genomic data. As a consequence,

traditional learning method cannot produce desired predictive performance, as they

are prone to overfitting in the high-dimension scenario.

The high-dimensional data involved in imaging genetics confront researchers and

scientists with an urgent request for novel methods that can effectively reveal the

predictive patterns under such a circumstance. A useful observation from many real-

world applications is that data set with complex structures often has sparse underlying

representations. More specifically, although the data may have millions of features,

it may be well interpreted by a few most relevant explanatory features. For example,

the neural representation of natural scenes in the visual cortex is sparse, as only a

small number of neurons are active at a given instant [Vinje and Gallant (2000)];

images have very sparse representations with respect to an over-complete dictionary

because they lie on or close to low-dimensional subspaces or submanifolds [Wright

et al. (2010)]; although humans have millions of SNPs, only a small number of them

are relevant to certain diseases such as leukemia, Alzheimer’s disease [Golub et al.

(1999); Guyon et al. (2002); Mu and Gage (2011)]. In addition, sparsity has been

shown to be an effective approach to alleviate overfitting, from which most traditional

statistical approaches suffer. Therefore, finding sparse representations is particularly

significant in revealing underlying mechanisms of many complex systems.

In the past decade, as an emerging and promising technique, sparse methods has

attracted increasing research interests in image genetics. As a class of regularized
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model learning approach, sparse models are typically robust to overfitting. Mean-

while, sparse approaches can enhance the model interpretability, as only a small sub-

set of features, which can best explain the outcome, will be identified. In addition,

it is worth mentioning that, by utilizing carefully-designed sparse-inducing regulariz-

ers, we can incorporate different biological prior knowledge into the models. This is

beneficial, since complex feature structures, such as LD information and SNP spatial

structure, can be introduced during model construction.

In Chapter 2, I will briefly review several existing structured sparse methods and

introduce some related optimization methods. For the two real-world imaging genetics

applications, I consider a suite of structured sparse methods. More specifically, in the

Allen brain image—gene expression study, I propose to use sparse coding for image

feature extraction and employ group Lasso for multi-class annotation. I also intro-

duce a two-stage multi-label learning framework based on label hierarchical structure.

In the ADNI imaging genetics study, I propose to incorporate linkage disequilibrium

information through tree-structured group Lasso, and incorporate SNP spatial infor-

mation through a novel absolute fused Lasso. In the sequel, I propose a two-level

structured sparse model that acts as a bridge to connect genes and SNPs as well as

utilizing gene networks. In addition, I present a convolutional neural network with

dropout for accurate predicting Alzheimer’s disease related imaging phenotypes. In

the rest parts of this chapter, I briefly introduce the background of the aforementioned

two research works.

1.3 Background of Allen Brain Imaging – Gene Expression Study

Brain tumor is a fatal central nervous system disease. It is also the second cause

of cancer in children [World Health Organization (2014)]. Previous studies indicate

that preventing and detecting brain tumors at early stages are effective methods to
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reduce brain damage; these studies also show the potential benefit of utilizing the

genetic determinants [Reilly (2009)]. Accurate descriptions of the locations of where

the relative genes are active and how these genes express are critical for understanding

the pathogenesis of brain tumor and for early detection. In this study, I investigate

the associations between gene expression patterns and brain images on the Allen

developing mouse brain atlas (ADMBA) [Allen Institute for Brain Science (2013)].

ADMBA is an online public repository that contains extensive gene expression data

and neuroanatomical data over different mouse brain developmental stages.

ADMBA provides extensive experimental resources of the brain. For imaging data,

the atlas stores about 435,000 high-resolution spatiotemporal in-situ Hybridization

(ISH) brain images from embryonic through postnatal stages of mouse development.

Those images cover approximately 2,100 genes at each stage. Meanwhile, a brain

ontology has been designed to hierarchically organize brain structure. To categorize

the gene expression status at certain brain regions revealed by in situ Hybridization

images, three kinds of measurements—i.e., pattern, density, and intensity—are em-

ployed at the reference atlas for ADMBA (R-ADMBA). These measurements were

scored for each brain region according to a set of standard schemas; examples are

shown in Figure 1.1.

It is worth mentioning that such annotation tasks are very costly, since the entire

atlas contains more than four million ISH images, and there are about one thousand

brain regions that need to be annotated in the designed brain ontology. To precisely

assign gene expression status to specific brain regions, current reference atlas uses

expert-guided manual annotation, which was performed by Dr. Martinez’s team at

Spain [Allen Institute for Brain Science (2013); Thompson et al. (2014)]. However,

it is labor-intensive since it requires expertise in neuroscience and image analysis. In

other words, it does not scale with the continuously expanding collection of images.
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Figure 1.1: (a-c) Sample Schemas of Three Annotation Measurements (Pattern
/ Density / Intensity) associated with Four Expression Levels. (d) Part of Brain
Ontology.

Therefore, developing an effective and efficient automated gene expression pattern

annotation method is of practical significance.

In this dissertation, I introduce a series of brain image annotation studies associ-

ated with ADMBA. The major target of those studies is to develop a computational

framework to perform automated gene expression patterns annotation over the entire

brain ontology based on a suite of high-resolution spatiotemporal in-situ Hybridiza-

tion brain images. Specifically, there are three major challenges in these studies:

• High-resolution spatiotemporal images: around 435,000 unaligned ISH images;

up to 12 million pixels per image; over 2,000 different genes;

• Multi-class annotation: 4 different expression levels;

• Multi-label annotation: 1,025 topological subdivisions (regions) over brain.
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For the first challenge, traditional approaches [Zeng and Ji (2014)] utilize the

scale-invariant feature transform (SIFT) [Lowe (1999)] algorithm and the bag-of-

words (BoW) [Csurka et al. (2004)] model to extract patch-level image characteristics

and learn high-level image representations, respectively. It is worth mentioning that

BoW is not efficient to learn a large number of keywords or deal with large scale

data atlas. However, due to the huge size of image atlas as well as the complex

brain ontology, a large keyword size is desired in this study. Besides the image

representation problem, many other difficulties are also inherent in the annotation

tasks. First of all, for a set of ISH images and a specific measurement, current

reference atlas uses up to four categories [see Figure 1.1, (a-c)] to give an accurate

description of the gene expression status. That is, such an annotation task is indeed

a multi-class classification problem. Secondly, annotating gene expression pattern

over the entire brain ontology is essentially a multi-label classification problem, since

there are over one thousand brain regions to be annotated. However, for multi-label

annotation, if we do not take label dependency into consideration—i.e., simply treat

each label separately, it may result in suboptimal prediction performance [Silla Jr

and Freitas (2011); Tsoumakas et al. (2010); Bi and Kwok (2011)].

In this dissertation, I adopt structured spares methods in three major sub-tasks.

Specifically, in Section 3.1, I adopt an augmented sparse coding method to construct

high-level image features during image feature processing; in Section 3.2, I utilize the

`2,1-norm regularized logistic regression model for the multi-class annotation problem;

in Section 3.3, I propose a novel two-stage learning framework based on label hierarchy

structure to improve the annotation accuracy over the entire brain ontology (i.e., the

multi-label problem).
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1.4 Background of ADNI Imaging Genetics Study

Alzheimer’s disease (AD) is the most common form of dementia; it affects more

than five million Americans and is the sixth-leading cause of death in the United

States [Hebert et al. (2013)]. AD is an irreversible, progressive brain disorder typi-

cally beginning with mild memory loss; later it can seriously impair an individual’s

ability to carry out daily activities. It has been widely recognized and emphasized

that early detection of AD is beneficial. Recently, neuroimaging techniques—such as

magnetic resonance imaging (MRI), computed tomography (CT) and positron emis-

sion tomography (PET)—have shown great promise for evaluating AD and tracking

its progression [Weiner et al. (2005)].

Factors that influence AD progression are not yet fully understood, but com-

mon genetic variants are among the major risk factors [Huang and Mucke (2012)].

Novel sequencing techniques have greatly advanced genome-wide association studies

(GWAS) and whole genome sequencing (WGS) studies. More recently, entire genomes

can be combined with brain imaging and clinical data to facilitate the investigation

of mechanisms of AD.

Besides the well-known APOE genotype, recent studies [Bettens et al. (2013)]

of the Alzheimer’s disease neuroimaging initiative (ADNI) GWAS data have related

known AD risk genes to differences in rates of brain atrophy and biomarkers of AD in

the cerebrospinal fluid. More recently, full genetic sequences have been collected for

over one thousand ADNI participants. The ENIGMA Consortium recently discovered

six common genetic variants associated with subcortical brain volumes in a world-

wide screen of over 30,000 brain MRI scans [Stein et al. (2012)]. Another studythe

international genomics of Alzheimer’s project (I-GAP) study [Lambert et al. (2013)],

with over 74,000 participantsidentified genetic risk factors with statistical methods,
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is the largest study of AD to date. However, these studies still have limitations.

First of all, GWAS studies focus on a set of selected common genetic variants rather

than the entire sequence of the genome. Loci showing strongest associations with the

disease, or a brain measure, are not often the causal SNPs, as the causal loci have

typically not been sequenced directly. Secondly, studies such as I-GAP are based on

simple statistical models that only test associations of each SNP, one at a time, with

AD-related phenotypes. In other words, these methods typically ignore potential

inter-locus interactions.

In this dissertation, I focus on a series of imaging genetic studies that aim to

investigate the associations between ADNI T1 MRI data and WGS data, i.e., how

genetic variants, in terms of SNPs, affect the progression of AD. As mentioned in

Section 1.1, my research is carry on with two major focuses: 1) building predic-

tive models between genomic data and neuroimaging phenotypes, and 2) identifying

disorder-related genetic risk factors through image-based biomarkers. To this end, I

adopt Lasso as a basic multivariate method, together with a suite of structured sparse

methods, which are capable of incorporating different biological prior knowledge, to

reveal AD-related SNPs. Specifically, in Section 4.1, I present the basic Lasso model

and its screening approach for the ADNI imaging genetics study; in Section 4.2, I

employ the tree-structured group Lasso to incorporate linkage disequilibrium infor-

mation; in Section 4.3, I propose to incorporate SNP spatial information through a

novel absolute fused Lasso; in Section 4.4, I propose a two-level structured sparse

model that acts as a bridge to connect gene-level descriptors and low-level SNPs, as

well as utilizing gene networks information; in Section 4.5, I present a convolutional

neural network with dropout layers for accurate predicting Alzheimer’s disease related

imaging phenotypes.
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Chapter 2

STRUCTURED SPARSE METHODS

In this chapter, I brief review some existing approaches for studying imaging ge-

netics. Specifically, I first introduce two simple sparse models based on `1-norm.

Next, I discuss several structure-based sparse models, including group Lasso, tree-

structured group Lasso and the fused Lasso, for imaging genetics applications. Then,

I review some optimization methods for solving the related convex and non-convex

optimization problems. In the sequel, I introduce the idea of screening for boosting

the computational efficiency. In the last part, I discuss some approaches of utilizing

label structures in multi-label learning.

2.1 Basic Sparse Models

In the first section, I begin with some fundamental ideas of linear models. Given a

training data set A ∈ Rn×p with n observations and p features, and A = [a1, . . . , an]T =

[a1, . . . , ap]. By convention, each row ai ∈ Rp, i = 1, . . . , n, represents a subject and

each column aj ∈ Rn, j = 1, . . . , p, represents a feature vector. Let y ∈ Rn denote a

corresponding response vector of A. Suppose A is centered and scaled, then a basic

linear model h : Rp → R can be considered as follows:

h(A) = xTA, (2.1)

where x ∈ Rp is the coefficient vector that needs to be estimated.

Many traditional regression and classification methods like least squares and lo-

gistic regression are developed for the low-dimensional scenario, in which the number
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of observations n is (much) larger than the number of features p [James et al. (2013)].

However, in many real-world applications, we frequently confront with some data sets

that exhibit extremely high-dimensionality, where the number of features p is much

larger than the number of observations n. When p >> n, traditional methods may

be not suitable due to the poor prediction performance (a.k.a. overfitting) or poor

interpretability.

In the high-dimensional scenario, regularized approaches have been shown to be

promising to alleviate overfitting as well as improve the model interpretability. By

incorporating a sparse-inducing regularizer, the class of sparse learning models that

estimates the coefficient x can be defined as follows:

min
x

f(x) = `(x) + λΩ(x), (2.2)

where `(·) is a proper convex empirical loss function that measures the fitness of

the model on the training data, Ω(·) is a regularizer that penalizes the complexity

of the model, and λ ≥ 0 is a regularization parameter that controls the trade-off

between the loss `(·) and the penalty Ω(·). In addition, in many sparse approaches,

the sparse-inducing penalty Ω(·) is typically non-smooth and non-differentiable.

In this dissertation research, I consider two simple but extensively used sparse

models: Lasso, which is for regression tasks, and sparse logistic regression, which is

for classification tasks.

Lasso (least absolute shrinkage and selection operator) is a widely used regression

technique to find sparse representations of a given signal with respect to a set of basis

vectors [Tibshirani (1996)]. Standard Lasso employs least squares loss and Ω(·) = ‖·‖1

as its regularizer, i.e.,

min
x

1

2
‖y −Ax‖2 + λ‖x‖1. (2.3)

Due to the properties of `1-norm, many components in the coefficient vector will be

12



zeros when the value of λ is large. The features corresponding to these non-zero

components can be considered to be important to explain the outcome. Compared to

Lasso, sparse logistic regression also adopts the `1-norm regularizer but utilizes the

logistic loss, which is designed specifically for classification tasks. It takes the form:

min
x

n∑
i=1

log

(
1

1 + e−yi(xT ai)

)
+ λ‖x‖1. (2.4)

Sparse logistic regression has attracted much attention in the past few years and the

interest is growing due to the increasing number of high-dimensional data sets [Sun

et al. (2009); Wu et al. (2009); Zhu and Hastie (2004)]. It is worth mentioning that

both Lasso and sparse logistic regression can perform simultaneously model fitting

(regression or classification) and variable selection, which has achieved great success

in many real-world applications [Chen et al. (2001); Candès et al. (2006); Zhao and

Yu (2006); Bruckstein et al. (2009); Wright et al. (2010)].

2.2 Structured Sparse Models

A major drawback of the aforementioned two sparse methods—Lasso and sparse

logistic regression—is that they do not take feature structures into consideration. In

other words, sparse representations obtained by Lasso or sparse logistic regression

remain the same if we shuffle the order of features. However, in many real-world

applications, this is undesirable, as the features often exhibit some certain intrin-

sic structures, e.g., disjoint or overlapping feature groups, spatial and/or temporal

smoothness, tree structure and graph structure. In this section, I introduce several

structured sparse models, which are capable of incorporating different prior knowledge

of features through carefully-designed sparse-inducing regularizers.
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2.2.1 Group Lasso and Sparse Group Lasso

One scenario that occurs commonly in real-world applications is that features

may form groups or clusters. For example, features with discrete values are usually

transformed into groups of dummy variables; in a previous AD study, people divide

the voxels of PET images into a set of non-overlapping groups according to the brain

regions. Hence, in order to select groups of features, Yuan and Lin (2006) proposed

the non-overlapping group Lasso (GL). Assume that the features are partitioned into

k disjoint groups {G1, . . . , Gk}, where Gi contains the indices of features belonging

to the ith group. The group Lasso regularizer takes the form of:

ΩgL(x) =
k∑
i=1

wi‖xGi
‖q, (2.5)

where wi is the weight for the ith group and ‖ · ‖q with q > 1 is the `q-norm (the

value of q is usually set to be 2 or ∞) [Wang et al. (2013)]. Group Lasso has been

widely used in applications when group structure is available, e.g., regression [Kowal-

ski (2009); Negahban and Wainwright (2008)], classification [Meier et al. (2008)],

joint covariate selection for group selection [Obozinski et al. (2007)], and multi-task

learning [Argyriou et al. (2008); Liu et al. (2009a); Quattoni et al. (2009)].

For some applications, it is desirable to determine features within each group that

exhibit the strongest effects. To this end, the sparse group Lasso (SGL) [Friedman

et al. (2010); Simon et al. (2013)] is preferred. SGL combines the group Lasso penalty

and the Lasso penalty to identify important feature groups and features simultane-

ously. Specifically, SGL penalty can be written as:

ΩsgL(x) = α‖x‖1 + (1− α)
k∑
i=1

wi‖xGi
‖q, (2.6)

where α ∈ [0, 1] balances the sparsity in the feature-level and the sparsity in the group-

level. In recent years, SGL has achieved great success in many real-world applications,
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including machine learning [Vidyasagar (2014); Yogatama and Smith (2014)], signal

processing [Sprechmann et al. (2011)], bioinformatics [Peng et al. (2010)], etc.

2.2.2 Overlapping Group Lasso and Tree Lasso

Group Lasso assumes that the feature groups are disjoint. However, in some

applications, some features may be shared across different groups. For example, in

gene ontology studies, a gene may be involved in different biological pathways, which

means it is shared across different groups [Ashburner et al. (2000); Harris et al. (2004);

Subramanian et al. (2005)]. To this end, the overlapping group Lasso (OGL) penalty

is desired. OGL penalty is similar to (2.5), but Gi may overlap with Gj when i 6= j

[Zhao et al. (2009)].

A particularly attracting special case of the overlapping group Lasso is the so-

called tree-structured group Lasso [Kim and Xing (2010); Zhao et al. (2009)]. In cer-

tain real-world applications, the data may exhibit hierarchical tree-structured sparse

patterns among features. For example, based on the spatial locality [Liu and Ye

(2010)], we can represent an image by a tree where a leaf node corresponds to a single

feature (pixel) and an internal node corresponds to a group of features (pixels). When

the tree structure is available, we can formulate tree-structured group Lasso (TGL)

as follows:

ΩtgL(x) =
∑
i,j

wij‖xGi
j
‖q, (2.7)

where Gi
j is the group of features corresponding to the jth node at depth i and wij is

the positive weight for Gi
j. We note that every node in the tree is a superset of its

descendant nodes. As a consequence, if the features in a node are excluded from the

sparse representation, so are the features in all its descendant nodes.
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2.2.3 Fused Lasso and Graph Lasso

Another common scenario that happens in many real-world studies is that the data

sets we investigated are of some natural order, i.e., the features may come with spatial

and/or temporal smoothness. For example, in studies of arrayCGH [Tibshirani et al.

(2005); Tibshirani and Wang (2008)], the features—DNA copy numbers along the

genome—exhibit a natural spatial order. To this end, the fused Lasso (FL) penalty is

proposed to encode the structure of smoothness by penalizing the differences between

adjacent coefficients, i.e.,

ΩfL(x) = α‖x‖1 + (1− α)

p−1∑
i=1

|xi − xi−1|, (2.8)

where α ∈ [0, 1]. It is clear that the fused Lasso penalty would lead to solutions in

which adjacent components are close or identical to each other.

In certain applications, features among a data may exhibit more complex smooth-

ness structure. More specifically, features may form an undirected graph structure,

where connected features may share some common properties. For example, much

biological evidence indicated that genes tend to work in groups if they have similar

biological functions [Li and Li (2008)]. This prior knowledge can be encoded by a

graph, where in the graph, each node represents a gene and edges denote the regu-

latory relationships between two associated genes. Recent studies have shown that

encoding the structure information as a graph can significantly improve the predictive

performance of the model. Given a undirected graph G ≡ (V,E), where V denotes

the set of nodes and E denotes the edges. By noting that an open chain is a spe-

cial example of a graph, we can generalize the fused Lasso penalty to a graph Lasso

(GraphL) penalty—a.k.a. the `1-norm graph Lasso—as follows:

Ω`1
graphL(x) = α‖x‖1 + (1− α)

∑
(i,j)∈E

|xi − xj|. (2.9)
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In Eq. (2.9), the second term penalizes the difference between coefficients of connected

features. As a consequence, coefficients of connected features within the graph tend

to be close or identical to each other.

2.3 Optimization Methods

Many sparse models in the form of Eq. (2.2) are typically non-smooth and non-

differentiable due to the complex sparse-inducing penalties. This fact imposes great

challenges to the corresponding optimization algorithms. In the past decade, as sparse

models become increasingly popular, extensive research efforts are devoted to devel-

oping efficient optimization methods for the sparse models. In the first part of this

section, I briefly review two particularly popular first-order methods—proximal gradi-

ent descent and accelerated gradient method, which are effective for solving large-scale

problems. In the sequel, I introduce the idea of screening for improving the compu-

tational efficiency. Moreover, I brief introduce the alternating direction method of

multipliers (ADMM) algorithm for solving complex convex optimization problems. In

addition, I review the difference of convex functions (DC) programming for handling

a class of non-convex problems.

2.3.1 Proximal Gradient Descent

In this section, I briefly review the well-known proximal gradient descent algorithm

for solving Problem (2.2). For many sparse models, the loss function `(·) is convex

and differentiable, while the regularizer Ω(·) is convex but non-differentiable. The

major challenge in developing optimization algorithms for Eq. (2.2) is due to the

non-differentiable regularizer Ω(·).

The proximal gradient descent is an iterative approach. The key idea [Beck and

Teboulle (2009); Hastie et al. (2015)] is that: in each iteration, we minimize a lo-
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cal approximation of f(·) consisting of the non-differentiable part Ω(·) and a linear

approximation of the differentiable part `(·). Specifically, in the kth iteration, we

optimize βk by the following generalized gradient update:

xk+1 = arg min
x

{
`(xk) + 〈∇`(xk),x− xk〉+

1

2tk
‖x− xk‖2 + Ω(x)

}
. (2.10)

In addition, for a convex function h, we can define a proximal map as follows:

proxh(u) = arg min
v

{
1

2
‖v − u‖2 + h(v)

}
. (2.11)

Then, it follows that

xk+1 = proxtkΩ

(
xk − tk∇`(xk)

)
. (2.12)

Sufficient conditions [Nesterov (2007)] for the convergence of the update in Eq. (2.12)

are as follows:

1. The gradient of the differentiable part `(·) is Lipschitz continuous, i.e., for any

x,x′ ∈ Rp, the following inequality holds:

‖∇`(x)−∇`(x′)‖2 ≤ L‖x− x′‖2.

2. The step size tk is a constant that satisfies tk ∈ (0, 1/L].

Assume x∗ is an optimal solution, it can be shown that

f(xk)− f(x∗) ≤ L‖x0 − x∗‖2

2k
. (2.13)

Therefore, the above inequality Eq. (2.13) implies that the proximal gradient descent

in Eq. (2.12) leads to a convergence rate of O(1/k).
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2.3.2 Accelerated Gradient Method

When the proximal mapping in Eq. (2.12) can be computed efficiently, the prox-

imal gradient descent approach is a very popular and efficient tool in optimizing the

corresponding sparse models, especially for large-scale problems. However, the con-

vergence of proximal gradient descent can be slow for certain objective functions, as

the update step may lead to undesirable type of zig-zagging behavior from step-to-

step [Hastie et al. (2015)]. To this end, in order to improve the convergence property,

Nesterov [Nesterov (1983, 2007)] proposed a class of accelerated gradient methods

with a convergence rate of O(1/k2). I summarize the accelerated gradient method in

Algorithm 1.

Algorithm 1 Accelerated Gradient Method

Input: A constant t ∈ (0, 1/L], where L is a Lipschitz constant of ∇`.

1: Set x0 = θ1 ∈ Rp, s1 = 1, and k = 1.

2: while termination condition is not satisfied do

3: xk = proxtΩ(θk − t∇`(θk)),

4: sk+1 =
1+
√

1+4(sk)2

2
,

5: θk+1 = xk +
(
sk−1
sk+1

)
(xk − xk−1),

6: k = k + 1.

7: end while

Let xk be generated by Algorithm 1 and x∗ be an optimum. Then, it can be

shown that

f(xk)− f(x∗) ≤ 2L‖x0 − x∗‖2

(k + 1)2
. (2.14)

It is worth mentioning that, besides the convergence rates, a key difference—that

distinguishes the accelerated gradient method from the proximal gradient descent—is

that the function values obtained by the former may be increasing, i.e., f(xk+1) may
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larger than f(xk), while they keep decreasing for the latter one.

In this dissertation research, I develop an approach for optimizing the proximal op-

erator problem associated with the proposed absolute fused Lasso though accelerated

gradient method; details is presented in Section 4.3.

2.3.3 Screening Rules for Sparse Models

The idea of screening [El Ghaoui et al. (2012); Tibshirani et al. (2012); Wang et al.

(2015b)] has been shown to be very promising in boosting the efficiency of large-scale

Lasso-related problems. Generally speaking, screening rules aim at quickly identifying

the inactive features, which have zero components in the solution. By removing those

inactive features from the optimization, screening rules can lead to substantial savings

in computational cost and memory usage.

Screening rules are inspired by the Karush-Kuhn-Tucker (KKT) conditions. Recall

that Lasso problem presented in Eq. (2.3), its dual is equivalent to:

inf
θ

{
1

2

∥∥∥θ − y

λ

∥∥∥2

2
: |aTi θ| ≤ 1, i = 1, 2, . . . , p

}
, (2.15)

where θ is a dual variable. Let x∗(λ) and θ∗(λ) be the optimal solution of problems

(2.3) and (2.15), respectively. Then the primal optimum and dual optimum are related

by the KKT conditions as follows:

y = Ax∗(λ) + λθ∗(λ), (2.16)

(θ∗(λ))Tai ∈


sgn([x∗(λ)]i), if [x∗(λ)]i 6= 0,

[−1, 1], if [x∗(λ)]i = 0,

(2.17)

where [·]k denotes the kth component in the coefficient. As a consequence, KKT

conditions in Eq. (2.17) leads to:

|(θ∗(λ))Tai| < 1⇒ [x∗(λ)]i = 0, i.e., ai is an inactive feature. (R1)
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The above rule implies that, those inactive features have zero components in x∗ and

thus can be removed from the optimization problem. In addition, inspired by the

SAFE rules [El Ghaoui et al. (2012)], (R1) can be relaxed as follows:

sup
θ∈Θ
|aTi θ| < 1⇒ [x∗(λ)]i = 0, i.e., ai is an inactive feature, (R1’)

where Θ is a set that contains θ∗(λ).

As a side note, in (R1’), the smaller the region Θ is, the more accurate the esti-

mation of θ∗(λ)—i.e., more inactive features can be identified. A useful consequence

of (R1) is that we can find a smallest value of λ such that x∗(λ) = 0. Indeed, we have

[Wang et al. (2015b)]:

λ ≥ λmax = ‖ATy‖∞ ⇔ x∗(λ) = 0. (2.18)

The idea of screening achieves great success in many popular sparse models,

e.g., Lasso [Wang et al. (2015b)], nonnegative Lasso [Wang and Ye (2014)], group

Lasso [Wang et al. (2015b,b); Tibshirani et al. (2012)], mixed-norm regression [Wang

et al. (2013)], `1-regularized logistic regression Wang et al. (2014), sparse-group Lasso

[Wang and Ye (2014)], tree-structured group Lasso [Wang and Ye (2015)], and the

fused Lasso [Wang et al. (2015a)].

In this dissertation, I adopt the enhanced dual polytope projections (EDPP)

screening rules for Lasso in Section 4.1 [Wang et al. (2015b)] to improve the compu-

tational efficiency. The EDPP rules have the best performance to date. In addition, I

employ the multi-layer feature reduction (MLFre) screening rules for tree-structured

group Lasso in Section 4.2. Experiments demonstrate the speedup gained by screening

methods can be several orders of magnitude.
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2.3.4 Alternating Direction Method of Multipliers

For certain complex sparse-inducing regularizers, we can reformulate the original

Problem (2.2) to an equivalent constrained problem. In the sequel, such a problem

can be addressed using constrained optimization methods (e.g., the augmented La-

grangian method). The alternating direction method of multipliers (ADMM) [Boyd

et al. (2011)] algorithm is a variant of the augmented Lagrangian method that per-

forms partial updates for dual variables.

Without loss of generality, in this dissertation, I consider the following optimiza-

tion problem:

min
x,z

f(x) + g(z) (2.19)

s.t. Ax + Bz = c,

where f and g are convex, x ∈ Rp, z ∈ Rq, A ∈ Rn×p, B ∈ Rn×q, and c ∈ Rn. With

ADMM, I first reformulate the above problem (2.19) as follows:

Lρ(x, z, µ) = f(x) + g(z) + µT (Ax + Bz− c) +
ρ

2
‖Ax + Bz− c‖2, (2.20)

with µ being the augmented Lagrangian multiplier, and ρ being the non-negative dual

update step length. ADMM solves this problem by iteratively minimizing Lρ(x, z, µ)

over x, z and µ. The update rule for ADMM is given by

xk+1 := arg min
x
Lρ(x, z

k, µk), (2.21)

zk+1 := arg min
z
Lρ(x

k+1, z, µk), (2.22)

µk+1 := µk + ρ(Axk+1 + Bzk+1 − c). (2.23)

The ADMM method decomposes a large complex optimization problem into a

series of simple subproblems and coordinates the local solutions to the globally opti-

mal. It is worth mentioning that, although ADMM can be very slow to converge to
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a high accuracy, oftentimes it can converge to a modest accuracy—which is sufficient

enough for many application—within a few tens of iterations.

In my dissertation study, I adopt ADMM to solve the propose two-level structured

sparse model in Section 4.4.

2.3.5 DC Programming for Non-Convex Optimization

Sometimes, the sparse-inducing regularizer in Eq. (2.2) can also be non-convex.

In this dissertation, I proposed a non-convex absolute fused Lasso penalty in Section

4.3. A key to solve the corresponding optimization problem is though the difference

of convex functions (DC) programming [Tao et al. (1988); Tao and An (1997); Tao

et al. (2005)]. I brief review the idea of DC programming in this section.

As an approach that applying convex analysis to non-convex problems, DC pro-

gramming has been adopted in various non-differentiable non-convex optimization

problems. A particular DC program on Rp takes the form of:

f(x) = f1(x)− f2(x), (2.24)

with f(·) being non-convex on Rp, but f1(·) and f2(·) being convex. The algorithm to

solve a DC program—which has been introduced in [Tao et al. (1988)]—is based on

the duality and local optimality conditions. Denote the affine minorization of f2(x)

as fk2 (x) = f2(xk) + 〈x − xk, ∂f2(xk)〉, where 〈·, ·〉 refers to the inner product. A

general DC program solves Problem (2.24) by iteratively solving:

min
x∈Rp

f1(x)− fk2 (x). (2.25)

Since 〈xk, ∂f2(xk)〉 is a constant within each iteration, Problem (2.25) is equivalent

to:

min
x∈Rp

f1(x)− 〈x, ∂f2(xk)〉. (2.26)
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When problem (2.26) is convex, we can solve it through convex optimization methods.

To sum up, the DC algorithm (DCA) can be summarized as follows: from an ap-

propriate starting point x0, we iteratively solve Eq. (2.26) until the stopping criterion

is satisfied.

In general, DCA cannot guarantee the solution to be the globally optimal, due to

the local characteristics and the non-convexity of the original problem. However, it

is worth mentioning that, some researchers observed that a DC algorithm converges

quite often to a global one [Tao and An (1997)].

2.4 Exploiting Label Structure in Multi-Label Learning

In many practical applications, not only features but labels may exhibit some

structure, especially in multi-label learning (MLL). In MLL, an instance is associated

with multiple targets or labels; for example, text classification and image annotation.

In such a case, the learning task of inferring a function from those multiple labeled

training data—i.e. predicting multi-dimensional targets—is called multi-target pre-

diction [Waegeman et al. (2013)]. More specifically, when the prediction targets are

binary, the task is called multi-label classification (MLC) [Zhang and Zhou (2014);

Sorower (2010); Tsoumakas and Katakis (2006)]. Formally, suppose there are m tar-

get labels, multi-label learning can be phrased as the problem of finding a model

g : Rp → Zm2 , where Zk = {0, 1, . . . , k − 1}.

To learning from multi-label data, plenty of algorithms have been proposed in the

past decades. We can categorize those algorithms into the following respects [Zhang

and Zhou (2014); Sorower (2010)]: (1) simple problem transformation methods, e.g.

Label Powerset [Read (2008)], Binary Relevance [Boutell et al. (2004)], Calibrated

Label Ranking [Fürnkranz et al. (2008)]; (2) simple algorithm adaptation methods,

e.g. Tree Based Boosting [Schapire and Singer (2000)], Lazy Learning [Spyromitros
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et al. (2008)], Deep Learning [LeCun et al. (2015)]; (3) dimensionality reduction

and subspace based methods, e.g. Multi-label Informed Latent Semantic Indexing

[Yu et al. (2005)], Multi-label Linear Discriminant Analysis [Wang et al. (2010)];

(4) ensemble methods, e.g. Random k labelsets [Tsoumakas and Vlahavas (2007)],

Random Decision Tree [Zhang et al. (2010)]; (5) generative modeling [McCallum

(1999); Wang et al. (2008)]; and (6) label structure exploitation [Dembszynski et al.

(2010); Zhu et al. (2005)]. In addition to those methods mentioned above, it is worth

mentioning that, exploring and utilizing such label structure is potentially beneficial

in multi-label learning.

In my dissertation research, annotating gene expression patterns over the entire

brain ontology is one of the major tasks in the ADMBA study. More specifically, based

on the image features of a gene xi, we want to associate it with a vector of target

labels yi ∈ Zm2 , where m refers to the number of brain regions (learning tasks). And

thus this learning problem is indeed a multi-label classification problem. However,

if we simply treat each label (ontology subdivision) separately—we do not make full

use of the structural relationships among labels in the learning procedure—it may

result in suboptimal predictive performance [Silla Jr and Freitas (2011); Tsoumakas

et al. (2010)].

To this end, I propose a novel label structure-based two-stage multi-label classi-

fication approach, which utilizes the hierarchy structure among labels. The major

reasons are: (1) in the atlas, expression patterns of a single gene are recorded based

on a hierarchically organized ontology of brain anatomical structures; and (2) it is

possible to propagate annotation results to a parent or a child subdivision under a

set of systematic rules. Briefly speaking, the proposed learning approach divides the

learning process into two stages: in the first stage, a set of interesting tasks are learned

individually, and in the second stage, knowledge learned from the first stage will be
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utilized to train models as auxiliary features for the remaining tasks. I present more

details about this idea in Section 3.3.
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Chapter 3

ALLEN BRAIN IMAGING – GENE EXPRESSION STUDY

In this chapter, I brief introduce my dissertation research in the Allen brain imag-

ing – gene expression study from three respects. First of all, I present an image feature

extraction framework that utilizing SIFT method, sparse coding, and average-/max-

pooling in Section 3.1. Next, I introduce my approach that utilizing multi-task sparse

logistic regression for multi-class annotation in Section 3.2. Moreover, I propose a

novel label structure-based multi-label classification approach in Section 3.3. In the

last, I present some experimental results of the proposed methods in Section 3.4.

3.1 Proposed Feature Extraction Framework

The problem of annotating gene expression status is essentially an image anno-

tation problem. While for image annotation, how to extracting and characterizing

features from images are foundational. Basically, to capture as many details of gene

expression over the entire brain ontology, the Allen brain atlas provides numerous

spatiotemporal high-resolution ISH images. However, those raw images are not well

aligned, as they were taken from different samples and at different spatial slices. This

fact makes it challenging to extract features from raw ISH images. To this end, I

propose an image feature extraction framework that utilizing SIFT (scale-invariant

feature transform) method, sparse coding and different pooling methods. Briefly, I

first employ the SIFT approach to detect and describe local image features. Next, I

use an augmented sparse coding method to efficiently learn the dictionary from SIFT

descriptors of all ISH images and generate patch-level sparse feature representations.
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Different pooling methods are utilized to combine patch-level representations to form

image-level features, and further generate gene-level representations. A schematic

flowchart of the feature extraction framework is shown in Figure 3.1.

ADMBA

SIFT

2,000-D sparse 
representers

128-D SIFT
descriptors

⋮ ⋮
⋮

Image-level Pooling

Gene-level Pooling

Sparse
Coding

spatial images
of a gene

Figure 3.1: Schematic flowchart of the feature extraction framework.

3.1.1 SIFT for Image-level Feature Extraction

To detect and describe local image features, I employ the well-known scale-invariant

feature transform (SIFT) method in this study. Briefly speaking, the SIFT method

first detects multiple localized keypoints (patches) from a raw image, and then trans-

forms those image content into local feature coordinates that are invariant to trans-

lation, rotation, scale, and other imaging parameters. I utilize VLFeat [Vedaldi and

Fulkerson (2008)] for SIFT detection and description. As a result, an average of 3,500

patches have been captured for each ISH image, where each patch is represented by

a 128-dimensional SIFT descriptor.

3.1.2 Sparse Coding for High-Level Feature Construction

Based on the SIFT descriptors obtained in the previous section, I next apply

sparse coding to generalize high-level image patch representations. Sparse coding

aims at reconstructing the data vectors through sparse linear combinations of basis

vectors and learning a non-orthogonal and over-complete dictionary, which has more
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flexibility to represent the data [Olshausen et al. (1996); Chen et al. (1998); Donoho

and Elad (2003)]. It has been applied in many fields such as audio processing and

image recognition [Szlam et al. (2012)].

Indeed, the sparse coding problem can be formulated as follows:

min
D,z1,...,zn

n∑
i=1

(
1

2
‖Dzi − ai‖2

2 + θ‖zi‖1) (3.1)

s.t. ‖D·j‖2 ≤ 1, 1 ≤ j ≤ p

where A = [a1, . . . , an] ∈ Rn×m is the set of SIFT descriptors obtained from image

patches, each SIFT descriptor ai ∈ Rm is a m-dimension (here m = 128) normalized

vector (i.e., with zero mean and unit norm), D ∈ Rm×p is the coding dictionary, θ is

the regularization parameter, and Z = [z1, . . . , zn] ∈ Rn×p is the set of sparse feature

representations of the original data. In addition, to prevent elements in the dictionary

D from taking arbitrarily large values, the constraint D·j, 1 ≤ j ≤ p is preferred to

restrict each column of D to be in a unit ball.

It is worth mentioning that solving the sparse coding problem is computationally

expensive, especially when dealing with a large-scale data set and learning a large

size of the dictionary. The primary computational cost comes from the updating of

sparse codes and the dictionary. To this end, I adopt a new approach, called stochastic

coordinate coding (SCC) [Lin et al. (2014)] in this study. It has been shown to be

much more efficient than existing methods [Lin et al. (2014)]. Key ideas of SCC are:

(1) alternately update the sparse codes via a few steps of coordinate descent, and

(2) update the dictionary via a second order stochastic gradient. In addition, the

computational cost of sparse coding can be further reduced, if we just focus on the

non-zero components of the sparse codes and the corresponding dictionary columns

during the updating procedure.

In this study, the dictionary is learned based on the SIFT descriptors of image
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patches from all ISH images. A set of constraint, zi ≥ 0, 1 ≤ i ≤ n, are further added

to ensure the non-negativity of sparse codes.

In the sequel, to generate image-level features, I adopt the max-pooling operation

based on patch-level representations. Max-pooling takes the strongest signal among

multiple patches to represent an image, which has shown to be powerful in combining

low-level sparse features [Boureau et al. (2010)].

3.1.3 Gene-level Feature Pooling

Recall that a specific ISH image is obtained from particular brain spatial coordi-

nates, and thus it cannot present the gene expression pattern over the entire brain

ontology. To this end, to describe expression status in all brain regions, I utilize a

gene-level feature pooling to combine multiple ISH images of a gene. In this study,

both average-pooling and max-pooling are employed to generate gene-level feature

representations of gene expression images.

3.2 Group Lasso for Multi-Class Annotation

In the Allen study, annotating the detailed categories of gene expression status

[see Figure 1.1, (a-c)] is essentially a multi-class classification problem. In this section,

I introduce my method for solving the multi-class annotation problem via a multi-

task learning (MTL) approach. Briefly speaking, MTL aims at learning these related

tasks simultaneously by extracting and utilizing appropriate shared information across

tasks [Zhou et al. (2011); Evgeniou and Pontil (2007, 2004)]. Multi-task learning

has been empirically [Ando and Zhang (2005); Caruana (1997); Bakker and Heskes

(2003); Evgeniou et al. (2005)] as well as theoretically [Ando and Zhang (2005);

Baxter (2000); Ben-David and Schuller (2003); Bakker and Heskes (2003); Baxter

(1997)] shown to be promising in terms of predictive performance relative to learning
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each task independently. Basically, Multi-task learning is a tool for modeling from a

set of related tasks. Thus if the multiple classes are inherently related, it is potentially

beneficial to employ MTL method for model construction.

Suppose that there are k classes (k = 3 or 4 in this study) in total. I first trans-

form the class representation of a sample to a k-tuple vector, where yik = 1 if sample i

belongs to class k and yik = 0 otherwise. Then, the response vector Y can be written

as Y = {yi}ni=1 ∈ Rn×k. In this dissertation study, I employ a `2,1-norm based struc-

tured sparse method together with logistic loss for multi-class classification. More

specifically, I employ the following multi-task sparse logistic regression model:

min
X

`(ZX,Y) + λ‖X‖2,1, (3.2)

where `(·) denotes the logistic loss, Z ∈ Rn×p is the gene-level representations (after

patch-level pooling and image-level pooling), X ∈ Rp×k, and the i-th column of

X refers to the model weight for the i-th task (class). The group sparse-inducing

regularizer—i.e., l2,1-norm penalty on X—leads to grouped sparsity. In other words,

it restricts all tasks to share a common set of features during modeling. In this

dissertation, the SLEP [Liu et al. (2009b)] package is utilized to solve the multi-class

learning Problem (3.2).

3.3 Label Structure-Based Two-Stage Learning Framework for

Multi-Label Annotation

In the Allen brain imaging – gene expression study, annotating gene expression

patterns over the entire brain ontology is indeed a multi-label classification problem.

It is worth emphasizing that, the expression status of a single gene are recorded

based on a hierarchically organized brain ontology in reference atlas. In addition, in

practice, it is possible to propagate annotation to parent or child structures under
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a set of systematic rules [Allen Institute for Brain Science (2013)]. Therefore, if we

simply treat each label (ontology subdivision) separately—we do not make utilize the

structural relationships among labels in the learning procedure—it may result in sub-

optimal predictive performance [Silla Jr and Freitas (2011); Tsoumakas et al. (2010)].

Alternatively, rather than treating each individual annotation task separately, if we

build all prediction models together by utilizing the structural information among

labels, the predictive performance can potentially be significantly improved [Silla Jr

and Freitas (2011); Tsoumakas et al. (2010)].

To this end, I propose a novel label structure-based two-stage multi-label classifi-

cation approach in this study. It makes full use of the hierarchy structure of labels. A

basic idea is of the proposed method is presented in Figure 3.2. Essentially, I divide

the learning process into two stages: in the first stage, a set of interesting tasks are

learned individually, and in the second stage, knowledge learned from the first stage

will be utilized as auxiliary features to train models for the remaining tasks.
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Figure 3.2: Two-stage learning framework. z̃ represents a sample, F is a proper
learning function, ỹ is the corresponding learning result, j /∈ {1, . . . , t}.

Formally, suppose we are given n training data points {(zi,yi)}ni=1, where zi ∈ Rp

is a sample of p features, and yi ∈ Rk is the corresponding label vector of k tasks. In

addition, denote j ∈ {1, . . . , k} be the j-th learning task. Then, I divide the learning

procedure into two stages. Specifically, in the first stage, I pre-select t tasks (t < k)
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that we are interested in, and each of those tasks is learned individually by:

ỹj = Fj(z̃), 1 ≤ j ≤ t < k, (3.3)

where Fj(·) denotes a learnt model by the j-th task, z̃ ∈ Rp is an arbitrary data

point, and ỹj ∈ R is the prediction of z̃ for the j-th task. Note that the order in Eq.

(3.3) is just for easy presentation purpose. In the second stage, the learned knowledge

in Eq. (3.3) is then used to train the remaining tasks (i.e., t + 1 ≤ j ≤ k). More

specifically, I augment the feature set by adding the prediction probabilities learnt in

the previous stage, i.e., I denote an augmented feature set by z̃′ = [z̃, (ỹ1, . . . , ỹt)].

In the sequel, annotation tasks in the second stage will be performed based on this

augmented features.

The tasks in the first learning stage can be considered as the auxiliary tasks in

the second stage [Ando and Zhang (2005)]. I propose to consider such a two-stage

multi-label learning approach in this study since the tasks are not symmetric due to

the hierarchical label structure. With the prediction probabilities from the previous

learning stage, I make use of label dependency along with the original image feature

representations. Intuitively, if a new learning task is related to some of the tasks

in the first stage, then such an approach is expected to achieve better classification

accuracy. In my study, since the tasks associated with the bottom-level in the label

hierarchy are related to the remaining tasks, the prediction performance is expected to

be improved by the two-stage learning approach. This is confirmed in our experiments

presented in the next section.

3.4 Experiments

In this section, I evaluate the proposed approaches on the Allen developing mouse

brain atlas (ADMBA) data sets. More specifically, experiments have been conducted
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from the following respects: (1) comparison between sparse coding and bag-of-words,

(2) comparison between different multi-class annotation methods, and (3) comparison

between annotation with and without brain ontology—i.e., the proposed two-stage

learning framework.

3.4.1 Experimental Setup

The gene expression ISH images are obtained from the Allen developing mouse

brain atlas. More specifically, to ensure the consistency of brain ontological struc-

ture across different developmental stages, I focus the experiments on four embryonic

stages: E11.5, E13.5, E15.5, and E18.5. The Allen atlas provides approximately 2,100

genes within the stage and an average of 15∼20 spatially related images are used for

each gene to capture the expression information over the entire brain. I use the SIFT

method to detect local gene expression and adopt the proposed augmented sparse cod-

ing approach to learn sparse feature representations for image patches. Considering

the high-resolution of ISH images and the number of regions within the brain ontol-

ogy, a dictionary of size 2,000 is chosen, i.e., D ∈ R128×2000. Later, both max-pooling

and average-pooling are performed to generate gene-level representations.

To evaluate the effectiveness of the proposed feature extraction approach, I com-

pare it with the state-of-the-art bag-of-words (BoW) method. Specifically, BoW is

performed in two different configurations: the first approach—non-spatial BoW, con-

catenates three BoW representations of SIFT features, where each BoW is learned

from a specific scale of the ISH images; the second approach—spatial BoW, further

divides the brain sagittally into seven intervals according to the spatial coordinate of

each image. As a result, 21 regional BoW representations are built (7 intervals × 3

scales) through the spatial BoW method [Zeng and Ji (2014)]. In addition, at each

scale, a fixed size of 500 clusters (keywords) are constructed from SIFT representation
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and an extra dimension is used to count the number of zero descriptors of each patch.

Recall that R-ADMBA uses three different measurements, including pattern, den-

sity, and intensity, to evaluate the gene expression status of each brain ontology re-

gion. And basically, the annotation tasks can be considered as either binary-class

or multi-class classification problem. For the simple binary-class case, the category

“undetected” is treated as the negative class, which refers to the scenario that no gene

expression activities are detected at the specific brain region, and all remaining cate-

gories are treated as the positive class, which means some kind of expression activities

have been detected. It is worth mentioning that, at such a binary-class situation, if

the annotation metric “pattern” is marked as “undetected”, then metrics “density”

and “intensity” must be “undetected”, and vice versa.

In order to balance the class distributions of training sets, random undersampling

on the major class is performed for 11 times. To give a benchmark performance,

the experiment results of using Support Vector Machine (SVM) classifier [Chang

and Lin (2011)] is also reported. In addition, to better describe the classification

performance under the circumstances of data imbalance, I adopt the area under the

curve (AUC) of a receiver operating characteristic (ROC) curve as the performance

measure for binary-class classification. Moreover, both AUC and accuracy are used

as the performance measurements for the multi-class case.

3.4.2 Comparison between Sparse Coding and Bag-of-Words

In this series of experiments, I compare the proposed sparse coding (SCC) ap-

proach for high-level imaging feature construction with the state-of-the-art bag-of-

words (BoW) method. Specifically, raw gene expression ISH images have been pro-

cessed through the following four methods: (1) SCC Average, using SCC with a

dictionary size of 2,000 to learn image-level representations and adopting average-
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pooling to generate gene-level features; (2) SCC Max, similar to (1) but adopting

max-pooling to generate gene-level features; (3) BoW nonSpatial, generating single

BoW representations using all ISH images; (4) BoW Spatial, generating multiple

BoW representations based on images from different spatial coordinates. Here I con-

sider the binary-class situation (i.e., detected vs. undetected), and the original data

set is being randomly partitioned into training and testing for each annotation task us-

ing a ratio of 4:1. In addition, I adopted the undersampling–majority voting strategy

to deal with the imbalanced class distribution. Averaged classification performance

in terms of AUC is grouped according to the brain ontological level at different brain

developmental stage. Summarization is available in Figure 3.3.

In Figure 3.3, it can be observed that the proposed approach achieves the highest

overall predictive performance in terms of AUC. The SCC approaches achieved AUCs

of 0.9095, 0.8573, 0.8717 and 0.8903 at mouse brain developmental stages E11.5,

E13.5, E15.5, and E18.5, respectively. For the comparison between different types

of image representations, SCC Average achieved the best overall performance among

all annotation tasks. Although in some tasks, BoW Spatial provides competitive

performance to SCC Average, it is worth mentioning that, BoW Spatial ensembles

21 single dictionaries and contains more than 10,000 features. This implies that

BoW Spatial is far more complex than SCC and involves higher computational costs.

Moreover, in comparison with SVM classifiers, the sparse logistic regression classifiers

achieve better predictive performance. The above experimental results verify the

superiority of our proposed methods.

3.4.3 Comparison between Different Multi-Class Annotation Methods

In the following experiments, I evaluate the proposed `2,2-norm based multi-task

sparse logistic regression (mcLR) approach in the multi-class annotation tasks. Based
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(a) AUC of Annotation Tasks at Different Brain Levels at Stage E11.5.
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(b) AUC of Annotation Tasks at Different Brain Levels at Stage E13.5.
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(c) AUC of Annotation Tasks at Different Brain Levels at Stage E15.5.
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(d) AUC of Annotation Tasks at Different Brain Levels at Stage E18.5.
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Figure 3.3: Comparison of the proposed approach and bag-of-words method. Each
column bar represents the averaged performance of using sparse logistic regression
at a specific brain ontological level. Each dot represents the performance of using
SVM classifier at a specific brain ontological level. The error bar of each column
is the standard deviation of annotation performance within the corresponding brain
level. “Mean” group records the average performance of 11 sub-models. “Vote” group
records the performance of using majority voting.
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Table 3.1: Comparison of multi-class annotation methods at stage E11.5.

AUC Accuracy(%)

Pattern Density Intensity Pattern Density Intensity

SVM mcLR SVM mcLR SVM mcLR SVM mcLR SVM mcLR SVM mcLR

L5 0.708 0.713 0.678 0.734 0.688 0.689 77.26 80.38 71.52 74.93 76.98 80.90

L6 0.711 0.729 0.700 0.733 0.715 0.710 79.29 81.78 80.68 82.97 79.93 83.57

L7 0.731 0.732 0.684 0.739 0.712 0.709 77.69 80.43 77.34 79.88 79.33 82.54

L8 0.711 0.734 0.704 0.735 0.736 0.726 81.61 84.35 83.40 85.46 83.98 85.80

L9 0.640 0.666 0.688 0.699 0.693 0.698 77.02 81.10 85.40 87.16 84.84 87.04

L10 — — — — — — — — — — — —

Table 3.2: Comparison of multi-class annotation methods at stage E13.5.

AUC Accuracy(%)

Pattern Density Intensity Pattern Density Intensity

SVM mcLR SVM mcLR SVM mcLR SVM mcLR SVM mcLR SVM mcLR

L5 0.637 0.677 0.637 0.695 0.646 0.669 73.53 80.10 67.91 73.87 70.51 76.62

L6 0.675 0.695 0.656 0.702 0.658 0.682 75.80 81.79 72.87 77.76 73.35 78.40

L7 0.703 0.719 0.648 0.699 0.661 0.677 72.07 77.56 72.09 77.05 73.71 78.85

L8 0.712 0.719 0.671 0.727 0.691 0.706 71.83 77.03 70.82 75.02 73.90 78.35

L9 0.682 0.680 0.654 0.682 0.669 0.682 78.54 82.26 81.12 84.66 80.57 84.34

L10 — — 0.699 0.688 0.671 0.686 — — 85.36 87.48 83.22 86.00

on the results of the previous experiment, I employ the SCC Average data in this

study. In addition, I adopt the multi-class SVM (mcSVM) as the baseline for com-

parison. In each experiment, 20% of the samples from each class are randomly selected

for testing, and the remain samples are used for training. Annotation tasks are in-

cluded if there are more than 100 samples available for each class (∼2,000 samples in

total). Averaged annotation performance at different brain developmental stages in

terms of both AUC and accuracy are summarized in Tables 3.1-3.4.

Tables 3.1-3.4 demonstrate that the proposed approach that using sparse logistic

regression together with grouped sparsity constraint provides better predictive per-
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Table 3.3: Comparison of multi-class annotation methods at stage E15.5.

AUC Accuracy(%)

Pattern Density Intensity Pattern Density Intensity

SVM mcLR SVM mcLR SVM mcLR SVM mcLR SVM mcLR SVM mcLR

L5 0.648 0.669 0.637 0.703 0.656 0.679 80.91 86.78 70.13 74.52 72.17 77.15

L6 0.618 0.664 0.648 0.700 0.654 0.678 79.66 83.09 76.42 80.03 76.28 80.83

L7 — — 0.645 0.702 0.667 0.687 — — 74.55 78.53 75.36 80.05

L8 0.683 0.701 0.647 0.698 0.658 0.685 74.97 79.79 70.93 75.36 72.83 78.23

L9 0.712 0.699 0.657 0.700 0.685 0.695 78.84 82.39 80.49 83.26 80.32 83.97

L10 — — 0.689 0.708 0.724 0.722 — — 86.16 87.61 87.03 88.26

Table 3.4: Comparison of multi-class annotation methods at stage E18.5.

AUC Accuracy(%)

Pattern Density Intensity Pattern Density Intensity

SVM mcLR SVM mcLR SVM mcLR SVM mcLR SVM mcLR SVM mcLR

L5 0.743 0.704 0.660 0.717 0.710 0.713 75.41 78.93 72.73 76.18 75.22 78.96

L6 0.686 0.682 0.664 0.718 0.701 0.710 83.08 87.37 76.67 79.55 78.94 82.01

L7 0.753 0.715 0.667 0.727 0.729 0.722 77.34 79.65 75.78 78.77 77.67 80.79

L8 — — 0.678 0.735 0.723 0.726 — — 73.79 77.48 75.89 79.58

L9 0.745 0.717 0.681 0.728 0.744 0.731 79.49 81.42 79.17 81.56 80.59 83.01

L10 0.720 0.702 0.693 0.710 0.750 0.740 79.38 81.45 82.94 84.96 83.52 85.56

formance in comparison with SVM. Annotation performance of the mcLR approach

in both terms of AUC and accuracy are significantly higher than mcSVM at sev-

eral brain ontology levels. The above experimental results imply that those multiple

classes are inherently related, and it is beneficial to learn four (or three) classification

models simultaneously by restricting all models to share a common set of features.

3.4.4 Comparison between Annotation Performance with/without Brain Ontology

Recall that in the Allen study, expression status of a single gene are recorded

based on a hierarchically organized ontology of brain anatomical structures. It is also
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possible to propagate annotation status to a parent or a child subdivision of brain

under a set of systematic rules. Therefore, I apply the proposed label structure-based

two-stage multi-label learning (SMLL) approach in this study. More specifically, I

compare the SMLL method with simple individual approaches—which build models

for different tasks independently. At a certain brain developmental stage, around

200 genes are randomly pre-selected as the testing annotation tasks over the brain

ontology and the remaining genes are treated as training. For SMLL, 432 tasks

(regions) at level 10 (L10) are learned individually in the first stage. Later, the

prediction probabilities of L10 tasks will be added into the data set as auxiliary

features. In this experiment, I employ the SCC Average data set and consider the

binary-class situation. Preliminary experimental results in terms of both AUC and

accuracy are summarized in Tables 3.5 and 3.6.

We can observe from Tables 3.5 and 3.6 that the overall annotation performance

achieved by SMLL is higher than individual models. Improvements in terms of AUC

and accuracy can be observed at most of the brain ontology levels. This verifies the

effectiveness of the proposed label structured-based two-stage multi-label learning

approach.

3.5 Summary

In this study, I propose an efficient computational approach to perform automated

gene expression pattern annotation on mouse brain images. The key information is

stored in the form of spatiotemporal in-situ hybridization images. I first employ the

SIFT method to construct local image descriptors. I next use sparse coding to ef-

ficiently learn the dictionary from SIFT descriptors of all ISH images and generate

patch-level sparse feature representations of the images. Different pooling methods

are utilized to combine patch-level representations to form image-level features, and
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further generate gene-level representations. To discriminate gene expression patterns

over each brain area, I employ sparse logistic regression classifier and its multi-task

extension to learn models for binary-class and multi-class classification. In addition,

random undersampling and majority voting strategies are utilized to deal with imbal-

anced class distribution inherent within each annotation task. Furthermore, I make

full use of the label hierarchy and dependency by developing a novel structure-based

multi-label classification approach, which consists of two learning stages. In the first

stage, a set of interesting tasks (at the bottom of the label hierarchy) are learned

individually, and in the second stage, knowledge learned from the first stage will be

utilized to train models for the remaining tasks. I evaluate the proposed approach on

the four embryonic mouse developmental stages.

Annotation results show that the adopted sparse coding approach outperforms

the bag-of-words method. The proposed method provides favorable classification

accuracy on both binary-class and multi-class tasks. Experiment results also show

that the structure-based multi-label classification approach can significantly improve

the annotation accuracy at all brain ontology levels.
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Table 3.5: Comparison of annotation performance with/without brain ontology in terms of AUC.

E11.5 E13.5 E15.5 E18.5

LogisticR SVM LogisticR SVM LogisticR SVM LogisticR SVM

Single SMLL Single SMLL Single SMLL Single SMLL Single SMLL Single SMLL Single SMLL Single SMLL

L1 0.837 0.811 0.806 0.837 0.793 0.781 0.737 0.778 0.744 0.749 0.657 0.699 0.890 0.878 0.845 0.879

L2 0.866 0.850 0.854 0.877 0.774 0.772 0.744 0.785 0.755 0.764 0.632 0.695 0.894 0.882 0.831 0.884

L3 0.898 0.884 0.884 0.903 0.799 0.797 0.766 0.808 0.781 0.788 0.634 0.710 0.893 0.885 0.833 0.885

L4 0.941 0.941 0.932 0.951 0.868 0.874 0.843 0.873 0.796 0.803 0.665 0.709 0.891 0.890 0.852 0.888

L5 0.905 0.908 0.904 0.922 0.843 0.855 0.822 0.848 0.838 0.844 0.710 0.746 0.871 0.876 0.837 0.850

L6 0.935 0.937 0.937 0.947 0.898 0.907 0.882 0.898 0.843 0.851 0.744 0.760 0.871 0.878 0.844 0.855

L7 0.951 0.950 0.950 0.959 0.860 0.866 0.842 0.863 0.846 0.858 0.743 0.777 0.894 0.896 0.874 0.890

L8 0.980 0.982 0.980 0.984 0.932 0.937 0.905 0.932 0.835 0.841 0.810 0.836 0.894 0.896 0.863 0.882

L9 0.966 0.969 0.971 0.972 0.890 0.896 0.877 0.884 0.865 0.873 0.811 0.816 0.871 0.872 0.852 0.843

L10 0.971 — 0.976 — 0.906 — 0.904 — 0.877 — 0.837 — 0.896 — 0.884 —
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Table 3.6: Comparison of annotation performance with/without brain ontology in terms of accuracy.

E11.5 E13.5 E15.5 E18.5

LogisticR SVM LogisticR SVM LogisticR SVM LogisticR SVM

Single SMLL Single SMLL Single SMLL Single SMLL Single SMLL Single SMLL Single SMLL Single SMLL

L1 80.89 87.32 75.00 87.86 75.33 75.33 67.11 69.90 68.42 72.86 61.68 64.47 79.40 75.00 78.14 72.86

L2 81.67 88.69 77.14 89.52 73.57 77.08 70.07 74.12 69.85 76.32 62.06 67.76 79.56 79.15 75.54 76.32

L3 82.59 89.77 80.30 90.71 75.07 80.85 70.50 78.57 71.68 80.54 62.64 74.24 78.44 80.96 75.54 80.54

L4 83.67 91.89 85.00 93.83 79.32 86.65 76.50 83.79 70.30 81.06 67.72 82.10 76.31 81.16 76.85 81.06

L5 80.94 88.50 85.31 94.67 74.54 86.44 76.39 88.27 68.91 82.60 71.69 87.22 68.47 76.78 75.12 82.60

L6 83.48 90.22 88.70 94.95 77.59 88.09 80.62 89.37 69.91 83.02 73.57 88.97 68.60 76.44 75.30 83.02

L7 85.22 91.06 88.24 93.33 75.88 88.41 77.32 88.48 71.56 84.72 73.92 88.87 73.20 80.66 77.74 84.72

L8 85.86 91.98 90.41 94.80 81.74 89.51 80.38 87.53 72.78 82.29 75.64 88.11 73.64 81.02 76.52 82.29

L9 84.09 90.73 89.19 94.76 75.44 87.34 80.83 91.55 68.31 82.58 77.89 91.58 62.76 72.09 76.35 85.77

L10 82.41 — 88.44 — 75.64 — 82.24 — 70.73 — 79.15 — 68.41 — 78.05 —
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Chapter 4

ADNI IMAGING GENETICS STUDY

In this chapter, I focus on a series of imaging genetic studies that aim to investigate

the associations between Alzheimer’s disease (AD) phenotypes and genotypes, i.e.,

how genetic variations—single nucleotide polymorphisms (SNPs)—affect the progres-

sion of AD. Those studies are based on the Alzheimer’s disease neuroimaging initiative

(ADNI) imaging data and whole genome sequence (WGS) data. More specifically,

in Section 4.1, I adopt Lasso, as the basic multivariate method, to identify AD-risk

SNPs. In the sequel, in Section 4.2, I employ tree-structure group Lasso for the

same purpose, by taking advantage of the linkage disequilibrium (LD) information

and construct a tree-structure over the SNPs. Moreover, I propose a novel absolute

fused Lasso model that can robustly incorporate SNP spatial structure in Section 4.3.

To utilize the gene networks over SNPs data, I propose a two-level structured sparse

model in Section 4.4. Furthermore, in Section 4.5, I present an approach that utilize

convolutional neural networks together with the dropout technique for accurate pre-

dicting image-based AD biomarkers. Experiments have been conducted on the ADNI

MRI T1 imaging data and WGS data, a suite of selected preliminary experimental

results are presented in Section 4.6.

4.1 Lasso Method

In the first ADNI imaging genetics study, I employ Lasso regression to identify the

most relevant SNPs. Lasso is a simple and basic sparse model for univariate-imaging

multivariate-genetic association study. Recall in Eq. (2.3), the non-zero components
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in x corresponding to the relevant features in A. In this study, A is the processed

ADNI WGS SNPs data matrix. As a consequence, Lasso is potentially useful to locate

important SNPs that are most relevant to predicting the specific phenotype.

To reveal robust AD-relevant SNPs, I employ the stability selection [Meinshausen

and Bühlmann (2010)] method, which is essentially based on subsampling and selec-

tion algorithms. Stability selection yields finite sample family-wise error control and

markedly improves structure estimation. As it involves solving the Lasso problem

many times, such a process can be very time-consuming. To this end, I utilize the

enhanced dual polytope projections (EDPP) screening rules [Wang et al. (2015b)] to

speedup the computation. Lasso together with EDPP screening allows us for the first

time to run the compute-intensive model selection procedure to rank causal SNPs

that may affect the brain.

4.1.1 EDPP Screening Rules for Lasso

The EDPP screening rules [Wang et al. (2015b)] are motivated by the idea of El

Ghaoui et al. (2012) and Tibshirani et al. (2012). Following (R1’), the framework of

EDPP screening rules for Lasso can be summarized into the following three steps:

1. Estimate a region Θ which contains the dual optimum θ∗(λ).

2. Solve the maximization problem in (R1’), i.e., supθ∈Θ |aTi θ|.

3. By plugging in the upper bound we find in the last step, it is straightforward

to develop the screening rule based on (R1’).

In the above framework, the key is the estimation of the dual optimum, which deter-

mines the efficiency of the screening rule. Based on the geometric properties of the

dual, EDPP can provide a very accurate estimation of the dual optimum.
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In solving Lasso problems, suppose that we are given a sequence of regularization

parameter values λ1 > λ2 > . . . > λm. We first apply EDPP to discard inactive

features for the Lasso problem at λ1 and compute the optimal solution x∗(λ1) by

solving Lasso on the reduced data matrix. Then, by Eq. (2.16), we can find θ∗(λ1).

In view of (R1’), if we know the dual optimal solution θ∗(λ1), we can obtain a new

screening rule for Problem (2.3) at λ2. By repeating the above procedure, we have

the sequential version of EDPP screening rules as summarized in Theorem 1.

Let λmax = ‖ATy‖∞, and let

x∗ = argmaxxi
|xTi y|, (4.1)

v1(λ0) =


y

λ0

− θ∗(λ0), if λ0 ∈ (0, λmax),

sign(xT∗ y)x∗, if λ0 = λmax,

(4.2)

v2(λ, λ0) =
y

λ
− θ∗(λ0), (4.3)

v⊥2 (λ, λ0) = v2(λ, λ0)− 〈v1(λ0),v2(λ, λ0)〉
‖v1(λ0)‖2

2

v1(λ0). (4.4)

Formally, the sequential version of EDPP can be formulated as follows:

Theorem 1. EDPP: For the Lasso problem, suppose that we are given a sequence

of parameter values λmax = λ0 > λ1 > . . . > λm. Then for any integer 0 ≤ k ≤ m,

we have [x∗(λk+1)]i = 0 if x∗(λk) is known and the following holds:∣∣∣∣aTi (y −Ax∗(λk)

λk
+

1

2
v⊥2 (λk+1, λk)

)∣∣∣∣ < 1− 1

2
‖v⊥2 (λk+1, λk)‖2‖ai‖2. (4.5)

The sequential version of the EDPP has several appealing features. First, in a

real application, the optimal parameter value of λ is typically unknown and needs

to be estimated. Second, it can help accelerate the process of stability selection. In

our study, I use the DPC package [Wang et al. (2015b), http://dpc-screening.

github.io/index.html] to perform the EDPP screening.
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4.2 Tree-Structured Group Lasso Method

The `1-norm penalty term in the Lasso formulation (2.3) induces sparsity in the co-

efficients. However, Lasso considers all features equally without any further structural

assumptions among them. As mentioned in previous chapters, there are attempts [Liu

et al. (2011, 2013); Liu (2011)] that utilize LD information together with group Lasso

for imaging genetics. However, It is worth mentioning that, with LD information, we

can construction a hierarchical tree structure among SNPs as well. In the following

study, I incorporate the SNPs’ tree structure into the model and apply tree-structured

group Lasso (TGL) to identify AD-related SNPs on Chromosome 19 (Chr19).

TGL explicitly incorporates a pre-defined tree structure to characterize the hierar-

chical relationship among feature set [Liu and Ye (2010)]. For a tree with d+1 layers, I

denote the set of nodes at depth i by Ti = {Gi
1, G

i
2, . . . , G

i
ni
}, where Gi

j is the jth node

at the ith layer, n0 = 1, G0
1 = {1, 2, . . . , p}, p is the number of features and ni ≥ 1 for

i = 1, 2, . . . , d. Each node in the tree denotes a group of features. By convention, for

a given index set G and a vector u, let uG = {v : vi = ui if i ∈ G, vi = 0 otherwise},

where vi is the ith component of vector v. Then, the TGL problem takes form as

follows:

min
x

1

2
‖y −Ax‖2 + λ

d∑
i=0

ni∑
j=1

ωij‖xGi
j
‖, (4.6)

where ωij is the pre-defined weight for node Gi
j.

TGL is a promising technique for revealing the hierarchical sparse patterns among

features. To apply TGL to SNPs data, I build the tree structure among SNPs ac-

cording to the linkage disequilibrium (LD) information and chromosomal locations of

SNPs. Briefly speaking, LD refers to the non-independence of alleles at different loci

(i.e., positions) in the genome. A widely-used measure of LD between pairs of SNPs

is R2 [Pritchard and Przeworski (2001)]. More details regard to the tree construction
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are presented in Section 4.6.1.2.

In this study, I apply a similar stability selection framework (refers to Section 4.1)

but employ the TGL penalty (2.7) for robust variable selection (i.e. identifying AD-

risk SNPs). Due to the non-differentiable and high-complexity of TGL, solving such

a problem is typically very time-consuming. To this end, I utilize the multi-layer

feature reduction (MLFre) rules [Wang and Ye (2015)] for screening. Experiments

show that the proposed method is efficient and effective in detecting SNPs that affect

AD.

4.2.1 MLFre Screening Rules for TGL

For TGL, let φij(x) = ‖xGi
j
‖ and ∂φ(0) =

∑d
i=0

∑ni

j=1 ω
i
j∂φ

i
j(0), where φij(x) is the

subdifferential [Rockafellar (1970)] of φij at x. Let F = θ : AT θ ∈ ∂φ(0). Then, the

dual of TGL can be represented as follows:

sup
θ

{
1

2
‖y‖2 − 1

2
‖y
λ
− θ‖2 : θ ∈ F

}
. (4.7)

Let x∗(λ) and θ∗(λ) be the optimal solutions of problems (4.6) and (4.7), respectively.

The corresponding KKT conditions are:

y = Ax∗(λ) + λθ∗(λ), (4.8)

AT θ∗(λ) ∈
d∑
i=0

ni∑
j=1

ωij∂φ
i
j(x
∗(λ)).

Let HG = {u ∈ Rp : ui = 0 if i /∈ G}. Based on the definition of subdifferential

[Rockafellar (1970)], we have

ωij∂φ
i
j(x
∗(λ) =


{
ξ ∈ HGi

j
: ‖ξ‖ ≤ ωij

}
, if [x∗(λ)]Gi

j
= 0

ωij[x
∗(λ)]Gi

j
/‖[x∗(λ)]Gi

j
‖, otherwise.

(4.9)
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Inspired by KKT conditions in (4.8) and (4.9), the MLFre screening rules take the

form of [Wang and Ye (2015)]:

sup
ξ

{
‖Sij(ξ)‖ : ξGi

j
∈ Ξi

j ⊇ [ATΘ]Gi
j

}
< ωij =⇒ [x∗(λ)] = 0, if Gi

j is a non-leaf node,

sup
ξ

{
‖Sij(ξ)‖ : ξGi

j
∈ [ATΘ]Gi

j

}
< ωij =⇒ [x∗(λ)] = 0, if Gi

j is a leaf node,

(4.10)

where [ATΘ]Gi
j

= [ATΘ]Gi
j

: λ ∈ Θ, Θ is an estimated bounded-ball set containing

θ∗(λ) and Ξi
j is an estimated set containing [ATΘ]Gi

j
. Wang and Ye (2015) show that

the supremum values on the left-hand sides of (4.10) admit closed-form solutions.

For node Gi
j with [x∗(λ)] = 0, all features contained by its descendant nodes can be

removed from the optimization problem.

4.3 Absolute Fused Lasso Method

Tree-structured group Lasso presented in the previous section requires strong prior

knowledge among features. In addition, how to build a proper tree structure (distance

and linkage functions) and how to choice a certain cutoff level are generally challenging

in practice for adopting TGL.

In real-world applications, another scenario that occurs commonly is that the data

sets we investigated are of some natural (e.g., spatial or temporal) order; examples

include the comparative genomic hybridization data [Tibshirani and Wang (2008)],

prostate cancer data [Tibshirani et al. (2005)] and neuroimaging data [Yang et al.

(2012b)]. In such studies, it is often the case that the adjacent samples/features are

similar and even identical. Similarly, in genome-wide association studies (GWAS), a

causal single-nucleotide polymorphism (SNP) often exhibits high similarity with its

nearby SNPs. As a consequence, it is desired to group nearby SNPs together during

model selection. In addition, due to the ambiguity choice of reference allele during
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genotype coding [Liu et al. (2011)], we should group adjacent SNPs if their absolute

values are close to each other.

Previous works [Yang et al. (2015a); Ye and Liu (2012); Bach et al. (2012); Wang

et al. (2016b)] indicate that utilizing the inherent structural information among the

feature is potentially beneficial for model construction as well as interpretation. Thus

if the data set exhibits some sequential order, we can potentially incorporate such

a prior knowledge into the model to improve performance. Meanwhile, due to the

curse of dimensionality in the high-dimensional scenario, identifying the most rele-

vant features that can best explain the outcome is of crucial importance. In ADNI

imaging genetics study, the traditional Lasso [Tibshirani (1996)] model is insufficient

to produce desired results since it tends to select only one of those highly correlated

features [Zou and Hastie (2005)]. There are mainly two approaches in the literature

to address the above problem. One approach adopts the fused penalty (e.g., fused

Lasso), which can yield a sparse solution in both the coefficients and their successive

differences [Tibshirani et al. (2005); Tibshirani and Wang (2008); Liu et al. (2010)].

However, it does not consider the case that adjacent features are high correlated but

with opposite signs. Studies in [Liu et al. (2011)] also argue that the fused Lasso

is not effective due to the ambiguity choice of coding reference. Another approach

utilizes the graph structure among features (e.g., OSCAR) during model construc-

tion [Bondell and Reich (2008); Yang et al. (2012b); Zhu et al. (2013)]. However, such

an approach is too general and does not make full use of the specific structure of the

genome sequencing data.

To this end, I propose to penalize successive SNPs whose absolute values are close

or identical during model learning. More specifically, in my dissertation study, I

consider a regularized model which uses a penalty called absolute fused Lasso (AFL)

to solve such a problem. The AFL penalty encourages sparsity in the coefficients
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as well as their successive differences of absolute values—i.e., local constancy of the

coefficient components in absolute value. With AFL, highly similar features can

potentially be grouped together even though their signs are different.

It is worth mentioning that the AFL penalty discussed in the next sections is

non-convex. And thus it is challenging to develop efficient optimization algorithms.

To this end, I employ the difference of convex functions (DC) programming to solve

the non-convex optimization problem. At each DC iteration, I adopt the proximal

algorithm to efficiently solve the corresponding convex subproblem, which iteratively

solves a proximal operator problem; I further use the Barzilai-Borwein (BB) rule

for line search to accelerate convergence. One of the major contributions of in my

dissertation is to show that such a proximal operator problem regarding AFL can

be solved efficiently. More specifically, by exploiting the special structure of the

AFL regularizer, I first convert the computation of such a proximal operator to an

equivalent optimization problem via a Euclidean projection onto a special polyhedron.

I then develop a gradient descent approach based on a novel restart technique by

utilizing the optimality condition to efficiently solve the projection problem.

4.3.1 The AFL Formulation

Formally, I consider the following AFL regularization model:

min
x∈Rp

loss(x) + afl(x), (4.11)

where loss(x) is a convex empirical loss function (e.g., the least squares loss or the

logistic loss) and the AFL penalty is defined as:

afl(x) = λ1‖x‖1 + λ2

p−1∑
i=1

||xi| − |xi+1||, (4.12)

where λ1 and λ2 are non-negative regularization parameters. The second term pe-

nalizes differences of successive coefficients’ magnitudes and can be considered as a
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Figure 4.1: Comparison of coefficients of the AFL and the fused Lasso (FL) on a
simulated data set. FLSA refers to the signal operator of the fused Lasso, AFLSA
refers to the signal operator of AFL. When sign flips are part of the true signals, the
AFL (red line) provides better recovery of the original signals (black) than the fused
Lasso (blue).

grouping penalty. By imposing both the l1 penalty and the grouping penalty, the

AFL model can simultaneously identify important features as well as group similar

features together (with sign-invariance).

Differing from the fused Lasso that penalizes the l1-norm on successive differences

of coefficients, the AFL regularizer encourages the smoothness of adjacent coefficients

whose absolute values are close or even identical. As a consequence, strong successive

signals can be identified by Eq. (4.11) even when their signs are different. This implies

that in general, adopting the AFL penalty is expected to be more effective than the

fused Lasso (See an example in Fig. 4.1). Note that in imaging genetics studies, the

SNPs data set we obtained through genotype coding is strongly affected by the choice

of reference allele. Thus it is insufficient to just penalize the successive differences

without considering the absolute values. In Liu et al. (2011), the authors use a l2-

norm on the absolute difference of adjacent features, and apply coordinate descent

to solve the proposed formulation. However, due to the use of l2-norm, the fused
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property—i.e., the absolute values of nearby terms tend to be identical—does not

hold any more.

In this study, I propose to adopt the DC programming to solve the AFL prob-

lem (4.11) and apply a proximal algorithm to solve the sub-problem at each DC

iteration. One of the major technical contributions is to develop an efficient solver

for computing the proximal operator problem, which is a key building block of the

proximal algorithm.

4.3.2 DC Programming for Solving the AFL Problem

The AFL formulation in Eq. (4.11) is non-convex. However, by noting that

||xi| − |xi+1|| = |xi + xi+1|+ |xi − xi+1| − (|xi|+ |xi+1|),

the objective function in Eq. (4.11) can be decomposed into the difference of the

following two functions:

f1(x) = loss(x) + λ1‖x‖1 + λ2

p−1∑
i=1

(|xi + xi+1|+ |xi − xi+1|),

f2(x) = λ2

p−1∑
i=1

(|xi|+ |xi+1|).

Therefore, I propose to use the difference of convex functions (DC) programming [Tao

et al. (1988); Tao and An (1997)] to solve the original AFL problem (4.11).

By linearization of f2(x), the per-iteration sub-problem of the DC algorithm can

be written as:

min
x

loss(x)− (ck)Tx + λ1‖x‖1 + 2λ2

p−1∑
i=1

max (|xi|, |xi+1|), (4.13)

where

cki = λ2di sgn (xki ) with

d1 = dp = 1, di = 2, 2 ≤ i ≤ p− 1 (4.14)
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and sgn(·) is the signum function (detailed derivation is provided in Appendix A). I

summarize the DC algorithm that solves the AFL problem in Algorithm 2. A key

building block in this algorithm is how to efficiently optimize the subproblem (4.13).

In the following section, I show that Eq. (4.13) can be efficiently solved through a

proximal algorithm.

Algorithm 2 DC algorithm for solving the AFL Problem.

Input: data matrix A ∈ Rn×p, response vector y ∈ Rn×1,

regularizes λ1, λ2, and tolerance ε

Output: x

1: Initialization: x0 ← 0, k = 0

2: while f(xk)− f(xk+1) > ε do

3: Update ck according to Eq. (4.14).

4: Update xk+1 according to Eq. (4.13).

5: k ← k + 1.

6: end while

4.3.3 The Proximal Algorithm

In this section, I adopt the proximal gradient descent framework [Wright et al.

(2009)] to solve the sub-optimization problem (4.13) at each iteration of the DC

algorithm. More specifically, Problem (4.13) is equivalent to

min
x∈Rp

h(x) = l(x) +m(x), (4.15)

where

l(x) = loss(x)− (ck)Tx,

m(x) = λ1‖x‖1 + 2λ2

p−1∑
i=1

max (|xi|, |xi+1|).
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In the sequel, the proximal algorithm solves problem (4.13) by generating a se-

quence {xk} by solving:

xk+1 = arg min
x∈Rp

{
l(xk) + 〈∇l(xk),x− xk〉+m(x) +

tk

2
‖x− xk‖2

2

}
, (4.16)

where tk > 0 is chosen by some rule introduced below. It is easy to show that (4.16)

is equivalent to the following proximal operator problem:

xk+1 = arg min
x∈Rp

1

2
‖x− uk‖2 +

1

tk
m(x), (4.17)

where uk = xk −∇l(xk)/tk. In other words, such an algorithm can be viewed as the

gradient descent along the direction −∇l(xk) with the step size 1/tk plus computing

the proximal operator problem in (4.17). The pseudo codes of the algorithm are

summarized in Algorithm 3.

To guarantee convergence, a line search criterion is adopted to choose an appropri-

ate step size. More specifically, we accept the step size 1/tk if the following inequality

holds:

h(xk+1) ≤ h(xk)− σ

2
tk‖xk+1 − xk‖2,

where σ ∈ (0, 1) is a constant. To further accelerate the convergence speed of the

proximal algorithm, as suggested in studies [Wright et al. (2009); Gong et al. (2013)],

I adopt the Barzilai-Borwein (BB) rule to initialize the line search step size as 1/tk,0,

where

tk,0 =
〈ak,bk〉
〈ak, ak〉

with ak = xk − xk−1 and bk = ∇l(xk)−∇l(xk−1).

Notice that a key step in the proximal algorithm is how to efficiently solve the

proximal operator problem in (4.17). In the next section, I introduce an efficient

approach to solve Eq. (4.17) by exploiting the special structure of the regularizer.
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Algorithm 3 The Proximal Algorithm.

Input: A,y, λ1, λ2

Output: x

1: Choose η > 1, tmax > tmin > 0

2: Initialization: x0, k = 0

3: while some stopping criterion is not satisfied do

4: Choose tk ∈ [tmin, tmax]

5: while line search criterion is not satisfied do

6: Update xk+1 according to Eq. (4.17).

7: tk ← ηtk.

8: end while

9: k ← k + 1.

10: end while

4.3.4 Efficient Computation of the Proximal Operator

For discussion convenience, I absorb tk into the regularization parameters λ1 and

λ2, and omit the superscript k in Eq. (4.17). Then the proximal operator problem

in (4.17) can be further simplified as follows:

πλ1λ2 (u) = arg min
x∈Rp

{1

2
‖x− u‖2 + λ1‖x‖1 + 2λ2

p−1∑
i=1

max (|xi|, |xi+1|)
}
. (4.18)

By applying the procedure discussed in Friedman et al. (2007), we have the fol-

lowing theorem:

Theorem 2. For any λ1, λ2 ≥ 0, we have

πλ1λ2 (u) = sgn(π0
λ2

(u))�max(|π0
λ2

(u)| − λ1, 0). (4.19)
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Theorem 2 implies that we can solve Problem (4.18) in two steps: first solve

Eq. (4.18) with λ1 = 0 and then applying Eq. (4.19) to obtain the final result. In

addition, let λ = 2λ2 and λ1 = 0, Eq. (4.18) can be rewritten as:

πλ(u) = arg min
x∈Rp

{1

2
‖x− u‖2 + λ

p−1∑
i=1

max (|xi|, |xi+1|)
}
. (4.20)

In this study, I propose to solve Problem (4.20) efficiently by converting the prox-

imal operator to a Euclidean projection onto a special polyhedron. To perform this

transformation, I utilize some important properties of Eq. (4.20) as summarized in

Lemma 1, where a detailed proof is provided in Appendix B.

Lemma 1. Let x∗ = πλ(u) be the optimal solution to (4.20). ∀λ > 0, we have:

i) if ui ≥ 0, then ui ≥ x∗i ≥ 0,

ii) if ui < 0, then ui ≤ x∗i ≤ 0,

iii) πλ(u) = sgn(u)� πλ(|u|),

iv) if |ui| ≥ |ui+1|, then |x∗i | ≥ |x∗i+1|,

v) if |ui| < |ui+1|, then |x∗i | ≤ |x∗i+1|.

4.3.4.1 Equivalent Euclidean Projection Problem

Assume u ≥ 0, I define a sparse matrix R ∈ R(p−1)×p as follows:

Rij =



1 ui < ui+1, j = i

1 ui ≥ ui+1, j = i+ 1

−1 ui ≥ ui+1, j = i

−1 ui < ui+1, j = i+ 1

0 otherwise.

(4.21)
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In addition, I denote a vector w ∈ Rp with the j-th entry defined as:

wj =


2

∑
iRij = 2

0
∑

iRij ≤ −1

1 otherwise.

(4.22)

With Lemma 1 and the above definitions of R and w, I next present the follow-

ing theorem which converts the original proximal operator problem to an equivalent

Euclidean projection problem.

Theorem 3. Let u ≥ 0 and λ > 0. Let

v = u− λw (4.23)

and

P = {x|Rx ≤ 0,x ≥ 0}. (4.24)

Define the Euclidean projection of v onto P as:

πPλ (v) = arg min
x∈P

1

2
‖x− v‖2. (4.25)

We have

πλ(u) = πPλ (v). (4.26)

The above theorem implies that, the proximal operator problem in Eq. (4.20)

can be solved by solving the Euclidean projection problem in Eq. (4.25). To further

simplify, our next theorem shows that, such a Euclidean projection problem can be

solved by a simplified problem without the non-negative constraint.

Theorem 4. Let u ≥ 0, λ > 0,

Q = {x|Rx ≤ 0}, (4.27)
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and

πQλ (v) = arg min
x∈Q

1

2
‖x− v‖2. (4.28)

We have

πPλ (v) = max(πQλ (v), 0). (4.29)

Detailed proofs of Theorem 3 and Theorem 4 are provided in Appendices C & D.

In the next section, I discuss a restart technique to efficiently solve the Euclidean

projection problem in Eq. (4.28).

4.3.4.2 The Restart Technique

Introducing the dual variable z ∈ Rp−1 for the inequality constraints in (4.28),

we can obtain the Lagrangian in Appendix D.7. The dual problem of Eq. (4.28) is

equivalent to

min
z≥0

{
φ(z) =

1

2
‖RTz− v‖2

}
. (4.30)

I propose to solve (4.28) by simultaneously using the information of primal and

dual problems. The novelty lies in the usage of the so-called restart technique for fast

convergence.

Optimality Condition and the Support Set

The proposed restart technique is built on the introduction of the support set. Specif-

ically, ∀z ≥ 0 and denote g = φ′(z), I define the support set as follows:

S(z) = {i : i ∈ [1, p− 1], zi = 0, gi > 0} ∪ {0, p}. (4.31)

The support set S(z) is motivated by the optimality condition of Problem (4.30),

and shall be used for defining a nonlinear and discontinuous mapping from z to x.

∀z∗ ≥ 0, it is a minimizer of Eq. (4.30) if and only if 〈z− z∗, φ′(z∗)〉 ≥ 0,∀z ≥ 0.
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From the optimality condition, we can build the relationship between the mini-

mizer and its gradient, as summarized in the following lemma:

Lemma 2. Let z∗ be the optimal solution to (4.30) and g∗ = φ′(z∗). We have: i) if

z∗i > 0 then g∗i = 0, and ii) if g∗i > 0, then z∗i = 0.

The matrix RRT is very special, and it can be shown that its eigenvalues are

2 − 2cos(iπ/p), i = 1, 2, . . . , p − 1, and thus it is positive definite. Note that RRT is

the Hessian of φ(z), and thus it implies that the minimizer of (4.30) is unique.

A Nonlinear Mapping ω(·) from z to x

Let s0 = 0 denote the smallest entry in S(z), and s|S| = p denote the largest entry

in S(z). In addition, let’s denote the j-th largest entry in the set S − {0, p} by

sj, j = 1, 2, . . . , |S|−2. It is clear that 1 ≤ s1 and s|S|−2 ≤ p−1. With s0, s1, . . . , s|S|−1,

the indices in [1 : p] can be divided into |S| − 1 non-overlapping groups:

Gj = {i : sj−1 + 1 ≤ i ≤ sj}, 1 ≤ j ≤ |S| − 1. (4.32)

Let e ∈ Rp be a vector composed of 1’s, and eGj
and vGj

be the j-th group of e

and v corresponding to the indices in Gj, respectively. For discussion convenience,

assume z0 = zp = 0, then we can define the nonlinear mapping x = ω(z) based on

the support set S as:

xi =
〈eGj

,vGj
〉 − zsj−1

+ zsj
|Gj|

, i ∈ Gj, 1 ≤ j ≤ |S| − 1. (4.33)

With Lemma 2 and the definition of support set in Eq. (4.31), it is easy to show

that the optimal solution to Problem (4.28) can be exactly recovered by the support

set S(z∗), as stated in the following theorem.

Theorem 5. Let z∗ be the minimizer of the dual problem (4.30), and x∗ be the

minimizer of primal problem (4.28). Then x∗ can be recovered by x∗ = ω(z∗).
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The Restart Technique and Properties

By introducing the support set S, Theorem 5 provides an alternative way to efficiently

computing x∗ from z∗. Specifically, we can exactly obtain x∗ = ω(z̃), where z̃ is an

appropriate solution with S(z̃) = S(z∗) even if z̃ 6= z∗. The intuition is that, for a

given appropriate solution z̃ 6= z∗, if S(z̃) is close to S(z∗), x = ω(z̃) can be a better

approximation than x̃ = v −RT z̃ for the primal.

I summarize the gradient projection algorithm based on the proposed restart tech-

nique in Algorithm 4. Given an iterative solution zk, I do not perform the gradient

projection at the point z = zk. Instead, I first compute xk = ω(zk). Then, I compute

a restart point zk0 by xk = v − RTzk0, where zk0 can be solved by an equivalent linear

system RRTzk0 = Rv−Rxk. Finally, I perform the gradient projection at the restart

point z = zk0. Note that P0(x) is an operator that projects x onto the non-negative

orthant.

Algorithm 4 Gradient Projection Algorithm with a Restart Technique.

Input: v, λ, R

Output: z

1: Initialization: z0 ← 0, L = 2− 2 cos(π(p− 1)/p), k = 0;

2: Compute g0 = φ′(z0) = RRTz0 −Rv;

and set z0 = P0(z0 − g0/L);

3: while not converge do

4: Update the support set S(zk) according to (4.31);

5: Update xk = ω(zk) according to (4.33);

6: Compute zk0 as the solution to RRTzk0 = Rv −Rxk;

7: Update zk+1 = P0(zk0);

8: k ← k + 1;

9: end while
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4.3.4.3 Discussion

To end this section, I summarize the methodology for solving the proximal opera-

tor problem in Eq. (4.18) as follows. I first show that a minimizer of Problem (4.18)

can be obtained by applying a soft-thresholding (4.19) on the solution of an alterna-

tive optimization problem (4.20). By applying the properties of Eq. (4.20) introduced

in Lemma 1 and two variables R and w defined in (4.21) and (4.22), I show that

the proximal operator problem in Eq. (4.20) can be convert to an equivalent prob-

lem (4.25). In the sequel, I present to optimize an alternative problem (4.28) without

the non-negative constraint through eq. (4.29). To solve Problem (4.28), I develop a

novel restart technique by introducing the support set in Eq. (4.31) and a nonlinear

mapping in Eq. (4.32). I propose to use Algorithm 4 to solve Problem (4.28) for

efficient computation.

4.4 Sparse Group Lasso with Group Graph Structure Method

In previous sections, I focus on utilizing the SNPs structure on the SNP-level.

However, it is worth emphasizing that the interaction mechanisms between multiple

SNPs are remaining unclear in real-world. On the contrary, many previous stud-

ies were focused on the gene-level. For example, GeneMANIA [Warde-Farley et al.

(2010)] provides extensive gene networks based on a very large set of functional as-

sociation data, including protein and genetic interactions, pathways, co-expression,

co-localization and protein domain similarity. Therefore, it is potential beneficial to

utilize such gene-level network data in imaging genetics researches. To this end, in

this section, I consider a two-level structured sparse model, which utilizing gene-level

structure information (gene networks) as well as penalizing SNP-level sparsity, for

modeling from ADNI data sets.
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More specifically, given a centered data matrix A ∈ Rn×p with n observations and

p features, and a corresponding label vector y ∈ Rn. Denote g ∈ RK be the gene-level

predictors and s ∈ Rp be the SNP-level predictors, respectively. Let G ≡ (sK , E) be

a given undirected graph over genes, where sK = {1, 2, . . . , k} is a set of nodes, and

E is the set of edges. In addition, suppose that the SNP-level predictors s can be

mapped into K gene-level groups, with pk the number of SNPs in gene k, i.e., s can

be represented as s = [s11 . . . s1p1 . . . sk1 . . . skpk ]. I further denote Gs = (MTg)◦ s =

[g1s11 g1s12 . . . g1s1p1 g2s21 g2s22 . . . g2s2p2 . . . gkskpk ] ∈ Rp, where ◦ is the Hadamard

product operator, M ∈ Rk×p is a designed mapping matrix, and gi, i ∈ [1, k] is the

i-th element of g. Moreover, let wg ∈ RK denote the weight vector corresponding to

the gene-level predictor, and rij denote the weight of the edge between node gi and

gj. Then, in this study, I consider the following optimization problem:

min
g,s

{
`(y,x) + λ1‖wg ◦ g‖1 + λ2

∑
(i,j)∈E

τ(rij)|gi − sgn(rij)gj|+ λ3‖s‖1

}
, (4.34)

where τ(rij) represent a general monotonically increasing function weight function

that enforces a fusion effect between coefficients gi and gj.

The above problem can be considered as a sparse group Lasso problem together

with graph structure on groups, or the sgLasso gGraph problem. Let T be the sparse

matrix constructed from the edge set E and I ignore the weight vectors, then Problem

(4.34) can be simplified as the following matrix form:

min
g,s

`(y,Gs) + λ1‖g‖1 + λ2‖Tg‖1 + λ3‖s‖1. (4.35)
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4.4.1 ADMM for Solving sgLasso gGraph Problem

Assume `(·) to be the least squares loss, then Problem (4.35) can be rewritten as

the following constrained optimization problem:

min
g,s,p,q,r

1

2
‖y −AGs‖2 + λ1‖p‖1 + λ2‖q‖1 + λ3‖r‖1 (4.36)

s.t. g − p = 0,Tg − q = 0, s− r = 0,

where p,q, r are slack variables. Problem (4.36) can be solved by ADMM. The

augmented Lagrangian is

Lρ(g, s,p,q, r) =
1

2
‖y −AGs‖2 + λ1‖p‖1 + λ2‖q‖1 + λ3‖r‖1+ (4.37)

µT (g − p) + νT (Tg − q) + ξT (s− r)+

ρ

2
‖g − p‖2 +

ρ

2
‖Tg − q‖2 +

ρ

2
‖s− r‖2,

where µ, ν, ξ are augmented Lagrangian multipliers.

Update g: In the (k + 1)-th iteration, gk+1 can be updated by minimizing Lρ

with s,p,q, r fixed:

gk+1 = arg min
g

1

2
‖y −A[(MTg) ◦ sk]‖2 + (µk + TTνk)Tg +

ρ

2
‖g − pk‖2+

ρ

2
‖Tg − qk‖2

= arg min
g

1

2
‖y −ADiag(sk)MTg‖2 + [(µk + TTνk)T − ρpk − ρTTqk]g+

ρ

2
gT (I + TTT)g

= arg min
g

1

2
gT [(Bk)TBk + ρ(I + TTT)]g − [yTBk − (µk + TTνk)T

+ ρ(pk)T + ρ(qk)TT]g

where Bk = ADiag(sk)MT , and Diag(·) is an operation for turning a vector into a

diagonal matrix. The above optimization problem is quadratic, and thus the optimal
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solution can be obtained by solving the following linear system:

Fk
gg

k+1 = bkg , (4.38)

where

Fk
g = (Bk)TBk + ρ(I + TTT),

bkg = (Bk)Ty − µk −TTνk + ρpk + ρTTqk.

Note that Fk
g is symmetric positive definite, and thus Eq. (4.38) can be solved

efficiently via the conjugate gradient method.

Update s: In the (k + 1)-th iteration, sk+1 can be updated by minimizing Lρ

with g,p,q, r fixed:

sk+1 = arg min
s

1

2
‖y −A[(MTgk+1) ◦ s]‖2 + (ξk)T s +

ρ

2
‖s− rk‖2

= arg min
s

1

2
‖y −ADiag(MTgk+1)s‖2 + (ξk)T s +

ρ

2
‖s− rk‖2

= arg min
s

1

2
sT [(Ck)TCk + ρI]s− [yTCk − (ξk)T + ρ(rk)T ]s,

where Ck = ADiag(MTgk+1). Similar to update g, the above optimization problem

is quadratic, and thus the optimal solution can be obtained by solving the following

linear system:

Fk
ss
k+1 = bks , (4.39)

where

Fk
s = CTC + ρI,

bks = CTy − ξk + ρrk.

Note that Fk
s is symmetric positive definite, and thus Eq. (4.39) can be solved

efficiently via the conjugate gradient method.
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Update p: Similarly, pk+1 can be obtained by solving the following problem:

pk+1 = arg min
p
λ1‖p‖1 + (µk)T (gk+1 − p) +

ρ

2
‖gk+1 − p‖2

= arg min
p
λ1‖p‖1 − (µk)Tp +

ρ

2
‖gk+1 − p‖2

= arg min
p

1

2
‖p− (gk+1 +

1

ρ
µk)‖2 +

λ1

ρ
‖p‖1

The above optimization problem has a closed-firm solution, known as soft-thresholding :

pk+1 = Sλ1/ρ(g
k+1 +

1

ρ
µk), (4.40)

where the soft-thresholding operator is defined as:

Sλ(x) = sgn(x) max (|x| − λ, 0).

Update q: Similarly, qk+1 can be obtained by solving the following problem:

qk+1 = arg min
q
λ2‖q‖1 + (νk)T (Tgk+1 − q) +

ρ

2
‖Tgk+1 − q‖2.

The closed-form solution of the above problem can be obtained by:

qk+1 = Sλ2/ρ(Tgk+1 +
1

ρ
νk). (4.41)

Update r: Similarly, rk+1 can be obtained by solving the following problem:

rk+1 = arg min
r
λ3‖r‖1 + (ξk)T (sk+1 − r) +

ρ

2
‖sk+1 − r‖2.

The closed-form solution of the above problem can be obtained by:

rk+1 = Sλ3/ρ(s
k+1 +

1

ρ
ξk). (4.42)

Update µ, ν, ξ: In the (k + 1)-th iteration, µ, ν, ξ are obtained by:

µk+1 = µk + ρ(gk+1 − pk+1), (4.43)

νk+1 = νk + ρ(Tgk+1 − qk+1), (4.44)

ξk+1 = ξk + ρ(sk+1 − rk+1). (4.45)
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I summarize the algorithm for optimizing Problem (4.34) in Algorithm 5.

Algorithm 5 ADMM for the sgLasso gGraph Problem

Input: A,y, E, λ1, λ2, λ3, ρ

Output: g, s

1: Initialization: Initialize g and s.

2: while not converge do

3: Compute gk+1 according to Eq. (4.38).

4: Compute sk+1 according to Eq. (4.39).

5: Compute pk+1 according to Eq. (4.40).

6: Compute qk+1 according to Eq. (4.41).

7: Compute rk+1 according to Eq. (4.42).

8: Compute µk+1, νk+1 and ξk+1 according to Eqs. (4.43), (4.44) & (4.45).

9: end while

4.5 Convolutional Neural Networks with Dropout

In the past few years, with the increasing of computing power of modern processors

(especially for GPUs), deep learning has attracted increasing attention in academia

as well as industry. Generally speaking, deep learning is a concept of the follow-

ing three aspects [Ranzato (2014); LeCun et al. (2015)]: (1) cascade of non-linear

transformations, (2) end-to-end learning, and (3) general framework (any hierarchi-

cal model is deep). Various deep learning architectures such as convolutional neural

networks (CNN) and recurrent neural networks (RNN) have been applied to fields

as computer vision, speech recognition, etc., where they have been shown to produce

state-of-the-art results on various tasks.

In my dissertation research, I also consider employing deep learning techniques

in imaging genetics studies. In genome sequence data, SNPs can be considered as
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spatially connected. To utilize such a relationship, we may take advantages of the

convolutional layer structure or the recurrent layers. However, oftentimes in real-

world applications, there are more than hundreds or thousands of loci available; and

thus it makes the RNN model not effective, due to the vanishing gradient problem

during backpropagation through time [Hochreiter (1991); LeCun et al. (2015)]. In

other words, it is in general not possible to learn such a deep RNN model with

more than hundreds or thousands time steps. Alternatively, a CNN approach can be

beneficial.

A CNN architecture is formed by a stack of distinct layers that transform the

input data into an output data through a differentiable function. In this study, an

input data instance is the SNPs data of a subject, and the output is a corresponding

imaging phenotype (e.g. volume of the hippocampus region of the brain). There are

several distinct types of layers are commonly used, as presented below:

• Convolutional layer (CONV). This is the core building block of a CNN. Es-

sentially, the convolutional layer’s parameters consist of a set of learnable filters.

Besides the number of filters, there are two important concepts of the convolu-

tional layer—local connectivity and spatial arrangement. More specifically, the

window sizes (height and width) and the stride size.

• Pooling layer (POOL). The pooling layer is another important concept of

CNN. It is a form of non-linear down-sampling. Oftentimes, max-pooling or

average-pooling is preferred in real-world applications. Same as the convolu-

tional layer, the window sizes and the stride size are the other two important

attributes of the pooling layer.

• ReLU layer (ReLU). ReLU refers to the rectified linear units. This is a layer

of neurons that applies the non-saturating activation function f(x) = max(0, x).
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• Fully connected layer (FC). Neurons in a fully connected layer have full

connections to all activations in the previous layer. Fully connected layer is

often used as high-level reasoning in the neural networks.

• Loss layer. This layer specifies how the network training penalizes the devia-

tion between predictions and the ground truths, which is typically the last layer

in the network. Frequently used loss functions including softmax or sigmoid.

The most common form of a CNN architecture stacks a few CONV-RELU layers,

follows them with POOL layers, and repeats this pattern until the raw input has been

merged spatially to a small size. Oftentimes, a CNN architecture takes the following

pattern:

INPUT → [[CONV → ReLU ]×N → POOL?]×M → [FC → ReLU ]×K → FC,

where the × indicates repetition, POOL? indicates an optional pooling layer, N ≥ 0

(and usually N ≤ 3), M ≥ 0, and K ≥ 0 (and usually K < 3).

Generally speaking, larger neural networks typically work better than smaller

neural networks. However, it is also easier to get overfit with larger networks—i.e.,

models will have relative low predictive performance on the testing than training

data. To this end, Srivastava et al. (2014) proposed a simple but effective dropout

approach to prevent overfitting. While training, dropout is implemented by only

keeping a neuron active with some probability p (a hyperparameter), or setting it to

zero otherwise. In CNN, a dropout layer is often applied between fully connected

layers.

In my dissertation study, I employ the following convolutional neural networks as

presented in Figure 4.2, for ADNI imaging genetics. More specifically, the input of the

proposed CNN model is a one-dimensional vector of SNP sequence. The input layer

is followed by a convolutional layer together with ReLU as the activation function.
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Then the max-pooling operation is performed on each filter of the CONV layer. After

flattening, I adopt two fully connected layers to transform multiple neurons to a single

one to represent the final output (i.e. an imaging phenotype). In addition, the ReLU

is used as the activation function for the first FC layer, and a dropout technique is

adopted at the first FC layer to alleviate overfitting during the training epochs.

CONV POOL FCFLATTEN FC

SN
P
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Ph
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e

Figure 4.2: Architecture of the proposed CNN model. CONV–(w=3,s=1,n=5),
POOL–(w=2,s=2), FC 1=256, FC 2=1, DROP p=0.5.

It is worth emphasizing that, although deep learning approaches can produce

state-of-the-art results on tasks such as prediction, its internal mechanisms are re-

maining unclear to date. In addition, the CNN approach is not capable of identifying

AD-risk SNPs in the ADNI imaging genetics study.

4.6 Experiments

In this section, I evaluate the proposed approaches on the Alzheimer’s disease neu-

roimaging initiative whole genome sequence data and T1 MRI data. More specifically,

I first introduce the data processing procedure of the experiments, including SNPs
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data processing, tree-structure construction, and gene-level networks extraction. In

the next two sub-sections, I present the experimental results of using Lasso together

with EDPP screening rules, as well using tree-structured group Lasso together with

MLFre screening rules, for fast identify AD-risk genetic factors. Next, I show the

experimental results of the proposed absolute fused Lasso method. In the sequel, the

proposed two-level structured sparse method is verified on two sets of selected gene

networks. Moreover, I present some preliminary results of adopting CNN for ADNI

imaging genetics study. In the last, I compare different structured sparse methods on

a set of selected SNPs.

4.6.1 Data Processing

4.6.1.1 Whole genome sequence data

The ADNI WGS data in this study contains 1,319 subjects, including 327 healthy

controls (HC), 249 AD patients, 41 participants with mild cognitive impairment

(MCI), 220 early MCI (EMCI) patients, 419 late MCI (LMCI) patients, and 63 pa-

tients with significant memory concerns (SMC). For SNPs data, I performed standard

quality control in PLINK [Purcell et al. (2007)]. Specifically, SNPs were removed with

minor allele frequency (MAF) < 5%, missingness > 5%, and deviations from Hardy-

Weinberg Equilibrium P < 5×10−7 . Genotype imputation was performed by MaCH

[Li et al. (2010)], which is a Markov chain based haplotyper that can resolve long hap-

lotypes or infer missing genotypes in samples of unrelated individuals. In addition,

I apply several filters on the imputed data, including: RSQ (estimated R2, specific

to each SNP) > 0.5, FREQ1 (frequency for reference Allele 1) > 1% and FREQ1

< 99%. As a consequence, I obtained a dataset with 1,319 subjects with 6,566,154

SNPs from the entire genome, in which 155,357 SNPs are available on Chromosome
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19. Note that the genotype values are sometimes not a discrete number in the set

{0, 1, 2} since those values are imputed, and the algorithm incorporates uncertainty

to the imputed values. In other words, if it’s not sure if a subject has 1 or 2 copies

of an allele it will make that genotype 1.5. However, such a number must be in the

interval [0, 2].

Volumes of key brain regions, including the hippocampus (HIPP) and entorhinal

cortex (EC), have been selected as the neuroimaging phenotypes in this study (i.e.

outcomes). Those values were extracted from subject’s T1 MRI data using Freesurfer

[Reuter et al. (2012)].

4.6.1.2 Tree structure over SNPs

The hierarchical tree structure among SNPs is built by linkage disequilibrium

(LD) or statistical correlations among variants that occur in small windows across

the genome. In this study, I use a reference dataset from HapMap release #27

[The International HapMap Consortium (2003)] to build the tree structure of the

target dataset. Adjacent SNPs in the reference dataset are grouped together if their

pairwise R2 is nonzero. After alignment, I finally obtain 1,063 groups in the target

dataset, which serve as the first layer except for the root. Similarly, I then choose two

thresholds of R2—0.01 and 0.1 respectively—to group adjacent SNPs if their pairwise

R2 values are greater or equal to these thresholds. This results in 5,113 groups in

the second layer and 14,883 groups in the third layer respectively. The last layer, as

the layer of leaf nodes, contains each single SNP. As a result, a tree structure was

constructed with five layers (including the root).
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4.6.1.3 Candidate AD genes and gene networks

In later studies, I also focus on Alzheimer’s disease genetic risk factors (both genes

and SNPs) on the 19th chromosome of the human genome. Specifically, at gene-level,

ten candidate AD risk genes are pre-selected according to AlzGene (http://www.

alzgene.org/chromo.asp?c=19), including LDLR, GAPDHS, BCAM, PVRL2,

TOMM40, APOE, APOC1, APOC4, EXOC3L2, and CD33. Positions of those pre-

selected genes are shown in Figure 4.3.

The above ten genes have been marked as the most strongly associated genes with

Figure 4.3: Candidate AD genes on Chromosome 19 (marked as yellow). Figure
adapted from: http://www.alzgene.org/chromo.asp?c=19
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Alzheimer’s disease on Chromosome 19 (Chr19). In AlzGene, top associated genes

are ranked based on genetic variants with the best overall HuGENet/Venice grades

[Ioannidis et al. (2008)]. Specifically, for genes with identical grades, ranking is based

on p-value; for genes with identical grade & p-value, ranking is based on effect size.

To explore gene networks, I utilized GeneMANIA [http://genemania.org/, Warde-

Farley et al. (2010)]. Given a set of input genes, GeneMANIA finds gene networks

(within given genes as well as other related genes) based on a very large set of

functional association data, including protein and genetic interactions, pathways,

co-expression, co-localization and protein domain similarity. GeneMANIA stands for

Multiple Association Network Integration Algorithm. It mainly consists of two parts:

1) a linear regression-based algorithm that calculates a single composite functional

association network from multiple data sources; and 2) a label propagation algorithm

for predicting gene function given the composite functional association network. More

specifically, I use the following two configurations to generate gene networks in my

dissertation study:

1. Gene network within 10 selected AD-related genes in Chr19.

The aforementioned ten pre-selected AD risk genes on Chromosome 19 are uti-

lized as input genes for GeneMANIA. For network exploration, I do not enroll

new genes; that is, I extract gene network within those ten pre-selected genes.

The gene ontology weighting is based on the biological process. A visualization

of this gene networks is shown in Figure 4.4.

2. Extended gene network based on 10 selected Chr19 AD-related genes.

Similar to 1, but I enroll ten additional genes for network exploration. This

results in totally 20 genes in the network. A visualization of this gene networks

is shown in Figure 4.5. Note that, the additional genes are selected based on
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their relations with input genes and those genes are not necessary located on

Chromosome 19.

Figure 4.4: Network within 10 selected AD-related genes on the 19th Chromosome.
Additional network information is available in Appendix E.

Figure 4.5: Extended gene network based on 10 selected Chromosome 19 AD-related
genes. Additional network information is available in Appendix E
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4.6.2 Lasso for ADNI Imaging Genetics

4.6.2.1 Comparison of computational efficiency with and without screening rule

In the first series of experiments, I compare the computational efficiency of Lasso

with and without the EDPP screening rule. Specifically, I fix the number of samples

and vary the number of features from 0.1 million to 1 million SNPsthat are randomly

selectedwith a step size of 0.1 million. The baseline hippocampal volume is chosen

be the response vector. For each sub-dataset, I solve a series of Lasso problems at a

sequence of 100 parameter values equally spaced in the logarithmic scale from 1.0 to

0.05. The running times are summarized in Figure 4.6.

Figure 4.6 demonstrates that the Lasso solver [Liu et al. (2009b)] equipped with

EDPP screening rules—i.e., EDPP+Solver—gains a speedup about 406× compared

to the solver without screening. In addition, if we double the dimension of the features,

the run time of the solver without screening also doubles. However, the run time of

the solver with EDPP screening rule only increases slightly in the same situation—

which is mainly due to the screening part. This experimental result implies that the

EDPP screening rules is a promising approach to facilitate the Lasso solver in dealing

with extremely high dimensional data.

4.6.2.2 Models selection results through stability selection

In this experiment, I explore the imaging genetics association between imaging

phenotypes and SNPs from the entire ADNI WGS SNP data set. For two brain

regions, the entorhinal cortex (EC) and hippocampus (HIPP), I chose the volume

at baseline, and volume changes over a 24-month interval as outcomes. I employ

stability selection [Meinshausen and Bühlmann (2010)] to obtain the risk SNPs. For

each outcome, I perform 100 simulations. In each simulation, I first subsample half
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Figure 4.6: Comparison of Lasso with and without the EDPP screening rules. Run
times in units of kiloseconds are reported for each Solver (Lasso), and in units of
seconds for EDPP+Solver.

of the samples from the original data, and then I incorporate EDPP with the solver

for Lasso, to solve the Lasso problems at a sequence of 100 parameter values equally

spaced on the logarithmic scale of λ/λmax from 1.0 to 0.05. The selection probabilities

for each SNP are recorded and I present the top 10 selected SNPs for each outcome

in Table 4.1 and Table 4.2.

In addition, it is worth mentioning that this work allows us for the first time to run

the compute-intensive model selection procedure—stability selection, to rank SNPs

that may affect the brain and AD risk.

4.6.3 Tree-Structured Group Lasso for ADNI Imaging Genetics

In the following study, I utilize the hierarchical tree structure among the SNPs on

the 19th chromosome. Generally speaking, SNPs identified by association analysis or

feature selection can be considered as candidate AD-risk factors. Similarly, in this

study, I adopted stability selection to rank potential AD risk SNPs by their selection

frequencies. Four brain imaging phenotypes from the ADNI MRI data have been

chosen as the responses, including volumes of the left entorhinal cortex (LEH), left
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Table 4.1: Top 10 SNPs associated with baseline volumes selected by Lasso models.

EC baseline HIPP baseline

RS ID Gene RS ID Gene

Rank 1 rs201890142 RIMS1 rs12412466 PPA1

Rank 2 19:15136345 unknown rs429358 APOE

Rank 3 rs6672189 unknown rs10831576 GALNT18

Rank 4 rs429358 APOE rs151073945 unknown

Rank 5 rs369756382 ANKRD36C rs34173062 MAF1

Rank 6 rs199536016 LOC442028 rs71573413 unknown

Rank 7 rs200710055 LOC442028 rs4825209 unknown

Rank 8 1:142545571 unknown rs4973360 unknown

Rank 9 rs76403280 GPC6 rs35055545 OR11H4

Rank 10 rs202036446 unknown rs2343398 BAI3

Table 4.2: Top 10 SNPs associated with volume changes selected by Lasso models.

EC baseline HIPP baseline

RS ID Gene RS ID Gene

Rank 1 rs1317198 unknown rs11636690 NIPA1

Rank 2 rs1149952 unknown rs74977559 BACE2

Rank 3 rs146156795 unknown rs79543088 unknown

Rank 4 rs2530339 GFRA1 rs7303977 CACNA1C

Rank 5 rs2912047 LOC100507530 rs6605518 unknown

Rank 6 rs12581794 unknown rs34794713 unknown

Rank 7 rs16946521 VAT1L rs9518474 ITGBL1

Rank 8 rs9845573 unknown rs7889210 DHRSX

Rank 9 rs4308363 SORCS2 rs12646029 LOC101928478

Rank 10 rs17502999 FGF14 rs149287207 CLCN3

hippocampus (LHP), right entorhinal cortex (REH), and right hippocampus (RHP).

For each response, I randomly subsample half of the subjects for 100 times and run

TGL equipped with MLFre screening rules on each subsampled data along a sequence

of 100 parameter values equally spaced on the linear scale from 1.0 to 0.5.

In principle, SNPs identified by association analysis or feature selection may be-
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Figure 4.7: Top 100 SNPs selected by Lasso and tree-structured group Lasso. Upper
left: LEH. Lower left: LHP. Upper right: REH. Lower right: RHP. The horizontal
axis is mapped to chromosome position, and the vertical axis is log(p). For LHP, top
SNPs for TGL are plotted on a more detailed scale. SNP groups in the second layer
of our tree structure are plotted as blocks on the chromosome.

come candidates to be AD-risk factors. I rank the SNPs by their selection frequencies.

Figure 4.7 shows the negative of logarithmic of p-values of the top selected SNPs (100

SNPs for each method) together with their position on Chromosome 19. We can ob-

serve that SNPs selected by Lasso models are spread over a large region in Chr19.

On the contrary, most SNPs selected by TGL models are clustered in a few small

chromosome regions. Figure 4.7 also shows the chromosomal regionwhere most top

SNPs resideon a more detailed scale for LHP tasks. This scaled region points to

several genes, e.g., APOE and TOMM40, which are already repeatedly implicated

in AD-risk or risk for other neuropsychiatric disorders [Bertram et al. (2007)]. In

addition, as shown in the detailed plot of the LHP result in Figure 4.7, this region
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consists of SNPs with low p-values and SNPs with high p-values that are distributed

across different layers of the tree structure. That is, the TGL approach enhances

the power to detect genomic regions that associated AD-related brain measures by a

polygenic model.

Moreover, I also show the 39 SNPs that are common in the top 50 lists for all four

responses in Table 4.3 and Table 4.4. Encouragingly, the APOE gene is among the

top selected genes. This is consistent with the prior studies that indicate that APOE

genotype is associated with the volumes of the hippocampus and entorhinal cortex in

older adults [Schuff et al. (2009); Juottonen et al. (1998)].

4.6.4 Absolute Fused Lasso for ADNI Imaging Genetics

To solve the proposed AFL problem, we can adopte the framework of alternat-

ing direction method of multipliers (ADMM) or the proximal gradient descent. The

ADMM solver can be developed following previous work [Yang et al. (2012b)]. How-

ever, A major drawback of ADMM is that it does not exploit the special structure of

the regularizer in Eq. (4.15); and thus it may not be efficient. Alternatively, in my

dissertation study, I address the AFL problem though a carefully designed proximal

gradient descent approach.

In this section, I evaluate the proposed structured sparse method with the AFL

regularizer from the following respects. In synthetic studies, I first compare the

computational efficiency between the DC-ADMM approach and the DC-Proximal

approach. Evaluations are conducted in different scenarios, each of which demon-

strates the relationship between the running time and some particular factors while

keeping other factors unchanged. In real-world studies, I evaluate the AFL model on

the ADNI data sets with two major objectives: (1) evaluating the prediction perfor-

mance, and (2) identifying genetic risk factors—i.e., AD-related SNPs. Comparisons
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Table 4.3: SNPs appearing in multiple top lists selected by tree-structured group
Lasso method. (Part 1)

RS ID
p-value

Gene
LEH LHP REH RHP

rs3745150 3.01e-04 3.86e-06 6.91e-07 1.16e-06

PVRL2

19:45386467 2.08e-04 3.13e-07 4.10e-07 1.05e-07

rs12972156 2.08e-04 3.11e-07 4.08e-07 1.05e-07

rs12972970 2.08e-04 3.11e-07 4.07e-07 1.04e-07

rs283810 1.92e-03 1.27e-05 7.63e-06 5.39e-06

rs283811 3.43e-04 5.90e-08 2.59e-07 4.32e-08

rs283812 5.04e-04 1.04e-06 2.61e-06 1.17e-06

rs283814 5.06e-04 9.04e-07 3.43e-06 9.89e-07

rs283815 1.12e-04 1.12e-08 2.91e-08 2.35e-09

rs76692773 2.19e-04 2.17e-07 4.54e-07 6.80e-08

TOMM40

rs71352238 5.63e-04 5.89e-07 2.63e-06 5.01e-07

rs184017 9.03e-03 5.38e-04 4.82e-05 2.56e-05

rs2075649 2.24e-04 1.99e-07 4.20e-07 6.48e-08

rs2075650 5.26e-04 5.86e-07 2.47e-06 4.77e-07

rs157581 2.31e-03 9.96e-04 1.26e-05 3.81e-04

rs34095326 2.24e-04 2.06e-07 4.25e-07 6.74e-08

rs34404554 2.24e-04 2.08e-07 4.27e-07 6.79e-08

rs11556505 5.59e-04 6.25e-07 2.78e-06 5.36e-07

rs157582 1.91e-04 1.38e-07 1.30e-06 1.23e-07

19:45406538 5.61e-03 5.24e-05 1.50e-04 2.03e-06

rs7259620 1.65e-03 1.54e-04 2.68e-04 3.61e-03

APOE
rs405509 1.39e-02 3.43e-03 1.49e-03 1.37e-03

rs440446 4.64e-07 4.19e-11 1.06e-08 2.87e-11

rs769450 1.50e-07 2.68e-12 9.07e-10 1.75e-12

rs1081106 1.83e-04 1.04e-06 5.85e-05 3.71e-06 none

rs445925 6.48e-07 3.77e-11 1.30e-08 2.99e-11

APOC1
rs10414043 6.40e-07 3.78e-11 1.29e-08 3.02e-11

rs7256200 3.66e-05 4.03e-08 3.07e-06 1.47e-07

rs584007 3.68e-05 4.04e-08 3.13e-06 1.48e-07
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Table 4.4: SNPs appearing in multiple top lists selected by tree-structured group
Lasso method. (Part 2)

RS ID
p-value

Gene
LEH LHP REH RHP

rs390082 7.54e-05 1.74e-06 7.88e-06 2.79e-06

APOC1

19:45417632 7.68e-05 1.81e-06 8.14e-06 2.86e-06

rs12691088 4.05e-05 1.05e-07 3.42e-06 2.04e-07

rs3826688 1.10e-06 2.30e-10 1.89e-08 7.56e-11

rs150966173 4.28e-06 1.05e-09 3.65e-08 3.54e-10

rs484195 1.14e-02 1.44e-03 2.45e-02 8.43e-04

19:45421972 1.44e-06 9.39e-11 6.88e-09 2.32e-11

rs1064725 1.39e-06 9.44e-11 6.89e-09 2.21e-11

rs56131196 1.39e-06 9.43e-11 6.92e-09 2.21e-11

rs4420638 1.14e-02 1.45e-03 2.45e-02 8.52e-04

have been conducted between the fused Lasso and AFL.

4.6.4.1 Synthetic Study of AFL

Efficiency of AFL

In the first series of experiments, I present some empirical studies on the efficiency

of our proposed algorithm by comparing our method with the approach that adopts

ADMM to solve the sub-problem at each DC iteration. The experiments are carried

out on a collection of randomly generated data sets A ∈ Rn×p and outcomes y ∈ Rn×1.

In addition, denote λ̄ = ‖ATy‖∞. I then conduct the evaluations in the following

two scenarios:

1. Varying the number of features p with a fixed sample size and fixed

regularization parameters λ1 and λ2. I fix the number of samples n = 500

and vary the number of features p from 1,000 to 20,000. I set the regularizers

as λ1 = λ2 = 10−3λ̄.
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2. Varying regularization parameters λ1 & λ2 with a fixed sample/feature

size. I fix the n = 500 and p = 10, 000. I choose the values of (λ1, λ2) from the

following set: {(10−4λ̄, 10−4λ̄), (10−3λ̄, 10−3λ̄), (0.01λ̄, 0.01λ̄)}.

Figure 4.8 summarizes the running time (in seconds) and speedup of AFL (prox-

imal algorithm) over ADMM in the above two scenarios. From these figures, it is

easy to obtain the following observations: (1) The proposed algorithm is much more

efficient than ADMM in both scenarios. (2) The speedup of AFL over ADMM in-

creases as the feature size increases. This indicates that the proposed approach us-

ing DC programming and the proximal algorithm is capable of handling large-scale

learning problems. (3) The speedup of AFL over ADMM increases as the regularized

parameters become larger. In other words, the proposed method is expected to be

superior over ADMM in real-world applications, as only a small number of features

are relevant—i.e., a relatively large regularized parameter value is preferred.
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Figure 4.8: Comparison of running times and speedups of DC–Proximal (AFL) over
DC–ADMM.

Comparison of AFL and Fused Lasso

In this section, I compare the AFL model with the fused Lasso. Recall that the AFL

is designed to encourage the smoothness of adjacent coefficients whose absolute values

are close or even identical. Thus if the adjacent features exhibit different signs in the
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model, the AFL approach is expected to be more effective than the fused Lasso in

general.

I generate the synthetic data via a linear model y = Ax̄ + ε, where the design

matrix A ∈ R500×5000 and the noise term ε ∈ Rn are randomly generated from normal

distributions. The ground truth x̄ ∈ Rn contains 10% of the signals, which are evenly

partitioned into 5 groups. Specifically, within each group, I first continuously assign

the same value for all the signals; and then, I randomly pick {0%, 1%, 2%, 5%, 10%}

of the signals and change their signs to the opposite. Regularization parameters λ1

and λ2 are chosen from the interval [10−4λ̄, 0.9λ̄] using five-fold cross-validation for

both the AFL and the fused Lasso. I then evaluate the models on a 100 i.i.d. samples

testing set. The SLEP package [Liu et al. (2009b, 2010)] is adopted to solve the fused

Lasso problem. I report the averaged predictive performance of 10 replications in

Table 4.5.

Table 4.5: Averaged prediction performance of the AFL method and the fused Lasso
on synthetic data (standard deviation is shown in the bracket). FL refers to the fused
Lasso. MSE refers to the mean squared error. Corr X is the Pearson correlation
between the model x and the ground truth x̄.

Neg% Method MSE Y MSE X Corr X

0%
AFL 0.0001 (0.00) 0.0000 (0.00) 1.00 (0.00)

FL 0.0003 (0.00) 0.0000 (0.00) 1.00 (0.00)

1%
AFL 0.0157 (0.02) 0.0000 (0.00) 1.00 (0.00)

FL 0.0051 (0.00) 0.0000 (0.00) 1.00 (0.00)

2%
AFL 0.0179 (0.01) 0.0000 (0.00) 1.00 (0.00)

FL 0.0227 (0.01) 0.0000 (0.00) 1.00 (0.00)

5%
AFL 15.16 (11.09) 0.0029 (0.00) 0.98 (0.01)

FL 51.75 (23.55) 0.0103 (0.00) 0.92 (0.04)

10%
AFL 86.32 (28.21) 0.0200 (0.00) 0.81 (0.03)

FL 125.98 (19.85) 0.0242 (0.00) 0.78 (0.01)
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It can be observed from Table 4.5 that the AFL approach provides better pre-

dictive performance than the fused Lasso in most cases. If the ground truth x̄ does

not contain too many opposite adjacent signals, both AFL and the fused Lasso can

accurately recover the original signals. However, when the number of opposite signals

increases, AFL outperforms the fused Lasso significantly. The reason is that, with the

AFL penalty, the model tends to select those highly similar adjacent features even if

their signs are different. Therefore, the AFL approach is more robust than the fused

Lasso in such cases.

4.6.4.2 ADNI Imaging Genetics Study

In the following section, I evaluate the AFL model on the ADNI whole genome

sequence data. Particularly, I investigate imaging genetics associations between imag-

ing phenotypes and SNPs (within the 19th chromosome) using the regression model

with the AFL penalty. The baseline entorhinal cortex (EC) and hippocampal (HIPP)

volumes are chosen to be the responses, as these are two major brain regions affected

by the Alzheimer’s disease.

Detecting Risk Genetic Factors using AFL

Inspired by the idea of interaction testing introduced in Bien et al. (2015), I conduct

a study on detecting AD risk genetic factors with the AFL model. Specifically, on

Chromosome 19, I first calculate the Pearson correlation between each coded SNP

and the response imaging phenotype vector. Then, I plug the correlation coefficients

vector into our model (4.11). To identify the most association SNPs, I vary the

regularization parameters and record each model.

Figure 4.9 shows the study results of using EC and HIPP as responses. In the

experiment, we can observe that the AFL model can successfully capture AD risk
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Figure 4.9: Regression coefficients learned by each AFL model. Each color in the graph represents a learned model
based on a pair of regularizers (λ1, λ2). SNPs (named by RS IDs) are presented in their order on Chr.19. “...” indicates
the gaps between SNPs. AD risk genes are marked in red.
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genes including PVRL2 [Logue et al. (2011)], TOMM40 [Maruszak et al. (2012);

Guerreiro and Hardy (2012); Lyall et al. (2014)], APOE [Logue et al. (2011); Maruszak

et al. (2012); Lyall et al. (2014); Tycko et al. (2004)] and APOC1 [Zhou et al. (2014);

Tycko et al. (2004)]. Moreover, the AFL is capable of performing automatic feature

grouping even when the signs are different, e.g., rs769449, rs769450 and rs429358 in

APOE exhibit high similarity in absolute values. However, the fused Lasso fails to

correctly group SNPs like rs769450 since their signals are different. In Table 4.6, I

further present some statistical scores of SNPs selected by the AFL model, including

p-value 1 (P) and odds ratio (OR) association score. It can be observed that most

of the selected SNPs achieve high statistical significance.

4.6.5 sgLasso gGraph for ADNI Imaging Genetics

In this section, I evaluate the proposed sgLasso gGraph on ADNI imaging genetics

data set. More specifically, as mentioned in Section 4.4, I utilize two gene networks

based on a set of 10 pre-selected AD candidate genes on the 19th chromosome. The

gene selection is according to AlzGene, and the candidate gene including LDLR,

GAPDHS, BCAM, PVRL2, TOMM40, APOE, APOC1, APOC4, EXOC3L2, and

CD33. To obtain gene networks, I utilize GeneMANIA to explore existing network

data. A potential gene-gene relationship includes protein or genetic interactions,

pathways, co-expression, co-localization or protein domain similarity. In the later

experiment, I also extend the size of candidate gene set to 20. The additional genes

are introduced according to the gene ontology weights from the biological process.

As a consequence, the connections of gene networks are presented in Figures 4.4–4.5,

and detailed statistics of those genes are available in Appendix E.

1Those p-values are obtained from Pearson correlation analysis between SNPs and the selected
imaging phenotype.
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Table 4.6: Statistical scores of selected SNPs on Chromosome 19. P-EC refers to
the p-value associated with the EC task. P-HIPP refers to the p-value associated
with the HIPP task. OR refers to the odds ratio associated with MCI&AD.

RS ID Gene P-EC P-HIPP OR

rs12972156 PVRL2 1.03e-04 1.23e-05 1.947

rs12972970 PVRL2 1.24e-04 9.98e-06 1.984

rs34342646 PVRL2 1.18e-04 9.51e-06 1.809

rs283815 PVRL2 1.98e-04 1.17e-03 1.436

rs6857 PVRL2 8.07e-06 2.05e-06 1.914

rs76692773 PVRL2∼TOMM40 3.86e-01 2.64e-01 0.912

rs71352238 PVRL2∼TOMM40 9.20e-05 1.32e-05 1.767

rs184017 TOMM40 2.72e-05 8.31e-04 1.414

rs2075650 TOMM40 5.33e-04 3.15e-04 1.791

rs157581 TOMM40 5.43e-05 1.39e-03 1.436

rs34095326 TOMM40 4.14e-02 6.25e-02 1.511

rs34404554 TOMM40 1.59e-04 4.42e-05 1.842

rs11556505 TOMM40 1.60e-04 4.23e-05 1.857

rs157582 TOMM40 8.06e-05 1.96e-03 1.435

rs59007384 TOMM40 5.20e-05 5.13e-04 1.541

rs769449 APOE 1.54e-05 3.30e-06 2.646

rs769450 APOE 9.99e-03 2.87e-03 0.897

rs429358 APOE 2.13e-08 2.50e-07 2.409

rs10414043 APOE∼APOC1 1.49e-05 3.17e-05 2.447

rs7256200 APOE∼APOC1 1.96e-05 6.68e-05 2.447

rs483082 APOE∼APOC1 1.30e-04 1.55e-03 1.690

rs12721051 APOC2 1.73e-07 8.62e-06 1.914

rs56131196 APOC3 3.44e-08 5.11e-05 1.739

rs4420638 APOC4 3.40e-08 6.77e-05 1.712

rs78959900 APOC1 3.28e-02 1.27e-01 0.899

rs73052341 APOC1 4.65e-05 3.97e-05 1.978
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Candidate Genes within Chromosome 19

In this experiment, I use the ADNI WGS SNPs data of the ten AD candidate genes

on Chromosome 19. As a consequence, the experimental data set contains 1,381

subjects with 504 SNPs. I use four outcomes in this study, including volumes of

the left entorhinal cortex (LEH), left hippocampus (LHP), right entorhinal cortex

(REH), and right hippocampus (RHP). To evaluate the predictive performance of the

proposed method, I compare the sgLasso gGraph method with the Lasso model, with

a fix the parameter that controls the sparsity of SNPs-level. The average predictive

performance of 10 replications together with five-fold cross-validation are summarized

in Table 4.7.

Note that the original outcomes are not well aligned and thus it may not be

appropriate to used them as learning target directly. To this end, I use the following

schema to prepare the outcomes according to their physical meaning. Specifically, for

each response, I first take the cube root and then center them around zero; similarly

hereinafter.

Candidate Genes among Chromosome 19 with Other Genes

Similar to the previous section, but this experimental data set includes 10 more genes

(i.e. 20 genes in total). The additional genes are selected via GeneMANIA, according

to the gene ontology weights from the biological process. The corresponding network

connections are shown in Figure 4.5. As a consequence, the experimental data set

contains 1,381 subjects with 1,364 SNPs. I use the same setting as the previous

experiment; averaged experimental results of 10 replications together with five-fold

cross-validation are summarized in Table 4.8.

From Table 4.7 and Table 4.8, I have the following favorable observations: (1)

For prediction tasks LEH and REH, the proposed two-level structured sparse model,
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i.e. sgLasso gGraph, outperforms the basic Lasso models significantly in terms of

MSE. (2) For the other two brain regions LHP and RHP, the predictive abilities of

Lasso model and sgLasso gGraph model are similar. However, when more gene-level

network information is available, the proposed sgLasso gGraph method is expected

to be superior over Lasso (see Table 4.8). Those experimental results imply that it is

beneficial to incorporate gene-level networks knowledge during model fitting.

4.6.6 CNN for ADNI Imaging Genetics

Besides the aforementioned structured sparse methods, in my dissertation, I also

consider adopting deep learning techniques—specifically, the convolutional neural net-

works for ADNI imaging genetics. As shown in Figure 4.2, I adopt the following CNN

architecture:

INPUT → CONV → ReLU → POOL→ FC → (+Dropout)→ ReLU → FC.

More specifically, the input of the proposed CNN model is a one-dimensional

vector of SNP sequence. The input layer is followed by a convolutional layer of

window size 3, stride size 1, and 5 filters. I use the ReLU as the activation function

for the CONV layer. Then the max-pooling operation of window size 2 and stride size

2, is performed on each filter of the CONV layer. After flattening, I adopt two fully

connected layers of sizes 256 and 1 to transform multiple neurons to a single one to

represent the final output (i.e. an imaging phenotype). Again, the ReLU is used as

the activation function for the first FC layer. In addition, a dropout probability of 0.5

is adopted at the first FC layer to alleviate overfitting during the training procedure.

For experiments, I use the same data sets presented in Section 4.6.5; preliminary

experimental results of 10 replications together with five-fold cross-validation are

summarized in Table 4.7 and Table 4.8.

It can be observed from Tables 4.7 and 4.8 that, the CNN approach produce the
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best overall prediction performance in terms of MSE among all tasks. This implies

that adopting convolutional neural networks is promising in imaging genetics studies,

especially for predicting image-based biomarkers based on genomic data.

However, it is worth mentioning that, a potential problem of using CNN in imaging

genetics is that, it may not be easy to scale the network, as the input data is a one-

dimensional SNPs sequence. More specifically, such a problem is major caused by the

fully connected layers in the neural networks. Suppose we are plugging in a sequence

of tens of thousands of SNPs in length, the number of parameters within two fully

connected layers will be huge. This could lead to two direct drawbacks: (1) it requires

large memory and increases computational costs; and (2) it is easier to get overfit if

we only have thousand of training samples, i.e., the predictive performance on the

testing set will be poor.

Table 4.7: Comparison between Lasso, sgLasso gGraph and CNN approaches in
terms of MSE on candidate genes within Chromosome 19. Standard deviation is
shown in the bracket.

Response Lasso sgLasso gGraph CNN

LEH 1.2812 (0.1118) 1.2531 (0.1057) 1.2498 (0.1072)

LHP 0.8766 (0.0605) 0.8732 (0.0591) 0.8699 (0.0584)

REH 1.1831 (0.1046) 1.1598 (0.1056) 1.1216 (0.1104)

RHP 0.9102 (0.0943) 0.9116 (0.0946) 0.8958 (0.1521)

Table 4.8: Comparison between Lasso, sgLasso gGraph and CNN approaches in
terms of MSE on extended gene networks based on Chromosome 19 candidate genes.
Standard deviation is shown in the bracket.

Response Lasso sgLasso gGraph CNN

LEH 1.3337 (0.1163) 1.2568 (0.1058) 1.2338 (0.0949)

LHP 0.9054 (0.0654) 0.8686 (0.0646) 0.8594 (0.0549)

REH 1.1911 (0.1073) 1.1387 (0.1020) 1.0908 (0.0829)

RHP 0.9509 (0.0815) 0.9164 (0.0855) 0.9039 (0.1491)
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4.6.7 Comparison between Different Structured Sparse Methods

In the last series of experiments, I compare a suite of commonly used structured

sparse methods, including Lasso, the fused Lasso, and sparse group Lasso, with three

approaches proposed in this dissertation, i.e., the absolute fused Lasso, the two-level

structured sparse model (a.k.a., sgLasso gGraph), and the CNN method. For a fair

comparison, both of the experiments are conducted based on the data set introduced

in Section 4.4. More specifically, the experimental data set contains the SNPs of 10

pre-selected AD-risk gene on the 19th chromosome. For SGL and sgLasso gGraph,

SNPs in the same gene fall into a group in the model. Again, four neuroimaging

phenotypes including volumes of the left entorhinal cortex (LEH), left hippocampus

(LHP), right entorhinal cortex (REH), and right hippocampus (RHP) are used as

responses in this study.

4.6.7.1 Rregression Tasks

In this experiment, I investigate the predictive performance of different structured

sparse methods on ADNI imaging genetics data. Here I adopt the five-fold cross-

validation for each learning method. The predictive performance in terms of MSE of

10 replications are shown in Figure 4.10 through boxplot. In the figure, each color

represents a modeling method and the first three letters in the label of x-axis indicate

a learning task.

From Figure 4.10, I have the following observations: (1) For most of the cases,

the proposed novel structured sparse methods outperform traditional models. (2)

Although different models produce similar predictive performance, such as in LHP

tasks, the proposed novel structured sparse methods are still interesting, as they have

incorporated different biological prior knowledge into the models. As a consequence,
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such models have better interpretability than the traditional ones. (3) Although

the CNN approach produces the state-of-the-art overall performance in most of the

tasks, it is not stable (more outliers in the boxplot). This is potentially caused by the

limited number of training examples. To sum up, the above experimental results

indicate that, it is beneficial to address real-world imaging genetics problems by

incorporating different biological prior knowledge through carefully-designed sparse-

inducing regularizers.

4.6.7.2 Model Selection Tasks

Recall that in imaging genetics studies, identifying disorder-related genetic risk

SNPs is one of the major tasks. In this section, I compare the model selection results

of different structured sparse methods through stability selection. More specifically,

for each outcome, I perform 100 simulations. In each simulation, I first randomly

subsample half of the samples and then perform a modeling method 100 times with

different regularization parameters (or pairs of parameters). The model selection

results are reported in Figure 4.11. In the figure, the top 50 selected SNPs are

marked for each method, each color refers to a structured sparse method, and the

x-axis indicates the SNPs’ location in the data. The green bars are the negative of

logarithmic of p-values of the corresponding SNPs.

From Figure 4.11, we have the following observations: (1) SNPs selected by

Lasso and sparse group Lasso models are spread over a large region in the feature

sets. However, most SNPs selected by the fused Lasso, absolute fused Lasso, and

sgLasso gGraph models are clustered in a few small regions. (2) In comparing be-

tween the FL and AFL, the later one produces better local smoothness. (3) SNPs’

groups obtained by sgLasso gGraph are different from FL or AFL, and those selected

SNPs are not necessary to come with small p-values (see the bottom two sub-figures
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in Figure 4.11). It is worth mentioning that such a scenario is very interesting, as

it may be caused by gene-level interactions. In addition, it is well known that, in

genetics, the aggregate effects of multiple SNPs are more significant than individual

effects. Therefore, the above observations demonstrate that the proposed structured

sparse methods are able to identify groups of causal SNPs that related to a disorder.

4.7 Summary

In this chapter, I introduce several research works on the ADNI imaging genet-

ics data sets. A key idea in those works is to adopting different structured sparse

methods for model construction. Due to their capability of incorporating various

prior knowledge, sparse models are very effective in identifying the predictors that

exhibit the strongest effects on the imaging phenotypes. Specifically, I first adopt

Lasso and EDPP screening rules to effectively AD-risk SNPs. Next, I utilize tree-

structured group Lasso to incorporate LD information into the model and MLFre

screening rules for fast computation. Moreover, I propose a absolute fused Lasso,

which can be considered as a robust extension of the fused Lasso, for ADNI imaging

genetics study. The AFL takes advantages of the SNP spatial structure and is robust

to the choice of reference alleles during genome-type coding. In addition, I further

develop a two-level structured sparse model, which is capable of utilizing gene-level

networks on SNP-level data study. This approach can also be considered as a sparse

group Lasso model with a group-level graph structure. In the last part, I propose to

adopt a convolutional neural network with dropout technique for accurate predicting

imaging phenotypes based on SNPs data. Experimental results show that structured

sparse methods are powerful tools in facilitating the research of imaging genetics.
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Figure 4.10: Comparison of regression error in terms of MSE between different structured sparse models on candidate
AD-risk genes on Chr19.
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Figure 4.11: Comparison of stability selection results (top 50 SNPs) between different structured sparse models on
candidate genes on Chr19. UL-LEH. BL-LHP. UR-REH. BR-RHP.
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Chapter 5

CONCLUSION AND FUTURE WORK

In this chapter, I summarize the major contributions of my dissertation research.

In addition, I discuss some possible future work of applying structured sparse meth-

ods in imaging genetics.

5.1 Summary of Contributions

In my dissertation study, I carry on my research on real-world imaging genetics

applications with particular focuses on the following two directions: (1) building ef-

fective predictive models between imaging phenotypes and molecular genomic data,

and (2) identifying major disorder-related genetic risk factors—i.e., SNPs, through

imaging phenotypes. To address those two objectives, I consider a suite of structured

sparse methods for imaging genetics studies. There are several benefits of adopt-

ing such structured sparse methods. First and foremost, sparse methods can perform

simultaneously regression (model fitting) as well as variable selection. Secondly, intro-

ducing sparsity is a good way to alleviate overfitting during model learning, especially

in real-world imaging genetics studies with the curse of high-dimensionality on both

imaging data as well genomic data. Furthermore, with carefully-designed sparse-

inducing penalties, different biological priors can be incorporated into sparse models.

This provides the model better interoperability.

More specifically, in my first real-world application—Allen brain imaging – gene

expression study, I focus on predicting (annotating) gene expression statuses based

on raw image data sets. To generalize high-level image representations, I adopt an
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advanced sparse coding method over the SIFT image descriptors. For the multi-

class annotation subtask, I address this problem by utilizing a multi-task learning

approach which taking advantages of the `2,1-norm based group sparse structure, as

the multiple classes are potentially inter-connected. In addition, I proposed a novel

label structure-based two-stage multi-label learning framework. This work utilizes the

hierarchical structure of the brain ontology. Experimental results show my proposed

approaches outperform the state-of-the-art methods in most of the cases.

In the later ADNI imaging genetics research, I focus on predicting disorder-related

imaging phenotypes based on SNPs data, as well as identifying disease-related genetic

risk factors (SNPs). To address the above two problems, I consider a suite of struc-

tured sparse methods, including Lasso, tree-structured group Lasso, absolute fused

Lasso, a two-level structured sparse model (i.e. sparse group Lasso with group-level

graph structure), and convolutional neural networks. Specifically, Lasso and EDPP

screening rules are used as the basic model for ADNI imaging genetics. It is worth

mentioning that, although Lasso cannot include further biological priors, it is the

most efficient model and allows us to investigate the genome-wide associations over

the entire genome. In a later study, I adopt tree-structured group Lasso together

with MLFre screening rule for ADNI imaging genetics studies. The TGL model in-

corporates LD information over SNPs. In the sequel, I propose the absolute fused

Lasso as an extension of the fused Lasso which takes advantages of SNP spatial

structure. Although AFL is a non-convex model, it is more robust to the choice

of reference alleles during genome sequence data processing. Moreover, I propose

a sgLasso gGraph model that incorporates gene-level network data as graphs into

SNP-level model construction. This is beneficial since there are considerable exist-

ing studies on gene-/protein-level interactions. In the last part of my dissertation

work, I explore convolutional neural networks in imaging genetics. Although it is
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not capable of identifying genetic risk factors for a disorder, CNN can often provide

the state-of-the-art predictive performance of imaging phenotypes. Experiments have

been conducted based on the ADNI WGS SNPs data and T1 MRI data. Preliminary

results demonstrate the efficiency and the effectiveness of the proposed structured

sparse methods.

5.2 Future Directions

There are several future works for applying structured sparse methods in imaging

genetics studies. First of all, for the Allen study, a promising direction is to adopt

deep learning techniques in the annotation tasks. Some research topics—for example,

“shall we learn four stages simultaneously or independently?”, “what are the appro-

priate learning targets in deep learning? (shall we use the entire brain ontology as

outcomes?)”—are very interesting as well as valuable. On the other hand, for ADNI

imaging genetics study, it is still very hard to incorporate complex biological prior

knowledge into the model. Difficulties are mainly due to the following three aspects:

(1) no unified database or resource would provide a complete biological knowledge

base, (2) different data sets are not well aligned between multiple imaging genetics

global consortiums, and (3) existing models are not as effective as expected in the

high-dimensional scenario. Last, and most importantly in future imaging genetics,

it is of urgent importance to collect research data world-widely (i.e. collect more

experimental examples) and build a unified database for research purpose.
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DC PROGRAMMING FOR SOLVING AFL
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The AFL formulation in Eq. (4.11) is a non-convex optimization problem. We
propose to use the DC programming to solve it. By noting that

||xi| − |xi+1|| = |xi + xi+1|+ |xi − xi+1| − (|xi|+ |xi+1|),

we decompose the objective function in Eq. (4.11) into the difference of the following
two functions:

f1(x) = loss(x) + λ1‖x‖1 + λ2

p−1∑
i=1

(|xi + xi+1|+ |xi − xi+1|),

f2(x) = λ2

p−1∑
i=1

(|xi|+ |xi+1|).

Denote the affine minorization of f2(x) as fk2 (x) = f2(xk)+〈x−xk, ∂f2(xk)〉, where
〈·, ·〉 refers to the inner product. Then the DC programming solves problem (4.11)
by iteratively solving:

min
x∈Rp

f1(x)− fk2 (x). (A.1)

Since 〈xk, ∂f2(xk)〉 is a constant, problem (A.1) is equivalent to:

min
x∈Rp

f1(x)− 〈x, ∂f2(xk)〉. (A.2)

and let ck = ∂f2(xk), problem (A.1) can be rewritten as:

min
x∈Rp

loss(x)− (ck)Tx

+ λ1‖x‖1 + λ2

p−1∑
i=1

(|xi + xi+1|+ |xi − xi+1|). (A.3)

Note that
cki = λ2di sgn (xki ), (A.4)

where d1 = dp = 1, di = 2, 2 ≤ i ≤ p − 1; sgn(·) is the signum function. In addition,
since max (|xi|, |xi+1|) = 1

2
(|xi + xi+1|+ |xi − xi+1|), problem (A.3) is equivalent to

min
x∈Rp

loss(x)− (ck)Tx + λ1‖x‖1 + 2λ2

p−1∑
i=1

max (|xi|, |xi+1|).
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Proof: We prove these properties of the proximal operator problem (4.20) as follows.

i) If ui ≥ 0 and x∗i < 0, we can construct x̃∗ as follows:

x̃∗i = 0, x̃∗j = x∗j , ∀j 6= i.

It can easily be shown that φ(x̃∗) < φ(x∗). This contradicts with the fact that
x∗ is the minimizer to (4.20). If ui ≥ 0 and x∗i > ui, we can construct x̃∗ as
follows:

x̃∗i = ui, x̃
∗
j = x∗j ,∀j 6= i.

It can easily be shown that φ(x̃∗) < φ(x∗). This contradicts with the fact that
x∗ is the minimizer to (4.20).

ii) This property can be proved in a similar way as i).

iii) Let x̃∗ = πλ(|u|). We have

φ(sgn(u)� x̃∗) =
1

2
‖ sgn(u)� x̃∗ − u‖2

+ λ

p−1∑
i=1

max(| sgn(ui)x̃
∗
i |, | sgn(ui+1)x̃∗i+1|)

=
1

2
‖ sgn(u)� (x̃∗ − |u|)‖2

+ λ

p−1∑
i=1

max(|x̃∗i |, |x̃∗i+1|)

=
1

2
‖x̃∗ − |u|‖2 + λ

p−1∑
i=1

max(|x̃∗i |, |x̃∗i+1|).

Since x̃∗ = πλ(|u|) and the minimizer is unique, it follows that sgn(u)�x̃∗ needs
to minimize φ(x).

iv) We only focus on the case ui ≥ ui+1 ≥ 0 in the proof and the results can be
generated to the rest the cases using property iii). With properties i) and ii),
we have ui ≥ x∗i ≥ 0 and ui+1 ≥ x∗i+1 ≥ 0. If this property does not hold, we
have:

ui ≥ ui+1 ≥ x∗i+1 > x∗i ≥ 0. (B.1)

Next, we show that x∗i+1 > x∗i leads to a contradiction. With a non-negative ε
and assuming x∗i+1 − ε > x∗i , we construct x̄∗ and x̃∗ as follows:

x̄∗i+1 = x∗i+1 − ε, x̄∗j = x∗j ,∀j 6= i+ 1, (B.2)

x̃∗i = x∗i+1 + ε, x̃∗j = x∗j ,∀j 6= i. (B.3)

where the i+ 1 entry of x∗ is decreased by ε in constructing x̄∗ and the i entry
of x∗ is increased by ε in constructing x̃∗. Denote

d = −1

2
(x∗i+1 − ui+1)2 +

1

2
(x∗i+1 − ε− ui+1)2.
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If x∗i+1 < x∗i+2, we have
φ(x̄)− φ(x∗) = d− λε. (B.4)

If x∗i+1 − ε > x∗i+2, we have

φ(x̄)− φ(x∗) = d− 2λε. (B.5)

If x∗i+1 ≥ x∗i+2 ≥ x∗i+1 − ε, we have

φ(x̄)− φ(x∗) ≤ d− λε. (B.6)

φ(x̄)− φ(x∗) ≥ d− 2λε. (B.7)

In summary, we have

φ(x̄)− φ(x∗) ≤g1(ε) = −1

2
(x∗i+1 − ui+1)2

+
1

2
(x∗i+1 − ε− ui+1)2 − λε. (B.8)

Similarly, we have

φ(x̃)− φ(x∗) ≤ g2(ε) =− 1

2
(x∗i − ui)2

+
1

2
(x∗i + ε− ui)2 + λε. (B.9)

It is hard to directly prove either g1(ε) or g2(ε) is negative in the case of (B.1).
To arrive at the contradiction, we let

G(ε) = g1(ε) + g2(ε)

= −1

2
(x∗i+1 − ui+1)2 +

1

2
(x∗i+1 − ε− ui+1)2

− 1

2
(x∗i − ui)2 +

1

2
(x∗i + ε− ui)2

(B.10)

The derivative of G(ε) is

G ′(ε) = 2ε+ (ui+1 − ui) + (x∗i − x∗i+1). (B.11)

Making use of (B.1), we can arrive at G ′(ε) < 0 when

ε ∈ (0,
x∗i+1 − x∗i

2
). (B.12)

For any ε satisfying (B.12), we have G(ε) < 0, since G(0) = 0 and G ′(ε) < 0.
Therefore, there exists ε that satisfies (B.12). Hence

(φ(x̄∗)− φ(x∗)) + (φ(x̃∗)− φ(x∗)) < 0. (B.13)

This leads to the fact that at least one of the following two inequalities holds:

(φ(x̄∗)− φ(x∗)) < 0,

(φ(x̃∗)− φ(x∗)) < 0.

This contradicts with the fact that x∗ is the minimizer to (4.20). Therefore, we
cannot have x∗i+1 > x∗i in the case ui ≥ ui+1 ≥ 0.
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v) This property can be proved in a similar way as iv).

This ends the proof to Lemma 1.

Based on Lemma 1, we also have the following remark that summarizes the prop-
erties of w:

Remark. wi = 2 indicates 1 < i < p, ui−1 < ui ≤ ui+1.
wi = 1 holds in one of the following four cases:
1) i = 1, u1 ≥ u2;
2) i = p, up−1 < up;
3) 1 < i < p, ui ≥ ui+1, ui ≤ ui−1;
4) 1 < i < p, ui < ui+1, ui > ui−1.
wi = 0 holds in one of the following three cases:
1) i = 1, u1 < u2;
2) i = p, up−1 ≥ up;
3) 1 < i < p, ui < ui+1, ui ≥ ui−1.
In addition, it is easy to get that

∑p
i=1wi = p− 1.
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Proof: According to Lemma 1 i) and ii), we have that the optimal solution to (4.20)
is non-negative, i.e., x∗ ≥ 0. Incorporating the definition of R in (4.21) and Lemma 1
iv) and v), we have Rx∗ ≤ 0. Therefore, we have x∗ ∈ P , where P is defined
in (4.24). It is easy to verify that P is a closed convex and nonempty polyhedron.
Thus x∗ = πλ(u) is the optimal solution to

min
x∈P

{
1

2
‖x− u‖2 + λ

p−1∑
i=1

max(|xi|, |xi+1|)

}
.

Making use of the definitions of R and w in (4.21) and (4.22), ∀x ∈ P , we have

p−1∑
i=1

max(|xi|, |xi+1|) =

p∑
i=1

wixi.

Therefore, x∗ = πλ(u) is the optimal solution to the problem:

min
x∈P

{
1

2
‖x− u‖2 + λ

p∑
i=1

wixi

}
. (C.1)

Incorporating (4.23), we can easily verify that, πPλ (v), the optimal solution to(4.25)
is also the optimal solution to (C.1). Thus, (4.26) holds.
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PROOF FOR THEOREM 3 IN SOLVING AFL PROBLEM VIA EUCLIDEAN
PROJECTION
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Proof: We prove (4.29) by the technique of KKT optimality conditions.
By introducing the dual variables w ∈ Rp for the inequality x ≥ 0, and z ∈ Rp−1

for the inequality Rx ≤ 0, we can write the Lagrangian of (4.25) as:

L(x,w, z) =
1

2
‖x− v‖2 −wTx + zTRx. (D.1)

The inequality constraint functions in (4.25) are affine, and thus Slater’s condition
holds, which indicates strong duality. Let x̄ and (w̄, z̄) be any primal and dual optimal
points with zero gap for (4.25). The KKT optimality conditions require the following
necessary and sufficient conditions:

x̄ ≥ 0, (D.2)

Rx̄ ≤ 0, (D.3)

w̄ ≥ 0, (D.4)

z̄ ≥ 0, (D.5)

x̄ = v + w̄ −Rz̄. (D.6)

Following a similar analysis, we introduce the dual variable z ∈ Rp−1 for the
inequality Rx ≤ 0, and write the Lagrangian of (4.28) as:

L(x, z) =
1

2
‖x− v‖2 + zTRx. (D.7)

Let x̃ and z̃ be any primal and dual optimal points with zero gap for (4.28). The
KKT optimality conditions requires the following necessary and sufficient conditions:

Rx̃ ≤ 0, (D.8)

z̃ ≥ 0, (D.9)

x̃ = v −Rz̃. (D.10)

Let

x∗ = max(x̃, 0), (D.11)

w∗ = max(x̃, 0)− x̃, (D.12)

z∗ = z̃. (D.13)

Next, we show that x∗ and (w∗, z∗) satisfy the KKT conditions (D.3)-(D.6). It
is easy to verify the relationships in formulations (D.3), (D.5)-(D.6). Rx∗ ≤ 0 holds
as: 1) Rx̃ ≤ 0, 2) x∗ = max(x̃, 0), and 3) each row of R only contains two entries 1
and -1. As the objectives of (4.25) and (4.28) are strictly convex, x̄ and x̃ are both
unique. Therefore, it follows from (D.12) that (4.29) holds.
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Table E.1: Basic information of selected genes

Symbol Assembly Chr Location # of loci

A
D

C
an

d
id

at
e

G
en

es
LDLR GRCh37.p13 19 11200037..11244506 135

GAPDHS GRCh37.p13 19 36024314..36036221 22

BCAM GRCh37.p13 19 45312316..45324678 15

PVRL2 GRCh37.p13 19 45349393..45392485 164

TOMM40 GRCh37.p13 19 45394477..45406946 38

APOE GRCh37.p13 19 45409039..45412650 5

APOC1 GRCh37.p13 19 45417577..45422606 14

APOC4 GRCh37.p13 19 45445495..45448753 7

EXOC3L2 GRCh37.p13 19 45715879..45737469 88

CD33 GRCh37.p13 19 51728335..51743274 16

A
ss

o
ci

at
ed

G
en

es

LDLRAP1 GRCh37.p13 1 25870071..25895377 28

PVRL3 GRCh37.p13 3 110790606..110913017 73

APOA5 GRCh37.p13 11 116660086..116663136 7

APOA1 GRCh37.p13 11 116706467..116708338 5

CRTAM GRCh37.p13 11 122709255..122743347 75

GAPDH GRCh37.p13 12 6643585..6647537 10

LIPC GRCh37.p13 15 58702953..58861073 481

CD226 GRCh37.p13 18 67530192..67624412 149

APOC2 GRCh37.p13 19 45449239..45452822 17

SOD1 GRCh37.p13 21 33031935..33041244 15

Note that, the location information of genes (start / end locations on chromosome)
is obtained from dbSNP [Sherry et al. (2001)].
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