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ABSTRACT 

 

An accurate knowledge of the complex microstructure of a heterogeneous 

material is crucial for quantitative structure-property relations establishment and its 

performance prediction and optimization. X-ray tomography has provided a non-

destructive means for microstructure characterization in both 3D and 4D (i.e., structural 

evolution over time). Traditional reconstruction algorithms like filtered-back-projection 

(FBP) method or algebraic reconstruction techniques (ART) require huge number of 

tomographic projections and segmentation process before conducting microstructural 

quantification. This can be quite time consuming and computationally intensive.  

In this thesis, a novel procedure is first presented that allows one to directly 

extract key structural information in forms of spatial correlation functions from limited x-

ray tomography data. The key component of the procedure is the computation of a 

“probability map”, which provides the probability of an arbitrary point in the material 

system belonging to specific phase. The correlation functions of interest are then readily 

computed from the probability map. Using effective medium theory, accurate predictions 

of physical properties (e.g., elastic moduli) can be obtained. 

Secondly, a stochastic optimization procedure that enables one to accurately 

reconstruct material microstructure from a small number of x-ray tomographic 

projections (e.g., 20 - 40) is presented. Moreover, a stochastic procedure for multi-modal 

data fusion is proposed, where both X-ray projections and correlation functions computed 

from limited 2D optical images are fused to accurately reconstruct complex 

heterogeneous materials in 3D. This multi-modal reconstruction algorithm is proved to be 

able to integrate the complementary data to perform an excellent optimization procedure, 
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which indicates its high efficiency in using limited structural information. 

 Finally, the accuracy of the stochastic reconstruction procedure using limited X-

ray projection data is ascertained by analyzing the microstructural degeneracy and the 

roughness of energy landscape associated with different number of projections. Ground-

state degeneracy of a microstructure is found to decrease with increasing number of 

projections, which indicates a higher probability that the reconstructed configuration 

matches the actual microstructure. The roughness of energy landscape can also provide 

information about the complexity and convergence behavior of the reconstruction for 

given microstructures and projection number.  
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CHAPTER 1 

INTRODUCTION 

1.1 Heterogeneous Materials 

A heterogeneous material is the one that composed of domains of different 

materials or phases, such as a composite, or the same material in different states, such as 

a polycrystalline. Heterogeneous materials are normally studied in microscopic length 

scale, which is much larger than the molecular dimension, but much smaller than the size 

of characteristic length of a macroscopic sample. In such circumstances, a heterogeneous 

material can be viewed as a continuum on the microscopic scale, subject to classical 

analysis, and possess macroscopic properties at the same time, as shown in Figure 1.1. 

Typical examples can be easily fund in synthetic materials, i.e., fiber and particulate 

composites, and natural environment, i.e., bones, tissue, sandstone, etc. 

 

Figure 1.1 Schematic of a two-phase heterogeneous material with general phase 

properties K1 and K2 and phase volume fraction 𝛷1𝑎𝑛𝑑 𝛷2. 

 

The physical properties and performance of heterogeneous materials are 

determined by their complex microstructures and how such microstructures evolve under 



 

2 

various external stimuli [1, 2]. Traditionally, the study of material microstructure has 

been limited by two dimensional (2D) imaging techniques. This approach is often 

inaccurate or inadequate for solving many cutting-edge problems. It is also often 

laborious and time-consuming. Advances in experimental methods, analytical techniques, 

and computational approaches, have now enabled the development of three dimensional 

(3D) analyses [3]. The study of 3D microstructures under an external stimulus (e.g., 

stress, temperature, and environment) as a function of time (i.e., 4D materials science) is 

also particularly exciting. Examples include an understanding of time-dependent 

deformation structures, phase transformations, compositional evolution, magnetic 

domains, to name just a few. 

1.2 Quantification of the Microstructure 

The behavior and performance of an engineering material strongly depends on its 

complex microstructures on multiple length scales [1]. The recent developments in 

advanced imaging techniques such as x-ray tomography microscopy allow one to reveal 

detailed morphological features with sub-micrometer resolution and to investigate 

microstructural evolution in situ under different external stimuli [4-8]. Accurately 

quantifying the microstructure of a heterogeneous material from available image data is 

crucial to establishing quantitative structure-property relations for material optimization 

and design. To this end, several classes of structure quantification schemes have been 

developed.  

A widely used class of quantification schemes employs feature-specific statistics. 

In these schemes, the morphological features of interest are prescribed, which may 

include the shape and size of grains or precipitates, degree of connectivity of filamentary 
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structures, to name but a few. Accordingly, feature-specific statistics are employed to 

quantify the prescribed structural characteristics. For example, distribution of aspect 

ratios, effective radius and geometrical moments are usually utilized to quantify the grain 

morphology of a polycrystalline material; while the coefficients of variation of local near 

statistics (e.g., nearest neighbor distance) are widely used to quantify the degree of 

clustering in particle reinforced composites. The statistics devised for a specific structural 

feature possess clear physical interpretations, but are not applicable to characterize other 

features. Another commonly used class of schemes borrows the techniques developed in 

computational pattern recognition. Specifically, a given microstructure image is 

decomposed (typically in Fourier space) and then is approximately represented by 

weighted combination of a set of “basis”. These pattern-recognition based methods are 

generic and can be easily applied to any microstructure on any length scales. However, 

the “basis” images usually contain random patterns without clear physical interpretations.    

Recently, a new structure quantification scheme based on spatial correlation 

functions has been developed and successfully applied to model complex material 

microstructures on different length scales [9-13]. The spatial correlation functions are 

morphological descriptors that statistically characterize different geometrical and 

topological features of the materials of interest [1]. For example, the standard n-point 

correlation function 𝑆𝑛(𝑥1, … , 𝑥𝑛) gives the probability of finding a specific n-point 

configuration with all points 𝑥1, … , 𝑥𝑛  fall into the phase of interests. There are a number 

of advantages of correlation function-based quantification scheme: (i) The correlation 

functions such as Sn are generic but still possess clear physical interpretations. Certain 

feature-specific statistics such as average particle sizes can be directly extracted from the 
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correlation functions. (ii) These statistically descriptors naturally arise in rigorous 

structure-property relations and be directly used to predict material properties for a given 

microstructure. (iii) Virtual 3D microstructures can be easily reconstructed for given 

correlation functions. 

1.3 Property Prediction of Heterogeneous Materials 

There are four different classes of steady-state effective media problems that have 

been widely studied, thermal/electric conductivity, elastic moduli, mean survival time, 

and fluid permeability [1]. Thermal/electrical conductivity is the macroscopic parameter 

to characterize the thermal/electrical properties of a heterogeneous material. For 

analyzing elastic moduli, effective stiffness tensor is one of the most important 

mechanical properties. In Physical and biological sciences, physical problems involving 

simultaneous diffusion and reaction in heterogeneous media are well concerned. For 

porous media, the key macroscopic property of describing slow viscous flow through 

porous media is the fluid permeability tensor.  

In the past decade, a lot of works have been done on conductivity estimation and 

material design with desired physical properties [14-17]. All these works were proposed 

using spatial correlation functions and strong contrast expansion formulism to analyze 

thermal or electrical conductivities. None of them were working on elastic modulus. On 

the other hands, in their model, they computed spatial correlation functions from known 

structures, which is not available in our case, since we only have x-ray tomographic 

projection data.  

1.4 X-ray Tomography and Reconstruction 

An accurate knowledge of the complex microstructure of a heterogeneous 
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material and its evolution under external stimuli is crucial for the development of novel 

material systems to address the grand challenges raised by the world-wise growing 

demands in energy, security and health. Advanced imaging techniques such as scanning 

electron microscopy (SEM) [18], electron backscatter diffraction (EBSD) imaging [19-

21], backscatter electron microscopy (BSE) [22], and X-ray tomographic microscopy [23, 

24], to name but a few, allow one to obtain detailed microstructural information on 

different length scales or complementary morphological information on the same length 

scale. X-ray tomography microscopy, when properly combined with in situ experiments, 

is an extremely attractive, non-destructive technique for characterizing microstructure in 

3D and 4D [25-27]. The use of high brilliance and partially coherent synchrotron light 

allows one to image multi-component materials from the sub-micrometer to nanometer 

range. X-ray tomography can be conducted in imaging modes based on absorption or 

phase contrast. The technique can also be used using lab-scale systems (See Figure 1.2). 

In x-ray tomography, 2D projections are usually obtained at small angular increments. 

Given a sufficiently large number of such 2D projections, tomographic reconstruction 

techniques such as the filtered-back-projection algorithm [28], algebraic reconstruction 

techniques [29], as well as trajectory-based direct iterative reconstruction method [30] 

can be employed to generate a grayscale image of the microstructure. Further 

segmentation and thresholding analysis are used to resolve details of individual material 

phases and produce accurate digital representations of the 3D microstructure. Such data 

sets can be used to quantify the microstructure, and/or can be used as an input for 

microstructure-based modeling. Thus, x-ray tomography is an excellent technique that 

eliminates destructive cross-sectioning, and allows for superior resolution and image 
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quality with minimal sample preparation [4-8, 31, 32].  

 

 

Figure 1.2 Schematic of key components of X-ray tomography and an illustration of a 2D 

projection of a 3D hard sphere packing structure. Different colors in the 2D projection 

represent different attenuated intensities. 

 

The large number of 2D projections required for traditional reconstruction 

algorithms strongly limits the application of this technique in 4D materials science. An 

extremely large volume of data is usually needed as the input for the reconstruction 

algorithms even for a single “snapshot” of the microstructure at a given time-step. 

Characterizing an entire microstructural evolution process, at multiple time steps, may 

lead to hundreds of TB of data. Efficiently storing, retrieving, and maintaining such large 

data streams are a significant challenge to the materials community. Therefore, it is 

highly desirable to devise alternative reconstruction procedures that can render accurate 

virtual microstructures from only a handful of 2D projections. This will not only 

significantly reduce the volume of tomography data required to characterize a 4D process 

but also improve the temporal resolution since the time interval between successive 
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snapshots can be much shorter due to the smaller number of projections acquired. 

If the material of interest only contains a small number of distinct phases and the 

phase properties (i.e., the attenuation coefficients) are known a priori, the reconstruction 

problem amounts to distributing different phases in a predefined discrete regular grid 

(e.g., simple cubic lattice), which is the focus of discrete tomography [33, 34]. Discrete 

tomography is closely related to several other mathematical fields, including number 

theory [35, 36], discrete geometry [37, 38] and combinatorics [39, 40]. It typically deals 

with reconstructions from a small number of projections and can directly yield a 

segmented 3D image, and thus, requires a complete different set of algorithms than the 

aforementioned “continuous” tomography (leading to grayscale images of material 

microstructure). A number of algorithms have been devised for discrete tomography 

reconstruction, including the discrete algebraic reconstruction technique [41, 42], the 

generic iterative subset algorithm [43], and the stochastic method for reconstruction of 

3D grain maps from x-ray diffraction [44, 45]. In general, the iterative-based methods 

generate a reconstruction through successively improving an initial guess by 

incorporating more and more projection data [43]. The DART uses a grayscale 

reconstruction obtained from algebraic method for continuous tomography as a starting 

point, which is then segmented and the interface regions are iteratively improved [41, 

42]. The stochastic methods devised in Refs. [44] and [45] reconstruct a microstructure 

by optimizing an initial structure to reproduce a predefined distribution of local pixel 

configurations.  

1.5 Microstructural Degeneracy and Energy Landscape 

The term degeneracy here refers to different structures perform same function or 

http://en.wikipedia.org/wiki/Algebraic_reconstruction_technique
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same output. It is a widely studied term in material science field [46-52]. For example, 

Yang studied the pair distance associated with point configurations for characterizing the 

geometrical ambiguity of correlation functions [49, 50]. To be specific, he studied the 

point distance that can be applied to different configurations, i.e., structure degeneracy, 

and the condition where different configurations can possess same correlation functions, 

in other words, they form a degenerate pair. Gommes [51, 52] systematically studied for 

the first time the microstructural degeneracy associated with two-point correlation 

functions and its information content. He computed the degeneracy in the frame work of 

reconstructions, which can be used to determine the ground-state degeneracies. And he 

also measured the roughness of the energy landscape to approximate the ground-state 

degeneracy, which combined with density of states, can be used to define the information 

content that in return determine the complexity of reconstructing specific configuration. 

Energy landscape can be considered as a map of all possible configurations 

associated with their energy levels. Every configuration can be grouped based on their 

difference with the given ground state configuration, which is represented by the 

hamming distance. As a result, an energy landscape will be strongly affected by ground-

state degeneracy. Based on Gommes’s work, the condition that one should have in order 

to get an accurate reconstruction is to have comparable information content, to the 

number of pixels (voxels in 3D) in the structure domain. 
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CHAPTER 2 

STRUCTURE QUANTIFICATION OF THE HETEROGENEOUS MATERIALS 

USING LIMITED X-RAY TOMOGRAPHY DATA  

2.1 Definition of Correlation Functions 

2.1.1 Standard N-Point Correlation Function  

In general, the microstructure of a heterogeneous material can be determined 

uniquely by specifying the indicator functions associated with all of the individual phases 

of the material [1]. Without loss of generality, we focus on two-phase materials (binary 

medium) in this work. The generalization of the subsequent discussion to a multiple-

phase system is straightforward.  

 

Figure 2.1 Schematic illustration of the probability interpretation of the correlation 

functions. The line segments (two-point configurations) and triangles (three point 

configurations) illustrate the events that contribute to the corresponding correlation 

functions. 
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Consider a heterogeneous material occupying some subset V of d-dimensional 

Euclidean space 𝑅𝑑 (d = 2, 3), e.g. 𝑉 ∈ 𝑅𝑑, which is partitioned into two disjoint random 

phases: phase 1, a region 𝑉1 of volume fraction 𝜑1 , and phase 2, regions 𝑉2 of volume 

fraction 𝜑2 (See Figure 1.1). Static indicate that the state of each point in the material is 

constant and independent of time. It is obvious that 𝑉1 ∪ 𝑉2 = 𝑉 and 𝑉1 ∩ 𝑉2 = 0.  As we 

denote that phase 1 is our phase of interest, the indicator function 𝐼(1)(𝑥) of phase 1 is 

then given by  

                                          𝐼(1)(𝑥) = {
1, 𝑥 ∈ 𝑉1

0, 𝑥 ∈ 𝑉2
                                                             (2.1) 

One can follow the same procedure to get 𝐼(2)(𝑥) and it is clearly to see that 

                                         𝐼(1)(𝑥) + 𝐼(2)(𝑥) = 1                                                            (2.2) 

The n-point correlation function (or n-point probability function) 𝑆𝑛
(1)

 for phase 1 

is then defined as follows (Figure 2.1): 

                          𝑆𝑛
(1)(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) = ⟨𝐼(1)(𝒙𝟏)𝐼(1)(𝒙𝟐) … 𝐼(1)(𝒙𝒏)⟩                           (2.3) 

where the angular brackets “⟨… ⟩” denote ensemble averaging over independent 

realizations of the medium. Two simple illustrations will be one-point and two-point 

probability functions (see Figure 2.2). The one-point probability function 𝑆1
(1)

, which is 

the probability of finding one point to be in the phase 1, is equal to the volume fraction of 

the phase 1, i.e., 

                                            𝑆1
(1)

(𝒙𝟏) = 〈𝐼(1)(𝒙𝟏)〉 = 𝛷1                                               (2.4) 

 The two-point probability function 𝑆2
(1)

 for phase 1 can then be derived from Eq. (2.3) as 

                                        𝑆2
(1)(𝒙𝟏, 𝒙𝟐) = ⟨𝐼(1)(𝒙𝟏)𝐼(1)(𝒙𝟐)⟩                                          (2.5) 
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The system is statistically homogeneous if the joint probability distributions 

describing the stochastic process are translationally invariant, i.e., invariant under a 

translation (shift) of the space origin. For a statistically homogeneous medium, 𝑆2
(1)

 is a 

function of the relative displacements of point pairs,  

                                  𝑆2
(1)(𝒙𝟏, 𝒙𝟐) = 𝑆2

(1)(𝒙𝟏 − 𝒙𝟐) = 𝑆2
(1)(𝒓)                                     (2.6) 

where 𝒓 = 𝒙𝟐 − 𝒙𝟏.  

The material system is statistically isotropic if the joint probability distributions 

describing the stochastic process are rotationally invariant, i.e., invariant over rigid-body 

rotation of the spatial coordinates. If the medium is statistically isotropic, then 𝑆2
(1)

 is 

only a radial function, depending on the separation distances of point pairs, 

                                        𝑆2
(1)

(𝒙𝟏, 𝒙𝟐) = 𝑆2
(1)

(|𝒓|) = 𝑆2
(1)

(𝑟)                                        (2.7) 

Henceforth, we will drop the superscript in 𝑆2
(1)

for simplicity. Without further 

elaboration, 𝑆2 is always the two-point correlation function of the phase of interest. With 

the understanding of the nature of two-point probability functions, one can easily obtain 

the limit of the value of 𝑆2, 

                       lim𝑟→0 𝑆2(𝑟) =  𝜑1        and           lim𝑟→∞ 𝑆2(𝑟) =  𝜑1
2                        (2.8) 
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Figure 2.2 Simple illustration of one-point and two-point probability functions as the 

probability of finding one random point and two end points of a line segment with 

specific length and orientation to be in the phase of interest, i.e., the red phase.  

 

2.1.2 Two-point Cluster Function 

In a heterogeneous material, a cluster of phase i is defined as the part of phase i 

that can be reached from a point in phase i without passing through phase 𝑗 ≠ 𝑖. As a 

microstructural descriptor, two-point cluster function 𝐶2(𝑥1, 𝑥2) is defined to be the 

probability of finding two randomly selected points 𝑥1 and 𝑥2 fall into the same cluster of 

the phase of interest (see Figure 2.1). For statistically homogeneous and isotropic 

materials, 𝐶2 depends only on the relative distance 𝑟 between the two points, like 𝑆2. It 

contains complete clustering information of the phases, which has been shown to have 

dramatic effects on the material’s physical properties. And it will reach a critical point, 
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known as percolation threshold, when a sample-spanning cluster first appears. However, 

unlike 𝑆2, the cluster function generally cannot be obtained from lower-dimensional cuts 

(e.g., 2D slices) of a 3D microstructure, which may not contain correct connectedness 

information of the actual 3D system. 

It has been shown that 𝐶2 is related to 𝑆2 via the following equation  

                                         𝑆2(𝑟) = 𝐶2(𝑟) + 𝐷2(𝑟)                                                         (2.9) 

where 𝐷2(𝑟)measures the probability that two points separated by 𝑟 fall into different 

clusters of the phase of interest. In other words, 𝐶2 is the connectedness contribution to 

the standard two-point correlation function𝑆2. For microstructures with well-defined 

inclusion, 𝐶2(𝑟) of the inclusions is a short-ranged function that rapidly decays to zero as 

r approaches the largest linear size of the inclusions. We note that although 𝐶2 is a “two-

point” quantity, it has been shown to encode higher-order structural information which 

makes it a highly sensitive statistical descriptor over and above 𝑆2. 

2.1.3 Surface Correlation Functions 

The surface correlation functions contain information about the random interface 

in a heterogeneous system (see Figure 2.1). Since such statistics arise in and are of basic 

importance in the trapping and flow problems, it is conventional in that context to let 

phase 1 denote the fluid or “void” phase and phase 2 denote the “solid” phase. The 

simplest surface correlation function is the specific surface 𝑠(𝑥) at point x, which gives 

the interface per unit volume, as a one point correlation function for statistically 

inhomogeneous media, 

                                                  𝑠(𝒙) = ⟨𝑀(𝒙)⟩                                                           (2.10) 

where 𝑀(𝑥)is the interface indicator function defined as the absolute gradient of the 
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phase indicator function, 

                                                 𝑀(𝒙) = |𝛻𝐼(𝒙)|                                                          (2.11) 

We note that for statistically homogeneous material, the specific surface is a 

constant everywhere and thus, is simply denoted by s.  

The two-point surface correlation functions for a general heterogeneous material 

are defined by 

                                     𝐹𝑠𝑠(𝒙𝟏, 𝒙𝟐) = ⟨𝑀(𝒙𝟏)𝑀(𝒙𝟐)⟩                                                 (2.12) 

and 

                                      𝐹𝑠𝑣(𝒙𝟏, 𝒙𝟐) = ⟨𝑀(𝒙𝟏)𝐼(𝒙𝟐)⟩                                                  (2.13) 

which are respectively called the surface-surface and surface-void correlation functions. 

For statistically homogeneous and isotropic materials, the functions 𝐹𝑠𝑠 and 𝐹𝑠𝑣  only 

depend on the scalar distance 𝑟 = |𝑥2 − 𝑥1|. The functions can be obtained from any 

plane cut through a medium that is isotropic. When the two points are far from one 

another in systems without long range order 𝐹𝑠𝑠(𝒙𝟏, 𝒙𝟐) → 𝑠(𝒙𝟏)𝑠(𝒙𝟐) and 𝐹𝑠𝑣(𝒙𝟏, 𝒙𝟐) →

𝑠(𝒙𝟏)𝑆1(𝒙𝟐). In the case of homogeneous media, these asymptotic results for |𝒓| → ∞ 

reduce to 

                 𝑙𝑖𝑚𝑟→∞ 𝐹𝑠𝑠(𝑟) = ⟨𝑀⟩⟨𝑀⟩ = 𝑠2,    𝑙𝑖𝑚𝑟→∞ 𝐹𝑠𝑣(𝑟) = ⟨𝑀⟩⟨𝐼⟩ = 𝑠𝜑            (2.14) 

We note that unlike 𝑆𝑛, the surface correlation functions do not have a direct 

probability interpretation, since the probability of finding a point exactly falling on the 

interface is always zero. Instead, they can be associated with the probability of finding 

points in the dilated interface region with thickness δ in the limit 𝛿 → 0. 

2.2 Computing Probability Map from Limited X-ray Tomography Data 

In this section, we discuss in detail our procedure for computing the probability 
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map 𝑃(𝑥) from limited x-ray tomography data [53]. We first provide a brief description 

of how x-ray tomography projections are obtained, which is crucial to subsequent 

computation of the probability map. In x-ray tomography microscopy, a set of x-ray 

beams will be generated from an x-ray source, either as parallel beams (in synchrotron 

tomography at APS) or as cone beams (in lab-scale tomography at ASU). We refer to the 

former set-up as parallel beam geometry, and the latter one as cone-beam geometry. In 

both set-ups, the x-ray beams will pass through the material sample, and the attenuated 

intensity will be captured by the detector bin behind the sample. Because different phases 

in the material have different attenuation coefficients, attenuated intensity in the case of 

absorption contrast x-ray tomography can be written as the path-integral of the local 

attenuation coefficients. Specifically, the total attenuation  π = 𝑙𝑛(𝐽/𝐽0) is given by 

                                        π = 𝑙𝑛(𝐽/𝐽0)  =  − ∫ μ(y)dy                                               (2.15) 

where 𝐽 and 𝐽0 are respectively the attenuated and incident intensity of the x-ray, μ(y) is 

the attenuation coefficient along the path y that x-ray travels, and the integration is along 

the path. For a two-phase heterogeneous material, Eq. (2.15) can be further written as 

                                            π = −(𝜇1𝐿1 + 𝜇2𝐿2)                                                        (2.16) 

where 𝜇1 and 𝜇2 are respectively the attenuation coefficient of the two phases, and 𝐿1 and 

𝐿2 are respectively the length of the phases that x-ray travels along the path with total 

length 𝐿 = 𝐿1 + 𝐿2.  

Eq. (2.15) and (2.16) allow us to convert the total attenuation π to the relative 

volume fraction 𝜑 of the particle phase along the path of the x-ray hitting the bin by 

rescaling the total attenuation values with normalized attenuation coefficient of the 

particle phase. Specifically, the “volume fraction” φ1 of phase 1 along the path is given 
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by  

                                                𝜑1 =  
𝐿1

𝐿
 = − 

𝜋+𝜇2𝐿

(𝜇1−𝜇2)𝐿
                                                 (2.17) 

where φ1 can also be interpreted as the probability that a randomly selected point along 

the x-ray path belongs to phase 1.  

This probability interpretation of rescaled total attenuation allows us to compute 

the probability map 𝑃(𝑥). As schematically illustrated in Figure 2.3, the probability of a 

point at position x belonging to the solid phase can be obtained by superposing the scaled 

attenuation intensity 𝜑 of the x-rays passing x from different angles, which are recorded 

in the projection data. Since the scaled attenuation intensity of a single x-ray passing x 

provides the probability of finding phase 1 (i.e., the volume fraction 𝜑1) along that path 

of the x-ray, superposing the probabilities associated with different x-ray paths leads to an 

estimate of the global probability 𝑃(1)(𝑥) that point x belongs to phase 1. Once the 

probability map 𝑃(1)(𝑥) for phase 1 is obtained, the probability map for phase 2 is simply 

given by 𝑃(2)(𝑥) = 1 − 𝑃(1)(𝑥). 
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Figure 2.3 Schematic illustration of generating probability map. The probability is 

calculated for the highlighted pixel as an example. Only two projections from 0 and 90 

degrees are being used.  

 

Figure 2.4 illustrates the computation of the probability map for a model 2D 

binary microstructure (Figure 2.4a) with stripe-like inclusions. The probability map 𝑃(𝑥) 

for the inclusion phase (Figure 2.4b) is generated using only 30 simulated parallel beam 

projections evenly distributed in the interval between 0 and 180 degrees. (The projections 

are generated using an algorithm that simulates the process of an x-ray tomography scan 

during the experiment and results in a set of 1D projection of the 2D structure.) The value 
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of each pixel of 𝑃(𝑥) is the probability of the pixel being the inclusion phase. Brighter 

color indicates higher the probability values. We would like to emphasize that although 

the probability map appears to be very similar with the original microstructure, it is not a 

reconstruction of material microstructure and is obtained via distinctly different method 

instead of FBP or ART. 

 

Figure 2.4 (a) The test configure is a 2D stripe-like structure with white stripes being the 

phase of interest and black phase as the matrix. (b) The probability map generated using 

only 30 projections evenly distributed from 0 to 180 degrees. The value in each pixel is 

the probability of the pixel being in the target phase, i.e., stripe-like particle. The brighter 

the color, the higher the probability of the pixel belongs to the white phase. 

 

2.3 Extracting Correlation Functions from Probability Map 

2.3.1 N-point Correlation Functions 

Once the probability map is obtained, based on its probability interpretation, one 
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can easily compute the n-point correlation function as follows: 

               ( ) ( ) ( ) ( )

1 2 1 2

1
( , ,..., ) ( ) ( )... ( )i i i i

n n nS P P P d
V

    x x x x r x r x r r                     (2.18) 

where 𝑃(𝑖)(𝑥) is the probability of finding phase i at position x, and the integration is 

carried out over the entire material with volume V, and statistical homogeneity is 

assumed in deriving Eq. (2.18).  

In this subsequent discussion, we will focus on the two-point correlation function

( )

2 ( )iS r , which gives the probability of finding two points with relative vector 

displacement r both in phase i. We again illustrate this procedure using the stripe-like 2D 

model microstructure shown in Figure 2.4a. Specifically, give the probability map shown 

in Figure 2.4b, for a given displacement r, all pixel pairs (𝑥1 + 𝑥2) separated by r (i.e., 

𝑥1 − 𝑥2 = 𝑟) are checked and ( )

2 ( )iS r  is computed as 

                                             
1

( ) ( ) ( )

2 1 1

1
( ) ( ) ( )i i iS P P

N
  

x

r x x r                                    (2.19) 

where N is the total number of pixels. This process is repeated for all vector 

displacements, and the resulting 2 ( )S r  for the inclusion phase is shown in Figure 2.5b.  

We note that this vector-based function is shown as a 2D grayscale map, with the 

displacement between a pixel and the center of the map indicating r and the value 

associated with the pixel being the value of 2S  at r.  
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Figure 2.5 Vector based two-point probability functions computed from both the target 

structure (a), and the probability map (b). The distance and angle between each pixel and 

the center in the image is the same as the distance and angle for two pixels in the 

structure. The value in each pixel indicates the probability of the two pixels both being in 

the phase of interest. The brighter the color, the higher the value. 

 

In order to verify our procedure for computing correlation functions based on the 

probability map and ascertain the accuracy of the computed function, we directly 

compute *

2S  of the inclusion phase from the original binary microstructure shown in 

Figure 2.4a and the resulting *

2S  is shown in Figure 2.5a.  We use the mean squared error 

to quantify the difference between the two correlation functions, i.e., 

                                                
2

*1
( ) ( )

r

E f f
N

  r r                                               (2.20) 

where N is the total number of pixels in the image of the vector based two-point 
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correlation functions. And P is the value of each pixel. The error energy calculated is 

7.24 × 10−4, which clearly indicates the validity and accuracy of our procedure. 

2.3.2 Non-standard Lower Order Correlation Functions 

The probability map computed from x-ray tomography data is continuous in 

nature, i.e., without sharp “interface” between the inclusion and matrix phase. As a result, 

the correlation functions such as the two-point cluster function C2 and the surface 

correlation function Fss and Fsv, which require a prior knowledge of corresponding 

structural features (e.g., well defined clusters of inclusions and interfaces), cannot be 

directly computed from the probability map. In order to extracting the necessary 

structural information for computing such non-standard lower order correlation functions 

from the projection data, the grayscale probability map is segmented to yield a binary 

image, which contains well-defined cluster and sharp interfaces between the phases. The 

binarized probability possesses pixel values of either 1 (100% probability in the inclusion 

phase) or 0 (100% probability in the matrix phase). 

Now, the two-point cluster function C2 and surface correlation functions Fss and 

Fsv can be all computed from the segmented probability map, as shown in Figure 2.6, 

using the procedure developed for a general binary pattern reported in literature [1]. It 

can be seen that the vector-based C2 (Figure 2.6b) only has significant values in the 

vicinity around the center and decays rapidly along the radial direction. This is consistent 

with the fact that the system only contains finite-sized inclusions and no percolating 

clusters. Thus, the cluster function is short-range and rapidly decays to zero when |𝑟| is 

great than the largest linear extent of the inclusions.  The vector-based surface-surface 

correlation function Fss is shown in Figure 2.6d. It can be seen that it possesses much 



 

22 

lower values than S2 since only the interface pixels are considered which constitute a 

small portion of the total number of pixels.  

To verify the accuracy of this procedure, the corresponding correlation functions 

are directly computed from the original binary microstructure and the mean squared 

errors E are also calculated for different correlation functions using Eq. (2.20). As the 

inclusion particles are better resolved after the segmentation, more morphological 

information can be captured, which leads to reduced error values. Indeed, we find the 

mean squared errors associated with C2 and Fss are respectively 1.86 × 10−5 and 

2.89 × 10−6. These results clearly indicate the validity of our procedure. 
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Figure 2.6 Vector based two-point correlation functions for target structure (a) (c) and 

segmented probability map (b) (d). (a) and (b) are two-point cluster function C2. (c) and 

(d) are surface correlation function Fss. The distance and angle between each pixel and 

the center in the image is the same as the distance and angle for two pixels in the 

structure. For C2, the value in each pixel indicates the probability of the two pixels both 

being in the phase of interest and in the same cluster. For Fss, the value in each pixel 
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indicates the probability of the two pixels both being the boundary pixel in the phase of 

interest. The brighter the color, the higher the value. 

 

2.4 Quantification of Tin-Clay Composite Microstructure from Synchrotron and 

Lab-scale X-ray Tomographic Data 

In this part, we apply the algorithm to generate probability map for a Sn-sphere-

clay-matrix composite from limited angle tomographic data. The solder spheres are 

randomly distributed in the clay matrix. 30 parallel-beam synchrotron projections evenly 

distributed from 0 to 180 degrees that are obtained at Advanced Photon Source, Argonne 

Nation Lab and 30 cone-beam projections obtained via the lab-scale cone-beam 

tomography microscopy at ASU are used as input for generating the probability map. 

Follow the same procedure, probability maps were generated from each set of projections 

and two-point correlation functions were computed (Figure 2.7). Corresponding 

correlation functions were computed for comparison and error E were calculated. For 

cone-beam geometry, the error E for S2, C2, and Fss between probability map and target 

structure are 1.80 × 10−4, 8.80 × 10−10, and 3.09 ×  10−11. For parallel geometry, the 

error E for S2, C2, and Fss between probability map and target structure are 1.06 ×

10−5, 4.27 × 10−8, and 1.09 × 10−9. 
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Figure 2.7 Vector based two-point correlation functions for Tin-clay composite 

microstructure. (A)(B)(C) are the two-point probability function, two-point cluster 

function, and surface correlation function computed from target structure. (D)(E)(F) are 

corresponding correlation functions computed from probability map generated using 

synchrotron data (parallel-beam geometry). (G)(H)(I) are corresponding correlation 

functions computed from probability map generated using lab-scale data (cone-beam 

geometry). 
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2.5 Summary 

An alternative way of capturing structural information and represent the structure 

without any reconstruction process is presented in this chapter. The probability map is 

generated directly from limited tomographic projection with the value in each pixel 

indicating the probability of that pixel being in the phase of interest. The algorithm is 

tested on a simulated stripe-like two phase material. In order to fully extract the structural 

information from probability map, certain segmentation technique is processed to get a 

segmented probability map. Several vector based two-point correlation functions, such as 

two-point probability function S2, two-point cluster function C2, and surface correlation 

function Fss, are computed for the target structure and both the probability map and 

segmented probability map. To quantitatively testify the robustness of our algorithm, an 

error energy is computed which is the difference between the value of pixels in the vector 

based two-point correlation functions computed from the target structure and the 

probability map. With all the error energies in or smaller than the magnitude of 10
-4

, this 

indicates that the probability map algorithm can accurately capture almost all the 

morphological information contained in the projection data. And after certain 

segmentation procedure on the probability map, the resulting binary image can fully 

represent the target structure. And further analysis can be made such as predicting 

physical properties of the material using effective medium theory, which is based on the 

two-point correlation function computed from probability map.  
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CHAPTER 3 

PROPERTY PREDICTION USING THE MORPHOLOGICAL INFORMATION 

EXTRACTED FROM LIMITED X-RAY TOMOGRAPHY DATA 

3.1 Strong-contrast Expansion Formulism 

Directly extracting n-point correlation functions from limited x-ray tomography 

data allows us to immediately estimate the physical properties of the material of interest 

from such limited data, once the corresponding properties of individual phases are 

known. This is done by employing the strong-contrast expansion (SCE) formalism that 

analytically expresses the elastic moduli of a heterogeneous material as a series of 

integrals involving Sn and individual phase properties [1, 54, 55]. Here, we apply the SCE 

formalism to estimate the elastic moduli of polymer matrix (polypropylene) composites 

reinforced with glass sphere (borosilicate). For such as a composite microstructure in 

which the particle phase volume fraction is below the percolation threshold, it has been 

shown that truncating the expansion series at the 3
rd

 order, which only incorporates two-

point and three-point correlation functions (S2 and S3) into the solution, can already 

provide a highly accurate estimate of the bulk modulus K and shear modulus G of the 

system, i.e.,  

                               𝛷2
к21

к𝑒1
= 1 −

(𝑑+2)(𝑑−1)𝐺1к21𝜇21

𝑑(𝐾1+2𝐺1)
𝛷1ζ2                                              (3.1)      

                               𝛷2
𝜇21

𝜇𝑒1
= 1 −

2𝐺1к21𝜇21

𝑑(𝐾1+2𝐺1)
𝛷1ζ2 −

(𝑑2−4)𝐺1(2𝐾1+3𝐺1)𝜇21
2

2𝑑(𝐾1+2𝐺1)2 𝛷1ζ2 

                                          −
1

2𝑑
[

𝑑𝐾1+(𝑑−2)𝐺1

𝐾1+2𝐺1
]2𝜇21

2 𝛷1η2                                                 (3.2) 

where 𝛷1and 𝛷2are the volume fractions of phase 1and phase 2, d is the dimension of the 

system, here 𝑑 = 3, the scalar parameters к21and 𝜇21 are bulk modulus polarizability 
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and shear modulus polarizability, i.e., 

                                                  к21 =
𝐾2−𝐾1

𝐾1+
2(𝑑−1)

𝑑
𝐺1

                                                          (3.3) 

                                          𝜇21 =
𝐺2−𝐺1

𝐺1+
𝐺1[

𝑑𝐾1
2

+(𝑑+1)(𝑑−2)𝐺1/𝑑]

𝐾1+2𝐺1

                                               (3.4) 

к𝑒1 and 𝜇𝑒1 will be considered as scalar effective polarizabilities. 𝐾1, 𝐺1, 𝐾2, and 𝐺2 are 

bulk and shear modulus of phase 1 and phase 2. ζ2 and η2 are the 3-pt parameters, i.e., 

    ζ2 =
9

2𝛷1𝛷2
∫

𝑑𝑟

𝑟
∫

𝑑𝑠

𝑠
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∞
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              (3.5) 
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(𝑠)
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−1
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0

∞

0
     (3.6) 

where 𝑡 = (𝑟
2

+ 𝑠
2

− 2𝑟𝑠𝑐𝑜𝑠𝜃) 
1/2

, and P2 and P4 are respectively the Legendre 

polynomials of order two and four, i.e., 

                                    𝑃2(𝑥) =
1

2
(3𝑥2 − 1)                                                                  (3.7) 

                                    𝑃4(𝑥) =
1

8
(35𝑥4 − 30𝑥2 + 3)                                                  (3.8) 

Eq. (3.1) and (3.2) require the evaluation of the three-point parameters ζ2 and η2, which 

involves the three-point correlation function S3.  

3.2 Statistical Sampling Method 

In Chapter 2, we present the general procedure for extracting the n-point 

correlation function Sn from limited x-ray tomography data. In order to further improve 

the accuracy of computed ζ2 and η2, we have used a non-uniform radial sampling 

template introduced in Ref. [56], in which the spatial density of the sampling points 
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monotonically increases (e.g., ~1/r) as one moves towards the original along the radial 

direction. This will provide sufficient number of sampling points for small r for an 

accurate numerical integration. In addition, the mechanical properties (i.e., bulk and shear 

moduli) of the individual phases required in Eq. (3.1) and (3.2) were obtained via nano-

indentation technique and the overall Young’s modulus of the composites was obtained 

via tensile test. The details for the aforementioned procedure will be presented below 

[56]. 

 

Figure 3.1 Schematics of statistical sampling method in 2D. (A) shows the primary points 

randomly and uniformly distributed in the sample domain. (B) shows the discrete line 

segment of length ρk with the end point being the primary point and one secondary point 

(originating from the primary point) in a sampling template. (C) shows the triangle 

defined by two-line segment of length ρk, ρl, and the angle between them, θm, in a 

sampling template. 

 

The statistical sampling method was first proposed by Smith and Torquato [57], 

which is based on a Monte Carlo statistical sampling. The approach will first be 

described in two dimensions, and it will be shown that this method can be easily applied 

to three dimensions. For a two phase material, let phase 1 be the phase of interest to 

illustrate the approach. Initially, a large number Np of primary points was randomly and 
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uniformly distributed throughout the material. In the current study, Np is around 10
4
 to 

10
6
 based on the different system sizes. For each primary point, a sampling template will 

be generated and the primary point will be considered as the center of the template. Each 

sampling template involves Nρ number of concentric circles centering at the primary 

point with radii ρk (k = 0,…, Nρ - 1), and Nφ radial rays equally spaced originating from 

the primary point. The intersection of the circles with the radial rays will be treated as 

secondary points, with total number NρNφ in each template. For each template, the 

primary point and each secondary point will form a set {A} of NρNφ line segments with a 

range of discrete length ρk (originating from primary points). Then the value of S2(ρk) will 

be computed as the probability that the end points of a line segment with specific length 

ρk (one primary points and one secondary points) to be located in the phase of interest, 

averaging over {A} and template ensemble. Similarly, this approach can be utilized to 

evaluate three points probability functions S3. In this case, a set of triangles were 

constructed formed by all possible combinations of two line segment from {A} for each 

template. Every triangle can be defined as two discrete line segments with length ρk and ρl 

(k, l = 0,…, Nρ - 1), and an angle θm between the two edges of the triangle (m = 0,…, Nφ - 

1). Then S3(ρk, ρl, θm) can be evaluated as the probability of finding the vertices of a 

triangle defined by ρk, ρl, θm to be located in the phase of interest, averaging over {A} and 

the template ensemble (Figure 3.1). This statistical sampling approach can be easily 

applied to three dimensions by generating the template with randomly choosing Euler 

angles (Figure 3.2). 
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Figure 3.2 Schematics of sampling template in 3D by randomly choosing the Euler angle. 

 

The calculation of ζ2 and η2 by Eq. (3.5) and (3.6) was carried out by numerical 

integration using discrete values of S2 and S3 evaluated using the statistical sampling 

method. Two dimensional trapezoidal rule was used for all three integrations. Because the 

Eq. (3.5) and (3.6) is proportional to 𝑟−1 and 𝑠−1, the region of integration near 𝑟 = 0 

and 𝑠 = 0 will make a huge contribution to the integral. This will require a fine spatial 

grid in order to get an accurate result. However, using fine spatial grid will result in huge 

computing time and requires large amount of discrete values of S2 and S3 since the range 

of the integral of r and s is from zero to infinity. In order to solve these conflicting 

requirements at the same time, one possible solution proposed by Hlushkou [56] is by 

using a non-uniform spatial grid to construct the concentric circle for the template, 

following a power law, as 

                                                           𝜌𝑘 = 𝑎0𝐴𝑘                                                           (3.9) 

where 𝜌𝑘 is the radius of the kth concentric circle in the sampling template (k = 0,…, Nρ - 

1), 𝑎0 is a constant indicating the radius of the smallest circle, and A is a constant which 
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is chosen to be slightly bigger than 1. In the current study, we follow Hlushkou’s 

procedure that all the templates are constructed with 𝑁𝜌 =  64, 𝑁𝜑 =  64, 𝑎0 =

10−4, 𝐴 = 1.21, with the radius of the smallest circle 𝜌0 = 0.0001, and the radius of the 

largest circle 𝜌63 ≈ 16.42. With the sample domain to be normalized to 10 by 10 in 2D 

and 10 by 10 by 10 in 3D, and the average radius of phase 1 to be 0.25, around 64% of 

the concentric circles in a template will be within a particle of phase 1, providing a fine 

spatial grid when r and s near 0. At the same time, with 𝜌63 much larger than the system 

size, with the use of periodic boundary conditions, one can easily get the integral at long 

range, providing accurate result approximating the integral of r and s up to infinity. 

The statistical sampling method was first test on a simulated 3D hard sphere 

packing structure with the volume fraction of the spheres to be around 11%. With the 

parameters chosen in the previous section, S2(r) and S3(r, s, t) are evaluated and the 

results shows in Figure 3.3 and 3.4. For S2 in the short range, with the fine spatial grid, 

S2(r) is equal to the volume fraction of the spheres as 

                                                    lim𝑟→0 𝑆2(𝑟) = 𝛷                                                     (3.10) 

With increasing r, we first see monotonic decrease with r approaching 1. And with 

several small oscillations around each integer, the value of S2 eventually deduces to its 

asymptotic value, which is equal to 𝛷2, which indicating that the two points are 

independent between each other, with no long range correlation. The sampling method 

with non-uniform spatial grid also accurately capture this long rang behavior of S2 as  

                                                   lim𝑟→∞ 𝑆2(𝑟) = 𝛷2                                                   (3.11) 
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Figure 3.3 S2 with r smaller than 1 compared to the volume fraction of a 3D hard sphere 

packing structure. 
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Figure 3.4 Long range behavior of S2 with r goes to the maximum value compared to the 

theoretically asymptotic value of a 3D hard sphere packing structure. 

 

For S3, since the values will be 3D curve with three parameters, we will only 

show some special values to prove the accuracy of the sampling approach (Figure 3.5). 

With fixed r and s, the complexity of S3 will be reduced to be a function of angle θ. As it 

is shown in Figure 3.5, when r and s equals to zero, three vertices of the triangle are 

almost overlap with each other with the length equal to 0.0001. As a result, S3 will be 

equal to the volume fraction as 

                                                lim𝑟→0
𝑠→0

𝑆3(𝑟, 𝑠, 𝜃) = 𝛷                                                 (3.12) 

With r and s goes to infinity, all three vertices will be independent with each other 

representing no long range correlations, and S3 will be equal to 𝛷3 as 
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                 lim𝑟→∞
𝑠→∞
𝑡→∞

𝑆3(𝑟, 𝑠, 𝑡) = 𝛷3with 𝑡 = (𝑟2 + 𝑠2 − 2𝑟𝑠𝑐𝑜𝑠𝜃)1/2                       (3.13) 

 

Figure 3.5 S3 with fixed r and s for both short range and long range values. 

 

3.3 Predicting Mechanical Properties of Polymer Matric Composites 

Now we will present the theoretical prediction of Young’s modulus of a polymer 

matrix composite with different volume fraction of reinforced borosilicate spheres [58, 

59]. The volume fractions of the glass spheres are 5%, 10%, 20%, and 30%. The Young’s 

modulus and Poisson’s ratio of each component in the composite are tested through 

experiments. Based on the assumption that the structures are statistically homogeneous, 

isotropic, and linear elastic, the bulk modulus and shear modulus of each component can 

be calculated. All these values are listed in Table 3.1.  
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Table 3.1 Mechanical properties of each component of polymer matrix composites 

 

Young’s 

Modulus 

(GPa) 

Poisson’s 

Ratio 

Bulk Modulus 

(GPa) 

Shear 

Modulus 

(GPa) 

Borosilicate 

glass 
46.1 0.2 25.61 19.21 

Polypropylene 1.097 0.42 2.29 0.39 

 

We first compute correlations directly from single 2D slices as shown in Figure 

3.6. With the statistical sampling method described earlier, accurate two-point and three-

point probability functions can be computed. Using numerical integration and the non-

uniform template construction method, Eq. (3.5) and (3.6) can be solved to get the three 

point parameters ζ2 and η2, and the values are listed in Table 3.2.  

 

Table 3.2 3pt parameters of polymer matrix composites structures with different volume 

fractions of glass spheres (Single 2D slice) 

 5% 10% 20% 30% 

 0.056 0.043 0.066 0.113 

 
0.073 0.088 0.164 0.227 
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Figure 3.6 2D slice of polymer matrix composite materials with (A) 5%, (B) 10%, (C) 

20%, and (D) 30% volume fractions of glass spheres. 

 

The Young’s of each individual phase can be obtained from nano-indentation and 

tensile test. Assuming the system is statistically homogeneous and isotropic 

(approximation with high accuracy), the bulk and shear modulus of both polymer and 

glass phase can be acquired following the relationship between bulk and shear modulus 

with Young’s modulus and Poisson’s ratio. Now solving Eq. (3.1) and (3.2) will be simple 

and straight forward and the effective bulk and shear modulus of the composite can be 

obtained. Hashin-Shtrikman bounds [60] are also computed here to verify the result. The 

d-dimensional Hashin-Shtrikman bounds on the effective bulk modulus Ke for two-phase 

composites in which 𝐺2 ≥ 𝐺1are 

                                                      𝐾𝐿
(2)

≤ 𝐾𝑒 ≤ 𝐾𝑈
(2)

                                                   (3.14) 

where 

                                               𝐾𝐿
(2)

= 〈𝐾〉 −
𝜑1𝜑2(𝐾2−𝐾1)2

〈𝐾̃〉+
2(𝑑−1)

𝑑
𝐺1

                                            (3.15) 

                                   𝐾𝑈
(2)

= 〈𝐾〉 −
𝜑1𝜑2(𝐾2−𝐾1)2

〈𝐾̃〉+
2(𝑑−1)

𝑑
𝐺2

                                            (3.16) 

The d-dimensional Hashin-Shtrikman bounds on the effective shear modulus Ge 
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for two-phase isotropic composites in which 𝐾2 ≥ 𝐾1 and 𝐺2 ≥ 𝐺1 are 

                                                   𝐺𝐿
(2)

≤ 𝐺𝑒 ≤ 𝐺𝑈
(2)

                                                      (3.17) 

where 

                                            𝐺𝐿
(2)

= 〈𝐺〉 −
𝜑1𝜑2(𝐺2−𝐺1)2

〈𝐺̃〉+𝐻1
                                               (3.18) 

                                𝐺𝑈
(2)

= 〈𝐺〉 −
𝜑1𝜑2(𝐺2−𝐺1)2

〈𝐺̃〉+𝐻2
                                               (3.19) 

and 

                                         𝐻𝑖 = 𝐺𝑖 [
𝑑𝐾𝑖 2⁄ +(𝑑+1)(𝑑−2)𝐺𝑖 𝑑⁄

𝐾𝑖+𝐺𝑖
]                                           (3.20) 

where 𝜑1, 𝜑2 are the volume fractions of polymer matrix and glass spheres, d is the 

dimension of the system, 〈𝐾〉 and 〈𝐺〉 are the ensemble average of bulk and shear 

modulus, i.e., 〈𝐾〉 = 𝜑1𝐾1 + 𝜑2𝐾2 and 〈𝐺〉 = 𝜑1𝐺1 + 𝜑2𝐺2, and 〈𝐾̃〉 and 〈𝐺̃〉 are the 

inverse ensemble average, i.e., 〈𝐾̃〉 = 𝜑1𝐾2 + 𝜑2𝐾1 and 〈𝐺̃〉 = 𝜑1𝐺2 + 𝜑2𝐺1. 

Figure 3.7 shows a typical segmented virtual slice of the polymer matrix 

composite obtained via filtered-back-projection reconstruction (left panel), as well as the 

probability map (middle panel) associated with the virtual slice computed from 30 

simulated synchrotron x-ray tomography projections evenly distributed between 0 and 

180 degrees. It can be seen that the probability map clearly captures the geometry and 

spatial distribution of the particle panel. The right panel of Figure 3.7 shows the two-

point correlation function S2 computed from the probability map.  
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Figure 3.7 Left panel: A segmented virtual slice of the polymer matrix composite with 5% 

borosilicate spheres obtained via filtered-back-projection reconstruction. Middle panel: 

The probability map associated with the virtual slice computed from 30 simulated 

synchrotron x-ray tomography projections evenly distributed between 0 and 180 degrees. 

Right panel: The two-point correlation function S2 computed from the probability map. 

 

Figure 3.8 shows the comparison between the effective bulk and shear modulus 

computed following strong-contrast expansion formulism with the three-dimensional 

Hashin-Shtrikman bounds. The result shows that the estimated bulk modulus and shear 

modulus are within the range of higher and lower Hashin-Shtrikman bounds, which 

validate the estimation. To be specific, the effective modulus is located close to the lower 

bounds. This is because the spherical shape of the reinforcement phase, borosilicate, has 

the aspect ratio of 1, which is the same compare to the sphere coating model Hashin and 

Shtrikman used to derive the bounds.  
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Figure 3.8 Left panel shows the effective bulk modulus with different percentage of 

borosilicate spheres compared to the Hashin-Shtrikman bounds. Right panel shows the 

effective shear modulus with different percentage of borosilicate spheres compared to the 

Hashin-Shtrikman bounds. 
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Following the assumption that the composite material is statistically 

homogeneous and isotropic, one can compute effective Young’s Modulus Ee based on the 

relation between E, K and G. Figure 3.9 shows the comparison of estimated Young’s 

modulus from the limited X-ray tomography data using Eq. (3.1) and (3.2) and that 

obtained from the tensile test for composites with different particle volume fractions. We 

note that it has been shown for such a composite microstructure, which is statistically 

homogeneous and isotropic, the lower-order correlation functions S2 and S3 of the 3D 

system can accurately computed from 2D slices, and thus, the elastic moduli can be 

estimated from 2D slices. Indeed, we can see in Figure 3.8 that the estimated Young’s 

modulus from the probability map associated with single 2D virtual slices for each 

volume fraction agrees very well with the tensile testing result. Based on the observation, 

the accuracy of the estimation is increasing with increasing the volume fraction of the 

glass phase. This is because with small volume fraction, like 5%, local degree of 

clustering could play an important role in affecting the short range value of S2 and S3, 

eventually affect the value of three point parameters. This indicates that three point 

parameters are sensitive to the local degree of clustering. With increasing the volume 

fraction of the glass phase, high volume fraction can reduce the effect of local degree of 

clustering, and eventually the accuracy of the estimation can be increased. The value of 

experimental result, theoretical calculation, and normalized differences are listed in Table 

3.3.  
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Figure 3.9 Comparison of the Young’s modulus estimated from limited x-ray tomography 

data and that obtained from tensile test for composites with different particle volume 

fractions.  

 

Table 3.3 Effective Young’s Modulus of polymer matrix composites from experimental 

test, theoretical calculation from single 2D slice, and normalized difference for different 

volume fractions of glass spheres 

 Experiment (GPa) Theoretical (GPa) Difference (%) 

5% 1.35 1.23 8.96 

10% 1.27 1.38 8.5 

20% 1.82 1.76 3.35 

30% 2.33 2.32 0.43 
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Same procedure is performed for each sample with multiple 2D slices in order to 

reduce the bias and increase the accuracy of the theoretical calculation. Here 6 

independent 2D slices for each sample is taken, as Figure 3.9 shows the cross-section 

images for the composite sample with 5% volume fraction of glass spheres. The 

statistical sampling and following calculation of 3pt parameters are done on each slice, 

and then compute a numerical average. The results are listed in Table 3.4. Figure 3.10 

shows the estimation of effective Young’s modulus and the numerical values are listed in 

Table 3.5. Although the theoretical calculation shows the same value compared to the 

single 2D slice situation, the normalized difference is smaller due to the difference in 

higher significant digits. 

The excellent approximation even with single 2D slice of a structure as the input 

strongly implies the structural information in limited data is enough for an accurate 

property prediction. We note that this procedure can be easily generalized to estimate 

other linear properties of a heterogeneous material, including electric/thermal 

conductivity and diffusion coefficient. 
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Figure 3.10 6 independent 2D slice of the 5% polymer matrix composites. 

 

Table 3.4 3pt parameters of polymer matrix composites structures with different volume 

fractions of glass spheres (6 slices) 

 5% 10% 20% 30% 

 0.047±0.021 0.057±0.007 0.07±0.012 0.12±0.01 

 
0.061±0.022 0.091±0.01 0.136±0.017 0.22±0.019 
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Table 3.5 Effective Young’s Modulus of polymer matrix composites from experimental 

test, theoretical calculation from 6 independent 2D slices, and normalized difference for 

different volume fractions of glass spheres 

 Experiment (GPa) Theoretical (GPa) Difference (%) 

5% 1.35 1.23±0.02 8.89 

10% 1.27 1.38±0.03 7.97 

20% 1.82 1.76±0.06 3.3 

30% 2.33 2.32±0.05 0.39 

 

3.4 Predicting Mechanical Properties of SiC/Al Composites 

Particle reinforced metal matrix composites (MMCs), consisting of a light alloy 

matrix such as aluminum, reinforced with ceramic particulates, i.e., silicon carbide, 

exhibit enhanced performance over conventional monolithic metal alloys. Adding 

reinforced particles into the metal matrix will improve the strength and stiffness, and 

fatigue resistance [61-64]. The composites will have a better performance at elevated 

temperature than unreinforced alloys. Moreover, the addition of reinforcement particles 

will not significantly increase the weight, while maintaining cost at an acceptable level.  

Silicon carbide reinforced aluminum matrix composites have been well studied in 

the last couple of decades, and most of their fatigue behavior have been understood. As 

shown in Table 3.6, the addition of high stiffness ceramic reinforced particles can 

increase the overall strength and stiffness compare to the unreinforced alloys. There are 

several key factors that affect the overall fatigue performance, including the volume 

fraction of the reinforcement particles, the particle sizes, the microstructure of the matrix, 

and the working temperature, etc. Here a sample of SiC/Al composite will be tested using 
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the aforementioned statistical sampling method and the estimated Young’s modulus will 

be compared with reference. The SiC/Al composite sample is tested in the lab and the 

information of each component and as a composite is provided by Dr. Nikhilesh Chawla’s 

group in Arizona State University as a comparison to the theoretical calculation. The 

properties of each component, 3pt parameters computed using statistical sampling 

method, and the estimated Young’s Modulus using strong contrast expansion method are 

listed in Table 3.7. One can confirm an excellent estimation is made by comparing the 

theoretical calculation result with the reference value listed in Table 3.6. 
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Table 3.6 Tensile Properties of Reinforced and Unreinforced 2080 Al [60] 

 
Yield Strength 

(MPa) 

Ultimate 

Strength 

(MPa) 

Elastic 

Modulus 

(GPa) 

Strain to 

Failure (Pct) 

30%, F-1000 575 639 119 2.27 

20%, F-1000 539 593 107 3.14 

10%, F-1000 528 574 89 6.34 

20%, F-600 522 563 106 2.88 

20%, F-280 457 478 95 1.02 

Unreinforced 490 525 75 9.0 

 

 

Table 3.7 Mechanical properties of each component, 3pt parameters and estimated 

Young’s modulus of SiC reinforced Aluminum composite material 

 

Young’s 

Modulus 

(GPa) 

Poisson’s 

ratio 
3pt parameters 

Effective 

Young’s 

Modulus 

(GPa) 

SiC 450 0.17  0.179 
93.88 

Al 75 0.31 
 

0.214 
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3.5 Summary 

We accurately estimated the effective elastic properties for a set of polymer matrix 

composites with different volume fractions of borosilicate spheres and SiC/Al composites 

following the procedure of strong-contrast expansion formulism. Utilizing the statistical 

sampling approach to evaluate the two-point and three-point probability functions from a 

couple of slices of the polymer matrix composites and SiC reinforced Aluminum 

composites structure and numerical integration results in accurate calculation of three 

point parameters. Following strong contrast expansion formulism one can estimate the 

effective bulk modulus and shear modulus, and the comparison with Hashin-Shtrikman 

bound validates the correctness of result. And the comparison of the estimated effective 

Young’s modulus with the experimental result and reference shows the accuracy of our 

estimation. Since all the work are done based on a couple of slices instead of the whole 

material, the requirement of the experimental data can be significantly reduced, which 

can save a huge amount of human effort and data collecting and saving time and space. 

And we can apply this work to estimate other properties like conductivity and 

permeability, etc. 
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CHAPTER 4 

STOCHASTIC RECONSTRUCTION USING LIMITED X-RAY TOMOGRAPHY 

DATA 

4.1 Stochastic Reconstruction Procedure via Simulated Annealing 

In this section, we first introduce the general simulated annealing procedure that 

formulates the reconstruction problem as an inverse optimization problem and allows one 

to generate virtual microstructures compatible with prescribed structural information and 

statistics. Then, we describe in detail the specific algorithms for stochastic reconstruction 

based on both cone-beam and parallel beam projection geometries. 

4.1.1 Simulated Annealing Reconstruction Procedure 

In general, consider a 3D material microstructure digitized and represented by a 

3D array M, whose entry value Mijk indicates the local state of that voxel (e.g., the phase 

that the voxel belongs to). An experiment performed to probe the microstructure of the 

material generates a set of structural data, which we noted by D. A mathematical 

transformation F is introduced which transform the microstructure to the structural data. 

The relation between the 3D array M and the structural data set D can be presented as, 

                                                    𝐷 = 𝐹{𝑀}                                                                   (4.1) 

In the x-ray tomography microscopy, the structural data D are 2D projections of 

the 3D microstructure from different projections angles. The 3D microstructure can be 

fully determined if the attenuation coefficient of each voxel (i.e., the phase of the voxel) 

is known. Thus, the value of each voxel of the 3D array is the attenuation coefficient 

associated with the phase of that voxel belongs to. The 2D projections record the 

attenuated intensities (due to absorption in our case) of the x-rays passing through the 
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materials sample. In particular, consider the schematic projection geometry shown in 

Figure 4.1, the intensity of the projection associated with the projection angle θ at 

position r is given by, 

                                      𝐷(𝑟, 𝜃) =  𝐼0exp [− ∫ 𝑀(𝑥, 𝑦, 𝑧)𝑑𝑠]                                        (4.2) 

where 𝐼0 is the initial intensity of the incident x-ray, and s is the path along which the x-

ray travels. With a sufficiently large number of 2D projections, typically hundreds or 

even thousands of projections at successive projection angles evenly distributed in the 

interval [0, π], traditional computed tomographic reconstruction techniques, such as the 

filtered-back-projection (FBP) method [39, 40] and algebraic reconstruction techniques 

(ART) [41, 42], can be utilized to generate accurate 3D representation of the material 

microstructure. However, if only a limited number of projections are available, the 

accuracy of the reconstructions using FBP and ART could be dramatically reduced. In 

addition, such methods typically produce a 3D grayscale map of the attenuation 

coefficients for the material of interest. Tedious segmentation is usually required to 

resolve the actual material microstructure.  
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Figure 4.1 A schematic illustration of parallel-beam projection geometry in 2D. 

 

In order to reconstruct 3D microstructure M from limited projection data set D 

and the associated mathematical transformation F, we apply a reconstruction technique 

that inspired from Yeong-Torquato’s stochastic optimization scheme to generate virtual 

microstructures from prescribed statistical morphological descriptors of the 

microstructure, i.e., various correlation functions associated with the material’s phases 

[65]. In particular, we formulate the reconstruction problem as an “energy” minimization 

problem, where the energy functional E is defined as the square difference between the 

target data set D and the corresponding data set D* from a trial microstructure M*, 

                                                 𝐸 = |𝐷 − 𝐷∗|2                                                              (4.3) 

The trial microstructure is randomly generated (i.e., by assigning a phase to each 

entry of the 3D microstructural array with certain probability); and the associated 

projection data set D* is then calculated from Eq. (4.1).  
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The energy minimization problem is solved using the simulated annealing method 

[66]. We note that other techniques have also been employed to solve such optimization 

problems [67, 68]. Specifically, the system is given an initial trial microstructure Mo*, 

which contains a fixed number of voxel for each phase. Then the positions of two 

randomly selected voxels with different phases are switched, which results in a new trial 

microstructure Mn*. The transform function F is applied to both Mo* and Mn* to compute 

the simulated projection data sets Do* and Dn*, which are used to compare with target 

data set D to calculate energy Eold, and Enew according to Eq. (4.3). The probability that 

the new trial microstructure will be accepted and that the old trial microstructure be 

replaced is given by, 

                        𝑃𝑎𝑐𝑐(𝑜𝑙𝑑 → 𝑛𝑒𝑤) = 𝑚𝑖𝑛 {1, exp (
𝐸𝑜𝑙𝑑

𝑇
) exp (

𝐸𝑛𝑒𝑤

𝑇
)⁄ }                            (4.4) 

where the parameter T is an effective temperature used to control the acceptance rate for 

energy-increasing trial microstructures. In the beginning of the simulated annealing 

process, the parameter T is chosen to be relatively high in order to achieve an acceptance 

probability of approximately 0.5. Then T is gradually reduced according to a prescribed 

cooling schedule as the simulation proceeds in order to allow the energy to converge to a 

very small value if not zero (See Figure 4.2). In the current work we choose an 

exponential cooling schedule, i.e., T(t)/T0 = t
, where 0.95<<0.99. As T gradually 

decreases, the acceptance probability for energy-increasing trail microstructure will also 

decrease. Eventually the energy converges to a (local) energy minimum, which is 

associated with microstructure that is very close to the actual material structure. In 

practice, the global energy minimum is extremely difficult to reach, and we claim the 

reconstruction is successfully accomplished if energy E drops below a prescribed 



 

53 

tolerance value, which is chosen to be 10
-4

 here. 

 

Figure 4.2 Schematic illustration of the stochastic reconstruction procedure using the 

simulated annealing method: Energy-increasing trial microstructures can be accepted 

initially in order to increase the probability for the system to converge to the global or 

very deep local energy minima. 

 

4.1.2 Algorithmic Details for Parallel-Beam Geometry 

For the parallel-beam projection geometry, a set of parallel rays are sent through 

the material sample from different projection angles and the attenuated intensities of the 

x-rays passing through the sample are recorded via a detector behind the sample. As 

shown in Figure 4.3, we denote the vector pointing from the center of the detector to the 

position where an attenuated x-ray hits the detector by r, and denote the projection angle 

by , then the total attenuation of the ray 𝐷(𝑟, 𝜃) due to the absorption is given by [28],  

                              𝐷(𝑟, 𝜃) = ln (
𝐽0

𝐽
) =  − ∫ 𝜇(𝑥, 𝑦, 𝑧)𝑑𝑠                                              (4.5) 

where 𝐽0 is the initial intensity of the x-ray, 𝐽 is the attenuated intensity recorded by the 

detector, and 𝜇(𝑥, 𝑦, 𝑧) is the position dependent attenuation coefficient of the 

heterogeneous materials. For a two-phase (binary) material, 
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                         𝜇(𝑥, 𝑦, 𝑧) =  𝜇1𝐼(1)(𝑥, 𝑦, 𝑧) + 𝜇2𝐼(2)(𝑥, 𝑦, 𝑧)                                        (4.6) 

where 𝜇𝑖 is the attenuation coefficient of phase 𝑖, and 𝐼(𝑖) is the indicator function of 

phase 𝑖, which equals to 1 if the voxel is in phase 𝑖, and 0 otherwise, i.e., 

                                  𝐼(𝑖)(𝑥, 𝑦, 𝑧) = {
1, (𝑥, 𝑦, 𝑧) ∈ 𝑉(𝑖)

0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                (4.7) 

 

Figure 4.3 Schematic illustration of geometrical relation that maps a voxel position to the 

corresponding detector bin in the parallel-beam projection geometry. 

 

In a tomographic reconstruction, the original continuous 3D material sample is 

discretized and represented as a 3D array, whose entry values indicate which phase the 

voxel belongs to (e.g., the phase-specific attenuation coefficients). In this formulation, the 

attenuation intensities recorded by the detector at different projection angles are 
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transformed to the total intensity drop ΔJ as the x-ray pass through the material sample 

along a particular path, which can be expressed as the summation of the attenuation 

coefficient 𝜇𝑖  of each voxel along the path multiplied by the length of that voxel 𝑙, i.e., 

∆𝐽 = ∑ 𝜇𝑖𝑙. Therefore, for the parallel-beam geometry, the contribution to the total 

intensity drop at a particular detector bin due to each voxel can be computed separately. 

For each voxel in the material, the position of its projection on the detector (i.e., the 

position of the detector bin whose intensity drop is affected by that voxel) relative to the 

center of the detector is a function of the position of the voxel in the material sample as 

well as the geometric center of the sample. As shown in Fig. 3, when rotating the material 

sample clockwise by an angle , the position of the projection of a voxel on the detector 

(X, Z) can be calculated as,  

                            𝑋 = (𝑥 − 𝑥𝑐) ∗ 𝑐𝑜𝑠𝜃 + (𝑦 − 𝑦𝑐) ∗ 𝑠𝑖𝑛𝜃                                            (4.8) 

                                                  𝑍 = 𝑧 − 𝑧𝑐                                                                    (4.9) 

where x, y, z are the coordinates of each voxel in the material sample and xc, yc, zc are the 

coordinates of the center of the sample. We note that due to the parallel nature of the 

incident rays, a voxel and the vertical coordinate of the projection of a voxel on the 

detector is independent of the projection angles and is a function of the vertical 

coordinate of the voxel in the material sample alone.  

The aforementioned formulation allows us to devise a highly efficient method to 

compute the energy Enew for a new trial microstructure, based on Eold of the old trial 

microstructure. Specifically, when the positions of two voxels associated with different 

phases are switched to generate a new trial microstructure, only the total attenuation 

values in two detector bins containing the two exchanged voxels are affected and the total 
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attenuation values in all the other bins remain the same. Therefore, there is no need to re-

compute the total attenuations for all bins for the new trial microstructure and it is 

sufficient to update the two affected bins for each projection angle, i.e.,  

                                            ( ) ( ) ( )i i j iJ J l                                                      (4.10) 

where ΔJi(θ) is the total attenuation value at the detector bin associated with voxel i at 

projection angle θ, μi and μj are respectively the attenuation coefficients for voxel i before 

and after the phase switch, and l is the linear size of the voxel. We note that the 

complexity of this energy update method scales linearly with the number of projections 

and is independent of the size of the reconstruction domain nor the size of the 3D array 

representing the material microstructure. Therefore, it is highly efficient when the number 

of projections used in the reconstruction is small. 

4.1.3 Algorithmic Details for Cone-Beam Geometry 

Different from the parallel-beam projection geometry, the cone-beam geometry 

has a point x-ray source, and the x-rays are radically emitted from the source to form a 

cone pattern. A consequence of such projection geometry is that the spatial density of 

incident rays is higher at the front side of the material sample which is close to the source 

and is lower at rear side of the sample. Therefore, each voxel may affect the total 

attenuation values in multiple detector bins and thus, a detector-bin-based projection 

method is used to compute the contribution of each voxel to the total attenuation data. 

As shown in Fig. 4.4, a set of prescribed paths connecting the center of each 

detector bin and the point x-ray source are constructed. We use these paths to simulate the 

x-rays passing through the sample and hitting particular detector bins which result in a 

recorded total attenuation. The total attenuation in each detector bin is computed as the 
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summation of the intensity drop due to each voxel along the path that connects that bin 

and the x-ray source. We note that at a specific projection angle, a voxel can affect 

multiple detector bins. Specifically, if the distance from the center of a voxel to an x-ray 

path is smaller than half of the voxel linear size l/2, we consider this voxel contributes 

𝜇𝑖𝑙𝑣 to the total attenuation in the bin that the x-ray path hits, where μi is the attenuation 

coefficient of the phase in the voxel, and 𝑙𝑣 is the line segment of the x-ray path in the 

voxel, i.e., 

                                               𝑙𝑣 =  √𝑅2 − 𝑑2                                                             (4.11) 

where R is the radius of the inscribed circle of a voxel, which is equal to l/2, and d is the 

distance from the center of the voxel to the x-ray path. 

At different projection angles, the detector bins affected by a voxel are generally 

different. Such geometric maps are independent of the phases the voxels belong to and 

thus, are acquired only once in the beginning of the simulation. In other words, at each 

projection angle, the voxels affect each detector bin are identified and saved for 

subsequent calculation and update of the energy for trial microstructures. 

Similar to the parallel-beam case, the energy of a new trial microstructure can be 

efficiently obtained based on that of the old trial microstructure, without re-computing the 

entire set of total attenuations. In particular, once two voxels belonging to different 

phases are switched, the total attenuations in the bins affected by the two voxels are 

updated according to Eq. (4.10). However, in the cone-beam case, at a specific projection 

angle, there are generally more than one bin that are affected by a single voxel. The 

associated changes of the total attenuation values in the affected bins should all be 

computed and updated accordingly.   
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Finally, we note that in both parallel-beam and cone-beam cases, the resolution of 

the reconstruction domain (i.e., the number of voxel per unit length) should be carefully 

chosen. Too low resolution leads to low-accuracy reconstructions in which the detailed 

geometrical features of the phases are not resolved and the simulated annealing procedure 

usually does not converge for such systems. Very high resolution result in high-quality 

reconstructions but would be too computationally expansive. 

 

Figure 4.4 Schematic illustration of detector-bin-based projection method for cone-beam 

geometry. For each detector bin, a path connecting the point X-ray source to the bin is 

created. The number of voxels in the discrete sample domain in the target phase along 

that path is then counted. The total intensity drop (i.e., attenuation) along that path is 

computed and record for that bin. 
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4.2 Stochastic Reconstruction Using Simulated X-ray Tomographic Projections 

In this section, we validate the aforementioned stochastic procedure by applying it 

to reconstruct a number of two-phase heterogeneous materials from simulated x-ray 

projections in both parallel-beam and cone-beam geometry. Specifically, a Fontainebleau 

sandstone microstructure [10] consisting of percolating rock and void phase and a dense 

packing of hard ellipsoids [69] are used as target systems, for which the associated 3D 

microstructure arrays are already known. Simulated projections are generated by 

computing the total attenuation along specific paths of incident x-rays using Eq. (4.5) for 

different projection geometries. We note that we first consider simulated x-ray projections 

because such data are noise free and thus, enable us to systematically investigate the 

information content of the x-ray tomography data. Without loss of generality, we use 

𝜇1 = 1 for the solid phase (rock phase for sandstone and particle phase for the packing) 

and 𝜇2 = 0 for the void phase for generating the simulated projections and the 

reconstruction. 

 

 

Figure 4.5 Reconstructions of the sandstone microstructure (A) from 5 (B), 10 (C), 20 (D) 

and 30 (E) simulated projections generated in parallel-beam geometry.  
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Figure 4.6 Reconstructions of the sandstone microstructure (A) from 5 (B), 10 (C), 20 (D) 

and 30 (E) simulated projections generated in cone-beam geometry.  

 

The reconstructions of the sandstone microstructure from simulated projections in 

parallel-beam and cone-beam geometries are respectively shown in Figure 4.5 and Figure 

4.6. The reconstructions of the hard-ellipsoid packing from simulated projections in 

parallel-beam and cone-beam geometries are respectively shown in Figure 4.7 and Figure 

4.8. The linear size of the simulation domain is 200 voxel length, which is roughly 400 

μm. A total of 500 annealing stages and a cooling schedule of 0.98 are used for these 

reconstructions. In each figure, panel (A) shows the target microstructure and panels (B) 

to (E) respectively show the reconstructions using 5, 10, 20 and 30 simulated projections. 

The angles associated with these projections are evenly distributed within the interval 

between 0 and 180 degrees.  
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Figure 4.7 Reconstructions of a dense packing of hard ellipsoids (A) from 5 (B), 10 (C), 

20 (D) and 30 (E) simulated projections generated in parallel-beam geometry.  

 

 

Figure 4.8 Reconstructions of a dense packing of hard ellipsoids (A) from 5 (B), 10 (C), 

20 (D) and 30 (E) simulated projections generated in cone-beam geometry.  

 

It can be clearly seen that an initial increase of the number of projections Nθ (e.g., 

from 5 to 10 and from 10 to 20) can lead to significantly improved reconstructed 

microstructures. However, further increasing Nθ (e.g., from 20 to 30) does not result in 

much improvement of the accuracy of the reconstructions. Simulated projections are used 

here for us to investigate the information content of the projection data. Our 

reconstruction results clearly show that a relative small number of noise-free synchrotron 

x-ray tomography projections (e.g., 20 to 30) already contain sufficient structural 

information for a highly accurate rendition of the material microstructure. Moreover, the 
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successful reconstructions strongly suggest that our stochastic procedure can utilize the 

available structural information contained in limited-angle projection data in a highly 

efficient manner.    

In order to quantify the accuracy of the reconstructions, we employ an accuracy 

metric that measures the deviation of the reconstructed and target microstructure [70],  

                                      𝑀𝑎 =  ∑ |𝐼(𝑥, 𝑦, 𝑧) − 𝐼∗(𝑥, 𝑦, 𝑧)| 𝑁3⁄𝑥,𝑦,𝑧                               (4.12) 

where 𝐼(𝑥, 𝑦, 𝑧) is the indicator function of the phase of interest in the reconstructed 

microstructure, and 𝐼∗(𝑥, 𝑦, 𝑧) is the indicator function of the corresponding phase in the 

target microstructure, N is the linear size of the system and a cubic domain is assumed 

here. It is easy to see that this metric is actually the fraction of the misplaced voxels over 

the total number of voxels in the reconstructed microstructure. Figure 4.9 shows Ma as a 

function of Nθ for the sandstone and hard-ellipsoid packing structures that we studied, 

which quantitatively indicates that the accuracy of the reconstructions initially increase 

rapidly as the number of projections increases [cf. Figures 4.5 to 4.8]. When Nθ > 20, the 

reconstructed microstructure virtually perfectly matches the target structure (with 𝑀𝑎~0) 

and thus, further increasing number of projections does not lead to improved 

reconstructions.  
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Figure 4.9 The accuracy metric Ma as a function of Nθ for the reconstructions of the 

sandstone microstructure (A) and the hard-ellipsoid packing (B). In both systems, Ma 

initially decays rapidly as Nθ increases and virtually decays to 0 beyond Nθ = 20. 

 

 



 

64 

In addition, as shown in Figure 4.9 (A) and (B), for a given number of 

projections, the cone-beam geometry results in more accurate reconstructions compared 

to the parallel-beam geometry. This is because the stochastic reconstruction from limited 

structural information strongly depends on spatial correlations among the voxels of 

different phases encoded in the partial structural information. Due the nature of the cone-

beam geometry, each voxel affects multiple bins at the detector for each projection angle 

and thus, the cone-bean data (i.e., the total attenuation values in each detector bin) 

possess stronger correlations than the parallel-beam data. Therefore, during the 

reconstruction process, switching two voxels leads to a larger change of energy in cone-

beam geometry. This facilitates the convergence of the reconstruction process. We 

emphasize that the above analysis assumes perfectly monochromic x-rays. In practice, 

due to polychromic nature of the incident rays and other artifacts, the cone-beam data 

might lead to less accurate reconstruction compared to the parallel beam data. 

4.3 Reconstructions from Limited-Angle X-ray Tomographic Data 

In this section, we apply the stochastic procedure to reconstruct Sn-sphere-clay-

matrix systems from limited-angle tomography data [71]. Two microstructures (i.e., 

spatial distributions of Sn-sphere in clay matrix) are studied. One system consists of Sn-

spheres embedded close to the surface of a cylinder-like clay matrix with a helical 

arrangement, which was originally made to test and fine-tune the alignment of a lab-scale 

cone-beam x-ray tomography microscopy at Arizona State University (ASU) [72]. The 

other system is a random distribution of Sn-spheres in clay matrix. For each system, 30 

parallel-beam synchrotron projections evenly distributed from 0 to 180 degrees that are 

obtained at Advanced Photon Source, Argonne Nation Lab and 30 cone-beam projections 
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obtained via the lab-scale cone-beam tomography microscopy at ASU are used as input 

for our stochastic reconstruction procedure. The procedures for acquiring the projection 

data are described elsewhere [72]. The attenuation coefficients for the tin and clay used in 

our reconstructions are normalized values with respect to the attenuation coefficient of air 

and geometrical parameters, i.e., the linear voxel length in the reconstruction domain.  

The reconstructions of the helical arrangement of Sn-sphere in clay from cone-

beam and parallel-beam data are respectively shown in Figure 4.10 and 4.11. For the 

cone-beam data, a reconstruction domain of 136 by 136 by 152 voxels is used and 500 

annealing stages with a cooling schedule 0.98 is employed in the stochastic optimization. 

The normalized attenuation coefficients of clay and Sn are respectively 0.0022 and 

0.0784. The linear size of domain is roughly 2200 μm. For the parallel-beam data, a 

reconstruction domain of 303 by 303 by 201 voxels is used and 1000 annealing stages 

with a cooling schedule 0.98 is employed in the stochastic optimization. The normalized 

attenuation coefficients of clay and Sn are respectively 0.0026 and 0.0751. The linear size 

of domain is roughly 1250 μm. Also shown in the figures are the raw projections, i.e., 

intensity maps showing the total attenuation due to absorption as the x-rays passing 

through the material sample. In both cases, both the helical distribution and the shape of 

Sn-spheres are very well resolved in the reconstructions. However, a closer inspection 

reveals that the sphere phase is better reconstructed using the parallel-beam data. This is 

because during the reconstruction process, a single attenuation coefficient value is used 

for each distinct phase, which assumes that the x-rays are monochromic. Such an 

assumption is valid for the parallel-beam synchrotron data, but is not true for the cone-

beam data. We note that the polychromic nature of x-rays used in acquiring the cone-
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beam data as well as the beam hardening effect [72] also causes significant artifacts in the 

reconstruction using the filtered-back-projection reconstruction method.  

 

 

Figure 4.10 Reconstruction of the helical arrangement of Sn-spheres in clay from cone-

beam data. (A) A projection (i.e., the total attenuation intensity) associated with the 

projection angle of 0°. (B) Reconstructed microstructure from 30 projections evenly 

distributed in the interval between 0 and 180 degrees.  
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Figure 4.11 Reconstruction of the helical arrangement of Sn-spheres in clay from 

parallel-beam data. (A) A projection (i.e., the total attenuation intensity) associated with 

the projection angle of 0°. (B) Reconstructed microstructure from 30 projections evenly 

distributed in the interval between 0 and 180 degrees.  

 

We also apply the stochastic procedure to reconstruct a random distribution of Sn-

spheres in clay, whose microstructure resembles that of a particle-reinforced composite 

material. The reconstruction of such a system from parallel-beam data is shown in Figure 

4.12. Specifically, a reconstruction domain of 303 by 303 by 203 voxels is used and 1000 

annealing stages with a cooling schedule 0.98 is employed in the stochastic optimization. 

The normalized attenuation coefficients of clay and Sn are respectively 0.0026 and 

0.0697. The linear size of domain is roughly 1300 μm. Also shown in the figures are the 

raw projections. Again, it can be clearly seen that the system has been successfully 

reconstructed with well resolved sphere shape and spatial distributions. We emphasize 

that in the reconstructions via FBP method using only 30 projections, which are not 
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shown here, neither the spatial distribution nor the sphere shape can be resolved. In 

addition, the FBP reconstruction yields a grayscale map of the attenuation coefficients 

and further segmentation is required to recover the binary microstructure. In this aspect, 

our stochastic procedure is clearly superior to the FBP method. These examples clearly 

illustrate the utility and efficiency of the stochastic reconstruction procedure.  

 

 

Figure 4.12 Reconstruction of a random distribution of Sn-spheres in clay from parallel-

beam data. (A) A projection (i.e., the total attenuation intensity) associated with the 

projection angle 0°. (B) Reconstructed microstructure from 30 projections evenly 

distributed in the interval between 0 and 180 degrees.  

 

4.4 Stochastic Reconstruction with Multi-modal Data Fusion 

The structural information contained in most raw imaging data such as X-ray 

tomographic radiographs (projections) and diffraction data have not been used directly. 

And material reconstruction and post-processing procedures are typically employed to 

first generate a 3D microstructure for subsequent analysis. In Chapter 2, a novel 
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procedure which named “probability map” has been described in detail that can 

“leapfrogs” the tedious 3D reconstruction processes and directly extracts and quantifies 

the key structural information contained in X-ray projection data. It has been 

demonstrated that limited number of projections contains enough structural information 

of the microstructure. And an accurate stochastic procedure of reconstructing 

heterogeneous microstructures utilizing limited X-ray tomographic projections has been 

presented and tested on different types of materials in the previous of this chapter. This 

allows us to save huge amount of space that was used to store thousands of projection 

data in order to reconstructing the microstructure.  

Here we focus on two types of imaging data: (i) X-ray tomographic radiographs 

(projections) and (ii) 2D micrographs including SEM/BES/SEM/optical images as well as 

EBSD color maps. As described in detail below, we devise a unified framework to 

compute correlation functions directly from such raw imaging data, which allows us to 

“transform” the structural information contained in such data from a non-usable form to a 

directly usable and understandable form. 

Given a 2D micrograph (e.g., EBS/SEM/ optical images or EBSD), a variety of 

correlation functions (including the n-point correlation function Sn, surface correlation 

function Fs, lineal-path function L, pore-size function F and cluster function C2 etc) can 

be immediately obtained by grouping the pixels belonging to different bulk 

phases/surfaces/ clusters and computing the pair distances between the pixels in selected 

groups. Figure 4.13 shows two examples of computing correlation functions from 2D 

micrographs. In the left panel, S2, Fs and C2 computed from an optical image of a 

concrete microstructure are shown, which respectively reflect the correlation between 
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bulk phase, the correlation between the interface, as well as degree of clustering in the 

microstructure. However, we note that the cluster function C2 should be used with 

caution, since certain percolating 3D microstructure may appear disconnected in 2D. In 

the right panel, the set of S2 of a polycrystalline microstructure are computed from an 

EBSD color map, in which each grain (associated with different color) is treated as a 

distinct “phase”. Both the autocorrelation functions (for individual grains) and the cross-

correlation functions (for correlation between different grains) are shown. The correlation 

functions directly computed from limited 2D micrographs will be employed for 

stochastic data fusion described in subsequent sections. Again, the accuracy of correlation 

functions directly computed from the 2D micrographs, which reflects the level of 

structural information contained in such data, will be ascertained by comparing 

quantitatively them with the corresponding functions computed from the actual 

reconstructed 3D microstructure. 
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Figure 4.13 Left panel: The correlation functions S2, C2 and Fs of a concrete 

microstructure (see inset) as computed from a 2D optical image. Right panel: S2 

associated with the grains in a polycrystalline Sn-rich solder joint as computed from a 

2D EBSD color map (see inset).  

 

Here we propose to generalize the stochastic reconstruction procedure for 

integrating limited complementary X-ray tomography and optical imaging data for 

modeling different types of materials. The reconstruction procedure, which stochastically 

evolves a trial microstructure to best match the given structural information, provides a 

convenient means to utilize different types of structural data. Specifically, the objective 

function is now defined as the linear combination of two “energy” terms, one for 

tomography data and one for optical images. We note that more terms can be introduced 

if additional imaging data needs to be incorporated. For the X-ray tomography data, the 

associated “energy” is defined as the sum of the squared difference between the simulated 

attenuated intensity value in each projection bin for the trial microstructure and the 

corresponding experimental value. For the optical imaging data, the associated “energy” 
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is defined as the sum of squared difference between corresponding correlation functions 

computed from the optical images and the trial microstructure.  

The stochastic reconstruction algorithm with multi-modal data source is first 

tested on 4 Fontainbleau structures. They all have the same system size with 128 by 128 

by 128 total voxels, with different volume fractions of target phase ranging from 5 to 20 

percent. Target projections are generated modeling the X-ray tomography experiment 

with parallel beam geometry. All the projections are evenly distributed from 0 to 180 

degrees. The target correlation function (S2) is directly computed from the target 

configuration following the procedure described in Chapter 2. The reconstruction process 

with simulated annealing algorithm is exactly the same as described in in detail in the 

previous of this chapter, except that now the energy that needed to be reduced is the 

combination of the energy computed from both X-ray tomography projections and two-

point correlation functions. Eventually the energy will converge to a local minimum, 

which is practically more likely to happen in the most of the case, and the reconstruction 

will be considered succeeded if the total energy is below a certain tolerance. 

Sample 1 to 3 are reconstructed with S2 and 4 projections due to relative small 

volume fractions and simple structures. And Sample 4 is reconstructed using 6 

projections for relatively high volume fraction. The volume fractions of different 

structures can be found in Table.1. Figure 4.14 shows an example of the reconstruction 

result for sample one as an example, using multi-modal data, compared with the 

reconstruction results using single source. Here the two-point correlation function S2 used 

for reconstruction is computed directly from the target structure. Although Figure 2(A) 

and (B) share the same correlation function, the reconstruction result is far away from the 
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target structure. This is due to the nature of degeneracy of lower order correlation 

functions [51, 52]. Figure 2(C) is the reconstruction result from 4 projections. As we can 

see the main frame of the structure has been constructed. However, the details are not 

perfectly captured as a lot of random points exist in the reconstruction result. This is due 

to the reason that not enough structural information is provided in 4 projections for such a 

system. As we compare the result in Figure 2(D) with the target structure, one can tell 

that the key structure features have been perfectly captured and illustrated. Our 

understanding of this excellent reconstruction result is that during the beginning of the 

reconstruction, two-point correlation function can make the initially totally random 

distributed target voxels quickly converge to large structure features. And as the 

reconstruction procedure continues, projections can provide extra structural constrains 

and refine the shape, especially edges of those particles and clusters. We then quantify the 

accuracy of the reconstruction with a metric, which represents the normalized difference 

between the target structure and all three reconstruction results, i.e., total number of target 

voxels that are misdisplaced from the correct position divided by the system size. All the 

values are listed in Table 4.1. These values, together with the 3D illustration, qualitatively 

and quantitatively demonstrate that the combined information input can significantly 

improve the reconstruction accuracy compared with single source input. 
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Figure 4.14 Target structure of a Fountainbleau sample (A) and the reconstruction result 

using only S2 (B), only 4 projections (C), and both S2 and 4 projections (D).  
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Table 4.1 Volume fraction of the target phase and normalized error between target 

structure and reconstruction results with different data input. 

 Volume fraction S2 only 
projections 

only 

S2 + 

projections 

Sample_1 0.0584 0.1132 0.0358 0.0103 

Sample_2 0.0964 0.1728 0.0583 0.0207 

Sample_3 0.1600 0.2681 0.1071 0.0408 

Sample_4 0.2141 0.3383 0.1073 0.0274 

SiC/Al 

composite 
0.1390 0.2274 0.0678 0.0184 

 

Figure 4.15 shows the reconstruction of a coarsening Pb-Sn system isothermally 

aged at 175
o
C at different time points. Each 3D microstructure is reconstructed from only 

5 synchrotron projections evenly distributed over 0
o
 and 180

o
 and the two-point 

correlation function S2 computed from a single optical image of the polished surface of 

the material. The stochastic reconstructions are found to be in excellent agreement with 

the corresponding reconstructions via FBP using the full tomography data set (including 

1048 projections), with the fraction of misdisplaced voxels less than 5% for all cases.  
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Figure 4.15 Upper panels: Parallel-beam X-ray tomography projection intensity maps 

for the Pb-Sn system at different aging stages. Middle panels: Optical images of the 

coarsening system at different stages corresponding to the tomography data. Lower 

panels: 3D reconstruction of the coarsening system via stochastic optimization using both 

tomography data and optical images. Linear size of the system shown in the panels is 180 

μm. 

 

We then further investigate the minimal set of complementary imaging data (e.g., 

X-ray tomography projections and correlation functions computed from optical images) 

for modeling more complex material systems. The model is a SiC/Al composite with 
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irregular shaped SiC particles and Al alloy with anisotropic secondary phase inclusions 

[7, 8, 62-64, 73]. The X-ray tomography projections are provided by Dr. Nikhilesh 

Chawla's group from Arizona State University. The discretized system size of SiC/Al 

composite material is 360 by 360 by 2028 voxels, which is approximately 2 mm in height 

and 400 by 400 um
2
 in cross sectional area. For better illustration, here will only show a 

small portion of the structure. As the results showing in Figure 4.16, multi-modal 

reconstruction with 4 projections and S2 can provide us very accurate 3D rendition of the 

structure as all the SiC particles are perfectly reconstructed. The accuracy can further 

improved by increasing projection number to 5. In comparison, reconstructions with only 

5 projections and only S2 are also provided. The quantified accuracy of with different 

reconstruction inputs are also listed in Table 4.1. These results suggest that a minimal set 

of complementary imaging data can contain sufficient structural information for material 

characterization and such information can be efficiently utilized via our stochastic 

reconstruction procedure. 
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Figure 4.16 Target structure of SiC/Al composite (A) and the reconstruction result using 

only S2 (B), only 5 projections (C), and both S2 and 5 projections (D). 

 

4.5 Summary 

In this chapter, we have presented in detail a stochastic procedure to accurately 

reconstruct two-phase heterogeneous materials from limited-angle tomographic 

projection data. We have demonstrated the utility of this procedure by applying it to 

successfully reconstruct a number of topologically complex 3D microstructures from 

both simulated noise-free projection data as well as experimentally obtained 
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polychromatic cone-beam data and parallel-beam synchrotron data. The information 

content of the projection data is also investigated. Our reconstruction results imply that 

the large tomographic data set (typically having several hundred projections) used by 

tradition reconstruction methods would contain significantly redundant structural 

information for capturing the salient features of the microstructure. Thus, the stochastic 

procedure could provide a means to use the information in tomographic data in a highly 

efficient manner. We note that our reconstruction procedure based on limited x-ray tomography 

data is different from widely used material microstructure reconstruction techniques based on 

statistical descriptors [74-87], image synthesis [88,89] or machine learning [90-92]. 

The stochastic reconstruction with multi-modal data fusion takes the advantage of both 

the structural information from statistical descriptors (i.e., two-point correlation function), and 

morphological information (i.e., X-ray tomographic projections), which combined provides us a 

novel optimization procedure that requires much less data input, a fast reconstruction running 

time, and an accurate result. The two-point correlation functions can be directly computed from 

2D micrographs like EBS/SEM/ optical images or EBSD. The projection number required 

here is further reduced compared to the stochastic reconstruction procedure that utilize 

projections alone, not to mention the significant reduction compared to the traditional 

reconstruction algorithm, like FBP, which requires thousands of projections. 

In the current work, the angles associated with the projections were evenly 

distributed. It is not obvious that such a distribution of angles can lead to a set of 

projections that contain the maximum level of structural information. It is highly 

desirable to investigate what is the optimal distribution of the angles for a given material 

system that can lead to a set of projections that contain the highest level of structural 

information for a given number of projections. 
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CHAPTER 5 

MICROSTRUCTURAL DEGENERACY AND ENERGY LANDSCAPE ASSOCIATED 

WITH X-RAY TOMOGRAPHIC PROJECTION  

In the previous chapter we have found out that accurate reconstruction can be 

achieved with limited X-ray projection data. In this chapter, we will focus on degeneracy 

of microstructure and energy landscape respect to different number of projections, to 

analytically explain the accuracy of our reconstruction algorithm, following Gommes's 

previous work [51, 52], where he addressed the same issue using two-point correlation 

functions. The degeneracy of two-phase microstructures with different number of 

projections can be analyzed by mapping them to ground state degeneracy. And the 

associated density of states can be determined through Monte Carlo simulation. 

Hamming distance will be used here to determine the roughness of energy landscape for 

different systems associated with different number of projections. And this will explain 

the relative easiness of reconstruction for different microstructures. At last, cooperating 

with Gommes [93], analytical expressions of different energy states will be expressed. A 

metric will also be defined to characterize the roughness of the energy landscape. 

5.1 Microstructural Degeneracy and Density of States 

The degeneracy of a microstructure is defined as the number of configurations 

that have energy 𝐸 = 0. And the energy here is respected to projections and the definition 

can be found in previous chapter. In the case of two-point correlation functions, structures 

that can be obtained through space transformations that preserve distances, i.e., 

translation, rigid rotations, and inversion, will share the same two-point statistics and 

therefore can all be considered as the ground state degeneracy [51, 52]. The number of 
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ground state degeneracy is subjected to system size and the complexity of the structure. 

The situation in the case of projections is different in several ways. By the definition of 

energy and the nature of projections, trivial transformations will not work here, and the 

ground-state degeneracy is subjected to the number of projections. Now the ground-state 

degeneracy includes the structures that share the same set of projections. And increasing 

the number of projections will reduce the ground-state degeneracy because by involving 

more constrains, the number of configurations that meet those constrains will decrease. 

And eventually, after reaching a critical number of projections, the ground-state 

degeneracy will be reduced to 1, and a target structure will be uniquely defined by those 

projections. 

An ergodic exploration of all the possible configurations of a microstructure with 

certain volume fractions of different phases is barely doable even for a small system. In 

order to estimate the degeneracy of microstructure, a Monte Carlo simulation will be 

utilized. The method of using MC simulation to numerically estimate density of states 

was first developed by Wang and Landau [94, 95]. In their work, the density of states 

(DOS) (E) is defined as the number of configurations with a certain energy E. And the 

ground-state energy is then taken by (E) with 𝐸 = 0.  

Wang and Landau’s method is different with canonical Monte Carlo simulations. 

In their method, the transition probability is in the form of  

                                                     𝑝(𝐸1 → 𝐸2) = 𝑚𝑖𝑛 [1,
𝑔(𝐸1)

𝑔(𝐸2)
]                                          (5.1) 

where 𝑔(𝐸) is the density of states of energy E. As they claimed that using this 

formulation, all the energies can be visited equally. However, the density of states (E) is 



 

82 

unknown so the method will go through an iterative way. 

Starts from here all the tests will be done on binary systems for better illustration 

purpose. And it should be aware that these methods can be easily applied to multiphase 

systems. For a 2D binary system, we can generate a set of projections by modeling the X-

ray tomography experiment, as details described in the previous chapter. For any other 

configurations with the same volume fraction of each phase, we can acquire their 

projections following the same way. And then we can define the energy as the squared 

difference between each detector bin in every projections of the target structure and that 

of the temporary structure, 

                                             𝐸 = ∑ ∑ (𝑝̂(𝑖, 𝑗) − 𝑝(𝑖, 𝑗))2𝑁
𝑗

𝛼
𝑖                                            (5.2) 

where 𝑝̂ represents the target projections, 𝑝 the projections of the temporary structure, α 

is the total number of projections, and N is the total detector bin in each projection. The 

goal here is to figure out the total number of configurations that has the energy E, i.e., 

(E). Starting with (E) = 1 for all possible energies, the system will evolve following a 

Monte Carlo simulation. In each trial move, two pixels (voxels in 3D) in different phases 

will be randomly selected and their position will be switched. This will result in a new 

configuration and a new energy. Whether this new configuration is accepted or not is 

determined by the acceptance probability defined in Eq. (5.1). If it is accepted, the 

density of states of the corresponding energy will be updated as (E) → (E) × 𝑓, 

where f is a modification factor larger than 1. Wang and Landau stated that by selecting f 

equals to e = 2.71828…, it will allow us to reach all possible energy levels very quickly 

[95]. The evolution is terminated after certain number of runs. And then the modification 

factor is updated as 𝑓 → √𝑓. And the evolution starts again. Eventually, f will reduce to a 
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value very close to 1. And the procedure will stop when f reaches below a prescribed 

value. In our study the critical value of f is 1.00001. It is clear that the modification factor 

acts as a control parameter in the MC simulation, like the cooling temperature T in the 

stochastic reconstruction algorithm. 

After the MC simulation, the cumulative DOS is computed as  

                                                𝑁Ω(𝐸) = ∑ Ω(𝑒)𝑒≤𝐸                                                        (5.3) 

And it is then normalized by setting 𝑁Ω(𝐸) to be equal to the total number of 

configurations tot. For a binary structure with total number of pixels equal to N, and the 

number of black pixels N1, the total number of configurations is equal to the number of 

different ways selecting N1 positions for the black pixels in total N locations, i.e.,  

                                                      Ω𝑡𝑜𝑡 = (
𝑁
𝑁1

)                                                             (5.4) 

The running moves for every modification factor f is chosen so that after normalization, 

the density of state for 𝐸 = 1 for one projection is equal to the theoretical value (1).  

What differs the situation for projections from correlation functions is that in 

order to determine the DOS for all possible energies, the number of projections play an 

important role. Increasing projection number will result in increasing possible energy 

states, since the energy is calculated through all the projections provided. So in the 

current study, the normalized DOS is computed and plotted with respect to different 

projection numbers. We first test the algorithm on three structures with same system size 

of 8 by 8, and the number of black pixels, which is 13. The three structures are namely a 

single disk, hard disks, and a Poisson point process. The ground state configuration and 

the plots of normalized cumulative DOS versus energy are shown in Figure 5.1. The 
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ground-state degeneracy of each configuration associated with one projection and 

theoretically the number of all possible configurations associated with the system size 

and numbers of target pixels are listed in table 5.1. 

 

Table 5.1 System size, number of target pixels, ground-state degeneracy associated with 

one projection, and theoretically the number of all possible configurations 

 System size Target pixel 
Ground-state 

Degeneracy 

All possible 

configurations 

Single disk 8 x 8 13 1.1239 x 10
7
 1.31369 x 10

13
 

Hard disks 8 x 8 13 5.5073 x 10
8
 1.31369 x 10

13
 

Poisson 

distribution 
8 x 8 13 8.8117 x 10

9
 1.31369 x 10

13
 

Large spheres 32 x 32 196 3.5021 x 10
177

 4.33082 x 10
215
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Figure 5.1 Cumulative DOS associated with energy for (A) single disk, (B) small hard 

disks, and (C) Poisson point process. The system size is 8 by 8, and the number of red 

pixels is 13 for all three configurations. 
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As the plot shows, the trend for different number of projections is the same as the 

cumulated DOS is increasing from a certain value when E is small, to the theoretical 

value of possible configurations by increasing E. When increasing the projection number, 

the DOS for certain energy is decreasing. This is because increase projection number will 

increase structural constrains to the system. At the same time the possible energy state is 

increasing by increasing number of projections. As a result, the possible configurations to 

match certain energy will decrease. As one notices that for large number of projections, 

the cumulative DOS will drop below the horizontal axis when the energy is reducing to a 

value. This is because the number of configurations with energy smaller than that certain 

value are really small and hard to reach in a random evolution algorithm like Monte 

Carlo simulation. So the normalized DOS can be considered as under sampling for those 

energies. For small systems like the configurations shown in Figure 5.1, the minimum 

number of projections that required to reconstruct a configuration exactly the same as the 

target structure is achievable. This is verified by plotting out the configurations of 𝐸 = 0 

under different number of projections and examine with the target configuration. For 

single disk, the minimum number of projections required to reconstruct the target 

structure is 2. The number for hard disks is 3, and 4 for Poisson point process.  

We then apply the algorithm to larger systems. The target structure now has 

system size of 32 by 32, consist of 16 hard disks with total 196 total black pixels. The 

results of cumulative DOS versus energy for different number of projections are shown in 

Figure 5.2. The result shows the same trend that for certain energy, the cumulative DOS 

is decreasing by increasing number of projections. The huge drop of DOS when energy 

reach a certain value can be considered as reaching to those steep energy wells on the 
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energy landscape. These results validate the situation that in practice reconstructing a 

perfect match of target structure is impossible to reach even for a very small system. 

Instead, what we can do is to set an energy threshold, and claim that the reconstruction is 

succeeded when the energy is dropped below that threshold. As one can see the accuracy 

of the reconstruction is increasing by using more projections. By reducing the possible 

configurations that can be reached, we are increasing the probability of getting the target 

structure, or structures close enough to the target that the error of overall performance can 

be ignored. 

 

Figure 5.2 Cumulative DOS associated with energy for configuration with multiple 

spheres. The system size is 32 by 32 and the number of red pixels is 196. 

 

5.2 Energy Landscape and Roughness Metric 

To characterize the energy landscape, a complete configuration space of a two-
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phase microstructure should be defined first. For a microstructure with N pixels, all the 

possible configurations will be the vertices of an N-dimensional hypercube [51]. The 

vertices of the hypercube are consist of sets of indicator vectors 𝐼(𝑖), where the value 

could only be either 1 or zero, indicating black and white. Moving from one vertex to 

another along a prescribed direction means replacing the value of one pixel to another. 

For reconstruction problems, not all the vertices are needed to be explored since the 

numbers of black and white pixels are kept constant at all times. All the realizable 

configurations will be lying on the intersection of the hypercube with a lower-

dimensional hyperplane. And each vertex has an energy assigned by Eq. (5.2). Now an 

energy landscape can be defined as a set of energies associated with each vertex on the 

hyperplane. And what a reconstruction algorithm does is to thoroughly explore the energy 

landscape in order to find the vertices with 𝐸 = 0. Because systems with large ground- 

state degeneracies intend to have a rough energy landscape [96, 97], so the hypothesis 

here is that by reducing the ground-state degeneracy with increasing number of 

projections, we should be able to achieve a smoother energy landscape, which as a result, 

a more accurate reconstruction. We can also determine the relative reconstruction 

complexity of different microstructures by comparing the roughness their energy 

landscape. 

In order to explore the vertices on the hyperplane, here we will involve a concept 

from information theory. By definition, a hamming distance is the number of positions of 

two strings with the same length where the symbols are different [98]. In reconstruction, 

we can consider the hamming distance as the number of misdisplacements of black pixels 

of a configuration compared to the target one. By reducing the hamming distance, we are 
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moving black pixels to the correct spot, and eventually, when all the black pixels are on 

the right places, the reconstruction is finished.  

Now the energy landscape can be explored with a random walk on the 

configuration space by changing the hamming distance. The procedure is as follows. 

Starting from the target configuration, the system will be moving to any configurations 

with hamming distance equal to 1, by randomly switching one black pixel with a white 

pixel. Compute the energy E for this new configuration. And then move to a 

configuration with hamming distance equal to 2, and compute the energy. By increasing 

the number of random moves, configurations with large hamming distance from the 

ground state will be explored. This process is repeated with different number of 

projections, and the results are plotted in Figure 5.3, 5.4 for different structures. The 

energy E for each hamming distance d is an average value of 10000 random walk cases in 

order to explore all possible configurations. As the result shows, for certain hamming 

distance, increasing number of projections will increase the energy. This means that more 

projections provide more constrains to the structure, and moving black pixels around in 

the configuration will have larger impact on the overall energy. On the other hand, in 

order to achieve certain energy, the hamming distance with more projections will be 

smaller than that of fewer projections. This explains the higher accuracy of reconstruction 

with more projections because the reconstruction result is more close to the ground state, 

whereas for reconstructions with smaller number of projections, the configuration could 

still be random but achieve the threshold energy at the same time. 
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Figure 5.3 Average energy associated with hamming distance for single sphere structure 

under the condition of different number of projections. The system size is 32 by 32 and 

the number of red pixel is 196. 
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Figure 5.4 Average energy associated with hamming distance for a structure of Poisson 

point process under the condition of different number of projections. The system size is 32 

by 32 and the number of red pixel is 196. 

 

Comparing the energy of the same hamming distance for different structures can 

give us an insight of the relative reconstruction complexity of the structure. Shown in 

Figure 5.5 are three structures with the same system size 32 by 32 and same number of 

black pixels 196 with 5 projections. The three structures are single sphere, multiple 

spheres with smaller radius, and Poisson point process. The energy of single sphere by 

increasing hamming distance shows a higher increasing rate than that of smaller multiple 

spheres and Poisson point process. This means that moving one black pixel can have a 

larger impact on the overall energy for reconstructing a relative simple structure. On the 



 

92 

contrary, the energy change by reducing the hamming distance for Poisson point process 

is small. This is reasonable since the random distribution of black pixels increases the 

complexity of reconstruction. So if we set the threshold energy of reconstruction to be the 

same for all three cases, one could expect a better reconstruction result from the single 

sphere case. Another observation from Figure 5.5 is that the average curve has a quadratic 

relationship with hamming distance d, whereas for Poisson point distribution, the 

relationship is linear. This has been explained qualitatively by Gommes as the difference 

in interpretation of holes and extra pixels with hamming distance d [52]. For single 

sphere, the quadratic behavior shows a collective contribution of target pixels to the 

overall energy. On the contrary, the target pixels in Poisson distribution are relatively 

independent to each other, and this results in a linear contribution to the total energy. And 

the relation of average energy with hamming distance for multiple small spheres is 

somewhere in between quadratic and linear. 
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Figure 5.5 Comparison of average energy <E> associated hamming distance for three 

different structures with same system size, and number of red pixels under the condition 

of 5 projections. 

 

In the rest of this chapter we will analytically explore the average energy for n 

random moves <E>(n) closely follow the work from Gommes [51, 52, 93]. We will start 

with the notations and definition of the energy. The projection along direction  can be 

written as follows 

                                                𝑓𝛼(𝑛) =  ∑ 𝑃𝛼(𝑛, 𝑖)𝐼(𝑖)𝑖                                                  (5.5) 
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where 𝐼 is the indicator function of the structure and 𝑃𝛼(𝑛, 𝑖) is an operator matrix of the 

projections. If we define the set of target projections as 𝑓𝛼(𝑛), then for any configuration 

with projections𝑓𝛼(𝑛), the energy can be defined as 

                                             𝐸 =  ∑ ∑ (𝑓𝛼(𝑛) − 𝑓𝛼(𝑛))
2

𝑛𝛼                                                          

                                                 =  ∑ ∑ (𝑓𝛼(𝑛) − 𝑃𝛼(𝑛, 𝑖)𝐼(𝑖))
2

𝑛𝛼                                  (5.6) 

The problem is simpler here than for correlation functions because the energy is 

quadratic in 𝐼 instead of fourth power in the case of correlation function [52]. The energy 

can be written as  

                                             𝐸 =  ∑ ∑ (𝑓𝛼(𝑛))
2

𝑛𝛼    

                                                 − 2 ∑ [∑ ∑ 𝑓𝛼(𝑛)𝑃𝛼(𝑛, 𝑖)𝑛𝛼 ]𝐼(𝑖)𝑖  

                                                 + ∑ ∑ [∑ ∑ 𝑃𝛼(𝑛, 𝑖)𝑃𝛼(𝑛, 𝑗)𝑛𝛼 ]𝐼(𝑖)𝐼(𝑗)𝑗𝑖                       (5.7) 

where the following quantities appear. A vector of size N 

                                                𝐼𝑏(𝑖) =  ∑ ∑ 𝑓𝛼(𝑛)𝑃𝛼(𝑛, 𝑖)𝑛𝛼                                          (5.8) 

which can be considered as a back-projection operation of 𝑓𝛼(𝑛). And a symmetric 

𝑁 × 𝑁 matrix  

                                                  𝐽𝑖𝑗 = ∑ ∑ 𝑃𝛼(𝑛, 𝑖)𝑃𝛼(𝑛, 𝑗)𝑛𝛼                                          (5.9) 

Using a strict definition of projection, 𝑃𝛼(𝑛, 𝑖) is equal to zero everywhere except 

the value of n that corresponds to the receiving detector bin of the X-ray with direction α 

that pass through point i. For that value of n, 𝑃𝛼(𝑛, 𝑖) = 1. With that, the production 

𝑃𝛼(𝑛, 𝑖)𝑃𝛼(𝑛, 𝑗) in Eq. (5.9) will be equal to 1 if the X-ray that being received by detector 

bin n passes both point i and j. And it will be equal to zero anywhere else.  
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The Eq. (5.7) is equivalent to an Ising Hamiltonian with interaction matrix 𝐽𝑖𝑗 and space-

dependent external field 𝐼𝑏(𝑖), 

                             𝐸 = ∑ ∑ 𝑓𝛼(𝑛)2
𝑛𝛼 − 2 ∑ 𝐼𝑏(𝑖)𝐼(𝑖)𝑖 +  ∑ ∑ 𝐽𝑖𝑗𝐼(𝑖)𝐼(𝑗)𝑗𝑖                  (5.10) 

It is interesting to notice from the equation that the energy can be minimized by a 

scalar product if 𝐼 = 𝐼𝑏. However, in this way the inverse projection operation will tend 

to create configurations with many pixels aligned with the projection directions. Based on 

the definition of 𝐽𝑖𝑗, this operation, however, will results in maximizing the value of 

∑ ∑ 𝐽𝑖𝑗𝐼(𝑖)𝐼(𝑗)𝑗𝑖 . With the conflicting constrains exist at the same time, the best solution 

should be considered as a compromise. 

Now we will see how random moves starting from target configuration can affect 

the energy. we will consider the effect separately on each of the three contributors to the 

energy in Eq. (5.10), namely, 

                                                          𝐸̂0 =  ∑ ∑ 𝑓𝛼(𝑛)2
𝑛𝛼                                             (5.11) 

                                                          𝐸̂1 =  ∑ 𝐼𝑏(𝑖)𝐼(𝑖)𝑖                                                (5.12) 

and 

                                                          𝐸2 =  ∑ ∑ 𝐽𝑖𝑗𝐼(𝑖)𝐼(𝑗)𝑗𝑖                                        (5.13) 

The symbol ^ in these notations highlights the quantity that depends on the target 

projection data, i.e., 𝑓𝛼(𝑛). 

Linear contributions 𝐸̂1 

When randomly moving a pixel (voxel in 3D) from position p to position q, the 

modification of the indicator function can be written as 

                                                𝐼′(𝑖) = 𝐼(𝑖) + 𝛿(𝑖, 𝑞) − 𝛿(𝑖, 𝑝)                                    (5.14)  
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So the first-order contribution to the energy becomes 

                                                  𝐸̂1
′ = 𝐸̂1 + 𝐼𝑏(𝑞) − 𝐼𝑏(𝑞)                                           (5.15) 

When pixels p and q are chosen randomly in the black and white phases, 

respectively, the average value of 𝐸̂1
′  is computed as, 

                           〈𝐸̂1
′〉 =

1

𝑁0𝑁1
∑ ∑ 𝐼(𝑝)(1 − 𝐼(𝑞))[𝐸̂1 + 𝐼𝑏(𝑞) − 𝐼𝑏(𝑞)]𝑞𝑝                   (5.16) 

where 𝑁1 = ∑ 𝐼(𝑖)𝑖  and 𝑁0 = 𝑁 − 𝑁1. This leads to  

                                                        〈𝐸̂1
′〉 = 𝛽̂0 + 𝛽1𝐸̂1                                                 (5.17) 

with 

                                                          𝛽̂0 =
1

𝑁0
∑ 𝐼𝑏(𝑞)𝑞                                                 (5.18) 

and 

                                                           𝛽1 = 1 −
𝑁

𝑁0𝑁1
                                                    (5.19) 

Eq. (5.17) can be used recursively to estimate the average value of 𝐸̂1
′  after n random 

moves, and we can find  

                                          〈𝐸̂1〉(𝑛) =
𝛽̂0

1−𝛽1
+ 𝛽1

𝑛(𝐸̂1(0) −
𝛽̂0

1−𝛽1
)                                 (5.20) 

where 𝐸̂1(0) is the starting value of 𝐸̂1, which is the value in the ground-state. For special 

case like 𝑛 = 1,  

                                       〈𝐸̂1〉(1) =
1

𝑁0
∑ 𝐼𝑏(𝑖)𝑖 + (1 −

𝑁

𝑁0𝑁1
)𝐸1(0)                             (5.21) 

And in the limit of 𝑛 → ∞, this will be  

                                           lim𝑛→∞〈𝐸̂1〉(𝑛) =
𝛽̂0

1−𝛽1
=

𝑁1

𝑁
∑ 𝐼𝑏(𝑖)𝑖                                 (5.22) 

Since 
𝑁1

𝑁
 is the probability for 𝐼(𝑖) takes the value 1 when the system is totally scrambled.  
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Quadratic contribution 𝐸2 

Here we apply the procedure as in the case of 𝐸̂1, changing 𝐸2 to 𝐸2
′  by moving 

pixel p to position q, as 

                           𝐸2
′ = 𝐸2 + 𝐽𝑝𝑝 + 𝐽𝑞𝑞 − 2𝐽𝑝𝑞 + 2 ∑ 𝐽𝑞𝑗𝐼(𝑗)𝑗 − 2 ∑ 𝐽𝑝𝑗𝐼(𝑗)𝑗                (5.23) 

For the situation when p is randomly chosen from black phase, and q is from white phase, 

the average value of 𝐸2
′  will be 

                                   〈𝐸2
′ 〉 = 𝛽2 + 𝛽3𝐸2 + 𝛽4 ∑ 𝐽𝑖𝑖𝐼(𝑖)𝑖 + 𝛽5 ∑ 𝐽𝑘𝑖𝐼(𝑖)𝑘𝑖                     (5.24) 

With 

                                                           𝛽2 =
1

𝑁0
∑ 𝐽𝑘𝑘𝑘                                                    (5.25) 

                                                   𝛽3 = 1 +
2

𝑁0𝑁1
−

2

𝑁0
−

2

𝑁1
                                           (5.26) 

                                                            𝛽4 =
1

𝑁1
−

1

𝑁0
                                                     (5.27) 

                                                           𝛽5 =
2

𝑁0
−

2

𝑁0𝑁1
                                                  (5.28) 

The structures of the last two terms in Eq. (5.24) are scalar product of vector 

𝐼 with a constant vector, which are mathematically identical to Eq. (5.12). The average 

value of the two terms after n random moves can then be computed through Eq. (5.20) 

with appropriate 𝛽0. And the result is  

                               〈∑ 𝐽𝑖𝑖𝐼(𝑖)𝑖 〉(𝑛) =
𝛽0

′

1−𝛽1
+ 𝛽1

𝑛(〈∑ 𝐽𝑖𝑖𝐼(𝑖)𝑖 〉(0) −
𝛽0

′

1−𝛽1
)                    (5.29) 

with 

                                                        𝛽0
′ =

1

𝑁0
∑ 𝐽𝑖𝑖𝑖 = 𝛽2                                               (5.30) 

and 
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                            〈∑ 𝐽𝑘𝑖𝐼(𝑖)𝑘𝑖 〉(𝑛) =
𝛽0

′′

1−𝛽1
+ 𝛽1

𝑛(〈∑ 𝐽𝑘𝑖𝐼(𝑖)𝑘𝑖 〉(0) −
𝛽0

′′

1−𝛽1
)                  (5.31) 

with 

                                                        𝛽0
′′ =

1

𝑁0
∑ ∑ 𝐽𝑘𝑖𝑘𝑖                                                   (5.32) 

Therefore, the final result of 〈𝐸2〉(𝑛)  is 

                            〈𝐸2〉(𝑛) = 𝛽2
1−𝛽3

𝑛

1−𝛽3
+ 𝛽3

𝑛〈𝐸2〉(0)  

                                          +𝛽4 [
𝛽0

′

1−𝛽1

1−𝛽3
𝑛

1−𝛽3
+ (〈∑ 𝐽𝑖𝑖𝐼(𝑖)𝑖 〉(0) −

𝛽0
′

1−𝛽1
)

𝛽3
𝑛−𝛽1

𝑛

𝛽3−𝛽1
]  

                                          +𝛽5 [
𝛽0

′′

1−𝛽1

1−𝛽3
𝑛

1−𝛽3
+ (〈∑ 𝐽𝑘𝑖𝐼(𝑖)𝑘𝑖 〉(0) −

𝛽0
′′

1−𝛽1
)

𝛽3
𝑛−𝛽1

𝑛

𝛽3−𝛽1
]          (5.33) 

In the limit of 𝑛 → ∞, this will converge to  

                                  lim𝑛→∞〈𝐸2〉(𝑛) =
𝑁0𝑁1

𝑁(𝑁−1)
∑ 𝐽𝑖𝑖𝑖 +

𝑁1(𝑁1−1)

𝑁(𝑁−1)
∑ 𝐽𝑖𝑘𝑖𝑘                            

(5.34) 

For large systems with 𝑛 → ∞, one can expect the pixels are independent from one 

another, and this leads to  

                                         〈𝐼(𝑖)𝐼(𝑗)〉 ≅ (
𝑁1

𝑁
)2 + 𝛿𝑖𝑗(

𝑁1

𝑁
− (

𝑁1

𝑁
)2)                                  (5.35) 

With that, the expression of 𝐸2 can then be written as 

                                            〈𝐸2〉 = (
𝑁1

𝑁
)2 ∑ 𝐽𝑖𝑗𝑖𝑗 +

𝑁0𝑁1

𝑁2
∑ 𝐽𝑖𝑖𝑖                                       (5.36) 

Roughness Metric 

As defined in Gommes’s previous work [52], a roughness metric can be written as  

                                                    𝜌 = 〈𝐸〉(1) 〈𝐸〉(∞)⁄                                                  (5.37) 

where 〈𝐸〉(1) is the average energy of all the configurations with hamming distance equal 

to 1, and 〈𝐸〉(∞) is the average energy for all possible configurations with the given 
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system size and number of black pixels. 

The quantity of 〈𝐸〉(1) can be considered as the energy curvature as it represents 

the difference between the average energy of a near neighborhood to the energy of the 

central point. With the previous knowledge, we can put that  

                    〈𝐸〉(1) = ∑ ∑ 𝑓𝛼(𝑛)2
𝑛𝛼 − 2 ∑ 𝐼𝑏(𝑖)𝐼(𝑖)𝑖 + ∑ 𝐽𝑖𝑗𝐼(𝑖)𝐼(𝑗)𝑖𝑗  

                                −2 [
1

𝑁0
∑ 𝐼𝑏(𝑖)𝑖 −

𝑁

𝑁0𝑁1
∑ 𝐼𝑏(𝑖)𝐼(𝑖)𝑖 ] 

                                +
1

𝑁0
∑ 𝐽𝑖𝑖𝑖 + (

1

𝑁1
−

1

𝑁0
) ∑ 𝐽𝑖𝑖𝐼(𝑖)𝑖 +

2

𝑁0
(1 −

1

𝑁1
) ∑ 𝐽𝑖𝑗𝐼(𝑖)𝑖𝑗  

                                −2
𝑁

𝑁0𝑁1
(1 −

1

𝑁
) ∑ 𝐽𝑖𝑗𝐼(𝑖)𝐼(𝑗)𝑖𝑗                                                     (5.38) 

The first three terms are the energy of the start point, which is the ground state. In other 

words, those three terms will vanish. It is also turns out that the energy 〈𝐸〉(1) is identical 

for all ground states. All terms involving 𝐼(𝑖) can be expressed in terms of projections 

𝑓𝛼(𝑛). With the definition of back-projection in Eq. (5.8), we can write 

                                             ∑ 𝐼𝑏(𝑖)𝑖 = ∑ ∑ 𝑉𝛼(𝑛)𝑓𝛼(𝑛)𝑛𝛼                                           (5.39) 

where 𝑉𝛼(𝑛) is defined as 

                                                   𝑉𝛼(𝑛) = ∑ 𝑃𝛼(𝑛, 𝑖)𝑖                                                    (5.40) 

Similarly,  

                                              ∑ 𝐼𝑏(𝑖)𝐼(𝑖)𝑖 = ∑ ∑ 𝑓𝛼(𝑛)2
𝑛𝛼                                           (5.41) 

And 

                    ∑ 𝐽𝑖𝑗𝐼(𝑗)𝑖𝑗 = ∑ ∑ 𝑃𝛼(𝑛, 𝑖)𝑛𝛼 ∑ 𝑃𝛼(𝑛, 𝑖)𝐼(𝑗)𝑗 = ∑ ∑ 𝑉𝛼(𝑛)𝑓𝛼(𝑛)𝑛𝛼           (5.42) 

We also have   

                                                     ∑ 𝐽𝑖𝑖𝐼(𝑖)𝑖 = 𝑁1𝑁𝛼                                                    (5.43) 

where 𝑁𝛼 is the total number of projections. In the meantime, 
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                                             ∑ 𝐽𝑖𝑗𝐼(𝑖)𝐼(𝑗)𝑖𝑗 = ∑ ∑ 𝑓𝛼(𝑛)2
𝑛𝛼                                        (5.44) 

Eventually, we will achieve an easier expression of 〈𝐸〉(1), as 

                          〈𝐸〉(1) = 2𝑁𝛼 −
2

𝑁0𝑁1
∑ ∑ 𝑓𝛼(𝑛)(𝑉𝛼(𝑛)−𝑓𝛼(𝑛))𝑛𝛼  

                                      = 2 ∑ [1 −
1

𝑁0𝑁1
∑ 𝑓𝛼(𝑛)(𝑉𝛼(𝑛)−𝑓𝛼(𝑛))𝑛 ]𝛼                          (5.45) 

Average energy 〈𝐸〉(∞) 

The average energy of all possible configurations can be written as 

                           〈𝐸〉(∞) = ∑ ∑ [𝑓𝛼(𝑛) −
𝑁1

𝑁
𝑉𝛼(𝑛)]

2

𝑛𝛼  

                                        +
𝑁0𝑁1

𝑁−1
𝑁𝛼 (1 −

1

𝑁𝛼
∑ ∑ (

𝑉𝛼(𝑛)

𝑁
)

2

𝑛𝛼 )                                    (5.46) 

It is worth mentioning that the first term has a clear meaning, it quantifies the 

deviation of the projections from situations where all the positions have a probability of 

𝑁1 𝑁⁄  to be occupied by a black pixel. The second term characterizes the shape of the 

reconstruction domain. 

Here we compute the roughness metric for the three configurations in Figure 5.5. 

as one could expect, the Poisson point distribution has the largest roughness metric value, 

single sphere the smallest, and multiple spheres in the middle, as listed in Table 5.2. 

These results are consistent with the observation that large ground-state degeneracies are 

generally associated with rough energy landscapes [96, 97]. 
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Table 5.2 Roughness metric for different configurations with same system size and 

number of target pixels 

 Single sphere Multiple spheres 
Poisson 

distribution 

𝝆 0.001487 0.003594 0.006465 

 

5.3 Summary 

Any stochastic reconstruction algorithm can be considered as an optimization procedure 

that explore the whole configuration space and try to find one or several configurations that 

morphologically or functionally match the target configuration. Those configurations that process 

the same features can be considered as the degeneracy of the target structure. And the number of 

those configurations strongly affects the performance of the reconstruction algorithm. In the 

situation with X-ray projections, by exploring the ground-state degeneracy and density of states 

associated with different number of projections, we have found that increasing the number of 

projections provides more structural constrains that will reduce the ground-state degeneracy. 

Eventually, when the number of projections reaches a critical value, the ground-state degeneracy 

will reduce to one and the target configuration is now uniquely defined by those projections. 

Using the stochastic reconstruction algorithm with such amount of projections, theoretically, one 

could get a reconstruction result that perfectly matches the target configuration morphologically.  

However, an ergodic exploration of the configuration space and finding out that unique 

configuration is practically undoable, even for a relative small system. What we really could do is 

to set up a threshold, which stands as the maximum bias or error that we can live with, and find 

out one configuration that below the threshold. An energy landscape will then become very 

important as it provide us an understanding of the degree of similarity of different configurations, 

in terms of hamming distance, that correspond to each energy level. 
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In this chapter we have explored the density of states associated with different number of 

projections for different configurations. It is shown that increasing number of projections can 

reduce the cumulative density of states for certain energy. And we can end up having a 

configuration that more similar to the target one after a stochastic reconstruction by using more 

projections. For different configurations with the same system size and target pixel numbers, the 

complex configuration will process a higher degree of roughness in the energy landscape. This 

could explain the low accuracy of reconstructing such structures. More tests should be done in 

order to fully understand the impact of energy landscape associated with different number of 

projections. And apply the concept of “information content” from Gommes’s previous work [52] 

to the current study. 

We have demonstrated a promising stochastic reconstruction algorithm with multi-modal 

date fusion. With that, one possible future work is to follow the procedure in the chapter and 

systematically study the microstructural degeneracy and energy landscape of the combined 

information of two-point correlation functions and projection data. And make comparisons with 

the current results and those with correlation functions [51, 52]. 

 

 

 

 

 

 

 

 

 

 



 

103 

CHAPTER 6 

FUTURE WORK  

A major advantage of the stochastic procedure is that binary microstructure is 

readily generated from a handful of projections, with no additional segmentations. With 

some straightforward generalizations, our method can be easily re-casted to reconstruct 

microstructural evolution over time from in situ tomographic data. For example, we also 

apply the stochastic procedure to reconstruct the growth process of a fatigue crack. As 

shown in Figure 6.1A, the target process consists of 6 images showing successive growth 

stages of the crack. For the image of the initial crack, 20 projections are obtained and 

used for its reconstruction. For the images of the subsequent cracks, only the contrast 

between the total attenuations associated with the images of current stage and previous 

stage are used, so that only the differences between the two microstructures are 

reconstructed, which requires less computational cost. The reconstructed growth process 

is shown in Figure 6.1B, which is virtually indistinguishable from the actual process [71]. 
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Figure 6.1 Reconstruction of the growth of a fatigue crack. The growth process consists 

of 6 images showing successive growth stages of the crack. (A) Target process. (B) 

Reconstructed process. 
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