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Abstract The effect of advertising on sales has been the subject of recent
studies as an important aspect in many demand-based problems. Herein, we
deal with the newsvendor problem, due to its simple structure, as a suit-
able tool for illustrating how facets of marketing may affect decision-making
concerning operational problems. In the setting presented, the newsvendor is
faced with advertising-sensitive stochastic demand, where a demand-related
random element comprises an advertising decision of the multiplicative or ad-
ditive form. We assume that a suitable advertising strategy results in increased
sales. Two advertising response functions are considered, these being concave
downward and S-shaped. We review and extend the existing results relating
to the newsvendor problem with marketing effects, which mostly pertain to
the concave function. These are generalized by defining the S-shaped function,
and some original insights into the effect of advertising are given. We establish
that the optimal advertising expenditure for the multiplicative case is always
less than or equal to the optimal amount in the equivalent deterministic model
while it is always equal in the additive case. We finally illustrate the results
that are obtained by providing numerical examples involving various advertis-
ing response functions, as well as management-related interpretations.
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1 Introduction

Coordinating marketing and production decisions still ranks as one of the most
challenging practical and theoretical problems of operations management. In-
deed, a number of producers have used innovative marketing strategies to gain
effective control of their inventories. This paper discusses the problem of si-
multaneously determining the quantity necessary to order and the advertising
expenditure required for a product for which demand is random.

We approach the problem by formulating a stochastic single-period prob-
lem, commonly referred to as the newsvendor problem (NP). A typical NP
reveals that the quantity ordered maximizes the expected profit. In the set-
ting given herein, the newsvendor is faced with advertising-sensitive stochastic
demand where the demand-related random element depends on advertising de-
cisions. We consider that a suitable advertising strategy can lead to increases
in sales. Note that the assumption of a fixed price corresponds to an instance
of the buyers effectively representing mere price-takers.

Although, NP has been studied for decades, it still serves as a suitable
tool to illustrate many new marketing situations (Dai and Meng 2015; Jam-
mernegg and Kischka 2007; Shi and Zhang 2014; Xinsheng et al 2015). In this
paper, we use notation that is frequently utilized for the newsvendor prob-
lem with pricing (NPP) in order to show how marketing aspects interact with
production decisions in the newsvendor problem with advertising (NPA). We
follow up on our earlier modeling ideas, as presented in Hrabec et al (2012),
in which some results from NPP were reviewed and illustrated. Moreover, in-
spired by Petruzzi and Dada (1999), who presented findings on NPP for the
linear price-demand function in an additive demand model, as well as the hy-
perbolic price-demand function for a multiplicative demand case (higher prices
cause a decrease in demand), we present suitable (and more complex) func-
tions related to various advertising situations for additive and multiplicative
cases (an increase in advertising expenditure brings about higher sales). Using
suitable notations and procedures, it is our aim to further the understanding
of the matter and to present new results.

1.1 Literature review

The various sources of literature pertaining to the subject are detailed below.
Prior to introducing the model as one comprising a combination of conceptual
notions, a review is given on the primary resources utilized.
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1.1.1 The newsvendor problem

The literature on NP, which has a long and interesting history, was instigated
in 1888 by Edgeworth (1888), who developed the concept to tackle a bank
cash-flow problem. As previously mentioned, NP is based upon the notion of
discerning the quantity of a particular item to be ordered but with no in-
sight into future circumstances. The objective of this stochastic single-period
problem is to determine said quantity for a fixed period of time maximizing
expected total profit. Porteus (1990) and Khouja (1999) present useful reviews
for conducting a basic static case study and its generalizations. Examples of
NP serving to illustrate the general principles of mathematical and stochas-
tic programming are provided by Dupačová (1994), Ruszczynski and Shapiro
(2003) and Shapiro et al (2009). The simple structure of NP, makes it an ideal
tool for examining the interaction of operational and marketing issues and the
resultant impact on a decision-making process (Petruzzi and Dada 1999).

1.1.2 The newsvendor problem with pricing

The first mathematical formulation for price effects associated with inventory
control problems was presented by Whitin (1955). Prior to this, economic
theoreticians had disregarded a number of important aspects. Hence, Whitin
decided to focus on such overlooked aspects with special emphasis on the
demand. He adapted the NP model, modifying it so the unit selling price be-
came a decision variable and demand linearly depended on the selling price
per unit under conditions of a retailer knowing the probability distribution of
demand. Consequently, the retailer was aware of the amount required to meet
the demand at any given price. Whitin established a sequential method for
first determining the optimal quantity for the order as a function of the selling
price, followed by the relevant optimal price. Mills (1959) extended the NPP
model by specifying the mean demand as a function of the selling price. He re-
fined Whitin’s methodology by modeling uncertainty in the additive form, the
demand being specified as D(p, ξ) = d(p)+ξ where d(p) is a decreasing demand
function of price p, and ξ is a random variable defined in a certain domain.
Specifically, Mills established that an optimal price under uncertain demand is
never greater than the optimal price set by equivalent deterministic monopoly
models; this is known as the riskless price. Both Whitin and Mills considered
the single period form of the model, i.e., a static problem, where only a sin-
gle price and the quantity to be ordered are the decision variables. Detailed
comparison between static and dynamic cases is provided by Karlin and Carr
(1962). To both, they applied the concept of additive demand, as well as a case
of multiplicative demand; the latter was defined as D(p, ξ) = d(p)ξ. Regarding
the dynamic model (the multi-period problem), they employed infinite-period
approximation to the n-period model. However, they did so assuming that it
was necessary to determine a single constant price at the commencement of the
planning horizon. They established that an optimal price under multiplicative
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uncertain demand is never less than the riskless price, which is an outcome
opposing that arrived at by Mills for additive uncertainty.

For overviews of NPP and other recent results, see Petruzzi and Dada
(1999) and Yao et al (2006). See Monahan et al (2002) for its dynamic case.

1.1.3 Advertising

Advertising policy is a crucial aspect of marketing. The key questions are the
following: What is the effect for the retailer? How much should be spent on ad-
vertising? How often? What marketing channel should be used? The authors
Jones (1995) and Bronnenberg (1998) published two possible approaches to
expenditure frequency - a constant advertising stream (extremely expensive)
or pulses of advertising conducted at irregular intervals (the preferred option);
see also Khouja and Robbins (2003). A major issue is that concerning the ac-
tual effectiveness of advertising. Advertising response functions are typically
assumed to adhere to the following: (1) a concave-downward function (usu-
ally an advertising response function without a threshold); (2) an S-shaped
logistic function (an advertising response function with a threshold); for ref-
erence purposes see Bass (1969), Simon and Arndt (1980), Bagozzi (1986),
Jones (1995) and Lee and Hsu (2011). In general, the responsiveness of sales
to advertising may start to decline beyond a level of spending on advertising
(Batra et al 1995). This phenomenon of diminishing returns is better repre-
sented by a downward-sloping curve on a graph in which the advertising levels
relate to the sales results. Alternatively, some modelers prefer to assume that
the relationship is actually S-shaped. Initially, when advertising budgets are
low, sales exhibit no response to advertising at all. It is supposed that it takes
some time for advertising to take effect as repeated exposure is required. Af-
terwards, a point of increasing returns is discerned when sales really begin
to respond to further advertising once the advertising budget exceeds a mini-
mum, critical-level threshold. Eventually, the curve begins to slope downwards
again, when the phase of diminishing returns reappears; see also Hanssens and
Parsons (1993) for further analysis of the S-shaped function. Publications by
Phillips (2005), Mooradian et al (2011) and Kotler and Armstrong (2013) pro-
vide a comprehensive overview on such themes and proceed to detail recent
principles of marketing.

1.1.4 The newsvendor problem with advertising

A single period inventory problem with advertising was given by Gerchak
and Parlar (1987). Furthermore, the interface between decision-making on
marketing and manufacturing has been studied by many researchers, examples
being Eliashberg and Steinberg (1993), Celikbas et al (1999), Malhotra and
Sharma (2002), Hausman et al (2002), Freeland (1980) and Leitch (1974), to
whom reference is made in this paper.

The effect exhibited by advertising on sales represents an important aspect
of demand-based problems. When a retailer/newsvendor faces demands of the
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stochastic advertising-sensitive type, he is forced to make decisions concern-
ing advertising and inventory prior to the demand being met (Wang 2011).
Khouja and Robbins (2003) and Wang (2011) assume that the mean demand
is strictly increasing and strictly concave in advertising expenditure. Khouja
and Robbins (2003) provide an extensive review of related literature and the
advertising problem, attempting to solve the problem for uniform, exponential
and normal demand distributions. Wang (2008) investigated circumstances un-
der which advertising leads to increased sales under additive demand. Later,
Wang (2009) extended the problem to cover the situation pertaining to a per-
ishable product subject to being ordered under emergency conditions, first
for a multiplicative model, then going on to investigate the general demand
function in Wang (2011). Finally, Wang and Hu (2011) applied the results to
coordinating a supply chain with advertising, as well as setting a price for the
manufacturer.

1.2 Outline of the paper

Section 2 commences with outlining the impetus for the study. Afterwards,
the advertising response function is introduced, the demand function and the
related random impact are stated and the underlying NPA is described. Sec-
tion 3 describes the objective function being rewritten to suit the multiplica-
tive demand model. Then, optimal stocking quantity, which corresponds to
a standard NP result, is analyzed and crucial assumptions and theorems are
provided. A comparison is made between the optimal advertising amount ob-
tained and the result of the riskless problem. Section 4 introduces the NPA
model in the additive form, and summarizes the general modeling differences
and advertising results as related to the multiplicative demand case. Addi-
tionally, numerical results are provided for the uniform distribution of the
random variable in the multiplicative case for the NPA model as well as nu-
merical figures for the equivalent NP (section 5). Finally, the paper concludes
with section 6, which also features managerial interpretation. Remarks on ap-
plicability of results and further research possibilities follow.

2 Advertising response function and the newsvendor problem

Modern goods and service production markets are characterized by increased
competition. Globalization and focus on increased global trade drives this de-
velopment. One obvious consequence is increased demand uncertainty. At the
same time, marketing strategies (locally and globally) are a necessity in order
to sell almost any product. This combination - increased demand uncertainty
and marketing necessity - indicates that formal modeling spawning both di-
mensions holds managerial importance. A simple newsvendor model platform
may prove to be a relevant and principal ”laboratory” for increased under-
standing on how management science may be applied in order to solve these
problems.
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One of the keys to understanding the marketing problems lies in the re-
lation between demand and advertising response function. Therefore, we first
focus on the response function. Then, the basic concepts of the demand func-
tion follow together with the definition of its related uncertainty. Finally, we
combine the above mentioned aspects from perspective of a company (e.g. a
retailer) sourcing a product with short life cycle to stock using the framework
of the renowned newsvendor model, which will serve as a suitable tool for il-
lustrating how marketing aspects may affect decision making in demand-based
(operational-marketing) problems.

2.1 Advertising response function

The response function describes the sales effect of additional amounts of adver-
tising, even though it sometimes illustrates the amount of advertising needed
to trigger buying (Jones 1995). We further use two (general) functions that
are often used: a) the concave response function, which is presented in subsec-
tion 2.1.1 (Jones 1995; Khouja and Robbins 2003); b) the S-shaped response
function, which is presented in subsection 2.1.2 (Jones 1995).

Although the S-shaped function is very important from the marketing lit-
erature perspective, it has not yet been considered by researchers dealing with
operational research in the discussed context. According to the marketing liter-
ature trying to approximate the advertising situations, we define the S-shaped
function as a bounded real function defined for all nonnegative input values
with a positive derivative at each point, which is first convex and then con-
cave. It means, in the beginning, when advertising budgets are low, sales do
not respond significantly to advertising. It supposedly takes time for adver-
tising wear-in. We see the point of increasing returns, as sales really begin
to respond to increased advertising, as the advertising budget exceeds some
minimum critical-level threshold. Finally, the curve begins to slope downward
again, as once again the diminishing-returns phase appears, see Bass (1969)
and Bagozzi (1986).

Let the response function d(a) be continuous, nonnegative, twice-differenti-
able and increasing on its domain [0, amax] in the advertising expenditure a
(Khouja 1999; Lee and Hsu 2011). Moreover, since d(0) > 0, d(a) is positive.

To capture a real situation/dependency between the advertising expen-
diture and demand, we further present three particular functions, which we
provide for their illustrative-suitable behaviour.

2.1.1 Suitable examples of the concave response function

Advertising function without threshold in demand. Here, we consider an ad-
vertising function with diminishing returns, which is given by

d(a) = d0 + ωaα, (1)
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where α ∈ [0, 1] and ω > 0 are empirically determined constants indicating
the effectiveness of advertising and d0 > 0 represents the initial demand (for
a = 0). If ω = 0, then the demand is independent of advertising expenditure.
The larger the value of α, the more effective advertising is. For more details
on the function and its analysis, see Khouja and Robbins (2003).

Advertising function with threshold in demand. Here, the function d(a) has
an asymptotic behavior (an upper bound in demand). Based on the empirical
study by Dubé et al (2005), we suggest the following function as a suitable
candidate:

d(a) = d0 + θ

[
1− 1

(a+ 1)δ

]
(2)

where θ and δ are positive real numbers and d0 is an initial demand. This
function has a horizontal asymptote defined by demand value θ+d0. The choice
of δ decides the speed towards the asymptote. A small value of δ indicates
a slow speed while a large value of δ indicates a fast speed.

2.1.2 S-shaped response function example

A logistic function/curve represents a typical ”S” shape graph. According to
theoretical definitions of the S-shaped response function (Bass 1969; Simon and
Arndt 1980; Bagozzi 1986; Jones 1995; Lee and Hsu 2011) and according to
the experimental marketing research results (e.g. Dubé et al 2005), we suggest

the following function:

d(a) = d0 +
θ

1 + ( θ−θlθl
)e−γa

, (3)

where θ specifies an upper asymp-
tote, γ is a coefficient of growth, θl
defines a lower asymptote (see, e.g.,
Fox and Weisberg 2010 for a math-
ematical description/analysis of the
function). We also refer to other S-
shaped functions as the Gompertz
function.

Figure 1 illustrates three partic-
ular examples of the above men-
tioned functions. Section 3.2.1 pro-
vides numerical examples involving
these functions.

Fig. 1: Advertising response func-
tions d(a).
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2.2 Demand function and randomness

However, from the managerial perspective, we deal with problems where the
decision-maker does not know the real demand. Therefore, we further model
the demand as a (response) function, which can be affected by the advertising
expenditure and which somehow depends on a random element.

Inspired by many papers on the NPP (Mills 1959; Karlin and Carr 1962;
Petruzzi and Dada 1999; Yao et al 2006) and some on the NPA (Khouja 1999;
Wang 2008, 2011), we further assume that advertising-related randomness is
independent of the demand, which helps us avoid complexities.

Let us denote the demand function D(a, ξa, ξm) and let it satisfy

D(a, ξa, ξm) = d(a)ξm + ξa, (4)

where ξa, ξm are independent continuous random variables. In the study, we
will further deal with two special cases of demand function D(a, ξa, ξm): a)
the multiplicative demand case (section 3) and b) the additive demand case
(section 4). In order to define the multiplicative demand case, let P(ξa = 0) = 1
and let the random variable ξm be defined on the domain [Am, Bm] and satisfy
E[ξm] = 1. In the additive demand case, let P (ξm = 1) = 1 and let the random
variable ξa be defined on the domain [Aa, Ba] and satisfy E[ξa] = 0. Then, for
both cases, the expectation of D is specified as: E[D(a, ξa, ξm)] = d(a).

In comparison with the NPP references where the additive form of the
randomness is commonly used for the linear demand function while the mul-
tiplicative form for the hyperbolic demand function, we examine the effects of
the additive as well as multiplicative form on the optimal advertising strategy
for the concave and the S-shaped functions, which also corresponds to ideas
in the NPP study (Yao et al 2006).

Before we model and examine the multiplicative demand form in section 3
and the the additive demand form in section 4, we introduce the NPA formu-
lation that provides us with a suitable aid for the study.

2.3 The newsvendor problem with advertising

Let us assume the following situation: First, we decide about an amount a to
advertise for a product to be sold and we simultaneously buy and stock x units
of the product for a unit cost c. Then, the selling period begins. If demand D
is greater than x, all stocked units are sold for revenue px, where p is a unit
price, p > c. In this case, we consider a loss given by a unit shortage penalty
cost s for all shortages, D − x. Otherwise, if demand D is less or equal to
x, the revenue is only pD and leftovers, x − D, are salvaged through a unit
salvage value v, v < c. Then, the objective (profit) function is denoted by
π(a, x, ξm, ξa) being defined as follows:

π(a, x, ξa, ξm) =

{
px− cx− s[D(a, ξa, ξm)− x]− a, x < D,

pD(a, ξa, ξm)− cx+ v[x−D(a, ξa, ξm)]− a, x ≥ D.
(5)
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The decision variables are the order quantity denoted by x and the amount
spent on the advertising denoted by a, while the demand D(a, ξa, ξm), which
depends on the advertising expenditure a and is affected by the random ele-
ments ξa, ξm, is not completely known when the decisions are made.

3 Multiplicative demand model

Let the demand function D(a, ξa, ξm) be defined in the multiplicative form
(see subsection 2.2) and let Fm(·) denote a cumulative distribution function
(cdf) and Fm(·) be a probability density function (pdf) of ξm. In order to
assure that demand is positive, we require that Am > 0. Then, the demand is
in the multiplicative form

DM (a, ξm) = d(a)ξm, (6)

see Karlin and Carr (1962) for similar ideas in the NPP. The objective function
(5) can be rewritten by substituting (6) and utilizing the ’stocking factor’
defined as

z =
x

d(a)
, (7)

where z ≥ 0 (note that if x = 0 and since d(a) > 0, then z = 0). A similar
transformation of the objective (variable transformation, respectively) has al-
ready been used to simplify the calculations in the NPP (Petruzzi and Dada
1999; Zhan and Shen 2005). It provides an alternative interpretation of the
stocking decision: if the choice of z is greater than the realized value of ran-
dom variable ξm, then leftovers occur, otherwise shortages occur (Petruzzi and
Dada 1999). An important managerial interpretation for z demonstrates that,
although z is defined differently for each of the two mentioned demand cases
(see section 4 for the additive case), its meaning is consistent for both: z rep-
resents a stocking factor that Petruzzi and Dada (1999) defined as a surrogate
for safety factor by Silver and Peterson (1985).

Then, we obtain:

π(a, z, ξm) =

{
pzd(a)− czd(a)− sd(a)[ξm − z]− a, for z < ξm,

pξmd(a)− czd(a) + vd(a)[z − ξm]− a, for z ≥ ξm.

For better understanding we unify notation for both multiplicative and addi-
tive cases and the same symbols π are also used for both objective functions
involving either x or z variables.

The objective is to maximize the expected profit by choosing a and z. How-
ever, the optimal solution is not necessarily an interior solution, in particular,
the value of z can be on the boundary, Am or Bm (Zhan and Shen 2005).
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We can express the expected profit Π(a, z) as:

Π(a, z) = E[π(a, z, ξm)] = d(a)

∫ z

Am

[pt+ v(z − t)]Fm(t)dt

+d(a)

∫ Bm

z

[pz − s(t− z)]Fm(t)dt− czd(a)− a (8)

Defining the riskless profit (Mills 1959; Petruzzi and Dada 1999), which would
occur in the absence of uncertainty, as

Ψ(a) = (p− c)d(a)− a, (9)

and the so-called expected loss per unit as

l(z) = (c− v)Λ(z) + (p+ s− c)Θ(z), (10)

where d(a)Λ(z) denotes expected leftovers and d(a)Θ(z) expected shortages,
the expected profit given by (8) can be rewritten as

Π(a, z) = Ψ(a)− L(a, z) = d(a)[p− c− l(z)]− a. (11)

Note that L(a, z) = d(a)l(z) is the expected loss that occurs as a result of the
presence of uncertainty (Petruzzi and Dada 1999; Silver and Peterson 1985)
and p−c−l(z) denotes the so-called per-unit expected benefit, i.e., margin minus
expected loss. If z is chosen too high, in (11) or in (10), respectively, an overage
cost (c−v) appraises each of the d(a)Λ(z) expected leftovers, and, if z is chosen
too low, an underage cost (p+ s− c) appraises each of the d(a)Θ(z) expected
shortages. The equivalence of expressions (8) and (11) can be obtained by a
sequence of straightforward substitutions.

Remark 1 The transformation from x to z presents an advantage of determin-
ing optimal values a∗ and x∗ that maximize the expected profit, using the
following steps:

1. We firstly determine an optimal stocking factor z∗ using input parameters
(subsection 3.1). Because of the form of (11) and (8) we can obtain z∗

independently on optimal a value.
2. Using a suitable function d(a), we can express an optimal advertising a∗

and we determine an optimal order quantity x∗ such that x∗ = z∗d(a∗)
(subsection 3.2).

3.1 Optimal stocking quantity

To maximize Π(a, z) over two variables, we follow two steps described in Re-
mark 1. Solving the first order condition (with respect to z), we get an expres-
sion for optimal z:

Fm(z∗) =
p+ s− c
p+ s− v

.
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It is comparatively easy to show that Π(a, z) is concave in z on [0,∞):
∂2Π(a,z)
∂z2 = (v−p−s)Fm(z)d(a), where v−p−s < 0. Moreover, assuming that

Fm is invertible, we can express the optimal and unique z∗ as

z∗ = F−1m

(
p+ s− c
p+ s− v

)
, (12)

which corresponds to the standard NP result (Whitin 1955; Porteus 1990).

3.2 Optimal advertising expenditure

Substituting (12) into (11), we get the following expression:

Π(a, z∗) = d(a)[p− c− l(z∗)]− a, (13)

where l(z) is given by (10). Notice in (13) that, if p−c−l(z∗) < 0, the expected
profit Π(a, z∗) is, under our assumptions about d(a) in subsection 2.2, negative
and strictly decreasing in a, which does not capture any real situation (Wang
2011), similarly if p− c− l(z∗) = 0. So, we get the following assumption.

Assumption 1 The per-unit expected benefit must be positive, i.e., p − c −
l(z∗) > 0.

This assumption simply means that the expected (average) profit per unit is
greater than zero (i.e., price p minus cost c minus expected loss per unit l(z∗)
is greater than zero). Otherwise, if we expect a loss, the only good strategy
is to ”do nothing” (x = 0, a = 0 and so z = 0), see section 5 for illustrative
examples. As Assumption 1 depends on the expected loss function l(z), it also
depends on the distribution Fm. The more shortages or leftovers we expect
(caused, for example, by greater variance of the distribution), the greater is
the expected loss l(z). Similarly to other parameters from the expected loss
function given by (10), e.g., as s increases, so does l(z). Since the assumption is
crucial for further analysis, we provide more detailed insights for the uniform
distribution in subsection 5.1.

Let us assume the expected profit expression given by (13). Solving the first
order condition of Π(a, z∗) with respect to a, we get the following remark.

Remark 2 The optimal advertising expenditure a∗ must satisfy the (necessary)
optimality condition, which is given by:

dd(a)

da
=

1

p− c− l(z∗)
. (14)

3.2.1 Optima for advertising response function examples

Note that the following expressions for optimal advertising expenditure are
true for the multiplicative demand case, while, for the additive demand case,
we must substitute l(z∗) ≡ 0 to obtain the results, see/compare (14) and (16).

The following examples/expressions are computed for advertising response
functions given by (1) and (2), that are concave functions, and (3), that is
S-shaped function.
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1. Advertising function without threshold in demand. Solving the first order
condition for Π(a, z∗) with respect to a, we get

a∗ = 1−α
√
ωα [p− c− l(z∗)].

2. Advertising function with threshold in demand. Similarly, we get here

a∗ = δ+1
√
θδ [p− c− l(z∗)]− 1.

3. S-shaped response function example. Here, the optimal advertising for the
S-shaped function is expressed by:

a∗ = −
ln

({
1− 1

2 [p−c−l(z
∗)]θγ+ 1

2

√
−4[p−c−l(z∗)]θγ+[p−c−l(z∗)]2θ2γ2

}
θl

−θ+θl

)
γ

.

3.2.2 Monotonocity

Let us take the second derivative of the expected profit given by (13). We get

d2Π(a, z∗)

da2
=

d2d(a)

da2
[(p− c− l(z∗)]. (15)

Then, due to Assumption 1, the following lemma is obtained from (15).

Lemma 1 The intervals of concavity and convexity of the expected profit
Π(a, z∗) with respect to a are identical with the intervals of concavity and
convexity of the response function d(a).

The following assumption, together with Assumption 1, will further help us to
guarantee solution/optimality uniqueness for selected types of demand func-
tions (i.e. for the concave and the S-shaped function). The assumption results
from expression (11), or (14) respectively.

Assumption 2 The demand function d(a) satisfies that lim∆a→0+
d(∆a)−d(0)

∆a >
1

p−c−l(z∗) and lim∆a→0+
d(amax)−d(amax−∆a)

∆a < 1
p−c−l(z∗) .

Remark 3 In such case, where the function d(a) is defined on a higher range

than [a, amax], the conditions can be rewritten to: dd(0)
da > 1

p−c−l(z∗) and
dd(amax)

da < 1
p−c−l(z∗) .
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3.2.3 Concave response function

Suppose that the demand/response function d(a) is strictly concave in do-
main of a (Khouja and Robbins 2003), see Figure 1. Then, we can deduce the
following theorem.

Theorem 1 If the response function d(a) is strictly concave, then, under as-
sumptions 1 and 2, the expected profit Π(a, z∗) is strictly concave in a and
so the globally optimal advertising expenditure a∗ is unique and is given by
solution of (14) with respect to decision variable a.

Proof Since the response function d(a) is considered to be strictly concave in
its domain then under Assumption 1 and Lemma 1, we obtain that Π(a, z∗) is
also strictly concave in a, see (15). Moreover, under Assumption 2, we know the
expected profit Π(a, z∗) to be increasing at the initial point and decreasing
at the end point. Then, the critical point determined from the optimality
condition (14) is unique and is the optimal advertising amount a∗ (see section
5 for illustrative examples).

3.2.4 S-shaped response function

Theorem 2 If the response function d(a) is S-shaped, then, under assump-
tions 1 and 2, the expected profit Π(a, z∗) is strictly quasi-concave in a and so
the globally optimal advertising expenditure is unique and is given by (14).

Proof Since the response function is supposed to be S-shaped, under Assump-
tion 1, we know that the expected profit function Π(a, z∗) is also first convex
and then concave in a. Moreover, using Assumption 2, the expected profit
Π(a, z∗) increases at the initial point and so it will increase until it reaches
its maximum. In other words, Π(a, z∗) is strictly quasi-concave in a. Then,
from the optimality condition (14), we can get one critical point a∗ presenting
the optimal advertising amount, which always lies in the concave range (see
section 5 where we provide one illustrative and one counter example).

In order to solve the original problem of maximizing the expected value of
the objective function given by (5) with respect to decision variable x, a final
step is to determine an optimal order quantity x∗ from (7). The pair [a∗, x∗]
then presents the optimal solution of the original NPA given by (5) for the
multiplicative demand case defined by (6) for the expected objective function
case, see (8) and (11).

3.2.5 Comparison with riskless problem

Consider the advertising decision without demand uncertainty and note that
the profit of such a deterministic problem is called riskless profit, Ψ(a), given
by (9). Solving the first order condition of Ψ(a), we get the following necessary
optimality condition:
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dd(a)

da
=

1

p− c
, (16)

which must be satisfied by the optimal riskless advertising a∗Ψ .

Remark 4 If the response function d(a) is either concave or S-shaped, then,
under Assumption 2, the necessary optimal condition (16) is also sufficient
for the optimal riskless advertising a∗Ψ as we can adequately apply (15) and
Lemma 1.

Based on the optimality condition (16), we can prove the following theorem
under assumptions 1 and 2 considering concave and S-shaped functions.

Theorem 3 For the multiplicative demand model, the optimal advertising a∗

is always less than or equal to the optimal riskless advertising a∗Ψ .

Proof Using expressions (14) and (16), we know that 1
p−c ≤

1
p−c−l(z∗) ⇒

dd(a∗Ψ )
da ≤ dd(a∗)

da . For both functions, concave and S-shaped, the optimal ad-
vertising a∗, if it exists and is greater than zero, belongs to the concave part

of d(a). Then, for the concave part of d(a), we know that dd(a)
da is decreasing

and so if
dd(a∗Ψ )

da ≤ dd(a∗)
da then a∗Ψ ≥ a∗. See section 5 for illustrative examples.

Remark 5 Recall that the optimal price for multiplicative uncertain demand
is not less than the riskless price in the NPP (Petruzzi and Dada 1999).

Even though there are similar structures of the the expected profit functions,
which is Π(p, z) = Ψ(p)−L(z, p) in the NPP case, while the NPA equivalent is
given by (11), the demand function is defined differently: d(p) is decreasing in
p in the pricing case, but d(a) increases in a in the advertising case. Therefore,
it is not surprising that the observation on the effect of uncertainty given by
Theorem 3 is opposite to its NPP equivalent (see Remark 5).

4 Additive demand model

Let the demand function D(a, ξm, ξa) be defined in the additive form (see
subsection 2.2) and let Fa(·) denote the cdf and Fa(·) the pdf of ξa. Then, the
demand is in the additive form

DA(a, ξa) = d(a) + ξa. (17)

Considering model (5), demand function (17) and defining the stocking factor
z ∈ R as z = x− d(a) (if x = 0 then a = 0 but d(0) > 0), we get:

π(a, z, ξa) =

{
p[d(a) + z]− c[d(a) + z]− s[ξa − z]− a, for z < ξa,

p[d(a) + ξa]− c[d(a) + z] + v[z − ξa]− a, for z ≥ ξa.

The expected profit Π(a, z) can be expressed by:

Π(a, z) = E[π(a, z, ξa)] = Ψ(a)− l(z). (18)
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Riskless profit Ψ(a) and expected loss l(z) are given by (9) and (10) substi-
tuting ξm and Fm with ξa and Fa in expected quantities expressions, where
Λ(z) are expected leftovers and Θ(z) are expected shortages.

From expressions (18) we can see that the decisions on a and z are made
independently, unlike in the multiplicative model (see (11) and (14)). There-
fore, for the additive demand model, the optimal advertising a∗ is always equal
to the optimal riskless advertising a∗Ψ (see (16)), while the optimal stocking
quantity z∗ corresponds to that from the multiplicative case (substituting Fm
with Fa), see (12).

5 Numerical examples and results for multiplicative case

So far, we have discussed conditions for existence of a (non-zero) solution as
well as theorems ensuring its uniqueness; both using the input parameters
p, c, s, v, parameters of d(a) and, especially, distribution function Fm and
Fa, respectively. In order to exemplify managerial information on the optimal
decisions, we further provide some insights using the uniform distribution of
the random variable.

5.1 Uniform distribution

Let the random variable ξm be uniformly distributed, i.e., ξm ∼ U(Am, Bm).

Then, from (12), we get z∗ = Am+ (p+s−c)(Bm−Am)
p+s−v . Substituting z∗ into (10)

we get l(z∗) = (z∗−Am) c−v2 = Bm−Am
2 (c−v) p+s−cp+s−v . Using the obtained l(z∗),

condition p− c− l(z∗) > 0 from Assumption 1 converts to

p− c− Bm −Am
2

(c− v)
p+ s− c
p+ s− v

> 0. (19)

Example 1 Let us consider a product with p = 15, c = 10, v = 8 and s = 2.
Let d0 = 100, amax = 150 and [A1, B1] = [0.5, 1.5]. Then z∗

.
= 1.278 ⇒

l(z∗)
.
= 0.778 ⇒ p − c − l(z∗) .

= 4.222 and so Assumption 1 is satisfied (or
condition (19), alternatively).

In this section, we further consider the uniform distribution with the pa-
rameters from Example 1.

5.1.1 Impact of demand function

To meet Assumption 2, we choose the following parameters for the response
functions given by (1)-(3) in Table 1, where we also present one example for
the S-shaped function, for which Assumption 2 is not met (and so Π(a, z∗) is
not quasi-concave). Note that 1

p−c−l(z∗)
.
= 0.237 and note that for functions

(1)-(3) we can use conditions (from Assumption 2) given by Remark 3.



16 Dušan Hrabec et al.

Table 1: Numerical examples of response functions given by (1)-(3).

Type Indic. Parameters
dd(0)
da

Ass. 2
dd(150)

da
Ass. 2

(1) d1(a) α = 3
10

ω = 20 ∞ X 0.180 X
(2) d2(a) θ = 100 δ = 1

2
50 X 0.027 X

(3) d3(a) θ = 100 θl = 1
2

γ = 1
2

0.249 X 0.165 X
(3) d4(a) θ = 100 θl = 1

2
γ = 1

10
0.050 × 0.001 X

See Figure 2a where we illustrate these four concrete response functions
and see Figure 2b for their related expected profit functions. We can see that
Assumption 2 is violated for d4(a) (especially, the left hand derivative, see
also Table 1). This simply means that the advertising costs are higher than the
revenues during the initial period. Hence, advertising is not effective/profitable
here. Then, even if the optimal advertising is unique for all the examples
d1(a) − d4(a), the solution of the first order condition (14) determines two
critical points for example d4(a) and so Theorem 2 does not hold since the
expected profit function is not quasi-concave.

(a) Response function examples d1(a) - d4(a). (b) Expected profit functions Π(a, z∗).

Fig. 2: Examples of response functions and related expected profit functions.

In Table 2, we provide numerical results of optimal quantities for response
function examples d1(a) - d4(a). The expected profits Π(a∗, x∗) and the re-
lated quantities can be compared for the multiplicative and riskless demand
cases. Moreover, the optimal order quantities x∗ as well as expected profits can
be compared with the related values of the standard NP presented by Khouja
(1999). For simplicity, the optimal function values and optimal values of orig-
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inal decision variables are denoted as a∗, d(a∗), x∗, Π(a∗, v∗) for considered
models in Table 2.

Table 2: Numerical results of Example 1 for the uniform distribution for two
cases: multiplicative and riskless; numerical results of the equivalent NP

Problem Multiplicative NPA Riskless NPA NP

d1(a) d2(a) d3(a) d4(a) d1(a) d2(a) d3(a) d4(a) -

a∗ 101.2 34.5 21.3 89.9 128.9 38.7 21.6 91.6 -
d(a∗) 179.9 183.2 199.5 197.6 185.9 184.1 199.6 198.0 -
x∗ 229.9 234.1 254.9 252.5 187.2 185.4 200.9 199.2 127.8
Π(a∗, x∗) 658.4 739.1 821.2 744.3 799.9 881.2 975.6 897.4 444.4

In Figure 3a, we illustrate how parameter γ of the S-shaped function affects
the Assumption 2. If the left hand derivative of the response function is less
than 1/[p− c− l(z∗)], then the Assumption 2 is violated (left ”negative” part
of d4(a) in Figure 3a). In other words, for small γ’s is the advertising not
effective in the initial period, i.e. the expected profit is negative (Figure 2b).

(a) Assumption 2: illustration of dependency
on the S-shaped function parameter γ.

(b) Assumption 1: expected unit loss p − c −
l(z∗), see (19), as function of the cost c.

Fig. 3: Visualizations of dependencies between selected parameters and as-
sumptions 1 and 2.

5.1.2 Impact of price and cost changes

Impact on Assumption 1. Assumption 1 crucially depends on the margin p−c,
see (19). The higher the margin the more likely the assumption will be fulfilled.
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Therefore, we provide an insight into the impact of the margin change: in
Figure 3b, we illustrate the dependency by varying c (by means of (19)).

Impact on optimal advertising. Let us take the first derivative w.r.t. a of the
expression given by (13) and let us substitute z∗ (and l(z∗) respectively) for
the uniform distribution. Then, taking derivative w.r.t. p, we get

∂(∂Π(a,z∗)
∂a )

∂p
=
∂d(a)

∂a

[
1− Bm −Am

2

(c− v)2

(p+ s− v)2

]
> 0.

Therefore, Π(a, z∗) is strictly supermodular in (a, p) (see Wang (2008)) and
the optimal advertising is strictly increasing in selling price p. With the same
procedure but w.r.t. c, we get:

∂(∂Π(a,z∗)
∂a )

∂c
= d(a)

[
Bm −Am

2

2c− p− s− v
p+ s− v

− 1

]
< 0,

which means that Π(a, z∗) is strictly submodular in (a, c) and the optimal
advertising is strictly decreasing in buying cost c.

Therefore, any increase in the unit profit margin, i.e. range p−c (see Khouja
(1999)), leads to higher optimal advertising expenditure a∗.

5.2 Discussion on the numerical results

The numerical examples presented in Section 5 indicate how: a) various re-
sponse functions as well as given various parameters settings representing dif-
ferent markets or market strategies influence the profit and b) profit margin
changes (denoted p− c) can impact optimal advertising and expected profit.

The marketing strategy is based on the choice of advertising response func-
tion. Although such a choice can lead to increases in profit, the situation can
become more complex. As we see from Figure 2b and Table 2, the shape of cho-
sen response function can significantly modify the shape of original objective
function for the case with no advertising. It may change the optimal solution
location from quantitative point of view, however, the shape of the objective
changes also qualitatively. Therefore, the manager can design his marketing
strategy, and so, the related response function in the way that will influence
his operational decision making needs. Thus, although marketing decisions
are not easy to perform, even in our fundamental NPA-setting, we show that
even discussion of concrete explanatory examples can provide valuable insights
into decision making, i.e. how to determine the optimal decisions and related
quantities.

Furthermore, we have also shown how the manager can evaluate a particu-
lar situation regarding to assumptions 1 and 2. Specifically, when Assumption
1 is violated then the only one optimal strategy is to ’do nothing’. In addition,
when Assumption 2 is not met then it does not necessarily mean that the ad-
vertising strategy cannot lead to increases in sales (especially for the S-shaped
function), however, there is no guarantee that we will find a unique solution
(advertising expenditure) of the first first order condition.
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6 Conclusions and further research

This study demonstrates the possibility of solving an extension of the NP
model in which stocking quantity and advertising expenses are set simulta-
neously and in which the so-called multiplicative and additive demand cases
were utilized; this in order to deal with the level of uncertainty. The major
point of our research was to obtain an appropriate model for demand with an
appealing and intuitive economical interpretation but one that still unified the
existing concepts. Notation was adopted as used in the literature published on
NPP so as to provide a simple structure of the model and its solution.

Employing this notation, an algorithm was devised to solve the problem
that comprised the following steps: 1. Using input parameters, first an optimal
stocking factor z∗ is determined; 2. By applying z∗ and a concrete (suitable)
function d(a), an optimal advertising a∗ can be expressed while z∗ and a∗

determine the optimal order quantity x∗.

As far as we are aware, two appropriate-general demand functions are
identified that stem from literary sources on economics: the concave and the
S-shaped response (demand) functions. For both of these, we not only solved
the relevant problem, but also provided some necessary conditions to guarantee
a solution that is also unique.

An important finding concerns the difference between theorems 3 and the
related observation for the additive case. It was revealed that optimal adver-
tising in the multiplicative demand case never exceeds the optimal advertising
in the equivalent deterministic model while, in the additive case, it is always
equal; i.e., advertising is independent of the uncertainty involved. This dif-
ference can be explained by expressions (11) and (18), which show for the
additive case that the loss function is independent of the advertising amount
a. The mentioned reference sources (Mills 1959; Karlin and Carr 1962; Petruzzi
and Dada 1999) give rise to an appropriate discussion on a similar situation
for NPP where the optimal price under conditions of multiplicative uncertain
demand is never less than the riskless price while the optimal price under
additive uncertain demand is never greater than the optimal riskless price.

We identified some original, definite functions that brought about poten-
tially suitable advertising response functions, which subsequently produced
several results and illustrations of numerical examples for uniform distribu-
tion of the random variable.

From a managerial perspective, most of the findings given herein might
seem somewhat theoretical. However, a problem that simultaneously comprises
advertising and pricing decisions should be of greater practical importance.
Obviously, the same holds for the indication that uncertainty does not neces-
sarily lead to greater advertising expenses. It is our intention to continue to
pursue such a direction in future research, with the expectation of results that
are both theoretically and practically relevant. We believe that our results add
valuable managerial insight into these problems, which seems to be of higher
importance in future volatile and globalised markets. The newsvendor plat-
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form is simple, and does not cover most complex practical situations. Still, the
need for more research in this direction is evident.

As further challenging topics, we have identified: an extension of the ad-
vertising response functions to other S-shaped functions (e.g. Kozusko and
Bourdeau 2015), its generalizing and focus on the variability of the random
factor (Khouja 1999) as decision dependent randomness (Hrabec et al 2012).
Moreover, the advertising decisions can be combined with other operational
decisions such as pricing (Petruzzi and Dada 1999); other aspects as risk anal-
ysis (Jammernegg and Kischka 2007) or any combination of the topics (Dai
and Meng 2015) are also challenging. Cost variability ideas (e.g. Novák and
Popesko 2014) may also lead to new interesting results.

A particularly interesting motivating application problem has recently ap-
peared in waste-to-energy generation. Ferdan et al (2015) discussed the prob-
lem of finding the optimal waste-to-energy plant capacity with respect to the
uncertain future demand for the heat and electricity. We have found that such
a problem in its reduced form can be initially modeled by the NP. Such a
simplification can be very useful for the initial managerial strategical decision
about the principal investment level. This decision can be further precised by
utilization of more complex model. In addition, the usual interplay between
strategical decision about capacity and returns under uncertain demands can
be originally enriched by the impact of advertising. The advertising process is
then related to the information campaign directed towards the waste produc-
ers and the pricing mechanism is linked to a so-called gate fee price for the
waste processed. Hence, in this recent real-world management problem, com-
bining strategical investment policy and operational decisions with respect to
uncertain demands, we plan to use the present research results.
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