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Abstract – Human body movement has been under continuous research for many years due to 

its potential application as a novel biometric system to identify individuals. It is possible to 

utilize various techniques, not only to obtain requested movement data, but also to analyse 

movement data. This paper uses functional data analysis on data obtained from 12 volunteers 

and uses 20 markers from the 3D motion capture system VICON MX T020. The functional 

data analysis was chosen as a suitable tool to obtain more information about an individual’s 

movement because it uses a technique for real-time data, which corresponds to continuous 

time process. The results show that all markers, under any walking speed and condition, 

identify a significantly high percentage of individual pairs. Further, our results discriminate 

between markers, where some markers are highly dependent on walking speed and condition, 

and also on the influence of body part asymmetry. In addition, regular movement patterns in 

almost all participants’ data shows a potential to identify individuals based on gait recognition 

with a 1:1 matching result. 

 

Index Terms – Biometrics, functional data analysis, gait recognition, machine vision, pattern 

recognition. 

 

I. INTRODUCTION 

Human body movement and its analysis (i.e. behaviour of an individual during their bipedal 

locomotion) is an emerging commercially feasible behavioural biometric method [1–4], which 

nowadays is thoroughly studied at many research facilities all over the world. The bipedal 

locomotion is said to be unique for each person, and under stereotypical ideal conditions, 

undergoes only minimum changes throughout life, and it begins at the age of 9 [5]. Human 

body movement is widely used in everyday life in cases of reduced visibility (e.g. in tunnels 

or dark hallways), or by people with sight disabilities, when a passing person is naturally 

identified by their movement. This ability of the brain is now applied as a template for 

developing an automated recognition/identification (biometric) system. Over the years, 

research was focused on many short-term studies that were dedicated to the health sector (fall 

prevention [6], disease prevention [7], treatment evaluation [8] etc.), veterinary care [9], 



  

robotics [10], static and dynamic features and their utilization [11–13], or to security [2]. 

Unfortunately, none of these studies focuses on a longitudinal study of entire human body 

movement of a wide sample of individuals (e.g. 1000+), intended especially for security 

purposes. However, some studies focused on smaller body parts (e.g. legs, arms or feet) and 

smaller samples of individuals (e.g. 15/105/120 people) and they presented valid results.  It is 

possible to study body segments and joints, use the silhouette and/or trajectory analysis, and 

to successfully distinguish amongst a small group of people. However, some researchers 

admit doubts that selected methods and algorithms are inadequate for practical use in human 

recognition [13–17]. Research nowadays is very time-demanding, not only due to the 

development of novel algorithms that answer practical issues with video-based recognition, 

but also because contemporary algorithms must be properly used. In addition to this, in some 

cases it takes great time to acquire 2D & 3D data and studies are lengthy because of pre- and 

post-processing of data, including statistical analyses.  

Commonly used methods for acquiring and studying the variability of the human gait contain 

video-based scanning or 3D motion capture systems [2,4,18–20], and different techniques or 

systems are used [20-21]. The most precise measurements are taken by 3D motion capture 

optoelectronic systems (e.g. VICON, QUALYSIS, BTS SMART), where the measurement 

accuracy is closer than 1 mm for each selected point (i.e. each marker on a selected body part 

– see Fig. 1). These systems usually use four cameras with infrared irradiation, highly 

sensitive sensors, and strobes that are capable of exceptional versatility that capture rapid and 

imperceptible movements. Together with the algorithms used, they are able to calculate entire 

movements (given by body segments labelled with retro-reflexive markers) in 3-dimensions. 

The most time-demanding part of this 3D-based analysis, also presented in this paper, is the 

data pre-processing and post-processing, where the focus is usually on thorough analysis of 

each gait signature [22-23]. This analysis is very important mainly for security applications 

(especially forensic applications), where proper statistical analysis is essential because it may 

be a question of life or death.  

The human gait (i.e. bipedal locomotion) is a periodic movement of the whole body. This 

period of walking is called a double-step, or a gait cycle. The double-step consists of one right 

leg and one left leg step (i.e. from the right leg first heel contact to the second heel contact of 

the same leg). Each double-step is composed of unique walking characteristics, thus forming 

the gait signature. Generally, the average walking speed is approximately one double-step per 

second. However, there is a huge variance between individuals and a person’s length of 

double-step can change even in consecutive cycles. The human body (in our case the set of 

retro-reflexive markers) generates the gait signature (i.e. trajectories) by moving through the 

space (depicted as curves when plotted) that represents the movement of the individual. 

Commonly used statistical methods for studying the variability of the human gait include the 

MANOVA, ANOVA, or ANCOVA, the Kruskal-Wallis test, the Shapiro-Wilk test, the 

Kolmogorov-Smirnov test, the Tuckey HSD test, correlation coefficient calculations, 

Euclidean distances, multivariate data analysis, and also Fourier transformations [25–27]. In 

this paper, a different approach is presented which is based on Functional Data Analysis 

(FDA). In the FDA approach,  each  gait signature of the chosen marker from the dataset is 

considered a single entity [27-28]. These gait signatures are periodic, smooth, and interacting 

functions. Utilizing such analysis is appropriate in order to obtain the proper information that 

leads to greater algorithm stability, mainly for security purposes. This is important not only 



  

because there is a need for great accuracy and reliability of the entire automated system, but it 

is important also to minimize the possibility of mixed-up or same body signatures between 

individuals in the database (caused e.g. by normalization and averaging of gait signatures, 

which occurs even in smaller datasets (e.g. [25]). The commonly used statistical analyses do 

not properly respect the functional character of the gait’s behaviour, and therefore can omit 

some prerequisite data, which is crucial for proper analysis and results.  

The applications involving human body movement analysis are mainly for rehabilitation, 

proper treatment, and monitoring a patient’s state of health [7,9,18,29–31]. These applications 

prove that all of the benefits of motion capture systems positively affect human health and 

life. When considering security applications, the intended utilization of fully automated 

systems (based on video recognition/identification) is to monitor people at airports, banks, 

rows, stadiums, concourses, or near secured buildings (i.e. executive departments, courts 

etc..). Such systems can also be employed with the functional biometric system (e.g. face 

recognition, gait recognition or multi-modal systems), serving as a tool for forensic 

applications and a tool of commercial biometrics for companies [25,32,33]. Nowadays, 

several methods are used for identifying human body movement in order to test the 

practicality of each identification system (e.g. [34,35]) based on video records, whose main 

task is to identify and track human movement, mostly without directly identifying the 

individual. The main issue in order to decide which human locomotion analysis to use in the 

commercial security field and forensics is whether the system or technique is accurate 

enough, reliable, steady, and indisputable under various conditions and time.  

This paper represents an initial study focused on the gait behaviour of volunteers while they 

perform different types of walking and this study will be considered as a prospective 

biometric identification method (used in the security sphere) that uses the FDA for statistical 

analysis. To obtain very accurate data in order for the FDA method to be meaningful, the 3D 

optoelectronic system was utilized by acquiring 2D data in the sagittal plane. The FDA 

method is employed to test common and specific traits of the entire movement of an 

individual in order to prove functionality and aptness of the gait analysis in terms of 

biometrics.  

More precisely, the study deals mainly with the following issues: proving/disproving the 

effects of different walking speeds and conditions on human body movement patterns 

(movement signatures), distinguishing individual pairs based on gait signatures, evaluating 

markers’ quality and also verifying the possibility of individuals’ identification based on the 

gait recognition with a 1:N matching result.  Obtaining answers for these above-mentioned 

issues will show how appropriate the gait analysis is as a tool for identifying/verifying a 

person in terms of biometrics/security analysis. 

 

II. METHODOLOGY 

A. Experimental Settings & Data Acquisition 

All 12 volunteers (3 women and 9 men; see Table 1) took part in laboratory measurement 

experiments on the 3D motion capture optoelectronic system VICON MX T020. Participants 

did not state any problems in their muscular-skeletal system affecting their movement pattern. 



  

The experiment measurements took place in the Gait Lab at the University Hospital Brno, the 

Czech Republic. All participants signed informed consent. 

 

Figure 1. An example of the experiment measurements in the Brno Children Hospital’s Gait Lab, University 

Hospital Brno 

 

In this experiment, the VICON MX T020 system consisted of eight infrared cameras (height 

between 1.4m and 2.5m with frequency at 120 fps) that detected passive retro-reflexive 

markers placed on the human body (see Fig. 1) moving in a calibrated area (a 7m path).  The 

system was calibrated before starting the experiment and recalibrated after each five 

examined volunteers. The double-step was chosen for analysis, as it is one of the most used 

step lengths among researchers [37]. Because the VICON system measured in 3D and was 

utilized due to its accuracy, the sagittal plane was monitored to obtain markers’ precise 

signatures in 2D.  This corresponded to the practical ideal situation when a person walks 

through a tunnel (or corridor), perpendicular to the camera (e.g. at airports, and laboratory 

conditions). The markers were set according to the Plug-In Gait Full-Body model (based on 

the Newington-Helen Hayes model) [38]. For this initial study, the following markers were 

selected (Fig. 1): the wrist bar on the side of the little finger (R(L)WRB), the second 

metatarsal head on the mid-sole side of the equinus break between fore-foot and mid-foot 

(R(L)TOE), the tibial wand on the lower
 
third of the lower leg (R(L)TIB), the lower third 

surface of the thigh (R(L)THI), the acromio-clavicular joint (R(L)SHO), the lateral 

epicondyle (R(L)KNE), the heel (R(L)HEE), the lateral epicondyle approximating elbow joint 

axis (R(L)ELB), the anterior superior iliac spine points (R(L)ASI), and the lateral malleolus 

along the imaginary line passing through the transmalleolar axis (R(L)ANK). 



  

Each volunteer was tested by walking on the path in the calibrated area (at least 10 times) in 

order to obtain data to prove or disprove whether different walking types had different effects 

on human body movement patterns:  

 self-selected natural speed gait (NG), 

 walking with slow music in the background (SM), 

 walking with fast music in the background (FM), 

 walking to the rhythm of a metronome (MM
1
.92, MM.120, MM.144), 

 walking after a 5-minute workout – deep squat (AW). 

Recordings of each single walk were given, smoothed, filtered and exported to a csv software 

file for further pre-processing (selection of double-steps, extraction of erroneous data 

behaviour, time rescale, and for preparation of the whole dataset) in MS Excel. All further 

statistical analyses were performed using the R software, the FDA package. 

 

Table 1. Basic characteristics and biometrics of participants in the study (mean ± standard deviation) 

 Weight [kg] Height [m] Age [yrs.] BMI 

All 71.86± 16.41 1.79 ± 0.07 23.65 ± 2.62 22.35 ± 4.81 

Women 59.57 ± 8.39 1.70 ± 0.02 25.67 ± 4.53 20.60 ± 3.09 

Men 75.96± 12.56 1.82 ± 0.07 22.97 ± 1.57 22.94 ± 3.91 

 

B. Functional Data Analysis 

The Functional Data Analysis is the statistical-analytic technique utilized for this human gait 

behaviour (i.e. the curve created by walking) study [28]. In this approach, real time series data 

is treated as the function implying that all of the information is preserved in the data and not 

removed due to summarizing data to single numbers (mean, standard deviation, etc.), thus 

functional data analysis uses the entire sequence of individual measurements as a single 

functional entity. It is assumed that the gait signature is generated by an underlying function 

where discrete time-ordered measurements of the individual, acquired from special 

camcorders, are snapshots of this function. The responsive comparison between individuals’ 

signatures is calculated by the functional one-way ANOVA (fANOVA) [29, 39].  

The marker signature for the i
th

 individual and for the r
th
 replication arrives as the finite set of 

values 

                         
                       (1) 

where 

                  .                       (1a) 

Here      denotes the  th
 percentage point of the gait cycle for the i

th
 subject,         , in 

the  th
 replication,         ,             denotes the range of values of argument,    

indicates the number of measured values for the  th
 individual in the  th

 replication,         is 

                                                
1 The metronome’s tempo is set by beats per minute (BPM) named as MM (Mälzel’s metronome). Values of 

BPM and MM are equal. 



  

the measurement captured by the VICON MX T020 system, and    is the height 

corresponding to the marker for the  th
 individual measured from the landmark to the floor. 

The height    eliminates the influence of the subject’s height. The marker signature (1) is 

converted to the function     computable for any value   by smoothing. The function     is 

defined as the linear combination of   known basis functions              and the error 

model is expressed as: 

                    
           ,                (2) 

                          , where B-spline basis functions           , are 

used, and the errors         are mutually independent with the zero mean and the unknown 

common constant variance. The number of basis functions   was selected by the stepwise 

variable selection procedure. The smoothing of raw discrete data was carried out using the 

penalized least squares approach. Coefficients      were chosen to minimize the following 

expression 

                        
    

   
      

   
  
                    

            (3) 

whereby                        is the integrated squared second derivative and it penalizes 

the curvature of the estimated functions. The trade-off between how well the measurements fit 

to the data, and the lack of the smoothness was controlled by the smoothing parameter  , 

whose value was chosen by generalized cross-validation. The resulting estimated smooth 

functions, which are further analysed, are:   

   
                  

                            (4) 

                 , where       denote the fitted coefficients defined by the minimizing 

criterion (3).  

 

The effect individuals have on the movement pattern from the marker is investigated by the 

one-way fANOVA. In the one-way fANOVA,   groups of random functions       , and 

        , defined over the bounded interval        , which are independent samples of 

the function              , are analysed. The  -sample testing problem for functional 

data is the test of the equality of the mean functions, i.e. the null hypothesis is          
       ;    , against the alternative that at least two mean functions are not equal. The 

test statistic of the omnibus test is defined as 

     
            

            
 

                            
   

                     
   

 
         

,       (5) 

where      
 
   ,    is the number of the signatures for the  th

 individual,         

            
    is the sample group mean function,                     

   
 
    is the sample 

grand mean function,        and        denote the point variations between-subject and 

within-subject, respectively. For testing   , the maximum value of      over T, denoted by 

    , is compared to the permutation-based critical value.  

 

     values were calculated over selected percentages of the gait cycle 

                      with               ,      , and           
    . 

The critical value of the resulting     -test was carried as follows: the indices    were 



  

permuted        times and for each permutation   the values     
 
   ,     

    , and       

were calculated at     equidistant percentages points of the gait cycle, and the value     
 

 
                 was determined. The null hypothesis is rejected at the significance level 

α, if          , where      is the      -quantile of the empirical distribution of the 

maximal  -statistic values     
      

        
    . When the null hypothesis is rejected, the 

functional Scheffé post hoc test can be used to detect the difference among all pairs of the 

mean functions. The two mean functions are significantly different at the significance level   

if it holds 

                                                   
     

    
   

    (6) 

for a part of  .  

 

III. RESULTS 

A. FDA results 

Table 2. Percentages of significantly different pairs of mean gait signatures; legend: NG – Normal gait, SM – 

Slow Music, FM – Fast Music, AW – After Workout 

 NG SM FM MM.92 MM.120 MM.144 AW Mean 

LANK 81.82 80.30 89.39 87.88 89.39 80.30 78.79 83.98 

LASI 92.42 80.30 92.42 96.97 92.42 96.97 92.42 91.99 

LELB 98.48 98.48 96.97 95.45 92.42 93.94 92.42 95.45 

LHEE 84.85 78.79 77.27 80.30 87.88 90.91 83.33 83.33 

LKNE 90.91 89.39 95.45 93.94 90.91 90.91 86.36 91.12 

LSHO 95.45 96.97 95.45 98.48 96.97 100 95.45 96.97 

LTHI 89.39 93.94 95.45 93.94 96.97 93.94 87.88 93.07 

LTIB 87.88 87.88 87.88 98.48 89.39 89.39 81.82 88.96 

LTOE 93.94 90.91 93.94 92.42 95.45 96.97 90.91 93.51 

LWRB 96.97 92.42 92.42 98.48 89.39 83.33 90.91 91.99 

RANK 83.33 90.91 93.94 87.88 90.91 92.42 80.30 88.53 

RASI 86.36 89.39 92.42 96.97 93.94 90.91 95.45 92.21 

RELB 95.45 98.48 100 100 96.97 95.45 87.88 96.32 

RHEE 83.33 86.36 86.36 77.27 89.39 80.30 77.27 82.90 

RKNE 78.79 80.30 78.79 87.88 87.88 87.88 84.85 83.77 

RSHO 92.42 90.91 93.94 95.45 93.94 92.42 86.36 92.21 

RTHI 95.45 92.42 89.39 93.94 93.94 95.45 90.91 93.07 

RTIB 87.88 84.85 92.42 86.36 93.94 78.79 92.42 88.09 

RTOE 93.94 95.45 89.39 93.94 92.42 95.45 96.97 93.94 

RWRB 93.94 95.45 93.94 98.48 98.48 72.73 89.39 91.77 

Mean 90.15 89.69 91.36 92.72 92.65 89.92 88.10 - 

 

The significant difference (at the level       ) of the mean signatures of all individuals was 

indicated over the whole set    (selected percentages of the gait cycle) for all markers, and for 

all examined walking speeds and conditions. To detect which pairs of mean signatures are 

significantly different (at the level       ), Scheffé’s functional procedure was used. 

Together (12×11)/2 shows that there are 66 possible contrasts of mean signatures analysed for 

all markers and all walking speeds and conditions (Table 2). All the markers under every 

walking condition significantly distinguished a high percentage of individual pairs (more than 

72 %, i.e. at least 48 pairs from 66 were distinguished). On average, the R(L)ELB and LSHO 

were the best markers with the highest number of significantly different pairs of individuals; 



  

conversely, the worst results were from the R(L)HEE, LANK and RKNEE. Discrimination of 

some markers was highly dependant on walking speeds and conditions, e.g. RWRB 

successfully distinguished 98 % of pairs for MM.92 and MM.120, however only 72 % was 

distinguished for MM.144. On average, the highest number of significantly different pairs of 

individuals was detected for MM.92 and MM.120.  

          

Figure 2. Example of functional mean absolute deviations (fMADm) for R(L)ASI (left) and R(L)HEE (right) for 

the walking speed MM.92 

 

The quality of markers was further investigated by the variability of markers’ trajectories. 

This was assessed through the sample functional mean absolute deviation (fMAD) from mean 

trajectories (averaged over all signatures for the given marker and the given walking speed 

and condition): 

                         
                 

   
  
      (7) 

for        Functions fMADm for the R(L)ASI and R(L)HEE for the walking speed MM.92 

are shown in Fig. 2. It is visible that different markers under the same walking speed and 

condition lead to various functions fMADm. The highest values of the fMADm for R(L)ASI 

signatures occurred over 0 % - 30 % of the gait cycle, while for R(L)HEE it was over 50 % - 

90 %  of the gait cycle. Furthermore, the averaged fMADm, i.e. fMADm averaged over all 

percentages of the gait cycle, for R(L)HEE is more than twice as big as R(L)ASI (Table 3). As 

one can see in Table 3, the least variability of markers’ signatures was found for R(L)ASI and 

R(L)KNE with averaged fMADm which is about 3 mm for all walking paces and conditions. 

Deviations of the majority of markers’ signatures varied from 3 to 5 mm. The biggest 

variability of trajectories was detected for R(L)WRB with averaged fMADm varying from 6 

mm to 15.45 mm depending on a walking pace and conditions. The results for NG, SM, FM, 

MM.92, and MM.120 are comparable on the average with the mean of averaged fMADm, 

which is about 4.5 mm.  

 

Table 3. Sample averaged functional mean absolute deviations, averaged over all trajectories and percentages of 

the gait cycle (in mm); legend: NG – Normal gait, SM – Slow Music, FM – Fast Music, AW – After Workout 

  NG SM FM MM.92 MM.120 MM.144 AW Mean 

LANK 4.95 5.05 4.67 5.26 5.04 8.11 5.88 5.57 

LASI 2.63 2.89 2.80 3.09 2.90 3.03 2.52 2.84 

LELB 4.46 4.65 4.40 4.18 5.55 5.83 8.11 5.31 



  

LHEE 5.16 5.91 5.66 6.49 5.94 8.45 7.63 6.46 

LKNE 3.13 3.34 2.94 3.01 3.43 3.89 3.39 3.30 

LSHO 3.36 3.65 3.41 3.10 3.75 3.50 4.64 3.63 

LTHI 3.30 3.47 3.25 3.17 3.69 4.16 3.57 3.52 

LTIB 4.47 4.69 4.68 4.68 4.82 6.22 5.82 5.05 

LTOE 3.27 3.39 3.34 3.51 3.16 4.02 3.83 3.50 

LWRB 8.76 8.54 8.50 8.02 10.26 15.45 12.82 10.34 

RANK 5.29 5.53 4.35 5.12 5.41 8.29 5.96 5.71 

RASI 2.57 2.80 2.41 3.05 3.21 3.10 2.62 2.82 

RELB 5.02 4.98 4.52 5.30 4.76 5.36 8.20 5.45 

RHEE 6.59 6.86 5.48 7.29 6.59 8.84 6.46 6.87 

RKNE 2.89 3.24 2.94 3.03 3.51 3.45 3.37 3.20 

RSHO 3.53 3.37 3.80 3.82 4.69 3.84 4.98 4.00 

RTHI 2.88 3.35 3.03 3.12 3.62 4.60 3.52 3.45 

RTIB 4.72 5.05 3.68 4.39 4.91 6.25 5.11 4.87 

RTOE 3.64 3.42 3.75 3.27 3.61 4.37 3.58 3.66 

RWRB 7.09 6.67 6.77 6.23 6.04 10.36 10.42 7.65 

Mean 4.39 4.54 4.22 4.46 4.74 6.06 5.62 - 

 

Although no individuals stated any problems in their muscular-skeletal system that affects 

their movement pattern, one can see slight differences between results obtained from markers 

on the left and markers on the right side of the body (Tables 2 - 4, Fig. 2).  This points to a 

common issue in living organisms – slight asymmetry of bodies caused by their growth.  Such 

discrepancies probably also relate to irregular human body movement patterns for some 

individuals. An individual was considered having an irregular movement pattern if the 

inequality  

    
                                           (8) 

was satisfied at least for one       in more than five trajectories (Table 4). 

Almost all participants had a regular movement pattern or their irregularity occurred only for 

a few combinations of markers for some walking speeds and conditions. However, for the 

participant M7, irregularity in movement patterns was found in many markers for all walking 

speeds and conditions, except the movement pattern after the workout condition (AW). The 

variability of signatures for individuals can be analysed by means of the sample fMAD i 

(averaged over all signatures for the given individual, marker, walking speed and condition) 

                   
                 

               (9) 

The comparison of the sample fMADi of RHEE signatures for M7 (identified as having 

irregular movement pattern with 7 signatures), M6 and M15 (not showing an irregular 

movement pattern with 4 and 0 signatures, respectively) for walking speed MM.92 is 

demonstrated in Fig. 3. It is visible that the fMADi is very narrow and stable for M15, 

however for M7 the values fluctuate and are markedly higher at some percentages of the gait 

cycle.   

 
Table 4. Individuals with irregular movement patterns (the sample functional absolute deviation is more than 

three-times the sample functional mean absolute deviation at least for one time in more than 5 signatures); 

legend: NG – Normal gait, SM – Slow Music, FM – Fast Music, AW – After Workout 

 NG SM FM MM.92 MM.120 MM.144 AW 



  

LANK F6 M2 - M7 - M7 M11 

LASI M7,M6 - M6 M7 - - - 

LELB M7 - - M7 F6 - - 

LHEE - - - - - - M11 

LKNE - - - M6 - M7 M11 

LSHO M7 M6 - M7 - - - 

LTHI - - - - - - - 

LTIB - - - - - M7 M11 

LTOE - M11 M9 M6 M6 - - 

LWRB M12 M7,M6 F6 M7 M7, F6 M7 - 

RANK M7 M7 M7 M7 M7 M7 - 

RASI M7,M6 M7, F6 M6 M7 M7, M6 M6 - 

RELB M12 M7 M7 M7 M7 M12 - 

RHEE M7 M7 M7 M9, 

M7, F4 

M7,M14 M7,M11 - 

RKNE - F6 - - - M6 - 

RSHO - M7 - M7 M12 - - 

RTHI - - - - M6 M7 - 

RTIB M7 M7,M9 - M7 M7, F6 M7 - 

RTOE - M7,M6 M7,M6 M7,M6 M2 M12 M6,M2 

RWRB M12 F6 - M12 - M7,M12 - 

 

 

Figure 3. Example of functional mean absolute deviations of individual M7, M6, and M15 for RHEE and for 

walking pace MM.92 

 

B. Performance evaluation for identifying individuals in 1:1 matching  

Identifying or verifying an individual has always been a security issue. The aim of such a 

system (e.g. biometric methods) is to faultlessly grant rights to authorized persons and to 

reliably detect and reject people without such rights. The rate of false acceptance (FAR) and 

the rate of false rejection (FRR) are used as the performance metrics for biometric systems. 

The ideal appliance has no failures or errors – 100 % of individuals are recognized, there is no 

FRR or FAR.  The FAR and FRR in biometric authentication systems are set by choosing a 

particular detection threshold. By varying its value, one of the errors decreases, but the other 

error rate automatically increases and therefore the balance must be found. The receiver 

operating characteristics (ROC) curve is used to visualise the trade-off between the FRR and 

the FAR for possible values of the threshold. Youden's index may be used as a criterion for 

selecting the optimum value of the detection threshold. The equal error rate (EER), i.e. the 

point on the ROC curve where the FAR and FRR are equal, can also be used as the 



  

performance metric to compare the accuracy of the systems (the closer to the inception in the 

graph, the smaller the error rate of the system). Hence, the lower the EER, the better the 

method performance.  

The FRR and FAR were evaluated through the inequality (8), where the multiple of the 

fMADm changes. Together, 120 gait signatures for each marker and walking condition were 

tested.  The gait signature was considered different from the chosen pattern if the inequality 

(8) was satisfied at least at one point of the gait cycle. The FRR and FAR corresponding to the 

established thresholds, together with the EER, are presented in Table 5. The results are 

satisfactory and consistent with those obtained from the fANOVA. Again, one can see that 

values of the FRR, FAR and EER fluctuate for various markers and walking conditions. Some 

markers like R(L)ELB and LSHO provide good rates for the majority of walking conditions 

with FRR/FAR/EER less than 1.5/5/5 %. The impact of the walking conditions on gait 

recognition performance was deeply investigated by the ROC curves - see Fig. 4, where 

curves for the RELB and RWRB markers are demonstrated.    

  

Table 5. FRR, FAR and EER values (in percent) obtained by utilizing the FDA method; legend: NG – Normal 

gait, SM – Slow Music, FM – Fast Music, AW – After Workout 

  NG SM FM MM.92 MM.120 MM.144 AW 

LANK 

FRR 

FAR 

0 

16.81 

3.63 

11.95 

1.19 

8.56 

4.56  

11.84 

0.83  

11.29 

6.97  

14.16 

3.99 

16.65 

EER 10.55 9.36 6.54 9.50 8.33 12.03 11.44 

LASI 

FRR 
FAR 

0 
16.66 

3.61  
18.13 

1.76  
10.91 

0 
6.50 

0 
8.95 

1.04  
7.85 

0 
9.59 

EER 9.80 13.25 7.63 3.62 6.58 5.99 6.20 

LELB 

FRR 

FAR 

0.83  

3.65 

1.67  

3.95 

0 

2.84 

0 

3.69 

0.83  

7.08 

1.97  

8.26 

1.04 

12.32 

EER 3.49 3.52 2.12 2.95 5.36 5.47 7.69 

LHEE 

FRR 

FAR 

3.73  

9.25 

3.78  

14.86 

7.15  

11.17 

4.46  

15.90 

1.85 

10.32 

2.38 

11.55 

5.29 

13.57 

EER 7.19 10.39 9.19 11.77 7.40 8.39 10.25 

LKNE 

FRR 

FAR 

0 

11.71 

5.01  

7.62 

0.83  

6.97 

0 

10.27 

1.76 

9.89 

3.84 

6.04 

2.31 

11.41 

EER 8.80 7.01 5.18 5.47 7.17 5.51 8.40 

LSHO 

FRR 

FAR 

1.19 

5,75 

4.47  

3.81 

2.31 

6.19 

0 

4.14 

0 

3.70 

0 

4.18 

0 

11.20 

EER 4.04 4.44 5.54 3.11 3.14 3.21 6.42 

LTHI 

FRR 

FAR 

2.86 

7.19 

0 

6.95 

2.71  

5.66 

2.59 

7.70 

2.08 

6.30 

0.83 

9.57 

3.52 

9.15 
EER 6.33 4.87 5.20 5.69 4.40 6.02 6.53 

LTIB 

FRR 

FAR 

0.83 

11.71 

2.11 

10.32 

1.04 

12.56 

0 

7.64 

0 

11.60 

4.56 

9.79 

3.30 

11.56 

EER 8.36 8.17 8.17 5.40 6.69 7.28 8.73 

LTOE 

FRR 

FAR 

1.04 

7.74 

0 

9.65 

4.08  

6.56 

0.92 

8.35 

1.04  

8.26 

1.04 

7.13 

4.79 

8.25 

EER 6.56 5.72 5.75 5.94 5.89 4.79 7.09 

LWRB 

FRR 

FAR 

0.93  

7.96 

0 

9.899 

1.76 

9.75 

5.60  

4.84 

0 

15.97 

9.45 

7.06 

2.59 

11.28 

EER 6.77 6.65 7.14 5.99 12.46 9.45 9.09 

RANK 

FRR 

FAR 

5.58 

11.35 

1.19 

15.05 

1.67 

6.73 

1.04 

11.83 

4.05 

9.28 

6.38 

8.24 

14.89 

7.67 

EER 9.25 9.05 5.62 8.67 7.20 7.70 12.31 

RASI FRR 1.04 5.42  2.92 0 2.23 0.93 1.97 



  

FAR 17.14 9.51 9.26 8.47 11.39 12.03 8.35 

EER 10.16 8.72 7.29 5.96 8.59 8.15 6.94 

RELB 

FRR 

FAR 

0.93 

9.03 

0 

5.54 

0 

4.35 

1.67  

1.49 

0 

3.22 

0 

7.97 

2.02 

14.89 

EER 6.81 3.53 2.92 1.67 2.85 4.74 9.72 

RHEE 

FRR 

FAR 

6.05 

13.29 

2.89 

13.70 

3.63  

5.38 

7.43 

15.21 

0 

10.38 

4.71 

9.35 

0.93 

20.06 

EER 10.83 8.59 5.15 12.05 6.91 7.87 11.62 

RKNE 

FRR 

FAR 

2.86 

13.46 

0.83 

17.84 

1.04 

18.80 

3.30  

13.04 

1.97 

12.16 

2.71 

10.63 

6.46 

13.22 

EER 9.64 9.72 11.27 8.86 8.94 7.71 11.95 

RSHO 

FRR 

FAR 

1.39 

10.48 

1.39 

10.59 

0.83 

7.33 

1.04  

7.72 

1.67 

6.94 

0 

13.18 

2.95 

13.11 
EER 8.52 6.97 5.71 6.32 5.77 8.49 9.46 

RTHI 

FRR 

FAR 

2.23 

2.58 

1.04 

5.66 

2.23 

11.62 

0 

7.22 

0 

8.69 

3.58 

10.01 

1.19 

9.20 

EER 2.56 5.17 7.51 4.30 6.67 7.74 6.93 

RTIB 

FRR 

FAR 

5.82  

8.88 

1.97 

11.33 

2.02 

 6.51 

0.93  

9.19 

0 

8.20 

4.89 

 18.13 

1.04 

10.25 

EER 7.83 8.08 5.75 6.77 6.33 13.98 7.60 

RTOE 

FRR 

FAR 

2.38  

7.42 

0.92  

4.62 

2.50  

6.67 

0 

4.37 

2.22 

7.53 

0 

7.60 

0 

5.72 

EER 6.36 3.94 5.51 3.34 6.53 4.64 4.06 

RWRB 

FRR 

FAR 

0 

11.69 

0 

7.11 

4.46  

5.51 

0 

3.37 

0 

2.69 

9.18 

12.01 

3.54 

9.60 

EER 7.13 4.50 5.18 2.21 2.22 11.47 7.23 

 

Furthermore, as can be seen in Table 5, the FAR and FRR can be higher than acceptable for 

commercial (i.e. civilian) biometric applications in the case of some body parts (i.e. markers). 

On the other hand, the calculated rates show that this system is highly applicable for forensic 

science (the FAR is about 7.5 % or higher, and the FRR has a very low value) or commercial 

verification systems for security checks in high security buildings (the FRR is 7.5 % or 

higher, and the FAR has a very low value; examples are in Fig. 4). Similarly, the ROC curves 

may help choose proper marker sets (or body parts for video-based recognition) for certain 

biometric applications, depending also on supposed walking speed that will not negatively 

affect results, but will contribute to greater accuracy in the system.  



  

 

Figure 4. The ROC curves together with the EER for the RELB (upper panel) and RWRB (lower panel) markers 

under various walking conditions. 

 

IV. DISCUSSION 

 

The results obtained are statistically meaningful in terms of the methodology used and the 

results show proper identification and distinguishing among individuals. The most important 

markers on the human body are those placed on the biggest joints. Together with other 

selected markers, they form an exact picture of human body movement, and provide an 

excellent insight into the entire kinetics of the body. Furthermore, the approach presented 

incorporates differences in body height to the selected model in order to prevent undesired 

results based on different heights, in contrast to classical statistical analysis used in [12]. 

Therefore, the FDA provides accurate and reliable results needed in security (biometric) 

applications. The performance evaluation of this method shows promise and there are many 

potential applications in the real world e.g. as standard access control (1:1 matching), or for 

individual screening at airports or banks to detect suspects (1:N matching). The FDA is also 

applicable to real world applications where the person monitored is not fitted with markers, 



  

but the whole procedure is based on video recognition/identification via a surveillance system. 

These systems are well worth further performance evaluation.  

The main issue for utilizing this methodology in security applications (e.g. biometrics) is to 

realise how different conditions influence people’s human body movement, i.e. how constant 

or chaotic the walking pattern is under different conditions, and consequently how these 

variations affect distinguishing among individuals. So far, several studies have focused on 

how clothes [42] or shoes [6,43] influence the whole identification process, but there are no 

studies focusing on various walking speeds. As the results show, the biggest difference is 

mainly in the movement of the upper body segments (i.e. shoulders and elbows) due to their 

dynamic movement during walking, while the behaviour of lower body segments (e.g. the 

knees and the ankles) is more constant because there is not much scope for extra movement.  

Selected conditions were chosen to cover the most common types of movement. Using the 

metronome simulated different walking speeds from the slowest walk (slow promenade walk) 

to an extremely fast one, which nearly approached running. The purpose of deep squatting 

was to involve the thigh muscles whose weight affects the walk of the individual. This was 

also confirmed in results’ evaluation. Incorporating music as a background was used to induce 

a relaxing atmosphere (for slow music) or a rousing mood (for fast music). This step was 

taken due to the large number of people listening to music in public, implying the necessity to 

also study such influences. Slight changes in the walking behaviour of volunteers were 

already visible during laboratory measurements as music (beats, respectively) has a relatively 

large influence on the overall gait signature. Also, an interesting result is how similar the fast 

music walking signature is with the normal gait of most of our volunteers. The biggest change 

in walking patterns can be seen in cases of very fast or very slow beats given by the 

metronome. The ideal speed for distinguishing among individuals is given by the walking 

speed equal to MM.92 and MM.120.  

The challenge in further research is to apply this methodology to the dataset of more than 250 

individuals (and ideally more than 1000) to see how appropriate this type of biometrics is, 

because there is a great possibility of people’s information being put into a large database. 

Even though it seems that each individual has their own characteristic gait, variability of gait 

signatures in a large database may not be so high as to prevent correctly distinguishing among 

individuals with reasonable accuracy.  This needs to be further verified in a large dataset by 

the FDA, which can prove its efficacy on this type of data and issues. For the moment, gait 

biometrics recognition/identification is suitable only for small applications with 1:1 matching.  

 

V. CONCLUSION 

 

The presented study is a pilot study focusing on human body movement, aimed at answering 

questions concerning the existence of gait signatures, the possibility to distinguish individual 

pairs or 1:1 individual identification by gait signatures, the affects of walking speed and 

various conditions, and marker positions for human body movement patterns. Therefore, 2D 

data (the sagittal plane only) instead of 3D data were used, which partly simplified the whole 

evaluating process. Furthermore, this situation is closer to the general video analysis where 

the human movement’s record is not ideal, nor 3D, but it is ideal in a direction toward the 

camera. Even though some previous research in the gait recognition field worked with larger 



  

databases (more than 100 participants [40-41]), results and databases mainly focused only on 

specific body parts and not whole bodies. Therefore, this small pilot study of 12 participants 

was undertaken to answer some issues that arose from previous studies.  

Therefore, this paper introduces results from the initial study focussed on the appropriateness 

of human body movement (i.e. bipedal locomotion or gait) analysis, with the main focus on 

proving the affect of different walking speeds and conditions on an individual’s gait signature. 

To study this issue properly, the functional data analysis methodology was employed as most 

suitable.  

As expected, results showed that all markers under any walking speed and condition 

significantly distinguished a high percentage of individual pairs, and also that the quality of 

some markers characterized by the variability of marker signatures is highly dependent on 

walking speed and conditions. As for this, the most suitable walking speed for further 

analyses is the metronome speed MM.92 or MM.120. These walking speeds correspond with 

the average highest number of significantly different pairs of individuals on the one hand, and 

with the appropriate variability of marker signatures on the other hand. The least signature 

variability was found for markers on legs (R(L)ASI and R(L)KNE), with the average 

functional mean absolute deviation about 3 mm compared to the average functional mean 

absolute deviation of all markers of about 4.8 mm. The biggest variability in body movement 

signatures occurs in the case of the wrist marker, where it has, predictably, the highest 

volatility. Also, this methodology supports the issue of a slight asymmetry in the motion and 

growth of some participants, while most volunteers move relatively regularly even with 

asymmetric body proportions.  

The gait analysis performance evaluation of the proposed methodology is promising and there 

is potential for applications in the real world. This method may help properly distinguish and 

identify individuals by their marker signatures. For example, this method can be a useful tool 

for physicians for identifying asymmetry in human locomotion, which can cause many health 

problems and heightens the probability of falls for elderly people. It is necessary to continue 

human body movement research, especially for the forensic science part of applications, 

where more testing is crucially necessary to provide highly accurate and reliable methods that 

will overcome human body movement asymmetries, body disproportions, and changes in 

walking speed under various background conditions or illness-based changes. The possibility 

of utilizing human body movements (gait) as a biometric feature still needs researching. For 

the moment, gait biometrics (recognition and/or identification) is suitable only for small 

applications with 1:1 matching.  
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