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Abstract. In this paper we study fundamental equations of holomorphically projective map-
pings of parabolic Kihler spaces (which are generalized classical, pseudo- and hyperbolic Kihler
spaces) with respect to the smoothness class of metrics. We show that holomorphically projective
mappings preserve the smoothness class of metrics.
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1. INTRODUCTION

First we study the general dependence of holomorphically-projective mappings
of parabolic Kihler manifolds in dependence on the smoothness class of the metric.
We present well known facts, which were proved by M. Shiha, J. Mikes et al, see
[2,3,14,17=21].

L. Hinterleitner [5] has solved the analogically problems for classical, pseudo- and
hyperbolic Kihler manifolds. In this paper were clarified results which were proved
by Bécsd, Domashev, Kurbatova, Mikes, Prvanovié, Otsuki, Tashiro, see [4, 10-13,
15,16,23,25]. In these results no details about the smoothness class of the metric
were stressed. They were formulated “for sufficiently smooth” geometric objects.
This result was inspired in [0, 7] of geodesic mappings.

2. PARABOLIC KAHLER MANIFOLDS

In the following definition we introduce generalizations of Kdhler manifolds [8],
see [9, 11, 13]. A basis on this definition see the monography by V.V. Vishnevskii,
A P. Shirokov and V.V. Shurigin [24].

Definition 1. An r-dimensional (pseudo-) Riemannian manifold (M, g) is called

an m-parabolic Kiihler manifold Kj, (m), if beside the metric tensor g, a tensor field
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F of arank m > 2 of type (1,1) is given on the manifold M,,, called a structure F,
such that the following conditions hold:

F?2=0, g(X,FX)=0, VF=0, 2.1

where X is an arbitrary vector of TM,, and V denotes the covariant derivative in
Ko,

n

We remind, that Kéhler spaces, were characterized by conditions F 2=_1d,
g(X,FX)=0, VF =0, were first considered by P.A. Shirokov, see [22]. Independ-
ently they were studied by E. Kdhler [8]. Hyperbolic Kdhler space (also para Kdihler
space, see D.V. Alekseevsky [1]) characterized F?=1d, g(X,FX)=0, VF =0,
were considered P.K. Rashevskij, see [9].

3. HOLOMORPHICALLY-PROJECTIVE MAPPING THEORY
For K2 — K90 oF cLass C!

Assume the parabolic Kéhler manifolds Kz(m) = (M,g,F) and Kz(m) =
(M, g, F) with metrics g and g, structures F and F, Levi-Civita connections V
and V, respectively. Here K,,, K,, € C', i.e. g,§ € C! which means that their com-
ponents g;;, gij € C 1 Likewise, as in [17, 18] we introduce the following notations,

this is an analogy by [15], see [11, p. 240].

Definition 2. A curve £ in K, which is given by the equation £ = £(¢), A =
dl/dt (#+ 0),t € I, where t is a parameter is called analytical planar, if under
the parallel translation along the curve, the tangent vector A belongs to the two-
dimensional distribution D = Span{A, FA} generated by A and its conjugate F A,
that is, it satisfies

Vil =a(t)A+b(A)FA,
where a(t) and b(¢) are some functions of the parameter ¢. Particularly, in the case
b(t) = 0, an analytical planar curve is a geodesic.

Definition 3. A diffeomorphism f: K2 — K3 is called a holomorphically-
projective mapping of K; ™) onto 125;(’;” if f maps any analytical planar curve in
Ky ™) onto an analytical planar curve in K z(ﬁ').

Assume a holomorphically-projective mapping f: K m g Z(_rh) Since f is
a diffeomorphism, we can suppose local coordinate charts on M or M, respectively,
such that locally, £ : Ko™ — K27 maps points onto points with the same coordin-
ates, and M = M. A manifold K, ™) admits a holomorphically-projective mapping

onto K Z('ﬁ) if and only if the following equations [17]:
VxY =VxY +y(X)Y +y(Y)X +@(FX)FY +@(FY)FX 3.1

hold for any tangent fields X,Y and where ¥ is a gradient-like form and ¥ (X) =
@(FX). If v =0than f is affine or trivially holomorphically-projective . Moreover,
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structures F and F are preserved, i.e. F = F, and m = m. This fact implies from
the theory of F-planar mappings, see [1 1, pp. 219-220]. In local form:

L = T+ i) +9;8! + i Fl g FP i =g, F/.
where 1“17 and fli’ are the Christoffel symbols of K, and K,, Yi, F l.h are components
of Y, F and 85’ is the Kronecker delta,

o 1
= —F, = n
ax! 2(n+2)

detg

Vi

detg

Here and in the following we will use the conjugation operation of indices in the way

AG.= A...k...Fik.

1

Equations (3.1) are equivalent to the following equations

Vzg(X.Y) =2¢(2)g(X. V) + ¥ (X)g(Y.Z) +¢y(Y)g(X.Z) ~ (3.2)
+@(FX)Z(FY.Z)+@(FY)3(FX,Z).

In local form:
8ijk = 2Ux&ij + Vi +V 8k + i85y + 98

where “,” denotes the covariant derivative on K,(; (m). M. Shiha and J. Mike$ [18]
proved that equations (3.1) and (3.2) are equivalent to

Vza(X,Y)=AX)g(Y,Z)+A(Y)g(X,Z)+0(X)g(FY,Z)+0(Y)g(FX,Z).

(3.3)
In local form:
ajje =Aigk +Aj&ik +0:ig 5 + 0 gk
where
@ aij=e*" 2 gqigp;. ) hi=—e"2gpivn. (©) 0 =—e*Y2% gg;ga.
(3.4
From (3.3) follows that A; is gradient-like vector and it holds
Mi=0; A,  A=1/daupg®. (3.5)
On the other hand [11]:
_ 1. |detg L
L W2Y 5 — 5. — || oi® o JB -1
= , U=-1 , = J . 3.6
8ij = €7 &ij ) n detg ”gl] l=g'%g aaﬂ” (3.6)

The above formulas are the criterion for holomorphically-projective mappings
K, m g Z(m), globally as well as locally.
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Theorem 1. A diffeomorphism f : Kj m g f,(m) is a holomorphically-
projective mapping if and only if there exist a solution of the following linear Cauchy-
like system

a) ajjx = Arigk + 0 Fjk:

b) 9,',]' = ‘L'Fl'j +aa5M‘f€j; 3.7

R o af
¢) Ti= eoth\i +aaﬂM3|i
on unknown tensor a;; (a;j = a;j;, a;;+a;; = 0, deta;; # 0), a vector A;, and a

. ap o af
function t. Here Ml\ij’ M2|i’ M3|i

ture tensors g;j and F f’ of the space K;, (m),

are tensors determined from metric and struc-

Remark 1. This theorem was proved with assuming that K ™) and Kz(m) be-

long to C3 class. We will prove, that the Theorem 1 valides too if Kj, M) ¢ €3 and
Ko ¢ c2,

The system (3.7) has at most one solution for the initial values in a point xo :
aij(xo), Ai(xo) and 7(xo). Hence, the general solution of this system depends on no
more than (n +2)(n +1)/2—m(n —m + 1) essential parameters.

The integrability of conditions (3.7) and their differential prolongations are linear
algebraic equations on the components of the unknown tensors a;;, A;; and T with
coefficients from K20™
4. HOLOMORPHICALLY-PROJECTIVE MAPPING

OF PARABOLIC KAHLER SPACE OF CLASS C?

The direct substitution of (3.1) implies that Riemannian tensors of spaces K? (m)

and K Z(m), which are holomorphically-projectively corresponding of m-parabolic
Kéhler space are connected by the following relations:

R,hjk = R,hjk + 80 — 81k + Floiy — Fll o + Fllow)), 4.1
where Rf‘j > Rf‘j « are Riemannian tensors of Ky ™) and K Z(m),
Qik = Qi j —Vie; =iV Vij = ¢ 4.2)
Tensor ¢;; has this form:
Vij = Vi, —Viy;. (4.3)
As y; is a gradient, that this tensor is symmetrical, that is
Vij = Vji. (4.4)

Contracting (4.1) with respect to indices /& and k, we obtain connection between Ricci
tensors

Rij = Rij +nvij, 4.5)
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where R;; and R;; ; are Ricci tensors of K, o(m) and K, O(m)
Next, we will proceed similarly as in work of M. Shlha [17,18]. Let we consider

the integrability condition of equation (3.3):
A (i R)er = &rGAj).0 = 81A )k = Fri)).0 + F16)) k- (4.6)
Contracting (4.6) with Fk e and also with F!,, we obtain two expressions. After
removing primes, we sum them up. Since K, 2(m) it holds Rh kT lea F¥ =0, we get
Fk(, Aj)l - Fl(z Aj)k = 0, where Al] = A; Nias 9, aFa It fOHOWS that Alj = AFU,
ie. Ajj+0ia F;’-‘ = AF;; where A is a function. Contracting (4.6) with gfk, we
obtain
nhi; = pugij +vFij —aqi R} a(x,BRa b 4.7)
where Rl . and R;; are Riemann and Ricci tensors, respectively, the operation of

lifting and lowering indices are induced by the metric tensor, and w,v are certain
functions. After symmetrizing (4.7) we get

1
nki,j = ugij — 5 Ag(i R;‘) —dgp Ralljﬂ 4.8)
Substituting (4.8) to (4.6) we obtain
a“ﬂMj'lIfl = F],‘Gj,k + Flj Qi,k — Fkigj,l + ijGi,l. 4.9)

From this implies that M are tensors determined by g;; and F lh on K, ™) More
precisely

B B B B : B _ 1 capp B
ijkl =48(; iRy +MZ|k(igj)l —MZu(igj)k’ ”MZUI = 5(z R —Ra

where 81}.’ is the Kronecker symbol. Let ¢/ and vk be vectors such that e/ VK F k=1
Denote M; = ¢* F;. Contracting (4.9) with eled vk we get

%61 —TM]+aa,3M b

i (4.10)

where 7 = )&a’ﬂa"‘vﬂ. Contracting (4.9) with &/ vk and using (4.10) we have the
following formula

Oy = TFyj + AiM; +agg Mol (4.11)
where A; is a vector. Substituting (4.11) into (4.9) we have
Ai(My Fij — M Fj) + Aj (Mg Fii — My Fri) = agg M‘;ﬁjkl- (4.12)

So we proved the following lemma:

Lemma 1. Let K,‘f(m) and Kz(m) belong to class C2. If K,‘i("’) admit a

holomorphically-projective mapping onto Kz(m) than formulae (3.7a) and (3.7b)
hold.
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5. HOLOMORPHICALLY-PROJECTIVE MAPPING K2 — g2(™
FOR K2 € C™ (r > 3) AND KO ¢ 2

Theorem 2. Let K™ € C" (r > 3) and K5™ € C2. If K3 admits holo-
morphically-projective mapping onto Kz(m) then IE'Z(m) eC’.

Proof of Theorem 2 is based on the proof of Theorem 3.

Theorem 3. Let K, (m) ¢ C 3 and K f,(m_) eC2 IfK;, ™) admits holomorphically-
projective mapping onto IE'Z(m) then K f,(m) eC3

For first, we prove that metric g and structure F' have the same differentiation.

Lemma 2. IfK,‘;(m) =(M,g,F)eC",ie g(x)eC’, then F(x)e C", forr e N
and r = oo, w.

Proof. Let K, m e cr , i.e. the components of metric g;; (x) € C" in a coordin-
ate chart x. It is a priori valid, that F f’ € CL. The formula VF = 0 can be written
WFI=Fhre —Ferh where I'jx =1/20i gk + 9;8ik — 0k &ij), 0k = 0/0x*,
and I f’J = ghk I}k are the Christoffel symbols of the first and second kind, respect-
ively. It holds, that I, and I" f’] € C""!. From this equation immediately follows
Fh(x)eC",ie. FeC". O

For proving Theorem 3, we need the lemmae:

Lemma 3 ([9]). Ler A"(x) € C! be a vector field, @l}-’ = ( é 8 ) is special
form with I = 8‘[;, where 1 <a,b<r, r>2. Ifai)kh—pd5l}.l e Cl then M\ € C2 and
peCl

Lemma 4. Ler A"(x) € C! be a vector field, Flh(x) e C? is a tensor field of
rank F > 2. If ;A" — pF € C! then A" € C? and p € C1.

Proof. Let

A —pF(x) = fh(x)ecC.
Because rank Ffl > r and Fl}.l(x) € C?, then exist a regular tensor field .Ql}.l(x) eC?
that F 2! = o
We put v = 1*Q2”. Then we have
gt —pd = 9; A% QM —poh = reQh 4 )%y Q.
Because ff‘.Qg + )&“aiﬂz € C!, from Lemma 3 it implies v” € C% and p € C!.
Since p € C!, then M (x) € C2. O

It follows prooving of Theorem 3:
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Proof. Equations (3.7b) can be written in the following form:

h _ h h Bh
2,0 —tFj—Q“Faj—i—aaﬁM(f'j ,

ie. 81-6]1 —er.l = fjh, where f]h = —G“FZj —i—aaﬂM(fﬁ.h. Because f} e C!and
Fl.h € C3 then from Lemma 4 follows 8/ € C2 and t € C1. Using (3.7a) and (3.7b)
we obtain a;; (x) € C* and ¥ € C3. Finally, from (3.6) we have g;;(x) € C3. O

In to this moment, we proved formulae (3.7a) and (3.7b). For complete proof of
Theorem 1, we have to prove the latest formula (3.7¢).

Proof. Proof of Theorem 3 allows us differentiation of equation (3.7b). Applica-
tion to this, we have:

ap

Oijk = Tk Fij +aap My, +aocﬂM(f|€j’k- (5.1

After alternation with respect to indices j and k and using Ricci identity, we have

T Fik— i Fij = agg Myl + 0a Myl (5.2)
Contracting (5.2) with gleJ vk we obtain Tqe% = aggM gfg 4+ Ao M 7&. Finally,
contracting (5.2) with e/ vl, we have (3.7¢) and Theorem 1 is proved. ]

At the end, we prove Theorem 2.

Proof. Tt K2 € C” (r > 3) and K™ e C2, then by Theorem 3, Ko™ e 3
and formulas (3.7) hold. Because the system of equations (3.7) is closed, we can
differentiate equation (3.1) (r — 1) times. So we can convince ourselves thata;; € C”,

and also g;; € C” (= Kz('h)eCr). g
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