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Abstract. This text discusses the use of transformation matrices to determine the motion equations of the
complex mechanical structure. Use of the transformation matrix does not apply only to motion equations but

has the general use in relative positions determine of objects in the 3D space. Analysed model is divided

into seven physical objects, the transformation matrix and the corresponding inertia/pseudo-inertia matrix is

included in each of them. This matrices are strictly necessary to the system dynamic description using the

matrix form of Lagrange Equations of the Second Type. Another possibility to use the transformation matrix

is shown in the camera system measurement. Model was designed in 3D CAD system SolidWorks, MATLAB

was used for the mathematical calculations.

1 Introduction

Derivation of systems motion equations (deductive identi-

fication) is a crucial part of designing the motion control

law of any mechanical structure. These structures are com-

posed of mass objects and acts by not inconsiderable effect

on other components of the system.

Each mass object has inertia in the motion. These in-

ertias are reflected in the form of centrifugal/centripetal

and Coriolis generalized forces with the combination of

rotational movements - non-linearity into the system is in-

troduced. The whole system has, therefore, highly non-

linear behaviour during fast movements - non-linearities

are bounded to the rate of change of state variables largely.

The system which is the object of our interest is called

"Ball and plate", shown in Figure 1. To derive the equa-

tions of motion of the system the transformation matrices

individual parts are advantageous to know. These transfor-

mation matrices can be further used for derivation of the

inertia matrix, the position determining of the individual

parts of the assembly in a 3D space, and non-measurable

state variables obtaining - during the whole process proce-

dure. The matrix form of Lagrange equations of the sec-

ond type there will be used, which involves the use of the

transformation matrices directly.

The Denavit-Hartenberg (DH) notation/method of

placement for coordinate systems is used to determine the

transformation matrices. The position measurement of the

ball on the plate is realized using the camera system. As

shown in Figure 10, with respect to the fixed location of

the camera is necessary to transform the camera measured

position of the ball to the actual position of the ball on the

plate. Even in this case, the transformation matrix method

is advantageously uses.

ae-mail: zatopek@fai.utb.cz

2 Ball and plate

2.1 3D model

Figure 1 shows a complete 3D assembly model. This

model is created in SolidWorks and has 4 generalized de-

grees of freedom. Tilts of the plate are two of them. They

are realized by two rotary kinematic pairs in perpendicular

relation to their common normal. The ball position on the

plate are other two generalized degree of freedom.

Figure 1. Total 3D model

For purposes of determining the system dynamic char-

acteristics is preferably to simplify the system to the extent

not too complicated equations of motion and at the same

time the dynamic characteristics of the simplified model

not be much different from the behaviour of the original

system.
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Figure 2. Simplified 3D model

The simplified model shown in Figure 2 contains only

parts that have a major influence on its dynamics or serves

as a global coordinate system base.

There are generally shown the basic dimensions that

will be used in the coordinate system transformation - will

be possible to change them in the resulting equation.

The stand as a base and the first motor need not be

taken into account because they do not perform any move-

ment (they are fixed) - as well as the connecting parts with

negligible mass. The motor that moves the plate is re-

placed by cuboid.

2.2 Transformation of coordinate systems

The model is divided into seven parts for determining the

homogeneous coordinates of the system. The part which

is the transformation relates is always shown in the accom-

panying figures.

Used Denavit-Hartenberg (DH) notation/method of

placement for coordinate systems is probably the most

popular method used in robotics kinematics.

Table 1. DH parameters general table

Link ai αi θi di

1 a1 α1 θ1 d1
2 a2 α2 θ2 d2
. . . . . . . . . . . . . . .

n an αn θn dn

The calculation of the required transformations from

the Table 1 is performed using the following relationships:

i−1Ti =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos θi − cosαi sin θi sinαi sin θi ai cos θi
sin θi cosαi cos θi − sinαi cos θi ai sin θi
0 sinαi cosαi di

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

0Tn =
0T1 . . .n−2Tn−1n−1Tn (2)

Gr =GTB ·Br (3)

The ball transformation in a global coordinate sys-

tem is listed here as a pattern, other transformations have

similar characteristics. The global coordinate system

(X0,Y0,Z0) is positioned at the rotation center axis of the
first motor, as shown in Figure 3.

Figure 3. Coordinate system placement for the ball transforma-
tion - part 7

The gradual transformations from the Figure 3 can be

written in Table 2. Utilising the relationship in the Equa-

Table 2. DH parameters for ball transformation - part 7

Link ai αi θi di

1 e1 + r1 + c1 + e2 + r2 π
2

π
2

π
2
+ α

2 r2+e3+c3+R π
2

p β

3 0 0 q 0

tion 1 is found the transformation matrix between systems.

Equation2 is used for finding the final transformation ma-

trix from the local body coordinate system - chosen at the

center of gravity, into the global coordinate system. It is

possible to determine the position vector ball in the global

coordinate system (ball position in 3D space) by using the

Equation 3.

The matrix 0T3 is listed in Equation 4. It is labelled as
T7 according to the selected assembly parts numbering.

T7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− cos β sinα cosα − sinα sin β T 17
cosα cos β sinα cosα sin β T 27
sin β 0 − cos β T 3

7

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

in which:

T 17 =p cosα − sinα (c1 + e1 + e2 + r1 + r2)−
− q sinα sin β − cos β sinα (R + c3 + e3 + r2)

T 27 = cosα (c1 + e1 + e2 + r1 + r2) + p sinα+

+ q cosα sin β + cosα cos β (R + c3 + e3 + r2)

T 37 = sin β (R + c3 + e3 + r2) − q cos β

Transformation of the remaining parts of the assembly are

given in Equations 5 - 10, Tables 3 - 8 and comes from

Figure 4 - 9.

T1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− sinα 0 cosα T 11
cosα 0 sinα T 21
0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)
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Figure 4. Coordinate system placement - part 1

Table 3. DH parameters - part 1

Link ai αi θi di

1 e1 + r1 + c1
2

π
2

0 π
2
+ α

2 0 0 a1−b1
2

0

in which:

T 11 = cosα
a1 − b1
2

− sinα
(c1
2
+ e1 + r1

)

T 21 = sinα
a1 − b1
2

+ cosα
(c1
2
+ e1 + r1

)

Figure 5. Coordinate system placement - part 2

Table 4. DH parameters - part 2

Link ai αi θi di

1 e1 + r1 + c1
2

π
2

0 π
2
+ α

2 c1+c2
2

0 a2
2
− b1 0

T2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− sinα 0 cosα T 12
cosα 0 sinα T 22
0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

in which:

T 12 = cosα
(a1
2
− b1

)
− sinα

(
c1 +

c2
2
+ e1 + r1

)

T 22 = sinα
(a1
2
− b1

)
+ cosα

(
c1 +

c2
2
+ e1 + r1

)

Figure 6. Coordinate system placement - part 3

Table 5. DH parameters - part 3

Link ai αi θi di

1 e1 + r1 + c1
2

π
2

0 π
2
+ α

2 c1+c2
2

0 a1 − a2
2

0

T3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− sinα 0 cosα T 13
cosα 0 sinα T 23
0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

in which:

T 13 = cosα
(
a1 − a2

2

)
− sinα

(
c1 +

c2
2
+ e1 + r1

)

T 23 = sinα
(
a1 − a2

2

)
+ cosα

(
c1 +

c2
2
+ e1 + r1

)

Figure 7. Coordinate system placement - part 4

Table 6. DH parameters - part 4

Link ai αi θi di

1 e1 + r1 + c1 + e2 + r2 π
2

0 π
2
+ α

2 0 0 −b1 − a4
2

0
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T4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− sinα 0 cosα T 14
cosα 0 sinα T 24
0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (8)

in which:

T 14 = − sinα (c1 + e1 + r1 + e2 + r2) − cosα
(
b1 +

a4
2

)

T 24 = cosα (c1 + e1 + r1 + e2 + r2) − sinα
(
b1 +

a4
2

)

Figure 8. Coordinate system placement - part 5

Table 7. DH parameters - part 5

Link ai αi θi di

1 e1 + r1 + c1 + e2 + r2 π
2

0 π
2
+ α

2 0 0 a1−b1
2

β

T5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− cos β sinα sinα sin β cosα T 1

5

cosα cos β − cosα sin β sinα T 2
5

sin β cos β 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

in which:

T 15 = cosα
a1 − b1
2

− sinα (c1 + e1 + r1 + e2 + r2)

T 25 = sinα
a1 − b1
2

+ cosα (c1 + e1 + r1 + e2 + r2)

Table 8. DH parameters - part 6

Link ai αi θi di

1 e1 + r1 + c1
2

π
2

0 π
2
+ α

2 0 0 a1−b1
2

β

3 0 π
2

0 0

4 r2 + e3 +
c3
2

0 b3−a3
2

0

T6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− cos β sinα cosα − sinα sin β T 1

6

cosα cos β sinα cosα sin β T 2
6

sin β 0 − cos β T 3
6

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

Figure 9. Coordinate system placement - part 6

in which:

T 16 = cosα
a1 − b1
2

− sinα (c1 + e1 + r1 + e2 + r2)+

+ sinα sin β
a3 − b3
2

− cos β sinα
(
r2 + e3 +

c3
2

)

T 26 = sinα
a1 − b1
2

+ cosα (c1 + e1 + r1 + e2 + r2)−

− cosα sin βa3 − b3
2

+ cosα cos β
(
r2 + e3 +

c3
2

)

T 36 = cos β
a3 − b3
2

+ sin β
(
r2 + e3 +

c3
2

)

2.3 Motion Equations

Motion equations matrix form of serial manipulator has

the general form:

D(q̄) · ¨̄q + H̄
(
q̄, ˙̄q

)
+ Ḡ (q̄) = Q̄ (11)

in which:

D(q̄) . . . symmetric inertia matrix
H̄

(
q̄, ˙̄q

)
. . . bounded velocity vector

Ḡ (q̄) . . . gravitational force vector
Q̄ . . . non-potential (non-conservative) generalized forces

causing change of q̄
Individual parts of the Equation 11 can be decomposed to

the form:

Di,j =

n∑
r=max{i, j}

tr

⎡⎢⎢⎢⎢⎢⎣∂
0Tr

∂q j
·r Īr

(
∂ 0Tr

∂qi

)T ⎤⎥⎥⎥⎥⎥⎦ (12)

Hi =

n∑
k= 1

n∑
m= 1

Hikm q̇k q̇m (13)

Hikm =

n∑
r=max{i,k,m}

tr

⎡⎢⎢⎢⎢⎢⎣ ∂
2 0Tr

∂qk ∂qm
·r Īr

(
∂ 0Tr

∂qi

)T ⎤⎥⎥⎥⎥⎥⎦ (14)

Gi = −
n∑

r= i

mr

(
0ḡ

)T · ∂ 0Tr

∂qi
·rr̄r (15)

in which:

n . . . number of links
i, j . . . state variables
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Ī . . . pseudo-inertia matrix
0ḡ . . . gravitational vector in global coordinate system
rr̄r . . . the center of mass position vector of link in the local
coordinate system

The gravitational vector 0ḡ is in the direction of the
global axis Y , therefore:

0ḡ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

−g
0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (16)

The center of mass position vector of link is zero in his

local coordinate system - all the local coordinate systems

are placed in the body center of mass:

rr̄r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
rx
ry
rz
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (17)

Only the last unknown parameter is missing in Equa-

tion 11 - the pseudo-inertia matrix Ī.

2.3.1 Inertia matrix

The inertia matrix of individual assembly parts is also need

to know to derive the pseudo-inertia matrices in their local

coordinate system. Because the local coordinate system

are always placed in the object center of mass the deviance

moments (i.e. off-diagonal elements) of inertia matrices

will be zero.

The numbering is similar as for the transformation ma-

trices.

I1 =
m1
12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(a1+b1)2+d21 0 0

0 (a1+b1)2+c21 0

0 0 c21+d
2
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (18)

I2 = I3 =
m2
12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
a22+d

2
1 0 0

0 a22+c
2
2 0

0 0 c22+d
2
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (19)

I4 =
m4
12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
a24+b

2
4 0 0

0 a24+c
2
4 0

0 0 b24+c
2
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (20)

I5 =
m5
12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
3r22+(a1+b1−2a2)2 0 0

0 3r22+(a1+b1−2a2)2 0

0 0 r22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (21)

I6 =
m6
12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(a3+b3)2+d23 0 0

0 (a3+b3)2+c23 0

0 0 c23+d
2
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (22)

I7 =
2

5
m7R2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (23)

2.3.2 Pseudo-inertia matrix

Ī =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ixx+Iyy+Izz
2

Ixy Ixz mrx

Iyx
Ixx−Iyy+Izz

2
Iyz mry

Izx Izy
Ixx+Iyy−Izz

2
mrz

mrx mry mrz m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(24)

The general definition of pseudo-inertia matrix is listed in

Equation 24. Now there is all you need to derive the re-

sulting motion equations - Equation 11.

I1P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1c21
12

0 0 0

0
m1d21
12

0 0

0 0
m1 (a1 + b1)2

12
0

0 0 0 m1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(25)

I2P = I3P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m2c22
12

0 0 0

0
m2d21
12

0 0

0 0
m2a22
12

0

0 0 0 m2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(26)

I4P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m4c24
12

0 0 0

0
m4b24
12

0 0

0 0
m4a24
12

0

0 0 0 m4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(27)

I5P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m5r22
4

0 0 0

0
m5r22
4

0 0

0 0
m5 (a1 − 2a2 + b1)2

12
0

0 0 0 m5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(28)

I6P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m6c23
12

0 0 0

0
m6d23
12

0 0

0 0
m6 (a3 + b3)2

12
0

0 0 0 m6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(29)

I7P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m7R2

5
0 0 0

0
m7R2

5
0 0

0 0
m7R2

5
0

0 0 0 m7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(30)

2.4 The ball position on the plate

Obviously, the transformation matrix using is not only re-

fer to the motion equations. The system has four gener-

alized degree of freedom as Section 2.1 shows. This state

variable is need to know during all the regulation process.

Tilts of the plate are given by encoders on the motors

which controls them. However, the ball position on the

plate is unknown - it rolls independently in the direction

of the fastest decrease in potential energy - a negative gra-

dient. It is given by the tilt of the plane.

The ball position on the plate is measured by using a

camera, which is placed as shown in Figure 10 - the optical

axis of the camera is identical to the global axis Y0 and the
plate edges are parallel to the camera pixel array edges.
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The ball coordinates on axes X0 and Z0 are measured by
this placement, not the size of the p and q as shown in
Figure 3.

The best way would be moving the camera and the

plate together, but it is ineffective from the construction

and control viewpoint. However, the p and q parameters
is possible to calculate with the transformation matrices

help.

Figure 10. 3D Model with camera evaluation

The ball position in the global coordinate system is ex-

pressed from Equation 3.

X =p cosα − sinα (c1 + e1 + e2 + r1 + r2)−
− q sinα sin β − cos β sinα (R + c3 + e3 + r2)

Y = cosα (c1 + e1 + e2 + r1 + r2) + p sinα+

+ q cosα sin β + cosα cos β (R + c3 + e3 + r2)

Z = sin β (R + c3 + e3 + r2) − q cos β

(31)

Parameters p and q are expressed from Equation 31, X
and Z are measured by the camera system.

p =

X − sinα sin β
[
Z − sin β (R + c3 + e3 + r2)

]
cos β

+

+ sinα (c1 + e1 + e2 + r1 + r2)+
+ cos β sinα (R + c3 + e3 + r2)

cosα

q =
sin β (R + c3 + e3 + r2) − Z

cos β

(32)

All the state variables are already fully defined. If the

vertical ball position is necessary to know in the global

coordinate system, state variables p and q just put into Y
in Equation 31.

3 Conclusion
The article contains derivations of the transformation, in-

ertia matrices and all other required formalities neces-

sary for the determine motion equations using the ma-

trix form shown in Equation11. The substitution into

the Equation11 and the resultant form is not listed here
due to the high dimensionality of the resulting expression.

This substitutions and mathematics adjustments are imple-

mented in MATLAB.

The model is divided into 7 parts for ease identifying

and acceptable inertia matrices form - each part is one

of the basic shapes. These parts connection occurs dur-

ing substituting into the Equation 11.Transformation ma-

trices are designed to transform the local coordinate sys-

tem position, associated with the object center of mass, to

the global coordinate system. This transformation ensures

zero inertia matrix deviance moments and therefore zero

pseudo-inertia matrices off-diagonal elements.

Transformation matrices are also used in the regulated

value determining, which is different from the actual val-

ues, with respect to the fixed camera location to the mov-

ing plate. It is used for conversion between the measured

and the actual output/regulated value.

Suitable coordinate system placement and then the

transformation matrix form is a key consideration as fol-

lows from the foregoing. It is important from the view-

point of complexity of other calculations, from the per-

spective of finding potential errors or their further use -

correctness of the transformation matrix can be easily geo-

metrically verified, which can not be said about the system

dynamics describing structures.
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