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Abstract. The goal of this paper is to compare two identification methods – continuous-time and discrete-time. 
The continuous-time identification model is more accurate but not very suitable for on-line identification. This 
disadvantage was overcome with the use of differential filters. On the other hand, discrete-time identification 
model has is more suitable for identification but less accurate. Compromise can be found in the delta model as 
a special type of the discrete-time model parameters of which are related to the sampling period. The adaptive 
approach is based on the choice of the External Linear Model, parameters of which are identified recursively 
which satisfies the adaptivity of this system. Proposed control strategy was applied on the mathematical model 
of the Continuous Stirred-Tank  reactor as a typical nonlinear lumped-parameters system used in the industry.  

1 Introduction  

The continuous stirred-tank reactor (CSTR) is typical 
nonlinear equipment used in the chemical and 
biochemical industry for production of various chemicals, 
drugs etc. [1].  

The modelling and simulation is great tool which 
helps with the observing of the system’s behaviour and 
designing of the appropriate controller. The mathematical 
model of CSTR is usually described by the set of 
nonlinear ordinary differential equations (ODEs) which 
can be solved mathematically for example by the Runge-
Kutta’s method.  

The adaptive control [2] used here for the control is 
one of the approaches used for the nonlinear systems 
because it produces good control results. Advantage of 
this method can be found in very good theoretical 
background and variety of modifications [3]. 

The approach used here is based on the choice of the 
External Linear Model (ELM) which describes 
controlled, originally nonlinear, process in the linear way 
for example by the discrete or the continuous transfer 
function (TF) [3]. Parameters of ELM are then identified 
recursively during the control and parameters of the 
controller are recomputed according to identified 
parameters of the system. The advantage of used 
polynomial synthesis is that it produces the structure and 
also relations for computing controller’s parameters that 
reflect identified parameters of ELM. 

Two identification models with the continuous-time 
(CT) model [4] and special type of the discrete-time (DT) 
model called delta/model [5] where discussed here. 
Parameters of input and output variables are related to the 
sampling period. It was proved that parameters of the 

delta model approach to parameters of the CT model for 
sufficiently small sampling period [6]. This combination 
of the continuous-time control synthesis with the 
discrete-time identification is called “Hybrid adaptive 
control” and some applications can be found for example 
in [7] and [8]. 

The recursive least-squares method is used for online 
identification. This method is widely used because it is 
easily programmable in standard programming languages 
at one hand but it produces sufficiently good 
identification results with various modifications. 

All results in this paper are simulations made in the 
mathematical software Matlab, version 7.0.1.  

2 Continuous Stirred-Tank Reactor  

The system under the consideration is Continuous 
Stirred-Tank Reactor (CSTR) with so called Van der 
Vusse reaction inside [9]: 
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The mathematical model of this system comes from 
material and heat balances inside the reactor and results 
in the set of four nonlinear ordinary differential equations 
(ODE): 
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The mathematical model described by the set of ODE 
(2) - (5) have state variables concentrations cA, cB and 
temperatures of the reactant Tr and the cooling Tc. This 
system provides theoretically four input variables – a
volumetric flow rate of the reactant, qr, a heat removal of 
the cooling, Qc, an input concentration cA0 and an input 
temperature of the reactant, Tr0. The last two are only 
theoretical and could not be used as an input variable 
from the practical point of view.

The scheme of this chemical reactor is in Figure 1. 

Figure 1. Scheme of the Continuous Stirred-tank Reactor 
  
Due to the simplification of the mathematical model, 

other variables are supposed to be constant during the 
control. The volume of the reactor is denoted as Vr, Ar is 
the heat exchange surface, �r is used for the density of the 
reactant, U is the heat transfer coefficient, cpc and cpr are 
specific heat capacities of the cooling and the reactant a 
mc is the weight of the cooling mass. Values of these 
fixed parameters are in Table 1 [9]. 

Table 1. Fixed parameters of the reactor
Variable Value

Pre-exp. factor for react. 1
Pre-exp. factor for react. 2
Pre-exp. factor for react. 3
Activation ener. 1 to R
Activation ener. 2 to R
Activation ener. 3 to R
Enthalpy of reaction 1
Enthalpy of reaction 2
Enthalpy of reaction 3
Volume of the reactor
Heat capacity of reactant
Heat transfer coefficient
Input concentration of A
Input concentration of B
Input temp. of reactant
Density of reactant
Heat capacity of coolant
Surface of cooling jacket
Weight of coolant

k01=2.145•1010
min

-1

k02=2.145•1010
min

-1

k03=1.5072•108 min-1mol-1

E1/R = 9758.3 K
E2/R = 9758.3 K
E3/R = 8560 K
h1 =-4200 kJ.kmol

-1

h2 =11000 kJ.kmol
-1

h3 = 41850 kJ.kmol
-1

Vr = 0.01 m3

cpr = 3.01 kJ.kg
-1.K-1

U = 67.2 kJ.min
-1

m
-2

K
-1

cA0 = 5.1 kmol.m
-3

cB0 = 0 kmol.m
-3

Tr0 = 387.05 K  
�r = 934.2 kg.m

-3

cpc = 2.0 kJ.kg
-1.K-1

Ar = 0.215 m2

mc = 5 kg

The first step of the simulation is the steady-state 
analysis which observes behaviour of the system in the 
steady-state where state variable does not change. This 
analysis can help us with the choice of the optimal 
working point for control. Experiments in [8] have shown 
working point defined by the volumetric flow rate of the 
reactant qr

s = 2.4•10-3
m

3.min
-1 and heat removal of the 

coolant Qc

s = -18.56 kJ.min
-1. 

The second, dynamic, analysis then observes the 
behaviour of the system after the step change of the input 
variable, in this case the heat removal of the coolant, �Qc.
The observed output is on the other hand the change of 
the reactant’s temperature, Tr, i.e.
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The results for various step changes of the input 
variable from the range �u(t) = <-100%; +100%> and 
results are in Figure 3.
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Figure 2. Results of the dynamic analysis for the various 
changes of the input variable �u(t)

Results clearly shows, that all outputs could be 
described by the second order transfer function (TF) with 
relative order one in the polynomial form

� � � �
� �
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b s b s b
G s

a s s a s a

�
	 	

� �
 (7) 

This will be later used for identification in the 
adaptive control.

3 Hybrid Adaptive Control

The control approach here is based on the term 
“Adaptivity” known from the nature, where plant, 
animals or even human beings “adapts” their behaviour to 
the actual environment.

At first we will start with the control synthesis which 
uses advantages of the polynomial synthesis [10] that 
satisfies basic control requirements such as stability, 
disturbance attenuation and reference signal tracking. 
Moreover, this method produces not only the structure of 
the controller, but also the relations for computing of 
controller’s parameters.

The simplest, most common known control scheme 
with one degree of freedom (1DOF) [11] is shown in
Figure 3. The controller is here represented by the TF 
Q(s) and the controlled system is described by TF G(s)
from (7). 
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Figure 3. One degree-of-freedom (1DOF) control 
configuration

The signal w in Figure 3 is reference signal (i.e. 
wanted value), v denotes disturbance, u is an input and y
an output variable. It can be seen, that controller is here 
only in the feedback part.

The TF of this controller Q(s) is generally:

� � � �
� �

q s

Q s

p s

	 (8) 

where degrees of polynomials p(s) and q(s) must hold 
properness condition:

� � � �deg degq s p s� (9) 
The condition for the reference signal tracking is

satisfied if the polynomial p(s) in the denominator of the 
controller’s transfer functions (17) is divided into

� � � � � �p s f s p s	 
 � (10) 
where f(s) is a least common divisor of the reference 

and the disturbance transfer functions. If we have these 
TF in the form of the step function, f(s) = s and (17) could 
be rewritten into

� � � �
� �

q s

Q s

s p s

	

 �

(11) 

Parameters of controller’s polynomials � �p s� and q(s)
are computed from Diophantine polynomial equation [10]

� � � � � � � � � �a s s p s b s q s d s
 
 � 
 	�  (12) 
and they can be solved by the Method of uncertain 

coefficients. Polynomials a(s) and b(s) in (21) are known 
from the recursive identification which will be discussed 
in the next subchapter. The polynomial d(s) on the right 
side of Diophantine equations (21) is stable optional 
polynomial which could affect the quality of the control.

Degrees of controller’s polynomials � �p s� and q(s) 
and the degree of the stable polynomial d(s) are 

� � � � � � � �
� � � �

deg deg 1 deg deg

deg 2 deg

p s a s q s a s

d s a s

	 � 	
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As it was already mentioned, polynomial d(s) is 
optional polynomial which could be designed for 
example by the Pole-placement method, generally

� � � �
� �deg

1

d s

i

i

d s s s

	

	 � (14) 

where roots si are generally in the complex form 
si = �i + �i � j and the stability is satisfied for �i < 0. If 
we want to obtain an aperiodic output response, �i must 
hold 0 and (14) is then

� � � �deg d

d s s �	 � (15) 
The equation (15) is very general which could be 

disadvantage of this method – there is no 
recommendation for the choice of roots in polynomial 
d(s). Our previous experiments [8] have shown that is 

good co connect the choice of this polynomial somehow 
with the controlled system. The Spectral factorization 
could be used for this task and it means that the 
polynomial d(s) is divided into two parts

� � � � � �deg degd n

d s n s s � �	 
 �  (16) 
where one part is classic pole-placement method and 

n(s) comes from the Spectral factorization of the 
polynomial a(s) in the denominator of the controlled 
system’s transfer function (7):

� � � � � � � �* *
n s n s a s a s
 	 
  (17) 

Advantage of the Spectral factorization can be also 
find in the feature, that the polynomial n(s) is always 
stable even if the polynomial a(s) is unstable. This could 
happen for example by inaccurate estimation at the 
beginning of the control when an estimator does not have 
enough information about the system.

4 Identification Models

It was already mentioned that the controller is based on 
the adaptivity. There are several adaptive approaches 
used in the control theory. The one used here is based on 
the online recursive identification of the External Linear 
Model (ELM) of the originally nonlinear system. 
Parameters of the controller are then recomputed 
according to identified parameters of the ELM. ELM 
could be for example TF in the form of (7). 

There will be discussed two types of identification 
models – continuous-time (CT) and discrete-time (DT) in 
the next subchapters. 

4.1. Continuous-Time Identification Model  

The ELM of the controlled system is described by 
continuous-time TF G(s) (7) and this relation is also 
described to the fraction of the the Laplace transform of 
the output variable, Y(s), to the input variable, U(s), the 
ELM in the (7) could be also rewritten to the form

� � � � � � � �a y t b u t� �
 	 
  (18) 
where u(t) denotes the input variable, y(t) is the output 

variable and � is the differentiation operator. 
The identification of CT model in (18) is problem 

because the derivatives of the input and the output 
variables are immeasurable but they could be replaced by 
the filtered ones denoted by uf and yf and computed from

� � � � � �
� � � � � �

f

f

c u t u t

c y t y t

�

�


 	


 	
(19) 

for a new stable polynomial c(�) that fulfils condition  
� � � �deg degc a� �� , the Laplace transform of (19) is 

then
� � � � � � � �
� � � � � � � �

1

2

f

f

c s U s U s o s

c s Y s Y s o s


 	 �


 	 �
 (20) 

where polynomials o1(s) and o2(s) includes initial 
conditions of filtered variables. If we substitute (20) into 
the Laplace transform of the Equation (18), the relation 
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for the Laplace transform of the filtered output variable, 
Yf(s) is 

� � � �
� � � � � �

f f

b s

Y s U s s

a s

	 � �  (21) 

and �(s) is a rational function which contains initial 
conditions of both filtered and unfiltered variables.

The dynamics of the differential filters c(s) in (20)
must be faster than the dynamics of the controlled system 
[12] which is satisfied if parameters of this polynomial 
sufficiently small.

The values of filtered values are taken in the discrete 
time moment tk = k �� Tv for k = 0, 1, 2, … N. Tv is 
sampling period and the regression vector has n+m parts 
where deg a = n = 2 and deg b = m = 1, i.e.

� � � � � � � � � � � � � �1 1, , ,
T

CT k f k f k f k f k
t y t y t u t u t� �	 � �� �� (22) 

The vector of parameters
� � � �0 1 0 1, , , T

CT k
t a a b b	�  (23) 

is computed from the differential equation
� � � � � � � � � �n T

f k CT k CT k k
y t t t t	 
 � �� �  (24) 

where � includes immeasurable errors.

4.2. Discrete-Time Identification Model  

The discrete-time identification model is better for 
practical purposes – it is more simple to read input and 
output variables in the defined time intervals then 
continuously. We can find also compromise between 
practically better DT model and more accurate CT model 
in so called delta-models [8] that are special types of DT 
models where input and output variables are related to the 
sampling period.

A new complex variable � is defined generally as [13]

� �
1
1

v v

z

T z T

�
� �

�
	


 
 � � 

 (25) 

for Tv as a sampling period and � an optional 
parameter which holds 0 1�� � . It is clear, that there 
could be an infinite number of delta-models as there is 
modifiability of �. One of the most used model is
Forward delta-model for � = 0 was used here. 

The complex variable � is then
1

v

z

T

� �
	 (26) 

It was proved for example in [6], that parameters of 
the delta-model approaches to the CT ones for 
sufficiently small sampling period Tv. 

In delta-models, the CT model (18) can be rewritten 
to the form

� � � � � � � �a y t b u t� �� � � �	  (27) 
where a’(�) and b’(�) are discrete polynomials and 

their coefficients are different from those in CT model 
but we suppose, that they are close to them because the 
sampling period is sufficiently small. 

The regression vector is in this case for TF (7): 
� �( 1) ( 1), ( 2), ( 1), ( 2) T

k y k y k u k u k� � � � �� 	 � � � � � �� (28) 
and the vector of parameters is then

� � � �1 0 1 0, , , T

k a a b b� � � � �	�  (29) 
Parameters of this vector are computed again from the 

differential equation
� � � � � � � �1T

y k k k e k� � �	 
 � �� �  (30) 
for e(k) as a general random immeasurable 

component.

4.3. Identification Method  

The last what needs to be described is the online 
identification method which satisfies the adaptivity of the 
controller. The Recursive Least-Squares Method [14] 
could be used because it is simple, accurate with 
modifications and it is also easily programmable.

Presented method could be used for both CT and DT 
identification models described above. The RLS method 
used for estimation of vectors of parameters 

ĈT

�� or �̂
��

in (24) or (30) could be described generally by the set of 
equations:
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where " is regression vector, � denotes a prediction 
error, P is a covariance matrix and �1 and �2 are 
forgetting factors. For example constant exponential 
forgetting [14] uses �2 = 1 and 

� � � � � �2
1 1k K k k� � �	 � 
 
  (32) 

where K is a very small value (e.g. K = 0.001). This 
RLS modification was used in this work for the online 
estimation.

5 Simulation Experiment

Proposed adaptive controller with two identification 
models was tested by simulation on the mathematical 
model of CSTR presented in Chapter 2. 

Due to comparability, both simulations were 
performed for the same simulation parameters. The 
sampling period was Tv = 0.3 min, the initial covariance 
matrix P������	�
���������
��������6 and starting vectors 
of parameters for the identification was chosen 
�CT(0) = �CT(0) = [0.1; 0.1; 0.1; 0.1]T. The simulation was 
performed for 750 min and there were done 5 changes of 
the reference signal w(t) during this time.

The controller needs some time for adaptation and our 
previous experiments have shown that it is good to insert 
the first change of the reference signal as an exponential 
function instead of the step function. The next changes 
were step functions The input signal u(t) was limited to 
the values u(t) = <-75%; +75%> due to physical 
limitations.  
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As it was mentioned, the tuning parameter for this 
adaptive controller is the position of the root �. There 
were observed courses of the output variable y for three 
values of � = 0.05; 0.08 and 0.4 for both identification 
models and results are shown in the following figures.

The first analysis was done for the CT identification 
model where the filtered polynomial c(�) was 
c(�) = s2 + 1.4 s + 0.49.
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Figure 4. The course of the reference signal w(t) and the 
output variable y(t) for CT identification model and 
various parameter �
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Figure 5. The course of the the input variable u(t) for CT 
identification model and various parameter �

Results show that the tuning parameter � affect 
mainly the speed of the control. Increasing value of �
produces quicker output response but could end with 
small overshoots which is evident for � = 0.4. On the 
other hand, a smaller value of � has smoother course of 
the input variable u(t) in Figure 5 which is better from 
practical point of view.

The second analysis for DT delta model was 
performed for Forward delta model and the same tuning 
parameters �.
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Figure 6. The course of the reference signal w(t) and the 
output variable y(t) for delta identification model and 
various parameter �
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Figure 7. The course of the the input variable u(t) for 
delta identification model and various parameter �

Obtained results are very similar to those in the 
previous analysis. The biggest value of � = 0.4 has again 
the quickest course but overshoots and their value 
depends on the height of the change. The course of the 
input variable is smoother for the lower values of tuning 
parameter.

Both studies have very good control results except the 
beginning of the control. This is caused by the inaccurate 
identification which starts from the general point and it 
needs some time for ”adaptation”. On the other hand, 
after initial 50 min the controller does not have problem 
with the online identification.

Courses of the identified parameters are in Figures 8 – 
11. These figures show that recursive least squares 
method used for identification has no problem with the 
identification except the beginning of the control in the 
adaptation part.
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Figure 8. The course of the identified parameter a0
�(t) for 

various � in delta identification model
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Figure 9. The course of the identified parameter a1

�(t) for 
various � in delta identification model
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Figure 10. The course of the identified parameter b0
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for various � in delta identification model
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6 Conclusions

The paper shows one approach for controlling of the 
nonlinear process represented by the continuous stirred-
tank reactor with the cooling in the jacket. The 
mathematical model of this reactor is described by the set 
of four nonlinear ODE that are easily solvable by the 
numerical methods. Proposed control strategy is based on 

the choice of the ELM parameters of which are identified 
recursively during the control and parameters of the 
controller are recomputed according to the identified 
ones. This controller could be tuned by the parameter �
as a position of the root in the pole-placement method. 
The simulation experiments have shown that the 
increasing value of this parameter affect the speed of the 
control and overshoots – bigger value of � results in 
quicker output response but overshoots. Proposed 
controller produces good control results although this 
system has nonlinear behaviour and negative properties 
from the control point of view.
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