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Abstract. This paper deals with the comparison of three implementations of Particle Swarm Optimization (PSO), 
which is a powerful algorithm utilized for optimization purposes. Xamarin, a cross-platform development software, 
was used to build a single C# application capable of being executed on three different mobile operating systems (OS) 
devices, namely Android, iOS, and Windows Mobile 10, with native level performance. Seven thousand tests 
comprising PSO evaluations of seven benchmark functions were carried out per mobile OS. A statistical evaluation of 
time performance of the test set running on three similar devices –each running a different mobile OS– is presented 
and discussed. Our findings show that PSO running on Windows Mobile 10 and iOS devices have a better 
performance in computation time than in Android.  

1 Introduction 

The aim of this paper is to compare the performance of 
three implementations of a single C# mobile application 
which examines the Particle Swarm Optimization (PSO) 
algorithm running on three mobile devices, each with a 
different mobile operating system installed, specifically 
Android, iOS, and Windows Mobile 10. One thousand 
simulations of PSO evaluating seven benchmark 
functions were carried out per mobile OS, thus 21, 000 
tests were performed in total. Xamarin platform made it 
possible to develop a single application in C# and deploy 
it to different mobile OS devices.  

Smartphones are multitasking mobile devices in 
which installed applications should have an efficient use 
of resources, including CPU, memory, and sensors, in 
order to increase performance and maximize their battery 
life. Most of the time, if a mobile application is slow or 
consumes too many resources, e.g. mobile data, battery, 
or storage, it is either uninstalled from the mobile device 
or scored with a low review by the user in the mobile app 
store. Moreover, decision-making applications, such as 
travel destination recommenders and games, are may 
require intensive computing in order to get the best 
choice, or at least an optimal one. Even though most of 
the time a more powerful device, e.g., a server, deals with 
this task –giving the mobile device the assignment of 
only presenting the results to the user–, sometimes the 
mobile device requires to process information on its own, 
with no aid of external server. In other words, dealing 
with data and finding the best choice among different 

options are problems which mobile applications are not 
excluded to solve. 

PSO is an optimization technique developed by 
Kennedy and Eberhart [1] inspired by the collective 
behaviour of animal groups, such as swarms of insects, in 
order to build a swarm of particles, i.e., a set of candidate 
solutions which flow through the parameter space 
generating trajectories driven by the best individuals. The 
initial population (swarm) consists of random solutions 
(particles) for the problem and is considered as a 
population of homogeneous agents which interact locally 
with other individuals without any central control. As a 
result, collective behaviour is generated, thus evolution 
relies on cooperation and competition among individuals 
through the different epochs (generations). Each particle 
defines trajectories in the parameter space according to a 
motion function which is affected by velocity, inertia, 
cognitive coefficient and social coefficient. The objective 
is to find the global best solutions by stochastic weighting 
of the aforementioned elements. The process is iterative 
until a stopping criterion is met. 

Xamarin Platform is a mobile application 
development tool used to build native and cross-platform 
applications which can be deployed to Android, iOS, and 
Windows Mobile devices with native-level performance, 
native user interface, and a full access to the APIs of each 
platform. These applications are written once in C# 
language, sharing the same code across multiple mobile 
operating systems. Not only the business logic can be 
shared when building a mobile application with Xamarin, 
but also the user interface can be distributed by writing it 
either in C# or in eXtensible Application Markup 
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Language (XAML). When deployed and tested into a 
specific platform, the application presents a native user 
interface, e.g., a Xamarin.Forms.Button is depicted as a 
UIButton on iOS, as an Android.Widget.Button on 
Android, and as a System.Windows.Controls.Button on 
Windows Mobile devices. 

This paper is organized as follows. In the first section, 
a theoretical background on smartphones, particle swarm 
optimization, and Xamarin platform is presented. 
Afterwards, the methods and methodology that was used 
for this comparison are described. Then, evaluation 
results, statistical comparison and discussion are 
presented together. Finally, conclusions are shown at the 
end of the paper. 

2 Background information  

Smartphones are an important lifestyle device. There are 

almost 3.5 billion of smartphone subscriptions worldwide 

[2], and the trend is expected to double in size in the next 

lustrum. People use their smartphones on a daily basis in 

order to make their lives easier anytime and anywhere, 

for example, online purchases can be done while 

commuting thanks to a mobile application, thus it is not 

necessary to wait until a destination is reached and then 

use a PC. Another example of the advantages given by a 

smartphone is that it allows people to be communicated 

all the time. 

Despite of the fact that smartphones are limited 
devices, they offer a PC user-experience, that is, they 
provide capabilities such as multitasking, video 
streaming, audio streaming, and web browsing, among 
others [3]. Therefore, they can be used intensively 
through the day while requiring a substantial usage of 
resources in order to work. When there are many 
applications working in the background, available 
memory can be significantly reduced. As a consequence, 
the smartphone’s usability isn’t user-friendly. In order to 
overcome this problem, the dispatcher, which is a 
privileged component of the operating system, terminates 
low-priority applications and frees resources until it 
determines that the available memory is enough to 
continue working. Moreover, battery life can be drained 
faster if there are too many programs running 
concurrently or if an application does not perform 
optimally. If a mobile app is killed by the dispatcher, it is 
not guaranteed that it would be properly closed as it 
didn’t complete its lifecycle, so non-stored information 
will be lost and unrecoverable. 

Artificial Intelligence (AI) algorithms, methods and 

techniques can be applied to build smart applications 

which delivers valid results to a user’s request [4]. For 

instance, a geospatial analysis can be obtained by 

combining the use of geometric design with sensors and 

components from a smartphone, such as GPS, 

accelerometer, and camera [5]. Moreover, a deep learning 

neural network can perform effective human activity 

recognition with the aid of smartphone sensors [6]. 

Furthermore, Genetic Programming (GP) has been used 

to create a customized smartphone user-experience [7]. 

As can be seen, AI methods provide solutions for today’s 

mobile world challenges. 

2.1 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is an example of 

stochastic optimization inspired by the social behaviour 

of animal groups [8]. Initially developed by Kennedy and 

Eberhart in 1995 [1], this technique has proven to be 

effective for neural networks weight calculation [9], 

business optimization [10], and parameter estimations 

[11]. Both behaviour and efficiency of the algorithm rely 

on the parameters shown in Table 1 [1]. Meta-

optimization of the parameters has been used to tune 

them and find the best values which benefit PSO’s 

performance in particular scenarios [12-15].  

Table 1. Particle Swarm Optimization parameters. 

Parameter Meaning Typical Range [8] 

�� Inertia weight [0.8, 1.2] 

c1 
Cognition learning 

rate 
[0, 4] 

c2 Social learning rate [0, 4] 

N Number of particles [20-40] 

The algorithm works as follows: First, a population of 

random N candidate solutions {x1, x2,…, xN} is generated. 

Each individual is an N-dimensional vector (N > 1) with 

values within the problem bounds. Moreover, each 

particle contains a velocity vector vi, which is also 

randomly initialized. By performing fitness evaluation, 

the best position at the moment, bi, is obtained for each 

individual along with the best global position hi. The 

iterative process starts by generating two random values, 

r1, r2, which are used to update each particle’s velocity 

and position according to equations (1) and (2), 

respectively: 

        � � � �
iiiiii

xhrcxbrcvv ����� 2211 �   (1) 

                                    
iii

vxx ��   (2) 

Fitness evaluation is performed again in order to 

determine both the best position for each particle and the 

best global particle. The iterative process is repeated until 

a stopping criterion, such as a predetermined number of 

generations, is met. There are several variants of the PSO 

algorithm [16]. For instance, vi in (1) is not affected by � 

in the original version of the algorithm. Another variation 

consider the initialization of the particles as the most 

important element in order to improve the performance of 

the algorithm [17]. Opposition-based learning, a term that 

describes an individual’s exact contrary, has also been 

considered as an enhanced variant of PSO which 

accelerates convergence [18-20] by replacing individuals 

which are far to the optimal solution by their opposite, 

which is closer in distance to the solution. 
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2.2 Xamarin Platform 

Xamarin is a novel cross-platform mobile application 

development tool which can be used to build native 

Android, iOS and Windows applications that rely on a 

shared C# codebase. One of the main advantages of 

Xamarin is that allows developers to write an application 

once and deploy it to different mobile OS platforms 

without having to rewrite it in an completely different 

programming language, operating system or application 

programming interface (API) [21]. Even though all the 

platforms share similarities, such as graphical user 

interface (GUI) presentation, device sensors, and gestures 

interaction, each of them incorporates many differences, 

including navigation, user-experience, and fragmentation 

[22]. Xamarin’s development of cross-platform solutions 

is possible mainly because of the Mono project, an open-

source implementation of Microsoft’s .NET Framework 

that can run on Linux, Windows, and Mac OS X [23] 

which is considered as the core of Xamarin, comprising 

three sets of .NET libraries: Xamarin.Mac, Xamarin.iOS, 

and Xamarin.Android. Xamarin.Forms (XF) allows 

developers to write code capable of being compiled and 

deployed to mobile devices, regardless of their OS. A 

basic XF application contains separate projects per 

desired target mobile platform -currently, Android, iOS, 

Windows Phone 8.1, Windows 8.1, and Universal 

Windows Platform platforms are supported [24]- plus 

another project which contains the common code that will 

be compiled and used at runtime by each specific 

platform together with the code contained in the project 

platform. Both the user-interface (UI) and the business 

logic (BL) can be developed in C# language, while 

eXtensible Application Markup Language (XAML) can 

also be used for the UI. On the one hand, the UI refers to 

the views or controls that will be shown on the device 

screen. On the other hand, the BL includes all the 

functionality of the application. It is also worth 

mentioning that platform-specific code can be added to 

the project to address key platform differences, such as 

screen sizes, navigation issues and push notifications, and 

device differences, for instance, sensors functionality, 

social networks interaction, and geo-location support. 

3 Methods and methodology

The objective of this experiment is to evaluate the 

performance of an implementation of the Particle Swarm 

Optimization algorithm running on 3 smartphones with 

different mobile OS each (Android, iOS, and Windows 

Mobile) which evaluates 7 well-known benchmark 

functions for optimization (Ackley [25], Goldstein-Price 

[26], Rastrigin [27], Rosenbrock [28], Rotated Hyper-

Ellipsoid [29], Sphere [30] and Sum Squares [31]). Table 

2 provides a brief overview of the tested benchmark 

functions, while Table 3 outlines the relevant 

specifications of the 3 mobile devices [32] used for the 

analysis. Except for the Goldstein-Price function, which 

by definition operates only in a 2-dimensional space, all 

benchmarks were evaluated in a 10-dimensionall space 

A C# version of the PSO algorithm was programmed 

and included in a mobile application developed with 

Xamarin platform using the Visual Studio Community 

2015 IDE. Figure 1 shows the structure of the solution. 

Four projects were included in the solution. The first one, 

PSO, contains all the shared code. The other three, 

PSO.Droid, PSO.iOS, and PSOUWP represent the 

specific projects that were deployed to the particular 

mobile OS, namely Android, iOS, and Windows 10, 

respectively. It is worth mentioning that no code was 

added to the three projects due to Xamarin’s code-sharing 

leveraging technique. 

In all cases, � = 0.729, N = 40, c1 = 1.49445, c2 = 

1.49445 values were used. For the benchmark functions, 

the search domain was set for the range indicated in 

Table 2. Finally, during the experiment, each mobile had 

neither processes working in the background nor 

background services and sensors active, except for the 

PSO mobile application developed in Xamarin and the 

Wi-Fi signal because the computation times were sent to 

an Azure SQL cloud database for further analysis.  

One thousand simulations of the Particle Swarm 

Optimization full algorithm per benchmark function 

evaluation and per mobile OS were carried out, i.e., each 

time a new random initial population was generated and 

evolved in order to solve a benchmark function. Figure 2 

depicts the process of a single run of the app in each 

device, while Figures 3 and 4 show the application being 

executed on Windows Mobile 10 and Android devices, 

respectively. 

4 Results and discussion

The findings of the analysis are summarised in Table 4. A 

comparison of the average running time of 1000 

simulations of PSO evaluating one benchmark function at 

a time on a mobile device is presented. The best (fastest) 

results in each case are marked in bold, while the worst 

ones are shown in italics. On the one hand, it is clearly 

seen that the Android device was far outperformed by 

both iOS and Windows Mobile 10 devices approximately 

two times, except for Rosenbrock and Rotated functions, 

in which average times are closer. On the other hand, the 

iOS and Windows Mobile 10 devices had similar 

performances in terms of time, with the latter being the 

fastest in 4 out of the 7 benchmark evaluations.  

As iOS and Windows Mobile 10 computation times 

look similar, a statistical analysis can be performed to 

determine if there are significant differences between 

them. Firstly, an extended Shapiro-Wilk test [33] was 

conducted in order to assess the normal distribution of 

both samples. Table 5 and Table 6 show the findings of 

this test at the significance level of 0.05. The null 

hypothesis, H0, in each case is set as “the computation 

times of a given benchmark-function evaluation on a 

mobile device are normally distributed”.    
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Table 2. Tested benchmark functions. 

Benchmark 

function
Equation

Ackley

(8)

Recommended values a = 20, b = 0.2, c = 2	
Global Minimum f(x*) = 0, at x* = (0, …, 0)
Search domain xi ϵ [–32,768, 32768]

Goldstein-Price
(11)

Minimum f(x*) = 3, at x* = (0, –1)
Search domain xi ϵ [–2, 2]

Rastrigin
(10)

Minimum f(x*) = 0, at x* = (0, …, 0)
Search domain xi ϵ [–5.12, 5.12]

Rosenbrock
(12)

Minimum f(x*) = 0, at x* = (1, …, 1)
Search domain xi ϵ [–5, 10]

Rotated 

Hyper-

Ellipsoid

(13)

Minimum f(x*) = 0, at x* = (0, …, 0)
Search domain xi ϵ [–65.536, 65.536]

Sphere

(13)

Minimum f(x*) = 0, at x* = (0, …, 0)
Search domain xi ϵ [–5.12, 5.12]

Sum Squares
(13)

Minimum f(x*) = 0, at x* = (0, …, 0)
Search domain xi ϵ [–5.12, 5.12]

 

W* stands for the observed test statistic value. As can be 

seen, the statistical test clearly indicates that all 

benchmark-function evaluations on both mobile OS 

follow a normal distribution because our proposed null 

hypothesis is accepted, as p(W*) > 0.05 in all cases. 

Secondly, a Bartlett's test for variances homogeneity 

[34] can be performed. In this case, our null hypothesis, 

H0, is set as “The variances of two samples of given 

benchmark-function evaluations running on different 

mobile OS devices are homogeneous”.  

 
 

Table 3. Relevant specifications of the smartphones used in the analysis.

Model
Brand Mobile OS Chipset CPU Memory

Lumia 930 Nokia Windows 
Mobile 10

Qualcomm MSM8974 
Snapdragon 800 Quad-core 2.2 GHz Krait 400 2 GB RAM

Nexus 5 LG Android 6.0 Qualcomm MSM8974 
Snapdragon 800 Quad-core 2.3 GHz Krait 400 2 GB RAM

iPhone 5s Apple iOS 8.4 Apple A7 Dual-core 1.3 GHz Cyclone (ARM v8) 1 GB RAM
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Figure 1. Solution structure of the PSO mobile application.

Figure 2. Solution structure of the PSO mobile application. 

Figure 3. PSO app running on a Lumia 930. 

Figure 4. PSO app running on a LG Nexus 5. 
 

Table 4. Average (mean) computation time (in miliseconds) 

taken by each mobile device to evaluate PSO using a 

benchmark function. 

Benchmark

Function
Android W10 iOS

Ackley 1496.77 711.696 742.21

Goldstein-Price 1205.98 457.78 432.64

Rastrigin 1482.86 685.69 697.83

Rosenbrock 1895.84 1433.79 1452.47

Rotated 3002.09 2774.83 2608.03

Sphere 1368.26 666.28 682.59

Sum Squares 1389.05 617.17 603.72

 

Table 5. Shapiro-Wilk test for normal distribution of mean 

computation times (in miliseconds) in Windows 10 device. 

Function Mean W* p-value

H0:

p >

0.05?

Ackley 711.70 0.99825 0.4012 Yes

Goldstein-
Price 457.78 0.99855 0.5887 Yes

Rastrigin 685.69 0.99734 0.09953 Yes

Rosenbrock 1433.8 0.99791 0.2471 Yes

Rotated 2774.8 0.99856 0.5924 Yes

Sphere 666.28 0.99759 0.1505 Yes

Sum Squares 617.17 0.997 0.05737 Yes
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Table 6. Shapiro-Wilk test for normal distribution of mean 

computation times (in miliseconds) in iOS device.  

Function Mean W* p-value

H0:

p >

0.05?

Ackley 742.21 0.99787 0.2324 Yes

Goldstein-
Price 432.64 0.99897 0.8563 Yes

Rastrigin 697.83 0.99788 0.2367 Yes

Rosenbrock 1452.47 0.99815 0.3528 Yes

Rotated 2608.03 0.99785 0.2255 Yes

Sphere 682.59 0.99769 0.1758 Yes

Sum Squares 603.72 0.99799 0.2787 Yes

 

For example, we want to test whether the evaluations 

of the Ackley function in Windows Mobile 10 have the 

same variance as the evaluations of the same benchmark 

function in iOS or not. Table 7 outlines the variances of 

each benchmark function per mobile device as well as the 

Bartlett’s test at the 0.05 significance level, with one 

degree of freedom (k – 1 = 1, where k is the number of 

samples, in this case, 2), i.e., 
0.95, 1 = 3.8414. B* stands 

for the observed test statistic value. As can be seen from 

the table, the test clearly indicates that all except one pair 

of benchmark-function evaluations on both mobile OS, 

namely the Rotated-function evaluation, don’t have 

homogeneous variances because our proposed null 

hypothesis is rejected, as 
0.95, 1 > B* in 6 out of 7 cases. 

In other words, only the variances of the Rotated-function 

comparison between iOS and Windows Mobile 10 are 

homogeneous. 

Table 7. Bartlett’s test for variances homogeneity of 

computation times (in miliseconds). 

Benchmark

function

Variance

W10

Variance

iOS
B*

H0:



0.95, 1
> B*?

Ackley 159.6535 289.12 100.99 No

Goldstein-
Price 664.7554 1352.602 169.52 No

Rastrigin 311.917 218.3957 40.683 No

Rosenbrock 2477.584 5458.145 91.039 No

Rotated 1847.163 1578.721 0.48789 Yes

Sphere 348.5762 271.1668 30.404 No

Sum 
Squares 1310.597 1759.304 9.9097 No

 

In order to use the Analysis of Variance (ANOVA) 

statistical test between the running times in each mobile 

OS device, there are two assumptions for the populations: 

first, they have to follow a normal distribution; second, 

their variances have to be similar. On the one hand, the 

previous Shapiro-Wilk test proved that the first 

requirement is accomplished. On the other hand, the 

aforementioned Bartlett’s test demonstrated that the 

second condition is not met, though. For that reason, a 

non-parametric Friedman statistical test [35] can be used 

to detect differences between our samples. Table 8 

outlines the results of the Friedman test at the 0.05 

significance level with one degree of freedom (k – 1 = 1, 

where k is the number of samples, in this case, 2). This 

test also relies on the chi-square critical value, i.e., 
0.95, 1 
= 3.8414. Our null hypothesis, H0, for each case is set as 

“there is no significant difference between Windows 

Mobile 10 and iOS evaluations of a given benchmark 

function“. As shown in the previous table, the null 

hypothesis is certainly accepted in all evaluations, 

meaning that there is no significant difference between 

the computation times of the benchmark-function 

evaluations in both mobile OS. 

Table 8. Friedman test for benchmark-functions running times 

in each mobile OS device. 

Benchmark 

function
Q* H0: 
0.95, 1 > Q*?

Ackley 0.784 Yes

Goldstein-
Price 0.4 Yes

Rastrigin 0.256 Yes

Rosenbrock 0.576 Yes

Rotated 0.004 Yes

Sphere 0.016 Yes

Sum Squares 0.064 Yes

5 Conclusion

Smartphone applications require a careful management of 

resources in order to provide a proper user-experience. 

Despite of the fact that huge workloads are often assigned 

to servers, mobile devices are also capable of accepting 

time-consuming tasks which most of the time run in the 

background as the response time of a mobile app should 

be fast. In this study, we implemented Particle Swarm 

Optimization algorithm in order to test and compare their 

performance when being executed on three devices with 

different mobile OS, namely Android, iOS and Windows 

Mobile 10. Our findings show that Android got the worst 

performance, while a statistical analysis of iOS and 

Windows Mobile 10 computation times revealed that 

there was no significant difference between them. Future 

research will be focused on implementing PSO in Java 

and Swift, which are Android and iOS programming 

languages used for developing native apps respectively. 

Further, another statistical comparison of both the native 

and the C#-cross-platform current implementation in 

Xamarin that was shown in this paper can be done in 

terms of computation time and performance. 
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