
a Corresponding author: beltran_prieto@fai.utb.cz

A time performance comparison of particle swarm optimization in mobile
devices

Luis Antonio Beltrán Prieto1,a, Zuzana Komínkova-Oplatková1, Rubén Torres Frías2 and Juan Luis Escoto Hernández2
1Faculty of Applied Informatics, Department of Informatics and Artificial Intelligence, Tomas Bata University in Zlín, Nad Stráněmi
4511,76005 Zlín, Czech Republic
2Department of Systems and Computing, Technological Institute of Celaya, Av. Tecnológico y A. García Cubas S/N, 38010, Celaya, México

Abstract. This paper deals with the comparison of three implementations of Particle Swarm Optimization (PSO),
which is a powerful algorithm utilized for optimization purposes. Xamarin, a cross-platform development software,
was used to build a single C# application capable of being executed on three different mobile operating systems (OS)
devices, namely Android, iOS, and Windows Mobile 10, with native level performance. Seven thousand tests
comprising PSO evaluations of seven benchmark functions were carried out per mobile OS. A statistical evaluation of
time performance of the test set running on three similar devices –each running a different mobile OS– is presented
and discussed. Our findings show that PSO running on Windows Mobile 10 and iOS devices have a better
performance in computation time than in Android.

1 Introduction

The aim of this paper is to compare the performance of
three implementations of a single C# mobile application
which examines the Particle Swarm Optimization (PSO)
algorithm running on three mobile devices, each with a
different mobile operating system installed, specifically
Android, iOS, and Windows Mobile 10. One thousand
simulations of PSO evaluating seven benchmark
functions were carried out per mobile OS, thus 21, 000
tests were performed in total. Xamarin platform made it
possible to develop a single application in C# and deploy
it to different mobile OS devices.

Smartphones are multitasking mobile devices in
which installed applications should have an efficient use
of resources, including CPU, memory, and sensors, in
order to increase performance and maximize their battery
life. Most of the time, if a mobile application is slow or
consumes too many resources, e.g. mobile data, battery,
or storage, it is either uninstalled from the mobile device
or scored with a low review by the user in the mobile app
store. Moreover, decision-making applications, such as
travel destination recommenders and games, are may
require intensive computing in order to get the best
choice, or at least an optimal one. Even though most of
the time a more powerful device, e.g., a server, deals with
this task –giving the mobile device the assignment of
only presenting the results to the user–, sometimes the
mobile device requires to process information on its own,
with no aid of external server. In other words, dealing
with data and finding the best choice among different

options are problems which mobile applications are not
excluded to solve.

PSO is an optimization technique developed by
Kennedy and Eberhart [1] inspired by the collective
behaviour of animal groups, such as swarms of insects, in
order to build a swarm of particles, i.e., a set of candidate
solutions which flow through the parameter space
generating trajectories driven by the best individuals. The
initial population (swarm) consists of random solutions
(particles) for the problem and is considered as a
population of homogeneous agents which interact locally
with other individuals without any central control. As a
result, collective behaviour is generated, thus evolution
relies on cooperation and competition among individuals
through the different epochs (generations). Each particle
defines trajectories in the parameter space according to a
motion function which is affected by velocity, inertia,
cognitive coefficient and social coefficient. The objective
is to find the global best solutions by stochastic weighting
of the aforementioned elements. The process is iterative
until a stopping criterion is met.

Xamarin Platform is a mobile application
development tool used to build native and cross-platform
applications which can be deployed to Android, iOS, and
Windows Mobile devices with native-level performance,
native user interface, and a full access to the APIs of each
platform. These applications are written once in C#
language, sharing the same code across multiple mobile
operating systems. Not only the business logic can be
shared when building a mobile application with Xamarin,
but also the user interface can be distributed by writing it
either in C# or in eXtensible Application Markup

DOI: 10.1051/04029 (2016) matecconf/2016MATEC Web of Conferences 7607

2016

,6

CSCC

4029

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
 License 4.0 (http://creativecommons.org/licenses/by/4.0/).

Language (XAML). When deployed and tested into a
specific platform, the application presents a native user
interface, e.g., a Xamarin.Forms.Button is depicted as a
UIButton on iOS, as an Android.Widget.Button on
Android, and as a System.Windows.Controls.Button on
Windows Mobile devices.

This paper is organized as follows. In the first section,
a theoretical background on smartphones, particle swarm
optimization, and Xamarin platform is presented.
Afterwards, the methods and methodology that was used
for this comparison are described. Then, evaluation
results, statistical comparison and discussion are
presented together. Finally, conclusions are shown at the
end of the paper.

2 Background information

Smartphones are an important lifestyle device. There are

almost 3.5 billion of smartphone subscriptions worldwide

[2], and the trend is expected to double in size in the next

lustrum. People use their smartphones on a daily basis in

order to make their lives easier anytime and anywhere,

for example, online purchases can be done while

commuting thanks to a mobile application, thus it is not

necessary to wait until a destination is reached and then

use a PC. Another example of the advantages given by a

smartphone is that it allows people to be communicated

all the time.

Despite of the fact that smartphones are limited
devices, they offer a PC user-experience, that is, they
provide capabilities such as multitasking, video
streaming, audio streaming, and web browsing, among
others [3]. Therefore, they can be used intensively
through the day while requiring a substantial usage of
resources in order to work. When there are many
applications working in the background, available
memory can be significantly reduced. As a consequence,
the smartphone’s usability isn’t user-friendly. In order to
overcome this problem, the dispatcher, which is a
privileged component of the operating system, terminates
low-priority applications and frees resources until it
determines that the available memory is enough to
continue working. Moreover, battery life can be drained
faster if there are too many programs running
concurrently or if an application does not perform
optimally. If a mobile app is killed by the dispatcher, it is
not guaranteed that it would be properly closed as it
didn’t complete its lifecycle, so non-stored information
will be lost and unrecoverable.

Artificial Intelligence (AI) algorithms, methods and

techniques can be applied to build smart applications

which delivers valid results to a user’s request [4]. For

instance, a geospatial analysis can be obtained by

combining the use of geometric design with sensors and

components from a smartphone, such as GPS,

accelerometer, and camera [5]. Moreover, a deep learning

neural network can perform effective human activity

recognition with the aid of smartphone sensors [6].

Furthermore, Genetic Programming (GP) has been used

to create a customized smartphone user-experience [7].

As can be seen, AI methods provide solutions for today’s

mobile world challenges.

2.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an example of

stochastic optimization inspired by the social behaviour

of animal groups [8]. Initially developed by Kennedy and

Eberhart in 1995 [1], this technique has proven to be

effective for neural networks weight calculation [9],

business optimization [10], and parameter estimations

[11]. Both behaviour and efficiency of the algorithm rely

on the parameters shown in Table 1 [1]. Meta-

optimization of the parameters has been used to tune

them and find the best values which benefit PSO’s

performance in particular scenarios [12-15].

Table 1. Particle Swarm Optimization parameters.

Parameter Meaning Typical Range [8]

�� Inertia weight [0.8, 1.2]

c1
Cognition learning

rate
[0, 4]

c2 Social learning rate [0, 4]

N Number of particles [20-40]

The algorithm works as follows: First, a population of

random N candidate solutions {x1, x2,…, xN} is generated.

Each individual is an N-dimensional vector (N > 1) with

values within the problem bounds. Moreover, each

particle contains a velocity vector vi, which is also

randomly initialized. By performing fitness evaluation,

the best position at the moment, bi, is obtained for each

individual along with the best global position hi. The

iterative process starts by generating two random values,

r1, r2, which are used to update each particle’s velocity

and position according to equations (1) and (2),

respectively:

 � � � �
iiiiii

xhrcxbrcvv ����� 2211 � (1)

iii

vxx �� (2)

Fitness evaluation is performed again in order to

determine both the best position for each particle and the

best global particle. The iterative process is repeated until

a stopping criterion, such as a predetermined number of

generations, is met. There are several variants of the PSO

algorithm [16]. For instance, vi in (1) is not affected by �

in the original version of the algorithm. Another variation

consider the initialization of the particles as the most

important element in order to improve the performance of

the algorithm [17]. Opposition-based learning, a term that

describes an individual’s exact contrary, has also been

considered as an enhanced variant of PSO which

accelerates convergence [18-20] by replacing individuals

which are far to the optimal solution by their opposite,

which is closer in distance to the solution.

DOI: 10.1051/04029 (2016) matecconf/2016MATEC Web of Conferences 7607

2016

,6

CSCC

4029

2

2.2 Xamarin Platform

Xamarin is a novel cross-platform mobile application

development tool which can be used to build native

Android, iOS and Windows applications that rely on a

shared C# codebase. One of the main advantages of

Xamarin is that allows developers to write an application

once and deploy it to different mobile OS platforms

without having to rewrite it in an completely different

programming language, operating system or application

programming interface (API) [21]. Even though all the

platforms share similarities, such as graphical user

interface (GUI) presentation, device sensors, and gestures

interaction, each of them incorporates many differences,

including navigation, user-experience, and fragmentation

[22]. Xamarin’s development of cross-platform solutions

is possible mainly because of the Mono project, an open-

source implementation of Microsoft’s .NET Framework

that can run on Linux, Windows, and Mac OS X [23]

which is considered as the core of Xamarin, comprising

three sets of .NET libraries: Xamarin.Mac, Xamarin.iOS,

and Xamarin.Android. Xamarin.Forms (XF) allows

developers to write code capable of being compiled and

deployed to mobile devices, regardless of their OS. A

basic XF application contains separate projects per

desired target mobile platform -currently, Android, iOS,

Windows Phone 8.1, Windows 8.1, and Universal

Windows Platform platforms are supported [24]- plus

another project which contains the common code that will

be compiled and used at runtime by each specific

platform together with the code contained in the project

platform. Both the user-interface (UI) and the business

logic (BL) can be developed in C# language, while

eXtensible Application Markup Language (XAML) can

also be used for the UI. On the one hand, the UI refers to

the views or controls that will be shown on the device

screen. On the other hand, the BL includes all the

functionality of the application. It is also worth

mentioning that platform-specific code can be added to

the project to address key platform differences, such as

screen sizes, navigation issues and push notifications, and

device differences, for instance, sensors functionality,

social networks interaction, and geo-location support.

3 Methods and methodology

The objective of this experiment is to evaluate the

performance of an implementation of the Particle Swarm

Optimization algorithm running on 3 smartphones with

different mobile OS each (Android, iOS, and Windows

Mobile) which evaluates 7 well-known benchmark

functions for optimization (Ackley [25], Goldstein-Price

[26], Rastrigin [27], Rosenbrock [28], Rotated Hyper-

Ellipsoid [29], Sphere [30] and Sum Squares [31]). Table

2 provides a brief overview of the tested benchmark

functions, while Table 3 outlines the relevant

specifications of the 3 mobile devices [32] used for the

analysis. Except for the Goldstein-Price function, which

by definition operates only in a 2-dimensional space, all

benchmarks were evaluated in a 10-dimensionall space

A C# version of the PSO algorithm was programmed

and included in a mobile application developed with

Xamarin platform using the Visual Studio Community

2015 IDE. Figure 1 shows the structure of the solution.

Four projects were included in the solution. The first one,

PSO, contains all the shared code. The other three,

PSO.Droid, PSO.iOS, and PSOUWP represent the

specific projects that were deployed to the particular

mobile OS, namely Android, iOS, and Windows 10,

respectively. It is worth mentioning that no code was

added to the three projects due to Xamarin’s code-sharing

leveraging technique.

In all cases, � = 0.729, N = 40, c1 = 1.49445, c2 =

1.49445 values were used. For the benchmark functions,

the search domain was set for the range indicated in

Table 2. Finally, during the experiment, each mobile had

neither processes working in the background nor

background services and sensors active, except for the

PSO mobile application developed in Xamarin and the

Wi-Fi signal because the computation times were sent to

an Azure SQL cloud database for further analysis.

One thousand simulations of the Particle Swarm

Optimization full algorithm per benchmark function

evaluation and per mobile OS were carried out, i.e., each

time a new random initial population was generated and

evolved in order to solve a benchmark function. Figure 2

depicts the process of a single run of the app in each

device, while Figures 3 and 4 show the application being

executed on Windows Mobile 10 and Android devices,

respectively.

4 Results and discussion

The findings of the analysis are summarised in Table 4. A

comparison of the average running time of 1000

simulations of PSO evaluating one benchmark function at

a time on a mobile device is presented. The best (fastest)

results in each case are marked in bold, while the worst

ones are shown in italics. On the one hand, it is clearly

seen that the Android device was far outperformed by

both iOS and Windows Mobile 10 devices approximately

two times, except for Rosenbrock and Rotated functions,

in which average times are closer. On the other hand, the

iOS and Windows Mobile 10 devices had similar

performances in terms of time, with the latter being the

fastest in 4 out of the 7 benchmark evaluations.

As iOS and Windows Mobile 10 computation times

look similar, a statistical analysis can be performed to

determine if there are significant differences between

them. Firstly, an extended Shapiro-Wilk test [33] was

conducted in order to assess the normal distribution of

both samples. Table 5 and Table 6 show the findings of

this test at the significance level of 0.05. The null

hypothesis, H0, in each case is set as “the computation

times of a given benchmark-function evaluation on a

mobile device are normally distributed”.

DOI: 10.1051/04029 (2016) matecconf/2016MATEC Web of Conferences 7607

2016

,6

CSCC

4029

3

Table 2. Tested benchmark functions.

Benchmark

function
Equation

Ackley

(8)

Recommended values a = 20, b = 0.2, c = 2	
Global Minimum f(x*) = 0, at x* = (0, …, 0)
Search domain xi ϵ [–32,768, 32768]

Goldstein-Price
(11)

Minimum f(x*) = 3, at x* = (0, –1)
Search domain xi ϵ [–2, 2]

Rastrigin
(10)

Minimum f(x*) = 0, at x* = (0, …, 0)
Search domain xi ϵ [–5.12, 5.12]

Rosenbrock
(12)

Minimum f(x*) = 0, at x* = (1, …, 1)
Search domain xi ϵ [–5, 10]

Rotated

Hyper-

Ellipsoid

(13)

Minimum f(x*) = 0, at x* = (0, …, 0)
Search domain xi ϵ [–65.536, 65.536]

Sphere

(13)

Minimum f(x*) = 0, at x* = (0, …, 0)
Search domain xi ϵ [–5.12, 5.12]

Sum Squares
(13)

Minimum f(x*) = 0, at x* = (0, …, 0)
Search domain xi ϵ [–5.12, 5.12]

W* stands for the observed test statistic value. As can be

seen, the statistical test clearly indicates that all

benchmark-function evaluations on both mobile OS

follow a normal distribution because our proposed null

hypothesis is accepted, as p(W*) > 0.05 in all cases.

Secondly, a Bartlett's test for variances homogeneity

[34] can be performed. In this case, our null hypothesis,

H0, is set as “The variances of two samples of given

benchmark-function evaluations running on different

mobile OS devices are homogeneous”.

Table 3. Relevant specifications of the smartphones used in the analysis.

Model
Brand Mobile OS Chipset CPU Memory

Lumia 930 Nokia Windows
Mobile 10

Qualcomm MSM8974
Snapdragon 800 Quad-core 2.2 GHz Krait 400 2 GB RAM

Nexus 5 LG Android 6.0 Qualcomm MSM8974
Snapdragon 800 Quad-core 2.3 GHz Krait 400 2 GB RAM

iPhone 5s Apple iOS 8.4 Apple A7 Dual-core 1.3 GHz Cyclone (ARM v8) 1 GB RAM

DOI: 10.1051/04029 (2016) matecconf/2016MATEC Web of Conferences 7607

2016

,6

CSCC

4029

4

Figure 1. Solution structure of the PSO mobile application.

Figure 2. Solution structure of the PSO mobile application.

Figure 3. PSO app running on a Lumia 930.

Figure 4. PSO app running on a LG Nexus 5.

Table 4. Average (mean) computation time (in miliseconds)

taken by each mobile device to evaluate PSO using a

benchmark function.

Benchmark

Function
Android W10 iOS

Ackley 1496.77 711.696 742.21

Goldstein-Price 1205.98 457.78 432.64

Rastrigin 1482.86 685.69 697.83

Rosenbrock 1895.84 1433.79 1452.47

Rotated 3002.09 2774.83 2608.03

Sphere 1368.26 666.28 682.59

Sum Squares 1389.05 617.17 603.72

Table 5. Shapiro-Wilk test for normal distribution of mean

computation times (in miliseconds) in Windows 10 device.

Function Mean W* p-value

H0:

p >

0.05?

Ackley 711.70 0.99825 0.4012 Yes

Goldstein-
Price 457.78 0.99855 0.5887 Yes

Rastrigin 685.69 0.99734 0.09953 Yes

Rosenbrock 1433.8 0.99791 0.2471 Yes

Rotated 2774.8 0.99856 0.5924 Yes

Sphere 666.28 0.99759 0.1505 Yes

Sum Squares 617.17 0.997 0.05737 Yes

DOI: 10.1051/04029 (2016) matecconf/2016MATEC Web of Conferences 7607

2016

,6

CSCC

4029

5

Table 6. Shapiro-Wilk test for normal distribution of mean

computation times (in miliseconds) in iOS device.

Function Mean W* p-value

H0:

p >

0.05?

Ackley 742.21 0.99787 0.2324 Yes

Goldstein-
Price 432.64 0.99897 0.8563 Yes

Rastrigin 697.83 0.99788 0.2367 Yes

Rosenbrock 1452.47 0.99815 0.3528 Yes

Rotated 2608.03 0.99785 0.2255 Yes

Sphere 682.59 0.99769 0.1758 Yes

Sum Squares 603.72 0.99799 0.2787 Yes

For example, we want to test whether the evaluations

of the Ackley function in Windows Mobile 10 have the

same variance as the evaluations of the same benchmark

function in iOS or not. Table 7 outlines the variances of

each benchmark function per mobile device as well as the

Bartlett’s test at the 0.05 significance level, with one

degree of freedom (k – 1 = 1, where k is the number of

samples, in this case, 2), i.e.,
0.95, 1 = 3.8414. B* stands

for the observed test statistic value. As can be seen from

the table, the test clearly indicates that all except one pair

of benchmark-function evaluations on both mobile OS,

namely the Rotated-function evaluation, don’t have

homogeneous variances because our proposed null

hypothesis is rejected, as
0.95, 1 > B* in 6 out of 7 cases.

In other words, only the variances of the Rotated-function

comparison between iOS and Windows Mobile 10 are

homogeneous.

Table 7. Bartlett’s test for variances homogeneity of

computation times (in miliseconds).

Benchmark

function

Variance

W10

Variance

iOS
B*

H0:

0.95, 1
> B*?

Ackley 159.6535 289.12 100.99 No

Goldstein-
Price 664.7554 1352.602 169.52 No

Rastrigin 311.917 218.3957 40.683 No

Rosenbrock 2477.584 5458.145 91.039 No

Rotated 1847.163 1578.721 0.48789 Yes

Sphere 348.5762 271.1668 30.404 No

Sum
Squares 1310.597 1759.304 9.9097 No

In order to use the Analysis of Variance (ANOVA)

statistical test between the running times in each mobile

OS device, there are two assumptions for the populations:

first, they have to follow a normal distribution; second,

their variances have to be similar. On the one hand, the

previous Shapiro-Wilk test proved that the first

requirement is accomplished. On the other hand, the

aforementioned Bartlett’s test demonstrated that the

second condition is not met, though. For that reason, a

non-parametric Friedman statistical test [35] can be used

to detect differences between our samples. Table 8

outlines the results of the Friedman test at the 0.05

significance level with one degree of freedom (k – 1 = 1,

where k is the number of samples, in this case, 2). This

test also relies on the chi-square critical value, i.e.,
0.95, 1
= 3.8414. Our null hypothesis, H0, for each case is set as

“there is no significant difference between Windows

Mobile 10 and iOS evaluations of a given benchmark

function“. As shown in the previous table, the null

hypothesis is certainly accepted in all evaluations,

meaning that there is no significant difference between

the computation times of the benchmark-function

evaluations in both mobile OS.

Table 8. Friedman test for benchmark-functions running times

in each mobile OS device.

Benchmark

function
Q* H0:
0.95, 1 > Q*?

Ackley 0.784 Yes

Goldstein-
Price 0.4 Yes

Rastrigin 0.256 Yes

Rosenbrock 0.576 Yes

Rotated 0.004 Yes

Sphere 0.016 Yes

Sum Squares 0.064 Yes

5 Conclusion

Smartphone applications require a careful management of

resources in order to provide a proper user-experience.

Despite of the fact that huge workloads are often assigned

to servers, mobile devices are also capable of accepting

time-consuming tasks which most of the time run in the

background as the response time of a mobile app should

be fast. In this study, we implemented Particle Swarm

Optimization algorithm in order to test and compare their

performance when being executed on three devices with

different mobile OS, namely Android, iOS and Windows

Mobile 10. Our findings show that Android got the worst

performance, while a statistical analysis of iOS and

Windows Mobile 10 computation times revealed that

there was no significant difference between them. Future

research will be focused on implementing PSO in Java

and Swift, which are Android and iOS programming

languages used for developing native apps respectively.

Further, another statistical comparison of both the native

and the C#-cross-platform current implementation in

Xamarin that was shown in this paper can be done in

terms of computation time and performance.

DOI: 10.1051/04029 (2016) matecconf/2016MATEC Web of Conferences 7607

2016

,6

CSCC

4029

6

Acknowledgement

This work was supported by the Ministry of Education,

Youth and Sports of the Czech Republic within the

National Sustainability Programme project No. LO1303

(MSMT-7778/2014) and also by the European Regional

Development Fund under the project CEBIA-Tech No.

CZ.1.05/2.1.00/03.0089, further it was supported by

Grant Agency of the Czech Republic—GACR 588

P103/15/06700S and by Internal Grant Agency of Tomas

Bata University in Zlin under the project No.

IGA/CebiaTech/2016/007.

References

1. J. Kennedy, R. C. Eberhart. Proceedings of IEEE

Int’l. Conf. on Neural Networks, pp. 1942-1948
(1995)

2. Ericsson 2016 Mobility Report.
http://www.ericsson.com/mobility-report [Online:
accessed 16-Abr-2016]

3. S. Li, S. Mishra. J. of Par. and Dist. Comp., (2016)
4. R. Malaka. Workshop Notes of AIMS200, pp. 5-6

(2000)
5. S. Higuera de Frutos, M. Castro. Transp. Res. Part C

Emerg. Technol. 38 (2014)
6. C. A. Ronao, S.-B. Cho. Expert Syst. Appl. 59, pp.

235-244 (2016)
7. P. Valencia, A. Haak, A. Cotillon, R. Jurdak. Appl

Soft Comput. 25 pp. 86-96 (2014)
8. X. Hu. Particle Swarm Optimization Home Page

http://www.swarmintelligence.org [Online: accessed
16-May-2016]

9. M. Meissner, M. Schmuker, G. Schneider, BMC
Bioinformatics 7, 125 (2006)

10. X. S. Yang, S. Deb, S. Fong. Proceedings of the 3rd

Int’l. Conf. NDT2011, pp. 53–66 (2011)
11. R. Susuki, F. Kawai, C. Nakazawa, T. Matsui, E.

Aiyoshi. Proceedings of SICE Annual Conf., pp.
1981-1988, (2008)

12. M. Schwaab, E. C. Biscaia Jr., J. L. Monteiro, J. C.
Pinto. Chem. Eng. Sci. 63, 1542–1552, (2008)

13. F. Marini, B. Walczak. J. Chemometr. 25, 366–374,
(2011)

14. A. N. Skvortsov. J. Chemometr. 28, 727–739, (2014)
15. Q. Shen, J.-H. Jiang, C.-X. Jiao, G.-L. Shen, R.-Q.

Yu. Eur. J. Pharm. Sci. 22, 145–152, (2004)
16. M. Imran, R. Hashim, N. E. A. Khalid. Procedia

Eng. 53, 491-496, (2013)
17. N. Q. Uy, N. X. Hoai, R. McKay, P. M. Tuan.

Proceedings of IEEE C EVOL COMPUTAT, pp.
1985-1992 (2007)

18. H. Jabeen, Z. Jalil, A.R Baig. Proceedings of

GECCO 2009, pp. 2047- 2052 (2009)
19. M. G. H. Omran, S.al-Sharhan. Proceedings of IEEE

SIS 2008, pp 16 (2008)
20. C. Zhang, Z. Ni, Z. Wu, L. Gu. Proceedings of

IFITA '09. pp. 325-330 (2009)
21. C. Petzold. Creating Mobile Apps with

Xamarin.Forms. Cross-platform C# programming

for iOs, Android, and Windows Phone. (Microsoft

Press, 2015)
22. S. Mansfield-Devine. Network Security, 2012, 10,

pp. 5-12 (2012)
23. Mono-Project. About Mono. http://www.mono-

project.com/docs/about-mono [Online: accessed 22-
Abr-2016]

24. Xamarin Inc. Xamarin + Universal Windows
Platform. https://developer.xamarin.com [Online:
accessed 24-Abr-2016]

25. D. H. Ackley. A Connectionist Machine for Genetic

Hillclimbing (Kluwer Academic Publishers, 1987)
26. P. Serra, A. F. Stanton, S. Kaisb. J Chem Phys, 106

pp. 7170–7177, (1997)
27. L. A. Rastrigin. In Theoretical Foundations of

Engineering Cybernetics Series (1974)
28. H. H. Rosenbrock. Comput. J., 3, 3, pp. 175–184

(1960)
29. A. K. Qin, V. L. Huang, P. Suganthan. IEEE Trans.

Evol. Computat. 13, 2, pp. 398-417 (2009).
30. D. Simon. Evolutionary Optimization Algorithms:

Biologically Inspired and Population-Based

Approaches to Computer Intelligence (Wiley, 2013)
31. G. A. Jones, J. M. Jones. Elementary Number Theory

(Springer SUMS, 1998)
32. GSMArena.com Finder. http://www.gsmarena.com

[Online: accessed 22-Abr-2016]
33. A. C. Elliott, W. A. Woodward. Statistical analysis

quick reference guidebook with SPSS examples.

(Sage Publications, 2007)
34. M. S. Bartlett. J R Stat Soc Ser A Stat Soc. 160, pp.

268–282 (1937)
35. M. Hollander, D. A. Wolfe. Nonparametric

Statistical Methods (John Wiley & Sons, 1973)

DOI: 10.1051/04029 (2016) matecconf/2016MATEC Web of Conferences 7607

2016

,6

CSCC

4029

7

