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Abstract. The paper is aimed at a comparative simulation study on three prospective ideas how to approximate a 
general exponential polynomial by another one having all its exponents in the exp-function as integer multiples of 
some real number. This work is motivated by spectral properties of neutral time-delay systems (NTDS) and the 
contemporary state of the knowledge about the spectrum of NTDS with commensurate delays which are characterized 
by the latter family of exponential polynomials. The three ideas are, namely, those: Taylor series expansion, the 
interpolation in points given by dominant roots estimates and the special extrapolation technique presented by the 
authors recently. The goal is to match dominant parts of both the spectra as close as possible. However, some 
properties from the so called strong stability point of view can not be, in principle, preserved. The presented 
simulation example demonstrates the accuracy and efficiency of all the methods.  

1 Introduction  
The characteristic quasipolynomial of a linear-time 
invariant time delay system (TDS) gives the fundamental 
information about the system’s dynamics; for instance, its 
zeros coincide (under some conditions) with system poles 
(i.e. eigenvalues) [1, 2]. Much effort has been made to 
analyse the infinite spectrum of TDS of retarded as well 
as neutral type (NTDS), mainly when the endeavour to 
decide about system stability and its dependence on 
particular delays’ values [3-8]. Compared to retarded 
ones, NTDS are much more advanced, tricky and 
intricate regarding spectral properties [1, 4, 9]. Namely, 
positions of vertical strips of poles are sensitive to 
infinitesimal delay changes, which give rise to the notion 
of strong stability [10, 11] that is affected i.a. by the 
rational dependence of delays [9]. 

These infinite vertical strips constitute the so called 
essential spectrum of a NTDS and they are 
unambiguously given by roots of the associated 
exponential polynomial [1]. While there are many 
analytical results on the (essential and whole) spectrum of 
systems with commensurate delays in the literature, see 
e.g. [6, 7], it is extremely difficult to find any exact laws 
for roots loci in the case of non-commensurate delays. 

The goal of this work should be to establish a bridge 
between these two spaces by design of some possible 
ways how to approximate an exponential polynomial 
with non-commensurate delays by that with 
commensurate ones – which can be then analyzed easier. 
The accuracy of the approximation is measured by the 
matching of a subset of both the essential spectra with the 
most dominant poles. Roots loci are computed and 

displayed by means of the (advanced) Quasi-polynomial 
mapping Rootfinder (QPmR) [12] which is available as 
the aqpmr function in MATLAB. 

We compare three methods in this contribution. As 
first, Taylor’s series expansions of approximating and 
approximated exponential polynomial in the dominant 
root estimation point can be made, which is equivalent to 
the derivatives’ equalities up to an appropriate order. As 
second, linear and quadratic extrapolation procedures 
based on the Taylor’s series expansion again can be used. 
As third, the interpolation idea is another natural way 
how to cope with the problem. We present and compare 
two possibilities of the selection of points for the 
interpolation. 

All these techniques require a sufficiently accurate 
estimation of dominant roots of the approximated 
exponential polynomial, which can be done e.g. by using 
our gridding algorithm [13]. Another problem is the 
selection of the value of the base delay for the 
commensuracy; hence, we provide the reader with a 
possible solution and give the comparison with some 
other options. Last but not least, obtained approximated 
roots do not constitute complex pairs due to complex-
valued coefficients. 

A simulation example preformed in the 
MATLAB/Simulink environment provides the reader 
with the comparison case study and it clearly indicates 
that some of the above introduced ideas are good enough 
for the approximation in question. 

Throughout the paper, � , � , �  and 0�  denote the 
sets of complex, real, integer and natural numbers, 
respectively. For ∈s � , sRe  denotes the real part of s. 
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2 Preliminaries  

2.1 NTDS spectrum 

Let the transfer function ( ) ( )sDsG /⋅=  of a NTDS have 
no common zeros and poles. Consider the corresponding 
monic characteristic quasipolynomial of a NTDS as 

 ( ) ( )� �= = −+= n
i

h
j ij

i
ij

n i ssdssD 0 0 exp τ  (1)  

where �∈ijd , 00 =iτ , ( ) L
nhn +∈= �τττ ,...,, 0201�  are 

general delays and � == n
i ihL 0 . The associated 

exponential polynomial reads 
( ) ( ) �∉−+= � =

nh
j njnja sdsD 1 exp1 τ  for some 0≠njd . 

Define the spectrum of the NTDS and its essential 
spectrum as 

 ( ){ } ( ){ }0::,0:: ==Σ==Σ sDssDs ae  (2) 

respectively. Then it holds that [4, 9]: 
• If there exists a nonzero pair ijd  for some i, j, then 

∞=Σ . 
• There exists a vertical chain of poles, Σ∈ks , at 

eΣ= Resup:γ  such that γ=∞→ kk sRelim , 
∞=∞→ kk sImlim  for kk ss <−1 . 

• Let Σ∈ks , ekes Σ∈, , with kk ss <−1 , keke ss ,1, <−  
then 0lim , =−∞→ kekk ss . 
• The value of γ  is not continuous with respect to � . 

Moreover, let us define some other useful notions. 
The spectral abscissa equals Σ= Resup:α . If every delay 
in (1) can be written as 0τλτ kk = , �∈kλ , for some 
(fixed) base delay 0τ , delays are called commensurate. 
This notion is often confused with the so called rational 
dependency. Nonzero delays Lτττ ,...,, 21  are rationally 
dependent if there exist nonzero �∈Lλλλ ,...,, 21  such 

that 01 =� = k
L
k kτλ  [14]. 

For commensurate delays, it is easy to see that if 
ees Σ∈0,  then  

 eeke
kss Σ∈±=

0
0,,

2i
τ

π  (3) 

for any �∈k . 

2.2 NTDS stability 
 

Regarding exponential stability, this notion coincides 
with the finite-dimensional case, i.e. a NTDS is 
exponentially stable if  1<α  (including the limit of 
infinite vertical chains); however, other habitual types of 
stability (asymptotic, H�, etc.) are much more 
complicated, see e.g. [6, 14]. Moreover, there exists a 

specific stability notion for NTDS – strong exponential 
stability – expressing that it remains 0<γ  under small 
delay perturbations; note that isolated roots with 

γ>Σ∈ksRe  are not considered in this definition. The 
system is strongly (exponentially) stable if and only if 

 1: 1 <=� =
nh

j njdξ  (4) 

Moreover it holds for NTDS with rationally 
independent delays that 0>ξ  implies strong instability 
[15]. Hence, from this point of view, the rational 
independency is a rather stronger notion compared to the 
rational dependency. Notice that condition (4) does not 
include delay values. 

Whereas the value of γ  is not continuous with respect 
to delay values, this relation holds for the safe upper 
bound estimation on γ  introduced e.g. in [12] as 

 ( )� = =−→∈ nh
j njnj cdc 1 1exp τ�  (5) 

In fact, the value of c calculated from (5) gives the 
relevant information about the exponential stability of 

( )sDa . 

3 Problem formulation and possible 
solutions 
As introduced above, there exist many results on the 
(essential) spectrum of NTDS with commensurate delays 
but only a few on non-commensurate ones. Therefore, 
our intention is to approximate ( )sDa  with a general 
vector �  by 

 ( ) ( )� = −+= max
1 0, exp1 k

k kAA skdsD τ  (6) 

where maxk  means the degree of commensuracy. Let us 
denote the spectrum of (6) as AiAs Σ∈,  and, analogously, 

the corresponding values γ̂ , ξ̂ , ĉ . 
Three possible ways how to cope with this task 

follow. 

3.1 Extrapolation method 

This idea stems from the discrete formulation of ( )sDA .  

Assume the substitution ( ) ϑτ qs →−exp  where 0/ττϑ =  
and the shifting operator q  corresponds to the variable 

1−z  from the z-transform. Hence, one can write 

 � �( ) ( )ϑϑϑ −+−− = ll zzz  (7) 

for some �∈l  where ϑ  means the non-integer 
fractional part. 

Then the Taylor’s series expansion of the factor ( )ϑ−lz  
of the order l  in a suitable point �∈0z  can be made. In 
[16] we have presented analytic result for the linear 
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( 1=l ) and quadratic case ( 2=l ); both of them are used 
in this study yet not displayed herein the paper. 

The dominant roots have the decisive impact to the 
dynamics. From one point of view, the rightmost poles 
coincide with the dominant ones. However, this is not the 
best conception for our case since there are infinitely 
many rightmost roots, see (3). Another idea is to measure 
the dominancy by the distance from the zero (i.e. the 
absolute value) which, however, is applicable to stable 
systems only. Thus, if �∈0s  expresses the dominant 
root, then  

 ( ) 0
0

0000 log1,exp zssz
τ

τ ==  (8) 

3.2 Taylor’s series expansion 

Consider Taylor’s series expansions ( )sT
aD  and ( )sT

AD  

of ( )sDa  and ( )sDA , respectively, of the order l . The 
identity ( ) ( )sTsT

Aa DD =  can also be expressed as 

 ( ) ( ) lisT
s

sT
s Aa Di

i

Di

i

...1,0,
d
d

d
d ==  (9) 

where derivatives are calculated in a suitable point 0s , 
for instance, again in the dominant root.  

Whenever there exists a number maxk  of unknown 
coefficients kAd ,  in (6), one can set 1max −= kl  (if linear 
algebraic equations (9) are independent) to get the 
unambiguous solution. 

3.3 Interpolation method 

Unknown coefficients of a prescribed ( )sDA  can be 
determined by the interpolation with ( )sDa  in the 
number of  1max −= kl  points is ,0  as  

 ( ) ( )iaiA sDsD ,0,0 = , li ...,2,1=  (10) 

Let us choose two options. As first, consider the 
infinite chain of the rightmost roots (3). As second, try to 
take roots estimates with the minimum modulus (except 
for those in the chain with a high imaginary part), see the 
last paragraph of 3.1. 

Due to (3), the exact imaginary parts can not be taken; 
otherwise, the set (10) would have no solution. Therefore, 
small deviations ri in the imaginary parts are made. 

3.4 Discussion on methods 

The crucial task is the option of the base delay 0τ . From 
the z-transform point of view, it has the meaning of the 
sampling period, the recommended value interval of 
which for a second order finite-dimensional system reads 

 [ ]1
0

1
00 5.0,2.0 −−= ssτ  (11) 

since 0s  agrees with the value of undumped oscillations 
frequency.  

Option (11) is faced with other values of 0τ  in the 
example below; hence, let us denote 

 �∈= 0
00

0 ,1 λ
λ

τ
s

 (12) 

On the other hand, it is a natural requirement that at 
least one delay in ( )sDa  has the same value as in ( )sDA , 
e.g. the smallest one, minτ , is an integer multiple of 0τ . 
Then we can set �∈= mn/min0 ττ , which gives rise to 
the optimization problem 

 
00

min 1argmin
snm

nm λ
τ −  (13) 

for some suitable selected real 0λ . 
Another issue to be touched is that all the above 

methods result in complex-valued coefficients of the 
eventual exponential polynomial. This i.a. implies that 
roots are not symmetrical to the real axis. Thus, in the 
example, we benchmark the option to take 0Re s  rather 
than 0s  in (7)-(10). 

Assume an exponential term in (6), ( )sτ−exp , and its 
linear approximation as 

 ( ) ( ) ( )( )skaskas kk 010 1expexpexp τττ +−+−≈− + (14) 

where ( ) 00 1τττ +<≤ kk  for some integer k . 
Since the linear extrapolation method is based on the 

Taylor’s series expansion, it can easily be deduced that 
this method coincides with (9) whenever the 
approximating exponential polynomial is constructed as 
in (14), see details in [16]. 

Apparently, strong stability condition (4) is not 
affected only if 11 =+ +kk aa ; however, it can be 
verified that it is satisfied only for 00 =s , i.e. 10 =z  
[16]. Another problem is that there is the transition from 
non-commensuracy to commensuracy that yields rational 
dependency. Therefore, condition (4) becomes less strict 
than in the case of rational independency. 

Last but not least, the approximation might be 
improved by the iterative use of the particular method via 
the re-calculation of the leading root estimation 0,0 Ass ≈ . 
Simply, the discretization described in the subsection 3.1 
is used to get a polynomial and it is followed by the use 
of the function to (8) to get the eventual As ,0 .  

4 Example 
Consider the following exponential polynomial to be 
approximated 

 ( ) ( ) �
�
�

�
	

−−−+= sssDa 3

2exp4.09.0exp0.51 π  (15) 
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We are going to present several numerical test below. 
Let the initial dominant root estimation simply be 00 =s . 
Since the imaginary part is “unknown” in this case, set 
the default value 9.00 =τ . In the interpolation method, 
let us set 01,0 =s , 12,0 −=s . Corresponding results 
without and with iterations are displayed in Figure 1 and 
Figure 2, respectively, in the form of the dominant subset 
of AΣ . 

 

Figure 1. eΣ , AΣ  for 9.00 =τ , 00 =s  ( 01,0 =s , 12,0 −=s ), 
non-iterative procedure. 
 

 
Figure 2. eΣ , AΣ  for 9.00 =τ , 00 =s  ( 01,0 =s , 12,0 −=s ), 
iterative procedure. 

 
In all figures of the paper, the legend is as follows: 

Roots of (15) are denoted by circles (�); those of the 
( )sDA  obtained by using the linear and the quadratic 

extrapolation method are denoted by crosses (x) and 
plusses (+), respectively, AΣ  from the Taylor’s series 
expansion is denoted by squares (�), and the interpolation 
method with the vertical chain of dominant roots is ,0  and 
the roots is ,0  with the minimum modulus give AΣ  
denoted by triangles ( ∇ , Δ ), respectively. 

Figures 1 and 2 clearly display very poor results 
where the non-iterative procedure has yielded the 

acceptable estimation of roots about 77.0Re −≈es . The 
iterative procedure has resulted in almost exact 
estimation of these roots (but also some more not 
included in the original spectrum); however, the 
dominant rightmost roots of aΣ  have not been 
approached at all (except for the last submethod). Note 
that results for the interpolation method with roots is ,0  in 
a vertical chain are not displayed since a part of the 
spectrum is quite far in the right half-plane. 

As the second experiment, we attempt to get better 
initial estimation by the simple linear extrapolation (14) 
where 1, +kk aa  express the closeness of τ  to 0τk  and 
( ) 01τ+k , respectively. The dominant roots for 9.00 =τ  
then read 

 
0.736792,10.471976i0.6269847

3.490659i + 0.6269847

2,02,0

1,00

−=+−=
−==

ss
ss

(16) 

Recall that last two values are the root estimate in the 
vertical chain and that with the second minimum 
modulus, respectively. The corresponding z-values via 
(8) are 0.5152450.568766, 2,02,01,00 ==== zzzz . Set 
the deviation in the imaginary part as 1.01 =r ; hence, 

 
0.05112i 0.566464
10.571976i0.626985

2,0

2,0

−−=
+−=

z
s

 

Results for 3/50 =λ  ( 18.00 =τ ), 10 =λ  ( 3.00 =τ ), 
3/10 =λ  ( 9.00 =τ ) and both non-iterative and iterative 

procedures are displayed in Figures 3 to 8. Clearly, the 
best one has been obtained for 3.00 =τ  where almost all 
the (sub)methods have given a very close spectrum 
estimation; however, it has not been proved that the 
iterative procedure should have given better results in 
terms of our example. Notice that the linear extrapolation 
method and Taylor series expansion for (14) yield the 
same spectra, as mentioned above. 

 

 
Figure 3. eΣ , AΣ  for 18.00 =τ , is ,0  given by (16), non-
iterative procedure. 
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Figure 4. eΣ , AΣ  for 18.00 =τ , is ,0  given by (16), iterative 
procedure. 
 
 

 
Figure 5. eΣ , AΣ  for 3.00 =τ , is ,0  given by (16), non-iterative 
procedure. 
 
 

 
Figure 6. eΣ , AΣ  for 3.00 =τ , is ,0  given by (16), iterative 
procedure. 
 

 

 
Figure 7. eΣ , AΣ  for 9.00 =τ , is ,0  given by (16), non-iterative 
procedure. 
 
 

 
Figure 8. eΣ , AΣ  for 9.00 =τ , is ,0  given by (16), iterative 
procedure. 
 

Due to complex-values coefficients in ( )sDA , spectra 
are asymmetrical with respect to the real axis. More 
precisely, non-displayed roots are distributed according 
to (3). To get real-values coefficients, let us perform the 
last experiment in which all interpolations and 
extrapolations are made in 0Re s  instead of 0s . However, 

0Im s  still plays a role in (12) and (13). With respect to 
the results from the experiment above, set 3.00 =τ  and 
select two methods: The linear extrapolation one and the 
interpolation method with is ,0  with the minimum 
modulus. The corresponding results are displayed in 
Figure 9 and Figure 10.  Although the distribution of AΣ  
in the complex plane is not as multifarious as in the 
previous experiment, positions of the roots give a very 
good estimation of eΣ . 

Eventual forms of ( )sDA  and some spectral and 
stability measures (see section 2) from the last two 
experiments for 3.00 =τ  are given to the reader in Table 
1. 
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Figure 9. eΣ , AΣ  for 3.00 =τ , is ,0  given by (16), real-valued 
coefficients in ( )sDA , non-iterative procedure. 
 

 
Figure 10. eΣ , AΣ  for 3.00 =τ , is ,0  given by (16), real-valued 
coefficients in ( )sDA , iterative procedure. 
 

Table 1. Resulting exponential polynomials and their measures. 

Method ( )sDA  α  ξ  c  

I 
( ) ( ) ( )

( ) ( )s
ss

1.2exp0.006943i  0.392229
8.1exp0.006181i + 0.0046139.0exp0.51

−−−+
−−+−+  – 0.107396 0.900007 – 0.072978 

I-R ( ) ( ) ( )sss 1.2exp0.388358.1exp0.0131089.0exp0.51 −−−−−+  – 0.110071 0.901457 – 0.071907 

II 
( ) ( ) ( )

( ) ( ) ( ) ( )ss
ss

4.2exp0.002917i+0.002021.2exp0.007073i0.399557
8.1exp0.003148i+0.002359.0exp0.51

−+−−−+
−−+−+

 
– 0.107396 0.907096 – 0.070089 

III 
( ) ( ) ( )

( ) ( )s
ss

1.2exp0.006943i  0.392229
8.1exp0.006181i + 0.0046139.0exp0.51

−−−+
−−+−+  – 0.107396 0.900007 – 0.072978 

IV 
( ) ( ) ( )

( ) ( )s
ss

1.2exp0.027388i  0.328624
8.1exp0.071838i + 0.0258239.0exp0.51

−−−+
−−+−+  – 0.107396 0.906101 – 0.069245 

V 
( ) ( ) ( )

( ) ( )s
ss

1.2exp0.003236i  0.392076
8.1exp0.004075i + 0.0078149.0exp0.51

−−−+
−−+−+  – 0.107395 0.900902 – 0.072278 

V-R ( ) ( ) ( )sss 1.2exp0.3913488.1exp0.0087449.0exp0.51 −−−−−+  – 0.107395 0.900092 – 0.072925 

 

In Table 1, method “I” and “I-R” means the linear 
extrapolation with complex- and real-valued coefficients, 
respectively; quadratic extrapolation method is denoted 
as “II”; the Taylor’s series expansion is denoted as 
method “III”; and the interpolation methods with is ,0  in a 
vertical chain and is ,0  with the minimum modulus are 
denoted as “IV” and “V”, respectively. Finally, the last 
one submethod giving real-valued coefficients is denoted 
as “V-R”. The original ( )sDa  as in (15) has 

0.107396−=α , 9.0=ξ , 0.072978−=c . 
All the methods give almost identical spectral 

abscissa that is, surprisingly, better than the original one. 
This is, however, due to the identified dominant root in 
the selected subset of the complex plane located left from 
the exact spectral abscissa. Another interesting result is 
given by method “II”: A relatively high value of ξ  and a 
low value of c . This is becase of a higher value of maxk . 

In general, strong stability becomes worse under the 
approximation. 

5 Conclusions 
Several possible methods of the characteristic exponential 
polynomial approximation for systems with neutral 
delays have been proposed and compared by an example.  
The goal has been to get commensurate delays for a 
simpler spectral properties determination. 

We have i.a. found that the simple linear extrapolation 
procedure gives satisfactory results and almost keeps 
basic spectral and (strong exponential) stability measures 
compared to the original; moreover, it coincides with 
Taylor series expansion with the linear delay expansion. 
Both the approximated and approximating spectra are 
matched best via the quadratic extrapolation method and 
the interpolation method that uses the dominant roots 
with the minimum modulus. On the contrary, the 
interpolation in points given by the vertical strip of roots 
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has given poor results. An idea how to obtain real-valued 
coefficients has also been given to the reader. 

In the future research, the natural extension of this 
work may lie in a complex commensurate or a finite-
dimensional approximation of the whole characteristic 
quasipolynomial. 
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