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Abstract. Discrete Model Predictive Control (MPC) became one of the most widespread modern control principles. 
Process controls with a finite number of admissible values are common in a large number of relevant applications. 
For this type of optimization problems, the computational complexity is exponential in the number of binary 
optimization variables. The solver is based on a standard branch-and-bound method and interior point method is used 
for solution of the relaxed problem. The simulation experiment involved controlling the temperature of a batch 
reactor by using two on/off input valves and a discrete-position mixing valve.  

1 Introduction  
Model Predictive Control (MPC) has become of the most 
widespread modern control strategies which have been 
successfully applied in many industrial applications. The 
idea of MPC is to determine an optimal control at the 
current time instant by solving an optimal control 
problem on a prediction horizon. The main reason for the 
wide-scale adoption of MPC is its ability to handle 
constraints on inputs and states that arise in most 
applications. MPC requires process model that allows it 
to react to future changes of the reference signal. MPC 
also naturally handles the multidimensional systems. 
Process controls with a finite number of admissible 
values are common in a large number of relevant 
applications. For example, chemical plants are equipped 
with valves that can be either open or closed. Hybrid 
systems represent a unified framework for modelling 
such processes that combine continuous and discrete 
dynamic with logical rules and appear in various 
applications like robotic systems and automotives.  
Bemporad and Morari [1] introduced a special class of 
hybrid systems called Mixed Logical Dynamical (MLD) 
systems. They can effectively model a variety of systems: 
hybrid automata, nonlinear systems with the nonlinearity 
represented by the piece-wise affine functions, linear 
systems with constraints, etc. The interest in hybrid 
systems has grown considerably during the last decade 
because of its potential impact on the industrial 
applications of control. Hybrid systems arise naturally in 
areas such as automotive systems [2], chemical systems 
[3] or power systems [4]. In all of these applications, 
there are several operation modes in the plant that justify 
the implementation of a hybrid MPC controller. 

MPC is a general approach for control of hybrid 
systems. However, the optimization problem is no longer 
quadratic programming (QP) problem but a Mixed-

Integer Quadratic Programming (MIQP) problem. The 
inclusion of integer variables turns the easily solved QP 
problem, into an NP-hard problem [2]. It has been 
demonstrated in the recent research that convex QP 
problem can be solved at high sampling rates on 
embedded computing platforms [5]. The main methods 
are tailored optimization methods for particular 
embedded platform. Several application of embedded 
MIQP solvers have been proposed in [6], [7].  Many 
methods have been developed for solution of the MIQP 
problem, however branch-and-bound method have 
proved superior to other methods such as decomposition 
method or logic-based method [8]. Authors in Ref [9] 
provide a review of computational methods of solving 
MIQP problems.   CPLEX and GUROBI represent a 
commercial optimization software that is able to solve the 
MIQP problems and also several toolboxes for MATLAB 
exists (OPTI Toolbox which uses SCIP solver [10], 
Hybrid toolbox [11]).  

In this paper, MLD approach is used for modelling 
and predictive control of a batch reactor as a switched 
linear system.  

2 Mixed logical dynamical systems  
The MLD modelling framework is based on the idea of 
translating logic relations, discrete/logic dynamics, A/D 
(analogue to digital (logic)), D/A conversion and logic 
constraints into mixed integer linear inequalities. These 
inequalities are combined with the continuous dynamical 
part, which is described by linear difference equations.   
The resulting MLD system is described by the following 
relations:  
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command inputs and may also contain continuous and 
binary  commands, �  and z are respectively auxiliary 
logical and continuous variables. The  auxiliary  variables   
are  introduced  when translating propositional logic into 
linear inequalities. In order to be well posed, the MLD 
system (1) must be such that for any given x(k) and u(k) 
the values of δ(k) and z(k) are defined uniquely. 

3 Predictive control of MLD systems 
In [12], Bemporad and Morari introduced a model 
predictive control of hybrid systems using mixed logical 
dynamical (MLD) system description and a mixed integer 
linear program solver. Assuming a quadratic cost 
function from the MLD model the optimization has the 
following form: 
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Subjected to equations which define the MLD system for 
N steps ahead predictions. The matrices 1 2 3 4, , ,Q Q Q Q   

are given weight matrices. This problem can be rewritten 
to a standard MIQP programing form: 
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where nc and ni define the numbers of continuous and 
integer variables,  H is a positive definite matrix, f is the 

n-dimensional vector. The n-dimensional vectors aj and cj 
and vectors b and d are used to set up the constraints. The 
numbers of equality and inequality constraints are 
specified with mec and mic, respectively. The equality and 
inequality constraints define a feasible region in which 
the solution to the problem must be located in order for 
the constraints to be satisfied. The optimization procedure 
of (3) leads to problems with the following optimization 
vector : 

 
[ (k),..., u(k N 1), (k),..., (k N 1),...

z(k),..., z(k N 1)]

x u � �� � � � �
� �

  (4) 

Mixed Integer Quadratic Program (MIQP) represents a 
non-convex optimization problem with quadratic 
objective function and linear constraints. The non-
convexity is caused by the fact that the optimized 
variables xi belong to the binary set. The only difference 
between the convex QP and MIQP is the presence of 
binary variables xi which makes system non-convex. 
Fortunately, for relaxed or fixed binary variables the 
problem becomes convex and can be solved using 
methods for convex optimization. In practice a 
constrained QP is usually solved either using an interior 
point method or an active set method.  

Active set method searches for optimum solution by 
scanning the boundary of the problem's feasible region. It 
moves from a point on the boundary to another point that 
has better value of the objective function. This process is 
repeated until the optimal solution is found. With the 
interior point method the solution that is obtained at each 
iteration never lies on the boundary of the feasible region. 
Interior point methods solve the general inequality 
constrained problem by converting it to an equality 
constrained problem. Solution is reached by solving KKT 
(Karush-Kuhn-Tucker) conditions of this problem. There 
are two famous types of interior point methods; Barrier 
method and Primal-Dual interior point method. Due to 
higher efficiency, the primal-dual interior method is used 
in the paper for the solution of the following problem: 
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where Ac is a mec x n matrix describing the equality 
constraints and Cc is a mic x n matrix describing the 
inequality constraints. bc and dc are mec x n and mic x n 
vectors respectively. 

The primal-dual method uses some variations to 
Newton methods. Newton's method is used to solve the 
KKT conditions of the constrained QP problem. The 
concept of Newton’s method is to calculate a direction 
that points toward improving the value of the objective 
function. The strategy is improved with methods like 
central path and path-following. These modifications 
improve the speed of convergence by allowing the 
algorithm to take large steps in the calculated search 
direction. 

Using a brute force approach to find the optimal 
solution all of the QPs (LPs) that are associated to all the 
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feasible combinations of the discrete decision variables 
would have to be solved. The solution of MIQP would be 
the minimum of the solutions of all these problems. For ni 
Boolean decision (input) variables, the number of 
possible QP (LP) problems is 2ni. 

Fortunately, efficient methods can be used for 
solution of this type of problem. Branch-and-bound has 
been the most used tool for solving large scale NP-hard 
combinatorial optimization problems since the  branch-
and-bound method is an order of magnitude faster than 
any of the other methods such as Generalized Benders 
Decomposition or Outer Approximation. The method is 
so fast due to the fact that that the QP subproblems are 
easy to solve.  For MATLAB, free software like 
YALMIP [13] can be used. At any time in the solution 
process, the status of the solution is given by a pool of yet 
unexplored subset of the solution space and by the best 
solution that has been found so far.  The algorithm 
dynamically generates a search tree, which initially 
contains only one node called the root. At each iteration 
of a classical branch-and-bound algorithm only one node 
that represents unexplored subspaces is processed. The 
iteration consists of two main components: selection of 
the next node to process and strategy for branching. The 
nodes that created via branching strategy are stored 
together with the bound of the currently processed node. 
The search stops when the pool of unexplored subset is 
empty and then the optimal solution is the one recorded 
as "current best". 

There are two basic node selection strategies for next 
node to proceed. The first one is best-first-search, where 
the next node is always the one with the lowest dual 
bound. However, this method has high storage 
requirements. The second type of node selection 
strategies is the depth-first-search where warm-starting 
can be successfully applied since the subproblems are 
similar and also number of unexplored nodes is low, so 
this method does not require a lot memory for nodes 
storage. Branching on a variable involves choosing the 
branching variable of the current optimal solution of the 
relaxed problem and then adding a constraint to it. The 
maximum fractional branching strategy is used in the 
solver and this method uses the variable with the highest 
fractional part for branching. The scheme of branch-and-
bound method is depicted in Figure 1. 

 

Figure 1.  Branch-and-bound algorithm. 

 

 

4 Relaxation of MIQP 
In order to reduce the complexity of MIQP the 
constraints of binary variables can be relaxed, i.e. binary 
variables are allowed to span over  the  continuous  
interval  [0,1]  and  the problem can be solved as  a  QP  
problem. In the receding horizon scheme only the first 
control action is applied so the later stages can be relaxed 
as result of trade-off of computation time for 
performance. For given prediction horizon Hp, after Hr 
(Hr<Hp) steps the binary variables are relaxed to the 
continuous interval [0,1].    

5 Simulation results 
The developed predictive controller was tested on a 
simulation example of a real batch reactor with the 
parameters from the paper [14]. The goal is to control the 
temperature of the ingredients stirred in the reactor core 
so that they synthesize into the final product. The main 
task is to control the temperature in the reactor as 
accurately as possible. A scheme of the batch reactor is 
shown in Figure 2. The reactor’s core (temperature T) is 
heated or cooled through the reactor’s water jacket 
(temperature Tw) in which there is a mixture of fresh 
input water, which enters the reactor through an on/off 
valve and reflux water. The dynamics of the system 
depend on the physical properties of the ingredients in the 
batch reactor’s core. The temperature of the fresh input 
water Tin depends on two inputs: the positions of the 
on/off valves kH and kC.  Only one of them can be open at 
a time. The ratio of fresh input water to reflux water is 
controlled by the mixing valve kM. There are six possible 
ratios that can be set by the mixing valve. The share of 
fresh input water can be either 0, 0.01, 0.02, 0.05, 0.1 or 
1. Therefore the system has two binary inputs, one input 
with six admissible values and two measurable outputs (T 
and Tw). Due to the dynamics of the process the sampling 
period was set to 10s.  

 

Figure 2.  Scheme of batch reactor. 

 
Hybrid linear model of the second order was 

developed in [15] by identification from the input –output 
data using the least-squares identification method. The 
model has the following form: 
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The set of possible input variables [kM kH kC]T is defined 
in  
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Using the HYSDEL  Toolbox  [16], problem (3) for 
the piece-wise affine system (6) is translated into a mixed 
integer quadratic program (MIQP), i.e., into the 
minimization of a quadratic cost function subject to linear 
constraints, where some of the variables are constrained 
to be binary or integer. The optimization problem is 
solved in the extended (x; u; z; �  ) space subjected to 
constraints, which increase the size of the problem 
dramatically.  
  
The weighting matrices were defined as follows: 
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The weighting matrix Q2 weights the event of 
changing fresh input water from hot to cool. The value 
was set higher than Q1 to prevent changes of valves kH 
and kC but low enough to allow the on/off valves to 
change when a reference step occurs. Q3 weights the error 
between the predicted temperatures and reference signals. 
The highest values of weights are set on the reactors core 
temperature T.    

The prediction of N = 4 was chosen as control and 
prediction horizon for batch reactor. The resulting 
optimization problem has 4 discrete variables (positions 
of the valve kM), 4 binary variables (position of the valve 
kH) and 8 continuous variables (auxiliary variables z)  and 
76 constraints. Either kC or kH can be open so the value of 
the kC is computed as the negation of kH. If all possible 

combinations of input signal were computed the 
solver would have to solve 20736 problems. 

 
4 46 2 20736M � �   (9) 

from which only 

 47 2401M � �   (10) 

are valid because only kM = 1 is allowed for cold water 
kC=1 as given in the value set (7).  Increasing the 
horizons may increase the performance of the controller, 
but it increases the complexity of the mixed-integer 
programming procedure. The choice of prediction 
horizon offers reasonable values in terms of performance 
and speed. The optimization was performed in MATLAB 
using the solver we developed in [17]] and extended from 
binary variables to integer variables. The optimization is 
computed in 200 ms to700 ms using a computer with 3 
GHz PENTIUM-4 processor and 8GB of RAM. In order 
to reduce the complexity of the problem only inputs 
related to the prediction horizon 2 steps are considered 
integer and binary and inputs related to the horizon steps 
3 and 4 are considered continuous and in the range <0,1>. 
Thus the problem is reduced to an optimization problem 
with 2 discrete variables, 2 binary variables and 12 
continuous variables is computed in less than 200 ms. 
The computation time are shown in Figure 3. For clarity 
only the first 2000s of the experiment are presented.  
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Figure 3. Optimization time and number of solved QP problems 
(original problem – solid line, reduced problem with relaxed variables – 

dotted line). 

 
  The initial value of the reference trajectory is set to 

95 ◦C, so that the ingredients react at the optimal 
temperature. The control courses are presented on Figure 
4. The similar control performance is obtained for control 
problem with horizon Hp=4 and for control problem with 
horizon Hp=4 but relaxed input variables from horizon 
Hr=3.    
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Figure 4. Control courses and input signals (relaxed problem – dotted 
line).  

Conclusion  
The predictive control of a batch-reactor system using 
MLD approach was evaluated. The temperature can be 
optimally controlled using MLD approach within the 
sampling period; however the complexity of mixed-
integer optimization that appears in optimal control of 
MLD systems limits the application to short prediction 
horizon. With the relaxed constraints the suboptimal 
solution in general can be found, but  as  can  be  seen  in 
the  case  of  the  batch reactor, the performance 
degradation may be minimal while the  necessary 
computation times  are  reduced significantly. 
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