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Abstract. The paper is focused on an implementation of a multivariable predictive controller with a colouring
filter C in a disturbance model. The filter is often essential for practical applications of predictive control based

on input-output models. It is commonly considered as a design parameter because it has direct effects on closed

loop performance. In this paper a computation of predictions for the case with the colouring filter is introduced.

The computation is based on a particular model of the controlled system in the form of matrix fraction which is

commonly used for description of a range of multivariable processes. Performance of closed loop system with

and without the colouring filter in the disturbance model was compared.

1 Introduction

Typical technological processes require the simultaneous
control of several variables related to one system. Each
input may influence all system outputs. The design of a
controller for such a system must be quite sophisticated if
the system is to be controlled adequately. Simple
decentralized PI or PID controllers largely do not yield
satisfactory results. There are many different advanced
methods of controlling multi-input-multi-output (MIMO)
systems. The problem of selecting an appropriate control
technique often arises. Perhaps the most popular way of
controlling MIMO processes is by designing decoupling
compensators to suppress the interactions [1] and the
designing multiple SISO controllers [2] . This requires
determining how to pair the controlled and manipulated
variables. One of the most effective approaches to control
of multivariable systems is model predictive control
(MPC) [3], [4], [5]- An advantage of model predictive
control is that multivariable systems can be handled in a
straightforward manner. When using most of other
approaches, the control actions are taken based on past
errors. MPC uses also future values of the reference
signals. It is essentially based on discrete or sampled
models of processes. Computation of appropriate control
algorithms is then realized especially in the discrete
domain. The basic idea of the generalized predictive
control [6], [7] is to use a model of a controlled process
to predict a number of future outputs of the process. A
trajectory of future manipulated variables is given by
solving an optimization problem incorporating a suitable
cost function and constraints. Only the first element of
the obtained control sequence is applied. The whole
procedure is repeated in following sampling period. This
principle is known as the receding horizon strategy.
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An implementation of a multivariable predictive
controller based on a matrix fraction model with a
colouring filter C in a disturbance model is described in
this paper. The filter is often essential for practical
applications of predictive control based on input-output
models. Surveys of practical applications of predictive
control are presented in [8], [9], [10]. It is commonly
considered as a design parameter because it has direct
effects on closed loop performance. A computation of
predictions for the case with the colouring filter is
introduced. The computation is based on a particular
model of the controlled system in the form of matrix
fraction which is commonly used for description of a
range of processes.The filtering of variables is the
equivalent of the colouring filter in the noise model. It is
practically very difficult to estimate the coefficients of
the colouring filter. A model with the C-filter is then
utilized as an example with filtering of input and output
variables when the filter C is a tuning parameter. In the
paper are derived prediction equations for an input-output
model in the form of matrix fraction both for the case
with the C-filter and without the C-filter. Performance of
closed loop system with and without the colouring filter
in the disturbance model was compared.

2 Model of the controlled system

Let us consider a two input — two output system. The two
— input/two — output (TITO) processes are the most often
encountered multivariable processes in practice and many
processes with inputs/outputs beyond two can be treated
as several TITO subsystems [11].

A general transfer matrix of a two-input-two-output
system with significant cross-coupling between the
control loops is expressed as:
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where U (z) and Y(z) are vectors of the manipulated

Q

variables and the controlled variables, respectively.
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It may be assumed that the transfer matrix can be
transcribed to the following form of the matrix fraction:

G(z)=a"e" Bl )= B A () @
where the polynomial matrices

A€R,, [z'l], B eR,, [z’l] are the left

factorizations of matrix G(z)

coprime
and the matrices
A €R,, [z’llB, €eR,, [z"] are the right coprime
factorizations of G(z). The model can be also written in

Al W) =BE o) )

As an example a model with polynomials of second

degree was chosen. This model proved to be effective for

control of several TITO laboratory processes [12], where

controllers based on a model with polynomials of the first

degree failed. The model has sixteen parameters. The
matrices 4 and B are defined as follows

_ l+a,z ' +a,z7 a.z" +a,z7?
A(z 1):|: 1 2 3 4 . (6)

-1 -2 -1 -
asz +agz I+a,z" +agz

b3z'1 +b4z'z )
b,z7 +byz”

the form

B(z’l ): {blz‘i +bzz:z
bsz™ +bgz
A widely used model in general model predictive
control is the CARIMA (controller autoregressive
integrated moving average) model which we can obtain
by adding a disturbance model as

Alz ()= B Julk)+ €z a2 k) (®)
where n is a non-measurable random disturbance that is
assumed to have zero mean value and constant

covariance and
-z 0
Alz7' )= 9
) { 0 1—2‘} ®

in case of TITO system. C is the colouring polynomial
matrix. For purpose of simplification it is often supposed
to be equal to the identity matrix [3]. In a single input —
single output case we have a colouring polynomial C
instead of the matrix C.

A4(z 7 (k)= Bz Julk)+Clz " (k) (10)

where A4, B and C are polynomials and A=1-z". In

Model Predictive Control it is also common to treat C as
a design parameter [6], [7], [13]. Analogically the
polynomial matrix C could be expected as the design
parameters in a multivariable case. Nevertheless
considering the polynomial matrix C as the design
parameter is computationally unsolvable and practically
inapplicable. A simplified model when the non-
measurable random disturbance was a scalar was then
considered

AA(z " p(k)= Bz Jdu(k)+ Cz (k) 1)

Further will be compared cases when C is the identity

matrix and when the input and output variables are

filtered with a colouring polynomial C which is supposed
as the design parameter.

3 Implementation of predictive controller

The basic idea of MPC is to use a model of a controlled
process to predict N future outputs of the process. A
trajectory of future manipulated variables is given by
solving an optimization problem incorporating a suitable
cost function and constraints. Only the first element of
the obtained control sequence is applied. The whole
procedure is repeated in following sampling period. This
principle is known as the receding horizon strategy. The
computation of a control law of MPC is based on
minimization of the following criterion

N N,
Jk)="> elk+ ;) + 2 Aulk+ j) (12)
=N, j=1

where e(k+j) is a vector of predicted control errors,
Au(k+j) is a vector of future increments of the
manipulated variable (for the system with two inputs and
two outputs each vector has two elements), N is a length
of the prediction horizon, N, is a length of the control
horizon and A is a weighting factor of control increments.

A predictor in a vector form is given by
y=GAu+y, (13)

where yp is a vector of system predictions along the

horizon of the length N, Au is a vector of control
increments, y, is the free response vector. G is a matrix of
the dynamics. It is given as

i G, 0 - - 0
G, G, 0 -~ 0
G=| : IRV (14)
: G, 0
Gy o e Gy

where sub-matrices G; have dimension 2x2 and contain
values of the step sequence.
The criterion (12) can be written in a general vector
form
J=-w) (5-w)+10u" Au (15)
where w is a vector of the reference trajectory. The
criterion can be modified using the expression (15) to
J =2g"Au+Au" HAu (16)
where the gradient g and the Hess matrix H are defined
by following expressions

g =G"(y,-w) (17)
H=G"G+l (18)
Handling of constraints is one of main advantages of

predictive control. General formulation of predictive
control with constraints is then as follows

niin2gTAu+AuTHAu (19)

owing to
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AAu<b (20)
The inequality (20) expresses the constraints in a
compact form.

4 Computation of Predictions C=/

An important task in predictive control is computation of
predictions for arbitrary prediction and control horizons.
The difference equation of the CARIMA model
without the unknown term can be expressed as:
nlk+1)=(=a )y, (k) +(a, —a )y (k= 1)+ ar, (k- 2) -
—a3y2(k)+(a3—a4)y2(k—1)+a4y2(k—2)+ (21)
+ bAu, (k) + byAu, (k — 1)+ byAu, (k )+ byAu, (k —1)
J’2(k + 1) = (1 - a7)y2(k)+ (a7 - as))’z(k - 1)+ asyz(k - 2)_
—ash (k)+ (a5 - as))’1 (k - 1)"' A (k - 2)+
+ byAuy (k) + boAu, (k —1)+ b, Ay (k )+ bAu, (k —1)
These equations can be written into a matrix form
lk+1)= A, p(k)+ A, p(k ~1)+ A, p(k -2)+

22
+ B, Au(k)+ B, Au(k —1) (@2)
where
4 - l-a, -—aj A, = a,—a, a;-—a,
—-a; l-a, as—as a,—dag
a, a
A, :{ : } (23)
g dg

b, b b, b
B, :Ll lj 8, :Lz bﬂ
s by 6 Us

It was necessary to directly compute three steps-ahead
predictions in a straightforward way by establishing of
previous predictions to later predictions. The model order
defines that computation of one step-ahead prediction is
based on the three past values of the system output.

Hlle+1)= A, p(k)+ A, p(k=1)+ 4, p(k = 2)+
+ B, Au(k)+ B, Au(k 1)
Pk +2)= A,y +1)+ 4, y(k)+ A, y(k —1)+
+ B, Au(k +1)+ B, Au(k)
Ple+3)= A, p(k+2)+ A, y(k +1)+ A, y(k)+
+ BlAu(k + 2)+ BZAu(k + 1)
It is possible to divide computation of the predictions
to recursion of the free response and recursion of the

matrix of the dynamics. The free response vector can be
expressed as:

24

Pu Pn qn 9o |93 G | Ds G )ﬁ(k)
Py 9» D 9n [ 9 9o |95 Drs | I (k)
3, = Py Pn |:Aul(k_1):|+ G Gn | Gn Do | D5 G | MiK—T) _
’ Pu_ DPa | Du, (k - 1) 9a1 Y9ar | 9a3 Gaa | 945 Yae yz(k - l)
Psi Ps 951 952 | 953 9ss | 9ss Gse | M (k 72)
P Pe 9o1 92 | 963 Ges | o5 oo yz(k - 2)
P 0, 0, 0O; .V(k) y(k)
_{Pz}A"(k_l)*{Qm 0, st}{]’(k_1)]_PA”(k_l)+Q{.V(k_l)]
P, 0, 0, 0ylk-2) yk-2)
(25)

The coefficients of the matrices P and Q for further
predictions are computed recursively. Based on the three

previous predictions it is repeatedly computed the next
row of the matrices P and Q in the following way:

P, = |:P71 p721| = AP+ AP, + AP, (26)
Ps1 Py
_ _q71 q72_ _ 27
0, = =A4,05+4,0, + 4,0, 27)
1931 952 |
_ _q73 q74_ _ 28
0, = =A4,04,+4,0, + 4,0, (28)
| 983 954 |
_ _Q75 ‘hé_ _ 29
0= =A,0+A4,0,; + 4,05 (29)
dss 96 |

The recursion of the matrix G is similar. The next
element of the first column is repeatedly computed and
the remaining columns are shifted. This procedure is
performed repeatedly until the prediction horizon is
achieved. If the control horizon is lower than the
prediction horizon a number of columns in the matrix is
reduced. The technique is apparent from the equations
(30) and (31).

g(Ll) g(12)] o 0
g(21) g(22)| o 0 [ Aulk)
onn| SO0 B2 [0 22| awlh) |
g(4l) g(42)| g21) g(2.2)] Ay (k+1)
26 ¢62)| g61) 6.2) | aufk+1)] ©O
1g(6.1) g(6.2) ] g(4.1) g(4.2),
6Ly o

Q

& &
! :{ ! 72} = AG,+4,G, + A,G,,  (31)
&1 8s
The predictions can be written in a compact matrix
form

Pk +j)=Gaulk + j—1)+ PAu(k 1)+ Qp(k — j+1)

j<N (32)

5 Computation of predictions with
colouring filter C

Computation of predictions with colouring filter is solved
for example in [14] for a single input—single output case.
Including the C-filter the CARIMA model takes the form

AA(z " )y(k) = Bz Ju(k)+ Clz " (k) (33)
As it was previously mentioned, a simplified model
when the non-measurable random disturbance was a
scalar was considered.
Equation (33) can be modified to

A4z )y(k)a;—lj =Bz )Au(k)a;—l) +n(k) (34)

where the unknown term is supposed to be the white
noise and the input and output variables are filtered.
Using of (34) for prediction improves prediction
accuracy.

The filtered variables are defined as
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ulf(k) ( 1(k)J 1 (36)
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In this case the polynomial C is a design parameter. It
is a stable polynomial. For the system with polynomials

of the second degree (6), (7) it was chosen to be of the
second degree as well
C(z’l):1+clz’1 -i—czz’2 (37)

The input and output data are filtered before
prediction. 1/C is a low-pass filter which reduces high
frequency noise. It is easy to prove by simulation that the
cases when the noise is coloured (33) and when the noise
is white and the input and output variables are filtered
(34) are equal.

The prediction equation for filtered variables takes the
following form

3 (k+j)=GAu,(k+j—1)+ Pdu, (k—1)+Qy (k- j+1)
J<N

A(k)} ! 35)

y
Y2 k) clz™
u

(38)
For practical application equation (28) is inapplicable.
Prediction of the unfiltered output must be expressed by
means of future control increments.
The relationship between filtered and unfiltered variables
can be expressed as follows

Yiy (k) yl(k) 1
(J’zf-(k)j :(yz (k)} l+c,z7 +c,27° %)
yl(k) _ yL/'(k)"'ClyL/'(k_l)"'czylf(k_z) 40
[yz(k)J_[J’z/’(k)"'clyy'(k_l)“'czy”(k_z)J 4
For three step ahead predictions
Jk+)=yp, (k+1)+cp, (k)+c,p, (k1)
Jk+2)=y, (k+2)+c,y, (k+1)+c,y, (k) (41
j)(k+3)=yf(k+3)+c,yf(k+2)+c2yf(k+1)

In a matrix form the equations (31) can be expressed as

follows
C,

5k +1) 0 0 0 0 0Y3,(k+1)
ok +1 0 0 0 0 0|3, (k+1)
3k+2)| le, 0 1 0 0 o], k+2)
5k+2) [0 ¢ 0 1 0 05, k+2)|
W3 Te, 0 e, 0 1 0f By k+3)
7:2643)) {0 ¢, 0 ¢ 0 1) 5, (k+3) w
H,

¢, 0 ¢, 0 0 0Y (k)

0 ¢ 0 ¢ 00| 5, (k)
e 000 0 o) d k)

0 ¢, 0 0 0 0f3, (k-1)

0 0 0 0 0], k-2)

0 0 0 0 0\, (k-2)

The relationship between filtered and unfiltered
control increments can be expressed similarly. Using
matrix notation we can define following equations

Hk+j)=Cey lk+j)+Hey, (k=j+1)  (43)
Aulk+ j)=CoAu, (k+ j)+ H Au,(k—j+1) (44)
where matrices C.and H, are defined as follows

1 0 0 0 0O
0 1 0 0 00O
c -|© 0 1 0 00 (5)
10 ¢ 0 1 00
c, 0 ¢ 0 10
0 ¢, 0 ¢ 01
¢ 0 ¢, 0 00
0 ¢, 0 ¢, 00
c, 0 0 0 0O
H = (46)
0 ¢, 0 0 0O
0 0 0 0 00
0 0 0 0 00O

From equations (43) and (44) we can express the filtered
variables

W+ j)=Cey b+ j)+ Hey, (k=j+1)  (47)

Aulk+ j)=CoAu,(k+ j)+H o Au, (k- j+1)(48)

After substitution of equations (47) and (48) to
equation (38) we obtain

c.' (j’(k+j)_Hcyf(k_j+l)>:
—GC. " (Au(k + j—1)- HoAu, (k=1))+  (49)
+PAu, (k—1)+Qy (k- j+1)

After modification we obtain resulting equation of the

predictor
Jk+j)=Gaulk+ j-1)+[C.P-GH . Au, (k—1)+

: (50)
+[HC +CCQ]yf(k_]+1)
We can establish following substitutions
P=[C.P-GH_] (51)
0=[H.+C.Q] (52)

The prediction equation then can be written in the
form

P+ j)=GAulk + j—1)+ PAu , (k~1)+Qy , (k- j+1)(53)

6 Simulation verification

Verification by simulation was carried out on a range of
plants with various dynamics. The control of the model
below is given here as an example.

3 2
G(S)Z 552 +76S+1 2s? +54S+1 (54)
357 +10s+1  25° +8s+1

A corresponding discrete model in the form given by
equations (6), (7) and (21) was obtained by recursive
identification. Control in the initial adaptation phase then
has worse quality. It does not exist a systematic way for
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selection of the filter C. Its selection is mostly based on
intuition. In our example the filter was chosen as
Clz")=1+08z"+0,052 (55)

The sampling period was tuned experimentally and
the best value was T, = 0,5 s. The controlled variable was
affected by a noise with zero mean value and constant
covariance. Simulation sampling of noise was 0,1 s.

In figures 1-6 are simulation results. Figures 1,3 and 5
show time responses of the control without the filtering
of the variables introduced in section 4. Figures 2, 4 and
6 show time responses of the control with the filtering of
variables described in section 5.

In figures 1 and 2 there is the response of the
controlled variable taken by 0,1 s. It means with the same
sampling period as the simulation noise. Simulation
results in this figure are the closest to the reality. In
figures 3 and 4 there is the controlled variable taken by 2
s. It means with the same sampling period which is used
for the control. The data then simulates measured values.
In figures 5 and 6 is the manipulated variable.

The tuning parameters that are lengths of the
prediction and control horizons and the weighting
coefficient 4 were tuned experimentally. There is a lack
of clear theory relating to the closed loop behavior to
design parameters. The length of the prediction horizon,
which should cover the important part of the step
response, was set to N = 5. The length of the control
horizon was also set to N, = 5. The coefficient 4 was
taken as equal to 0,1.

It is necessary to emphasize that the displayed inputs
and outputs in the graphs are not filtered. The filtered
values are used only for computation of systems output
predictions and consequently for computation of the
control law. The displayed inputs and outputs are real
unfiltered values.

L L 1 1 1
1] 20 40 60 a0 100 120 140 160 180 200
1(s)

L L 1 1 1
1] 20 40 60 a0 100 120 140 160 180 200
1(s)

Figure 1. Controlled variables sampled by 0,1s — case without
filtering of variables
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Figure 2. Controlled variables sampled by 0,1s — case with
filtering of variables

y1,wi
= o
1 ; 1

1 1 1 1 L
i] 20 40 G0 a0 100 1200 140 160 180 200
tis)

1D-J-. Ay . !

1 1 1 1 L
i] 20 40 G0 a0 100 1200 140 160 180 200
tis)

Figure 3. Controlled variables sampled by 0,5s — case without
filtering of variables
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Figure 4. Controlled variables sampled by 0,5s — case with
filtering of variables
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Figure 5. Manipulated variables — case without filtering of
variables
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Figure 6. Manipulated variables — case with filtering of
variables

7 Conclusion

Specific self-contained prediction equations for the input-
output model in the form of matrix fraction were derived
for the case with filtering of the input and output
variables. Simulations, where the filtered variables are
used for computation of the control law and the
manipulated variable, were performed. In the simulation
results are displayed real unfiltered variables. By
simulation control of a range of systems were compared
control results of cases with and without the C-filter. In
the paper there is introduced one simulation example.
The best achieved results are shown. The C-filter is a
tuning parameter for which setting we do not have
available any exact methodology. The filter was designed
by try it and see approach as a low pass filter. Obviously
better results were achieved in case with the C-filter
particularly regarding rate of oscillations of the input and
output variables. It is obvious that the variables are more
settled in case with the C-filter. The filter reduces
sensitivity of the closed loop system to high frequency

noise. Cost for this improvement is a relatively difficult
setting of the C-filter as a parameter.
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