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Abstract. The mathematical modelling of diffusion of a bleaching agent into a porous material is studied in the 
present paper. Law of mass conservation was applied to analize the mass transfer of a reactant from the bulk into the 
external surface of a solid geometrically described as a flat plate. After diffusion of the reactant, surface reaction 
following kinetics of first order was considered to take place. The solution of the differential equation that described 
the process leaded to an equation that represents the concentration profile in function of distance, porosity and Thiele 
modulus. The case of interfacial mass resistance is also discused. In this case, finite difference method was used for 
the solution of the differential equation taking into account the respective boundary conditions. The profile of 
concentration can be obtained after numerical especification of Thiele modulus and Biot number.         

1 Introduction  
Bleaching is a chemical process performed to make a 
material whiter or lighter [1]. Some of the common 
bleaching agents used in the industry (i.e. paper coatings, 
oils, pulp, industrial wastewater, waxes) are sulfur 
dioxide, calcium hypochlorite, sodium hydrosulfite, 
hydrogen peroxide or sodium peroxide, ozone, among 
others) [2]. It is normally carried out by immersing the 
desired material in a recipient containing the bleaching 
agent which diffuses through the porous of the solid by 
random atomic motion.  

The governing equation for the mass transfer of this 
process can be described by the Fick’s second law which 
solution depends on the boundary conditions [3]. The 
mathematical description of this process is important for 
the proper quantification of the concentration of the 
bleaching agent and to understand its effect on the solid 
surface after the reaction takes place.   

2 Description of the mathematical model 
A microscopic mass balance for the concentration of 
bleaching agent is performed by considering the 
accumulation, convective mass transfer and diffusive 
transfer of bleaching solution through the pores of the 
solid and the reaction term as expressed in (1). The rate 
of reaction can be expressed as the disappearance of 
bleaching agent. Accordingly, it is possible to monitor the 
decrease in color of the material using a 
spectrophotometer.  

The reaction rate term is considered in the equation 
because of the existence of an interaction between the 

solute and the surface of the solid. Assuming that a first 
order reaction takes place during the bleaching process, 
the reaction rate per unit of volume of the solid is 
described in (2) 

���� + ��� = �(���) + �  (1) 

      − ���� = 	�  (2) 
where c represents the concentration of bleaching agent, τ 
the time, V the volume, D is the diffusivity, and k is the 
rate constant.  

For the purpose of modeling this phenomena, we 
consider that the diffusion of the well stirred bleaching 
agent solution occurs in one dimension through a 
symmetrical flat plate with homogeneous and isotropic 
properties (the physical and mechanical properties are 
equal in all orientations of the solid), that the diffusivity 
is constant (independent of concentration), without 
interfacial resistance to the mass transport. Accordingly, 
we consider a steady state situation, in which the 
concentration will not change in time. Additionally, we 
suppose the absence of flow of mass due to convection, 
the equation (1) is transformed into (3) [4] 

� �2��
 2 − 	� = 0  (3) 
The previous equation describes that the concentration (c) 
is a function of position(x). It is a linear partial 
differential equation (parabolic) that can be solved for a 
given settings (initial and boundary conditions)[5]. This 
is a two-point boundary value problem, therefore the 
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concentration needs to be specified at both x=0 and x=L, 
as described in equations (4) and (5) 


 = 0, ���
 = 0  (4) 

 = �, � =  ∙ ��  (5) 

The first condition expresses that at the center of the solid 
there is no diffusion flux and therefore express a 
condition of symmetry. The second condition describes 
the case of diffusion in a well-stirred media, in which the 
concentration on the surface of the solid(c) is equal to the 
concentration of the bulk cL with the proper consideration 
of the porosity of the solid (ε). 

Figure 1. Geometric representation of the system under study.

For the solution of the problem, the mass balance 
equation and boundary conditions are expressed in 
dimensionless form using the parameters described in (6): 

� = 
� , � = �∙��   (6) 
As a result: x = X ∙ L, c = C ∙ ε ∙ cL, dx = L ∙ dX, dc = ε ∙cL ∙ dC,  and �2��
 2 = ���� �∙�� ∙����� �, therefore we obtain (7) 

�2��
 2 = ∙�� ∙�2��2��2   (7) 
Substitution of (7) and previous dependences into (3) 
leads to (8): 

�2���2 − 	�2
� � = 0  (8)  

from where we can define the dimensionless parameter of 
Thiele module (�), which represents the ratio of the rate 
of reaction to the rate of diffusion [6] as expressed in (9).  

�2 = 	�2
�   (9) 

The boundary conditions in dimensionless values adopt 
the form of the next equations: 

� = 0, ���� = 0  (10) 
� = 1, � = 1   (11) 

Equation (8) has the form of the characteristic equation m2 − �2 = 0 giving a set of conjugate roots m1 = � and m2 = −�. As a result, the general solution of the 
differential equation is (12)  

� = �1��� + �2�−��   (12) 
For the purpose of applying boundary conditions, it is 
often convenient to represent equation (12) using 
hyperbolic functions. As a result, equation (12) is 
transformed into (13) 

� = �1 ���ℎ �� + �2 ���ℎ ��  (13) 
The value of the constants C1 and C2 can be determined 
taking into considerations the boundary equations (10) 
and (11). As a result �1 = (1 − �2���ℎ�) ���ℎ�⁄  and �2 = 0. Substitution of the previous values in equation 
(12) leads to (14) (expressed in the original variables) 

� = ∙�� ∙���ℎ �
����ℎ �
  (14) 

This equation allows us to obtain the concentration 
profile (c) as a function of distance (x) for a given values 
of porosity as represented in Figure 1 and for given 
values of Thiele modulus. 

Figure 2. Plot of dimensionless concentration profile as a 
function of distance for different Thiele values (□ :0.8, x :0.5, 
and ● :2).

Figure 3. Plot of dimensionless concentration profile as a 
function of distance using different values of porosity (□ :0.4, ∆ 
:0.2 and +:1).
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Following we proceed to determine the effectiveness 
factor (η), which indicates the ratio between the reaction 
rate and the reaction rate without resistance to diffusion 
[7], [8] as described in (15) 

� = −�−�� = �����!  ��������  ������������  ����  "�� ℎ���  ��##����� = 1
�2 ����� %�=1   (15) 

Solving equation (14) leads to equation (16) 

� = 1
�2 �& 1��� ℎ� (� ∙ ���ℎ��)'*�=1 = 1

�
-��� ℎ���� ℎ�. = ��� ℎ�

�
  (16) 

Figure 4. Plot of effectiveness factor as a function of Thiele 
modulus in logarithmic scale.  

The reaction rate without diffusion is also the reaction 
rate at the surface of the solid, therefore the overall 
reaction rate is calculated by multiplying the intrinisic 
reaction rate per unit volume and the effectiveness factor 
as described in equation (17) and finally in (18)  

       � = � ∙ �� = � ∙ 	 ∙ �  (17) 
� = ��� ℎ�

�
∙ 	 ∙ � = ��� ℎ/	�2�

/	�2�
	 ∙ �   (18) 

In the case that there is interfacial mass resistance, then 
the boundary condition is given by 
 = 0, ���
 = 0;  and 


 = �, −� ���
 = 	� ∙ (� − ��) where ks represents the 
mass transfer coefficient. Accordingly, the same 
dimensionless parameters still apply and the boundary 
conditions are transformed in: 

� = 0, ���� = 0  ; � = 1, ���� = − �∙	�� (� ∙  − 1)    (19) 

Where the quantity − � ∙ 	� �⁄  is also known as the mass 
transfer Biot number Bim which represents the ratio of 
internal diffusion resistance to external convection 
resistance [9]. In this case, equation (8) with boundary 
conditions expressed in (19) can be solved using finite 
difference method [10]. In this case, we used 4 interior 
nodes 

:��� 1 → �2−�1∆� = 0  (20) 
                   :��� 2 → �3−2�2+�1∆�2 − �2�2 = 0  (21) 
                   :��� 3 → �4−2�3+�2∆�2 − �2�3 = 0  (22) 
                   :��� 4 → �5−2�4+�3∆�2 − �2�4 = 0  (23) 
                  :��� 5 → �6−2�5+�4∆�2 − �2�5 = 0  (24) 
                   :��� 6 → �6−�5∆� = ?�@ (� ∙  − 1)  (25) 
∆X is calculated from equation (26)  

∆� = 1 (� + 1)⁄   (26) 
Where n is the number of interior nodes, therefore ∆X is 
0.2. Equations (20) to (26) results in a system of linear 
equations represented in equation (27) 

⎝
⎜⎜⎜
⎛

−5 5 0 0 0 025 −50 − �2 25 0 0 00 25 −50 − �2 25 0 00 0 25 −50 − �2 25 00 0 0 25 −50 − �2 250 0 0 0 5 −5 − ?�@ ⎠
⎟⎟⎟
⎞

⎝
⎜⎜
⎛

�1�2�3�4�5�6⎠
⎟⎟
⎞ =

⎝
⎜⎜
⎛

00000−?�@ ⎠
⎟⎟
⎞ (27) 

The solutions of the previous system of equations leads to 
find the profile of concentration after numerical 
especification of Thiele modulus and Biot number. For 
numerical simulation we consider porosity equal to 1 and 
values of  �2 = 4, and ?�@ = 16  and �2 = 8, and ?�@ = 0.4. This is represented in Figure 5.

 

Figure 5. Plot of concentration profile for two cases. Case 
1: �2 = 4, ?�@ = 16 (cross) and case 2: �2 = 8, ?�@ = 0.4 (square). 

3 Conclusions 
The study of diffusion of a liquid into a porous material 
with a first order reaction taking place has been studied. 
In order to determine the effect of mass transfer on the 
overall reaction rate, an effectiveness factor was 
determined. This factor is also important to describe how 
far the reactant diffuses into the solid before the reaction 
takes place.  
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When the values of η are near to 1, the reaction is 
surface reaction limited but if this value is small (η <<1) 
the reaction is diffusion limited. If Thiele modulus is 
large, internal diffusion limits the overall rate of reaction, 
but if it is small, surface reaction is rate limiting. The 
case of boundary condition with interfacial resistance was 
studied. This is present in the case that the bulk fluid 
moves slowly. Finite difference method was used for the 
solution of a problem describing the mass transport and 
reaction with this boundary condition. 
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