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Linear combination of auditory steady-state
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Abstract: Up to medium intensities and in the 80–100-Hz region,
the auditory steady-state response (ASSR) to a multi-tone carrier is
commonly considered to be a linear sum of the dipoles from each tone
specific ASSR generator. Here, this hypothesis was investigated when
a unique modulation frequency is used for all carrier components.
Listeners were presented with a co-modulated dual-frequency carrier
(1 and 4 kHz), from which the modulator starting phase Ui of the 1-kHz
component was systematically varied. The results support the hypothe-
sis of a linear superposition of the dipoles originating from different fre-
quency specific ASSR generators.
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1. Introduction

The auditory steady-state response (ASSR) is an auditory evoked potential which fol-
lows the repetition rate, defined by the modulation frequency fm, of an ongoing sound
signal (Picton et al., 2003). For repetition rates between 80 and 100 Hz, the ASSR has
been shown to arise from brainstem sources, while at lower rates (below 40 Hz), mostly
sub-cortical and cortical sources are involved (Herdman et al., 2002a).

When evoking the ASSR with sinusoidally amplitude-modulated (SAM)
tones, an activation of auditory nerve fibers within a narrow region of the basilar
membrane (Picton et al., 2003) is assumed. The response to multiple SAM tone
carriers with differing modulation frequencies has been shown to be a linear combina-
tion of the responses to each SAM component in the 80–100 Hz range of repetition
rates (e.g., Herdman et al., 2002b). However, for modulation frequencies around and
below 40 Hz, multiple ASSR components do not combine linearly (John et al., 1998),
presumably because of interactions within the sub-cortical and cortical sources of the
ASSR.

At higher stimulation levels, this linear combination of the ASSR components
does not hold (Picton et al., 2007). This can be explained by the nonlinear mechanics
of the auditory periphery: a travelling wave excited by a pure tone carrier does not
only result in an isolated vibration around the peak region of the carrier, but also
evokes vibrations basal to that region. Stimuli presented at higher levels and composed
of multiple frequency components are thus likely interacting across different regions
along the basilar membrane. The contribution of different tonotopic regions to the
ASSR has also been addressed in the context of chirp-evoked ASSRs (Elberling et al.,
2007), where it was found that the amplitude of the ASSR can be increased by stimula-
tion with chirps accounting for the dispersion properties of the basilar membrane. For
these stimuli, it is, however, not clear how each tonotopic region contributes to the
measured ASSR other than that the overall amplitude increases.

For binaural stimulation with modulation frequencies around 80 Hz, a linear
combination of ASSRs has been shown, also for components having the same modula-
tion frequency, suggesting either the independence of two separate sources, or the line-
arity of a unique source of ASSR (e.g., Poelmans et al., 2012).

Here, the assumption of a linear, monaural superposition of multiple co-
modulated sources of ASSR in the 80 Hz region was investigated. The ASSR was
recorded with electroencephalography (EEG), and was evoked by two SAM tones cen-
tred, respectively, at 1 and 4 kHz. Both carriers were modulated with the same modu-
lation frequency but with a relative phase that was varied across conditions. It is
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hypothesized that the overall response measured using EEG is the vector sum of the
ASSR evoked by each SAM tone separately, and will be sensitive to the relative modu-
lator phase between the SAM tones.

The results will contribute to the understanding of how multiple sources of
ASSR combine into the electrical signal measured at the scalp.

2. Methods

2.1 Subjects

Nine subjects participated in the experiment. Their hearing thresholds were below 20 dB
hearing level at all audiometric frequencies (125 Hz to 8 kHz), and the mean age was
29.8 years, ranging from 25 to 40 years. The experimental procedure was approved
by the Danish Science-Ethics Committee (ref. number H-3-2013-004), and written
informed consent was obtained from all subjects before data collection.

2.2 Stimulus and apparatus

Seven different stimuli were used to elicit ASSRs, consisting of two SAM tones, s1k

and s4k, and of five combined versions of those same tones with varied modulator
starting phases of s1k. The carrier frequencies of the two tones, f1k and f4k, were set,
respectively, at 1 and 4 kHz. The carriers were 100% modulated at a frequency fm of
88 Hz, as shown in Eqs. (1) and (2),

s1kðtÞ ¼ a1k sin 2pf1ktð Þ 1þ sin 2pfmtþ Uið Þ
2

� �
; (1)

s4kðtÞ ¼ a4k sin 2pf4ktð Þ 1þ sin 2pfmtð Þ
2

� �
: (2)

When s1k was presented in isolation, its modulator starting phase Ui was set to
0. For the five co-modulated conditions, stimuli were created by setting Ui to values
distributed around the unit circle (cUi ¼ sUi

1k þ s4k; Ui ¼ 2ip=5 ; i ¼ 0; 1;…; 4), while s4k

was kept the same.
To avoid distortions in the co-modulated conditions, the two carriers were

played separately through two ER-2 earphones mounted on an ER-10Bþ probe
(Etymotic Research, Inc.), and connected to the computer through a Phonitor mini
amplifier (SPL electronics GmbH) and a Fireface UCX sound card (Audio AG). Both
a1k and a4k were adjusted to deliver s1k and s4k at 65 dB sound pressure level (SPL) in
isolation, using a B&K 4137 ear coupler and a B&K 2636 sound level meter (Br€uel &
Kjær A/S).

2.3 ASSR recording and analysis

Subjects were seated in a double-walled, electrically shielded, sound-attenuating booth.
They were instructed to relax and stay calm. They watched a silent film with subtitles
throughout the whole recording session, and were awake at all time. The stimulated
ear was randomized across subjects, and the opposite ear was occluded with an ear
plug, to avoid acoustical cross-talk.

EEG signals were recorded using a BioSemi ActiveTwo system (Biosemi
B.V.), sampled at 8192 Hz, and analyzed offline with MATLAB (The MathWorks,
Inc.).

A vertical electrode montage was used, using the 10/20 system, with two elec-
trodes: P9 or P10 at the left or right mastoid, respectively, and Cz at the vertex. If the
right ear was stimulated, the difference between Cz and P10 was computed, while Cz
and P9 were used for the left ear stimulation. Each stimulus condition was recorded
for approximately 10 min (608 s). The signal was cut into epochs of 16 s, and any epoch
exceeding 80 lV was discarded from the processing. A weighted averaging method
based on the standard deviation in each epoch (John et al., 2001) was then applied to
obtain a single 16-s epoch, from which the fast Fourier transform (FFT) was computed
with a bin width of 0.0625 Hz. A F-ratio was computed between the power of the FFT
bin at 88 Hz (chi-squared variable with 2 degrees of freedom) and the power of the
EEG background noise (96 neighbouring bins, 63 Hz, 96� 2 degrees of freedom). The
ASSR was deemed above the noise floor when the null hypothesis that both noise and
ASSR component came from the same F distribution was rejected (p� 0.01, Dobie
and Wilson, 1996). This corresponds to a signal-to-noise ratio above or equal to
6:73 dB ½¼ 10 log10ðPsignalþnoise=PnoiseÞ�.
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Due to anatomical differences (head size, neural sources), inter-subject vari-
ability in the group delay (and therefore the phase) is expected. Because of this, co-
modulated responses are likely to be in/out of phase for different values of Ui across
listeners. Measured amplitude responses to the cUi stimuli were therefore shifted to
have their maximum value at Ui¼ 0 rad (Riecke et al., 2015).

Before computing the phase of the co-modulated ASSRs, the response to s4k

in isolation was subtracted ðASSRðcUiÞ � ASSRðs4kÞÞ. In the case of linearity, the
phase of this vector subtraction should therefore equal Ui, the phase of s1k. Again, to
account for inter-subject variability in group delay, the phase of the afore-mentioned
subtraction was shifted to be 0 rad for U0. Unless specified, the U0 condition was
removed from all statistical analysis, as data for this point do not satisfy independence
requirements.

3. Results

3.1 Responses to single carriers

The amplitudes of the ASSRs were above the noise floor for 8 out of 9 subjects in
response to s1k, and 7 out of 9 in response to s4k. They were similar in amplitude
[Fig. 1(B)] and comparable in value to previously reported amplitudes at those stimula-
tion levels (Picton et al., 2007). Overall (including the responses to co-modulated car-
riers), mean amplitude and standard deviation of the significant ASSRs were, respec-
tively, 52.5 and 26.5 nV. One subject had higher noise levels (mean/s.d. of 48.9/4.3 nV
versus a mean and s.d. of, respectively, 10.7 and 2.5 nV for the other subjects). Since
this subject did show significant ASSRs in some conditions, it was not excluded. We,
however, controlled for every statistical analysis that removing this subject did not
change the main conclusions.

The difference in phase between the responses to s1k and s4k was 103�, as
shown in Fig. 1(A). In order to link the ASSR phase to an estimate of cochlear travel
time, and assuming a linear phase of the frequency components along the cochlea, this
phase corresponds to a latency difference of 3.3 ms for a modulation frequency of
88 Hz (103=360� 88). This difference was statistically significant (paired-sample t-test
with the seven subjects having both responses above significance; df¼ 6; p¼ 0.0019,
t¼ 5.2691, 95% confidence interval¼ 1.7–4.8 ms).

3.2 Co-modulated responses

By combining Eqs. (1) and (2), one can hypothesize that the mean vector sum of all
co-modulated responses should equal the response to s4k in isolation, as shown in Eqs.
(3)–(5) and Fig. 1,

Fig. 1. (A) Averaged complex-valued ASSRs across subjects in response to the s1k (square) and s4k (circle) stim-
uli. Shown with a dashed line is the expected co-modulated response (linear vector summation) when varying
Ui, the modulator starting phase of s1k. (B) Across-subject distribution of ASSR amplitudes (black) and of noise
estimates (grey) in response to the s1k, s4k, and cUi stimuli. For cUi , only the maximum amplitude across all
angles is shown. Lower and Upper limits of the boxes: 25th and 75th percentiles. Horizontal line: median.
Whiskers: 25th (or 75th) percentile minus (or plus) 1.5 the interquartile range.
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1
5

X4

i¼0

ASSR cUið Þ ¼ 1
5

X4

i¼0

ASSR s4kð Þ þ ASSR s1kð Þej 2ip=5ð Þ
� �

(3)

¼ ASSRðs4kÞ þ ASSRðs1kÞ
X4

i¼0

ejð2ip=5Þ (4)

¼ ASSRðs4kÞ: (5)

A t-test comparing the mean vector sum of all co-modulated responses to the response
to s4k in isolation showed no significant difference (df¼ 6, preal¼ 0.7617, treal¼ –0.3173,
pimaginary¼ 0.5832, timaginary¼ –0.5798, Pearson’s r¼ 0.8322 when pooling real and
imaginary values, r¼ 0.8310 when removing the subject with high noise level). This t-
test excluded two subjects who had missing data in one condition (hence df¼ 6), and
was run on both real and imaginary parts of the ASSR, as they can be considered to
be independent variables (Dobie and Wilson, 1996).

Amplitude. As shown in Fig. 1(B), the individual maximum for each subject
across all co-modulated conditions was significantly larger than the response to the sin-
gle carriers in isolation (pairwise t-Tests, paired data within subjects, Bonferroni cor-
rections, p¼ 0.00023 and p¼ 0.000232 for s1k and s4k, respectively). The data were log-
transformed for this test to account for the presence of a subject with higher overall
amplitudes. Figure 2(A) shows the amplitudes obtained for all co-modulated stimuli,
with the individual responses aligned to be largest at U0¼ 0 rad, and normalized by
their value at U0. A multilevel approach for repeated measures was employed, with the
subjects as a random factor (Field et al., 2012), and failed to show a significant effect
of Ui on the relative amplitude as plotted in Fig. 2(A) [v2(3)¼ 6.98, p¼ 0.0726, data
points below the noise floor excluded]. By adding the points below the noise floor in
this statistical analysis, the effect of Ui becomes significant [v2(3)¼ 13.67, p¼ 0.0034].
It is worth noticing that conditions U2 and U3 had the highest number of recordings
below the noise floor [Fig. 2(B)], where s1k and s4k were expected to be out of phase.

Fig. 2. (A) Amplitudes of individual co-modulated responses, shifted to have their maximum at U0, and normal-
ized by their value at U0. A small jitter has been added to the x axis to improve readability, and the noise floor
excursion (min to max) is shown with the grey shaded area. As noise levels differed across subjects, it can be
seen that the amplitude (on a relative scale) required to have a significant response varies across subjects. (B)
Phase of the vector subtraction ASSRðcUi Þ �ASSRðs4kÞ (which should be Ui in case of linearity), normalized to
be 0 at U0 and wrapped between 0 and 2p.
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To assess whether the proportion of significant points was the same between different
Ui conditions, a Cochran Q test was used, and showed a significant effect of Ui
(Q¼ 8.4000, df¼ 3, p¼ 0.0384).

Phase. Figure 2(B) shows the phase values corresponding to Fig. 2(A), re-
referenced to be 0 for U0 and wrapped between 0 and 2p. Ui had a significant effect on
the ASSR phase [v2(3)¼ 37.8, p< 0.0001]. This effect was well fitted by a linear regression
(intercept¼ –0.1255, slope¼ 0.9967, 95% confidence interval¼ 0.75–1.19, r2¼ 0.7956).

4. Discussion

In the 80–100-Hz range, it has been hypothesized that the ASSR evoked by SAM
tones with different modulation frequencies is the linear superposition of the response
to the SAM tones presented alone. This assumption has been shown to hold true if the
carrier frequencies are separated at least by an octave, and if medium levels are used
(Herdman et al., 2002b). The present study supports the hypothesis of a linear super-
position, and expands it to the case of carriers modulated with a unique modulation
frequency presented monaurally (this has already been shown binaurally, e.g., in
Poelmans et al., 2012). However, because the ASSR measured by EEG is a gross
potential, it cannot be distinguished whether the observed effects in the presented para-
digm are due to a superposition of two independent sources contributing to the ASSR
or if the effects are due to neural interactions within a single source of the ASSR.

4.1 Linearity of the co-modulated conditions

Under our linearity assumption, and because Ui was evenly distributed around the unit
circle, summing all co-modulated responses should not be significantly different than
the response to s4k in isolation, and this is indeed what we could see in our recordings.

Additionally, manipulating the modulator starting phase of s1k in the co-
modulated conditions had a significant effect on both phase and amplitude of the ASSR.
This effect was consistent with a linear sum when analyzing the co-modulated phase
response [Fig. 2(B)], while the individual patterns of the amplitude were more variable
[Fig. 2(A)]. These deviations seen in the amplitude of the co-modulated responses might
be due to the inherent test-retest variability of the ASSR. Finally, when both single car-
riers were supposedly out of phase (conditions U2 and U3 in Fig. 2), it was often impossi-
ble to record a significant response, even with 10 min of recording and median noise lev-
els of 10.9 nV.

Taken together, these results support the hypothesis of a linear superposition,
and that distinct neural populations are represented in the ASSR, even when using a
unique modulation frequency. John et al. (2003) measured the ASSR of 4 SAM tones
at 0.5, 1, 2, and 4 kHz, co-modulated and in isolation. The co-modulated response was
25% lower than expected by a linear vector superposition of the responses in isolation.
This reduction, not seen in our study, might be explained by the fact that they used
four carriers separated by only one octave (while we used only two carriers separated
by two octaves). This might have led to interactions at the level of the basilar mem-
brane, such as mutual suppression.

In contrast to multi-tone carrier ASSRs, single-evoked ASSR growth functions
do not show a saturation for stimulus levels above 60 dB SPL (Picton et al., 2007).
Based on the results of the present study, one might however speculate that responses
evoked by off-frequency regions also contribute to the measured amplitude in single-
evoked ASSRs, and that the measured ASSR is a linear combination of responses
evoked by on- and multiple off-frequency regions with different relative phase.

4.2 Further use of this paradigm

As linearity seems to be respected with this paradigm, any measured non-linearity
could be used as a marker for envelope interactions at the level of the cochlea. An
example is for cochlear implant users, where the spread of electrical current produces
marked envelope interactions in a behavioural task (Galvin et al., 2015).

5. Conclusions

This study suggests that the ASSR at 88 Hz with co-modulated carriers presented mon-
aurally is a linear sum of the response to each carrier, as supported by the phase behav-
iour of the co-modulated response and the vector sum of all co-modulated responses.

Such a paradigm, where the phase difference between co-modulated carriers is
varied, is therefore suitable for analyzing envelope interactions with a unique modula-
tion frequency and at peripheral levels of the auditory system.

Raw data files (.bdf and stimuli files) are accessible on Zenodo (Gu�erit et al.,
2017).
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