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Abstract: 9 

The intermediate and final rinses of straight pipes, in which water replaces a cleaning agent of similar 10 

density and viscosity, are modelled using Computational Fluid Dynamic (CFD) methods. It is 11 

anticipated that the displacement process is achieved by convective and diffusive transport. The 12 

simulated agent concentrations show good agreement with the analytical axial mixing models from 13 

literature. The displacement time, minimum water consumption, minimum generation of wastewater 14 

and minimum requirement of intermediate rinsing water are evaluated using CFD. Practical empirical 15 

equations are derived from CFD results and applied to examine if the process is operated in an 16 

efficient and economic manner. It has been found that the displacement time can be predicted from 17 

the inner pipe diameter and the mean flow velocity using a power law relationship. Changing flow 18 

velocities does not significantly influence the minimum water consumption and the minimum 19 

wastewater generation for rinsing a pipe. Controlling the rinsing step based on a downstream 20 

measurement still consumes more water than the minimum requirement to reduce contamination risks. 21 

This article presents an innovative algorithm for optimizing the rinse steps with lower water 22 

consumption based on the above observations. A case of rinsing a 24 m long straight pipe describes 23 

the promising application of the CFD study. The recovery of cleaning agent can be up to 89.3% of the 24 
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volume and the saving of intermediate rinsing water can be at least 55% compared to the conventional 25 

rinse method. The work in this article presents an example showing how to deal with more complex 26 

systems in the future. 27 

Keywords: Rinse; CFD; CIP; Axial mixing; Reducing water consumption  28 
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Nomenclature 29 

�� Initial agent concentration, [kg m-3] 

�� Average agent concentration, [kg m-3] 

�� Model constant for solving the turbulence length scale and the dissipation rate of 

turbulence kinetic energy, dimensionless 

� Pipe diameter, [m] 

�� Turbulent diffusivity of species, [m2 s-1] 

� Volume factor, dimensionless 

	 Turbulence kinetic energy, [m2 s-2] 


 Axial dispersion coefficient, [m2 s-1] 

� Mixing length, [m] 

� Radial coordinate, [m] 


 Pipe radius, [m] 

� Time, [s] 

�� The time required for displacing 1% of agent by water, [s] 

��� The time required for displacing 99% of agent by water, [s] 

�� Turbulence intensity, dimensionless 

��� Turbulence intensity at inlet, dimensionless 

�� Turbulence length scale, [m] 

��� Turbulence length scale at inlet, [m] 

�� Mean flow velocity, [m s-1] 

�� Axial flow velocity, [m s-1] 

�� Fluctuating velocity, [m s-1] 
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� Pipe volume, [m3] 

������.		����� Volume of intermediate rinsing water, [m3] 

���� Minimum water consumption, [m3] 

�� ���� ��� Volume of wastewater, [m3] 

! Pipe length, [m] 

"# Wall distance for a wall-bound flow, dimensionless 

$, % Coefficients correlating the inner pipe diameter and the displacement time  

& Dissipation rate of turbulence kinetic energy, [m2 s-3] 

' Dynamic viscosity, [Pa s] 

( Density, [kg m-3] 

Abbreviations 30 

CFD Computational Fluid Dynamics 

CIP Cleaning-in-place 

DN Nominal diameter 

EHEDG European Hygienic Engineering & Design Group 

ERT Electrical resistance tomography 

RTD Residence time distribution 

 31 

  32 
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1. Introduction 33 

Cleaning-in-place (CIP) has become a common practice in food processing. The concept of CIP is to 34 

clean components of a plant or pipe without dismantling or opening the equipment and with little or no 35 

manual involvement of the operator (Lelieveld et al., 2005). In the food industry, CIP tends to consist 36 

of a series of similar steps, including: (1) Product recovery to drain the product from the system; (2) 37 

Pre-rinse for removing excessive soils from the system; (3) Circulation of alkaline solution to lift the 38 

soils from the plant surface and dissolve or suspend the soils in the detergent solution; (4) 39 

Intermediate rinse by water for removing the alkaline and entrained soils; (5) Circulation of acid 40 

solution to remove inorganic soils; (6) Intermediate rinse using water for removing acid; (7) 41 

Disinfection (optional) to eliminate microorganisms if a sanitary environment is required for the 42 

subsequent processes; (8) Final rinse (optional) to remove residual agents. If there is no disinfection 43 

step, the water quality in step 6 is often improved by treating with chlorine dioxide (Tamime, 2008).  44 

In a recent mapping project performed at a leading brewery manufacturing site (Carlsberg Denmark), 45 

more than 33 CIP operations occur every day for cleaning tanks and pipes. Among these CIPs, pipe 46 

cleanings contribute with over 50% of the costs (Yang, 2017). Figure 1 (A) and (B) display the 47 

cleaning time of each step and the costs connected to a typical CIP of transfer pipes, respectively. 48 

Most of the cleaning time and costs are spent on alkaline/acid treatment, disinfection and the three 49 

rinsing steps (two intermediate rinses and one final rinse). The recovery of the cleaning detergents 50 

(alkaline and acid) can be up to 95% of the supply. In some industries, the final rinsing water can be 51 

partly recycled for the pre-rinse of the next CIP. The intermediate rinsing water is rarely recycled. 52 

Therefore, the overall recovery efficiency of rinsing water is very low, even less than 10%. Most of the 53 

rinsing water is directly disposed to drain.  54 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 
 

Cleaning generates large amounts of wastewater containing corrosive pollutants, nutrients, and 55 

potentially a considerable organic load. Furthermore, heat losses due to discharge of hot water also 56 

contribute to the overall costs. Minimizing the environmental impact of cleaning has become more and 57 

more important due to the legislative pressures towards establishing zero emission processes 58 

(Palabiyik. 2013). A number of studies have focused on the development of new cleaning agents, the 59 

effect of water quality and the optimization of chemical usage (Chen et al., 2012; Jurado-Alameda et 60 

al., 2016; Palabiyik et al., 2015). However, industrial applications of such technologies are still limited 61 

due to the complex modification of existing equipment and the inestimable payback time. Operators 62 

tend to prefer simple changes in operation without significant transformation of the existing processes. 63 

Therefore, reducing the water consumption by optimizing flow rates and rinsing time in rinsing steps 64 

and improving the recovery efficiency of cleaning agent becomes a practical solution for many food 65 

industries, as the operators can easily change and dynamically adapt the flows at the control panel.  66 

The rinsing objective is to displace residual cleaning agents (alkaline, acid and disinfectant) and 67 

reduce cross-contamination risks (Tamime, 2008). Such displacement of one liquid (chemical agent) 68 

with another liquid (water) occurs at the interface of two liquids, where an axial mixing zone is created 69 

due to convection and diffusion phenomena (Wiklund et al., 2010). The knowledge about axial mixing 70 

and the displacement zone is of importance in order to ensure complete chemical removal at reduced 71 

water consumption. 72 

Computational fluid dynamics (CFD) methods are powerful in order to understand and predict fluid 73 

flows. A number of studies have applied CFD methods to understand how the local hydrodynamic 74 

conditions, e.g. shear stress and fluctuation intensity, affect cleaning results (Jensen et al., 2006; 75 

Jensen and Friis, 2005; Schöler et al., 2012) and to improve the hygienic design of valves, pipes and 76 

connections (Friis and Jensen, 2002; Jensen and Friis, 2004). Li et al. (2015a, 2015b) simulated a 77 

four-lobed swirl pipe by using CFD and identified the potential to improve the efficiency of CIP by 78 
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introducing swirl impact by increasing the local wall shear stress. CFD could also successfully predict 79 

the displacement of yoghurt by water, which agreed well with the measurement by using electrical 80 

resistance tomography (ERT) electrode planes (Henningsson et al., 2007). 81 

Nearly all CFD studies applied to CIP considered water as the fluid to remove soils from the surfaces. 82 

There are, to our knowledge, no CFD investigations about the intermediate or final rinses where water 83 

is mainly used to displace cleaning agents. Compared with analytical mathematical models, the use of 84 

CFD models can get the information about mixing in both axial and radial directions. In some cases, 85 

CFD models can replace on-line measurement, as the installation of probes increases the capital cost 86 

and may introduce new areas that are difficult to clean. Moreover, CFD applies to complex geometries 87 

and is very helpful in the frame of hygienic design.  88 

Pipe systems embrace several types of elements, e.g. straight pipes, bends, T-joints, expansions, 89 

contractions and valves. The cleaning difficulties vary depending on the design of these elements and 90 

the operation conditions. Investigating single and simple geometries is an important step if the 91 

complex geometries with various pipe elements are going to be studied. Therefore, the purpose of this 92 

paper is to simulate the axial mixing and the displacement phenomenon in the intermediate and final 93 

rinses of CIP procedures for straight pipes using CFD. The CFD results are validated using published 94 

empirical results based on an analytical mixing model for a turbulent flow regime in order to gain 95 

confidence in CFD for future studies of more complex systems. A detailed understanding of the axial 96 

mixing in CIP supports the knowledge about the effects of flow patterns on the process. The minimal 97 

time required to completely displace the residual agents can also be predicted. Furthermore, the total 98 

water consumption can be minimized by the proper combination of flow rate and rinsing time as well 99 

as by the implementation of efficient recovery plans.  100 

2. Methods 101 
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This section describes two models: the first is the Taylor model, which provides an analytical solution 102 

to describe the axial mixing of two fluids in a pipe; another is the CFD model, which is developed in 103 

this study. 104 

2.1. Taylor model 105 

The Taylor model (in equation 1) describes the axial dispersion of steady incompressible Newtonian 106 

fluids flowing in the laminar regime. The model has then been extended to cover non-Newtonian fluids 107 

and turbulent flows (Levenspiel, 1958; Zhao et al., 2010): 108 

 �� = ��
2 +1 − erf	(! − ���

2√
� )4 (1) 

where ��  is the average agent concentration at length !  and time � , ��  is the initial agent 109 

concentration, ��  is the mean flow velocity, 
  is the axial dispersion coefficient, 5��  is the error 110 

function. In the process of water displacing cleaning solutions in a pipe, the boundary conditions are 111 

 
when t = 0, � = C� at ! ≥ 0 

when t > 0, � = 0 at ! = 0 
(2) 

The empirical correlation of the axial dispersion coefficient for turbulent flows based on experimental 112 

measurements, 
, is according to Salmi et al. (2010): 113 

 


��� =

3 × 10=

5>.� + 1.35


5�.�>A (3)  

where �� is the mean flow velocity, � is the inner pipe diameter, 
5 = ���( '⁄  is the Reynolds number. 114 

Under the studied flow conditions, which are described later, the second term on the right hand side in 115 

equation 3 dominates the value of 
. So the dependency of 
 on ��� can also be approximated by a 116 

correlation of (���)= C⁄ . 117 

2.2. CFD simulation 118 
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2.2.1. Flow domain and mesh 119 

A series of horizontal straight pipes of 28 m in length were simulated. The inner diameters of the pipes 120 

were 15.80, 26.64, 40.90, 77.90 and 154.10 mm respectively, in accordance with the European pipe 121 

size standards of DN 15, 25, 40, 80 and 150 mm with the pipe wall thickness defined by the standard 122 

pipe schedule. The surface boundaries were modelled as smooth, which is required for food 123 

processing. 124 

The geometries were simplified to be quarter sections, as the flow profiles were symmetric along the 125 

radial direction. Such a simplification reduced the computational time significantly compared with the 126 

simulation of the whole pipe geometry. It also retained cuboid mesh elements at the center of the 127 

pipes. Structured hexahedral meshes were made with help of the meshing software ANSYS ICEM 128 

CFD 16.2. A mesh independence test was carried out and described in section 2.2.3 (comparing 129 

cases 2, 6 and 7) in order to minimize the errors associated with the mesh size. The mesh layers in 130 

the near-wall regions were enhanced to capture the flow details close to the wall (Figure 2). The 131 

resulting meshes had a fixed number of nodes in the axial direction (501 nodes) and varying numbers 132 

of layer nodes in the radial direction. The attained values of "#, the dimensionless distance from the 133 

wall, are 27 − 67. The total number of mesh elements was 37650, 72794, 180646, 663646 and 134 

2098360 respectively, contributing to a mesh density of 450 – 770 elements/mL. 135 

2.2.2. CFD model description 136 

Water and the agent solutions are miscible. The properties of the agent solution (i.e. density and 137 

viscosity) were assumed to be the same as water. Therefore, a single liquid phase simulation was 138 

made in this study.  139 

First, a steady state simulation was performed using water to obtain the flow profiles. The inlet was set 140 

as plug flow with the mean flow velocities of 1.0, 1.5 and 2.0 m/s, corresponding to the standard 141 
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working velocity range in industrial practices (Chisti and Moo-Young, 1994). The outlet was defined 142 

with a relative pressure of 0 Pa. The Reynolds numbers were calculated to be above 17000. Thus, all 143 

the flows were fully turbulent. The effects of turbulence intensity (��) and turbulence length scale (��) 144 

at the inlet boundary are presented in section 2.2.3 (comparing cases 1 - 5).  145 

Subsequently, a transient simulation was performed using the steady results as initial conditions. The 146 

pipe was divided into two sections in order to eliminate the entrance effects under which the flow was 147 

not fully developed. It was crucial to introduce this additional length of the pipe, since a boundary 148 

condition at the inlet was chosen, where at any point of the inlet the same velocity was defined. 149 

Therefore, a certain length was needed, before the correct velocities in radial direction were 150 

established as shown in Figure 3. The first section was -3	 ≤ 	!	 < 	0	H, where water was flushed from 151 

� = 0 and contacted with the agent solution at ! ≥ 0	H. The second section was 0 ≤ ! ≤ 25	H, where 152 

the cleaning agent components were dissolved in water with an initial concentration of 1 kg/m3. The 153 

agent component was expressed as an additional volumetric variable, which could be transported 154 

through the flow via diffusion and convection (ANSYS CFX-Solver Theory Guide, ANSYS INC, 2013).  155 

Buoyancy was not taken into account, because it has been tested that buoyancy did not contribute 156 

much to axial mixing, especially when there was no density difference between the two fluids (Zhao et 157 

al., 2010). The axial dispersion coefficients were determined with help of equation 3. In the studied 158 

flow conditions, the 
 values range from 0.006	 − 	0.08	H> J⁄  and the second term on the right hand 159 

side in equation 3 contributes with over 90% to calculation of the K value.  160 

The model was built with help of ANSYS CFX version 16.2 using the standard 	 − & turbulence model 161 

with scalable wall functions. The advection scheme was set to be high resolution. Steady state 162 

simulations in the CFX software are pseudo transient simulations, where also a timescale has to be 163 

defined. This can be done automatically, which was our approach, or otherwise a time step has to be 164 
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defined (physical timescale). For the here presented steady state simulations, the timescale was 165 

automatically controlled by the CFX-Solver software (auto timescale) to 0.032 s ~ 0.15 s. The 166 

iterations were forced to run for minimum 500 steps, even though the convergence criteria (residual 167 

target MAX ≤ 0.00001) had been reached after ~100 steps. For the transient simulations, the Courant 168 

number is of fundamental importance to reflect the part of a mesh element that a solute will traverse 169 

by advection in a time step. The definition is the product of the local velocity and the time step, divided 170 

by the mesh element characteristic length. In the simulations, the time step was 0.01 s, corresponding 171 

to the maximum Courant number of 0.42 – 0.92 for different pipe diameters and flow velocities.  172 

2.2.3. Mesh independence test and inlet boundary conditions 173 

Table 1 shows 7 cases of simulations which were carried out to minimize the errors associated with 174 

the mesh size and flow inlet conditions. The mesh study was performed by refining the mesh in single 175 

radial direction (case 7) or in both radial and axial directions (case 6), and comparing the turbulence 176 

intensity near the wall and the average agent concentrations at different distances with the reference 177 

case 2. All the studies were performed based on the inner pipe diameter of 40.90 mm (DN 40) and a 178 

flow velocity of 1.5 m/s. 179 

In addition to the flow velocity, the turbulence at the inlet is defined by the turbulence intensity (��) and 180 

the turbulence length scale (��) (Wilcox, 2006). In this study, the turbulence magnitude of the inlet was 181 

studied by comparing cases 1 - 5 in Table 1, with changing turbulence intensity (1 – 20%) and 182 

turbulence length scale (5 – 30% of the pipe diameter). This approach was similar to the study of the 183 

influence of turbulence intensity at the inlet on wall shear stress fluctuations by Jensen (2007). Based 184 

on the results of the near-wall turbulence intensity in the steady state simulations and the predicted 185 

agent concentration at fixed planes in the transient simulations, the selected inlet boundary conditions 186 

for the final model were �� = 5% and �� = 10% of the pipe diameter. 187 
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3. Results and discussions 188 

3.1. Studies of mesh independence and inlet boundary conditions 189 

The predicted near-wall turbulence intensity initially drops, then rises, and reaches a uniform constant 190 

value (~ 0.056) apart from the pipe section covering the first 2 m after the entrance (as shown in 191 

Figure 4). Comparing cases 6 & 7 with case 2, finer meshes in radial and axial directions lead to a 192 

larger turbulence intensity in the turbulent section, but the change is less than 1% of deviation. 193 

Therefore, the differences caused by mesh sizes as well as the turbulence intensity and turbulence 194 

length scale are only limited to the initial 2 m pipe section.  195 

Equation 1 indicates that �� = �� 2⁄  at the mid-plane, which is defined as the plane where the front of 196 

the water phase arrives when an ideal plug flow is assumed (! = ���). Figure 5 illustrates the average 197 

agent concentrations at four mid-planes (1.5 m, 9 m, 15 m and 21 m) simulated for the 7 model cases. 198 

It is found that all of the predicted values of �� are lower than the theoretical value, which is mostly 199 

caused by the discretization error when a fluid domain is subdivided into a mesh. However, all of the 200 

deviations are less than 1% of the theoretical value calculated by equation 1. In particular, cases 1 - 5 201 

result in the same average agent concentration values (with precision 0.00001 kg/m3) at the four mid-202 

planes. This observation strengthens the conclusion drawn from Figure 4 that the turbulence intensity 203 

and turbulence length scale of the inlet only affect the flow and mixing near the entrance, but no longer 204 

at ! = 0. 205 

Hence, if the analysis omits the entrance section, the mesh refinement, as presented for the cases 6 206 

and 7, is not necessary. Case 2 provides a sufficient mesh for this project. Extremely fine meshes may 207 

be counterproductive, because the mixing in radial direction is not significant (consider also Figure 9) 208 

and flat mesh elements lead to low mesh quality in slender pipes. The results imply that the use of 3 m 209 

pipe as entrance, as illustrated in Figure 3, is a reasonable measure to overcome the effects of 210 
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entrance fluctuations. The meshes of other pipe diameters were made by fixing axial nodes similar to 211 

case 2 and adjusting radial nodes to result in identical layer size and "#. The inlet boundary conditions 212 

are selected to �� = 5% and �� = 10% of the pipe diameter. When a new mesh and a new flow 213 

velocity were employed, the same validation approaches as demonstrated in Figure 4 and Figure 5 214 

were carried out in order to ensure that the flow was in a turbulent condition at ! = 0	H and �� ≈215 

0.5	�� at the mid-planes.  216 

3.2. Comparison of the Taylor model with CFD simulations 217 

Figure 6 shows the agent concentrations at the mean flow velocity of 1.5 m/s at ! = 15	H and for a 218 

fixed rinsing time (10 s) at an arbitrary distance. The presented values in Figure 6 are obtained from 219 

the calculations by the Taylor model (Taylor, 1953) and the CFD simulations. Figure 6(A) can be 220 

regarded as the displacement dynamics at the fixed plane during the rinsing period. Figure 6(B) can 221 

be regarded as the agent distributions within the pipe after 10 s of rinsing.  222 

The agent components transfer slower near the wall than in the center due to blunt velocity profiles 223 

(Figure 7). The longer tails in larger pipes (Figure 6) indicate that the agent components are axially 224 

mixed faster in the pipe center but slower near the wall than in smaller pipes. The mixing of agent 225 

molecules is a result of convection and diffusion (Wiklund et al., 2010). According to equation 3, the 226 

value of the axial dispersion coefficient increases with increasing pipe diameter when the flow is 227 

turbulent (Salmi et al., 2010). In Figure 7, the value of 	 is minimal at the center and increases towards 228 

the radial direction, and decreases near the wall, which is the same as Zhao et al. (2010) observed 229 

when simulating the mixing of two miscible liquids with different densities. Considering the velocity of 230 

the largest pipe at the center is ~3% lower than the smallest pipe, it can be concluded that the mixing 231 

of the agent component is governed by axial diffusion in the pipe center section, and by convection 232 

near the wall.  233 
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CFD successfully predicts the values which are calculated with help of the Taylor model (Taylor, 1953). 234 

The model therewith predicts accurately the analytical model in terms of the transient agent 235 

concentrations at different locations in the pipe. In addition to the Taylor model, the prediction of 236 

dispersion within a pipe by using CFD has also been verified to be successful by predicting Sugiharto 237 

et al. (2013)’s experimental data and the residence time distribution (RTD) theory (Bailey and Ollis, 238 

1986). The validations of the latter two approaches are provided in supplementary materials. 239 

Therefore, the CFD model is used for further investigations of the displacement process and the 240 

mixing zone analysis. 241 

3.3. Displacement time 242 

Three displacement times are defined in this work for different purposes:  243 

• ��,NO �� is the time when 1% of the agent is displaced by water at a fixed plane (�� = 0.99	��). 244 

It is assumed to be the detected start point of rinsing when measurements are employed to 245 

determine the agent concentration. The sensor is located at the flow downstream from where 246 

the plane lies; 247 

• ���,NO �� is the minimum rinsing time to remove 99% of the agent component at the fixed plane 248 

(�� = 0.01	��). In practice, it is the apparent time where rinsing ends once the downstream 249 

measurement outputs reach the pre-defined rinsing criteria;  250 

• ���,QROS�� is the minimum rinsing time to remove 99% of the cleaning agent from the volume, 251 

which is the true time required to replace the agent component and reduce contamination risks. 252 

The selection of 99% as complete rinsing refers to Graßhoff's (1983) work when studying the 253 

displacement of one liquid with another liquid during CIP. Depending on the initial agent concentration 254 

and the requirement of cleaning in different industries, the minimum rinsing time may be defined to 255 

remove more or less than 99% of cleaning agent in order to achieve a safe level.  256 
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It is observed that the product of the displacement time and the mean flow velocity, ��	R�	�� ∙ ��, is 257 

constant for different flow velocities, which can be correlated by a power function like equation 4 with 258 

the inner pipe diameter as variable. Figure 8 illustrates ��	R�	�� ∙ �� against the inner pipe diameter at 259 

different length of pipe sections. The values of the correlation parameters for three pipe lengths (2, 15 260 

and 24 m) are presented in Table 2. The small values of  % indicate that the rinsing times are mainly 261 

influenced by the flow velocity and pipe length, instead of the pipe diameter. In a CIP rinse, such 262 

correlations help to make predictions about when the recovery of agent should be stopped and when 263 

the recovery of rinsing water should be launched.  264 

 ��	R�	�� ∙ �� = $ ∙ �U (4) 

An increase in pipe diameter not only speeds up the start of displacement, but also prolongs the 265 

termination of displacement. It is caused by the longer tailing distribution of agent components in 266 

larger pipes as described in Figure 6, which is observed in both CFD and Taylor models. The obtained 267 

minimum rinsing time values based on the fixed plane are greater than the values based on the 268 

volume. It can be understood in such a way that when 99% of the cleaning agent is removed from the 269 

volume, the volume-weighted average agent concentration is 1% of the initial concentration. 270 

Meanwhile, agent concentrations near the inlet are lower than near the outlet. So the average agent 271 

concentration at the outlet plane is still above 1% at ���,QROS��. In practice, the rinsing time can be 272 

determined by measuring the agent concentration downstream and rinsing stops exactly when the 273 

agent concentration reaches the pre-defined criteria. However, the apparent rinsing time in such a 274 

situation is still longer than the true requirement in order to reduce contamination risks. 275 

3.4. Minimum water consumption for rinsing  276 

The minimum water consumption for an effective rinsing is the minimum requirement of water to 277 

reduce the amount of agent to such a low degree that the residues have no or only a minor effect on 278 
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the following steps. In this study, the removal of 99% of agent components is assumed as a complete 279 

rinse. In order to compare the minimum consumption for different pipe diameters, a volume factor, �, 280 

is defined as the ratio between the minimum water consumption, ����, and the pipe volume, �, as 281 

follows: 282 

 � = ����
� = V�> 4⁄ ∙ �� ∙ ����

V�> 4⁄ ∙ ! = �� ∙ ���
!  (5) 

Equation 4 indicates that the value of �� ∙ ��� only depends on the inner pipe diameter for a given pipe 283 

length. Therefore, according to equation 5, the values of volume factors are independent of flow 284 

velocities as well. The increase in flow velocity reduces the cleaning time significantly, but it does not 285 

affect the minimum water consumption. However, if water also works as a medium to remove soils 286 

from surfaces, large flow velocities improve cleaning efficiency by destroying the structure between 287 

soils and surfaces by mechanical forces, i.e. shear stress (Tamime, 2008). The pipes of larger size 288 

lead to larger volume factors, as ���  increases with increasing inner pipe diameters. Both the 289 

numerator and denominator in equation 5 increase for longer pipes, but the value of �� ∙ ��� grows 290 

slower than !. Thus, the volume factors become smaller for longer pipes.  291 

With decreasing pipe diameter and increasing pipe length, the volume factor values tend to the lower 292 

limit of 1, indicating that the minimum water consumption approaches the pipe volume. It can also be 293 

concluded that the calculated volume factors based on the downstream measurement are larger than 294 

the values based on the volume, which is the same trend as the illustrated cleaning time in Figure 8. 295 

Therefore, if the cleaning time is controlled by downstream measurements, the consumption of water 296 

is still 6 - 20% more than the real demand to remove a certain amount of agent from the volume.  297 

3.5. Minimum volume of wastewater 298 
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Recovering of cleaning agent and rinsing water is an efficient solution to reduce the cleaning cost. For 299 

a given pipe length, the recovery plan can be made in the following way:  300 

• The recovery of cleaning agent stops at ��,NO �� . So the agent solution is still in high 301 

concentration without dilution and can be reused with high activity. 302 

• The recovery of rinsing water starts at ���,NO ��, as the rinsing water is less “polluted” by the 303 

agent components. The recovered water can be used for the pre-rinse of the next cleaning or 304 

for other applications where the water quality fits. 305 

• The effluent between ��,NO �� and ���,NO ��  is a mixture of the agent solution and the rinsing 306 

water, which can be disposed to the drain or a wastewater treatment plant. The amount of 307 

effluent can be regarded as the minimum amount of wastewater when the recovery is planned 308 

according to this approach. 309 

The minimum volume of wastewater is: 310 

 �� ���� ��� = V�>
4 ∙ �� ∙ ���,NO �� − V�>

4 ∙ �� ∙ ��,NO �� = V�>
4 ∙ (�� ∙ ���,NO �� − �� ∙ ��,NO ��) (6) 

As indicated by equation 4, the values of �� ∙ ���,NO �� and �� ∙ ��,NO �� only depend on the inner pipe 311 

diameter for a given pipe length. Therefore, the minimum volume of wastewater increases as well 312 

when the pipe diameter increases.  313 

3.6. Mixing zone length 314 

Figure 9 shows the process when the agent is displaced by water in a 1 m pipe section within 2 s. The 315 

displacement occurs mainly in the axial direction. Mixing in radial direction is not significant when the 316 

flow is in turbulent regimes (Chisti and Moo-Young, 1994). In this study, mixing length is defined as 317 

the distance from the leading edge where the agent concentration is 99% to the trailing edge where 318 

the agent concentration is 1%. 319 
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The study of mixing length is important for intermediate rinses, especially for long pipes. The usual 320 

practice is to completely displace the cleaning agent A by water before introducing another cleaning 321 

agent B. An alternative method is shown in Figure 10. Two cleaning agents can be synchronously 322 

introduced with a proper interval between the agents. A so called intermediate rinse length is the sum 323 

of the mixing zone length of the agent A, the mixing zone length of the agent B and an intermediate 324 

length between two mixing zones. The intermediate length between two mixing zones can be 325 

minimized in order to reduce water consumption. Thus, the minimum requirement of intermediate 326 

rinsing water is the volume of two mixing zones which can be calculated from the mixing length. 327 

Figure 11 demonstrates that the mixing length increases continuously with increasing rinsing time. The 328 

leading edge (above 0) and trailing edge (below 0) are symmetrically located on two sides of the mid-329 

plane. Zhao et al. (2010) also observed that the increase in flow velocities contributed to greater 330 

mixing lengths when simulating the displacement of a heavier liquid A with another lighter liquid B in a 331 

10 m straight pipe.  332 

According to the penetration theory of Higbie (1935), the mixing length of different species is 333 

dependent upon both the turbulent diffusivity and the contact time (van Elk et al., 2007; Zhao et al., 334 

2010): 335 

 � ∝ 2Y�� ∙ � (7) 

where � is the mixing length, �� is the turbulent diffusivity of the species. The right hand side term, 336 

2Y�� ∙ � , is called characteristic length in mixing (Ekambara and Joshi, 2004). By replacing the 337 

turbulent diffusivity with the axial dispersion coefficient, equation 7 also applies to the axial mixing of 338 

CFD results as shown in Figure 12. The idea behind the correlation is that the penetration theory 339 

quantifies the component transfer using a similar error function as in  equation 1 (Assar et al., 2014). 340 
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On the basis of the correlation, it enables to predict the mixing lengths for longer rinsing time and 341 

various flow rates and pipe diameters.  342 

For a given pipe length, the contacting time can be assumed as ! ��⁄ , which is the mean residence 343 

time of rinsing water. Then the minimum requirement of intermediate rinsing water can be calculated 344 

from the mixing length, as: 345 

 ������.		����� = 2 ∙ V�
>

4 ∙ � = 2 ∙ V�
>

4 ∙ 3.29 ∙ Z2Y
 ∙ ! ��⁄ [ = 3.29V�>Y
 ∙ ! ��⁄  
(8) 

Under the flow conditions in this study, the second right hand side term in equation 3 dominates the 346 

value of 
. Therefore, equation 8 can be further simplified and approximated as: 347 

 
������.		����� = 3.29V�>Y1.35(���)�.C=A(' (⁄ )�.�>A ∙ ! ��⁄

= 3.82VY���.\=A�].C=A(' (⁄ )�.�>A! 

(9) 

4. Application and further perspectives 348 

4.1. Understand and control the process 349 

The objective of any rinsing operation should be to completely remove the cleaning agent solution 350 

using less water, shorter time and generating less wastewater. With this purpose in mind, the obtained 351 

knowledge from this study can be categorized into two groups: the first type of knowledge is about 352 

controlling the process, including the flow velocity, the minimum rinsing time and the times for 353 

recovering the cleaning agent or rinsing water; the second type of knowledge is about understanding 354 

the process, like the minimum water consumption, the minimum volume of wastewater, the recovered 355 

volume of the cleaning agent and the minimum requirements of intermediate rinsing water.  356 

Figure 13 presents an algorithm flowchart about how to apply the existing complex knowledge to 357 

optimization of the rinsing process. Given the pipe diameter, flow velocity and pipe length, the 358 

minimum rinsing time can be calculated. In practical cases, the real rinsing time is normally set with 359 
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safety margins, as it is not desired to risk producing inferior products due to unwise savings in 360 

cleaning procedures. However, if the input rinsing time is much longer than the minimum required time, 361 

it should be examined if an unnecessary waste of time and water is the case.  362 

It is expensive to run CFD simulation for all conditions. But using the empirical or analytical equations 363 

derived from CFD results is practical. Equation 4 calculates the time to stop the recovery of cleaning 364 

agent and the time to start the recovery of rinsing water. Correspondingly, the effluent between the 365 

two time points is regarded as wastewater, the minimum volume of which can be predicted with help 366 

of equation 6. If the real volume of wastewater is more than the minimum, it means the recovery 367 

efficiency can be higher by adjusting the recovery time. On the contrary, if the volume of wastewater is 368 

less than the minimum, it leads to the potential risk of excessive recovery. For example, the recovered 369 

cleaning agent has been diluted by the rinsing water, or the reused rinsing water has been “polluted” 370 

by the cleaning agent. If it is the intermediate rinse between two cleaning agent solutions, the 371 

minimum volume of intermediate rinsing water can be calculated according to equation 8 or 9.  372 

4.2. A case study of rinsing a 24 m straight pipe with inner diameter 100 mm 373 

The above results are extended to analyze the rinse of a 24 m straight pipe with inner diameter 100 374 

mm. The mean flow velocity is 1 - 2 m/s. The set time of the rinsing step is assumed to be 1.5 ∙ ! ��⁄ . 375 

In industrial practice, the rinsing time is usually set based on experience, which can thus be over or 376 

below 1.5 times the residence time. The density and dynamic viscosity are assumed to be 997 kg/m3 377 

and 8.899×10-4 kg/(m·s), and are assumed the same for the agent solution and the rinsing water. 378 

Table 3 summarizes the results, which have been produced using the algorithm summarized in Figure 379 

13. The calculated minimum rinsing time based on a fixed plane is 11.2% larger than the minimum 380 

rinsing time calculated based on the volume. The set time is 1.36 times the ���,QROS��. The increase in 381 

flow velocity can shorten the rinsing time. However, the consumption of rinsing water, the recovery of 382 
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cleaning agent and the generation of wastewater are independent of the flow velocities. The recovery 383 

of cleaning agent is up to 89.3% of the volume. If it is the intermediate rinse, the increase in flow 384 

velocity slightly reduces the minimum requirement of intermediate rinsing water. An important result is 385 

that the implementation of synchronous intermediate rinse saves ~55% of water compared with the 386 

minimum requirement to replace all agent components from the pipe. 387 

4.3. Effects of complex element geometries 388 

This study simulates the displacement process in straight pipes. However, a complete transfer line 389 

consists of various elements, such as bends, T-joints, expansions, contractions and valves. Graßhoff 390 

(1983) studied the displacement of one liquid with another liquid in three types of T-joints: (1) direct 391 

entrance and exit with a perpendicular dead zone; (2) perpendicular entrance and exit with the dead 392 

zone extending the entrance stream; and, (3) perpendicular entrance and exit with the dead zone 393 

reversing the exit stream. A local sensor was installed at the end of the dead zone. With the increase 394 

in the dead zone length from � to 10�, the displacement time (���) determined by the local sensor 395 

varied from seconds to ten thousands of seconds. Thus, the time to completely remove the cleaning 396 

agent from a long dead zone is much longer than for rinsing straight pipes.  397 

CFD is a powerful tool to study the hygienic design of such elements. According to the European 398 

Hygienic Engineering & Design Group (EHEDG) Testing and Certification guideline, CFD is currently 399 

the only alternative to test the scalability of difference sizes of the same piece of equipment, apart 400 

from the evaluation based on a design review and CIP test (EHEDG.org, 2016). CFD simulations of 401 

the intermediate and final rinses serve as a supplement to previous studies where water is applied as 402 

a medium to dissolve or remove soils from the surfaces (Asteriadou et al., 2009, 2007, 2006). This 403 

article boosts the confidence to implement such CFD simulations of the displacement process for 404 

more complex element geometries which are more commonly used in practice. 405 
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5. Conclusions 406 

In this paper, CFD is used to simulate the intermediate and final rinses of straight horizontal pipes in 407 

CIP applications. Axial mixing and displacement of agent solutions by water are studied and compared 408 

with the Taylor model. The proposed CFD model for description of agent concentrations at varying 409 

time points and locations in the pipe is found to give an excellent agreement with the Taylor analytical 410 

model.  411 

The key findings in the presented work are summarized in the following: 412 

1) The displacement times are dependent on the pipe diameters and flow velocities. The product 413 

of the displacement time and the mean flow velocity can be correlated by a power function with 414 

inner pipe diameter as independent variable.  415 

2) The minimum water consumption for completely rinsing a pipe is slightly larger than the pipe 416 

volume. The minimum water consumption is not much influenced by changing flow velocities 417 

when the flows are fully turbulent.  418 

3) A practical rinsing step can be controlled based on downstream measurement and rinsing 419 

stops when the measurement reaches the pre-defined criteria. However, the set time is still 420 

longer than required. The water consumption is still more than the minimum requirement in 421 

order to reduce contamination risks. 422 

4) The minimum volume of wastewater can be predicted from the displacement times, and is 423 

independent of the flow velocity. 424 

5) Radial mixing is not significant during the displacement process. The mixing length varies with 425 

the pipe diameters, flow velocities and rinsing time. The values of the mixing lengths are 426 

proportional to the characteristic length (2√
 ∙ � ), which can be applied to calculate the 427 

minimum requirement of intermediate rinsing water. 428 
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The observations in this work can help to optimize the control of the rinsing step in terms of the flow 429 

velocity, the rinsing time and the recovery plans of the cleaning agent and rinsing water. A case study 430 

of rinsing a 24 m straight pipe with inner diameter 100 mm reveals that the recovery of cleaning agent 431 

can be up to 89.3% of the volume and the saving of intermediate rinsing water can be at least 55%. 432 

The successful simulation of the intermediate and final rinses of straight pipes builds confidence for 433 

future studies to simulate the displacement process for more complex geometries and improve the 434 

hygienic design and the CIP cleaning of different pipe elements. 435 
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Figure captions: 

Figure 1. (A) The cleaning time of each step and (B) the costs in a CIP procedure of transfer pipes in a brewery. 
The cleaning is performed at room temperature. The recovery (~ 95%) of cleaning chemicals has been 
considered in the calculation of the costs. (Reproduced with permission of Carlsberg, Fredericia, Denmark) 

Figure 2. Structured mesh of the cross section of the pipe with diameter 40.90 mm (DN 40). The near-wall 
meshes were enhanced by fine layers. The geometry was simplified as a quarter section of the pipe in order to 
save computational time. The mesh element in the pipe center (at the bottom-left corner) was nearly cuboid. 

Figure 3. Description of the distribution of agent component within the pipe at � = 0. The agent components 
were dissolved in water with a concentration of 1 kg/m3 at � ≥ 0	�. Water was flushed from � = −3	�. Such 
treatment eliminated the entrance effect at �	 = 	0 under which the inlet flow was not fully turbulent. 

Figure 4. Near-wall turbulence intensity (1 mm from the wall) for different model cases. The inner pipe diameter 
is 40.90 mm (DN 40), the flow velocity is 1.5 m/s. The parameters of the 7 model cases are listed in Table 1. 
Cases 2, 6 and 7 are designed for the mesh independence study. Cases 1 – 5 are designed for the study of inlet 
boundary conditions. Case 2 is the reference which is the selected mesh. 

Figure 5. Average agent concentrations at the different mid-planes (� = 
� ∙ �) for model cases as described in 
Table 1. The inner pipe diameter is 40.90 mm (DN 40), the flow velocity is 1.5 m/s. Equation 1 indicates that 

� = 0.5	 �� ��⁄  at � = 
� ∙ �. Cases 1 - 5 result in the same average agent concentrations (with precision 
0.00001 kg/m3), which are displayed as overlapping symbols. 

Figure 6. Comparison of the Taylor model and the CFD simulations at 1.5 m/s of flow velocity for (A) a fixed 
distance of 15 m with varied rinsing time, and (B) a fixed rinsing time of 10 s with varied distance. 

Figure 7. Axial velocity and turbulent kinetic energy at the distance of 15 m and for a mean flow velocity of 1.5 
m/s for different pipe diameters (�� = 26500	~	259000). � ⁄ � is the dimensionless distance from the center of 
the pipe to the wall. The values of 
� and � quantify the intensity of convection in the axial direction when the 
radial velocity and tangential velocities are not significant in the pipe.  

Figure 8. The product of displacement time and flow velocity for different pipe lengths. The marker values and 
error bars (too small to be seen) are from the CFD models for the simulated pipe diameters, representing the 
average and standard deviation of ��	��	  ∙ 
� at three flow velocities. The curves represent the values which are 
calculated by the power function in equation 7. 

Figure 9. Agent distribution in a 1 m pipe section at different rinsing times. The inner pipe diameter is 26.64 mm 
(DN 25 mm), and the flow velocity is 1.5 m/s. 

Figure 10. Intermediate rinse length between two cleaning agents. The intermediate rinse length equals the sum 
of the mixing zone of agent A, the mixing zone of agent B and an intermediate length between two mixing zones. 
The minimum intermediate rinse length is when the intermediate length between two mixing zones is zero. 

Figure 11. Dynamic mixing length of the 77.90 mm diameter (DN 80) pipe at 1 m/s and 2 m/s. ∆� is the relative 
position of the leading edge (+) and the trailing edge (−) to the mid-plane (� = 
� ∙ �) 
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Figure 12. Correlation of the mixing length with the characteristic length, 2√$ ∙ � . The mixing lengths of 
different pipe diameters at different flow velocities are proportional to the characteristic length, which can be 
expressed by a first order equation with high correlation coefficient. 

Figure 13. The algorithm for understanding and controlling the rinse of straight pipes based on the findings in 
this study. The algorithm is only valid if the flow is turbulent.  
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Tables and captionss 

Table 1. Parameters for the mesh study and for the influence of turbulence intensity and turbulence length scale. 
The inner pipe diameter is 40.90 mm (DN 40), the flow velocity is 1.5 m/s. Case 2 is the reference case which is 
selected for other studies. 

Case 
Mesh 

indexes 

No. of nodes in 
radial / axial 

directions 

Tib 

[%] 

Tlb 

[% of diameter] 
y+ 

Maximum 
Courant 
number 

Mean 
Courant 
number 

1 Mesh 1 21 / 501 1 10 45 0.69 0.26 

2 Mesh 1 21 / 501 5 10 45 0.69 0.26 

3 Mesh 1 21 / 501 20 10 45 0.70 0.26 

4 Mesh 1 21 / 501 5 5 45 0.69 0.26 

5 Mesh 1 21 / 501 5 30 45 0.69 0.26 

6 Mesh 2 29 / 751 5 10 32 1.04 0.39 

7 Mesh 3 27 / 501 5 10 4 0.81 0.24 
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Table 2. Correlation parameters of the product of displacement time and flow velocity for different pipe lengths 
by the power function as equation 7. The unit of inner pipe diameter should be meter. Depending on the practical 
cases, the correlation parameters of other pipe lengths can also be extracted from the CFD simulation results. 

�, [�] �, [s] �, [��	
] � R2 

2 

��,�
��� 1.01 -0.121 0.998 

���,�
��� 3.83 0.107 0.963 

���,��
��� 3.03 0.0788 0.966 

15 

��,�
��� 11.7 -0.0456 0.989 

���,�
��� 19.1 0.0422 0.978 

���,��
��� 16.4 0.0212 0.970 

24 

��,�
��� 19.8 -0.0354 0.996 

���,�
��� 29.1 0.0337 0.980 

���,��
��� 25.5 0.0152 0.971 
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Table 3. Result summary of the case study for rinsing a 24 m straight pipe with inner diameter 100 mm. The 
analysis follows the algorithm depicted in Figure 15. 

��, [m/s] 1 1.5 2 

Re 112035 168053 224070 

Turbulence or not? Yes Yes Yes 

�, [m2/s] 0.0316 0.0450 0.0579 

��,�
���, [s] 21.43 14.29 10.72 

���,�
���, [s] 31.43 20.95 15.71 

���,��
���, [s] 26.42 17.62 13.21 

��
��� 1.038 1.038 1.038 

���
��� 1.154 1.154 1.154 

����,�
���, [m3] 0.218 0.218 0.218 

����,��
���, [m3] 0.196 0.196 0.196 

����,�
��� ����,��
���⁄  1.112 1.112 1.112 

Real rinsing time � = 1.5 ∙ � ��⁄ , [s] 36 24 18 

�/���,��
��� 1.36 1.36 1.36 

Time to start the recovery of rinsing water, [s] 31.43 20.95 15.71 

Real water consumption �#, [m
3] 0.283 0.283 0.283 

Recovery of cleaning agent solution, [m3] 0.168 0.168 0.168 

Recovery percentage of cleaning agent solution, [%] 89.3 89.3 89.3 

Minimum amount of wastewater, [m3] 0.079 0.079 0.079 

���#�$.		$��&�, [m3] 0.090 0.088 0.086 

'����,��
��� − ���#�$.		$��&�) ����,��
���*  0.539 0.551 0.559 
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Highlights 

• CFD simulates the axial mixing which occurs during the intermediate and final rinses during cleaning of 

straight pipes. 

• The CFD results are in good agreement with the analytical models from literature. 

• The model quantifies the minimum rinsing time, minimum water consumption and how to efficiently 

recover the cleaning agent and rinsing water. 

• An algorithm and a case study show how to use the investigated knowledge to solve practical problems. 


