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Abstract. Switches and crossings are an integral part of any railway network. Plastic 

deformation associated with wear and rolling contact fatigue due to repeated passage of trains 

cause severe damage leading to the formation of surface and sub-surface cracks which 

ultimately may result in rail failure. Knowledge of the internal stress distribution adds to the 

understanding of crack propagation and may thus help to prevent catastrophic rail failures. In 

this work, the residual strains inside the bulk of a damaged nose of a manganese railway 

crossing that was in service for five years has been investigated by using differential aperture 

synchrotron X-ray diffraction. The main purpose of this paper is to describe how this method 

allows non-destructive measurement of residual strains in selected local volumes in the bulk of 

the rail. Measurements were conducted on the transverse surface at a position about 6.5 mm 

from the rail running surface of a crossing nose. The results revealed the presence of significant 

compressive residual strains along the running direction of the rail. 

1.  Introduction 

Switches and crossings (S&Cs) are of great importance for any railway network as they allow trains to 

be directed from one track to another. The geometry, as well as the loading situations, in the nose of a 

crossing (see figure 1) differs from that of normal rails. It has been observed that the majority of track 

problems are associated with switches and crossings, which leads to higher maintenance costs than for 

any other part of the track. Previous studies performed on the deformation behavior of the crossing 

nose [1-5] clearly indicate that a very high contact stress occurs at the rail/wheel contact surface due to 

repeated passage of wheels. The stress levels are higher than the yield strength of the rail material, 

causing plastic deformation of the rail. The rail in the nose region is also subject to contact friction, 

and impact stresses, which lead to wear and rolling contact fatigue. Many defects can appear, 

including surface and subsurface cracks. The stress distribution (of both contact and residual stresses) 

plays an important role in generation of cracks in the material that may lead to failure. Residual 

stresses are generated in a rail during manufacturing as well as while in service. There are quite a few 

studies on the measurement of residual stresses in normal rail heads in the literature, including both 

modelling and experimental work [6-15]. Mostly tensile residual stresses are present in the rail head 
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after the straightening process during manufacturing, however in service the stress state changes due 

to the variable loading situations resulting in the generation of a complex stress field.  

There are several different experimental techniques to measure the residual stress in any material. 

Non-destructive methods include the use of X-rays or neutrons. However, ordinary X-rays are limited 

in terms of intensity and penetration depth. This means they typically give a mean stress averaged over 

a penetration depth only within a small area. In recent years, neutron diffraction has been used to 

determine residual stresses in the rail head [8-11]. Neutrons have a significantly larger penetration 

depth compared to ordinary X-rays, but due to their relative low intensity only stresses averaged over 

fairly large volumes in the mm
3
-cm

3
 range can be determined. Alternatively, with the advent of high 

energy synchrotron radiation techniques, local residual stresses can be determined in the bulk of the 

samples. Measurements of residual stresses on worn rails [12-14] as well as roller-straightened new 

rail heads [15] using synchrotron X-ray diffraction method have been published.  

The novelty of the present work is that we focus on strains in the heavily loaded nose of an S&C, 

and that the selected S&C is made of manganese steel, optimized to improve wear and fatigue 

resistance compared to conventional pearlitic steel. Moreover the manufacturing process of manganese 

steel railway crossings is different from normal rails. Specifically, they are cast as a single piece and 

then explosion hardened.  

The purpose of this work is therefore to apply synchrotron X-ray measurements to the nose of a rail 

crossing, and to determine the depth profiles of the residual strains. The crossing rail sample used in 

the experiment was taken from the rail network after being in service for five years on a major railway 

line in Denmark, carrying both freight and passenger trains. 

2.  Experimental Procedure 

The residual strains in the nose of manganese steel crossing were investigated in this study. Visual 

inspection of the nose revealed severe damage with cracks and spallation. The chemical composition 

and mechanical properties of the steel are given in table 1 and table 2, respectively. The sampling area 

of the nose for synchrotron measurements is described in figure 1. The slice for the measurement was 

5 mm thick and strain measurements were made on the transverse surface at various depths along the 

longitudinal direction. To avoid mechanical strains induced during grinding and cutting of the slice, 

the free surface was electropolished before measurements.  

Table 1. Chemical composition of the manganese steel (wt%). 

C Mn Si Cr P S Fe 

1.14 12.81 0.26 0.12 0.05 0.05 balance 

     

Table 2. Mechanical properties of the manganese steel. 

Tensile strength Yield Strength Elongation Hardness 

~750 MPa ~365 MPa ~20% ~220 HV 
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Figure 1. Nose specimen used for the synchrotron strain measurement: (a) photograph of 

typical crossing (with nose and wingrail); (b) part of a manganese steel crossing cut out from 

the track for investigation; (c) schematic showing the final sampling slice for strain 

measurements indicating also the normal direction (ND), transverse direction (TD) and 

longitudinal direction (LD). The black cross marks the position for synchrotron measurements. 

(d) Sketch showing the experimental set-up for the synchrotron measurements. 

  

Synchrotron measurements were conducted on the transverse section at a position about 6.5 mm 

from the rail running surface of the crossing nose (see figure 1d) at beam line 34-ID-E at the 

Advanced Photon Source (APS), Argonne National Laboratory [16].  

A focused polychromatic beam was first used to determine the orientations of the matrix grains. 

The use of non-dispersive Kirkpatrick-Baez (K-B) focusing mirrors helps in focusing of the beam on 

to the specimen. The resulting microbeam had a full-width half maximum of ~0.5 µm. The X-ray 

microbeam was scanned over the specimen, which was mounted on a holder at an inclination of 45º to 

the incoming beam (see figure 1d). The Laue diffraction patterns from the polychromatic scans were 

recorded on an area detector mounted in 90º reflection geometry 510.3 mm above the specimen. 

Diffraction patterns from different depths were obtained by the use of a Pt-wire of 100 µm diameter as 

a differential aperture. The Laue patterns at each depth were reconstructed by the use of the LaueGo 

software [17] available at APS beamline 34-ID-E. The patterns were indexed, from which the (hkl) 

indices of individual spots as well as their corresponding X-ray energies were determined. From these 

data, a spot with high intensity and its corresponding plane parallel to the specimen surface was 

selected for monochromatic energy scanning to determine the absolute lattice spacing. Thereby the 

strain (in one direction) was measured as: 

𝜀 =
𝑑−𝑑0

𝑑0
 ,                                                                     (1) 

where d is the lattice spacing of the sample and d0 is the lattice spacing of the sample in the stress-free 

state. For the present study, d0 was determined based on the lattice parameter measured at the base of 

the nose (at a depth of 20 mm from the running surface) using  laboratory X-ray measurements 

Nose 

Wingrail  

(a) (b) 
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assuming that, apart from manufacturing stresses, this location is free from stresses induced due to 

wheel-rail interactions. These measurements were done at the Department of Materials and 

Manufacturing Technology at Chalmers University of Technology, Sweden.  A chromium source (X- 

ray wavelength λ = 2.2897 Å) was used. The lattice parameter determined from the (220) peak at a 

diffraction angle of 126.85º is a = 3.621 Å, which is used for to obtain the reference d0 value. 

3.  Results and Discussion 

The crystallographic orientations measured using polychromatic beam differential aperture X-ray 

diffraction (DAXM) at four locations, 0.5 mm apart, are shown in figure 2. The grain orientations 

within a depth of 0-50 µm from the measurement surface are shown. The result shows that the grain at 

a position of 6.5 mm from the running surface has the smallest orientation spread (see figure 2b) and 

the highest indexed percentage. This grain is therefore chosen for the monochromatic energy scan. 

 

 

Figure 2. Grain orientations at different depths and different locations on the transverse surface 

(a) together with the corresponding {001} pole figure (b). The grain selected for monochromatic 

energy scan for determination of lattice absolute spacing is marked. The black line in (a) marks 

the approximate position of the measurement surface. The colors in (a) and (b) correspond to 

the crystallographic orientations.  

 

 

Figure 3. (a) Indexing of a polychromatic beam depth-resolved Laue diffraction pattern; (b) 

intensity distributions as a function of diffraction vector Q at each depth. 

Figure 3a shows an indexed Laue pattern obtained at one of the depths from the polychromatic beam 

diffraction data for the selected grain, where the numbers indicate the assigned (hkl) indices of each 

spot. Based on this diffraction pattern the (517) spot was selected for monochromatic energy scanning, 
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as the intensity of this spot is relatively high and the corresponding X-ray energy is also high, at about 

21 keV. The normal of the chosen (517) plane is about 2º away from sample normal direction, which 

is marked by the dashed cross in figure 3a. 

 From the monochromatic energy scan, the diffraction images around the (517) spot at each energy 

step for each depth were reconstructed. As each energy corresponds to a specific diffraction vector Q 

(Q = 2π/d), the integrated intensity of each diffraction image as a function of the diffraction vector can 

be determined at all X-ray penetration depths (see figure 3b). A few examples of the Q distribution at 

different depths are given in figure 4a, which clearly shows that the strain distribution varies within 

the measured volume from tensile to compressive strains. The dashed line marks the Q value 

corresponding to d0 of the (517) crystallographic plane. A shift to the right relative to the dashed line 

indicates compressive strains and vice versa for tensile strains. At each depth, the Q distribution was 

fitted using a Gaussian function and the center of the distribution, Qc was used to determine the 

crystallographic plane spacing, d.  

   

Figure 4. (a) Intensity variation as a function of Q at different depths within the sample (The 

dashed line marks the Q value for d0 of the (517) crystallographic plane). (b) The residual strain 

along LD as a function of depth along the incoming X-ray. 

  

Figure 4b shows the elastic strain component normal to the transverse surface of the sample 

developed in the nose crossing at different depths from the measuring surface. It can be seen that in 

the bulk of the material there are residual compressive strains in the range of 2 × 10
-4

 up to 4.11 × 10
-4

.  

Whereas theoretically the out-of-plane normal strain at a free surface is zero, tensile strains are seen 

within the first 3 µm from the free surface in figure 4b. Two explanations for this tensile strain are 

possible. Firstly, the reference d0 may not be strain free. It is very likely that the grains even at depth 

of 20 mm below the running surface are also under compression, thus the dashed line in figure 4a 

should be shifted to the left, and the curve in figure 4b should move down towards more compressive 

strain. Secondly, due to small experimental errors, the free surface may be wrongly identified by about 

2-3 µm from the currently assumed position. If the measurement surface in figure 4b (i.e. the 0 point) 

changes about 2-3 µm to the right, the tensile strain at the measurement surface is reduced. 

Irrespective of this, we can conclude the bulk of the measured volume is under compressive residual 

strains.  

The problem of railway damage and failure can be caused by multiple mechanisms but it is evident 

that interaction between residual stresses and the defects (cracks etc.) can lead to severe problems. 

Generally compressive stresses are beneficial because they are supposed to inhibit crack propagation 

whereas tensile stresses are conducive for crack propagation. Although we find the longitudinal 

stresses are compressive, the normal or the transverse component of the stress may have a tensile 

component which could lead to crack evolution and failure. Also, generally the presence of a 

significant compressive stress is counterbalanced by a tension zone underneath. A complete map of all 

the components of the stresses in the three directions at different depths from the running surface 

(a) (b) 
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would be helpful to understand the interaction of residual stress with damage mechanisms. This will 

be investigated in future work. Also the synchrotron data will be compared with those measured using 

standard laboratory X-rays. 

4.  Conclusion 

The residual strain distribution within a 5 mm thick slice of the nose of a manganese railway crossing 

was analyzed in the longitudinal direction at a distance of 6.5 mm from the rail surface. To our 

knowledge this is the first time synchrotron radiation has been employed to measure the strains in a 

nose of a manganese railway crossing. It was found that compressive strains exist along the 

longitudinal direction (with some small oscillations in the values) even at a depth of 6.5 mm from the 

wheel contact surface. Rail-wheel interactions at the nose of the crossing induces severe plastic 

deformation of the nose, the effect of which is thus evident even at a depth of 6.5 mm from the contact 

surface.     
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