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Abstract

A novel numerical framework for analyzing self-similar problems in plasticity

is developed and demonstrated. Self-similar problems of this kind include

processes such as stationary cracks, void growth, indentation etc. The pro-

posed technique offers a simple and efficient method for handling this class of

complex problems by avoiding issues related to traditional Lagrangian proce-

dures. Moreover, the proposed technique allows for focusing the mesh in the

region of interest. In the present paper, the technique is exploited to analyze

the well-known wedge indentation problem of an elastic-viscoplastic single

crystal. However, the framework may be readily adapted to any constitutive

law of interest. The main focus herein is the development of the self-similar

framework, while the indentation study serves primarily as verification of

the technique by comparing to existing numerical and analytical studies. In

this study, the three most common metal crystal structures will be investi-
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gated, namely the face-centered cubic (FCC), body-centered cubic (BCC),

and hexagonal close packed (HCP) crystal structures, where the stress and

slip rate fields around the moving contact point singularity are presented.

Keywords: Self-similarity, Crystal plasticity, Wedge indentation,

Asymptotic fields

1. Introduction1

Self-similarity exists in a broad range of elastic-plastic problems, where2

history dependence precludes direct solution methods. Such problems include3

geometrically self-similar indentation, as well as problems in void growth4

and phase transformation. The analysis of such problems often relies on5

cumbersome (traditional) Lagrangian procedures. But why not exploit the6

self-similar nature of the solutions to such problems when developing the7

computational framework? The first steps toward this were made in the8

early works by Hill and Stor̊akers (1990); Bower et al. (1993); Stor̊akers and9

Larsson (1994); Biwa and Stor̊akers (1995) where frameworks for the ex-10

ploitation of self-similarity in indentation problems were developed. Their11

methods started from the well-known analogy between a flat punch and a12

stationary crack so deformation induced by a non-flat indenter with rather13

arbitrary axi-symmetric geometries, could be analyzed by cumulative super-14

position of stationary flat punch solutions, for elastic and power law creeping15

solids. However, as discussed by Saito and Kysar (2011) and in more detail16

below, the proper analogy for a non-flat indenter is with a quasi-statically17
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propagating crack. Drugan and Rice (1984) and Drugan (1986) explained18

that for elastic-plastic materials that satisfy the maximum plastic work in-19

equality, the asymptotic fields for stationary and quasistatically propagating20

cracks are different in both isotropic and anisotropic materials. Furthermore21

the asymptotic fields may change as a consequence of large rotations and22

deformations. Hence, care must be taken with such methods, especially for23

anisotropic materials.24

In the present work, a general computational framework specialized for25

geometrically self-similar problems in elastic-plastic solids is developed. The26

framework does not, as the previously mentioned self-similar methods, rely27

on reference solutions nor is it restricted to specific material laws. As an28

example, the framework is applied to wedge indentation of elastic-plastic29

single crystals.30

For more than three decades, investigations have shown both analytically31

and numerically, that the material behaviour during indentation involves32

complex elastic-plastic deformation with finite strains and rotations. The33

early studies were closely related to crack growth which shares similarities34

to the indentation problem. For example, the boundary value problem of a35

stationary crack tip is analogous to that of a flat punch indentation. Likewise,36

the boundary value problem of a quasi-statically closing crack is analogous to37

that of a nearly-flat wedge indenter where the contact point singularity (e.g.38

the point where the indenter loses contact with the surface as it impinges39

into a material) moves quasistatically along the surface.40

3
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Analytical investigations of the asymptotic behaviour around a singular41

point in the crack tip and wedge indentation fields have been conducted by42

e.g. Drugan et al. (1982); Drugan and Rice (1984); Drugan (1986); Rice43

(1987); Drugan (2001); Saito and Kysar (2011) based on an extension of slip44

line theory that assumes a linear elastic, ideally plastic behavior (rather than45

the rigid, ideally plastic behavior typically associated with slip line theory)46

and also can account for the elastic and plastic anisotropy of the crystal me-47

chanical response. The governing partial differential equations are hyperbolic48

so the analytical solution is obtained via the method of characteristics. As49

a consequence, the deforming domain is divided into sectors within which50

deformation is either elastic or is ideally plastic on a well-defined set of slip51

systems. The sectors are separated by different types of discontinuities on52

sector boundaries, depending on the specific problem at hand.53

For indentation (or cracks), the asymptotic solutions near the contact54

point (or crack tip) singularities consist of angular sectors centered at the55

singular point. The stress state in both plastically and elastically deform-56

ing regions can be readily calculated. Special attention must be paid to the57

boundaries between the angular sectors that consist of radial lines emanat-58

ing from the singular point. If the singular point is stationary the solutions59

admit stress and velocity discontinuities across the radial sector boundaries.60

However, singular points, and hence sector boundaries, that move quasistat-61

ically through elastic-plastic materials that obey the maximum plastic work62

inequality have solutions that admit velocity discontinuities but not stress63

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

discontinuities (Drugan and Rice, 1984; Drugan, 1986). Thus, the asymp-64

totic fields associated with stationary and quasistatically moving singulari-65

ties are quite different. Saito and Kysar (2011); Saito et al. (2012); Sarac66

and Kysar (2017) showed that asymptotic fields for flat punches and nearly-67

flat wedge indenters have significant differences, with related experimental68

analyses (Kysar et al., 2010; Sarac et al., 2016). These studies were heav-69

ily inspired by Rice (1987) and Kysar (2001a,b) where the differences with70

regard to cracks were reported, with related experimental analyses of sta-71

tionary cracks (Bastawros and Kim, 2000; Crone and Shield, 2001) as well as72

quasistatically growing cracks (Kysar, 2000; Kysar and Briant, 2002). Rice73

et al. (1990) was among the first to confirm the distinct material behaviour74

in the vicinity of both a stationary and quasi-static crack tip through nu-75

merical analysis, with other studies by Mesarovic and Kysar (1996); Kysar76

(2001a,b).77

Recently, Saito et al. (2012) conducted numerical studies of the wedge78

indentation process confirming the analytical predictions by Saito and Kysar79

(2011). However, these investigations (Rice et al., 1990; Saito et al., 2012)80

are based on traditional incremental Lagrangian frameworks that suffer from81

numerical difficulties such as developing contact interfaces as well as prob-82

lems with modelling a moving singularity due to the incremental procedure83

(not to mention the problem of maintaining sufficient mesh resolution over84

the span where the contact point moves). Obviously, such numerical issues85

are undesired and compromise accuracy of results. Thus, the main goal of86
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the present study is to develop a general numerical framework specialized for87

self-similar problems in plasticity that avoids the numerical issues of the tra-88

ditional procedures. In the following, self-similarity is referred to as a process89

where the fields, such as stress and strain fields, do not change for an observer90

continuously changing magnification of the view at a problem dependent rate.91

For example, considering wedge indentation, the fields beneath the indenter92

remain of identical shape, but change magnitude when the indenter impinges93

deeper into the material. To verify the numerical procedure, results of wedge94

indentation into the face-centered cubic (FCC) crystal structure will be com-95

pared to the analytical and numerical work of Saito and Kysar (2011) and96

Saito et al. (2012). Additionally, in order to demonstrate the capability of97

the developed framework, new results are presented for body-centered cubic98

(BCC) and hexagonal close-packed (HCP) crystal structures and compared99

to the analytical results in Saito and Kysar (2011).100

The paper is divided into the following sections: The wedge indentation101

problem, analytical solutions, and material model are outlined in Section 2,102

self-similarity and the numerical framework are derived in Section 3, verifi-103

cation and results are presented in Section 4, and finally some concluding104

remarks are given in Section 5. Index notation, including Einstein’s sum-105

mation convention, is used throughout and the notation ( ˙ ) signifies a time106

derivative.107
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2. Indentation with a nearly flat wedge indenter108

Quasi-static wedge indentation is chosen as the benchmark problem for109

the numerical framework developed as both analytical and numerical re-110

sults exist for comparison (Saito and Kysar, 2011; Saito et al., 2012). Saito111

et al. (2012) considered indentation into a single metal crystal with a nearly112

flat wedge indenter such that, φ, (cf. Fig. 1) approaches 0◦. Here, friction113

between the indenter and the material is neglected and an elastic, ideally114

plastic single crystal with a very low critical resolved shear stress equal on115

all slip systems is assumed (see model parameters in Table 1). The pro-116

posed numerical framework is not limited to such extreme conditions, but117

this configuration ensures the conditions required for the analytical solutions118

developed by Saito and Kysar (2011). Additionally, this set-up allows for a119

two-dimensional (2D) plane strain analysis under a small strain assumption120

by employing effective in-plane slip systems that combine deformation on121

symmetric pairs of out-of-plane slip systems into an effective in-plane defor-122

mation. A detailed description and discussion of the effective slip systems123

can be found in Section 2.2.124

A detailed study of the analytical solutions can be found in Saito and125

Kysar (2011) based on the extension of slip line theory that assumes linear126

elastic and ideally plastic behavior. Here, the FCC, BCC, and HCP crystal127

structures are treated for the 2D plane strain case. Saito and Kysar (2011)128

derived an analytical solution for a moving contact point singularity based129

on the assumption that stress discontinuities cannot exist in the deformation130
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fields under these conditions (see Drugan and Rice, 1984). Following Rice131

(1987), the analytical investigation by Saito and Kysar (2011) showed that132

the asymptotic deformation fields consist of angular sectors centered at the133

singular point; the angular sectors can deform either elastically or plasti-134

cally. The angular sectors are separated by radial rays emanating from the135

singular point that coincide either with the slip direction or the slip plane136

normal of the effective in-plane slip system. As described by Rice (1987),137

if the radial ray coincides with a slip direction, dislocations operate in glide138

shear along the ray and if the radial ray coincides with the slip plane normal139

dislocations operate in kink-shear mode. If the contact point singularity is140

stationary with respect to the crystal, the stress fields can admit stress jumps141

across the radial rays. However, if the contact point singularity moves qua-142

sistatically relative to the crystal, the angular sectors and sector boundaries143

move through the crystal as well. Under this condition, the stress fields do144

not admit discontinuities across the radial sector boundaries, but velocity145

discontinuities across the radial sector boundaries are allowed (Drugan and146

Rice, 1984).147

The solution by Saito and Kysar (2011) for the asymptotic fields asso-148

ciated with the contact point singularity of a nearly-flat wedge impinging149

into an FCC crystal is reproduced in Fig. 2a. The solution consists of four150

elastically deforming angular sectors separated by three plastically deform-151

ing radial rays. By adopting the slip systems in Table 2, it is seen that the152

glide shear is related to slip system (1) and (3), and the kink shear is related153

8
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to slip system (2). The asymptotic solution for the BCC crystal is shown154

in Fig. 2b, having only three sectors separated by two plastically deforming155

rays (glide shear).156

Saito and Kysar (2011) showed that the asymptotic solution for the

stresses in the vicinity of the moving contact point singularity for the FCC

and BCC crystals are described according to Eqs. (1)-(3) with C1 =
√

3/2,

C2 =
√

3, and C3 =
√

3/2 for FCC, and C1 = 3/4, C2 = 3/2, and C3 = 3/4

for BCC.

σ11 − σ22
2τ0

= C1 sin(2θ) (1)

σ11 + σ22
2τ0

= C2θ (2)

σ12
τ0

= C3[1− cos(2θ)] (3)

where σij is the stress tensor, τ0 is the critical resolved shear stress, and θ is157

the angle depicted in Fig. 2.158

The analytical solutions of the stress field are presented in Figs. 7a and159

9a for the FCC and BCC structures, respectively. The stress distribution is160

plotted as a function of the angle θ with θ = 0 at the undeformed surface161

in front of the moving contact point and θ = −π at the indenter surface162

going in a clockwise direction (see Fig. 2). Additionally, the analytical stress163

trajectory and yield surface are presented in Figs. 7b and 9b for the FCC164

and BCC structures, respectively. The yield surfaces are adopted directly165

from Table 2 through Table 4 in Saito and Kysar (2011). The last crystal166

9
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structure of interest in this paper is the HCP structure. Saito and Kysar167

(2011) determined that the asymptotic solutions for the HCP crystal must168

include at least one plastic angular sector, unlike the FCC and BCC struc-169

tures in which all angular sectors are elastic. Hence, an analytical solution of170

the stress field has not yet been derived for the HCP crystal (cf. Fig. 11b).171

2.1. Material model172

The plane strain study of indentation in single crystals is performed in173

a small strain setting. Thus, the total strain, εij, is determined from the174

displacement, ui, such that; εij = (ui,j + uj,i)/2 and furthermore the total175

strain is decomposed into the elastic part, εeij, and the plastic part, εpij (εij =176

εeij+εpij). When the strain field (and its decomposition) are known, the stress177

field can be determined from the relationship; σij = Lijkl(εkl − εpkl), where178

Lijkl is the elastic stiffness tensor.179

To determine the plastic part of the total strains for a single crystal, a

summation over all slip systems, α, is performed according to

ε̇pij =
∑

α

γ̇(α)P
(α)
ij , P

(α)
ij =

1

2

(
s
(α)
i m

(α)
j +m

(α)
i s

(α)
j

)
(4)

where P
(α)
ij is the Schmid tensor, γ̇(α) is the slip rate, and s

(α)
i and m

(α)
i are the

unit vectors defining the slip direction and the slip plane normal, respectively

(see Fig. 3). To determine the slip rate on each slip system, the following

visco-plastic power law slip rate relation proposed by Hutchinson (1976) is

10
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adopted

γ̇(α) = γ̇0sgn
(
τ (α)

)( |τ (α)|
g(α)

)1/m

(5)

where τ (α) = σijm
(α)
i s

(α)
j is the resolved shear stress and g(α) is the slip180

resistance. The slip resistance g(α) = τ
(α)
0 since only elastic, ideally plastic181

materials are considered in the present study.182

The visco-plastic law in Eq. (5), implies that the rate-sensitivity of the183

material response increases for an increasing rate-sensitivity exponent, m,184

and vice versa, (N.B. The slip plane normal is denoted by unit vector mi185

whereas the rate-sensitivity exponent is denoted by the scalar m). Thus,186

for m→ 0, the constitutive material model approaches the rate-independent187

material response.188

For the self-similar indentation problem dimensional analysis dictates that

the indentation solution is governed by the following parameters

γ̇(α)
(
xi
a

)
= F

(
τ0
E
,
ȧ

aγ̇0
, φ,m, ν

)
. (6)

2.2. Effective slip systems189

The reason for choosing a 2D plane stain model is mainly for verification190

purposes of comparing the results of the computations to the existing analyti-191

cal solution, but also because many detailed experiments are conducted under192

nominally plane strain conditions in single crystals. However, the numerical193

11
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framework in Section 3 can equally well be exploited for three-dimensional194

(3D) boundary value problems.195

To ensure 2D plane strain deformation of single crystals, it is necessary to196

choose the plane of plane strain to coincide with a mirror symmetry plane in197

the crystal (see e.g. Rice, 1987; Kysar et al., 2005; Niordson and Kysar, 2014).198

Here, following Rice (1987), the (1̄01) plane is chosen as the mirror symmetry199

plane for the plane strain deformation in the FCC and BCC crystals. The200

specimen geometry and the external loading must also have mirror symmetry201

about the crystallographic mirror plane. In that way the plastic slip systems202

can be grouped into mirrored pairs ; both members of a pair share the same203

magnitude of resolved shear stress. Each of the two slip systems within a204

mirrored pair will then activate with the same slip rate, assuming the critical205

resolved shear stress is the same on both slip system. In this way the 12206

slip systems from the FCC {111}〈110〉 family of slip systems reduces to 6207

mirrored pairs of slip systems. For three of the mirrored pairs, the out-of-208

plane components of the plastic slip on one slip system will counteract that209

of the other slip system within the pair. The other three mirrored pairs do210

not have mutually canceling out-of-plane deformations, so the experiments211

and analyses are performed under conditions of small scale yielding (Rice,212

1968) so that the elastically deforming region surrounding the plastic zone213

suppresses the out-of-plane deformation, and hence the activation, of these214

other three mirrored pairs.215

Based on the crystal structure (see Fig. 3), three mirrored pairs of slip216

12
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systems combine to form three effective plane strain slip systems in an FCC217

crystal, with each particular effective slip system denoted by α (the two218

underlying slip systems paired into the effective slip system are denoted αa219

and αb).220

Referring to Fig. 3, effective slip system 1 has unit slip direction s
(1)
i221

oriented at an angle of θ1 = tan−1(
√

2) ≈ 54.7356◦ relative to the specimen222

x1-axis. Effective slip system 2 has unit slip direction s
(2)
i oriented at an angle223

of θ2 = 0◦ relative to the specimen x1-axis. Effective slip system 3 has unit224

slip direction s
(3)
i oriented at an angle of θ3 = π − tan−1(

√
2) ≈ 125.2644◦225

relative to the specimen x1-axis. In the FCC crystal, effective slip systems 1226

and 3 consist of a pair of coplanar slip systems whereas effective slip system 2227

consists of a collinear pair of slip systems. In Kysar et al. (2005, 2010); Saito228

and Kysar (2011), the mirror plane was chosen equivalently to be (110), but229

the effective plane strain slip systems were oriented at the same respective230

angles for the orientation used herein.231

Now considering a BCC crystal with crystallographic orientation of the232

specimen rotated by 90◦ relative to that of the FCC crystal, as illustrated233

in Fig. 3. A BCC crystal has 24 different slip systems of type {11̄0}〈111〉234

and {112̄}〈111〉 (Hirth and Lothe, 1992). By choosing the (1̄01) plane as235

the mirror symmetry plane for the plane strain deformation there are 12236

mirrored pairs of slip system of which 6 pairs are capable of inducing a plane237

strain deformation state. One of the mirrored pairs consists of (1̄21̄)[111]238

and (1̄2̄1̄)[11̄1]. Since s
(α)
i and m

(α)
i for both slip systems lie within the (1̄01)239

13
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plane, both slip systems individually admit plane strain plastic deformation240

with s
(1)
i oriented such that θ1 = tan−1(

√
2) ≈ 54.7356◦ and s

(3)
i oriented241

such that θ3 = π − tan−1(
√

2) ≈ 125.2644◦ relative to the specimen x1-axis.242

Another mirrored pair of slip systems consists of (101)[1̄1̄1] and (101)[11̄1̄],243

which when activated in tandem produce an effective plain strain plastic slip244

system oriented such that θ2 = 0◦.245

The remaining four mirrored pairs can be activated in tandem to form246

four effective in-plane slip systems, two of which have s
(α)
i parallel to s

(1)
i and247

the other two of which have s
(α)
i parallel to s

(3)
i . However, the resolved shear248

stresses on these slip systems are smaller than that of effective slip systems249

1 and 3 so these have been neglected in this analysis.250

Lastly, for the HCP crystal, effective slips systems are not required when251

oriented such that the basal plane is the plane of deformation since three in-252

plane slip systems exist for this configuration. The method for determining253

the effective slip systems are adopted from Rice (1987) and Niordson and254

Kysar (2014). The individual crystallographic slip systems and the corre-255

sponding effective slip systems are summarized in Table 2 and the orientation256

of the wedge indenter is shown in Fig. 3. The s
(α)
i and m

(α)
i of the individual257

crystallographic slip systems, in general, have components in the out-of-plane258

direction. In order to simplify the analytical and numerical analyses, (Rice,259

1987) showed it convenient to treat each mirrored pairs of slip systems as260

an effective in-plane slip system with unit effective in-plane unit slip direc-261

tion S
(α)
i and unit effective in-plane unit slip plane normal as M

(α)
i . It is262

14
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then necessary to scale the values of the critical resolved shear stress and the263

reference plastic strain rate for the effective slip systems.264

To that end τ0 and γ̇0 are defined as the critical resolved shear stress and

reference plastic strain rate, respectively, on the individual crystallographic

plastic slip systems. Then S
(α)
i is substituted for s

(α)
i and M

(α)
i is substituted

for m
(α)
i in Eq. (4) when calculating the resolved shear stresses. Finally,

the effective critical resolved shear stresses and the effective reference plastic

strain rates are scaled, respectively, with dimensionless scaling parameters

λ(α) and β(α) to calculate the effective critical resolved shear stress, τ
(α)
0 , and

the effective reference strain rate, γ̇
(α)
0 for each of the effective in-plane slip

systems according to

τ
(α)
0 = λ(α)τ0, and γ̇

(α)
0 = β(α)γ̇0 (7)

where the values of λ(α) and β(α) for each effective slip system for FCC, BCC265

and HCP are listed in Table 2.266

3. Self-similarity and the numerical framework267

3.1. Self-similar relation268

In the context of plasticity, self-similarity may be defined as solutions to269

a boundary value problem where field quantities remain unchanged in shape,270

and only the spatial extent of the solution scales with time or deformation.271

Such solutions may be encountered in indentation, void growth, and station-272

15
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ary crack problems to name a few.273

The governing equation to be derived in the following holds for any history274

dependent self-similar solution and as such can be exploited to address a wide275

range of problems. Here, considering indentation, self-similarity is obtained276

when the indentation rate, defined as ȧ/a = ċ, is constant, where a is the277

half contact length (i.e. the distance from the center of the indentation to278

the contact point singularity) and ȧ the contact point velocity, as illustrated279

in Fig. 1.280

Before the self-similar method is described further, two different coor-281

dinate systems applied in the derivation will be defined. The first is the282

reference coordinate system, xi, that describes the position of all material283

points at time t = 0 and the second is the self-similar coordinate system284

in which coordinates of material points change with time. The axes of the285

self-similar coordinate system expand and stretch accordingly with the evo-286

lution of the self-similar field. There exists a family of self-similar coordinate287

systems, all related by scaling factors, but a specific self-similar coordinate288

system where the coordinates are normalized with the half contact length, a,289

according to ξi = xi/a is employed here. Thus, the contact point singularity290

is located at ξi = (1, 0).291

During indentation, self-similarity may be recognized by an observer who

changes magnification in proportion to the indentation contact length, as this

is the only characteristic length in the problem. Thus, any field quantity, f ,

must have the functional dependence f(ξi). Under self-similar conditions,
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the only time dependence in the problem enters through the evolution of the

characteristic length, a. Thus, the time rate of change of any field quantity

in the self-similar coordinate system can be expressed through the following

self-similar relation

ḟ =
df

dt
=
∂f

∂ξi

∂ξi
∂t

= − ȧ
a
ξi
∂f

∂ξi
= −ċξi

∂f

∂ξi
(8)

where ċ can be viewed as the magnification rate.292

This constitutes a relation between time varying and spatially varying293

quantities, enabling a numerical framework specialized for self-similar prob-294

lems along the same lines as those first laid out by Dean and Hutchinson295

(1980) for steady-state problems where the stationary field translates.296

To establish a better understanding of the self-similar problem, the self-297

similarly expanding field solution (constant magnification rate, ċ) is analyzed298

(see Fig. 1). By integrating ȧ/a = ċ with respect to time, t, an explicit re-299

lation between the half contact length, a0, at t = 0, and the current half300

contact length, a, at time, t, can be obtained; a = a0e
ċt. From this relation,301

it is seen that the contact length grows exponentially over time. Hence, it fol-302

lows that any length quantity related to the indentation process must evolve303

exponentially in time as there are no further independent length quantities.304

This is illustrated in Fig. 4, where the basis related to the reference coordi-305

nate system, xi, is given by (g
1
, g

2
) such that the contact point at time t = 0306

is located at (a0,0). As indentation progresses, the basis in a self-similar307
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coordinate system will be stretched according to (G
(t)
1 , G

(t)
2 ) = (g

1
, g

2
)a0e

ċt,308

maintaining the contact point (singularity) at ξi = (1, 0). It then follows309

from the relation between bases (or equivalently the relation for the expo-310

nentially increasing contact length) that a material point and its history in311

the indentation process can be tracked according to ξi = (xi/a0)e
−ċt in the312

self-similar coordinate system. The coordinates of a material point, xi, in313

the self-similar coordinate system, ξi, therefore diminish with time.314

With a suitable relation established between time derived and spatially315

derived quantities, a numerical integration technique similar to that of Dean316

and Hutchinson (1980) can be adopted. However, in contrast to the integra-317

tion lines from Dean and Hutchinson (1980), which represent the material318

flow in a predefined direction, the integration technique here is based on319

spatial integration along lines starting far away in the elastic region, going320

towards the origin of the self-similar field (in this case the indenter tip),321

carrying the history dependence of material points (see illustration of a inte-322

gration line in Fig. 1). As a consequence of the integration lines being located323

radially around the indenter tip, it is convenient to express the self-similar324

relation, Eq. (8), in a self-similar polar coordinate system with the origin325

located at the tip of the indenter. The self-similar expression can thus be326

expressed as ḟ = −ċρ∂f/∂ρ where ρ is defined as the radial distance to a327

point on the integration line. This self-similar relation will be employed in328

the development of the numerical framework.329
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3.2. Numerical framework330

The self-similar finite element model developed in the present study is a331

novel approach to handle this class of problems, inspired by the early work332

of Dean and Hutchinson (1980) for steady-state problems. The self-similar333

condition established in Section 3.1 states that any time derived quantity,334

ḟ , in the constitutive model can be directly related to a spatial derivative335

through the magnification rate, ċ, according to the relation ḟ = −ċρ∂f/∂ρ.336

Thus, any quantity of interest at a given material point, ρ∗, can be evaluated337

by integrating along a self-similar line, starting far away from the center338

of the self-similarity (in this case indenter tip) in the elastic zone, ρ0, and339

ending at the point of interest closer to the indenter tip, ρ∗ (see integration340

path in Fig. 1). The point of interest, ρ∗, will then contain the load history341

of all points further away from the indenter tip. The self-similar integration342

procedure is performed with a classical forward Euler integration scheme.343

As in Dean and Hutchinson (1980), the displacement field, ui, is deter-344

mined from the conventional principle of virtual work (PWV) for a quasi-345

static self-similar problem346

∫

V

LijklεklδεijdV =

∫

S

TiδuidS +

∫

V

Lijklε
p
klδεijdV (9)

where Ti = σijnj is the surface traction with nj denoting the unit outward347

normal vector, V is the volume, and S is the bounding surface. Using the348

finite element method, the PVW is discretized using a 2D 8-node isopara-349
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metric elements with reduced Gauss integration (2× 2 Gauss points).350

The procedure for obtaining the self-similar solution is very similar to the351

one suggested by Juul et al. (2017) for a single crystal visco-plastic steady-352

state model, however, the integration is now carried out along lines emanating353

from the center of the self-similar field. The pseudo-algorithm for the self-354

similar procedure is as follows (superscript n refers to the iterative step):355

1. The plastic strains from the previous iteration, ε
p(n−1)
ij , are used to356

determine the current displacement field, u
(n)
i , from the PVW in Eq. (9)357

(ε
p(n−1)
ij = 0 in the first iteration).358

2. The total strains, ε
(n)
ij , are determined from the displacement field, u

(n)
i .359

3. The slip on each slip system and the plastic strain field are determined360

by the self-similar integration procedure.361

(a) First the spatial derivatives of the slip and total plastic strains

are determined by applying the self-similar relation (∂f/∂ρ =

−ḟ/(ρċ))

∂γ(α)

∂ρ
= − γ̇

(α)
0

ρċ
sgn

(
τ (α)

)( |τ (α)|
g(α)

)1/m

(10)

∂εpij
∂ρ

=
∑

α

∂γ(α)

∂ρ
P

(α)
ij (11)

(b) Secondly, the current slip γ(α)(n) on each slip system and the cur-362

rent plastic strains, ε
p(n)
ij , are determined by performing the self-363

similar integration364
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γ(α)(n) =

∫ ρ∗

ρ0

∂γ(α)

∂ρ
dρ, and ε

p(n)
ij =

∫ ρ∗

ρ0

∂ε
(p)
ij

∂ρ
dρ. (12)

4. The current stresses σ
(n)
ij are then determined by applying the elastic365

constitutive relation; σij = Lijkl(εkl − εpkl).366

5. Step 1 through 4 is repeated, continuously feeding the new plastic field367

into the right hand side of Eq. (9), until convergence is obtained. Con-368

vergence is evaluated by comparing the displacement and stress field of369

the current iteration with the previous iteration.370

It is noticed that the numerical framework is an iterative procedure (in con-371

trast to the traditional incremental procedures), directly bringing out the372

self-similar state of the problem.373

The stability of the self-similar framework is found to be very robust to374

various parameters, and even for very low rate-sensitivity exponents con-375

vergence will be obtained without any special approach to the problems.376

However, this version of the framework also relies on the modifications sug-377

gested by Niordson (2001) and Nielsen and Niordson (2012a), where substeps378

between the Gauss points are introduced in the spatial integration procedure379

which increases the stability of the framework.380
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4. Results381

The established numerical framework for self-similar problems is applied382

to the wedge indentation process to validate the solution for the stress and383

slip rate fields around the moving contact point (see also Saito et al., 2012).384

The mesh is scaled around the contact point, such that the mesh is very fine385

in the vicinity of the contact point where a detailed view is desired, while386

the mesh is gradually coarser when moving away from the point of interest387

in order to save computational time (see illustration in Fig. 5).388

4.1. Stress Fields389

In this part, the stress distribution will be presented for the FCC, BCC,390

and HCP crystal structures as contour plots, angular variation around the391

moving contact point singularity, and as the stress trajectory in stress space.392

The contour plots are presented in the self-similar coordinate system, ξi,393

such that the contact point is always located at the coordinate ξi = (1, 0)394

(the contact point singularity).395

Figure 6 presents contour plots of the stress components for the FCC crys-396

tal structure. According to Drugan and Rice (1984), stress discontinuities397

are not admissible across a quasi-statically moving surface in a plastically398

deforming material, which is also confirmed by the continuous stress distri-399

butions. Upon further inspection of the stresses, it is seen that some stress400

contour lines appear as rays emanating from the contact point. This is in401

accordance with the asymptotic solutions in Eqs. (1)-(3). Moreover, it is402
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noticed that the asymptotic solution breaks down some distance from the403

contact point as the field is no longer independent of the radius from the404

contact point.405

To investigate the angular variation of the stresses around the contact406

point, the stresses have been extracted along an arc around the contact point407

using an inverse isoparametric mapping scheme. The extracted numerical408

values (markers) are plotted together with the analytical solution (lines) in409

Fig. 7. Here, the vertical lines represent the sector boundaries shown in410

Fig. 2a. It is seen that there is a good agreement between the analytical411

and numerical results both in terms of the angular development but also the412

magnitude. Furthermore, it is seen that the stress components satisfy the413

boundary conditions in terms of σ12 = 0 and σ22 = 0 at θ = 0 (the free414

undeformed surface) and σ12 = 0 at θ = −180◦ (the frictionless indenter415

surface).416

Lastly, the stress trajectory is plotted in Fig. 7b, starting in the vicinity of417

(0, 0) which is at the free surface (θ = 0) going in clockwise direction ending418

at the indenter surface. The elastic sectors (I-IV) are indicated on the stress419

trajectory according to Fig. 2a. The stress trajectory shows that the stresses420

start in an elastic region at the undeformed surface, then as θ → −54.7◦, the421

stresses develop into a state where the trajectory touches the yield surface at422

a point corresponding to a radial sector boundary undergoing glide shear (i.e.423

a radial ray of plastically deforming material). Afterwards, the material again424

becomes elastic until a second radial sector boundary (this time undergoing425
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kink shear) is encountered at θ = −90◦ where the stresses just reach the426

yield surface and then become elastic again. At θ = −125.3◦, the final radial427

sector boundary is encountered (glide shear) and the stress trajectory goes428

back to the initial point where the material behaviour is elastic. The fact429

that the material behaves elastically close to the indenter surface, indicates430

large stress triaxiality which is also confirmed by the stress component in431

Fig. 7a, where σ11 = σ22 (Saito et al., 2012).432

Figure 8 presents contour plots of the stresses for the BCC structure.433

Comparing to the solution for FCC (Fig. 6) similar features are observed for434

all stress components. Moreover, a similar asymptotic nature of the stresses435

only being dependent on the angle in the immediate vicinity of the moving436

contact point singularity is also valid. The stress components plotted along437

an arc around the contact point is shown in Fig. 9a for the BCC crystal, along438

with the analytical solutions from Eqs. (1)-(3). Again, the numerical solution439

is seen to be in good agreement with the analytical solution. In addition,440

the stress trajectory is presented in Fig. 9b for the BCC structure. Here,441

recall that it is expected to see one sector less than for the FCC structure442

as the analytical solution does not predict the existence of a radial sector443

boundary at θ = −90◦ (Saito and Kysar, 2011). Starting in the vicinity of444

(0, 0) and moving in the clockwise direction, the first radial sector boundary445

(glide shear) is encountered. At the top horizontal line of the yield surface,446

it is noticed that the numerical solution is, in fact, close to the yield surface,447

even though this should not be the case for the BCC structure. This can448
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be explained by the fact that a rate dependent model has been employed449

in the numerical model which results in a sector boundary at θ = −90◦450

being activated because of the stress trajectory is very close to the yield451

surface (Saito and Kysar, 2011). By employing a rate independent model452

in the framework this should be avoidable. Lastly, the second radial sector453

boundary (also glide shear) is encountered and the material goes back to454

being elastic approaching the initial state.455

Finally, the HCP crystal is considered. The shape of the stress contours456

for the HCP structure (Fig. 10) have minor differences in the details but are457

overall similar to the stress contours for the FCC and BCC crystals. For458

the HCP structure (Fig. 11), none of the asymptotic solutions considered459

by Saito and Kysar (2011) were admissible, indicating the existence of at460

least one angular plastic sector. The angular stress distribution in Fig. 11a461

shows similarities to the FCC and BCC structure but the curves are less462

smooth. Moreover, the numerical solution for the HCP structure still comply463

with the boundary conditions in terms of σ12 = 0 and σ22 = 0 at θ =464

0 (the free surface) and σ12 = 0 at θ = −180◦ (the frictionless indenter465

surface). The stress trajectory in Fig. 11b starts in the vicinity of (0, 0), and466

moves in the clockwise direction. From the numerical solution, the trajectory467

approaches the vertex in the upper left corner, then continue on the yield468

surface, going towards the upper right vertex and subsequently towards the469

vertex to the right of the starting point. This indicates that the material470

behaves plastically within certain sectors as predicted by Saito and Kysar471
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(2011).472

4.2. Slip rate fields473

The slip rate for the FCC, BCC, and HCP crystal structure will be pre-474

sented in the following as contour plots near the moving contact point sin-475

gularity (the same normalization of the axes as for the stresses is used). The476

main goal of this part is to bring forward the discontinuities expected in slip477

rate. These discontinuities were not directly seen in the previous results of478

the stress field since stress discontinuities are not admissible for a moving479

contact point singularity (Drugan and Rice, 1984). It should be noticed that480

the analytically proven discontinuities (Drugan and Rice, 1984; Rice, 1987;481

Saito and Kysar, 2011) will appear as rays with a finite width in the field of482

interest due to the rate dependent material model employed.483

Figure 12 displays the normalized slip rate on the three effective slip sys-484

tems for the FCC structure as well as the total slip rate (the sum γ̇(tot) =485

∑α |γ̇(α)|). According to Fig. 2a, a glide shear discontinuity should be ob-486

served at θ = −125.3◦ on slip system (1) which is also the case (Fig. 12a).487

The numerical predictions also holds for the two other analytical prediction488

by Saito and Kysar (2011) for slip system (2) which shows a kink shear ray489

at θ = −90◦ (Fig. 12b) and lastly a glide shear ray on slip system (3) at490

θ = −54.7◦ (Fig. 12c). The glide shear ray in Fig. 12a is of particular in-491

terest as it is seen that the ray is reflected at the displacement symmetry492

boundary (ξ1 = 0), into a kink shear ray at θ = −125.3◦. A better illus-493
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tration of this is shown in Fig. 12d, where the sum of the slip rates on all494

systems is presented. It is seen that the kink shear ray arising from slip495

system (1) at point B is intersecting the kink shear ray on slip system (2)496

at point C. From a geometric point of view, these two rays should intersect497

on a line of θ = −64.7◦, which is confirmed by the numerical results. Upon498

further inspection of the line OC, only slip system (1) contributes to plastic499

deformation below the line of θ = −64.7◦, whereas all slip systems contribute500

to the deformation above the line. The observations for both the stress and501

the slip rate fields are consistent with the results obtained by Saito et al.502

(2012) for the FCC crystal.503

In Fig. 13, the same results are presented for the BCC crystal structure.504

Since the BCC structure has slip systems identical to the FCC crystal, the505

same angles are observed (obviously, there is a change in the magnitudes, as506

the effective parameters are different). For slip system (1) (Fig. 13a), the507

glide shear ray is again observed at θ = −125.3◦, and at θ = −54.7◦ for508

slip system (3) (Fig. 13c). Moreover, the contour plot in Fig. 13b shows a509

kink shear ray at θ = −90◦ similar to the one for the FCC structure, which510

according to the analytical solution should not exist. This is ascribed to the511

rate dependent model activating the kink shear due to the stress trajectory512

being very close to the yield surface (see Fig. 9b). Additionally, a small513

feature at approximately θ = −120◦ in Fig. 13b is not part of the analytical514

solution and its magnitude changes with the rate-sensitivity, m (the same515

feature is in fact seen for the FCC crystal in Fig. 12b, however, it is much516
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smaller). For the BCC crystal a kink shear ray is also seen to emanate from517

the displacement symmetry boundary (Fig. 13d) perpendicular to the glide518

shear ray in slip system (1), making this system solely responsible for the519

plastic deformation below the OC line. Furthermore, it is also here observed520

that a kink shear ray, is reflected of the displacement symmetry boundary,521

and that it intersects the kink shear ray on slip system (2) on a θ = −64.7◦522

line in accordance with the geometrical expectation.523

Lastly, the slip rate fields are presented for the HCP structure (Fig. 14)524

which deviate slightly from the FCC and BCC structures due to the difference525

in slip systems. Even though an analytical solution was not established for526

the HCP crystal, it is clear that the discontinuities coincide with the slip527

systems, where slip system (1) creates a glide shear ray at θ = −120◦, a kink528

shear ray is formed on slip system (2) at θ = −90◦, and finally another glide529

shear ray is formed at θ = −60◦ on slip system (3). Besides the discontinuities530

related to the slip systems, an additional feature is observed in Fig. 14c at531

approximately θ = −80◦. Similarly to the unexpected feature in Fig. 13b,532

this feature is expected to be an artifact of the rate dependency. As for533

the FCC and BCC crystal structures, a kink shear ray for slip system (1)534

reflects of the displacement symmetry boundary, however, it is much less535

pronounced for the HCP crystal. This kink shear ray should intersect the536

kink shear ray that emanates from slip system (2) at an angle of θ = −67◦537

(based on geometrical observations), however, the intersection is only vaguely538

observable from Fig. 14d.539
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5. Concluding remarks540

A novel numerical framework for self-similar problems in plasticity has541

been developed. The framework is specialized to this class of problems and542

eliminates a number of issues encountered when employing traditional La-543

grangian procedures. Moreover, the framework readily enables focusing the544

mesh for high resolution of field solutions in the regions of interest.545

Main focus in the presented work is on the development and verification546

of the self-similar framework. The verification is conducted by applying the547

newly developed framework to wedge indentation in a 2D small strain setting548

for single crystal plasticity, where both analytical (Saito and Kysar, 2011) and549

numerical (Saito et al., 2012) results exist for comparison. The framework,550

however, is general and holds for any self-similar problem in plasticity (also551

in 3D and with appropriate extensions for finite strains). The key findings552

are:553

• The stress distribution in the vicinity of the contact point singularity554

corresponds to the analytical predictions by Saito and Kysar (2011)555

both qualitatively and quantitatively for the FCC and BCC crystal556

structure. Furthermore, the stress field for FCC is similar to the nu-557

merical results of Saito et al. (2012) showing the same qualitative fea-558

tures.559

• Numerical simulation indeed reveals discontinuities in the slip rate cor-560

responding to the predictions of Saito and Kysar (2011). Based on the561
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analytical results both glide shear and kink shear sector boundaries ex-562

ist for the FCC structure and this gives rise to three discontinuity lines563

emanating from the contact point singularity. The sector boundaries564

readily fall out by applying the new numerical framework.565

• For the HCP crystal structure, an analytical expression was not con-566

structed as the asymptotic solutions by Saito and Kysar (2011) were567

not admissible, implying that at least one plastic sector exists (only568

elastic sectors exist for FCC and BCC). The numerical results for the569

HCP crystal confirmed the existence of such sectors by having part570

of the stress trajectory remaining on the yield surface. Furthermore,571

both glide shear and kink shear discontinuities are predicted by the572

numerical model for the HCP crystal.573

For the BCC crystal, only glide shear discontinuities should exist ac-574

cording to analytical solutions, giving two sector boundaries. However, the575

numerical solutions also predict a third sector boundary corresponding to a576

kink shear discontinuity. The authors believe that this has to do with the577

rate dependent material model for which the kink shear discontinuity appears578

because the stress trajectory is very close to the yield surface.579
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∑α |γ̇(α)|). . . . . . . . . 49731

14 Slip rate around the right hand side contact point, ξi = (1, 0),732

in HCP crystal for the slip systems (a) |γ̇(1)|/ċ, (b) |γ̇(2)|/ċ,733
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Figure 1: Wedge indentation in a rate dependent single crystal. Inside the self-
similar history dependent domain (SS domain) the developed numerical framework
is applied, whereas outside this domain, the material is treated as being linear
elastic.
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Figure 2: Sector structure for asymptotic fields beneath the contact point sin-
gularity (a) with kink shear sector boundary (FCC) and (b) without kink shear
sector boundary (BCC) (Saito and Kysar, 2011). The parameter α = 54.7◦ for
both the FCC and BCC crystal structures.
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Figure 3: Crystallographic orientation of the specimen relative to the wedge
indenter, and the effective slip systems for the FCC, BCC, and HCP crystal struc-
tures, respectively.
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Figure 5: Right hand side of the domain used for numerical simulations. The
dashed arrows indicate the direction of gradually increasing element size. The
boundary of the domain is sufficiently far away from the contact point to have
negligible influence on the results (the boundary is clamped).
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Figure 6: Stress distribution around the right hand side contact point, ξi = (1, 0),
in FCC crystal for the stress components (a) σ11/τ0, (b) σ22/τ0 and (c) σ12/τ0.
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Figure 7: Stress distribution for FCC around the right hand side contact point
projected as (a) angular distribution, and (b) stress trajectory with the thick line
representing the yield surface. The lines represent the analytical solution while
the markers indicate the numerical results.
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Figure 8: Stress distribution around the right hand side contact point, ξi = (1, 0),
in BCC crystal for the stress components (a) σ11/τ0, (b) σ22/τ0 and (c) σ12/τ0.
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Figure 9: Stress distribution for BCC around the right hand side contact point
projected as (a) angular distribution, and (b) stress trajectory with the thick line
representing the yield surface. The lines represent the analytical solution while
the markers indicate the numerical results.
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Figure 10: Stress distribution around the right hand side contact point, ξi =
(1, 0), in HCP crystal for the stress components (a) σ11/τ0, (b) σ22/τ0 and (c)
σ12/τ0.
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Figure 11: Stress distribution for HCP around the right hand side contact point
projected as (a) angular distribution, and (b) stress trajectory with the thick line
representing the yield surface. Here, only the numerical solution is presented.
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(a) (b)
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Figure 12: Slip rate around the right hand side contact point, ξi = (1, 0), in FCC
crystal for the slip systems (a) |γ̇(1)|/ċ, (b) |γ̇(2)|/ċ, (c) |γ̇(3)|/ċ, and (d) γ̇(tot)/ċ
(γ̇(tot) =

∑α |γ̇(α)|).
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Figure 13: Slip rate around the right hand side contact point, ξi = (1, 0), in BCC
crystal for the slip systems (a) |γ̇(1)|/ċ, (b) |γ̇(2)|/ċ, (c) |γ̇(3)|/ċ, and (d) γ̇(tot)/ċ
(γ̇(tot) =

∑α |γ̇(α)|).
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Figure 14: Slip rate around the right hand side contact point, ξi = (1, 0), in HCP
crystal for the slip systems (a) |γ̇(1)|/ċ, (b) |γ̇(2)|/ċ, (c) |γ̇(3)|/ċ, and (d) γ̇(tot)/ċ
(γ̇(tot) =

∑α |γ̇(α)|).
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Parameter Significance Value

τ0/E Yield strain ∼ 1e−5

ν Poisson ratio 0.3
m Strain rate-sensitivity exponent 0.02
γ̇0 Reference slip rate 0.001s−1

ċ Magnification rate 0.1s−1

φ Indenter angle 0.038◦

Table 1: Model parameters.
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Effective slip system no. (1) (2) (3)

FCC
Angle to [101] in (1̄01) plane 54.7◦ 0◦ -54.7◦

Crystallographic slip system (a) (111)[11̄0] (111̄)[101] (1̄11̄)[01̄1̄]
Crystallographic slip system (b) (111)[01̄1] (1̄11)[101] (1̄11̄)[1̄1̄0]

β(α) =
s
(αa)
i m

(αa)
j +s

(αb)
i m

(αb)
j

s
(α)
i m

(α)
j

√
3 2√

3

√
3

λ(α) = τ (α)

τ (αa)
= τ (α)

τ (αb)
2√
3

√
3 2√

3

BCC
Angle to [010] in (1̄01) plane [◦] 54.7◦ 0◦ -54.7◦

Crystallographic slip system (a) (1̄2̄1̄)[11̄1] (101)[1̄1̄1] (1̄21̄)[111]
Crystallographic slip system (b) - (101)[11̄1̄] -

β(α) =
s
(αa)
i m

(αa)
j +s

(αb)
i m

(αb)
j

s
(α)
i m

(α)
j

1 2√
3

1

λ(α) = τ (α)

τ (αa)
= τ (α)

τ (αb)
1

√
3 1

HCP
Angle to [112̄0] in (0001) plane [◦] 60◦ 0◦ -60◦

Crystallographic slip system (a) (101̄0)[12̄10] (11̄00)[1̄1̄20] (011̄0)[21̄1̄0]
Crystallographic slip system (b) - - -

β(α) =
s
(αa)
i m

(αa)
j +s

(αb)
i m

(αb)
j

s
(α)
i m

(α)
j

1 1 1

λ(α) = τ (α)

τ (αa)
= τ (α)

τ (αb)
1 1 1

Table 2: Effective slip systems for plane strain model.
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